Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
BornAgain
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mlz
BornAgain
Commits
b9bda0b7
Commit
b9bda0b7
authored
11 years ago
by
Van Herck, Walter
Browse files
Options
Downloads
Patches
Plain Diff
Took care of zero eigenvalues in magnetic matrix calculation
parent
8fec2e4f
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Core/Algorithms/inc/SpecularMagnetic.h
+38
-1
38 additions, 1 deletion
Core/Algorithms/inc/SpecularMagnetic.h
Core/Algorithms/src/SpecularMagnetic.cpp
+148
-89
148 additions, 89 deletions
Core/Algorithms/src/SpecularMagnetic.cpp
with
186 additions
and
90 deletions
Core/Algorithms/inc/SpecularMagnetic.h
+
38
−
1
View file @
b9bda0b7
...
...
@@ -33,7 +33,7 @@ public:
//! layer coefficients for matrix formalism
class
LayerMatrixCoeff
{
public:
LayerMatrixCoeff
()
{}
LayerMatrixCoeff
()
:
m_kt
(
0.0
)
{}
~
LayerMatrixCoeff
()
{}
Eigen
::
Vector2cd
T1plus
()
const
;
Eigen
::
Vector2cd
R1plus
()
const
;
...
...
@@ -57,6 +57,7 @@ public:
complex_t
m_a
;
// polarization independent part
complex_t
m_b_mag
;
// magnitude of polarization part
complex_t
m_bz
;
// z-part of polarization scattering
double
m_kt
;
// wavevector length times thickness of layer for use when lambda=0
void
calculateTRMatrices
();
void
initializeBottomLayerPhiPsi
();
private
:
...
...
@@ -100,6 +101,9 @@ inline Eigen::Vector2cd SpecularMagnetic::LayerMatrixCoeff::T1plus() const {
Eigen
::
Vector2cd
result
;
result
(
0
)
=
T1m
.
row
(
2
).
dot
(
phi_psi_plus
);
result
(
1
)
=
T1m
.
row
(
3
).
dot
(
phi_psi_plus
);
if
(
lambda
(
0
)
==
0.0
&&
result
==
Eigen
::
Vector2cd
::
Zero
())
{
result
(
0
)
=
0.5
;
}
return
result
;
}
...
...
@@ -107,6 +111,12 @@ inline Eigen::Vector2cd SpecularMagnetic::LayerMatrixCoeff::R1plus() const {
Eigen
::
Vector2cd
result
;
result
(
0
)
=
R1m
.
row
(
2
).
dot
(
phi_psi_plus
);
result
(
1
)
=
R1m
.
row
(
3
).
dot
(
phi_psi_plus
);
if
(
lambda
(
0
)
==
0.0
)
{
if
(
T1m
.
row
(
2
).
dot
(
phi_psi_plus
)
==
0.0
&&
T1m
.
row
(
3
).
dot
(
phi_psi_plus
)
==
0.0
)
{
result
(
0
)
=
-
0.5
;
}
}
return
result
;
}
...
...
@@ -114,6 +124,9 @@ inline Eigen::Vector2cd SpecularMagnetic::LayerMatrixCoeff::T2plus() const {
Eigen
::
Vector2cd
result
;
result
(
0
)
=
T2m
.
row
(
2
).
dot
(
phi_psi_plus
);
result
(
1
)
=
T2m
.
row
(
3
).
dot
(
phi_psi_plus
);
if
(
lambda
(
1
)
==
0.0
&&
result
==
Eigen
::
Vector2cd
::
Zero
())
{
result
(
0
)
=
0.5
;
}
return
result
;
}
...
...
@@ -121,6 +134,12 @@ inline Eigen::Vector2cd SpecularMagnetic::LayerMatrixCoeff::R2plus() const {
Eigen
::
Vector2cd
result
;
result
(
0
)
=
R2m
.
row
(
2
).
dot
(
phi_psi_plus
);
result
(
1
)
=
R2m
.
row
(
3
).
dot
(
phi_psi_plus
);
if
(
lambda
(
1
)
==
0.0
)
{
if
(
T2m
.
row
(
2
).
dot
(
phi_psi_plus
)
==
0.0
&&
T2m
.
row
(
3
).
dot
(
phi_psi_plus
)
==
0.0
)
{
result
(
0
)
=
-
0.5
;
}
}
return
result
;
}
...
...
@@ -128,6 +147,9 @@ inline Eigen::Vector2cd SpecularMagnetic::LayerMatrixCoeff::T1min() const {
Eigen
::
Vector2cd
result
;
result
(
0
)
=
T1m
.
row
(
2
).
dot
(
phi_psi_min
);
result
(
1
)
=
T1m
.
row
(
3
).
dot
(
phi_psi_min
);
if
(
lambda
(
0
)
==
0.0
&&
result
==
Eigen
::
Vector2cd
::
Zero
())
{
result
(
1
)
=
0.5
;
}
return
result
;
}
...
...
@@ -135,6 +157,12 @@ inline Eigen::Vector2cd SpecularMagnetic::LayerMatrixCoeff::R1min() const {
Eigen
::
Vector2cd
result
;
result
(
0
)
=
R1m
.
row
(
2
).
dot
(
phi_psi_min
);
result
(
1
)
=
R1m
.
row
(
3
).
dot
(
phi_psi_min
);
if
(
lambda
(
0
)
==
0.0
)
{
if
(
T1m
.
row
(
2
).
dot
(
phi_psi_min
)
==
0.0
&&
T1m
.
row
(
3
).
dot
(
phi_psi_min
)
==
0.0
)
{
result
(
1
)
=
-
0.5
;
}
}
return
result
;
}
...
...
@@ -142,6 +170,9 @@ inline Eigen::Vector2cd SpecularMagnetic::LayerMatrixCoeff::T2min() const {
Eigen
::
Vector2cd
result
;
result
(
0
)
=
T2m
.
row
(
2
).
dot
(
phi_psi_min
);
result
(
1
)
=
T2m
.
row
(
3
).
dot
(
phi_psi_min
);
if
(
lambda
(
1
)
==
0.0
&&
result
==
Eigen
::
Vector2cd
::
Zero
())
{
result
(
1
)
=
0.5
;
}
return
result
;
}
...
...
@@ -149,6 +180,12 @@ inline Eigen::Vector2cd SpecularMagnetic::LayerMatrixCoeff::R2min() const {
Eigen
::
Vector2cd
result
;
result
(
0
)
=
R2m
.
row
(
2
).
dot
(
phi_psi_min
);
result
(
1
)
=
R2m
.
row
(
3
).
dot
(
phi_psi_min
);
if
(
lambda
(
1
)
==
0.0
)
{
if
(
T2m
.
row
(
2
).
dot
(
phi_psi_min
)
==
0.0
&&
T2m
.
row
(
3
).
dot
(
phi_psi_min
)
==
0.0
)
{
result
(
1
)
=
-
0.5
;
}
}
return
result
;
}
...
...
This diff is collapsed.
Click to expand it.
Core/Algorithms/src/SpecularMagnetic.cpp
+
148
−
89
View file @
b9bda0b7
...
...
@@ -35,6 +35,7 @@ void SpecularMagnetic::calculateEigenvalues(const MultiLayer& sample,
for
(
size_t
i
=
0
;
i
<
coeff
.
size
();
++
i
)
{
coeff
[
i
].
m_scatt_matrix
=
sample
.
getLayer
(
i
)
->
getMaterial
()
->
getScatteringMatrix
(
k
);
coeff
[
i
].
m_kt
=
mag_k
*
sample
.
getLayer
(
i
)
->
getThickness
();
coeff
[
i
].
m_a
=
coeff
[
i
].
m_scatt_matrix
.
trace
()
/
2.0
;
coeff
[
i
].
m_b_mag
=
std
::
sqrt
(
coeff
[
i
].
m_a
*
coeff
[
i
].
m_a
-
coeff
[
i
].
m_scatt_matrix
.
determinant
());
...
...
@@ -62,8 +63,8 @@ void SpecularMagnetic::calculateTransferAndBoundary(const MultiLayer& sample,
coeff
[
0
].
calculateTRMatrices
();
coeff
[
0
].
l
.
setIdentity
();
for
(
int
i
=
(
int
)
N
-
2
;
i
>
0
;
--
i
)
{
coeff
[
i
].
calculateTRMatrices
();
double
t
=
sample
.
getLayer
(
i
)
->
getThickness
();
coeff
[
i
].
calculateTRMatrices
();
coeff
[
i
].
l
=
coeff
[
i
].
R1m
*
getImExponential
((
complex_t
)(
coeff
[
i
].
kz
(
0
)
*
t
))
+
coeff
[
i
].
T1m
*
getImExponential
((
complex_t
)(
-
coeff
[
i
].
kz
(
0
)
*
t
))
+
...
...
@@ -135,93 +136,137 @@ void SpecularMagnetic::LayerMatrixCoeff::calculateTRMatrices()
return
;
}
// T1m:
// row 0:
T1m
(
0
,
0
)
=
(
1.0
-
m_bz
/
m_b_mag
)
/
4.0
;
T1m
(
0
,
1
)
=
-
m_scatt_matrix
(
0
,
1
)
/
4.0
/
m_b_mag
;
T1m
(
0
,
2
)
=
lambda
(
0
)
*
(
m_bz
/
m_b_mag
-
1.0
)
/
4.0
;
T1m
(
0
,
3
)
=
m_scatt_matrix
(
0
,
1
)
*
lambda
(
0
)
/
4.0
/
m_b_mag
;
// row 1:
T1m
(
1
,
0
)
=
-
m_scatt_matrix
(
1
,
0
)
/
4.0
/
m_b_mag
;
T1m
(
1
,
1
)
=
(
1.0
+
m_bz
/
m_b_mag
)
/
4.0
;
T1m
(
1
,
2
)
=
m_scatt_matrix
(
1
,
0
)
*
lambda
(
0
)
/
4.0
/
m_b_mag
;
T1m
(
1
,
3
)
=
-
lambda
(
0
)
*
(
m_bz
/
m_b_mag
+
1.0
)
/
4.0
;
// row 2:
T1m
(
2
,
0
)
=
-
(
1.0
-
m_bz
/
m_b_mag
)
/
4.0
/
lambda
(
0
);
T1m
(
2
,
1
)
=
m_scatt_matrix
(
0
,
1
)
/
4.0
/
m_b_mag
/
lambda
(
0
);
T1m
(
2
,
2
)
=
-
(
m_bz
/
m_b_mag
-
1.0
)
/
4.0
;
T1m
(
2
,
3
)
=
-
m_scatt_matrix
(
0
,
1
)
/
4.0
/
m_b_mag
;
// row 3:
T1m
(
3
,
0
)
=
m_scatt_matrix
(
1
,
0
)
/
4.0
/
m_b_mag
/
lambda
(
0
);
T1m
(
3
,
1
)
=
-
(
1.0
+
m_bz
/
m_b_mag
)
/
4.0
/
lambda
(
0
);
T1m
(
3
,
2
)
=
-
m_scatt_matrix
(
1
,
0
)
/
4.0
/
m_b_mag
;
T1m
(
3
,
3
)
=
(
m_bz
/
m_b_mag
+
1.0
)
/
4.0
;
if
(
lambda
(
0
)
==
0.0
)
{
complex_t
ikt
=
complex_t
(
0.0
,
1.0
)
*
m_kt
;
// Lambda1 component contained only in T1m (R1m=0)
// row 0:
T1m
(
0
,
0
)
=
(
1.0
-
m_bz
/
m_b_mag
)
/
2.0
;
T1m
(
0
,
1
)
=
-
m_scatt_matrix
(
0
,
1
)
/
2.0
/
m_b_mag
;
// row 1:
T1m
(
1
,
0
)
=
-
m_scatt_matrix
(
1
,
0
)
/
2.0
/
m_b_mag
;
T1m
(
1
,
1
)
=
(
1.0
+
m_bz
/
m_b_mag
)
/
2.0
;
// row 2:
T1m
(
2
,
0
)
=
ikt
*
(
1.0
-
m_bz
/
m_b_mag
)
/
2.0
;
T1m
(
2
,
1
)
=
-
ikt
*
m_scatt_matrix
(
0
,
1
)
/
2.0
/
m_b_mag
;
T1m
(
2
,
2
)
=
T1m
(
0
,
0
);
T1m
(
2
,
3
)
=
T1m
(
0
,
1
);
// row 3:
T1m
(
3
,
0
)
=
-
ikt
*
m_scatt_matrix
(
1
,
0
)
/
2.0
/
m_b_mag
;
T1m
(
3
,
1
)
=
ikt
*
(
1.0
+
m_bz
/
m_b_mag
)
/
2.0
;
T1m
(
3
,
2
)
=
T1m
(
1
,
0
);
T1m
(
3
,
3
)
=
T1m
(
1
,
1
);
}
else
{
// T1m:
// row 0:
T1m
(
0
,
0
)
=
(
1.0
-
m_bz
/
m_b_mag
)
/
4.0
;
T1m
(
0
,
1
)
=
-
m_scatt_matrix
(
0
,
1
)
/
4.0
/
m_b_mag
;
T1m
(
0
,
2
)
=
lambda
(
0
)
*
(
m_bz
/
m_b_mag
-
1.0
)
/
4.0
;
T1m
(
0
,
3
)
=
m_scatt_matrix
(
0
,
1
)
*
lambda
(
0
)
/
4.0
/
m_b_mag
;
// row 1:
T1m
(
1
,
0
)
=
-
m_scatt_matrix
(
1
,
0
)
/
4.0
/
m_b_mag
;
T1m
(
1
,
1
)
=
(
1.0
+
m_bz
/
m_b_mag
)
/
4.0
;
T1m
(
1
,
2
)
=
m_scatt_matrix
(
1
,
0
)
*
lambda
(
0
)
/
4.0
/
m_b_mag
;
T1m
(
1
,
3
)
=
-
lambda
(
0
)
*
(
m_bz
/
m_b_mag
+
1.0
)
/
4.0
;
// row 2:
T1m
(
2
,
0
)
=
-
(
1.0
-
m_bz
/
m_b_mag
)
/
4.0
/
lambda
(
0
);
T1m
(
2
,
1
)
=
m_scatt_matrix
(
0
,
1
)
/
4.0
/
m_b_mag
/
lambda
(
0
);
T1m
(
2
,
2
)
=
-
(
m_bz
/
m_b_mag
-
1.0
)
/
4.0
;
T1m
(
2
,
3
)
=
-
m_scatt_matrix
(
0
,
1
)
/
4.0
/
m_b_mag
;
// row 3:
T1m
(
3
,
0
)
=
m_scatt_matrix
(
1
,
0
)
/
4.0
/
m_b_mag
/
lambda
(
0
);
T1m
(
3
,
1
)
=
-
(
1.0
+
m_bz
/
m_b_mag
)
/
4.0
/
lambda
(
0
);
T1m
(
3
,
2
)
=
-
m_scatt_matrix
(
1
,
0
)
/
4.0
/
m_b_mag
;
T1m
(
3
,
3
)
=
(
m_bz
/
m_b_mag
+
1.0
)
/
4.0
;
// R1m:
// row 0:
R1m
(
0
,
0
)
=
T1m
(
0
,
0
);
R1m
(
0
,
1
)
=
T1m
(
0
,
1
);
R1m
(
0
,
2
)
=
-
T1m
(
0
,
2
);
R1m
(
0
,
3
)
=
-
T1m
(
0
,
3
);
// row 1:
R1m
(
1
,
0
)
=
T1m
(
1
,
0
);
R1m
(
1
,
1
)
=
T1m
(
1
,
1
);
R1m
(
1
,
2
)
=
-
T1m
(
1
,
2
);
R1m
(
1
,
3
)
=
-
T1m
(
1
,
3
);
// row 2:
R1m
(
2
,
0
)
=
-
T1m
(
2
,
0
);
R1m
(
2
,
1
)
=
-
T1m
(
2
,
1
);
R1m
(
2
,
2
)
=
T1m
(
2
,
2
);
R1m
(
2
,
3
)
=
T1m
(
2
,
3
);
// row 3:
R1m
(
3
,
0
)
=
-
T1m
(
3
,
0
);
R1m
(
3
,
1
)
=
-
T1m
(
3
,
1
);
R1m
(
3
,
2
)
=
T1m
(
3
,
2
);
R1m
(
3
,
3
)
=
T1m
(
3
,
3
);
// R1m:
// row 0:
R1m
(
0
,
0
)
=
T1m
(
0
,
0
);
R1m
(
0
,
1
)
=
T1m
(
0
,
1
);
R1m
(
0
,
2
)
=
-
T1m
(
0
,
2
);
R1m
(
0
,
3
)
=
-
T1m
(
0
,
3
);
// row 1:
R1m
(
1
,
0
)
=
T1m
(
1
,
0
);
R1m
(
1
,
1
)
=
T1m
(
1
,
1
);
R1m
(
1
,
2
)
=
-
T1m
(
1
,
2
);
R1m
(
1
,
3
)
=
-
T1m
(
1
,
3
);
// row 2:
R1m
(
2
,
0
)
=
-
T1m
(
2
,
0
);
R1m
(
2
,
1
)
=
-
T1m
(
2
,
1
);
R1m
(
2
,
2
)
=
T1m
(
2
,
2
);
R1m
(
2
,
3
)
=
T1m
(
2
,
3
);
// row 3:
R1m
(
3
,
0
)
=
-
T1m
(
3
,
0
);
R1m
(
3
,
1
)
=
-
T1m
(
3
,
1
);
R1m
(
3
,
2
)
=
T1m
(
3
,
2
);
R1m
(
3
,
3
)
=
T1m
(
3
,
3
);
}
// T2m:
// row 0:
T2m
(
0
,
0
)
=
(
1.0
+
m_bz
/
m_b_mag
)
/
4.0
;
T2m
(
0
,
1
)
=
m_scatt_matrix
(
0
,
1
)
/
4.0
/
m_b_mag
;
T2m
(
0
,
2
)
=
-
lambda
(
1
)
*
(
m_bz
/
m_b_mag
+
1.0
)
/
4.0
;
T2m
(
0
,
3
)
=
-
m_scatt_matrix
(
0
,
1
)
*
lambda
(
1
)
/
4.0
/
m_b_mag
;
// row 1:
T2m
(
1
,
0
)
=
m_scatt_matrix
(
1
,
0
)
/
4.0
/
m_b_mag
;
T2m
(
1
,
1
)
=
(
1.0
-
m_bz
/
m_b_mag
)
/
4.0
;
T2m
(
1
,
2
)
=
-
m_scatt_matrix
(
1
,
0
)
*
lambda
(
1
)
/
4.0
/
m_b_mag
;
T2m
(
1
,
3
)
=
lambda
(
1
)
*
(
m_bz
/
m_b_mag
-
1.0
)
/
4.0
;
// row 2:
T2m
(
2
,
0
)
=
-
(
1.0
+
m_bz
/
m_b_mag
)
/
4.0
/
lambda
(
1
);
T2m
(
2
,
1
)
=
-
m_scatt_matrix
(
0
,
1
)
/
4.0
/
m_b_mag
/
lambda
(
1
);
T2m
(
2
,
2
)
=
(
m_bz
/
m_b_mag
+
1.0
)
/
4.0
;
T2m
(
2
,
3
)
=
m_scatt_matrix
(
0
,
1
)
/
4.0
/
m_b_mag
;
// row 3:
T2m
(
3
,
0
)
=
-
m_scatt_matrix
(
1
,
0
)
/
4.0
/
m_b_mag
/
lambda
(
1
);
T2m
(
3
,
1
)
=
-
(
1.0
-
m_bz
/
m_b_mag
)
/
4.0
/
lambda
(
1
);
T2m
(
3
,
2
)
=
m_scatt_matrix
(
1
,
0
)
/
4.0
/
m_b_mag
;
T2m
(
3
,
3
)
=
(
1.0
-
m_bz
/
m_b_mag
)
/
4.0
;
if
(
lambda
(
1
)
==
0.0
)
{
complex_t
ikt
=
complex_t
(
0.0
,
1.0
)
*
m_kt
;
// Lambda2 component contained only in T2m (R2m=0)
// row 0:
T2m
(
0
,
0
)
=
(
1.0
+
m_bz
/
m_b_mag
)
/
2.0
;
T2m
(
0
,
1
)
=
m_scatt_matrix
(
0
,
1
)
/
2.0
/
m_b_mag
;
// row 1:
T2m
(
1
,
0
)
=
m_scatt_matrix
(
1
,
0
)
/
2.0
/
m_b_mag
;
T2m
(
1
,
1
)
=
(
1.0
-
m_bz
/
m_b_mag
)
/
2.0
;
// row 2:
T2m
(
2
,
0
)
=
ikt
*
(
1.0
+
m_bz
/
m_b_mag
)
/
2.0
;
T2m
(
2
,
1
)
=
ikt
*
m_scatt_matrix
(
0
,
1
)
/
2.0
/
m_b_mag
;
T2m
(
2
,
2
)
=
T2m
(
0
,
0
);
T2m
(
2
,
3
)
=
T2m
(
0
,
1
);
// row 3:
T2m
(
3
,
0
)
=
ikt
*
m_scatt_matrix
(
1
,
0
)
/
2.0
/
m_b_mag
;
T2m
(
3
,
1
)
=
ikt
*
(
1.0
-
m_bz
/
m_b_mag
)
/
2.0
;
T2m
(
3
,
2
)
=
T2m
(
1
,
0
);
T2m
(
3
,
3
)
=
T2m
(
1
,
1
);
}
else
{
// T2m:
// row 0:
T2m
(
0
,
0
)
=
(
1.0
+
m_bz
/
m_b_mag
)
/
4.0
;
T2m
(
0
,
1
)
=
m_scatt_matrix
(
0
,
1
)
/
4.0
/
m_b_mag
;
T2m
(
0
,
2
)
=
-
lambda
(
1
)
*
(
m_bz
/
m_b_mag
+
1.0
)
/
4.0
;
T2m
(
0
,
3
)
=
-
m_scatt_matrix
(
0
,
1
)
*
lambda
(
1
)
/
4.0
/
m_b_mag
;
// row 1:
T2m
(
1
,
0
)
=
m_scatt_matrix
(
1
,
0
)
/
4.0
/
m_b_mag
;
T2m
(
1
,
1
)
=
(
1.0
-
m_bz
/
m_b_mag
)
/
4.0
;
T2m
(
1
,
2
)
=
-
m_scatt_matrix
(
1
,
0
)
*
lambda
(
1
)
/
4.0
/
m_b_mag
;
T2m
(
1
,
3
)
=
lambda
(
1
)
*
(
m_bz
/
m_b_mag
-
1.0
)
/
4.0
;
// row 2:
T2m
(
2
,
0
)
=
-
(
1.0
+
m_bz
/
m_b_mag
)
/
4.0
/
lambda
(
1
);
T2m
(
2
,
1
)
=
-
m_scatt_matrix
(
0
,
1
)
/
4.0
/
m_b_mag
/
lambda
(
1
);
T2m
(
2
,
2
)
=
(
m_bz
/
m_b_mag
+
1.0
)
/
4.0
;
T2m
(
2
,
3
)
=
m_scatt_matrix
(
0
,
1
)
/
4.0
/
m_b_mag
;
// row 3:
T2m
(
3
,
0
)
=
-
m_scatt_matrix
(
1
,
0
)
/
4.0
/
m_b_mag
/
lambda
(
1
);
T2m
(
3
,
1
)
=
-
(
1.0
-
m_bz
/
m_b_mag
)
/
4.0
/
lambda
(
1
);
T2m
(
3
,
2
)
=
m_scatt_matrix
(
1
,
0
)
/
4.0
/
m_b_mag
;
T2m
(
3
,
3
)
=
(
1.0
-
m_bz
/
m_b_mag
)
/
4.0
;
// R2m:
// row 0:
R2m
(
0
,
0
)
=
T2m
(
0
,
0
);
R2m
(
0
,
1
)
=
T2m
(
0
,
1
);
R2m
(
0
,
2
)
=
-
T2m
(
0
,
2
);
R2m
(
0
,
3
)
=
-
T2m
(
0
,
3
);
// row 1:
R2m
(
1
,
0
)
=
T2m
(
1
,
0
);
R2m
(
1
,
1
)
=
T2m
(
1
,
1
);
R2m
(
1
,
2
)
=
-
T2m
(
1
,
2
);
R2m
(
1
,
3
)
=
-
T2m
(
1
,
3
);
// row 2:
R2m
(
2
,
0
)
=
-
T2m
(
2
,
0
);
R2m
(
2
,
1
)
=
-
T2m
(
2
,
1
);
R2m
(
2
,
2
)
=
T2m
(
2
,
2
);
R2m
(
2
,
3
)
=
T2m
(
2
,
3
);
// row 3:
R2m
(
3
,
0
)
=
-
T2m
(
3
,
0
);
R2m
(
3
,
1
)
=
-
T2m
(
3
,
1
);
R2m
(
3
,
2
)
=
T2m
(
3
,
2
);
R2m
(
3
,
3
)
=
T2m
(
3
,
3
);
// R2m:
// row 0:
R2m
(
0
,
0
)
=
T2m
(
0
,
0
);
R2m
(
0
,
1
)
=
T2m
(
0
,
1
);
R2m
(
0
,
2
)
=
-
T2m
(
0
,
2
);
R2m
(
0
,
3
)
=
-
T2m
(
0
,
3
);
// row 1:
R2m
(
1
,
0
)
=
T2m
(
1
,
0
);
R2m
(
1
,
1
)
=
T2m
(
1
,
1
);
R2m
(
1
,
2
)
=
-
T2m
(
1
,
2
);
R2m
(
1
,
3
)
=
-
T2m
(
1
,
3
);
// row 2:
R2m
(
2
,
0
)
=
-
T2m
(
2
,
0
);
R2m
(
2
,
1
)
=
-
T2m
(
2
,
1
);
R2m
(
2
,
2
)
=
T2m
(
2
,
2
);
R2m
(
2
,
3
)
=
T2m
(
2
,
3
);
// row 3:
R2m
(
3
,
0
)
=
-
T2m
(
3
,
0
);
R2m
(
3
,
1
)
=
-
T2m
(
3
,
1
);
R2m
(
3
,
2
)
=
T2m
(
3
,
2
);
R2m
(
3
,
3
)
=
T2m
(
3
,
3
);
}
}
void
SpecularMagnetic
::
LayerMatrixCoeff
::
initializeBottomLayerPhiPsi
()
...
...
@@ -250,29 +295,43 @@ void SpecularMagnetic::LayerMatrixCoeff::initializeBottomLayerPhiPsi()
void
SpecularMagnetic
::
LayerMatrixCoeff
::
calculateTRWithoutMagnetization
()
{
// T1m:
T1m
.
setZero
();
R1m
.
setZero
();
T2m
.
setZero
();
R2m
.
setZero
();
if
(
m_a
==
0.0
)
{
// Spin down component contained only in T1 (R1=0)
T1m
(
1
,
1
)
=
1.0
;
T1m
(
3
,
1
)
=
complex_t
(
0.0
,
1.0
)
*
m_kt
;
T1m
(
3
,
3
)
=
1.0
;
// Spin up component contained only in T2 (R2=0)
T2m
(
0
,
0
)
=
1.0
;
T2m
(
2
,
0
)
=
complex_t
(
0.0
,
1.0
)
*
m_kt
;
T2m
(
2
,
2
)
=
1.0
;
return
;
}
// T1m:
T1m
(
1
,
1
)
=
0.5
;
T1m
(
1
,
3
)
=
-
std
::
sqrt
(
m_a
)
/
2.0
;
T1m
(
3
,
1
)
=
-
1.0
/
(
2.0
*
std
::
sqrt
(
m_a
));
T1m
(
3
,
3
)
=
0.5
;
// R1m:
R1m
.
setZero
();
R1m
(
1
,
1
)
=
0.5
;
R1m
(
1
,
3
)
=
std
::
sqrt
(
m_a
)
/
2.0
;
R1m
(
3
,
1
)
=
1.0
/
(
2.0
*
std
::
sqrt
(
m_a
));
R1m
(
3
,
3
)
=
0.5
;
// T2m:
T2m
.
setZero
();
T2m
(
0
,
0
)
=
0.5
;
T2m
(
0
,
2
)
=
-
std
::
sqrt
(
m_a
)
/
2.0
;
T2m
(
2
,
0
)
=
-
1.0
/
(
2.0
*
std
::
sqrt
(
m_a
));
T2m
(
2
,
2
)
=
0.5
;
// R2m:
R2m
.
setZero
();
R2m
(
0
,
0
)
=
0.5
;
R2m
(
0
,
2
)
=
std
::
sqrt
(
m_a
)
/
2.0
;
R2m
(
2
,
0
)
=
1.0
/
(
2.0
*
std
::
sqrt
(
m_a
));
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment