Skip to content
Snippets Groups Projects
Commit 3290bb02 authored by Van Herck, Walter's avatar Van Herck, Walter
Browse files

Added Wrote script to demonstrate Size-Spacing Coupling Approximation

parent 9459d10c
No related branches found
No related tags found
No related merge requests found
"""
Cylinders of two different sizes in Size-Spacing Coupling Approximation
"""
import numpy
import matplotlib
import pylab
from bornagain import *
phi_min, phi_max = 0.0, 2.0
alpha_min, alpha_max = 0.0, 2.0
def get_sample():
"""
Build and return the sample.
Cylinders come in two different sizes.
"""
m_ambience = HomogeneousMaterial("Air", 0.0, 0.0)
m_substrate = HomogeneousMaterial("Substrate", 6e-6, 2e-8)
m_particle = HomogeneousMaterial("Particle", 6e-4, 2e-8)
# cylindrical particle 1
radius1 = 5*nanometer
height1 = radius1
cylinder_ff1 = FormFactorCylinder(radius1, height1)
cylinder1 = Particle(m_particle, cylinder_ff1)
# cylindrical particle 2
radius2 = 8*nanometer
height2 = radius2
cylinder_ff2 = FormFactorCylinder(radius2, height2)
cylinder2 = Particle(m_particle, cylinder_ff2)
# interference function
interference = InterferenceFunctionRadialParaCrystal(18.0*nanometer, 1e3*nanometer)
pdf = FTDistribution1DGauss(3 * nanometer)
interference.setProbabilityDistribution(pdf)
interference.setKappa(1.0)
# assembling the sample
particle_layout = ParticleLayout()
particle_layout.addParticle(cylinder1, 0.0, 0.5)
particle_layout.addParticle(cylinder2, 0.0, 0.5)
particle_layout.addInterferenceFunction(interference)
particle_layout.setApproximation(ILayout.SSCA)
air_layer = Layer(m_ambience)
air_layer.addLayout(particle_layout)
substrate_layer = Layer(m_substrate)
multi_layer = MultiLayer()
multi_layer.addLayer(air_layer)
multi_layer.addLayer(substrate_layer)
return multi_layer
def get_simulation():
"""
Create and return GISAXS simulation with beam and detector defined
"""
simulation = Simulation()
simulation.setDetectorParameters(200, phi_min*degree, phi_max*degree, 200, alpha_min*degree, alpha_max*degree)
simulation.setBeamParameters(1.0*angstrom, 0.2*degree, 0.0*degree)
return simulation
def run_simulation():
"""
Run simulation and plot results
"""
sample = get_sample()
simulation = get_simulation()
simulation.setSample(sample)
simulation.runSimulation()
result = simulation.getIntensityData().getArray() + 1 # for log scale
# showing the result
im = pylab.imshow(numpy.rot90(result, 1), norm=matplotlib.colors.LogNorm(),
extent=[phi_min, phi_max, alpha_min, alpha_max], aspect='auto')
cb = pylab.colorbar(im)
cb.set_label(r'Intensity (arb. u.)', size=16)
pylab.xlabel(r'$\phi_f (^{\circ})$', fontsize=16)
pylab.ylabel(r'$\alpha_f (^{\circ})$', fontsize=16)
pylab.show()
if __name__ == '__main__':
run_simulation()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment