Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
myDebugging
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
s.islam
myDebugging
Commits
658b5009
Commit
658b5009
authored
2 years ago
by
s.islam
Browse files
Options
Downloads
Patches
Plain Diff
RMI Loss added and 3 channel code(commented/not functional) added.
parent
91657cad
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
code/data.py
+90
-5
90 additions, 5 deletions
code/data.py
code/model.py
+3
-2
3 additions, 2 deletions
code/model.py
with
93 additions
and
7 deletions
code/data.py
+
90
−
5
View file @
658b5009
...
...
@@ -121,14 +121,15 @@ class TestDataModule(pl.LightningDataModule):
# TODO: Load the PLI and Cytp train data here as lists of numpy arrays: List[np.ndarray]
# Load the pyramid/00 per file
#For single channel
#For JSC Training.
pli_path
=
'
/p/fastdata/pli/Private/oberstrass1/datasets/vervet1818/vervet1818-stained/data/aligned/pli/NTransmittance
'
cyto_path
=
'
/p/fastdata/pli/Private/oberstrass1/datasets/vervet1818/vervet1818-stained/data/aligned/stained
'
#
pli_path = '/p/fastdata/pli/Private/oberstrass1/datasets/vervet1818/vervet1818-stained/data/aligned/pli/NTransmittance'
#
cyto_path = '/p/fastdata/pli/Private/oberstrass1/datasets/vervet1818/vervet1818-stained/data/aligned/stained'
#For Local Machine Training.
#
pli_path = '/media/tushar/A2246889246861F1/Master Thesis MAIA/example-data/pli/NTransmittance'
#
cyto_path = '/media/tushar/A2246889246861F1/Master Thesis MAIA/example-data/stained'
pli_path
=
'
/media/tushar/A2246889246861F1/Master Thesis MAIA/example-data/pli/NTransmittance
'
cyto_path
=
'
/media/tushar/A2246889246861F1/Master Thesis MAIA/example-data/stained
'
pli_files_list
=
[
file
for
file
in
os
.
listdir
(
pli_path
)
if
file
.
endswith
((
'
.h5
'
,
'
.hdf
'
,
'
.h4
'
,
'
.hdf4
'
,
'
.he2
'
,
'
.hdf5
'
,
'
.he5
'
))]
pli_files_list
.
sort
()
...
...
@@ -145,6 +146,58 @@ class TestDataModule(pl.LightningDataModule):
pli_train_file
=
np
.
asarray
(
pli_train_file
).
astype
(
np
.
float32
)
pli_train_file
=
pli_train_file
-
0.5
self
.
pli_train
.
append
(
pli_train_file
)
# For 3 Channel.
'''
pli_NTransmittance_path =
'
/media/tushar/A2246889246861F1/Master Thesis MAIA/example-data/pli/NTransmittance
'
pli_Retardation_path =
'
/media/tushar/A2246889246861F1/Master Thesis MAIA/example-data/pli/Retardation
'
pli_Direction_path =
'
/media/tushar/A2246889246861F1/Master Thesis MAIA/example-data/pli/Direction
'
cyto_path =
'
/media/tushar/A2246889246861F1/Master Thesis MAIA/example-data/stained
'
pli_NTransmittance_files_list = [file for file in os.listdir(pli_NTransmittance_path) if
file.endswith((
'
.h5
'
,
'
.hdf
'
,
'
.h4
'
,
'
.hdf4
'
,
'
.he2
'
,
'
.hdf5
'
,
'
.he5
'
))]
pli_NTransmittance_files_list.sort()
pli_Retardation_files_list = [file for file in os.listdir(pli_Retardation_path) if
file.endswith((
'
.h5
'
,
'
.hdf
'
,
'
.h4
'
,
'
.hdf4
'
,
'
.he2
'
,
'
.hdf5
'
,
'
.he5
'
))]
pli_Retardation_files_list.sort()
pli_Direction_files_list = [file for file in os.listdir(pli_Direction_path) if
file.endswith((
'
.h5
'
,
'
.hdf
'
,
'
.h4
'
,
'
.hdf4
'
,
'
.he2
'
,
'
.hdf5
'
,
'
.he5
'
))]
pli_Direction_files_list.sort()
cyto_files_list = [file for file in os.listdir(cyto_path) if
file.endswith((
'
.h5
'
,
'
.hdf
'
,
'
.h4
'
,
'
.hdf4
'
,
'
.he2
'
,
'
.hdf5
'
,
'
.he5
'
))]
pli_NTransmittance_train = []
pli_Retardation_train = []
pli_Direction_train = []
for i in range(0, 4):
pli_train_file = h5py.File(os.path.join(pli_NTransmittance_path, pli_NTransmittance_files_list[i]),
'
r
'
)
pli_train_file = pli_train_file[
'
pyramid/00
'
]
pli_train_file = np.asarray(pli_train_file).astype(np.float32)
pli_train_file = pli_train_file - 0.5
pli_NTransmittance_train.append(pli_train_file)
for i in range(0, 4):
pli_train_file = h5py.File(os.path.join(pli_Retardation_path, pli_Retardation_files_list[i]),
'
r
'
)
pli_train_file = pli_train_file[
'
pyramid/00
'
]
pli_train_file = np.asarray(pli_train_file).astype(np.float32)
pli_train_file = pli_train_file - 0.5
pli_Retardation_train.append(pli_train_file)
for i in range(0, 4):
pli_train_file = h5py.File(os.path.join(pli_Direction_path, pli_Direction_files_list[i]),
'
r
'
)
pli_train_file = pli_train_file[
'
pyramid/00
'
]
pli_train_file = np.asarray(pli_train_file).astype(np.float32)
pli_train_file = (pli_train_file/255) - 0.5
pli_Direction_train.append(pli_train_file)
self.pli_train = []
self.cyto_train = []
for i in range(0,4):
self.pli_train.append(np.stack((pli_NTransmittance_train[i], pli_Retardation_train[i], pli_Direction_train[i]), axis=-1))
'''
for
i
in
range
(
0
,
4
):
cyto_train_file
=
h5py
.
File
(
os
.
path
.
join
(
cyto_path
,
cyto_files_list
[
i
]),
'
r
'
)
...
...
@@ -165,12 +218,44 @@ class TestDataModule(pl.LightningDataModule):
self
.
pli_val
=
[]
self
.
cyto_val
=
[]
#Single Channel
pli_val_file
=
h5py
.
File
(
os
.
path
.
join
(
pli_path
,
pli_files_list
[
4
]),
'
r
'
)
pli_val_file
=
pli_val_file
[
'
pyramid/00
'
]
pli_val_file
=
np
.
asarray
(
pli_val_file
).
astype
(
np
.
float32
)
pli_val_file
=
pli_val_file
-
0.5
self
.
pli_val
.
append
(
pli_val_file
)
#3 Channels
'''
pli_NTransmittance_val = []
pli_Retardation_val = []
pli_Direction_val = []
pli_NTransmittance_val_file = h5py.File(os.path.join(pli_NTransmittance_path, pli_NTransmittance_files_list[4]),
'
r
'
)
pli_NTransmittance_val_file = pli_NTransmittance_val_file[
'
pyramid/00
'
]
pli_NTransmittance_val_file = np.asarray(pli_NTransmittance_val_file).astype(np.float32)
pli_NTransmittance_val_file = pli_NTransmittance_val_file - 0.5
pli_NTransmittance_val.append(pli_NTransmittance_val_file)
pli_Retardation_val_file = h5py.File(os.path.join(pli_Retardation_path, pli_Retardation_files_list[4]),
'
r
'
)
pli_Retardation_val_file = pli_Retardation_val_file[
'
pyramid/00
'
]
pli_Retardation_val_file = np.asarray(pli_Retardation_val_file).astype(np.float32)
pli_Retardation_val_file = pli_Retardation_val_file - 0.5
pli_Retardation_val.append(pli_Retardation_val_file)
pli_Direction_val_file = h5py.File(os.path.join(pli_Direction_path, pli_Direction_files_list[4]),
'
r
'
)
pli_Direction_val_file = pli_Direction_val_file[
'
pyramid/00
'
]
pli_Direction_val_file = np.asarray(pli_Direction_val_file).astype(np.float32)
pli_Direction_val_file = (pli_Direction_val_file/255) - 0.5
pli_Direction_val.append(pli_Direction_val_file)
self.pli_val = np.stack((pli_NTransmittance_val, pli_Retardation_val, pli_Direction_val), axis=-1)
'''
cyto_val_file
=
h5py
.
File
(
os
.
path
.
join
(
cyto_path
,
cyto_files_list
[
4
]),
'
r
'
)
cyto_val_file
=
cyto_val_file
[
'
pyramid/00
'
]
cyto_val_file
=
np
.
asarray
(
cyto_val_file
).
astype
(
np
.
float32
)
...
...
This diff is collapsed.
Click to expand it.
code/model.py
+
3
−
2
View file @
658b5009
...
...
@@ -2,6 +2,7 @@ import torch.nn as nn
from
torch.nn
import
functional
as
F
import
torch
import
pytorch_lightning
as
pl
from
rmi
import
RMILoss
from
torchvision.utils
import
make_grid
import
segmentation_models_pytorch
as
smp
...
...
@@ -29,12 +30,12 @@ class TestModule(pl.LightningModule):
# Define the model
self
.
model
=
smp
.
Unet
(
encoder_name
=
"
densenet121
"
,
# Also consider using smaller or larger encoders
encoder_name
=
"
resnet34
"
,
# Also consider using smaller or larger encoders
encoder_weights
=
"
imagenet
"
,
# Do the pretrained weights help? Try with or without
in_channels
=
1
,
# We use 1 chanel transmittance as input
classes
=
1
,
# classes == output channels. We use one output channel for cyto data
)
self
.
loss_f
=
torch
.
nn
.
MSELoss
()
self
.
loss_f
=
RMILoss
(
with_logits
=
True
)
#
torch.nn.MSELoss()
def
forward
(
self
,
x
):
x
=
self
.
model
(
x
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment