Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import torch.nn as nn
from torch.nn import functional as F
import torch
import pytorch_lightning as pl
from rmi import RMILoss
from torchvision.utils import make_grid
import numpy as np
import segmentation_models_pytorch as smp
from pl_bolts.models.gans.dcgan.components import DCGANDiscriminator
class Generator(nn.Module):
@staticmethod
def add_model_specific_args(parent_parser):
parser = parent_parser.add_argument_group("Generator")
parser.add_argument('--learning_rate', type=float, default=1e-3)
parser.add_argument('--name', type=str, default='Generator')
return parent_parser
@classmethod
def from_argparse_args(cls, args):
dict_args = vars(args)
return cls(**dict_args)
def __init__(self, learning_rate=1e-3, name='Generator', depth=3, **kwargs):
super().__init__()
#self.save_hyperparameters()
self.learning_rate = learning_rate
self.name = name
# Define the model
self.g_model = smp.Unet(
encoder_name="resnet18", # Also consider using smaller or larger encoders
encoder_weights= "imagenet", # Do the pretrained weights help? Try with or without
in_channels=2, # We use 1 chanel transmittance as input
classes=1, # classes == output channels. We use one output channel for cyto data
activation="sigmoid"
)
self.loss_f = RMILoss(with_logits=True) #torch.nn.MSELoss()
def forward(self, x):
x = self.g_model(x)
return x
def training_step(self, batch, batch_idx):
# Structure of the batch: {'pli_image': pli_image, 'cyto_image': stained_image}
cyto_imag_generated = self.forward(batch['pli_image'])
loss = self.loss_f(cyto_imag_generated, batch['cyto_image'])
#self.log('train_loss', loss)
return loss, cyto_imag_generated
'''
def validation_step(self, batch, batch_idx):
# Do it the same as in training
cyto_imag_generated = self.forward(batch['pli_image'])
loss = self.loss_f(cyto_imag_generated, batch['cyto_image'])
self.log("val_loss", loss)
batch['pli_image'] = batch['pli_image']
batch['cyto_image'] = batch['cyto_image']
cyto_imag_generated = cyto_imag_generated
if batch_idx == 0:
grid = make_grid([batch['pli_image'][0, :1], batch['pli_image'][0, 1:], batch['cyto_image'][0], cyto_imag_generated[0]])
self.logger.experiment.add_image('Grid_images', grid, self.current_epoch, dataformats="CHW")
'''
'''
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
return optimizer
'''
class Discriminator_2(nn.Module):
def __init__(self, img_shape):
super().__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
#Descriminator
class Descriminator(nn.Module):
@staticmethod
def add_model_specific_args(parent_parser):
parser = parent_parser.add_argument_group("Descriminator")
parser.add_argument('--learning_rate', type=float, default=1e-3)
parser.add_argument('--name', type=str, default='Descriminator')
return parent_parser
@classmethod
def from_argparse_args(cls, args):
dict_args = vars(args)
return cls(**dict_args)
def __init__(self, learning_rate=1e-3, name='Descriminator', **kwargs):
super().__init__()
#self.save_hyperparameters()
self.learning_rate = learning_rate
self.name = name
self.d_model = DCGANDiscriminator(
feature_maps = 8,
image_channels = 1
)
def forward(self, x):
x = self.d_model(x)
return x
#GAN
class GAN(pl.LightningModule):
@staticmethod
def add_model_specific_args(parent_parser):
parser = parent_parser.add_argument_group("TestModule")
parser.add_argument('--learning_rate', type=float, default=1e-3)
parser.add_argument('--name', type=str, default='GAN')
return parent_parser
@classmethod
def from_argparse_args(cls, args):
dict_args = vars(args)
return cls(**dict_args)
def __init__(self, learning_rate=1e-3, name='model', depth=3, lamda_G = 0.1, **kwargs):
super().__init__()
self.save_hyperparameters()
self.learning_rate = learning_rate
self.name = name
self.generator = Generator()
self.descriminator = Discriminator_2((256,256))
self.cyto_imag_generated = None
self.lamda_G = lamda_G
def forward(self, x):
result = self.generator(x)
return result
def adversarial_loss(self, y_hat, y):
return F.binary_cross_entropy(y_hat, y)
def training_step(self, batch, batch_idx, optimizer_idx):
#Training the Generator.
if optimizer_idx == 0:
self.cyto_imag_generated = self(batch['pli_image'])
loss_RMI = self.generator.loss_f(self.cyto_imag_generated, batch['cyto_image'])
# ground truth result (ie: all fake)
# put on GPU because we created this tensor inside training_loop
valid = torch.ones(batch['pli_image'].size(0), 1)
valid = valid.type_as(batch['pli_image'])
g_loss = self.adversarial_loss(self.descriminator(self.cyto_imag_generated), valid)
self.log('train_g_loss', g_loss)
self.log('train_g_RMI_loss', loss_RMI)
self.log('train_g_Total_loss', g_loss + self.lamda_G * loss_RMI)
return g_loss + self.lamda_G * loss_RMI
#Training Descriminator.
if optimizer_idx == 1:
# how well can it label as real?
valid = torch.ones(batch['pli_image'].size(0), 1)
valid = valid.type_as(batch['pli_image'])
real_loss = self.adversarial_loss(self.descriminator(batch['cyto_image']), valid)
# how well can it label as fake?
fake = torch.zeros(batch['pli_image'].size(0), 1)
fake = fake.type_as(batch['pli_image'])
fake_loss = self.adversarial_loss(self.descriminator(self(batch['pli_image']).detach()), fake)
d_loss = (real_loss + fake_loss) / 2
self.log('train_d_loss', d_loss)
return d_loss
def configure_optimizers(self):
optimizer_g = torch.optim.Adam(self.generator.parameters(), lr=self.learning_rate)
optimizer_d = torch.optim.Adam(self.descriminator.parameters(), lr=self.learning_rate)
return [optimizer_g, optimizer_d], []
'''
def validation_step(self, batch, batch_idx, optimizer_idx):
# Training the Generator.
if optimizer_idx == 0:
self.cyto_imag_generated = self.forward(batch['pli_image'])
g_loss = self.adversarial_loss(self.descriminator(self.cyto_imag_generated), batch['cyto_image'])
self.log('val_g_loss', g_loss)
return g_loss
# Training Descriminator.
if optimizer_idx == 1:
d_loss = self.adversarial_loss(self.cyto_imag_generated, batch['cyto_image'])
self.log('val_d_loss', d_loss)
return d_loss
'''
''''''