Skip to content
Snippets Groups Projects
Commit d4a3f8c6 authored by Celine Durniak's avatar Celine Durniak
Browse files

Example 01 in Python (new figure for sample)

parent d301ef2d
No related branches found
No related tags found
No related merge requests found
......@@ -44,10 +44,10 @@ class BA_CORE_API_ Layer : public ICompositeSample
//! Calls the ISampleVisitor's visit method
virtual void accept(ISampleVisitor *p_visitor) const { p_visitor->visit(this); }
//! Sets layer thickness in Angstrom.
//! Sets layer thickness in nanometers.
virtual void setThickness(double thickness);
//! Returns layer thickness in Angstrom.
//! Returns layer thickness in nanometers.
virtual double getThickness() const { return m_thickness; }
//! Sets _material_ of the layer.
......
......@@ -44,7 +44,7 @@ class BA_CORE_API_ LayerDecorator : public Layer
//! Sets _material_.
virtual void setMaterial(const IMaterial* material);
//! Sets _material_ and _thickness_ in Angstrom.
//! Sets _material_ and _thickness_ in nanometers.
virtual void setMaterial(const IMaterial* material, double thickness);
//! Returns material
......
......@@ -43,7 +43,7 @@ void Layer::init_parameters()
}
//! Sets layer thickness in Angstrom.
//! Sets layer thickness in nanometers.
void Layer::setThickness(double thickness)
{
if (thickness < 0.)
......
......@@ -16,55 +16,66 @@
\item Parallelepiped (\texttt{FormFactorParallelepiped})
\begin{equation}
F() = 4H R^2\exp(i q_z H/2) \frac{sin(q_xR)}{q_x R}\frac{ \sin(q_yR)}{q_y R}\frac{\sin(q_z H/2)}{q_z H/2}
F(\mathbf{q},R, H) = 4H R^2\exp(i q_z H/2) \text{sinc}(q_xR)
\text{sinc}(q_yR)\text{sinc}(q_z H/2)
\end{equation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\item Pyramid (\texttt{FormFactorPyramid})
\begin{align*}
q_1 &=(H/2)((q_x-q_y)/\tan(\alpha) + q_z)\\
q_2 &=(H/2)((q_x-q_y)/\tan(\alpha) - q_z)\\
q_3 &=(H/2)((q_x+q_y)/\tan(\alpha) + q_z) \\
q_4 &=(H/2)((q_x+q_y)/\tan(\alpha) - q_z)\\
K_1 &= \frac{\sin(q_1)}{q_1} \exp(i q_1) + i \frac{\sin(q_2)}{q_2} \exp(-i q_2)\\
K_2 &= -i \frac{sin(q_1)}{q_1} exp(i q_1) +i \frac{\sin(q_2)}{q_2} \exp(-i q_2)\\
K_3 &= \frac{\sin(q_3)}{q_3}\exp(i q_3) + \frac{\sin(q_4)}{q_4} \exp(-i q_4)\\
K_4 &= -i \frac{\sin(q_3)}{q_3} \exp(i q_3) + i \frac{\sin(q_4)}{q_4} \exp(-i q_4)\\
F() &= \frac{H}{q_x q_y} [ K_1 \cos( (q_x-q_y)R ) + K_2 \sin( (q_x-q_y)R ) - K_3 \cos( (q_x+q_y) R ) - K_4 \sin( (q_x+q_y) R )]
q_1 &=\frac{1}{2}\Big[\frac{q_x-q_y}{\tan(\alpha)} + q_z\Big],\quad q_2 =\frac{1}{2}\Big[\frac{q_x-q_y}{\tan(\alpha)} - q_z\Big]\quad
q_3 =\frac{1}{2}\Big[\frac{q_x+q_y}{\tan(\alpha)} + q_z\Big]\quad q_4 =\frac{1}{2}\Big[\frac{q_x+q_y}{\tan(\alpha)} - q_z\Big]\\
K_1 &= \text{sinc}(q_1 H)\exp(i q_1 H) + i \text{sinc}(q_2 H) \exp(-i q_2 H)\\
K_2 &= -i \text{sinc}(q_1 H) \exp(i q_1 H) +i
\text{sinc}(q_2 H) \exp(-i q_2 H)\\
K_3 &= \text{sinc}(q_3 H) \exp(i q_3 H) +
\text{sinc}(q_4 H) \exp(-i q_4 H)\\
K_4 &= -i \text{sinc}(q_3 H) \exp(i q_3 H) + i \text{sinc}(q_4 H) \exp(-i q_4 H)\\
F(\mathbf{q},R, H, \alpha) &= \frac{H}{q_x q_y} \Big\{ K_1 \cos[ (q_x-q_y)R ] + K_2 \sin[ (q_x-q_y)R ] - K_3 \cos[ (q_x+q_y) R ] - K_4 \sin[ (q_x+q_y) R ]\Big\}
\end{align*}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\item Cylinder (\texttt{FormFactorCylinder})
\begin{equation}
F()= H \frac{\sin(q_ z H/2)}{q_z H/2} \exp(i q_ z H/2) 2\pi R^2 \frac{J_1(|q_{\parallel} R |)}{|q_{\parallel} R| }
F(\mathbf{q},R, H)= H \text{sinc}(q_ z H/2) \exp(i q_ z H/2) 2\pi R^2 \frac{J_1(|q_{\parallel} R |)}{|q_{\parallel} R| }
\end{equation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\item Prism3 (\texttt{FormFactorPrism3})
\begin{equation}
F()= 2 \sqrt{3}\frac{\exp(-i q_y R/\sqrt{3})}{q_x^2-3q_y^2}[\exp(i \sqrt{3} q_y R ) -\cos(q_x R)-i \sqrt{3} q_y R \frac{\sin(q_x R)}{q_x R}] H \frac{\sin(q_z H/2 )}{q_z H/2} \exp(i q_z H/2)
\end{equation}
\begin{align*}
F(\mathbf{q},R, H) &= 2 \sqrt{3}\frac{\exp(-i q_y
R/\sqrt{3})}{q_x^2-3q_y^2} \Big[\exp(i \sqrt{3} q_y R )
-\cos(q_x R)-i \sqrt{3} q_y R \text{sinc}(q_x R) \Big] \\
&\times H \text{sinc}(q_z H/2 ) \exp(i q_z H/2)
\end{align*}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\item Sphere (\texttt{FormFactorSphere})
\begin{equation}
return 2\pi \exp(i q_z (H-R))\int_{R-H} ^{R} R_z^2 \frac{J_1(|q_p*R_z|) }{|q_p*R_z|}
\exp(i q_z*Z)
F(\mathbf{q},R, H)= 2\pi \exp[i q_z (H-R)]\int_{R-H} ^{R} R_z^2 \frac{J_1(|q_{\parallel}
R_z|) }{|q_{\parallel} R_z|}
\exp(i q_z z) dz
\end{equation}
$R_z=\sqrt{R^2-z^2}$, $q_{\parallel}=\sqrt{q_x^2+q_y^2}$
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\item Full sphere (\texttt{FormFactorFullSphere})
\begin{equation}
radial = 4\pi R^3*\frac{\sin(q R) - q R*\cos(q R)}{(qR)^3}
F(\mathbf{q},R) = 4\pi R^3 \frac{\sin(q R) - q R \cos(q R)}{(qR)^3}
\end{equation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\item Box (\texttt{FormFactorBox})
\begin{equation}
F()= 4H R W\exp(i q_z H/2) \frac{\sin(q_x R)}{q_x R} \frac{ \sin(q_y W) }{q_y W}\frac{\sin(q_z H/2)}{q_z H/2}
F(\mathbf{q},R,W,H)= 4H R W\exp(i q_z H/2) \text{sinc}(q_x R) \text{sinc}(q_y W) \text{sinc}(q_z H/2)
\end{equation}
where $\text{sinc}(x)=\sin(x)/x$ is the cardinal sine, $J_1(x)$ is the
Bessel function of first order.
\end{itemize}
......@@ -82,7 +93,7 @@ F()= 4H R W\exp(i q_z H/2) \frac{\sin(q_x R)}{q_x R} \frac{ \sin(q_y W) }{q_y W
\begin{itemize}
\item The Debye hard core
\item The gaussian
\item The Lennard-Jonnes
\item The Lennard-Jones
\item The gate pair correlation
\item The Debye hard core with power-law decrease
\item The Zhu pair correlation function
......
This diff is collapsed.
No preview for this file type
\documentclass[a4paper,10pt]{report}
\usepackage{cite}
\usepackage{booktabs}
\renewcommand{\arraystretch}{1.3}
%----------------------------------------------------------------------------------------
% FONT
%----------------------------------------------------------------------------------------
......@@ -99,6 +100,7 @@
\definecolor{Lightgray}{gray}{.80}
\definecolor{lightgrey}{rgb}{0.9,0.9,0.9}
%----------------------------------------------------------------------------------------
% TITLE PAGE
%----------------------------------------------------------------------------------------
......@@ -125,7 +127,7 @@ keepaspectratio]{results2_2.png}%
\begin{document}
%\AddToShipoutPicture*{\BackgroundPic} % add bakcground image to the
%\AddToShipoutPicture*{\BackgroundPic} % add background image to the
%first page
\maketitle
......@@ -177,7 +179,8 @@ For details about the theory (DWBA,\ldots), please refer to IsGISAXS manual (\ur
%\input{Fitting}
\input{Examples}
Bugs\\ License agreement\\ Directory layout \\ FAQ \\ Future development.
%List of notations\\ Bugs\\ License agreement\\ Directory layout \\ FAQ \\ Future development.
%\appendix
%\input{Appendix}
......
......@@ -211,6 +211,11 @@ height, collapsed, true, false%
\definecolor{lightblue}{rgb}{0.4,0.4,1}
\definecolor{lightblue1}{rgb}{0 0.25 1}
\definecolor{darkpink}{rgb}{1 0 0.75}
\definecolor{dred}{rgb}{0.8,0,0}
\definecolor{oneblue}{rgb}{0,0,0.75}
\definecolor{dockerblue}{rgb}{0.11,0.56,0.98}
\definecolor{MyDarkBlue1}{rgb}{0.1,0,0.55}
\lstdefinestyle{eclipse}{
basicstyle=\small\lstfontfamily,
......@@ -219,8 +224,8 @@ height, collapsed, true, false%
commentstyle=\color{darkgreen},
stringstyle=\color{darkblue},
numberstyle=\color{darkgrey}\lstfontfamily,
emph={Simulation,MaterialManager,MultiLayer},
emphstyle=\color{cyan}, %darkpink}, %red},
emph={Simulation,MaterialManager,MultiLayer,Layer,Particle,ParticleDecoration},
emphstyle=\color{dockerblue},%dred}, %darkpink}, %red},
% get also javadoc style comments
morecomment=[s][\color{lightblue}]{/**}{*/},
%columns=fullflexible, %spaceflexible, %flexible, fullflexible
......@@ -254,7 +259,9 @@ breaklines = true
commentstyle=\color{darkgreen},
stringstyle=\color{darkblue},
numberstyle=\color{darkgrey}\lstfontfamily,
emphstyle=\color{red},
emph={Simulation,MaterialManager,MultiLayer,Layer,Particle,ParticleDecoration},
emphstyle=\color{dockerblue},%dred}, %darkpink},
% emphstyle=\color{red},
backgroundcolor=\color{lightgrey},
morecomment=[s][\color{lightblue}]{/**}{*/},
showstringspaces=false,
......
Source diff could not be displayed: it is too large. Options to address this: view the blob.
File added
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment