Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
BornAgain
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mlz
BornAgain
Commits
8eab3620
Commit
8eab3620
authored
8 years ago
by
Wuttke, Joachim
Browse files
Options
Downloads
Patches
Plain Diff
Little improvements to X-ray equation section.
parent
d973854e
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Doc/UserManual/Scattering.tex
+13
-7
13 additions, 7 deletions
Doc/UserManual/Scattering.tex
with
13 additions
and
7 deletions
Doc/UserManual/Scattering.tex
+
13
−
7
View file @
8eab3620
...
...
@@ -583,7 +583,7 @@ Vineyard \cite{Vin82} discussed X-ray scattering,
but failed to account for the distortion of the scattered wave;
Mazur and Mills
\cite
{
MaMi82
}
derived the inelastic neutron scattering cross section
of ferromagnetic surface spin waves from scratch.
A co
rrect and readabl
e derivation of the DWBA cross section
A co
ncis
e derivation of the DWBA cross section
was provided by Dietrich and Wagner (1984/85) for X-rays
\cite
{
DiWa84
}
and neutrons
\cite
{
DiWa85
}
.
}
this requirement is dropped.
...
...
@@ -742,8 +742,14 @@ Since magnetic refraction or scattering is beyong the scope of BornAgain,
the relative magnetic permeability tensor is always
$
\v
{
\mu
}
(
\r
)=
1
$
.
\index
{
Permeability
}
%
\index
{
Magnetic permeability
}
%
As customary in GISAXS, we assume with Laue
\cite
{
Lau31
}
that the dielectric properties of the material are those of a polarizable electron cloud.
As customary in SAXS and GISAXS,
\index
{
Grazing-incidence small-angle scattering!dielectric model
}
%
\index
{
Small-angle scattering!dielectric model
}
%
we assume
that the dielectric properties of the material are those of a polarizable electron cloud.
\footnote
{
This is occasionally called the
\E
{
Laue model
}
\index
{
Laue model
}
%
\cite
{
Lau31
}
.
}
Thereby the relative dielectric permittivity tensor~
$
\v
{
\eps
}$
\index
{
Dielectric permittivity
}
%
\index
{
Permittivity
}
%
...
...
@@ -786,13 +792,13 @@ into a slowly varying component and one that fluctuates on atomic scales,
1ε030 2r040]
{$
\delta\eps
(
\r
)
$}{
Fast varying part of the permittivity~
$
\eps
(
\r
)
$}
%
With the additional notation
\begin{equation}
k(
\r
)
^
2
\coloneqq
K
^
2
\overline
{
\eps
}
(
\r
)
k(
\r
)
^
2
\coloneqq
K
^
2
\overline
{
\eps
}
(
\r
)
,
\end{equation}
and
compatible with~
\cref
{
Ekkn
}
,
and
\begin{equation}
4
\pi\delta
v(
\r
)
\coloneqq
- K
^
2
\delta\eps
,
\end{equation}
the wave equation~
\cref
{
E
waveE2
}
takes the form
the wave equation~
\cref
{
E
NabNabE
}
takes the form
\begin{equation}
\label
{
EwaveE3
}
\left\{
-
\Nabla\times\Nabla\times\v
{
1
}
+ k(
\r
)
^
2
\right\}\v
{
E
}
(
\r
)
= 4
\pi\delta
v(
\r
)
\v
{
E
}
(
\r
).
...
...
@@ -802,7 +808,7 @@ the wave equation~\cref{EwaveE2} takes the form
This is very similar to the perturbed Schrödinger equation~
\cref
{
ESchrodiK
}
.
There are only two differences:
the more complicated differential operator,
and the fact that
$
\v
{
E
}$
is vector valued,
and the fact that
$
\v
{
E
}
(
\r
)
$
is vector valued,
whereas unpolarized neutrons are described by a scalar wave function~
$
\psi
(
\r
)
$
.
%===============================================================================
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment