Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
BornAgain
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mlz
BornAgain
Commits
5b2b1833
Commit
5b2b1833
authored
8 years ago
by
Wuttke, Joachim
Browse files
Options
Downloads
Patches
Plain Diff
Derivation of sphere ff now in manual.
parent
e39fbc8d
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Doc/UserManual/FormFactors.tex
+73
-3
73 additions, 3 deletions
Doc/UserManual/FormFactors.tex
with
73 additions
and
3 deletions
Doc/UserManual/FormFactors.tex
+
73
−
3
View file @
5b2b1833
...
@@ -885,6 +885,13 @@ with the parameter
...
@@ -885,6 +885,13 @@ with the parameter
\end{itemize}
\end{itemize}
\paragraph
{
Form factor, volume, horizontal section
}
\strut\\
\paragraph
{
Form factor, volume, horizontal section
}
\strut\\
Notation:
\begin{equation*}
q
\coloneqq
\sqrt
{
q
_
x
^
2+q
_
y
^
2+q
_
z
^
2
}
.
\end{equation*}
Note that this does
\E
{
not
}
involve the sesquilinear product
$
|q
_
x|
^
2
=
q
_
x
^
*
q
_
x
$
but the plain product
$
q
_
xq
_
x
$
of complex numbers
(and analogous for~
$
q
_
y
$
,
$
q
_
z
$
).
\begin{equation*}
\begin{equation*}
F =
\frac
{
4
\pi
}{
q
^
3
}
\exp
(iq
_
z R)
\left
[\sin(qR) - qR \cos(qR)\right]
,
F =
\frac
{
4
\pi
}{
q
^
3
}
\exp
(iq
_
z R)
\left
[\sin(qR) - qR \cos(qR)\right]
,
\end{equation*}
\end{equation*}
...
@@ -908,11 +915,74 @@ computed with $R=3.9$~nm.}
...
@@ -908,11 +915,74 @@ computed with $R=3.9$~nm.}
\paragraph
{
History and Derivation
}
\strut\\
\paragraph
{
History and Derivation
}
\strut\\
For real wave vectors, this form factor is well known;
For real wave vectors, this form factor is well known;
it goes back at least to Lord Rayleigh.
it goes back at least to Lord Rayleigh.
Exactly the same expression also holds for complex wavevectors.
In
\IsGISAXS
, it has been implemented as form factor
\E
{
Full sphere
}
In
\IsGISAXS
, it has been implemented as form factor
\E
{
Full sphere
}
\cite
[Eq.~2.36]
{
Laz08
}
\cite
[Eq.~226]
{
ReLL09
}
.
\cite
[Eq.~2.36]
{
Laz08
}
\cite
[Eq.~226]
{
ReLL09
}
,
allowing for complex wavevectors.
Since it is not obvious that Rayleigh's formula also holds for complex~
$
\q
$
,
let us outline a derivation
(if you know a more elegant one, we would like to hear).
If the origin is at the center of the sphere, then the form factor is
\begin{equation}
I(
\q
,R)
=
\int
_
0
^
R
\d
r
\,
r
^
2
\int
_
0
^{
\pi
}
\d\theta\,\sin\theta\int
_
0
^{
2
\pi
}
\d\varphi
\:\e
^{
i
\q\r
}
\end{equation}
with
$
\q\r
=
q
_
x r
\sin\theta\cos\varphi
+
q
_
y r
\sin\theta\sin\varphi
+
q
_
z r
\cos\theta
$
.
For the integration over
$
\varphi
$
,
see Sect.~
\ref
{
SCylinder
}
on the form factor of a cylinder:
\begin{equation}
I(
\q
,R)
= 2
\pi
\int
_
0
^
R
\d
r
\,
r
^
2
\int
_
0
^{
\pi
}
\d\theta\,
\sin\theta
\exp\left
(i q
_
z
\cos
\theta\right
) J
_
0
\left
(q
_
\parallel
r
\sin
\theta\right
)
\end{equation}
with
$
q
_{
\parallel
}
=
\sqrt
{
q
_
x
^
2
+
q
_
y
^
2
}$
.
By symmetry, the imaginary part is zero,
so that the exponential reduces to a cosine:
\begin{equation}
I(
\q
,R)
= 2
\pi
\int
_
0
^
R
\d
r
\,
r
^
2
\int
_
0
^{
\pi
}
\d\theta\,
\sin\theta
\cos\left
(q
_
z
\cos
\theta\right
) J
_
0
\left
(q
_
\parallel
r
\sin
\theta\right
).
\end{equation}
Expand the cosine and the Bessel function:
\begin{equation}
I(
\q
,R)
= 2
\pi
\int
_
0
^
R
\d
r
\,
r
^
2
\int
_
0
^{
\pi
}
\d\theta\,
\sin\theta
\sum
_{
j=0
}^
\infty
(-)
^
j
\frac
{
(q
_
zr
\cos\theta
)
^{
2j
}}{
(2j)!
}
\,
\sum
_{
k=0
}^{
\infty
}
(-)
^
k
\frac
{
(q
_
\parallel
r
\sin\theta
)
^{
2k
}}{
4
^
k k!
^
2
}
.
\end{equation}
Sort by powers of
$
r
$
, and integrate:
\begin{equation}
I(
\q
,R)
= 2
\pi
\sum
_{
n=0
}^
\infty
(-)
^
n
\frac
{
R
^{
2n+3
}}{
2n+3
}
\sum
_{
k=0
}^
n
\frac
{{
q
_
z
}^{
2n-2k
}}{
(2n-2k)!
}
\,\frac
{{
q
_
\parallel
}^{
2k
}}{
4
^
k k!
^
2
}
\zeta
(k,n)
\end{equation}
with
\begin{equation}
\zeta
(k,n)
\coloneqq
\int
_
0
^{
\pi
}
\d\theta\,
\sin\theta
(
\cos\theta
)
^{
2n-2k
}
(
\sin\theta
)
^{
2k
}
.
\end{equation}
This integral
\cite
[no.\ 2.512.4]
{
GrRy07
}
yields
\begin{equation}
\zeta
(k,n)
=
\frac
{
2
^{
2k+1
}
(2n-2k)! n! k!
}{
(2n+1)!(n-k)!
}
.
\end{equation}
Hence
\begin{equation}
\label
{
ESphereU
}
I(
\q
,R)
= 4
\pi
\sum
_{
n=0
}^
\infty
(-)
^
n
\frac
{
R
^{
2n+3
}}{
(2n+3)(2n+1)!
}
\sum
_{
k=0
}^
n
\frac
{
n!
}{
(n-k)!k!
}{
q
_
z
}^{
2n-2k
}{
q
_
\parallel
}^{
2k
}
.
\end{equation}
The inner sum happens to be the binomial expansion of
$
q
^{
2
n
}
=
\left
(
{
q
_
z
}^
2
+
{
q
_
\parallel
}^
2
\right
)
^
n
$
.
Therefore (
\ref
{
ESphereU
}
) coincides with the series expansion of
\begin{equation}
I(
\q
,R)
= 4
\pi
q
^{
-3
}
\left
(
\sin
(qR) - qR
\cos
(qR)
\right
),
\end{equation}
which is what we wanted to prove.
%===============================================================================
%===============================================================================
\ffsection
{
FullSpheroid
}
\label
{
SFullSpheroid
}
\ffsection
{
FullSpheroid
}
\label
{
SFullSpheroid
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment