Skip to content
Snippets Groups Projects
Commit 5b2b1833 authored by Wuttke, Joachim's avatar Wuttke, Joachim
Browse files

Derivation of sphere ff now in manual.

parent e39fbc8d
No related branches found
No related tags found
No related merge requests found
...@@ -885,6 +885,13 @@ with the parameter ...@@ -885,6 +885,13 @@ with the parameter
\end{itemize} \end{itemize}
\paragraph{Form factor, volume, horizontal section}\strut\\ \paragraph{Form factor, volume, horizontal section}\strut\\
Notation:
\begin{equation*}
q \coloneqq \sqrt{q_x^2+q_y^2+q_z^2}.
\end{equation*}
Note that this does \E{not} involve the sesquilinear product
$|q_x|^2=q_x^* q_x$ but the plain product $q_xq_x$ of complex numbers
(and analogous for~$q_y$, $q_z$).
\begin{equation*} \begin{equation*}
F = \frac{4\pi}{q^3} \exp(iq_z R)\left[\sin(qR) - qR \cos(qR)\right], F = \frac{4\pi}{q^3} \exp(iq_z R)\left[\sin(qR) - qR \cos(qR)\right],
\end{equation*} \end{equation*}
...@@ -908,11 +915,74 @@ computed with $R=3.9$~nm.} ...@@ -908,11 +915,74 @@ computed with $R=3.9$~nm.}
\paragraph{History and Derivation}\strut\\ \paragraph{History and Derivation}\strut\\
For real wave vectors, this form factor is well known; For real wave vectors, this form factor is well known;
it goes back at least to Lord Rayleigh. it goes back at least to Lord Rayleigh.
Exactly the same expression also holds for complex wavevectors.
In \IsGISAXS, it has been implemented as form factor \E{Full sphere} In \IsGISAXS, it has been implemented as form factor \E{Full sphere}
\cite[Eq.~2.36]{Laz08} \cite[Eq.~226]{ReLL09}. \cite[Eq.~2.36]{Laz08} \cite[Eq.~226]{ReLL09},
allowing for complex wavevectors.
Since it is not obvious that Rayleigh's formula also holds for complex~$\q$,
let us outline a derivation
(if you know a more elegant one, we would like to hear).
If the origin is at the center of the sphere, then the form factor is
\begin{equation}
I(\q,R)
= \int_0^R\d r\, r^2\int_0^{\pi}\d\theta\,\sin\theta\int_0^{2\pi}\d\varphi
\:\e^{i\q\r}
\end{equation}
with $\q\r
= q_x r\sin\theta\cos\varphi + q_y r\sin\theta\sin\varphi + q_z r\cos\theta$.
For the integration over $\varphi$,
see Sect.~\ref{SCylinder} on the form factor of a cylinder:
\begin{equation}
I(\q,R)
= 2\pi \int_0^R \d r\,r^2 \int_0^{\pi} \d\theta\, \sin\theta
\exp\left(i q_z \cos \theta\right) J_0\left(q_\parallel r\sin \theta\right)
\end{equation}
with $q_{\parallel}=\sqrt{q_x^2+q_y^2}$.
By symmetry, the imaginary part is zero,
so that the exponential reduces to a cosine:
\begin{equation}
I(\q,R)
= 2\pi \int_0^R \d r\,r^2 \int_0^{\pi} \d\theta\, \sin\theta
\cos\left(q_z \cos \theta\right) J_0\left(q_\parallel r\sin \theta\right).
\end{equation}
Expand the cosine and the Bessel function:
\begin{equation}
I(\q,R)
= 2\pi \int_0^R \d r\,r^2 \int_0^{\pi} \d\theta\, \sin\theta
\sum_{j=0}^\infty (-)^j \frac{(q_zr\cos\theta)^{2j}}{(2j)!}\,
\sum_{k=0}^{\infty} (-)^k \frac{(q_\parallel r \sin\theta)^{2k}}{4^k k!^2}.
\end{equation}
Sort by powers of $r$, and integrate:
\begin{equation}
I(\q,R)
= 2\pi \sum_{n=0}^\infty (-)^n \frac{R^{2n+3}}{2n+3} \sum_{k=0}^n
\frac{{q_z}^{2n-2k}}{(2n-2k)!}\,\frac{{q_\parallel}^{2k}}{4^k k!^2} \zeta(k,n)
\end{equation}
with
\begin{equation}
\zeta(k,n)
\coloneqq \int_0^{\pi} \d\theta\, \sin\theta
(\cos\theta)^{2n-2k}(\sin\theta)^{2k}.
\end{equation}
This integral \cite[no.\ 2.512.4]{GrRy07} yields
\begin{equation}
\zeta(k,n)
= \frac{2^{2k+1}(2n-2k)! n! k!}{(2n+1)!(n-k)!}.
\end{equation}
Hence
\begin{equation}\label{ESphereU}
I(\q,R)
= 4\pi \sum_{n=0}^\infty (-)^n \frac{R^{2n+3}}{(2n+3)(2n+1)!}
\sum_{k=0}^n \frac{n!}{(n-k)!k!}{q_z}^{2n-2k}{q_\parallel}^{2k}.
\end{equation}
The inner sum happens to be the binomial expansion of
$q^{2n}=\left({q_z}^2+{q_\parallel}^2\right)^n$.
Therefore (\ref{ESphereU}) coincides with the series expansion of
\begin{equation}
I(\q,R)
= 4\pi q^{-3} \left( \sin(qR) - qR\cos(qR) \right),
\end{equation}
which is what we wanted to prove.
%=============================================================================== %===============================================================================
\ffsection{FullSpheroid} \label{SFullSpheroid} \ffsection{FullSpheroid} \label{SFullSpheroid}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment