Skip to content
Snippets Groups Projects
Commit 4cbf5da1 authored by Pospelov, Gennady's avatar Pospelov, Gennady
Browse files

Minimal cleanup in fitting examples.

parent 06465823
No related branches found
No related tags found
No related merge requests found
Showing
with 70 additions and 127 deletions
......@@ -16,14 +16,13 @@ sample parameters, namely
/MultiLayer/Layer0/ParticleLayout/Particle/Cylinder/Height
"""
import numpy as np
from matplotlib import pyplot as plt
import math
import random
import bornagain as ba
from bornagain import deg, angstrom, nm
def get_sample(radius=5*nm, height=5*nm, lattice_constant=10*nm):
def get_sample(radius=5.0*nm, height=5.0*nm, lattice_constant=10.0*nm):
"""
Returns a sample with cylinders on a substrate,
forming a rectangular lattice.
......@@ -69,23 +68,18 @@ def create_real_data():
Generating "real" data by adding noise to the simulated data.
"""
sample = get_sample(8.0*nm, 8.0*nm, 8.0*nm)
simulation = get_simulation()
simulation.setSample(sample)
simulation.runSimulation()
real_data = simulation.getIntensityData()
# retrieving simulated data in the form of numpy array
real_data = simulation.getIntensityData().getArray()
# spoiling simulated data with the noise to produce "real" data
noise_factor = 0.1
for i in range(0, real_data.getTotalNumberOfBins()):
amplitude = real_data.getBinContent(i)
sigma = noise_factor*math.sqrt(amplitude)
noisy_amplitude = random.gauss(amplitude, sigma)
if noisy_amplitude < 0.1:
noisy_amplitude = 0.1
real_data.setBinContent(i, noisy_amplitude)
return real_data
noisy = np.random.normal(real_data, noise_factor*np.sqrt(real_data))
noisy[noisy < 0.1] = 0.1
return noisy
def run_fitting():
......
......@@ -101,7 +101,7 @@ class DrawObserver(ba.IFitObserver):
self.fig.canvas.draw()
plt.ion()
def plot(self, data, title, nplot, min=1, max=1e6):
def plot(self, data, title, nplot, min=1.0, max=1e6):
plt.subplot(2, 2, nplot)
plt.subplots_adjust(wspace=0.2, hspace=0.2)
im = plt.imshow(
......
......@@ -4,14 +4,13 @@ See FitSpheresInHexLattice_builder.py example which performs same fitting task
using advanced sample construction techniques.
"""
import numpy as np
from matplotlib import pyplot as plt
import math
import random
import bornagain as ba
from bornagain import deg, angstrom, nm
def get_sample(radius=5*nm, lattice_constant=10*nm):
def get_sample(radius=5.0*nm, lattice_constant=10.0*nm):
"""
Returns a sample with cylinders and pyramids on a substrate,
forming a hexagonal lattice.
......@@ -56,23 +55,18 @@ def create_real_data():
Generating "real" data by adding noise to the simulated data.
"""
sample = get_sample(5.0*nm, 10.0*nm)
simulation = get_simulation()
simulation.setSample(sample)
simulation.runSimulation()
real_data = simulation.getIntensityData()
# retrieving simulated data in the form of numpy array
real_data = simulation.getIntensityData().getArray()
# spoiling simulated data with the noise to produce "real" data
noise_factor = 0.1
for i in range(0, real_data.getTotalNumberOfBins()):
amplitude = real_data.getBinContent(i)
sigma = noise_factor*math.sqrt(amplitude)
noisy_amplitude = random.gauss(amplitude, sigma)
if noisy_amplitude < 0.1:
noisy_amplitude = 0.1
real_data.setBinContent(i, noisy_amplitude)
return real_data
noisy = np.random.normal(real_data, noise_factor*np.sqrt(real_data))
noisy[noisy < 0.1] = 0.1
return noisy
def run_fitting():
......
......@@ -3,8 +3,7 @@ Two parameter fit of spheres in a hex lattice.
Sample builder approach is used.
"""
import math
import random
import numpy as np
import ctypes
import bornagain as ba
from matplotlib import pyplot as plt
......@@ -76,23 +75,18 @@ def create_real_data():
sample_builder = MySampleBuilder()
sample_builder.setParameterValue("radius", 5.0*nm)
sample_builder.setParameterValue("lattice_constant", 10.0*nm)
simulation = get_simulation()
simulation.setSampleBuilder(sample_builder)
simulation.runSimulation()
real_data = simulation.getIntensityData()
# retrieving simulated data in the form of numpy array
real_data = simulation.getIntensityData().getArray()
# spoiling simulated data with the noise to produce "real" data
noise_factor = 0.1
for i in range(0, real_data.getTotalNumberOfBins()):
amplitude = real_data.getBinContent(i)
sigma = noise_factor*math.sqrt(amplitude)
noisy_amplitude = random.gauss(amplitude, sigma)
if noisy_amplitude < 0.1:
noisy_amplitude = 0.1
real_data.setBinContent(i, noisy_amplitude)
return real_data
noisy = np.random.normal(real_data, noise_factor*np.sqrt(real_data))
noisy[noisy < 0.1] = 0.1
return noisy
def run_fitting():
......
......@@ -6,15 +6,13 @@ In the fit we are trying to find cylinder radius and height,
scale and background factors.
"""
from __future__ import print_function
import numpy as np
from matplotlib import pyplot as plt
import math
import random
import bornagain as ba
from bornagain import deg, angstrom, nm
def get_sample(radius=5*nm, height=10*nm):
def get_sample(radius=5.0*nm, height=10.0*nm):
"""
Build the sample representing cylinders on top of substrate without interference.
"""
......@@ -59,27 +57,21 @@ def create_real_data():
scale, background factors.
"""
sample = get_sample(5.0*nm, 10.0*nm)
simulation = get_simulation()
simulation.setSample(sample)
simulation.runSimulation()
real_data = simulation.getIntensityData()
# retrieving simulated data in the form of numpy array
real_data = simulation.getIntensityData().getArray()
scale = 2.0
background = 100
real_data.scale(scale)
# spoil simulated data with the noise, and add background to produce "real" data
noise_factor = 1.0
for i in range(0, real_data.getTotalNumberOfBins()):
amplitude = real_data.getBinContent(i)
sigma = noise_factor*math.sqrt(amplitude)
noisy_amplitude = random.gauss(amplitude, sigma)
if noisy_amplitude < 1.0:
noisy_amplitude = 1.0
real_data.setBinContent(i, noisy_amplitude + background)
return real_data
# spoiling simulated data with the noise to produce "real" data
real_data *= scale
noise_factor = 0.1
noisy = background + np.random.normal(real_data, noise_factor*np.sqrt(real_data))
return noisy
def run_fitting():
......
......@@ -2,15 +2,13 @@
Fitting example: fit with masks
"""
from __future__ import print_function
import numpy as np
from matplotlib import pyplot as plt
import math
import random
import bornagain as ba
from bornagain import deg, angstrom, nm
def get_sample(radius=5*nm, height=10*nm):
def get_sample(radius=5.0*nm, height=10.0*nm):
"""
Build the sample representing cylinders on top of
substrate without interference.
......@@ -51,23 +49,18 @@ def create_real_data():
Generating "real" data by adding noise to the simulated data.
"""
sample = get_sample(5.0*nm, 10.0*nm)
simulation = get_simulation()
simulation.setSample(sample)
simulation.runSimulation()
real_data = simulation.getIntensityData()
# retrieving simulated data in the form of numpy array
real_data = simulation.getIntensityData().getArray()
# spoiling simulated data with the noise to produce "real" data
noise_factor = 0.5
for i in range(0, real_data.getTotalNumberOfBins()):
amplitude = real_data.getBinContent(i)
sigma = noise_factor*math.sqrt(amplitude)
noisy_amplitude = random.gauss(amplitude, sigma)
if noisy_amplitude < 1.0:
noisy_amplitude = 1.0
real_data.setBinContent(i, noisy_amplitude)
return real_data
noise_factor = 0.1
noisy = np.random.normal(real_data, noise_factor*np.sqrt(real_data))
noisy[noisy < 0.1] = 0.1
return noisy
def add_mask_to_simulation(simulation):
......
......@@ -9,15 +9,13 @@ After it is done, the second Minuit2 minimizer will continue
to find the precise location of best minima found on previous step.
"""
from __future__ import print_function
import numpy as np
from matplotlib import pyplot as plt
import math
import random
import bornagain as ba
from bornagain import deg, angstrom, nm
def get_sample(radius=5*nm, height=5*nm):
def get_sample(radius=5.0*nm, height=5.0*nm):
"""
Returns a sample with uncorrelated cylinders and pyramids on a substrate.
"""
......@@ -57,23 +55,18 @@ def create_real_data():
Generating "real" data by adding noise to the simulated data.
"""
sample = get_sample(5.0*nm, 5.0*nm)
simulation = get_simulation()
simulation.setSample(sample)
simulation.runSimulation()
real_data = simulation.getIntensityData()
# retrieving simulated data in the form of numpy array
real_data = simulation.getIntensityData().getArray()
# spoiling simulated data with the noise to produce "real" data
noise_factor = 0.1
for i in range(0, real_data.getTotalNumberOfBins()):
amplitude = real_data.getBinContent(i)
sigma = noise_factor*math.sqrt(amplitude)
noisy_amplitude = random.gauss(amplitude, sigma)
if noisy_amplitude < 0.1:
noisy_amplitude = 0.1
real_data.setBinContent(i, noisy_amplitude)
return real_data
noisy = np.random.normal(real_data, noise_factor*np.sqrt(real_data))
noisy[noisy < 0.1] = 0.1
return noisy
def run_fitting():
......
......@@ -2,20 +2,17 @@
Fitting example: fit along slices
"""
from __future__ import print_function
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
import math
import random
import bornagain as ba
from bornagain import deg, angstrom, nm
import numpy
phi_slice_value = 0.0*deg # position of vertical slice
alpha_slice_value = 0.2*deg # position of horizontal slice
def get_sample(radius=5*nm, height=10*nm):
def get_sample(radius=5.0*nm, height=10.0*nm):
"""
Returns a sample with uncorrelated cylinders on a substrate.
"""
......@@ -55,23 +52,18 @@ def create_real_data():
Generating "real" data by adding noise to the simulated data.
"""
sample = get_sample(5.0*nm, 10.0*nm)
simulation = get_simulation()
simulation.setSample(sample)
simulation.runSimulation()
real_data = simulation.getIntensityData()
# retrieving simulated data in the form of numpy array
real_data = simulation.getIntensityData().getArray()
# spoiling simulated data with the noise to produce "real" data
noise_factor = 1.0
for i in range(0, real_data.getTotalNumberOfBins()):
amplitude = real_data.getBinContent(i)
sigma = noise_factor*math.sqrt(amplitude)
noisy_amplitude = random.gauss(amplitude, sigma)
if noisy_amplitude < 1.0:
noisy_amplitude = 1.0
real_data.setBinContent(i, noisy_amplitude)
return real_data
noise_factor = 0.1
noisy = np.random.normal(real_data, noise_factor*np.sqrt(real_data))
noisy[noisy < 0.1] = 0.1
return noisy
class DrawObserver(ba.IFitObserver):
......
......@@ -2,12 +2,9 @@
Fitting example: demonstrates how to fit two datasets simultaneously.
"""
from __future__ import print_function
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
import matplotlib.gridspec as gridspec
import math
import random
import bornagain as ba
from bornagain import deg, angstrom, nm
......@@ -53,23 +50,18 @@ def create_real_data(incident_alpha):
"""
sample = get_sample(
radius_a=5.0*nm, radius_b=6.0*nm, height=8.0*nm)
simulation = get_simulation(incident_alpha)
simulation.setSample(sample)
simulation.runSimulation()
real_data = simulation.getIntensityData()
# retrieving simulated data in the form of numpy array
real_data = simulation.getIntensityData().getArray()
# spoiling simulated data with the noise to produce "real" data
noise_factor = 1.0
for i in range(0, real_data.getTotalNumberOfBins()):
amplitude = real_data.getBinContent(i)
sigma = noise_factor*math.sqrt(amplitude)
noisy_amplitude = random.gauss(amplitude, sigma)
if noisy_amplitude < 0.0:
noisy_amplitude = 0.0
real_data.setBinContent(i, noisy_amplitude)
return real_data
noise_factor = 0.1
noisy = np.random.normal(real_data, noise_factor*np.sqrt(real_data))
noisy[noisy < 0.1] = 0.1
return noisy
class DrawObserver(ba.IFitObserver):
......@@ -87,7 +79,7 @@ class DrawObserver(ba.IFitObserver):
self.fig.canvas.draw()
plt.ion()
def plot_colormap(self, data, title, min=1, max=1e6):
def plot_colormap(self, data, title, min=1.0, max=1e6):
im = plt.imshow(
data.getArray(),
norm=matplotlib.colors.LogNorm(min, max),
......
......@@ -71,7 +71,6 @@ def run_fitting():
fit_suite.attachObserver(draw_observer)
fit_suite.initPrint(10)
fit_suite.addSimulationAndRealData(simulation, real_data)
print("1.8")
# setting fitting parameters with starting values
fit_suite.addFitParameter(
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment