Skip to content
Snippets Groups Projects
Commit 19facd55 authored by Wuttke, Joachim's avatar Wuttke, Joachim
Browse files

corrections; todo

parent 22cc5eeb
No related branches found
No related tags found
No related merge requests found
== Varia and Unsorted ==
cp should show quality of last fit
latest action on pX should be part of history
resol with bg vs fit with bg+resol/conv
upgrade yaml-cpp from 0.3 to 0.5
== Building ==
......
......@@ -10,6 +10,7 @@
#include <iostream>
#include <string>
#include <omp.h>
#include <lmmin.h>
#include <readplus/ask.hpp>
......@@ -206,81 +207,84 @@ void NCurveFit::fit( bool _allow_slow_conv )
#pragma omp parallel for
for ( int j=0; j<fc->nJ(); j++ ) {
if ( fc->V[j]->frozen )
continue;
FitDatTyp data;
data.fc = fc;
data.fd = fd;
data.k = fiter.k();
data.j = j;
PSpec D = fd->VS(j);
PCurve C = fc->VC(j);
int nd = D->size();
if ( !nd ){
printf( "Empty data set in spectrum %i\n", j );
continue;
}
try {
if ( fc->V[j]->frozen )
continue;
FitDatTyp data;
data.fc = fc;
data.fd = fd;
data.k = fiter.k();
data.j = j;
PSpec D = fd->VS(j);
PCurve C = fc->VC(j);
int nd = D->size();
if ( !nd ){
printf( "Empty data set in spectrum %i\n", j );
continue;
}
// handle fixed parameters:
int npfree = 0;
for ( int ip=0; ip<np; ++ip )
if( !fc->VC(j)->fixed[ip] )
++npfree;
if ( npfree<=0 )
continue;
vector<double> Par(npfree);
int ipf=0;
for ( int ip=0; ip<np; ip++ ) {
if ( !fc->VC(j)->fixed[ip] )
Par[ipf++] = C->P[ip];
}
// handle fixed parameters:
int npfree = 0;
for ( int ip=0; ip<np; ++ip )
if( !fc->VC(j)->fixed[ip] )
++npfree;
if ( npfree<=0 )
continue;
vector<double> Par(npfree);
int ipf=0;
for ( int ip=0; ip<np; ip++ ) {
if ( !fc->VC(j)->fixed[ip] )
Par[ipf++] = C->P[ip];
}
if ( verbosity ) printf("\n");
// Levenberg-Marquardt routine from library lmfit:
// Levenberg-Marquardt routine from library lmfit:
data.timeout = time(NULL) + maxtime;
data.timeout = time(NULL) + omp_get_num_threads()*maxtime;
lm_status_struct status;
lmmin( npfree, &(Par[0]), nd, &data,
fitEvaluate, &control, &status );
lm_status_struct status;
lmmin( npfree, &(Par[0]), nd, &data,
fitEvaluate, &control, &status );
if( status.outcome==11 )
throw "exception in fit function";
if( status.outcome==11 )
throw "exception in fit function";
// Fit quality metrics Q:
// Fit quality metrics Q:
// Q: status code
C->Quality[0] = (double) status.outcome;
// Q: status code
C->Quality[0] = (double) status.outcome;
// Q: coefficient of determination R^2 (for linear regression)
double ysum1 = 0, ysum2 = 0;
for( int i=0; i<nd; ++i ){
ysum1 += D->y[i];
ysum2 += SQR( D->y[i] );
}
double ydev2 = ysum2 - SQR( ysum1 )/nd; // = nd * <(y-<y>)^2>
C->Quality[1] = ydev2!=0 ? 1 - SQR(status.fnorm) / ydev2 : -1;
// Q: coefficient of determination R^2 (for linear regression)
double ysum1 = 0, ysum2 = 0;
for( int i=0; i<nd; ++i ){
ysum1 += D->y[i];
ysum2 += SQR( D->y[i] );
}
double ydev2 = ysum2 - SQR( ysum1 )/nd; // = nd * <(y-<y>)^2>
C->Quality[1] = ydev2!=0 ? 1 - SQR(status.fnorm) / ydev2 : -1;
// Q: mean deviation (chi^2 if fvec is weighed with 1/dy)
int nfreedom = nd - npfree - 1;
if( nfreedom<1 ) nfreedom = 1;
C->Quality[2] = SQR(status.fnorm) / nfreedom;
#pragma omp critical
{
// print results:
if( fiter.size()>1 )
printf( "%3d", data.k );
printf( "%3d", j );
for ( int i=0; i<npfree; i++ )
printf(" %12g", Par[i]);
printf( " (%3d->%9.7g)",
status.nfev, C->Quality[mFitMetric] );
printf( "%s\n", lm_shortmsg[ status.outcome ] );
}
}
}
allow_slow_conv = true;
// Q: mean deviation (chi^2 if fvec is weighed with 1/dy)
int nfreedom = nd - npfree - 1;
if( nfreedom<1 ) nfreedom = 1;
C->Quality[2] = SQR(status.fnorm) / nfreedom;
#pragma omp critical
{
// print results:
if( fiter.size()>1 )
printf( "%3d", data.k );
printf( "%3d", j );
for ( int i=0; i<npfree; i++ )
printf(" %12g", Par[i]);
printf( " (%3d->%9.7g)",
status.nfev, C->Quality[mFitMetric] );
printf( "%s\n", lm_shortmsg[ status.outcome ] );
}
} catch (...) {
#pragma omp critical
printf( "Caught unexpected exception"
" while fitting spectrum %i\n", j );
} // try
} // j
} // k
}
......@@ -297,6 +297,8 @@ double func_rotdiff( double w, double tau, double qb )
// Rotational diffusion spectrum
{
double ret = 0;
if( qb<=0 )
return 0;
for( int l=1; l<=12; ++l ){
ret += (2*l+1) * pow( gsl_sf_bessel_jl( l, qb ), 2 ) *
l*(l+1)*tau/PI/(SQR(w*tau)+SQR(l*(l+1)));
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment