From b75a2e1f2f5e95a104df29162102d10643e93684 Mon Sep 17 00:00:00 2001 From: "s.islam" <s.islam@fz-juelich.de> Date: Thu, 5 May 2022 14:48:54 +0200 Subject: [PATCH] REPORT-7: Ch:1, resnet152, L1 --- code/model_Unet.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/code/model_Unet.py b/code/model_Unet.py index 8f0bdfb..e25c863 100644 --- a/code/model_Unet.py +++ b/code/model_Unet.py @@ -31,13 +31,13 @@ class TestModule(pl.LightningModule): # Define the model self.model = smp.Unet( - encoder_name="resnet34", # Also consider using smaller or larger encoders + encoder_name="resnet152", # Also consider using smaller or larger encoders encoder_weights= "imagenet", # Do the pretrained weights help? Try with or without in_channels=1, # We use 1 chanel transmittance as input classes=1, # classes == output channels. We use one output channel for cyto data activation="sigmoid" ) - self.loss_f = RMILoss(with_logits=True) #torch.nn.L1Loss() #RMILoss(with_logits=True) #torch.nn.MSELoss() + self.loss_f = torch.nn.L1Loss() #torch.nn.L1Loss() #RMILoss(with_logits=True) #torch.nn.MSELoss() def forward(self, x): x = self.model(x) -- GitLab