diff --git a/Doc/UserManual/Assemblies.tex b/Doc/UserManual/Assemblies.tex
index fa5030e252b78b4b766624414a7e19b3fed21ad0..c281f1916dc4c6abe59b7fd56d15bcbeebf04317 100644
--- a/Doc/UserManual/Assemblies.tex
+++ b/Doc/UserManual/Assemblies.tex
@@ -62,7 +62,7 @@ with the indicator function
   1&\text{~if $\r$ in p,}\\[.2ex]
   0&\text{~otherwise.} \end{array}\right.
 \end{equation}
-\nomenclature[1χ032 2p000]{$\chi_\sp(\r)$}{indicates whether $\r$ is in particle of type~$\sp$}%
+\nomenclature[1χ032 2p000]{$\chi_\sp(\r)$}{Indicates whether $\r$ is in particle of type~$\sp$}%
 \index{Indicator function}%
 The following formalism, however, shall not rely on \cref{EDvpHomo},
 but also allow for soft particles for which $\Delta v_\sp(\r)$ is a continuous function of~$\r$.
diff --git a/Doc/UserManual/FormFactors.tex b/Doc/UserManual/FormFactors.tex
index 05da943ab0a29f1faac0358d89ad5f6ae0e6576d..fe0663ddeded67c6684e069df113367d5a31621b 100644
--- a/Doc/UserManual/FormFactors.tex
+++ b/Doc/UserManual/FormFactors.tex
@@ -730,7 +730,7 @@ for four different tilt angles~$\vartheta$ (rotation around the $y$ axis).}
 \end{figure}
 
 \paragraph{History and Derivation}\strut\\
-For real wave vectors, this form factor is well known;
+For real wavevectors, this form factor is well known;
 it goes back to Lord Rayleigh.
 In \IsGISAXS, it has been implemented as form factor \E{Cylinder}
 \cite[Eq.~2.27]{Laz08} \cite[Eq.~223]{ReLL09},
@@ -960,7 +960,7 @@ computed with $R=3.9$~nm.}
 \end{figure}
 
 \paragraph{History and Derivation}\strut\\
-For real wave vectors, this form factor is well known;
+For real wavevectors, this form factor is well known;
 it goes back at least to Lord Rayleigh.
 In \IsGISAXS, it has been implemented as form factor \E{Full sphere}
 \cite[Eq.~2.36]{Laz08} \cite[Eq.~226]{ReLL09},
diff --git a/Doc/UserManual/Instrument.tex b/Doc/UserManual/Instrument.tex
index 7b78713cb1d6848821e2d4f2d65bc24780c01565..00172a2d96870e9e81b924a710725d1e553694d6 100644
--- a/Doc/UserManual/Instrument.tex
+++ b/Doc/UserManual/Instrument.tex
@@ -80,9 +80,9 @@ and the vertical glancing angle $\alpha_\sf$.
 The projection of $(\alpha_\sf,\phi_\sf)$ into
 the detector plane~$(y,z)$ is known as the \E{gnomonic projection}.
 \index{Gnomonic projection}%
-\index{Projection!wave vector to pixel coordinate}%
-\index{Mapping!wave vector to pixel coordinate}%
-\index{Transformation!wave vector to pixel coordinate}%
+\index{Projection!wavevector to pixel coordinate}%
+\index{Mapping!wavevector to pixel coordinate}%
+\index{Transformation!wavevector to pixel coordinate}%
 From elementary trigonometry one finds
 \begin{equation}\label{Eyzdet}
   \begin{array}{lcl}
diff --git a/Doc/UserManual/Multilayers.tex b/Doc/UserManual/Multilayers.tex
index 54a98b31bfe9bb9b29fb6c8f10b1a48b243a1163..034b8e533fbed80fde1cf763de69036e6b0b9148 100644
--- a/Doc/UserManual/Multilayers.tex
+++ b/Doc/UserManual/Multilayers.tex
@@ -139,7 +139,7 @@ The exciting wavefunction is
 \nomenclature[2k021\perp]{$k_\perp$}{Component of $\k$ along the sample normal}%
 \nomenclature[2k041\plll]{$\k_\plll$}{Projection of $\k$ onto the sample plane}%
 The subscripts $\plll$ and~$\perp$ refer to the sample $xy$ plane.
-The wave vector components $\k_\plll$ and $k_{\perp}$ must fulfill
+The wavevector components $\k_\plll$ and $k_{\perp}$ must fulfill
 \begin{equation}
   k(z)^2=\k_\plll^2+k_{\perp}^2.
 \end{equation}
@@ -380,7 +380,7 @@ and the geometric interpretation of~$\psi_l(\r)$ less obvious.
 so that one has to fully rely on the algebraic formalism.
 
 With the indicator function
-\nomenclature[1χ032 2l010]{$\chi_l(z)$}{indicates whether $z$ is in layer~$l$}%
+\nomenclature[1χ032 2l010]{$\chi_l(z)$}{Indicates whether $z$ is in layer~$l$}%
 \index{Indicator function}%
 \begin{equation}\label{Echildef}
   \chi_l(\r)\coloneqq\left\{\begin{array}{ll}
diff --git a/Doc/UserManual/Scattering.tex b/Doc/UserManual/Scattering.tex
index 6dd6d0d6ea15549d94444bad7aa3f18f80934727..22f705ce63ae502342b884d45e86388aa31a34ac 100644
--- a/Doc/UserManual/Scattering.tex
+++ b/Doc/UserManual/Scattering.tex
@@ -250,12 +250,14 @@ Mostly we will assume pure states to be \E{plane waves}
 \index{Plane wave}%
 \index{Wave!plane}%
 \begin{equation}\label{EplaneWave}
-  \psi_\k(\r)\coloneqq\e^{i\k\r}.
+  \psi_\k(\r)\coloneqq\e^{i\k\r},
 \end{equation}
-In this case, the sum in~\cref{EdefRho} must be replaced by an integral,
-and the flux is simply
+where the wavevector~$\k$ is allowed to have an imaginary part that describes damping.
+\index{Damping}%
+We replace the sum in~\cref{EdefRho} by an integral,
+and find that the flux is simply
 \begin{equation}
-  \v{J}(\r) = \int\!\d^3k\; p_\k\, \k.
+  \v{J}(\r) = \int\!\d^3k\; p_\k\, |\psi_\k(\r)|^2 \Re\k.
 \end{equation}
 
 %===============================================================================
@@ -398,7 +400,7 @@ of the standard form of the Schrödinger equation.%
 \index{Sign convention!wave propagation|)}%
 }
 \index{Phase factor}%
-In the following, we will concentrate on the electric field
+We will formulate the following in terms of the electric field
 \index{Electric field}%
 \begin{equation}\label{EstationaryX}
   \v{E}(\r,t) = \v{E}(\r)\e^{-i\omega t}.
@@ -456,22 +458,38 @@ Using a standard identity from vector analysis, it can be brought into the more
 \end{equation}
 \vspace*{-5pt}}
 
-Electromagnetic flux is given by Poynting's vector
+It is well known that the electromagnetic energy flux is given by the Poynting vector.
+\index{Poynting vector}%
+\index{X-ray!flux}%
+\index{Flux!X-rays}%
+However, its standard definition, $\v{S}\coloneqq\v{E}\times\v{H}$,
+is not applicable here because it only holds for \E{real} fields.
+With our complex notation, it must be replaced by
+\begin{equation}
+  \v{S}\coloneqq \Re\v E(\r,t)\times\Re\v H(\r,t).
+\end{equation}
+\nomenclature[2s150]{$\v S$}{Poyinting vector}%
+For stationary oscillations~\cref{EstationaryX},
+the time average is
 \begin{equation}
-  \v{S}\coloneqq \v{E}\times\v{H}.
+  \braket{\v S} = \frac{1}{4}\braket{\v E(\r) \times \v H(\r)^* + \text{c.~c.}}.
 \end{equation}
-Under our assumptions $\omega=\text{const}$ and $\TENS\mu(\r)=1$,
-the $H$~field is
+\nomenclature[2c000 2c000]{$\text{c.~c.}$}{Complex conjugate}%
+We specialize to vacuum with $\TENS\mu(\r)=1$ and $\TENS\eps(\r)=1$,
+and obtain
 \begin{equation}
-  \v{H} = \frac{i}{\omega\mu_0}\Nabla\times\v{E}.
+  \braket{\v S}
+  = \frac{1}{4i\omega\mu_0}
+    \left( \v E^*(\r)\times\left(\Nabla\times\v{E}(\r)\right) + \text{c.~c.} \right).
 \end{equation}
-For the vacuum field (which
-It is very unusual to describe a classical electromagnetic field by a density matrix,
-but nonetheless useful.
+For a plane wave $\v E(\r)=\v E_\k \e^{i\k\r}$, we find
+\begin{equation}
+  \braket{\v S}
+  = \frac{1}{2\omega\mu_0} |\v E|^2 \Re \k,
+\end{equation}
+which confirms the common knowledge that the radiation intensity
+counted in a detector is proportional to the squared electric field amplitude.
 
-\index{Poynting's vector}%
-\index{X-ray!flux}%
-\index{Flux!X-rays}%
 
 \index{Wave propagation!X-ray|)}%
 \index{X-ray!wave propagation|)}%