From 8720e1f632b7ae299cbf7a77ff080519c81e547a Mon Sep 17 00:00:00 2001 From: Walter Van Herck <w.van.herck@fz-juelich.de> Date: Mon, 11 Apr 2016 17:52:56 +0200 Subject: [PATCH] Added one- and two-dimensional lattice interference function to documentation --- Doc/UserManual/Assemblies.tex | 123 +++++++++++++++++++++++++++++++++- 1 file changed, 122 insertions(+), 1 deletion(-) diff --git a/Doc/UserManual/Assemblies.tex b/Doc/UserManual/Assemblies.tex index c60815efc12..0a4845ec811 100644 --- a/Doc/UserManual/Assemblies.tex +++ b/Doc/UserManual/Assemblies.tex @@ -326,7 +326,7 @@ so that the \E{diffuse} scattering intensity assumes the simple form \end{equation}\vskip -5pt} The \E{coherent} scattering intensity is given by \Emph -{\begin{equation} +{\begin{equation}\label{EICoherent} I_\text{c} = \int\!\d^2r\, \e^{i\q_{\plll}\r}\! \int\! \d^{d_T}\tau\, \d^{d_T}\tau' @@ -531,6 +531,127 @@ as for other numeric parameters. \section{Interference functions} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +The starting point for describing the interference of the scattering from different +particles is the coherent scattering intensity of~(\ref{EICoherent}). + +The conditional interference function is defined as +\begin{equation} + \SD(\q |\v\tau,\v\tau') \coloneqq 1 + \rho_S \int\! d^2r\, e^{i\q_\plll\r}\! \GD(\r|\v\tau,\v\tau'). +\end{equation} +With the chosen normalization, $\rho_S \GD(\r|\v\tau,\v\tau') d^2r$ gives the probability of +finding a particle of type $\v\tau'$ in the infinitesimal area $d^2r$ at the relative position $\r$ from +a given (different) particle of type $\v\tau$. + +In the following subsections, the supported interference functions in \BornAgain\ will be discussed. +With one exception, they all assume the R-T decoupling approximation, making the interference function +independent of the particle types ($\v\tau$ and $\v\tau'$). + +%=============================================================================== +\subsection{One-dimensional lattice} \label{sec:sect:1dlattice} +%=============================================================================== +For a perfect one-dimensional lattice along the x-axis with period $a$, the position +correlation function is given by: +\begin{equation} + \rho_S\GD(\r) = \sum_{n\neq 0} \delta(x-na)\delta(y). +\end{equation} +The corresponding interference function then becomes +\begin{equation} + \SD(\q) = \frac{2\pi}{a}\sum_k \delta(q_x - \frac{2\pi k}{a}), +\end{equation} +where $2\pi /a$ is a basis vector for the reciprocal lattice. + +For computational reasons in \BornAgain, the delta functions appearing in the interference function +are replaced by distributions of a finite width $H(q_x-2\pi k/a)$. This ammounts to convoluting the +previously given interference function with $H(q_x)$ or, equivalently, multiplying +the position correlation function by the inverse Fourier image of $H(q_x)$, called the +\index{Decay function} +\E{decay function} $h(x)$. + +The interference function can then be written as: +\begin{equation} + \SD(q_x) = \frac{1}{a}\sum_k H(q_x - \frac{2\pi k}{a}). +\end{equation} + +\BornAgain\ currently supports the following types of one-dimensional decay functions +(parameterized by a decay length $\lambda$): +\begin{equation} + \begin{array}{|l|c|c|} + \hline + \text{Name} & h(x) & H(q_x) \\ + \hline + \text{Cauchy} & e^{-|x|/\lambda} & \frac{2\lambda}{1+q_x^2\lambda^2} \\ + \hline + \text{Gauss} & e^{-x^2/2\lambda^2} & \sqrt{2\pi}\lambda e^{-q_x^2\lambda^2/2} \\ + \hline + \text{Triangle} & 1-|x|/\lambda \quad \text{for} \quad |x|<\lambda & \lambda \sinc^2(q_x\lambda/2) \\ + \hline + \end{array} +\end{equation} + +In addition, a pseudo-Voigt decay function is available, which is a convex combination of the Cauchy and Gauss decay functions. +\Emph{ +The decay functions are all normalized such that $\int\!dq_x H(q_x)=2\pi$, which is equivalent to $h(0)=1$. +} +\Emph{ +If the one-dimensional lattice is rotated with respect to the x-axis by an angle $\xi$, the corresponding interference function is calculated +by using the correct projection of the in-plane reciprocal vector instead of $q_x$: +\begin{equation} + q_\xi = q_x \cos\xi + q_y \sin\xi. +\end{equation} +} + +%=============================================================================== +\subsection{Two-dimensional lattice} \label{sec:sect:2dlattice} +%=============================================================================== +For a perfect two-dimensional lattice with lattice basis $(\v a,\v b)$, the position +correlation function is given by: +\begin{equation} + \rho_S\GD(\r) = \sum_{m,n} \delta(\r-m\v a - n\v b) - \delta(\r). +\end{equation} +The corresponding interference function then becomes +\begin{equation} + \SD(\q) = 4\pi^2 \rho_S \sum_{\q_i\in\Lambda^*} \delta(\q - \q_i), +\end{equation} +where $\Lambda^*$ denotes the reciprocal lattice of $(\v a,\v b)$. + +In \BornAgain, the two-dimensional delta functions need to be replaced again with +distributions of finite width $H(\q - \q_i)$. Currently, \BornAgain\ only allows for two-dimensional +decay functions that are defined in the radial variable +\begin{equation} + \phi \coloneqq \sqrt{X^2/\lambda_X^2 + Y^2/\lambda_Y^2}, +\end{equation} +where $(X,Y)$ are the coordinates in an orthonormal coordinate system, where the $X$-axis is rotated +by an angle $\gamma$ with respect to the first lattice vector $\v a$. +This ammounts to convoluting the +previously given interference function with $H(\q)$ or, equivalently, multiplying +the position correlation function by the inverse Fourier image of $H(\q)$, called the +\index{Decay function} +\E{decay function} $h(\phi)$. + +The interference function can then be written as: +\begin{equation} + \SD(\q) = \rho_S \sum_{\q_i\in\Lambda^*} H(\q - \q_i). +\end{equation} + +\BornAgain\ currently supports the following types of two-dimensional decay functions +(parameterized by two decay lengths $\lambda_X, \lambda_Y$): +\begin{equation} + \begin{array}{|l|c|c|} + \hline + \text{Name} & h(\phi) & H(\omega) \\ + \hline + \text{Cauchy} & e^{-\phi} & \frac{2\pi\lambda_X\lambda_Y}{(1+\omega^2)^{3/2}} \\ + \hline + \text{Gauss} & e^{-\phi^2/2} & 2\pi\lambda_X\lambda_Y e^{-\omega^2/2} \\ + \hline + \end{array} +\end{equation} +with $\omega \coloneqq \sqrt{q_X^2\lambda_X^2 + q_Y^2\lambda_Y^2}$. + +In addition, a pseudo-Voigt decay function is available, which is a convex combination of the Cauchy and Gauss decay functions. +\Emph{ +The decay functions are all normalized such that $\int\!d\q_\plll H(\q)= 4\pi^2$, which is equivalent to $h(0)=1$. +} %\iffalse %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{OLD STUFF} -- GitLab