diff --git a/Doc/UserManual/QuickStart.tex b/Doc/UserManual/QuickStart.tex index 98d5d14579b27946cd12bc6fb6b278bfb47e0c2f..6af26f7d8af4de869b70e0d5dcf5939a0e8188a8 100755 --- a/Doc/UserManual/QuickStart.tex +++ b/Doc/UserManual/QuickStart.tex @@ -4,7 +4,7 @@ BornAgain can be downloaded from the {\sc Download} section of project web site located at \url{http://www.bornagainproject.org}. The {\sc Documentation} section contains an overview of the functionality, detailed installation instructions, tutorials and usage examples. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.99\textwidth]{Figures/website} \end{center} diff --git a/Doc/UserManual/Simulation.tex b/Doc/UserManual/Simulation.tex index 6f473eb1ba06bc8fb42da0fb2517267647523db9..10b11e7585ac13ea0e78531859a7446c67cf9c4d 100755 --- a/Doc/UserManual/Simulation.tex +++ b/Doc/UserManual/Simulation.tex @@ -33,7 +33,7 @@ scattered output beams are each characterized by two angles $\alpha_i$, $\phi_i$ and $\alpha_f$, $\phi_f$, respectively. Our choice of orientation for the angles $\alpha_i$ and $\alpha_f$ is so that they are positive as shown in \reffig{multil3d}. \\ -\begin{figure}[h] +\begin{figure}[ht] \centering \includegraphics[clip=, width=120mm]{Figures/setup_multilayer} %multilayer3d3.eps} \caption[Representation of the scattering geometry.]{Representation of the scattering geometry. $n_j$ is diff --git a/Doc/UserManual/Theory.tex b/Doc/UserManual/Theory.tex index 161314ea155e7b4c5d05341b5c1f91442b05d219..5b7b7bff558f19329368abada9fdfc57f98f268a 100755 --- a/Doc/UserManual/Theory.tex +++ b/Doc/UserManual/Theory.tex @@ -40,7 +40,7 @@ where $I_d$ is the diffuse part of the scattering. It is the signature of the fl \end{equation*} -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/drawingDA} \end{center} @@ -63,7 +63,7 @@ One has to remember that in most cases, this approximation corresponds to an unp DA and LMA separate the contributions of the form factors and of the interference function. For disordered systems DA and LMA give the same result as the scattering vector gets larger \textit{i.e.} the scattered intensity is dominated by the contribution of the form factor. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/drawingLMA} \end{center} @@ -79,7 +79,7 @@ DA and LMA separate the contributions of the form factors and of the interferenc %\end{equation*} %where $\curlf$ denotes the Fourier transform and $\curlp$ the Patterson function -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.9\textwidth]{Figures/drawingSSCA} \end{center} @@ -128,7 +128,7 @@ where $\Lambda$ is a damping length used in order to introduce some finite-size Figure~\ref{fig:1dparas_q} shows the evolution of $S(q)$ for different values of $\omega /D$. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.6\textwidth]{Figures/S_q_1Dparacrystal} \end{center} @@ -243,7 +243,7 @@ The particles are placed randomly in the dilute limit and are considered as indi \paragraph{Example} The sample is made of a substrate on which are deposited half-spheres. Script~\ref{lst:nointerf} details the commands necessary to generate such a sample. Figure~\ref{fig:nointerf} shows an example of output intensity: Script~\ref{lst:nointerf} + detector's + input beam's characterizations. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/HSphere_NoInterf} \end{center} @@ -286,7 +286,7 @@ def get_sample(): \subsubsection{\ding{253} \Code{InterferenceFunction1DLattice(lattice\_length, xi)}} where lattice\_length is the lattice constant and $\xi$ the angle in radian between the lattice unit vector and the $\mathbf{x}$-axis of the reference cartesian frame as shown in fig.~\ref{fig:1dgrating}. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.75\textwidth]{Figures/1DGrating} \end{center} @@ -345,7 +345,7 @@ def get_sample(): \item[]\Code{width} is the width parameter of the probability distribution, \item[] \Code{damping\_length} is used to introduce finite size effects by applying a multiplicative coefficient equal to $\exp$(-\Code{peak\_distance/damping\_length}) to the Fourier transform of the probability densities. \Code{damping\_length} is equal to 0 by default and, in this case, no correction is applied. \end{itemize} -%\begin{figure}[h] +%\begin{figure}[ht] %\begin{center} %\includegraphics[width=0.5\textwidth]{Figures/1Dparacrystal} %\end{center} @@ -374,7 +374,7 @@ To illustrate the radial paracrystal interference function, we use the same samp -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/HSphere_1DDL} \end{center} @@ -394,7 +394,7 @@ where ($L_1$, $L_2$, $\alpha$, $\xi$) are shown in figure~\ref{fig:2dlattice} wi \item[] $\xi$ is the angle defining the lattice orientation (set to $0$ by default); it is taken as the angle between the $\mathbf{a}$ vector of the lattice basis and the $\mathbf{x}$ axis of the reference cartesian frame (as shown in figure~\ref{fig:multil3d}). \end{itemize} -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/2Dlattice.eps} \end{center} @@ -433,7 +433,7 @@ Like for the one-dimensional case, a probability distribution function \Code{pdf %\end{lstlisting} -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/HSphere_2Dlattice} \end{center} @@ -466,7 +466,7 @@ where Probability distribution functions have to be defined. As the two-dimensional paracrystal is defined from two independent one-dimensional paracrystals, we need two of these functions, using\\ \Code{setProbabilityDistributions(pdf\_1, pdf\_2)}, with \Code{pdf\_{1,2}} related to each main axis of the paracrystal (see figure~\ref{fig:2dparaschematic}). -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.75\textwidth]{Figures/drawing2Dparacrystal.eps} \end{center} @@ -484,7 +484,7 @@ Probability distribution functions have to be defined. As the two-dimensional pa particle_layout.addInterferenceFunction(interference) \end{lstlisting} -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/HSphere_2DDL} \end{center} @@ -657,7 +657,7 @@ where $q_{\parallel}$ is the component of the scattering beam in the plane of th Figure~\ref{fig:SchemDWBA} illustrates the four scattering processes for a supported particle, taken into account in the DWBA. The first term of eq.~\ref{eq:dwbaair} corresponds to the Born approximation. Each term of $F_{\rm{DWBA}}$ is weighted by a Fresnel coefficient. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/drawingDWBA} \end{center} @@ -745,7 +745,7 @@ r^j_{n,n+1}=\frac{k_{j,z,n}-k_{j,z,n+1}}{k_{j,z,n}-k_{j,z,n+1}}, \qquad t^j_{n,n \end{equation*} where index $n$ is related to the layers, $z$ to the vertical component, and $j$ to the beams (incident and outgoing). -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/drawingDWBAburied} \end{center} @@ -849,7 +849,7 @@ Figure~\ref{fig:FFCoreShellBA} displays the output intensity scattered in the Bo particle = ParticleCoreShell(shell_particle, core_particle, core_position) \end{lstlisting} -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.6\textwidth]{Figures/CoreShellParallPyr} \end{center} diff --git a/Doc/UserManual/UserAPI.tex b/Doc/UserManual/UserAPI.tex index c1eb59a03b54fbb887a9662df6babd7bab029c38..2058608117e8bb07b940fc65b6ec18dddd97ee23 100644 --- a/Doc/UserManual/UserAPI.tex +++ b/Doc/UserManual/UserAPI.tex @@ -19,7 +19,7 @@ intensity = simulation.getIntensityData() @\label{py:UserApi:intensity}@ The \Code{IntensityData} object retrieved in line~\ref{py:UserApi:intensity} corresponds to the two dimensional detector pixel array as shown in Fig.~\ref{fig:UserApi:IntensityData}. -\begin{figure}[h] +\begin{figure}[ht] \centering \includegraphics[clip=, width=120mm]{Figures/UserAPI_IntensityDataLayout.eps} \caption{The axes layout of IntensityData object.} diff --git a/Doc/UserManual/ff.tex b/Doc/UserManual/ff.tex index 5eea9191a2d1ebfda2ec12271a2d80f697a8742d..b58630635a150aa2b0a3c706ac7008b1558f5990 100755 --- a/Doc/UserManual/ff.tex +++ b/Doc/UserManual/ff.tex @@ -69,7 +69,7 @@ where $\sinc(x)=\sin(x)/x$ is the cardinal sine. Figure~\ref{fig:FFBoxEx} shows the normalized intensity $|F|^2/V^2$, computed with $L=20$~nm, $W=16$~nm, and $H=13$~nm: -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffbox} \end{center} @@ -127,7 +127,7 @@ where $\sinc(x)=\sin(x)/x$ is the cardinal sine. \paragraph{Example}\mbox{}\\ Figure~\ref{fig:FFprism3Ex} shows the normalized intensity $|F|^2/V^2$, computed with $L=10$~nm and \mbox{$H=13$~nm.} -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffprism3} \end{center} @@ -205,7 +205,7 @@ Figure~\ref{fig:FFtetrahEx} shows the normalized intensity $|F|^2/V^2$, computed with $L=15$~nm, $H=6$~nm and $\alpha =60 ^{\circ}$. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figfftetrahedron} \end{center} @@ -265,7 +265,7 @@ with $\sinc(x)=\sin(x)/x$. Figure~\ref{fig:FFprism6Ex} shows the normalized intensity $|F|^2/V^2$, computed with $R=5$~nm and \mbox{$H=11$~nm.} -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffprism6} \end{center} @@ -341,7 +341,7 @@ Figure~\ref{fig:FFCone6Ex} shows the normalized intensity $|F|^2/V^2$, computed with $R=10$~nm, $H=13$~nm, and $\alpha=60^{\circ}$. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffcone6} \end{center} @@ -411,7 +411,7 @@ Figure~\ref{fig:FFPyramidEx} shows the normalized intensity $|F|^2/V^2$, computed with $L=18$~nm, $H=13$~nm and $\alpha=60^{\circ}$. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffpyramid} \end{center} @@ -493,7 +493,7 @@ Figure~\ref{fig:FFAnisoPyramidEx} shows the normalized intensity $|F|^2/V^2$, computed with $L=20$~nm, $W=16$~nm, $H=13$~nm, and $\alpha=60^{\circ}$. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffanisopyramid} \end{center} @@ -567,7 +567,7 @@ H)\Big[F_{\rm{Pyramid}}(q_x,q_y, q_z, L, r_H H, \paragraph{Example}\mbox{}\\ Figure~\ref{fig:FFcuboctahEx} shows the normalized intensity $|F|^2/V^2$, computed with $L=20$~nm, $H=13$~nm, $r_H=0.7$, and $\alpha=60^{\circ}$. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffcuboctah} \end{center} @@ -627,7 +627,7 @@ Bessel function of the first kind \cite{AbSt64}. \paragraph{Example}\mbox{}\\ Figure~\ref{fig:FFcylinderEx} shows the normalized intensity $|F|^2/V^2$, computed with $R=8$~nm and \mbox{$H=16$~nm.} -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffcylinder} \end{center} @@ -684,7 +684,7 @@ Bessel function of the first kind \cite{AbSt64}. \paragraph{Example}\mbox{}\\ Figure~\ref{fig:FFellipscylinderEx} shows the normalized intensity $|F|^2/V^2$, computed with $r_a=13$~nm, $r_b=8$~nm, and $H=16$~nm. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffellipscylinder} \end{center} @@ -743,7 +743,7 @@ Bessel function of the first kind \cite{AbSt64}. \paragraph{Example}\mbox{}\\ Figure~\ref{fig:FFConeEx} shows the normalized intensity $|F|^2/V^2$, computed with $R=10$~nm, $H=13$~nm, and $\alpha=60^{\circ}$. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffcone} \end{center} @@ -793,7 +793,7 @@ where $q=\sqrt{q_x^2 + q_y^2 + q_z^2}$. \paragraph{Example}\mbox{}\\ Figure~\ref{fig:FFfSphereEx} shows the normalized intensity $|F|^2/V^2$, computed with $R=8$~nm. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figfffsphere} \end{center} @@ -852,7 +852,7 @@ Bessel function of the first kind \cite{AbSt64}, $q_{\parallel} = \paragraph{Example}\mbox{}\\ Figure~\ref{fig:SphereEx} shows the normalized intensity $|F|^2/V^2$, computed with $R=5$~nm and $H=7$~nm: -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffsphere} \end{center} @@ -915,7 +915,7 @@ $R_z = R\sqrt{1-\frac{4z^2}{H^2}}$, $\gamma_z = \sqrt{(q_x R_z)^2+(q_y R_z)^2}$. \paragraph{Example}\mbox{}\\ Figure~\ref{fig:FFfspheroidEx} shows the normalized intensity $|F|^2/V^2$, computed with $R=10$~nm, and $H=13$~nm. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figfffspheroid} \end{center} @@ -982,7 +982,7 @@ Bessel function of the first kind \cite{AbSt64}, $q_{\parallel}=\sqrt{q_x^2+q_y^ Figure~\ref{fig:FFspheroidEx} shows the normalized intensity $|F|^2/V^2$, computed with $R=7.5$~nm, $H=9$~nm and $f_p=1.2$. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffspheroid} \end{center} @@ -1044,7 +1044,7 @@ Bessel function of the first kind \cite{AbSt64}, $r_{a,z} = r_a \sqrt{1-\left(\d Figure~\ref{fig:FFhemiellipsEx} shows the normalized intensity $|F|^2/V^2$, computed with $r_a=10$~nm, $r_b=6$~nm and $H=8$~nm. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffhemiellips} \end{center} @@ -1103,7 +1103,7 @@ operation of cosine). Figure~\ref{fig:FFripple1Ex} shows the normalized intensity $|F|^2/V^2$, computed with $L=27$~nm, $W=20$~nm and $H=14$~nm. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffripple1} \end{center} @@ -1168,7 +1168,7 @@ dz Figure~\ref{fig:FFripple2Ex} shows the normalized intensity $|F|^2/V^2$, computed with $L=36$~nm, $W=25$~nm, $H=14$~nm, and $d=3$~nm. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=\textwidth]{Figures/figffripple2} \end{center} @@ -1222,7 +1222,7 @@ $|F|^2/V^2$, computed with $L=36$~nm, $W=25$~nm, $H=14$~nm, and $d=3$~nm. %Figure~\ref{fig:SchemDWBA} illustrates the four scattering processes for a supported particle, taken into account in the DWBA. The first term of eq.~\ref{eq:dwbaair} corresponds to the Born approximation. Each term of $F_{\rm{DWBA}}$ is weighted by a Fresnel coefficient. -%\begin{figure}[h] +%\begin{figure}[ht] %\begin{center} %\includegraphics[width=\textwidth]{Figures/drawingDWBA} %\end{center} @@ -1306,7 +1306,7 @@ $|F|^2/V^2$, computed with $L=36$~nm, $W=25$~nm, $H=14$~nm, and $d=3$~nm. %\end{equation*} %where index $n$ is related to the layers, $z$ to the vertical component, and $j$ to the beams (incident and outgoing). -%\begin{figure}[h] +%\begin{figure}[ht] %\begin{center} %\includegraphics[width=\textwidth]{Figures/drawingDWBAburied} %\end{center} @@ -1405,7 +1405,7 @@ $|F|^2/V^2$, computed with $L=36$~nm, $W=25$~nm, $H=14$~nm, and $d=3$~nm. % particle = ParticleCoreShell(shell_particle, core_particle, core_position) %\end{lstlisting} -%\begin{figure}[h] +%\begin{figure}[ht] %\begin{center} %\includegraphics[width=0.6\textwidth]{Figures/CoreShellParallPyr} %\end{center} diff --git a/Doc/UserManual/interferences.tex b/Doc/UserManual/interferences.tex index 5cfe2957946b4ebd300724b734580cb558e5e251..31d6364b995b880e14406e7b53e7ac979d26d6e1 100755 --- a/Doc/UserManual/interferences.tex +++ b/Doc/UserManual/interferences.tex @@ -157,7 +157,7 @@ The particles are placed randomly in the dilute limit and are considered as indi \paragraph{Example} The sample is made of a substrate on which are deposited half-spheres. Script~\ref{lst:nointerf} details the commands necessary to generate it. Figure~\ref{fig:nointerf} shows an example of output intensity: Script~\ref{lst:nointerf} + detector + input beam. The full script UMInterferencesNone.py can be found in /Examples/python/UsrManual. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/HSphere_NoInterf} \end{center} @@ -200,7 +200,7 @@ def get_sample(): \subsubsection{\ding{253} \Code{InterferenceFunction1DLattice(lattice\_parameters)}} \label{paragraph1dlatt} where \Code{lattice\_parameters}=(lattice\_length, $\xi$) with lattice\_length is the lattice constant and $\xi$ the angle in radian between the lattice unit vector and the $\mathbf{x}$-axis of the "GISAS experiment" referential as shown in fig.~\ref{fig:1dgrating}. -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.75\textwidth]{Figures/1DGrating} \end{center} @@ -272,7 +272,7 @@ p(x)=\frac{1}{\omega \sqrt{2\pi}} \exp\left(-\dfrac{(x-D)^2}{\omega^2}\right),\q \end{equation*} where $\omega\equiv$\Code{width}, $D\equiv$ \Code{peak\_distance}, and $q_{\parallel}=\sqrt{\Re^2(q_x) + \Re^2(q_y)}$ (see fig.~\ref{fig:1dpara}). -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/1Dparacrystal} \end{center} @@ -302,7 +302,7 @@ To illustrate the radial paracrystal interference function, we use the same samp particle_layout.addInterferenceFunction(interference) \end{lstlisting} -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/HSphere_1DDL} \end{center} @@ -322,7 +322,7 @@ where \Code{lattice\_parameters} corresponds to ($L_1$, $L_2$, $\alpha$, $\xi$) \item[] $\xi$ is the angle defining the lattice orientation (set to $0$ by default); it is taken as the angle between the $\mathbf{a}$ vector of the lattice basis and the $\mathbf{x}$ axis of the "GISAS experiment" referential (as shown in figure~\ref{fig:multil3d}). \end{itemize} -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/2Dlattice.eps} \end{center} @@ -368,7 +368,7 @@ def get_simulation(): \end{lstlisting} -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/HSphere_2Dlattice} \end{center} @@ -410,7 +410,7 @@ Probability distribution functions have to be defined. As the two-dimensional pa particle_decoration.addInterferenceFunction(interference) \end{lstlisting} -\begin{figure}[h] +\begin{figure}[ht] \begin{center} \includegraphics[width=0.5\textwidth]{Figures/HSphere_2DDL} \end{center}