diff --git a/Doc/FFCatalog/FFCatalog.pdf b/Doc/FFCatalog/FFCatalog.pdf
index 39e9a87bfb2cf72ed632869a9052dd5d70f09ea3..7b7d967a81099ae950ab23254e32cac9c55935de 100644
Binary files a/Doc/FFCatalog/FFCatalog.pdf and b/Doc/FFCatalog/FFCatalog.pdf differ
diff --git a/Doc/FFCatalog/FormFactors.tex b/Doc/FFCatalog/FormFactors.tex
index a61aceb980d6e867e59a6e2f51aab87d092c987d..e08a90bc84d0474b4813c7ef80088c109b8666be 100644
--- a/Doc/FFCatalog/FormFactors.tex
+++ b/Doc/FFCatalog/FormFactors.tex
@@ -408,7 +408,7 @@ except for factors $1/2$ in the definitions of parameters $L$, $W$, $H$.
 \item \ffref{AnisoPyramid} or \ffref{Pyramid}
   if sides are not vertical,
 \item \ffref{TruncatedCube} if $L=W=H$ and corners are facetted,
-\item Sect.~\ref{SElongatedBox} if elongated in one horizontal direction.
+\item Sect.~\ref{SBar} if elongated in one horizontal direction.
 \end{itemize}
 
 %===============================================================================
@@ -1908,26 +1908,55 @@ Different profiles in the $yz$ plane can be chosen:
 box, sinusoidal [\ffref{Ripple1}], saw-tooth [\ffref{Ripple2}].
 
 For each of them, different profiles can also be chosen in the $xz$ plane,
-namely box, Gauss, and Lorentzian,
 each of them characterized by a single parameter \texttt{length},~$L$.
-The corresponding form factor along the elongation axis~$x$ is
+Their transverse form factor,
+\index{Transverse form factor}%
+along the elongation axis~$x$, is
 \begin{equation}\label{EFparallel}
     f_\parallel(q_x) = \left\{\begin{array}{l@{\quad}l}
-    L\sinc(q_x L/2) &\text{box,}\\
-    L\exp(-(q_x L)^2/8) &\text{Gauss,}\\
-    L/(1+(q_x L)^2) &\text{Lorentz.}
+    L\sinc(q_x L/2) &\texttt{box,}\\
+    L\exp(-(q_x L)^2/8) &\texttt{Gauss,}\\
+    L/(1+(q_x L)^2) &\texttt{Lorentz.}
     \end{array}\right.
 \end{equation}
 Constant factors have been chosen so that the forward scattering is the same
 in all three cases, $f_\parallel(0)=L$.
+The form factor is the Fourier transform of a correlation function.
+The \texttt{box} form factor with its characteristic sinc function
+is the Fourier transform of a rectangle function.
+A typical application could be a sample with tiny lateral extension
+that is fully illuminated by a coherent incoming plane wave.
+In most other situations, the correlation function is smooth rather than rectangular.
+The \texttt{length} parameter then stands for a correlation length.
+\index{Correlation length}%
+It is dominated either by a finite extension of the ripple,
+or by the coherence length
+\index{Coherence length}%
+of the scattering setup.
+The \texttt{Gauss} form factor is the Fourier transform of
+a Gaussian
+\index{Gaussian!transverse form factor}
+correlation function;
+the \texttt{Lorentz}
+\index{Lorentzian!transverse form factor}
+ form factor is the Fourier transform of an exponential in~$|x|$.
+
+\paragraph{History}\strut\\
+The \texttt{Box} variant of \E{Ripple1} and \E{Ripple2} replicates
+two form factors from \FitGISAXS\ \cite{Bab13}.
+
+Full documentation and API support for all ripple form factors appeared in BornAgain-1.17.
+Before that release, the \texttt{Lorentz} factor~$f_\parallel$
+had an extra factor of 2.5 in the form factor.
+
 
 %===============================================================================
-\ffsection{Elongated box} \label{SElongatedBox}
+\ffsection{Bar (elongated box)} \label{SBar}
 %===============================================================================
 \index{Box}
 \index{FormFactorBox@\Code{FormFactorBox}}
-\index{FormFactorLongBoxGauss@\Code{FormFactorLongBoxGauss}}
-\index{FormFactorLongBoxLorentz@\Code{FormFactorLongBoxLorentz}}
+\index{FormFactorBarGauss@\Code{FormFactorBarGauss}}
+\index{FormFactorBarLorentz@\Code{FormFactorBarLorentz}}
 
 \paragraph{Real-space geometry}\strut\\
 
@@ -1939,7 +1968,7 @@ in all three cases, $f_\parallel(0)=L$.
 \hfill
 \subfigure[Side view]{\raisebox{2mm}{\includefinal{.3\TW}{fig/cuts/Box2dxz.pdf}}}
 \hfill
-\caption{A rectangular cuboid.}
+\caption{A bar.}
 \end{figure}
 
 \FloatBarrier
@@ -1948,9 +1977,9 @@ in all three cases, $f_\parallel(0)=L$.
 \begin{lstlisting}
   FormFactorBox(
      double length, double width, double height)
-  FormFactorLongBoxGauss(
+  FormFactorBarGauss(
      double length, double width, double height)
-  FormFactorLongBoxLorentz(
+  FormFactorBarLorentz(
      double length, double width, double height)
 \end{lstlisting}
 with the parameters
@@ -1974,7 +2003,6 @@ with $f_\parallel$ as defined in~\cref{EFparallel},
   S = LW.
 \end{equation*}
 
-
 %===============================================================================
 \ffsection{Ripple1 (sinusoidal)} \label{SRipple1}
 %===============================================================================
@@ -2058,9 +2086,9 @@ Agrees with the \E{Ripple1} form factor of \FitGISAXS\ \cite{Bab13}.
 %===============================================================================
 \index{Ripple!saw-tooth}
 \index{Saw-tooth ripple}
-\index{FormFactorRipple2@\Code{FormFactorRipple2}}
-\index{FormFactorLongRipple2Gauss@\Code{FormFactorLongRipple2Gauss}}
-\index{FormFactorLongRipple2Lorentz@\Code{FormFactorLongRipple2Lorentz}}
+\index{FormFactorRipple2@\Code{FormFactorRipple2Box}}
+\index{FormFactorRipple2Gauss@\Code{FormFactorRipple2Gauss}}
+\index{FormFactorRipple2Lorentz@\Code{FormFactorRipple2Lorentz}}
 
 \paragraph{Real-space geometry}\strut\\
 
@@ -2079,12 +2107,12 @@ Agrees with the \E{Ripple1} form factor of \FitGISAXS\ \cite{Bab13}.
 
 \paragraph{Syntax and parameters}\strut\\[-2ex plus .2ex minus .2ex]
 \begin{lstlisting}
-  FormFactorRipple2(
+  FormFactorRipple2Box(
+     double length, double width, double height, asymmetry)
+  FormFactorRipple2Gauss(
+     double length, double width, double height, asymmetry)
+  FormFactorRipple2Lorentz(
      double length, double width, double height, asymmetry)
-  FormFactorLongRipple2Gauss(
-     double length, double width, double height)
-  FormFactorLongRipple2Lorentz(
-     double length, double width, double height)
 \end{lstlisting}
 with the parameters
 \begin{itemize}