diff --git a/auto/Wrap/doxygen_fit.i b/auto/Wrap/doxygen_fit.i index d6ec5c38e8bdb69c5c49a263854bfab034e21063..e0079b8f6e87da1f98ff56efab8622b21db04a76 100644 --- a/auto/Wrap/doxygen_fit.i +++ b/auto/Wrap/doxygen_fit.i @@ -98,6 +98,84 @@ returns true if proposed value is in limits range "; +// File: classBasicMinimizer.xml +%feature("docstring") BasicMinimizer " + +The BasicMinimizer class is a base for all minimizers. + +C++ includes: BasicMinimizer.h +"; + +%feature("docstring") BasicMinimizer::BasicMinimizer "BasicMinimizer::BasicMinimizer(const std::string &minimizerName, const std::string &algorithmName=std::string()) +"; + +%feature("docstring") BasicMinimizer::~BasicMinimizer "BasicMinimizer::~BasicMinimizer() +"; + +%feature("docstring") BasicMinimizer::minimize "void BasicMinimizer::minimize() + +run minimization +"; + +%feature("docstring") BasicMinimizer::minimizerName "std::string BasicMinimizer::minimizerName() const + +Returns name of the minimizer. +"; + +%feature("docstring") BasicMinimizer::algorithmName "std::string BasicMinimizer::algorithmName() const + +Returns name of the minimization algorithm. +"; + +%feature("docstring") BasicMinimizer::setAlgorithmName "void BasicMinimizer::setAlgorithmName(const std::string &algorithmName) + +Sets minimization algorithm. +"; + +%feature("docstring") BasicMinimizer::setParameter "void BasicMinimizer::setParameter(size_t index, const FitParameter *par) + +Sets internal minimizer parameter. +"; + +%feature("docstring") BasicMinimizer::setParameters "void BasicMinimizer::setParameters(const FitSuiteParameters ¶meters) + +Sets internal minimizer parameters using external parameter list. +"; + +%feature("docstring") BasicMinimizer::setChiSquaredFunction "void BasicMinimizer::setChiSquaredFunction(function_chi2_t fun_chi2, size_t nparameters) + +Sets chi squared function to minimize. +"; + +%feature("docstring") BasicMinimizer::setGradientFunction "void BasicMinimizer::setGradientFunction(function_gradient_t fun_gradient, size_t nparameters, size_t ndatasize) + +Sets gradient function to minimize. +"; + +%feature("docstring") BasicMinimizer::isGradientBasedAgorithm "virtual bool BasicMinimizer::isGradientBasedAgorithm() + +Returns true if type of algorithm is Levenberg-Marquardt or similar. +"; + +%feature("docstring") BasicMinimizer::getValueOfVariablesAtMinimum "std::vector< double > BasicMinimizer::getValueOfVariablesAtMinimum() const + +Returns values of parameters at the minimum. +"; + +%feature("docstring") BasicMinimizer::getErrorOfVariables "std::vector< double > BasicMinimizer::getErrorOfVariables() const + +Returns errors of variables at minimum. +"; + +%feature("docstring") BasicMinimizer::printResults "void BasicMinimizer::printResults() const + +Prints fit results. +"; + +%feature("docstring") BasicMinimizer::toResultString "std::string BasicMinimizer::toResultString() const +"; + + // File: classMinimizerLibrary_1_1Catalogue.xml %feature("docstring") MinimizerLibrary::Catalogue ""; @@ -122,6 +200,45 @@ Returns list of algorithm descriptions for given minimizer type. "; +// File: classConfigurable.xml +%feature("docstring") Configurable " + +The Configurable class is a base for storing (int,double,string) options. + +C++ includes: Configurable.h +"; + +%feature("docstring") Configurable::Configurable "Configurable::Configurable() +"; + +%feature("docstring") Configurable::Configurable "Configurable::Configurable(const Configurable &other) + +Returns true if option with such name already exists. +"; + +%feature("docstring") Configurable::addOption "Configurable::option_t Configurable::addOption(const std::string &optionName, T value, const std::string &description=std::string()) +"; + +%feature("docstring") Configurable::option "Configurable::option_t Configurable::option(const std::string &optionName) +"; + +%feature("docstring") Configurable::option "const Configurable::option_t Configurable::option(const std::string &optionName) const +"; + +%feature("docstring") Configurable::optionValue "T Configurable::optionValue(const std::string &optionName) const +"; + +%feature("docstring") Configurable::setOptionValue "void Configurable::setOptionValue(const std::string &optionName, T value) + +Sets the value of option. Option should hold same value type already. +"; + +%feature("docstring") Configurable::toOptionString "std::string Configurable::toOptionString(const std::string &delimeter=\";\") const + +Returns string with all options using given delimeter. +"; + + // File: classFitParameter.xml %feature("docstring") FitParameter " @@ -197,7 +314,7 @@ Clears all defined parameters. Adds fit parameter. "; -%feature("docstring") FitSuiteParameters::getParameters "std::vector<FitParameter*> FitSuiteParameters::getParameters() +%feature("docstring") FitSuiteParameters::getParameters "std::vector<FitParameter*>& FitSuiteParameters::getParameters() Returns all parameters. "; @@ -511,6 +628,46 @@ Returns list of string with description of all available algorithms. "; +// File: classMinimizerOption.xml +%feature("docstring") MinimizerOption " + +The MinimizerOption class is intended to store a single option for minimization algorithm. Int, double, string values are available. Relies on https://github.com/mapbox/variant, will be switched to std::variant in C++-17. + +C++ includes: MinimizerOption.h +"; + +%feature("docstring") MinimizerOption::MinimizerOption "MinimizerOption::MinimizerOption(const std::string &name=std::string()) +"; + +%feature("docstring") MinimizerOption::MinimizerOption "MinimizerOption::MinimizerOption(const std::string &name, const T &t, const std::string &descripion=std::string()) +"; + +%feature("docstring") MinimizerOption::name "std::string MinimizerOption::name() const +"; + +%feature("docstring") MinimizerOption::description "std::string MinimizerOption::description() const +"; + +%feature("docstring") MinimizerOption::setDescription "void MinimizerOption::setDescription(const std::string &description) +"; + +%feature("docstring") MinimizerOption::value "MinimizerOption::variant_t & MinimizerOption::value() +"; + +%feature("docstring") MinimizerOption::defaultValue "MinimizerOption::variant_t & MinimizerOption::defaultValue() +"; + +%feature("docstring") MinimizerOption::get "T MinimizerOption::get() const + +Returns the option's value. +"; + +%feature("docstring") MinimizerOption::getDefault "T MinimizerOption::getDefault() const + +Returns the option's default value (i.e. used during construction) +"; + + // File: classMinimizerOptions.xml %feature("docstring") MinimizerOptions " @@ -619,6 +776,61 @@ set option value "; +// File: classMinuit2Minimizer.xml +%feature("docstring") Minuit2Minimizer " + +The Minuit2Minimizer class is a wrapper for ROOT Minuit2 minimizer See Minuit2 user manual https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.pdf. + +C++ includes: Minuit2Minimizer.h +"; + +%feature("docstring") Minuit2Minimizer::Minuit2Minimizer "Minuit2Minimizer::Minuit2Minimizer() +"; + +%feature("docstring") Minuit2Minimizer::~Minuit2Minimizer "Minuit2Minimizer::~Minuit2Minimizer() +"; + +%feature("docstring") Minuit2Minimizer::setStrategy "void Minuit2Minimizer::setStrategy(int value) + +Sets minimization strategy (0-low, 1-medium, 2-high minimization quality). At low quality number of function calls will be economized. Default value is 1. +"; + +%feature("docstring") Minuit2Minimizer::strategy "int Minuit2Minimizer::strategy() const +"; + +%feature("docstring") Minuit2Minimizer::setErrorDefinition "void Minuit2Minimizer::setErrorDefinition(double value) + +Sets error definition factor for parameter error calculation. If objective function (OF) is the usual chisquare function and if the user wants the usual one-standard-deviation errors, then the error definition should be 1.0. If OF is a negative-log-likelihood function, then 0.5. If OF is a chisquare, but the user wants two-standard-deviation errors, 4.0. Default value is 1.0. +"; + +%feature("docstring") Minuit2Minimizer::errorDefinition "double Minuit2Minimizer::errorDefinition() const + +Sets tolerance on the function value at the minimum. Minimization will stop when the estimated vertical distance to the minimum (EDM) is less than 0.001*tolerance*ErrorDef. Here ErrorDef=1.0 for chi squared fit and ErrorDef=0.5 for negative log likelihood fit. Default value is 0.01. +"; + +%feature("docstring") Minuit2Minimizer::setTolerance "void Minuit2Minimizer::setTolerance(double value) +"; + +%feature("docstring") Minuit2Minimizer::tolerance "double Minuit2Minimizer::tolerance() const + +Sets relative floating point arithmetic precision. Should be adjusted when the user knows that objectiove function value is not calculated to the nominal machine accuracy. Typical values are between 10^-5 and 10^-14. Default value is -1.0 (minimizer specific will be used). +"; + +%feature("docstring") Minuit2Minimizer::setPrecision "void Minuit2Minimizer::setPrecision(double value) +"; + +%feature("docstring") Minuit2Minimizer::precision "double Minuit2Minimizer::precision() const +"; + +%feature("docstring") Minuit2Minimizer::setPrintLevel "void Minuit2Minimizer::setPrintLevel(int value) + +Sets minimizer internal print level. Default value is 0 (silent). +"; + +%feature("docstring") Minuit2Minimizer::printLevel "int Minuit2Minimizer::printLevel() const +"; + + // File: classROOTGeneticMinimizer.xml %feature("docstring") ROOTGeneticMinimizer " @@ -961,6 +1173,9 @@ return minimizer options "; +// File: namespace_0D15.xml + + // File: namespaceAlgorithmNames.xml @@ -1011,6 +1226,18 @@ Returns string right-padded with blanks. // File: AlgorithmNames_8h.xml +// File: BasicMinimizer_8cpp.xml + + +// File: BasicMinimizer_8h.xml + + +// File: Configurable_8cpp.xml + + +// File: Configurable_8h.xml + + // File: IMinimizer_8cpp.xml @@ -1029,12 +1256,24 @@ Returns string right-padded with blanks. // File: MinimizerLibrary_8h.xml +// File: MinimizerOption_8cpp.xml + + +// File: MinimizerOption_8h.xml + + // File: MinimizerOptions_8cpp.xml // File: MinimizerOptions_8h.xml +// File: Minuit2Minimizer_8cpp.xml + + +// File: Minuit2Minimizer_8h.xml + + // File: TrivialMinimizer_8cpp.xml diff --git a/auto/Wrap/libBornAgainFit.py b/auto/Wrap/libBornAgainFit.py index 75e77356966e9c6592ba47a5006cf30c2eaaca1d..cafc13b0db65ba2237cfa6a3b142aeabbf8876e1 100644 --- a/auto/Wrap/libBornAgainFit.py +++ b/auto/Wrap/libBornAgainFit.py @@ -2175,7 +2175,7 @@ class FitSuiteParameters(_object): """ getParameters(FitSuiteParameters self) -> std::vector< FitParameter *,std::allocator< FitParameter * > > & - std::vector<FitParameter*> FitSuiteParameters::getParameters() + std::vector<FitParameter*>& FitSuiteParameters::getParameters() Returns all parameters. diff --git a/auto/Wrap/libBornAgainFit_wrap.cpp b/auto/Wrap/libBornAgainFit_wrap.cpp index 26b7eae82ca4bdadbbede14bac8bd559ec492235..c9e94265072ab21e434176811dc2538e6e208e13 100644 --- a/auto/Wrap/libBornAgainFit_wrap.cpp +++ b/auto/Wrap/libBornAgainFit_wrap.cpp @@ -23476,7 +23476,7 @@ static PyMethodDef SwigMethods[] = { { (char *)"FitSuiteParameters_getParameters", _wrap_FitSuiteParameters_getParameters, METH_VARARGS, (char *)"\n" "FitSuiteParameters_getParameters(FitSuiteParameters self) -> std::vector< FitParameter *,std::allocator< FitParameter * > > &\n" "\n" - "std::vector<FitParameter*> FitSuiteParameters::getParameters()\n" + "std::vector<FitParameter*>& FitSuiteParameters::getParameters()\n" "\n" "Returns all parameters. \n" "\n"