From 5790124cd24cf8e30d3e67f1d50df093f5bacec7 Mon Sep 17 00:00:00 2001
From: Dmitry Yurov <d.yurov@fz-juelich.de>
Date: Wed, 24 Jan 2018 13:45:04 +0100
Subject: [PATCH] Replace R, T coefficients with getIntensityData in
 examples/PyPersistence

Redmine: #1860
---
 .../SpecularSimulation.py                     |  39 ++--
 .../Python/PyPersistence/example_template.py  |   9 +-
 .../PyPersist/SpecularSimulation.ref.int.gz   | Bin 0 -> 3861 bytes
 .../PyPersist/SpecularSimulation.ref.yaml     | 169 ------------------
 4 files changed, 13 insertions(+), 204 deletions(-)
 create mode 100644 Tests/ReferenceData/PyPersist/SpecularSimulation.ref.int.gz
 delete mode 100644 Tests/ReferenceData/PyPersist/SpecularSimulation.ref.yaml

diff --git a/Examples/python/simulation/ex05_BeamAndDetector/SpecularSimulation.py b/Examples/python/simulation/ex05_BeamAndDetector/SpecularSimulation.py
index 753b16af8b3..e9e9e74afb9 100644
--- a/Examples/python/simulation/ex05_BeamAndDetector/SpecularSimulation.py
+++ b/Examples/python/simulation/ex05_BeamAndDetector/SpecularSimulation.py
@@ -1,5 +1,6 @@
 """
-R and T coefficients in multilayer, ba.Specular simulation.
+Basic example of specular simulation with BornAgain.
+
 """
 import numpy
 import bornagain as ba
@@ -60,40 +61,22 @@ def run_simulation():
     simulation = get_simulation()
     simulation.setSample(sample)
     simulation.runSimulation()
-    return simulation
+    return simulation.getIntensityData()
 
 
-def rt_coefficients(simulation):
+def plot(data):
     """
-    Returns refraction/transmission coefficients for all layers
-    """
-    rf = [[abs(c) for c in simulation.getScalarR(i)] for i in range(22)]
-    tf = [[abs(c) for c in simulation.getScalarT(i)] for i in range(22)]
-    return rf, tf
-
-
-def plot(simulation):
-    """
-    Plots results for several selected layers
+    Plots data for several selected layers
     """
     from matplotlib import pyplot as plt
     plt.figure(figsize=(12.80, 10.24))
 
-    alpha_angles = simulation.getAlphaAxis().getBinCenters()
-    rf, tf = rt_coefficients(simulation)
-
-    selected_layers = [0, 1, 20, 21]
-    nplot = 1
-    for layer_index in selected_layers:
-        plt.subplot(2, 2, nplot)
-        plt.ylim(ymax=50.0, ymin=1e-06)
-        plt.xlabel(r'$\alpha_f$ (rad)', fontsize=16)
-        plt.semilogy(alpha_angles, [numpy.abs(coeff) for coeff in rf[layer_index]])
-        plt.semilogy(alpha_angles, [numpy.abs(coeff) for coeff in tf[layer_index]])
-        plt.legend(['|R| layer #'+str(layer_index),
-                    '|T| layer #'+str(layer_index)],
-                   loc='upper right')
-        nplot += 1
+    axis = data.getXaxis().getBinCenters()
+    intensities = data.getArray()
+
+    plt.xlabel(r'$\alpha_f$ (rad)', fontsize=16)
+    plt.semilogy(axis, intensities)
+    plt.legend(['Detector signal'], loc='upper right')
 
     plt.show()
 
diff --git a/Tests/Functional/Python/PyPersistence/example_template.py b/Tests/Functional/Python/PyPersistence/example_template.py
index 7217af2bd39..dca78a4d069 100644
--- a/Tests/Functional/Python/PyPersistence/example_template.py
+++ b/Tests/Functional/Python/PyPersistence/example_template.py
@@ -94,13 +94,8 @@ def run_simulation():
 
 def save(data, filename):
 
-    if "SpecularSimulation" == example_name:
-        filename += ".ref"
-        R, T = example.rt_coefficients(data)
-        ba.yamlDump(filename, { "coeff_R": ba.FlowSeq(R[0]), "coeff_T": ba.FlowSeq(T[0])})
-    else:
-        filename += ".ref.int.gz"
-        ba.IntensityDataIOFactory.writeIntensityData(data, filename)
+    filename += ".ref.int.gz"
+    ba.IntensityDataIOFactory.writeIntensityData(data, filename)
 
     print("example_template.py -> Writing results in '{0}'".format(filename))
 
diff --git a/Tests/ReferenceData/PyPersist/SpecularSimulation.ref.int.gz b/Tests/ReferenceData/PyPersist/SpecularSimulation.ref.int.gz
new file mode 100644
index 0000000000000000000000000000000000000000..8a27aa0b48ff9f7553667dfb0c58ad53a31a3866
GIT binary patch
literal 3861
zcmV+w59;tAiwFP!00000|LvO3$|cE-#rO3Tg}s?!>`O#Q5sFya42F4(1{XtZ%3!y_
z^Y-&QnK!T0Z{S5WO*I`~ev$ffbabSw-+%q{-~RsNPyhSN_a9&X=f|(#e*EM6umAV;
zzkm7lmoHzw{Qm1N|N8!qKejJ_`TnnOfBp0KAAjP1|KoT6{M{eE&es0$RsX)4`DttJ
z+3f7S=IQ^b-~6kt=&x4(`SxF}edV8@r$0}Bp8h=jdHVD8-|uw4_8h%88*TOV?T@YN
z)L-+=-Gdf)c08y3HKNb6w)M6@&+eD^vwW|$M;uOvPRGk<^WEn-ZQJv#y+$9lWAxyC
z&*^xD&Cct#EGciB-mJ9|);v!)CuY&ZhHfyOp4Vxk^Ml!2#A5?*v(?U?)0fZZhWTm(
z3zqe0?L4RJ)yIiBc+%F$)0n%B*5vTVvUs&P<6zqA=|#NyI%dmk&r_fEcKX~KUsm3`
zCP5%<&TG@MWA1CXjqN9M5j<vXpG7`0lHFq291A&O8677<AwQ5P<=M68nzIjn{6vTN
zwuxK(!1l<P#cq3dA2HW@PO*%%uOP=~_;b2mt&cv*<#yZ8sVm1mOc8U>x1DpsNyZq%
zp3`_aksQ;=^A%sa5p{-<%6(+_b9!ao2ex6Z7o2fzi$VH#J?)3Y#UwbzhP75BOVjN1
zv;l}uV7+$ue%@x}Vyxw{`@ZmCZ<I7Y3t+B(z3pvT7ou9sh<5UAz6=xAI`_TrQ&Jp#
z#P<8%aeEw2miulb&z^f7wJGe5!GAw*!?)eS0k)Zqe0KT<WtesBJg4|Z(h0lIbw0iw
z>dk<kim1(uI;o*34pyH}F6N7}K;|xR>ZjPitu{A!$WvuVg}vh(?-@xaFcWj#&dPiD
zI8?Tcb8KaNvDd&F&`vynGvENZY#ToF-r!+UX_#D5GENtC25HJuBd`R`0gt5@a}$_m
zn_nnV=hb3Ed~PT0_0Fjiux62`%mWS|>JLxLC`+iX55f_}vO~4vFeJJQb{6$|xYc)w
zWNhK4P5vz&ld-<+;72PNYE%!`TFu3Txd_@4;xjsvx8a0$K-HsUh*|{?AjmCkpdtVy
zXxn4tDTUhIM69h~5`-Dl3ncbVL{V&gZ}@xkmN!fiJn^iVeHeyZU>O*hhiE1nF?o$a
zF5s%lFc<9rv^&S|)45>=qXt%ZIUN!7H|Lsiicj7q{b6Kn5?@!x>!*RM!X*?Cl_5fE
zg-fW_*3X=?eQcnc@|y!M0y8qc>u@EghEYCoINY$w8;ywnaO&?kobHG2Yj=nAcWpvL
zwA~3KwdWK>xhRq+A>4v$W>ZxmEufszL%@Ec6RyHsP}2-XS)3S|H&fG_YA;vR-<FZh
zIMjCB9p`NWrDH1~lQBP*fitQYK(uMT^I3W!oH5nlN(GQ`oC~r!d!AAxa5yt|t4y#r
z7t=6EafumNI8L<*@z1G&)QM-Hax7tezP$h;T(Kz4nf5L<mqk}5`x$k#0KuIev1gv@
z<(!dE+vNtj9!z5TQL$_QDOxAOrj<y-hoZi5SK++zK(U;Cb^41Z=essd2&O^pQQn4D
zve8jop4eF^CQ9&3L`8h!pt`^$I-cznnTvy`;Bu{A?VV5-O+eY~j}4AxOJs<9ms)v8
zvQHTcZJqRu%7WuIJiFG#8t>D<C@cd)nKu|5;-hbqrsxIL0F_=gfcDO3yV{Ce_6ra5
zjo+A^o&(?d$y3^8Q{RSySNg`KU6n;G_PiH?&`4Vwx3YP#1DQe?1Zc0cOsJ!ak+n1O
zS$aRXX%d9~*sv5|VyPHiEVtg+fhWNPjxVp6L=upl-Ycr<SV&K>S1OAP>HYkAyEX0G
zGI}?velCJ+CG)^BhD~9<WE0MVQ6Y#+pRF5FlGSuFY1qg}`bD+S-*4*;nN6|aT=zVM
zQy1z1vg{)*L+)>*m+^-seob^1Al}{cZA0ChpaXf!3V;wPEfCnRsK1}>>K|i>+Y1}T
z#Q{SgDOiV%wYLK%^W-Taj6gDW+?wmL40r%*{>Un%vTVks=e&(4X54TtQNAUG@>zpO
zh~jiweX%zbMcT#c#RhQ+@}61AioNgyz7m^bBQ3i|9#>1gI?i=(FuyrOcYx5Dk7dGS
zL(eX{_jT{*R4y#^;P_a!Rr8puacEoG%hbYjBSNuHjt{+X0X0U6);_tAMifsEDr=Pt
zfoP{~f{1l8I-RDC9jJ=Sw|FB8JOWb8NUqjAH0VT2vZ57xHAVm@TEWayTA->BX}>*h
zV009mBvlK};%Y2FCHgGSav|fCQ0$Lo$^||!s{z1WFbSFwESiyL`lfD2L)BQdGefjX
zexGU?UVNjj)K=(PUb+)X4&uZ(+l6TnsML4xqf3##vk4tS>g4Ip(7K;x+&r+PZZ8bJ
zm0tQ2q-G_)R3G9Tqg#ms4VMXLGciQ90jDs{=AF04HyS2U9F*J6y5LnvAj;78%u^J+
zI{ndzk&$HdUy@7f=E=uiB1ncLO<Fls8#&i2XSo5QCwDZt-ZRIx5D<p;v|cb7==H-N
z%p;#V#$)CtDHht($VgIX(qRkLR_xsxa(s*QJuTz^7%oDxws^r@0dJChvYe5GN2Z1u
zn!rx{!qG&+qTO7w9_Ct?UGK@~i7!2m_~JxsB||g{3XZnZt7TF)YWBWY<`^*Z6v|@Q
zDVc|60g6dirpHVMqEtFd?2KfGIVU9!*h?;GL5q=UjJu;hUNAes%M+07g1&>EU_e;Y
z3r||p>wtCiqCFWS21=D#;y0QAm^;x$8Js*lDuK~15SLy^e-!=>WSysgyv?I2-FtnO
z>2XUT);@n`KvPi6nnlCVF=<b*SvxcB6`RpTHZ88`b$1#b<YhbAK3*YVjf`IRK59Pq
z4zVQI^N}cl{}BLvYkW#3aAX`056yw8H8$vlF#?mL<N~3yHGsA3S=f8Ds~8g9>sw(X
z7z%cYQ`MD7uTM>dnR)dK6%}O_tyT1C7H5v#{y{a_bQC515S;DeMMx|``H0%*G(aC*
zxEtg5E}fSSNfZ!mt=Arlr$>{tS+$H|M%o&Q^{HbzIua2B{LON2%cuuxP&25Px0yyS
z?bLkEe0EB`@IujQa*4UF-C~GHFJh`tq&2K%h7e)_e${_JZ&MdBxRW2;edryXi#Ij>
zx8Bk+7na1cD|-MQYcF_7%8VrTIwem9BCbABhf}rR#5QJ$NE;wc)HBgJ;dx39Pz8vl
zk-Y9OI0i8O_gf7<Ii9L-xP3?Q7(RvKaIE{v9@`ZMm>CgcB^P>=Qeord+a#B?GNE#J
zMtv}{XqE<qk<X%4v{leV)iaV!P|()so(`TIZwV$ac<(*mc@y{=8m8UT*V|rle5AUp
z_Yz;cWxQ#jeL>ow?eR6ww_Q%5Uv1b287Vm?+DpuV>M59nb|gWdKDV@2yX_{=+URNT
z#D18BIX%@CD1jIVJNd5}B374zVLm8$0I1P4GOs!vxE6^3h@RX^)V0keM61ujMu&c*
z=?y|G*=%%uqiAg<8*OGB2DNL8(o1|@<kEq|$eJf+2%QtM?wpJRvV^BX`=Fxmv;@}$
zHd3vSc|;VLMjEZsA(4o@UDD_`iV2WjEB@uBZ$gGl^XT%uOW&lQYi=3z&%%9x{EVv%
zBl5IsBMe7jNK4CP*wDOZ<74j-c2Lw?GNkYsnwH)+i03TYlaU8JBjmbQ4FjKRX|C-?
zMzSHHfjY!B+7tEp(l%<}OF+w9$X&)rD5Xc<%Z2A!eOeR-AKEA{u5l}Dzcmbz=YIFt
zcixVMUD_K?pTq;x_30Y*Mk{!btMsDLZq4<c8Ho0^$tP`}(;!2kxu>67DLfU6KIBfd
z|EfzA845<En5R-7O-pmn$^ED{87qNGtp41K8XS~_q*TP`ZP&C2ZAouj+nIgeyVb8W
zo%UnpS>8td&?qkz^h_PgF1?K}rFRn)jM5~L>gv#2kYGbpnH)8R9dJh!2ylsmiqf?U
zZ^a8zhE$$vFa5E1yck<1v(wb)j<nZYGde$+>*K|y=CJ|+P8oTgu4@^kjo206w`D<b
z(}O0gW|_^Q&k+P;?K$(5W=g?9YJRD!eS6%r!oa_N?`-z%h3JVfU#s_4;!Dq_?hmvx
z6D6oNtpiZZiFGV9i5m5>Q!GRLNJ>T9ZI(DNZgwbjonslZCVvS6BBE#JHAHJ&tgY5_
z15Ciojerr6_q1VY5v0$K7E!W!t#PzVnk8?lz$KXMGryH?%9uv)UH6Rh&V^|$w<T|`
zdOLR<TsuUVbDS&3Z!d6yM4%8OGvwO9xg0^}MV_kPNRNvB(lSbiM!Gdgls=E6*U-D8
z&i?QgieK}|@wCAZb6TvR!XqPzTH;zbb*`uxf}SKi?Gzh$35t@^KKV8{itainW^`1U
z@{z4WYu0n`Djr7U*Y&{$QZCtK0@eD0aI}xT!9>+1Ri@ul-Gc{B<JhL9Sh06qyJme5
zTji9{&}O$paA7$Joso=|-dkpq1{t6lRQbm;eT@n+sy?mRljEWJ4Mb`aJy!9;v<<V+
z7A)U(eX|-0Mn8Evn|c5_j#*A=Dc8pqZI>%^X)~@*RJ~+K%Urd88t=)9MZIh-q%f^L
z_7ZiT(W*Br@o>#fN8cn!-7YqOlB4O%tDZbsB=YR?tQIMzBTd5eZ#(gehP%p;-#GcU
zBVj(Z3G62$sm~YM#`<c%WutWs9^+!#_YD$<@{i~j%YY1=5ul>lYZpXX=<hmIrltG4
z)~9{uz3uue(xq8G*@Wd#qeOR~`)?VX+cyHHshd)=f?t`clGB`AG}mx_@Ye8NvT2%4
zm3~j8f<EorwFQq>u&%!v0wwBuRPA~o301wcA<szmaeXO4zm7;R`1PykDW&4Ey6dC_
zS8JtW^*2eDrtW)R9d|A+x71$7HFxhj4&2yG?d@jIeS0xPz%U<nN1~6+Gv>v$U3pI7
zl8$HB-*WMtH|XP}dXT=MmH0xj5?692EmLKWt8IEqkD+Q>KWG@%GLo=z(6^M1PaI5>
z&$;%{_pa@{^CqI@VR)*i$3O(dM7<Q0Y<=aTED5eBM`7>K)*QI|IGJN<>U)2jzR`!4
XR%QC08J}wT^5y>lmIeRzSStVkRxO_i

literal 0
HcmV?d00001

diff --git a/Tests/ReferenceData/PyPersist/SpecularSimulation.ref.yaml b/Tests/ReferenceData/PyPersist/SpecularSimulation.ref.yaml
deleted file mode 100644
index 621dd1a93ba..00000000000
--- a/Tests/ReferenceData/PyPersist/SpecularSimulation.ref.yaml
+++ /dev/null
@@ -1,169 +0,0 @@
-coeff_R: [0.9999999999999999, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9999999999999999,
-    0.9999999999999999, 0.9999999999999999, 1.0, 0.9999999999999999, 1.0,
-    1.0, 0.9999999999999999, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9999999999999999,
-    0.9999999999999999, 0.9999999999999999, 1.0, 1.0, 1.0, 1.0, 0.9999999999999999,
-    0.9999999999999999, 0.9999999999999999, 1.0, 1.0, 1.0, 0.9999999999999999,
-    1.0, 0.9999999999999999, 0.9999999999999999, 0.9999999999999999, 0.9999999999999999,
-    0.9999999999999999, 1.0, 0.9999999999999999, 1.0, 1.0000000000000004,
-    0.9999999999999999, 0.9999999999999999, 0.9999999999999998, 1.0000000000000002,
-    1.0, 1.0, 1.0, 0.9999999999999999, 1.0000000000000002, 1.0, 0.9999999999999998,
-    0.9999999999999996, 1.0, 0.9999999999999994, 1.0000000000000004, 0.9999999999999999,
-    0.9999999999999999, 1.0, 1.0000000000000024, 1.0000000000000002, 1.0000000000000004,
-    1.0000000000000002, 1.0000000000000022, 1.0000000000000009, 1.0, 0.9999999999999977,
-    0.9999999999999998, 0.9999999999999992, 1.0000000000000002, 1.0000000000000018,
-    1.0000000000000004, 1.0000000000000022, 0.9408565417010387, 0.6779246262665817,
-    0.3565945640479917, 0.29016630866245147, 0.4950233862236306, 0.566779253078876,
-    0.5229896540190951, 0.3541228638910584, 0.0424291611668904, 0.31467602786162446,
-    0.5688671685591417, 0.709135129365976, 0.7829273570620663, 0.822071773682782,
-    0.8413853460874068, 0.8467193359425769, 0.839101655583846, 0.8159178662175125,
-    0.7703546217716095, 0.6902485709364599, 0.5601459871375287, 0.3762947680456477,
-    0.17800464916443712, 0.1097764348748101, 0.19444488750199332, 0.24488502749094393,
-    0.24519689493216745, 0.20524188378701702, 0.14141251190129817, 0.08648251443534473,
-    0.09446296571506048, 0.13418005864598076, 0.15803187087051535, 0.1555571518971163,
-    0.12907427913378394, 0.08937314847731229, 0.06271096221444816, 0.07813425974682069,
-    0.10624127059240905, 0.12095568071601928, 0.11596175166241751, 0.09352882876296996,
-    0.06352594918892582, 0.04980708878595142, 0.06744322193474049, 0.08916992175446792,
-    0.09865962381696682, 0.09231640137640916, 0.07278502327367302, 0.04926901530321998,
-    0.042446682790773516, 0.058955499611115056, 0.07634967799497462, 0.08337505428100014,
-    0.07766935034648205, 0.06160481586665975, 0.0427681997823785, 0.037386824435663275,
-    0.05083857178543372, 0.0660318574334288, 0.07355409373404512, 0.07095409181177696,
-    0.05938699453732988, 0.04350509507124278, 0.03417249630168732, 0.04226933944427592,
-    0.058061725313668426, 0.07073212098438361, 0.07585022522092454, 0.07184736700963196,
-    0.05904253846628345, 0.04085106462286927, 0.03255984276535216, 0.05427068947312547,
-    0.08953317111668596, 0.1264774960352903, 0.16006540723449242, 0.18708891447806203,
-    0.2054633078587263, 0.21409866607884015, 0.21278417098702662, 0.20204962846408725,
-    0.18302702505784998, 0.15731888481329945, 0.12687403026251265, 0.09388995397741265,
-    0.06081956652805102, 0.030996826663068616, 0.016098135243581328, 0.029186693982823555,
-    0.043001957167575655, 0.050039193397295664, 0.04943058834936512, 0.04181595371447966,
-    0.028948584827687904, 0.014201401328965066, 0.010878267956113928, 0.022671415274191045,
-    0.0322581236789725, 0.03626105055912253, 0.03403232119706857, 0.02623736369520121,
-    0.014734116917061798, 0.005536603721837519, 0.014279002982612338, 0.023832848461563815,
-    0.02904534480391738, 0.028926553193801028, 0.023690584911620172, 0.014577334670989754,
-    0.00455525333238069, 0.00957182548367653, 0.018534501773255625, 0.02404645883992693,
-    0.025015474293477113, 0.02141371969991941, 0.014113716612383512, 0.005001731437462994,
-    0.00645492907639501, 0.014677562774181394, 0.020172714583371717, 0.02180398931765262,
-    0.019389458099625785, 0.013542104052502684, 0.005646230762606025, 0.004213214006965864,
-    0.011636230597258315, 0.0169858752762739, 0.01906326651684945, 0.017576764406415615,
-    0.012939644206051594, 0.006223004975897401, 0.002644053167834545, 0.009135268182141347,
-    0.014272801656098656, 0.01666493557818406, 0.015934917510437685, 0.012336938685885838,
-    0.006718238124976238, 0.0020309651123403675, 0.00707275276631176, 0.011925401141023329,
-    0.014528477261618686, 0.01443154998332441, 0.01178064929603868, 0.007339153330898732,
-    0.0035119434698231006, 0.006256391660687734, 0.010489672402097062, 0.013089141395091706,
-    0.013372916744894284, 0.011305570214604193, 0.00734175101824913, 0.002497147633281148,
-    0.003605107327609267, 0.007966613681042034, 0.010859270489398004, 0.011693863563582615,
-    0.010369147240403206, 0.0071925411430207266, 0.0028025106429405058,
-    0.001967406336992195, 0.006225996024273826, 0.0092205928063671, 0.010445604708842225,
-    0.009734743217467161, 0.007279327090509078, 0.003586685884585773, 0.0007858936111734445,
-    0.004682775708025566, 0.007702468872757423, 0.009246544418535764, 0.009078865035886428,
-    0.007283332709593935, 0.004241327778791796, 0.0007337553463310687, 0.003275900171964574,
-    0.006274043418557946, 0.008083841012085624, 0.008404296231837204, 0.007222034699547594,
-    0.004799648827142696, 0.0016766695370908928, 0.001998227487383236, 0.004909091785423252,
-    0.006940464238264457, 0.007710042638277124, 0.0071135468437895045, 0.0052996851187898835,
-    0.002660662911020086, 0.0010022263329134687, 0.0035765188353526238,
-    0.005789350469902469, 0.006990626705796656, 0.006982420634189041, 0.005798739824057736,
-    0.0036956917218725974, 0.0013170031682163868, 0.0022542879119939524,
-    0.004577071512073244, 0.006229104981660025, 0.0068743303351718665, 0.006417743623113324,
-    0.004963446219712292, 0.002835227745765376, 0.0013365623865892933, 0.0031808138123755984,
-    0.005368932026123951, 0.006913790508459414, 0.007528688150826315, 0.007101842745718039,
-    0.005668829014336457, 0.003452177378241945, 0.001748329494966821, 0.004135495799524318,
-    0.0077447570565817225, 0.011407700512013908, 0.014792855665448155, 0.017667886483672762,
-    0.019851931902331553, 0.02121341907716779, 0.021675006981870165, 0.02121939720536862,
-    0.019892694396820725, 0.017802876405500847, 0.015112348881492595, 0.012025597090528764,
-    0.00877591695266575, 0.005623849274600093, 0.002940839877602992, 0.0018699403260618566,
-    0.002982593849807001, 0.004158472862792042, 0.004788556375167741, 0.00480401222724206,
-    0.004263701540076923, 0.0033083365800655436, 0.002186753543005678, 0.0014634438590180802,
-    0.0018642514124279526, 0.00268633356846865, 0.003280118944515718, 0.003450783024669211,
-    0.0031654639332695184, 0.0024980249097795305, 0.0016503447916849771,
-    0.0011537124678423906, 0.0016004501849116984, 0.002311121989181141,
-    0.002785050839523391, 0.002872062342974523, 0.0025561225993081835, 0.0019230084864632106,
-    0.00120574965835962, 0.0010260102965565278, 0.0015940978280011967, 0.00219134777894272,
-    0.0025124194414894692, 0.002471621160146797, 0.0020862011651358358,
-    0.0014696874381546667, 0.0009264648236250279, 0.0010717944954017247,
-    0.0016466934488025622, 0.002112928715548162, 0.0022964608943887594,
-    0.002156993488398028, 0.001737562602073972, 0.0011776571978153062, 0.0008463924362155109,
-    0.0011584216214787764, 0.0016766526398598286, 0.002049438845901319,
-    0.0021637832888587623, 0.0019994070077923812, 0.0016035321243562794,
-    0.0011117557730997787, 0.0008703782901550062, 0.0011959669899768177,
-    0.0017161608821750845, 0.0021367515690047753, 0.0023441683852936006,
-    0.002291772596954233, 0.0019761027708480035, 0.0014478728927661015,
-    0.0009364924962602788, 0.001186685048057057, 0.0021478821128728507,
-    0.003295880385730381, 0.004446924817479876, 0.0054961304185437, 0.006361225387196148,
-    0.006978130166201805, 0.0073038938203459705, 0.007319408869867805, 0.007029885996854746,
-    0.006462731889410449, 0.0056634156834210825, 0.004690482757227476, 0.0036111290427723935,
-    0.0024992251609532645, 0.0014427899639398469, 0.000636786050712481,
-    0.0007617928514651058, 0.0012986198078025204, 0.0016735992600913463,
-    0.001808785789539039, 0.0017009870698042793, 0.0013825449966381458,
-    0.0009186901877786812, 0.0004431174472139424, 0.00045205463350288857,
-    0.0008566078110423783, 0.0011762278898839011, 0.001314840518041836,
-    0.0012502029812938278, 0.0009998612136572355, 0.0006182125940789534,
-    0.00024970610743638627, 0.00043362340368037077, 0.0007913950706282701,
-    0.0010310609427996418, 0.0010992922792739273, 0.0009874640550079845,
-    0.0007211711266247433, 0.00036187494765472, 0.00018981932361145952,
-    0.0005130880579925428, 0.0007964530280916289, 0.0009437957786960048,
-    0.0009294913369572025, 0.0007604112276467671, 0.000472987593585227,
-    0.0001553212398706429, 0.00030020792930773497, 0.0005951331756968676,
-    0.0007902848914205074, 0.0008467008138967087, 0.0007575109333529662,
-    0.0005431294386060065, 0.00025150965025208326, 0.000143323021401702,
-    0.0004211068401939965, 0.0006427852692463761, 0.0007502451319653624,
-    0.0007261095257363718, 0.0005783483955968746, 0.000338561636351721,
-    9.161794713007469e-05, 0.000272365141729739, 0.0005041464574618461,
-    0.0006471068926458328, 0.0006751532104791998, 0.0005862215313766886,
-    0.0004001971837396823, 0.00016162787348393345, 0.00015228540152545145,
-    0.0003770369627194464, 0.0005422658665630483, 0.0006109627554877342,
-    0.0005729598571465208, 0.0004390020227139358, 0.00024196762124756592,
-    0.0001094386046468184, 0.0002767907938244746, 0.0004483207807944217,
-    0.0005444874419090104, 0.0005457009423056754, 0.0004529316027735693,
-    0.0002843009326565993, 7.097229588313396e-05, 0.00014879126738239206,
-    0.00033655005166861515, 0.00046045328451630943, 0.0005006409468630141,
-    0.0004524247645159329, 0.00032679771480489896, 0.00014889034883596054,
-    6.244862098148783e-05, 0.00024217760460856308, 0.0003803821289148719,
-    0.0004493433078890164, 0.0004385585065245861, 0.0003520808960221492,
-    0.00020763364138160642, 4.4580545230163125e-05, 0.00015510907467343858,
-    0.00030021143866068724, 0.00039130422718595313, 0.00041280040091381566,
-    0.0003626601811989869, 0.00025179485456050684, 0.00010401865921629951,
-    7.878172242998964e-05, 0.00022147810347597442, 0.00032848323540310594,
-    0.0003773945489833399, 0.00036078734241467675, 0.0002833168222980796,
-    0.00016114810216701122, 4.268427776018511e-05, 0.00014564839198998996,
-    0.0002621432516036843, 0.00033387920360575306, 0.00034819079673899386,
-    0.0003039069306919397, 0.0002106189833953983, 9.06265650676821e-05,
-    7.738117197684062e-05, 0.00019279798978847837, 0.0002828819408971379,
-    0.00032607475173489437, 0.00031546509467198, 0.0002542160300655819,
-    0.00015552249247151691, 5.8863601436524615e-05, 0.00012106041687072091,
-    0.00022335017475963686, 0.0002946252048874586, 0.0003204890677432467,
-    0.00029711225965573044, 0.00022952519903224352]
-coeff_T: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
-    1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
-- 
GitLab