From 55a61d6ac51b068f115b2279a3a02df9e8dda67e Mon Sep 17 00:00:00 2001
From: "Joachim Wuttke (h)" <j.wuttke@fz-juelich.de>
Date: Sat, 8 Aug 2020 10:15:01 +0200
Subject: [PATCH] sort %include's in libBornAgainCore by directories

---
 Wrap/swig/libBornAgainCore.i        |    417 +-
 auto/Wrap/libBornAgainCore.py       |  22253 +++--
 auto/Wrap/libBornAgainCore_wrap.cpp | 112128 +++++++++++++------------
 auto/Wrap/libBornAgainCore_wrap.h   |    194 +-
 4 files changed, 67505 insertions(+), 67487 deletions(-)

diff --git a/Wrap/swig/libBornAgainCore.i b/Wrap/swig/libBornAgainCore.i
index df091a8c7a7..d61fd07d360 100644
--- a/Wrap/swig/libBornAgainCore.i
+++ b/Wrap/swig/libBornAgainCore.i
@@ -73,52 +73,62 @@
 %import "Wrap/WinDllMacros.h"
 
 %{
-#include "Core/Instrument/AngularSpecScan.h"
 #include "BAVersion.h"
-#include "Core/Vector/BasicVector3D.h"
-#include "Core/Beam/Beam.h"
-#include "Core/Binning/Bin.h"
-#include "Core/Instrument/ChiSquaredModule.h"
-#include "Core/Basics/Complex.h"
-#include "Core/Computation/ConstantBackground.h"
-#include "Core/Binning/ConstKBinAxis.h"
-#include "Core/Particle/Crystal.h"
-#include "Core/Binning/CustomBinAxis.h"
-#include "Core/Simulation/DepthProbeSimulation.h"
-#include "Core/Instrument/DetectorMask.h"
-#include "Core/Parametrization/Distributions.h"
-#include "Core/Mask/Ellipse.h"
 #include "Core/Aggregate/FTDecayFunctions.h"
 #include "Core/Aggregate/FTDistributions1D.h"
 #include "Core/Aggregate/FTDistributions2D.h"
-#include "Fit/Kernel/FitOptions.h"
-#include "Core/Fitting/PyFittingCallbacks.h"
-#include "Core/Fitting/FitObjective.h"
-#include "Core/Binning/FixedBinAxis.h"
+#include "Core/Aggregate/IInterferenceFunction.h"
+#include "Core/Aggregate/ILayout.h"
+#include "Core/Aggregate/IPeakShape.h"
+#include "Core/Aggregate/InterferenceFunction1DLattice.h"
+#include "Core/Aggregate/InterferenceFunction2DLattice.h"
+#include "Core/Aggregate/InterferenceFunction2DParaCrystal.h"
+#include "Core/Aggregate/InterferenceFunction2DSuperLattice.h"
+#include "Core/Aggregate/InterferenceFunction3DLattice.h"
+#include "Core/Aggregate/InterferenceFunctionFinite2DLattice.h"
+#include "Core/Aggregate/InterferenceFunctionFinite3DLattice.h"
+#include "Core/Aggregate/InterferenceFunctionHardDisk.h"
+#include "Core/Aggregate/InterferenceFunctionNone.h"
+#include "Core/Aggregate/InterferenceFunctionRadialParaCrystal.h"
+#include "Core/Aggregate/InterferenceFunctionTwin.h"
+#include "Core/Aggregate/ParticleLayout.h"
+#include "Core/Basics/Complex.h"
+#include "Core/Basics/ICloneable.h"
+#include "Core/Basics/ISingleton.h"
+#include "Core/Beam/Beam.h"
 #include "Core/Beam/FootprintGauss.h"
 #include "Core/Beam/FootprintSquare.h"
+#include "Core/Binning/Bin.h"
+#include "Core/Binning/ConstKBinAxis.h"
+#include "Core/Binning/CustomBinAxis.h"
+#include "Core/Binning/FixedBinAxis.h"
+#include "Core/Binning/VariableBinAxis.h"
+#include "Core/Computation/ConstantBackground.h"
+#include "Core/Computation/IBackground.h"
+#include "Core/Computation/PoissonNoiseBackground.h"
+#include "Core/DecoratedFormFactor/IFormFactorDecorator.h"
+#include "Core/Fitting/FitObjective.h"
+#include "Core/Fitting/IObserver.h"
+#include "Core/Fitting/IterationInfo.h"
+#include "Core/Fitting/PyFittingCallbacks.h"
 #include "Core/HardParticle/FormFactorAnisoPyramid.h"
 #include "Core/HardParticle/FormFactorBar.h"
 #include "Core/HardParticle/FormFactorBox.h"
 #include "Core/HardParticle/FormFactorCantellatedCube.h"
 #include "Core/HardParticle/FormFactorCone.h"
 #include "Core/HardParticle/FormFactorCone6.h"
-#include "Core/Particle/FormFactorCrystal.h"
 #include "Core/HardParticle/FormFactorCuboctahedron.h"
 #include "Core/HardParticle/FormFactorCylinder.h"
-#include "Core/SoftParticle/FormFactorDebyeBueche.h"
 #include "Core/HardParticle/FormFactorDodecahedron.h"
 #include "Core/HardParticle/FormFactorDot.h"
 #include "Core/HardParticle/FormFactorEllipsoidalCylinder.h"
 #include "Core/HardParticle/FormFactorFullSphere.h"
 #include "Core/HardParticle/FormFactorFullSpheroid.h"
-#include "Core/SoftParticle/FormFactorGauss.h"
 #include "Core/HardParticle/FormFactorHemiEllipsoid.h"
+#include "Core/HardParticle/FormFactorHollowSphere.h"
 #include "Core/HardParticle/FormFactorIcosahedron.h"
 #include "Core/HardParticle/FormFactorLongBoxGauss.h"
 #include "Core/HardParticle/FormFactorLongBoxLorentz.h"
-#include "Core/SoftParticle/FormFactorLorentz.h"
-#include "Core/SoftParticle/FormFactorOrnsteinZernike.h"
 #include "Core/HardParticle/FormFactorPolyhedron.h"
 #include "Core/HardParticle/FormFactorPolyhedron.h"
 #include "Core/HardParticle/FormFactorPrism3.h"
@@ -126,111 +136,101 @@
 #include "Core/HardParticle/FormFactorPyramid.h"
 #include "Core/HardParticle/FormFactorRipple1.h"
 #include "Core/HardParticle/FormFactorRipple2.h"
-#include "Core/SoftParticle/FormFactorSphereGaussianRadius.h"
-#include "Core/SoftParticle/FormFactorSphereLogNormalRadius.h"
-#include "Core/HardParticle/FormFactorHollowSphere.h"
 #include "Core/HardParticle/FormFactorTetrahedron.h"
 #include "Core/HardParticle/FormFactorTruncatedCube.h"
 #include "Core/HardParticle/FormFactorTruncatedSphere.h"
 #include "Core/HardParticle/FormFactorTruncatedSpheroid.h"
-#include "Core/Particle/FormFactorWeighted.h"
-#include "Core/Simulation/GISASSimulation.h"
+#include "Core/HardParticle/Ripples.h"
+#include "Core/InputOutput/IntensityDataIOFactory.h"
+#include "Core/Instrument/AngularSpecScan.h"
+#include "Core/Instrument/ChiSquaredModule.h"
+#include "Core/Instrument/DetectorMask.h"
 #include "Core/Instrument/Histogram1D.h"
 #include "Core/Instrument/Histogram2D.h"
-#include "Core/Particle/IAbstractParticle.h"
-#include "Core/Computation/IBackground.h"
-#include "Core/Basics/ICloneable.h"
-#include "Core/Particle/IClusteredParticles.h"
+#include "Core/Instrument/IChiSquaredModule.h"
 #include "Core/Instrument/IDetector2D.h"
 #include "Core/Instrument/IDetectorResolution.h"
-#include "Core/DecoratedFormFactor/IFormFactorDecorator.h"
 #include "Core/Instrument/IHistogram.h"
 #include "Core/Instrument/IIntensityFunction.h"
-#include "Core/Aggregate/IInterferenceFunction.h"
-#include "Core/Aggregate/ILayout.h"
-#include "Core/Parametrization/INode.h"
-#include "Core/Fitting/IObserver.h"
-#include "Core/Parametrization/IParameterized.h"
-#include "Core/Particle/IParticle.h"
-#include "Core/Aggregate/IPeakShape.h"
+#include "Core/Instrument/IIntensityFunction.h"
+#include "Core/Instrument/IIntensityNormalizer.h"
 #include "Core/Instrument/IResolutionFunction2D.h"
-#include "Core/Scattering/ISample.h"
-#include "Core/Multilayer/IMultiLayerBuilder.h"
-#include "Core/Parametrization/INodeVisitor.h"
-#include "Core/Lattice/ISelectionRule.h"
-#include "Core/Mask/IShape2D.h"
-#include "Core/Basics/ISingleton.h"
 #include "Core/Instrument/Instrument.h"
 #include "Core/Instrument/IntensityDataFunctions.h"
-#include "Core/InputOutput/IntensityDataIOFactory.h"
-#include "Core/Aggregate/InterferenceFunction1DLattice.h"
-#include "Core/Aggregate/InterferenceFunction2DLattice.h"
-#include "Core/Aggregate/InterferenceFunction2DParaCrystal.h"
-#include "Core/Aggregate/InterferenceFunction2DSuperLattice.h"
-#include "Core/Aggregate/InterferenceFunction3DLattice.h"
-#include "Core/Aggregate/InterferenceFunctionFinite2DLattice.h"
-#include "Core/Aggregate/InterferenceFunctionFinite3DLattice.h"
-#include "Core/Aggregate/InterferenceFunctionHardDisk.h"
-#include "Core/Aggregate/InterferenceFunctionNone.h"
-#include "Core/Aggregate/InterferenceFunctionRadialParaCrystal.h"
-#include "Core/Aggregate/InterferenceFunctionTwin.h"
 #include "Core/Instrument/IsGISAXSDetector.h"
+#include "Core/Instrument/OutputData.h"
+#include "Core/Instrument/PyArrayImportUtils.h"
+#include "Core/Instrument/QSpecScan.h"
+#include "Core/Instrument/RectangularDetector.h"
+#include "Core/Instrument/ResolutionFunction2DGaussian.h"
+#include "Core/Instrument/ScanResolution.h"
+#include "Core/Instrument/SimulationResult.h"
+#include "Core/Instrument/SphericalDetector.h"
+#include "Core/Instrument/VarianceFunctions.h"
 #include "Core/Lattice/ILatticeOrientation.h"
+#include "Core/Lattice/ISelectionRule.h"
 #include "Core/Lattice/Lattice.h"
-#include "Core/Lattice/LatticeUtils.h"
 #include "Core/Lattice/Lattice1DParameters.h"
 #include "Core/Lattice/Lattice2D.h"
+#include "Core/Lattice/LatticeUtils.h"
+#include "Core/Mask/Ellipse.h"
+#include "Core/Mask/IShape2D.h"
+#include "Core/Mask/Line.h"
+#include "Core/Mask/Polygon.h"
+#include "Core/Mask/Rectangle.h"
+#include "Core/Material/MaterialFactoryFuncs.h"
+#include "Core/Multilayer/IMultiLayerBuilder.h"
 #include "Core/Multilayer/Layer.h"
 #include "Core/Multilayer/LayerInterface.h"
 #include "Core/Multilayer/LayerRoughness.h"
-#include "Core/Mask/Line.h"
-#include "Core/Material/MaterialFactoryFuncs.h"
-#include "Core/Tools/MathFunctions.h"
-#include "Core/Particle/MesoCrystal.h"
 #include "Core/Multilayer/MultiLayer.h"
 #include "Core/Multilayer/MultiLayerFuncs.h"
-#include "Core/Simulation/OffSpecSimulation.h"
-#include "Core/Instrument/OutputData.h"
+#include "Core/Parametrization/Distributions.h"
+#include "Core/Parametrization/INode.h"
+#include "Core/Parametrization/INodeVisitor.h"
+#include "Core/Parametrization/IParameterized.h"
 #include "Core/Parametrization/ParameterDistribution.h"
 #include "Core/Parametrization/ParameterPool.h"
 #include "Core/Parametrization/ParameterSample.h"
+#include "Core/Parametrization/RangedDistributions.h"
+#include "Core/Parametrization/RealParameter.h"
+#include "Core/Parametrization/SimulationOptions.h"
+#include "Core/Parametrization/ThreadInfo.h"
+#include "Core/Parametrization/Units.h"
+#include "Core/Particle/Crystal.h"
+#include "Core/Particle/FormFactorCrystal.h"
+#include "Core/Particle/FormFactorWeighted.h"
+#include "Core/Particle/IAbstractParticle.h"
+#include "Core/Particle/IClusteredParticles.h"
+#include "Core/Particle/IParticle.h"
+#include "Core/Particle/MesoCrystal.h"
 #include "Core/Particle/Particle.h"
 #include "Core/Particle/ParticleComposition.h"
 #include "Core/Particle/ParticleCoreShell.h"
 #include "Core/Particle/ParticleDistribution.h"
-#include "Core/Aggregate/ParticleLayout.h"
-#include "Core/Computation/PoissonNoiseBackground.h"
-#include "Core/Mask/Polygon.h"
-#include "Core/Instrument/PyArrayImportUtils.h"
-#include "Core/Instrument/QSpecScan.h"
-#include "Core/Parametrization/RangedDistributions.h"
-#include "Core/Parametrization/RealParameter.h"
-#include "Core/Mask/Rectangle.h"
-#include "Core/Instrument/RectangularDetector.h"
-#include "Core/Instrument/ResolutionFunction2DGaussian.h"
-#include "Core/HardParticle/Ripples.h"
+#include "Core/Particle/SlicedParticle.h"
+#include "Core/Scattering/ISample.h"
 #include "Core/Scattering/Rotations.h"
-#include "Core/StandardSamples/SampleBuilderFactory.h"
-#include "Core/Instrument/ScanResolution.h"
+#include "Core/Simulation/DepthProbeSimulation.h"
+#include "Core/Simulation/GISASSimulation.h"
+#include "Core/Simulation/OffSpecSimulation.h"
 #include "Core/Simulation/Simulation.h"
 #include "Core/Simulation/Simulation2D.h"
-#include "Core/StandardSamples/SimulationFactory.h"
-#include "Core/Parametrization/SimulationOptions.h"
-#include "Core/Instrument/SimulationResult.h"
-#include "Core/Particle/SlicedParticle.h"
 #include "Core/Simulation/SpecularSimulation.h"
-#include "Core/Instrument/SphericalDetector.h"
-#include "Core/Parametrization/ThreadInfo.h"
-#include "Core/Parametrization/Units.h"
-#include "Core/Binning/VariableBinAxis.h"
+#include "Core/SoftParticle/FormFactorDebyeBueche.h"
+#include "Core/SoftParticle/FormFactorGauss.h"
+#include "Core/SoftParticle/FormFactorLorentz.h"
+#include "Core/SoftParticle/FormFactorOrnsteinZernike.h"
+#include "Core/SoftParticle/FormFactorSphereGaussianRadius.h"
+#include "Core/SoftParticle/FormFactorSphereLogNormalRadius.h"
+#include "Core/StandardSamples/SampleBuilderFactory.h"
+#include "Core/StandardSamples/SimulationFactory.h"
+#include "Core/Tools/MathFunctions.h"
+#include "Core/Tools/SpectrumUtils.h"
+#include "Core/Vector/BasicVector3D.h"
 #include "Core/Vector/Vectors3D.h"
 #include "Core/Vector/WavevectorInfo.h"
-#include "Core/Instrument/IChiSquaredModule.h"
-#include "Core/Instrument/IIntensityFunction.h"
-#include "Core/Instrument/IIntensityNormalizer.h"
-#include "Core/Instrument/VarianceFunctions.h"
-#include "Core/Fitting/IterationInfo.h"
-#include "Core/Tools/SpectrumUtils.h"
+#include "Fit/Kernel/FitOptions.h"
 %}
 
 // ownership
@@ -295,191 +295,210 @@
 %rename(RoughnessModel) RoughnessModelWrap;
 
 %include "Core/Basics/Complex.h"
-%include "Core/Parametrization/Units.h"
+%include "Core/Basics/ISingleton.h"
+
+%include "Core/Tools/MathFunctions.h"
+%include "Core/Tools/SpectrumUtils.h"
+
 %include "Core/Vector/Vectors3D.h"
 %include "Core/Vector/WavevectorInfo.h"
 
-%include "Core/Beam/Beam.h"
 %include "Core/Binning/Bin.h"
-
 %include "Core/Binning/IAxis.h"
 %include "Core/Binning/VariableBinAxis.h"
 %include "Core/Binning/ConstKBinAxis.h"
 %include "Core/Binning/CustomBinAxis.h"
+%include "Core/Binning/FixedBinAxis.h"
+%include "Core/Binning/IPixel.h"
 
 %include "Core/Mask/IShape2D.h"
+%include "Core/Mask/Ellipse.h"
+%include "Core/Mask/Line.h"
+%include "Core/Mask/Polygon.h"
+%include "Core/Mask/Rectangle.h"
+
 %include "Core/Scattering/ISample.h"
-%include "Core/Instrument/IChiSquaredModule.h"
-%include "Core/Fitting/IObserver.h"
-%include "Core/Instrument/IIntensityFunction.h"
-%include "Core/Instrument/IIntensityNormalizer.h"
-%include "Core/Instrument/VarianceFunctions.h"
-%include "Core/Instrument/ChiSquaredModule.h"
+%include "Core/Scattering/IFormFactor.h"
+%include "Core/Scattering/IFormFactorBorn.h"
+%template(vector_IFormFactorPtr_t) std::vector<IFormFactor*>;
+%include "Core/Scattering/Rotations.h"
+
 %include "Fit/Kernel/FitOptions.h"
-%include "Core/Fitting/PyFittingCallbacks.h"
+%include "Fit/TestEngine/IFactory.h"
 
+%include "Core/Fitting/IObserver.h"
+%include "Core/Fitting/IterationInfo.h"
+%include "Core/Fitting/PyFittingCallbacks.h"
 %include "Core/Fitting/FitObjective.h"
 %template(addSimulationAndData) FitObjective::addSimulationAndData<std::vector<double>>;
 %template(addSimulationAndData) FitObjective::addSimulationAndData<std::vector<std::vector<double>>>;
 
-%include "Core/Tools/MathFunctions.h"
-%include "Fit/TestEngine/IFactory.h"
-%include "Core/Multilayer/IMultiLayerBuilder.h"
-%include "Core/Parametrization/INodeVisitor.h"
+%include "Core/Particle/FormFactorCrystal.h"
+%include "Core/Particle/FormFactorWeighted.h"
+%include "Core/Particle/IAbstractParticle.h"
 %include "Core/Particle/IClusteredParticles.h"
 %include "Core/Particle/Crystal.h"
-%include "Core/Parametrization/Distributions.h"
-%include "Core/Instrument/DetectorMask.h"
-%include "Core/Mask/Ellipse.h"
+%include "Core/Particle/IParticle.h"
+%include "Core/Particle/MesoCrystal.h"
+%include "Core/Particle/Particle.h"
+%include "Core/Particle/ParticleComposition.h"
+%include "Core/Particle/ParticleCoreShell.h"
+%include "Core/Particle/ParticleDistribution.h"
+
 %include "Core/Aggregate/FTDecayFunctions.h"
 %include "Core/Aggregate/FTDistributions1D.h"
 %include "Core/Aggregate/FTDistributions2D.h"
-%include "Core/Binning/FixedBinAxis.h"
-%include "Core/Scattering/IFormFactor.h"
-%template(vector_IFormFactorPtr_t) std::vector<IFormFactor*>;
-%include "Core/Scattering/IFormFactorBorn.h"
+%include "Core/Aggregate/FTDecayFunctions.h"
+%include "Core/Aggregate/IInterferenceFunction.h"
+%include "Core/Aggregate/ILayout.h"
+%include "Core/Aggregate/IPeakShape.h"
+
+%include "Core/Aggregate/InterferenceFunction1DLattice.h"
+%include "Core/Aggregate/InterferenceFunction2DLattice.h"
+%include "Core/Aggregate/InterferenceFunction2DParaCrystal.h"
+%include "Core/Aggregate/InterferenceFunction2DSuperLattice.h"
+%include "Core/Aggregate/InterferenceFunction3DLattice.h"
+%include "Core/Aggregate/InterferenceFunctionFinite2DLattice.h"
+%include "Core/Aggregate/InterferenceFunctionFinite3DLattice.h"
+%include "Core/Aggregate/InterferenceFunctionHardDisk.h"
+%include "Core/Aggregate/InterferenceFunctionNone.h"
+%include "Core/Aggregate/InterferenceFunctionRadialParaCrystal.h"
+%include "Core/Aggregate/InterferenceFunctionTwin.h"
+%include "Core/Aggregate/ParticleLayout.h"
+
+%include "Core/Beam/Beam.h"
+%include "Core/Beam/IFootprintFactor.h"
+%include "Core/Beam/FootprintGauss.h"
+%include "Core/Beam/FootprintSquare.h"
+
 %include "Core/DecoratedFormFactor/IFormFactorDecorator.h"
+
+%include "Core/Multilayer/IMultiLayerBuilder.h"
+%include "Core/Multilayer/Layer.h"
+%include "Core/Multilayer/LayerRoughness.h"
+%include "Core/Multilayer/MultiLayer.h"
+%include "Core/Multilayer/MultiLayerFuncs.h"
+%include "Core/Multilayer/RoughnessModels.h"
+
+%include "Core/Parametrization/Units.h"
+%include "Core/Parametrization/Distributions.h"
+%include "Core/Parametrization/INodeVisitor.h"
+%include "Core/Parametrization/Distributions.h"
+%include "Core/Parametrization/SimulationOptions.h"
+%include "Core/Parametrization/IParameter.h" // needed?
+%template(IParameterReal) IParameter<double>; // needed to avoid warning 401?
+
+%include "Core/Parametrization/ParameterSample.h"
+%template(ParameterSampleVector) std::vector<ParameterSample>;
+
+%include "Core/Parametrization/ParameterDistribution.h"
+%include "Core/Parametrization/ParameterPool.h"
+%include "Core/Parametrization/RangedDistributions.h"
+%include "Core/Parametrization/RealParameter.h"
+%include "Core/Parametrization/ThreadInfo.h"
+
+%include "Core/HardParticle/FormFactorPolyhedron.h"
 %include "Core/HardParticle/FormFactorPolyhedron.h"
 %include "Core/HardParticle/ProfileBar.h"
 %include "Core/HardParticle/ProfileRipple1.h"
 %include "Core/HardParticle/ProfileRipple2.h"
-%include "Core/HardParticle/Ripples.h"
 
 %include "Core/HardParticle/FormFactorAnisoPyramid.h"
 %include "Core/HardParticle/FormFactorBox.h"
 %include "Core/HardParticle/FormFactorCantellatedCube.h"
 %include "Core/HardParticle/FormFactorCone.h"
 %include "Core/HardParticle/FormFactorCone6.h"
-%include "Core/Particle/FormFactorCrystal.h"
 %include "Core/HardParticle/FormFactorCuboctahedron.h"
 %include "Core/HardParticle/FormFactorCylinder.h"
-%include "Core/SoftParticle/FormFactorDebyeBueche.h"
 %include "Core/HardParticle/FormFactorDodecahedron.h"
 %include "Core/HardParticle/FormFactorDot.h"
 %include "Core/HardParticle/FormFactorEllipsoidalCylinder.h"
 %include "Core/HardParticle/FormFactorFullSphere.h"
 %include "Core/HardParticle/FormFactorFullSpheroid.h"
-%include "Core/SoftParticle/FormFactorGauss.h"
 %include "Core/HardParticle/FormFactorHemiEllipsoid.h"
+%include "Core/HardParticle/FormFactorHollowSphere.h"
 %include "Core/HardParticle/FormFactorIcosahedron.h"
 %include "Core/HardParticle/FormFactorLongBoxGauss.h"
 %include "Core/HardParticle/FormFactorLongBoxLorentz.h"
-%include "Core/SoftParticle/FormFactorLorentz.h"
-%include "Core/SoftParticle/FormFactorOrnsteinZernike.h"
-%include "Core/HardParticle/FormFactorPolyhedron.h"
 %include "Core/HardParticle/FormFactorPrism3.h"
 %include "Core/HardParticle/FormFactorPrism6.h"
 %include "Core/HardParticle/FormFactorPyramid.h"
 %include "Core/HardParticle/FormFactorRipple1.h"
 %include "Core/HardParticle/FormFactorRipple2.h"
-%include "Core/SoftParticle/FormFactorSphereGaussianRadius.h"
-%include "Core/SoftParticle/FormFactorSphereLogNormalRadius.h"
-%include "Core/SoftParticle/FormFactorHollowSphere.h"
 %include "Core/HardParticle/FormFactorTetrahedron.h"
 %include "Core/HardParticle/FormFactorTruncatedCube.h"
 %include "Core/HardParticle/FormFactorTruncatedSphere.h"
 %include "Core/HardParticle/FormFactorTruncatedSpheroid.h"
-%include "Core/Particle/FormFactorWeighted.h"
+%include "Core/HardParticle/Ripples.h"
 
-%include "Core/Beam/IFootprintFactor.h"
-%include "Core/Beam/FootprintGauss.h"
-%include "Core/Beam/FootprintSquare.h"
+%include "Core/SoftParticle/FormFactorDebyeBueche.h"
+%include "Core/SoftParticle/FormFactorGauss.h"
+%include "Core/SoftParticle/FormFactorLorentz.h"
+%include "Core/SoftParticle/FormFactorOrnsteinZernike.h"
+%include "Core/SoftParticle/FormFactorSphereGaussianRadius.h"
+%include "Core/SoftParticle/FormFactorSphereLogNormalRadius.h"
 
 %include "Core/Simulation/Simulation.h"
 %include "Core/Simulation/Simulation2D.h"
-%include "Core/Parametrization/SimulationOptions.h"
 %include "Core/Simulation/GISASSimulation.h"
+%include "Core/Simulation/DepthProbeSimulation.h"
+%include "Core/Simulation/SpecularSimulation.h"
+%include "Core/Simulation/OffSpecSimulation.h"
+
+%include "Core/Computation/IBackground.h"
+%include "Core/Computation/ConstantBackground.h"
+%include "Core/Computation/PoissonNoiseBackground.h"
+
+%include "Core/InputOutput/IntensityDataIOFactory.h"
+
 %include "Core/Instrument/IHistogram.h"
 %include "Core/Instrument/Histogram1D.h"
 %include "Core/Instrument/Histogram2D.h"
 %include "Core/Instrument/SimulationResult.h"
-%include "Core/Computation/IBackground.h"
-%include "Core/Computation/ConstantBackground.h"
+
 %include "Core/Instrument/IDetector.h"
 %include "Core/Instrument/IDetector2D.h"
 %include "Core/Instrument/IDetectorResolution.h"
-%include "Core/Parametrization/Distributions.h"
-%include "Core/Aggregate/FTDecayFunctions.h"
-%include "Core/Aggregate/IInterferenceFunction.h"
-%include "Core/Aggregate/ILayout.h"
-%include "Core/Particle/IAbstractParticle.h"
-%include "Core/Parametrization/IParameter.h" // needed?
-%template(IParameterReal) IParameter<double>; // needed to avoid warning 401?
-%include "Core/Particle/IParticle.h"
-%include "Core/Aggregate/IPeakShape.h"
+%include "Core/Instrument/SphericalDetector.h"
+
+%include "Core/Instrument/IChiSquaredModule.h"
+%include "Core/Instrument/IIntensityNormalizer.h"
+%include "Core/Instrument/IIntensityFunction.h"
 %include "Core/Instrument/IResolutionFunction2D.h"
-%include "Core/Scattering/Rotations.h"
-%include "Core/Lattice/ISelectionRule.h"
-%include "Core/Basics/ISingleton.h"
+
+%include "Core/Instrument/ChiSquaredModule.h"
+%include "Core/Instrument/DetectorMask.h"
 %include "Core/Instrument/Instrument.h"
 %include "Core/Instrument/IntensityDataFunctions.h"
-%include "Core/InputOutput/IntensityDataIOFactory.h"
-%include "Core/Aggregate/InterferenceFunction1DLattice.h"
-%include "Core/Aggregate/InterferenceFunction2DLattice.h"
-%include "Core/Aggregate/InterferenceFunction2DParaCrystal.h"
-%include "Core/Aggregate/InterferenceFunction2DSuperLattice.h"
-%include "Core/Aggregate/InterferenceFunction3DLattice.h"
-%include "Core/Aggregate/InterferenceFunctionFinite2DLattice.h"
-%include "Core/Aggregate/InterferenceFunctionFinite3DLattice.h"
-%include "Core/Aggregate/InterferenceFunctionHardDisk.h"
-%include "Core/Aggregate/InterferenceFunctionNone.h"
-%include "Core/Aggregate/InterferenceFunctionRadialParaCrystal.h"
-%include "Core/Aggregate/InterferenceFunctionTwin.h"
-%include "Core/Binning/IPixel.h"
-%include "Core/Instrument/SphericalDetector.h"
 %include "Core/Instrument/IsGISAXSDetector.h"
+%include "Core/Instrument/PyArrayImportUtils.h"
+%include "Core/Instrument/RectangularDetector.h"
+%include "Core/Instrument/ResolutionFunction2DGaussian.h"
+%include "Core/Instrument/VarianceFunctions.h"
+
+%include "Core/Instrument/OutputData.h"
+%template(IntensityData) OutputData<double>;
+
+%include "Core/Instrument/ISpecularScan.h"
+
+%include "Core/Instrument/AngularSpecScan.h"
+%include "Core/Instrument/IUnitConverter.h"
+%include "Core/Instrument/QSpecScan.h"
+%include "Core/Instrument/ScanResolution.h"
+
 %include "Core/Lattice/ILatticeOrientation.h"
+%include "Core/Lattice/ISelectionRule.h"
 %include "Core/Lattice/Lattice.h"
-%include "Core/Lattice/LatticeUtils.h"
 %include "Core/Lattice/Lattice1DParameters.h"
 %include "Core/Lattice/Lattice2D.h"
-%include "Core/Multilayer/Layer.h"
-%include "Core/Multilayer/LayerRoughness.h"
-%include "Core/Mask/Line.h"
+%include "Core/Lattice/LatticeUtils.h"
+
 %include "Core/Material/Material.h"
 %include "Core/Material/MaterialFactoryFuncs.h"
-%include "Core/Particle/MesoCrystal.h"
-%include "Core/Multilayer/MultiLayer.h"
-%include "Core/Multilayer/MultiLayerFuncs.h"
-%include "Core/Simulation/OffSpecSimulation.h"
-%include "Core/Instrument/IIntensityFunction.h"
-%include "Core/Instrument/OutputData.h"
-%template(IntensityData) OutputData<double>;
-%include "Core/Parametrization/ParameterDistribution.h"
-%include "Core/Parametrization/ParameterPool.h"
-%include "Core/Parametrization/ParameterSample.h"
-%template(ParameterSampleVector) std::vector<ParameterSample>;
-%include "Core/Particle/Particle.h"
-%include "Core/Particle/ParticleComposition.h"
-%include "Core/Particle/ParticleCoreShell.h"
-%include "Core/Particle/ParticleDistribution.h"
-%include "Core/Aggregate/ParticleLayout.h"
-%include "Core/Instrument/PyArrayImportUtils.h"
-%include "Core/Computation/PoissonNoiseBackground.h"
-%include "Core/Mask/Polygon.h"
-%include "Core/Parametrization/RangedDistributions.h"
-%include "Core/Parametrization/RealParameter.h"
-%include "Core/Mask/Rectangle.h"
-%include "Core/Instrument/RectangularDetector.h"
-%include "Core/Instrument/ResolutionFunction2DGaussian.h"
-%include "Core/Scattering/Rotations.h"
-%include "Core/Multilayer/RoughnessModels.h"
-%include "Core/Lattice/ISelectionRule.h"
-%include "Core/Simulation/DepthProbeSimulation.h"
-%include "Core/Simulation/SpecularSimulation.h"
-%include "Core/Parametrization/ThreadInfo.h"
+
 %template(SampleBuilderFactoryTemp) IFactory<std::string, IMultiLayerBuilder>;
 %include "Core/StandardSamples/SampleBuilderFactory.h"
 %template(SimulationFactoryTemp) IFactory<std::string, Simulation>;
 %include "Core/StandardSamples/SimulationFactory.h"
-%include "Core/Instrument/IUnitConverter.h"
-%include "Core/Fitting/IterationInfo.h"
-%include "Core/Tools/SpectrumUtils.h"
-
-%include "Core/Instrument/ScanResolution.h"
-
-%include "Core/Instrument/ISpecularScan.h"
-%include "Core/Instrument/AngularSpecScan.h"
-%include "Core/Instrument/QSpecScan.h"
 
 %include "extendCore.i"
diff --git a/auto/Wrap/libBornAgainCore.py b/auto/Wrap/libBornAgainCore.py
index 50844cbb354..4f72fc8786f 100644
--- a/auto/Wrap/libBornAgainCore.py
+++ b/auto/Wrap/libBornAgainCore.py
@@ -3404,21 +3404,198 @@ def exp_I(z):
     """
     return _libBornAgainCore.exp_I(z)
 
-def rad2deg(angle):
+def StandardNormal(x):
     r"""
-    rad2deg(double angle) -> double
-    double Units::rad2deg(double angle)
+    StandardNormal(double x) -> double
+    double MathFunctions::StandardNormal(double x)
 
     """
-    return _libBornAgainCore.rad2deg(angle)
+    return _libBornAgainCore.StandardNormal(x)
 
-def deg2rad(angle):
+def Gaussian(x, average, std_dev):
     r"""
-    deg2rad(double angle) -> double
-    double Units::deg2rad(double angle)
+    Gaussian(double x, double average, double std_dev) -> double
+    double MathFunctions::Gaussian(double x, double average, double std_dev)
 
     """
-    return _libBornAgainCore.deg2rad(angle)
+    return _libBornAgainCore.Gaussian(x, average, std_dev)
+
+def IntegratedGaussian(x, average, std_dev):
+    r"""
+    IntegratedGaussian(double x, double average, double std_dev) -> double
+    double MathFunctions::IntegratedGaussian(double x, double average, double std_dev)
+
+    """
+    return _libBornAgainCore.IntegratedGaussian(x, average, std_dev)
+
+def cot(x):
+    r"""
+    cot(double x) -> double
+    double MathFunctions::cot(double x)
+
+    cotangent function:  $cot(x)\\equiv1/tan(x)$
+
+    """
+    return _libBornAgainCore.cot(x)
+
+def Si(x):
+    r"""
+    Si(double x) -> double
+    double MathFunctions::Si(double x)
+
+    Sine integral function:  $Si(x)\\equiv\\int_0^x du \\sin(u)/u$. 
+
+    """
+    return _libBornAgainCore.Si(x)
+
+def sinc(*args):
+    r"""
+    sinc(double x) -> double
+    sinc(complex_t const z) -> complex_t
+    complex_t MathFunctions::sinc(const complex_t z)
+
+    Complex sinc function:  $sinc(x)\\equiv\\sin(x)/x$. 
+
+    """
+    return _libBornAgainCore.sinc(*args)
+
+def tanhc(z):
+    r"""
+    tanhc(complex_t const z) -> complex_t
+    complex_t MathFunctions::tanhc(const complex_t z)
+
+    Complex tanhc function:  $tanhc(x)\\equiv\\tanh(x)/x$. 
+
+    """
+    return _libBornAgainCore.tanhc(z)
+
+def Laue(x, N):
+    r"""
+    Laue(double const x, size_t N) -> double
+    double MathFunctions::Laue(const double x, size_t N)
+
+    Real Laue function:  $Laue(x,N)\\equiv\\sin(Nx)/sin(x)$. 
+
+    """
+    return _libBornAgainCore.Laue(x, N)
+
+def erf(arg):
+    r"""
+    erf(double arg) -> double
+    double MathFunctions::erf(double arg)
+
+    Error function of real-valued argument. 
+
+    """
+    return _libBornAgainCore.erf(arg)
+
+def Bessel_I0(x):
+    r"""
+    Bessel_I0(double x) -> double
+    double MathFunctions::Bessel_I0(double x)
+
+    Modified Bessel function of the first kind and order 0. 
+
+    """
+    return _libBornAgainCore.Bessel_I0(x)
+
+def Bessel_J0(*args):
+    r"""
+    Bessel_J0(double x) -> double
+    Bessel_J0(complex_t const z) -> complex_t
+    complex_t MathFunctions::Bessel_J0(const complex_t z)
+
+    Complex Bessel function of the first kind and order 0. 
+
+    """
+    return _libBornAgainCore.Bessel_J0(*args)
+
+def Bessel_J1(*args):
+    r"""
+    Bessel_J1(double x) -> double
+    Bessel_J1(complex_t const z) -> complex_t
+    complex_t MathFunctions::Bessel_J1(const complex_t z)
+
+    Complex Bessel function of the first kind and order 1. 
+
+    """
+    return _libBornAgainCore.Bessel_J1(*args)
+
+def Bessel_J1c(*args):
+    r"""
+    Bessel_J1c(double x) -> double
+    Bessel_J1c(complex_t const z) -> complex_t
+    complex_t MathFunctions::Bessel_J1c(const complex_t z)
+
+    Complex Bessel function Bessel_J1(x)/x. 
+
+    """
+    return _libBornAgainCore.Bessel_J1c(*args)
+FORWARD_FFT = _libBornAgainCore.FORWARD_FFT
+
+BACKWARD_FFT = _libBornAgainCore.BACKWARD_FFT
+
+
+def FastFourierTransform(*args):
+    r"""
+    FastFourierTransform(vector_complex_t data, MathFunctions::EFFTDirection tcase) -> vector_complex_t
+    FastFourierTransform(vdouble1d_t data, MathFunctions::EFFTDirection tcase) -> vector_complex_t
+    std::vector< complex_t > MathFunctions::FastFourierTransform(const std::vector< double > &data, EFFTDirection tcase)
+
+    simple (and unoptimized) wrapper function for the discrete fast Fourier transformation library (fftw3); transforms real to complex 
+
+    """
+    return _libBornAgainCore.FastFourierTransform(*args)
+
+def ConvolveFFT(signal, resfunc):
+    r"""
+    ConvolveFFT(vdouble1d_t signal, vdouble1d_t resfunc) -> vector_complex_t
+    std::vector< complex_t > MathFunctions::ConvolveFFT(const std::vector< double > &signal, const std::vector< double > &resfunc)
+
+    convolution of two real vectors of equal size 
+
+    """
+    return _libBornAgainCore.ConvolveFFT(signal, resfunc)
+
+def GenerateUniformRandom():
+    r"""
+    GenerateUniformRandom() -> double
+    double MathFunctions::GenerateUniformRandom()
+
+    """
+    return _libBornAgainCore.GenerateUniformRandom()
+
+def GenerateStandardNormalRandom():
+    r"""
+    GenerateStandardNormalRandom() -> double
+    double MathFunctions::GenerateStandardNormalRandom()
+
+    """
+    return _libBornAgainCore.GenerateStandardNormalRandom()
+
+def GenerateNormalRandom(average, std_dev):
+    r"""
+    GenerateNormalRandom(double average, double std_dev) -> double
+    double MathFunctions::GenerateNormalRandom(double average, double std_dev)
+
+    """
+    return _libBornAgainCore.GenerateNormalRandom(average, std_dev)
+
+def GeneratePoissonRandom(average):
+    r"""
+    GeneratePoissonRandom(double average) -> double
+    double MathFunctions::GeneratePoissonRandom(double average)
+
+    """
+    return _libBornAgainCore.GeneratePoissonRandom(average)
+
+def FindPeaks(*args):
+    r"""
+    FindPeaks(Histogram2D hist, double sigma=2, std::string const & option={}, double threshold=0.05) -> vector_pair_double_t
+    std::vector< std::pair< double, double > > SpectrumUtils::FindPeaks(const Histogram2D &hist, double sigma=2, const std::string &option={}, double threshold=0.05)
+
+    """
+    return _libBornAgainCore.FindPeaks(*args)
 class WavevectorInfo(object):
     r"""
 
@@ -3489,220 +3666,44 @@ class WavevectorInfo(object):
 
 # Register WavevectorInfo in _libBornAgainCore:
 _libBornAgainCore.WavevectorInfo_swigregister(WavevectorInfo)
-nanometer = cvar.nanometer
-angstrom = cvar.angstrom
-micrometer = cvar.micrometer
-millimeter = cvar.millimeter
-meter = cvar.meter
-nm = cvar.nm
-nm2 = cvar.nm2
-barn = cvar.barn
-radian = cvar.radian
-milliradian = cvar.milliradian
-degree = cvar.degree
-steradian = cvar.steradian
-rad = cvar.rad
-mrad = cvar.mrad
-sr = cvar.sr
-deg = cvar.deg
-tesla = cvar.tesla
-gauss = cvar.gauss
 
 def WavevectorInfo_GetZeroQ():
     r"""WavevectorInfo_GetZeroQ() -> WavevectorInfo"""
     return _libBornAgainCore.WavevectorInfo_GetZeroQ()
 
-class Beam(INode):
-    r"""
-
-
-    Beam defined by wavelength, direction and intensity.
-
-    C++ includes: Beam.h
-
-    """
+class Bin1D(object):
+    r"""Proxy of C++ Bin1D class."""
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
     def __init__(self, *args):
         r"""
-        __init__(Beam self) -> Beam
-        __init__(Beam self, Beam other) -> Beam
-        Beam::Beam(const Beam &other)
+        __init__(Bin1D self) -> Bin1D
+        __init__(Bin1D self, double lower, double upper) -> Bin1D
+        Bin1D::Bin1D(double lower, double upper)
 
         """
-        _libBornAgainCore.Beam_swiginit(self, _libBornAgainCore.new_Beam(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_Beam
+        _libBornAgainCore.Bin1D_swiginit(self, _libBornAgainCore.new_Bin1D(*args))
+    m_lower = property(_libBornAgainCore.Bin1D_m_lower_get, _libBornAgainCore.Bin1D_m_lower_set, doc=r"""m_lower : double""")
+    m_upper = property(_libBornAgainCore.Bin1D_m_upper_get, _libBornAgainCore.Bin1D_m_upper_set, doc=r"""m_upper : double""")
 
-    def getCentralK(self):
+    def getMidPoint(self):
         r"""
-        getCentralK(Beam self) -> kvector_t
-        kvector_t Beam::getCentralK() const
-
-        Returns the wavevector. 
+        getMidPoint(Bin1D self) -> double
+        double Bin1D::getMidPoint() const
 
         """
-        return _libBornAgainCore.Beam_getCentralK(self)
+        return _libBornAgainCore.Bin1D_getMidPoint(self)
 
-    def setCentralK(self, wavelength, alpha_i, phi_i):
+    def getBinSize(self):
         r"""
-        setCentralK(Beam self, double wavelength, double alpha_i, double phi_i)
-        void Beam::setCentralK(double wavelength, double alpha_i, double phi_i)
-
-        Sets the wavevector in terms of wavelength and incoming angles. 
+        getBinSize(Bin1D self) -> double
+        double Bin1D::getBinSize() const
 
         """
-        return _libBornAgainCore.Beam_setCentralK(self, wavelength, alpha_i, phi_i)
-
-    def getIntensity(self):
-        r"""
-        getIntensity(Beam self) -> double
-        double Beam::getIntensity() const
-
-        Returns the beam intensity in neutrons/sec. 
-
-        """
-        return _libBornAgainCore.Beam_getIntensity(self)
-
-    def setIntensity(self, intensity):
-        r"""
-        setIntensity(Beam self, double intensity)
-        void Beam::setIntensity(double intensity)
-
-        Sets the beam intensity in neutrons/sec. 
-
-        """
-        return _libBornAgainCore.Beam_setIntensity(self, intensity)
-
-    def footprintFactor(self):
-        r"""
-        footprintFactor(Beam self) -> IFootprintFactor
-        const IFootprintFactor * Beam::footprintFactor() const
-
-        Returns footprint factor. 
-
-        """
-        return _libBornAgainCore.Beam_footprintFactor(self)
-
-    def setFootprintFactor(self, shape_factor):
-        r"""
-        setFootprintFactor(Beam self, IFootprintFactor shape_factor)
-        void Beam::setFootprintFactor(const IFootprintFactor &shape_factor)
-
-        Sets footprint factor to the beam. 
-
-        """
-        return _libBornAgainCore.Beam_setFootprintFactor(self, shape_factor)
-
-    def setWidthRatio(self, width_ratio):
-        r"""
-        setWidthRatio(Beam self, double width_ratio)
-        void Beam::setWidthRatio(double width_ratio)
-
-        Sets beam to sample width ratio in footprint factor. 
-
-        """
-        return _libBornAgainCore.Beam_setWidthRatio(self, width_ratio)
-
-    def setPolarization(self, bloch_vector):
-        r"""
-        setPolarization(Beam self, kvector_t bloch_vector)
-        void Beam::setPolarization(const kvector_t bloch_vector)
-
-        Sets the polarization density matrix according to the given Bloch vector. 
-
-        """
-        return _libBornAgainCore.Beam_setPolarization(self, bloch_vector)
-
-    def getBlochVector(self):
-        r"""
-        getBlochVector(Beam self) -> kvector_t
-        kvector_t Beam::getBlochVector() const
-
-        """
-        return _libBornAgainCore.Beam_getBlochVector(self)
-
-    def getWavelength(self):
-        r"""
-        getWavelength(Beam self) -> double
-        double Beam::getWavelength() const
-
-        """
-        return _libBornAgainCore.Beam_getWavelength(self)
-
-    def getAlpha(self):
-        r"""
-        getAlpha(Beam self) -> double
-        double Beam::getAlpha() const
-
-        """
-        return _libBornAgainCore.Beam_getAlpha(self)
-
-    def getPhi(self):
-        r"""
-        getPhi(Beam self) -> double
-        double Beam::getPhi() const
-
-        """
-        return _libBornAgainCore.Beam_getPhi(self)
-
-    def accept(self, visitor):
-        r"""
-        accept(Beam self, INodeVisitor visitor)
-        void Beam::accept(INodeVisitor *visitor) const override
-
-        Calls the  INodeVisitor's visit method. 
-
-        """
-        return _libBornAgainCore.Beam_accept(self, visitor)
-
-    def getChildren(self):
-        r"""
-        getChildren(Beam self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > Beam::getChildren() const override
-
-        Returns a vector of children (const). 
-
-        """
-        return _libBornAgainCore.Beam_getChildren(self)
-
-# Register Beam in _libBornAgainCore:
-_libBornAgainCore.Beam_swigregister(Beam)
-
-class Bin1D(object):
-    r"""Proxy of C++ Bin1D class."""
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
-
-    def __init__(self, *args):
-        r"""
-        __init__(Bin1D self) -> Bin1D
-        __init__(Bin1D self, double lower, double upper) -> Bin1D
-        Bin1D::Bin1D(double lower, double upper)
-
-        """
-        _libBornAgainCore.Bin1D_swiginit(self, _libBornAgainCore.new_Bin1D(*args))
-    m_lower = property(_libBornAgainCore.Bin1D_m_lower_get, _libBornAgainCore.Bin1D_m_lower_set, doc=r"""m_lower : double""")
-    m_upper = property(_libBornAgainCore.Bin1D_m_upper_get, _libBornAgainCore.Bin1D_m_upper_set, doc=r"""m_upper : double""")
-
-    def getMidPoint(self):
-        r"""
-        getMidPoint(Bin1D self) -> double
-        double Bin1D::getMidPoint() const
-
-        """
-        return _libBornAgainCore.Bin1D_getMidPoint(self)
-
-    def getBinSize(self):
-        r"""
-        getBinSize(Bin1D self) -> double
-        double Bin1D::getBinSize() const
-
-        """
-        return _libBornAgainCore.Bin1D_getBinSize(self)
-    __swig_destroy__ = _libBornAgainCore.delete_Bin1D
+        return _libBornAgainCore.Bin1D_getBinSize(self)
+    __swig_destroy__ = _libBornAgainCore.delete_Bin1D
 
 # Register Bin1D in _libBornAgainCore:
 _libBornAgainCore.Bin1D_swigregister(Bin1D)
@@ -4252,198 +4253,153 @@ class CustomBinAxis(VariableBinAxis):
 # Register CustomBinAxis in _libBornAgainCore:
 _libBornAgainCore.CustomBinAxis_swigregister(CustomBinAxis)
 
-class IShape2D(ICloneable):
+class FixedBinAxis(IAxis):
     r"""
 
 
-    Basic class for all shapes in 2D.
+    Axis with fixed bin size.
 
-    C++ includes: IShape2D.h
+    C++ includes: FixedBinAxis.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
 
-    def clone(self):
+    def __init__(self, name, nbins, start, end):
         r"""
-        clone(IShape2D self) -> IShape2D
-        virtual IShape2D* IShape2D::clone() const =0
-
-        """
-        return _libBornAgainCore.IShape2D_clone(self)
+        __init__(FixedBinAxis self, std::string const & name, size_t nbins, double start, double end) -> FixedBinAxis
+        FixedBinAxis::FixedBinAxis(const std::string &name, size_t nbins, double start, double end)
 
-    def contains(self, *args):
-        r"""
-        contains(IShape2D self, double x, double y) -> bool
-        contains(IShape2D self, Bin1D binx, Bin1D biny) -> bool
-        virtual bool IShape2D::contains(const Bin1D &binx, const Bin1D &biny) const =0
+        FixedBinAxis constructor.
 
-        Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). 
+        Parameters:
+        -----------
 
-        """
-        return _libBornAgainCore.IShape2D_contains(self, *args)
-    __swig_destroy__ = _libBornAgainCore.delete_IShape2D
+        name: 
+        Axis name
 
-# Register IShape2D in _libBornAgainCore:
-_libBornAgainCore.IShape2D_swigregister(IShape2D)
+        nbins: 
+        number of bins
 
-class ISample(ICloneable, INode):
-    r"""
+        start: 
+        low edge of first bin
 
+        end: 
+        upper edge of last bin 
 
-    Pure virtual base class for sample components and properties related to scattering.
+        """
+        _libBornAgainCore.FixedBinAxis_swiginit(self, _libBornAgainCore.new_FixedBinAxis(name, nbins, start, end))
+    __swig_destroy__ = _libBornAgainCore.delete_FixedBinAxis
 
-    C++ includes: ISample.h
+    def clone(self):
+        r"""
+        clone(FixedBinAxis self) -> FixedBinAxis
+        FixedBinAxis * FixedBinAxis::clone() const
 
-    """
+        clone function 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.FixedBinAxis_clone(self)
 
-    def __init__(self, *args):
+    def size(self):
         r"""
-        __init__(ISample self) -> ISample
-        __init__(ISample self, INode parent, std::vector< char const *,std::allocator< char const * > > const PName, std::vector< char const *,std::allocator< char const * > > const PUnit, vdouble1d_t PMin, vdouble1d_t PMax, vdouble1d_t PDefault, vdouble1d_t P) -> ISample
-
-
-        Pure virtual base class for sample components and properties related to scattering.
+        size(FixedBinAxis self) -> size_t
+        size_t FixedBinAxis::size() const
 
-        C++ includes: ISample.h
+        retrieve the number of bins 
 
         """
-        if self.__class__ == ISample:
-            _self = None
-        else:
-            _self = self
-        _libBornAgainCore.ISample_swiginit(self, _libBornAgainCore.new_ISample(_self, *args))
+        return _libBornAgainCore.FixedBinAxis_size(self)
 
-    def clone(self):
+    def getBin(self, index):
         r"""
-        clone(ISample self) -> ISample
-        ISample* ISample::clone() const override=0
+        getBin(FixedBinAxis self, size_t index) -> Bin1D
+        Bin1D FixedBinAxis::getBin(size_t index) const
 
-        Returns a clone of this  ISample object. 
+        retrieve a 1d bin for the given index 
 
         """
-        return _libBornAgainCore.ISample_clone(self)
+        return _libBornAgainCore.FixedBinAxis_getBin(self, index)
 
-    def material(self):
+    def getMin(self):
         r"""
-        material(ISample self) -> Material
-        virtual const Material* ISample::material() const
+        getMin(FixedBinAxis self) -> double
+        double FixedBinAxis::getMin() const
 
-        Returns nullptr, unless overwritten to return a specific material. 
+        Returns value of first point of axis. 
 
         """
-        return _libBornAgainCore.ISample_material(self)
+        return _libBornAgainCore.FixedBinAxis_getMin(self)
 
-    def containedMaterials(self):
+    def getMax(self):
         r"""
-        containedMaterials(ISample self) -> std::vector< Material const *,std::allocator< Material const * > >
-        std::vector< const Material * > ISample::containedMaterials() const
+        getMax(FixedBinAxis self) -> double
+        double FixedBinAxis::getMax() const
 
-        Returns set of unique materials contained in this  ISample. 
+        Returns value of last point of axis. 
 
         """
-        return _libBornAgainCore.ISample_containedMaterials(self)
-    __swig_destroy__ = _libBornAgainCore.delete_ISample
-    def __disown__(self):
-        self.this.disown()
-        _libBornAgainCore.disown_ISample(self)
-        return weakref.proxy(self)
+        return _libBornAgainCore.FixedBinAxis_getMax(self)
 
-# Register ISample in _libBornAgainCore:
-_libBornAgainCore.ISample_swigregister(ISample)
-
-class IChiSquaredModule(ICloneable):
-    r"""
-
-
-    Interface residual calculations.
-
-    C++ includes: IChiSquaredModule.h
-
-    """
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
-    __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IChiSquaredModule
-
-    def clone(self):
+    def getBinCenter(self, index):
         r"""
-        clone(IChiSquaredModule self) -> IChiSquaredModule
-        virtual IChiSquaredModule* IChiSquaredModule::clone() const =0
-
-        clone method 
+        getBinCenter(FixedBinAxis self, size_t index) -> double
+        double FixedBinAxis::getBinCenter(size_t index) const
 
         """
-        return _libBornAgainCore.IChiSquaredModule_clone(self)
+        return _libBornAgainCore.FixedBinAxis_getBinCenter(self, index)
 
-    def varianceFunction(self):
+    def findClosestIndex(self, value):
         r"""
-        varianceFunction(IChiSquaredModule self) -> IVarianceFunction
-        const IVarianceFunction * IChiSquaredModule::varianceFunction() const
+        findClosestIndex(FixedBinAxis self, double value) -> size_t
+        size_t FixedBinAxis::findClosestIndex(double value) const
 
-        Returns squared function. 
+        find bin index which is best match for given value 
 
         """
-        return _libBornAgainCore.IChiSquaredModule_varianceFunction(self)
+        return _libBornAgainCore.FixedBinAxis_findClosestIndex(self, value)
 
-    def setVarianceFunction(self, variance_function):
+    def getBinCenters(self):
         r"""
-        setVarianceFunction(IChiSquaredModule self, IVarianceFunction variance_function)
-        void IChiSquaredModule::setVarianceFunction(const IVarianceFunction &variance_function)
-
-        Sets squared function. 
+        getBinCenters(FixedBinAxis self) -> vdouble1d_t
+        std::vector< double > FixedBinAxis::getBinCenters() const
 
         """
-        return _libBornAgainCore.IChiSquaredModule_setVarianceFunction(self, variance_function)
+        return _libBornAgainCore.FixedBinAxis_getBinCenters(self)
 
-    def getIntensityFunction(self):
+    def getBinBoundaries(self):
         r"""
-        getIntensityFunction(IChiSquaredModule self) -> IIntensityFunction
-        const IIntensityFunction * IChiSquaredModule::getIntensityFunction() const
-
-        Returns data rescaler. 
+        getBinBoundaries(FixedBinAxis self) -> vdouble1d_t
+        std::vector< double > FixedBinAxis::getBinBoundaries() const
 
         """
-        return _libBornAgainCore.IChiSquaredModule_getIntensityFunction(self)
+        return _libBornAgainCore.FixedBinAxis_getBinBoundaries(self)
 
-    def setIntensityFunction(self, intensity_function):
+    def createClippedAxis(self, left, right):
         r"""
-        setIntensityFunction(IChiSquaredModule self, IIntensityFunction intensity_function)
-        void IChiSquaredModule::setIntensityFunction(const IIntensityFunction &intensity_function)
+        createClippedAxis(FixedBinAxis self, double left, double right) -> FixedBinAxis
+        FixedBinAxis * FixedBinAxis::createClippedAxis(double left, double right) const
 
-        Sets data rescaler. 
+        Creates a new clipped axis. 
 
         """
-        return _libBornAgainCore.IChiSquaredModule_setIntensityFunction(self, intensity_function)
-
-    def residual(self, a, b, weight):
-        r"""
-        residual(IChiSquaredModule self, double a, double b, double weight) -> double
-        virtual double IChiSquaredModule::residual(double a, double b, double weight)=0
+        return _libBornAgainCore.FixedBinAxis_createClippedAxis(self, left, right)
 
-        """
-        return _libBornAgainCore.IChiSquaredModule_residual(self, a, b, weight)
+    def __getitem__(self, i):
+        r"""__getitem__(FixedBinAxis self, unsigned int i) -> double"""
+        return _libBornAgainCore.FixedBinAxis___getitem__(self, i)
 
-# Register IChiSquaredModule in _libBornAgainCore:
-_libBornAgainCore.IChiSquaredModule_swigregister(IChiSquaredModule)
+# Register FixedBinAxis in _libBornAgainCore:
+_libBornAgainCore.FixedBinAxis_swigregister(FixedBinAxis)
 
-class IObserver(object):
+class IPixel(object):
     r"""
 
 
-    Observer interface from Observer pattern.
+    Interface for a function that maps [0,1]x[0,1] to the kvectors in a pixel.
 
-    C++ includes: IObserver.h
+    C++ includes: IPixel.h
 
     """
 
@@ -4452,77 +4408,58 @@ class IObserver(object):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IObserver
+    __swig_destroy__ = _libBornAgainCore.delete_IPixel
 
-    def notify(self, subject):
+    def clone(self):
         r"""
-        notify(IObserver self, IObservable subject)
-        virtual void IObserver::notify(IObservable *subject)=0
-
-        method which is used by observable subject to notify change in status 
+        clone(IPixel self) -> IPixel
+        virtual IPixel* IPixel::clone() const =0
 
         """
-        return _libBornAgainCore.IObserver_notify(self, subject)
-
-# Register IObserver in _libBornAgainCore:
-_libBornAgainCore.IObserver_swigregister(IObserver)
-
-class IObservable(object):
-    r"""
-
-
-    Observable interface from Observer pattern
-
-    C++ includes: IObserver.h
-
-    """
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IObservable
+        return _libBornAgainCore.IPixel_clone(self)
 
-    def attachObserver(self, obj):
+    def createZeroSizePixel(self, x, y):
         r"""
-        attachObserver(IObservable self, IObservable::observer_t obj)
-        void IObservable::attachObserver(observer_t obj)
-
-        attach observer to the list of observers 
+        createZeroSizePixel(IPixel self, double x, double y) -> IPixel
+        virtual IPixel* IPixel::createZeroSizePixel(double x, double y) const =0
 
         """
-        return _libBornAgainCore.IObservable_attachObserver(self, obj)
+        return _libBornAgainCore.IPixel_createZeroSizePixel(self, x, y)
 
-    def notifyObservers(self):
+    def getK(self, x, y, wavelength):
         r"""
-        notifyObservers(IObservable self)
-        void IObservable::notifyObservers()
-
-        notify observers about change in status 
+        getK(IPixel self, double x, double y, double wavelength) -> kvector_t
+        virtual kvector_t IPixel::getK(double x, double y, double wavelength) const =0
 
         """
-        return _libBornAgainCore.IObservable_notifyObservers(self)
+        return _libBornAgainCore.IPixel_getK(self, x, y, wavelength)
 
-    def __init__(self):
+    def getIntegrationFactor(self, x, y):
         r"""
-        __init__(IObservable self) -> IObservable
-
+        getIntegrationFactor(IPixel self, double x, double y) -> double
+        virtual double IPixel::getIntegrationFactor(double x, double y) const =0
 
-        Observable interface from Observer pattern
+        """
+        return _libBornAgainCore.IPixel_getIntegrationFactor(self, x, y)
 
-        C++ includes: IObserver.h
+    def getSolidAngle(self):
+        r"""
+        getSolidAngle(IPixel self) -> double
+        virtual double IPixel::getSolidAngle() const =0
 
         """
-        _libBornAgainCore.IObservable_swiginit(self, _libBornAgainCore.new_IObservable())
+        return _libBornAgainCore.IPixel_getSolidAngle(self)
 
-# Register IObservable in _libBornAgainCore:
-_libBornAgainCore.IObservable_swigregister(IObservable)
+# Register IPixel in _libBornAgainCore:
+_libBornAgainCore.IPixel_swigregister(IPixel)
 
-class IIntensityFunction(object):
+class IShape2D(ICloneable):
     r"""
 
 
-    Interface for applying arbitrary function to the measured intensity.
+    Basic class for all shapes in 2D.
 
-    C++ includes: IIntensityFunction.h
+    C++ includes: IShape2D.h
 
     """
 
@@ -4531,416 +4468,460 @@ class IIntensityFunction(object):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IIntensityFunction
 
     def clone(self):
         r"""
-        clone(IIntensityFunction self) -> IIntensityFunction
-        virtual IIntensityFunction* IIntensityFunction::clone() const =0
+        clone(IShape2D self) -> IShape2D
+        virtual IShape2D* IShape2D::clone() const =0
 
         """
-        return _libBornAgainCore.IIntensityFunction_clone(self)
+        return _libBornAgainCore.IShape2D_clone(self)
 
-    def evaluate(self, value):
+    def contains(self, *args):
         r"""
-        evaluate(IIntensityFunction self, double value) -> double
-        virtual double IIntensityFunction::evaluate(double value) const =0
+        contains(IShape2D self, double x, double y) -> bool
+        contains(IShape2D self, Bin1D binx, Bin1D biny) -> bool
+        virtual bool IShape2D::contains(const Bin1D &binx, const Bin1D &biny) const =0
+
+        Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). 
 
         """
-        return _libBornAgainCore.IIntensityFunction_evaluate(self, value)
+        return _libBornAgainCore.IShape2D_contains(self, *args)
+    __swig_destroy__ = _libBornAgainCore.delete_IShape2D
 
-# Register IIntensityFunction in _libBornAgainCore:
-_libBornAgainCore.IIntensityFunction_swigregister(IIntensityFunction)
+# Register IShape2D in _libBornAgainCore:
+_libBornAgainCore.IShape2D_swigregister(IShape2D)
 
-class IntensityFunctionLog(IIntensityFunction):
+class Ellipse(IShape2D):
     r"""
 
 
-    Algorithm for applying log function to the measured intensity.
+    Ellipse shape.
 
-    C++ includes: IIntensityFunction.h
+    C++ includes: Ellipse.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def clone(self):
+    def __init__(self, xcenter, ycenter, xradius, yradius, theta=0.0):
         r"""
-        clone(IntensityFunctionLog self) -> IntensityFunctionLog
-        IntensityFunctionLog * IntensityFunctionLog::clone() const
+        __init__(Ellipse self, double xcenter, double ycenter, double xradius, double yradius, double theta=0.0) -> Ellipse
+        Ellipse::Ellipse(double xcenter, double ycenter, double xradius, double yradius, double theta=0.0)
+
+        Parameters:
+        -----------
+
+        xcenter: 
+        x-coordinate of  Ellipse's center
+
+        ycenter: 
+        y-coordinate of  Ellipse's center
+
+        xradius: 
+        Radius along x-axis
+
+        yradius: 
+        Radius along y-axis
+
+        theta: 
+        Angle of  Ellipse rotation in radians 
 
         """
-        return _libBornAgainCore.IntensityFunctionLog_clone(self)
+        _libBornAgainCore.Ellipse_swiginit(self, _libBornAgainCore.new_Ellipse(xcenter, ycenter, xradius, yradius, theta))
 
-    def evaluate(self, value):
+    def clone(self):
         r"""
-        evaluate(IntensityFunctionLog self, double value) -> double
-        double IntensityFunctionLog::evaluate(double value) const
+        clone(Ellipse self) -> Ellipse
+        Ellipse* Ellipse::clone() const
 
         """
-        return _libBornAgainCore.IntensityFunctionLog_evaluate(self, value)
+        return _libBornAgainCore.Ellipse_clone(self)
 
-    def __init__(self):
+    def contains(self, *args):
         r"""
-        __init__(IntensityFunctionLog self) -> IntensityFunctionLog
+        contains(Ellipse self, double x, double y) -> bool
+        contains(Ellipse self, Bin1D binx, Bin1D biny) -> bool
+        bool Ellipse::contains(const Bin1D &binx, const Bin1D &biny) const
 
+        Returns true if area defined by two bins is inside or on border of ellipse; more precisely, if mid point of two bins satisfy this condition. 
 
-        Algorithm for applying log function to the measured intensity.
+        """
+        return _libBornAgainCore.Ellipse_contains(self, *args)
 
-        C++ includes: IIntensityFunction.h
+    def getCenterX(self):
+        r"""
+        getCenterX(Ellipse self) -> double
+        double Ellipse::getCenterX() const
 
         """
-        _libBornAgainCore.IntensityFunctionLog_swiginit(self, _libBornAgainCore.new_IntensityFunctionLog())
-    __swig_destroy__ = _libBornAgainCore.delete_IntensityFunctionLog
+        return _libBornAgainCore.Ellipse_getCenterX(self)
 
-# Register IntensityFunctionLog in _libBornAgainCore:
-_libBornAgainCore.IntensityFunctionLog_swigregister(IntensityFunctionLog)
+    def getCenterY(self):
+        r"""
+        getCenterY(Ellipse self) -> double
+        double Ellipse::getCenterY() const
 
-class IntensityFunctionSqrt(IIntensityFunction):
-    r"""
+        """
+        return _libBornAgainCore.Ellipse_getCenterY(self)
 
+    def getRadiusX(self):
+        r"""
+        getRadiusX(Ellipse self) -> double
+        double Ellipse::getRadiusX() const
 
-    Algorithm for applying sqrt function to the measured intensity.
+        """
+        return _libBornAgainCore.Ellipse_getRadiusX(self)
 
-    C++ includes: IIntensityFunction.h
+    def getRadiusY(self):
+        r"""
+        getRadiusY(Ellipse self) -> double
+        double Ellipse::getRadiusY() const
+
+        """
+        return _libBornAgainCore.Ellipse_getRadiusY(self)
+
+    def getTheta(self):
+        r"""
+        getTheta(Ellipse self) -> double
+        double Ellipse::getTheta() const
+
+        """
+        return _libBornAgainCore.Ellipse_getTheta(self)
+    __swig_destroy__ = _libBornAgainCore.delete_Ellipse
+
+# Register Ellipse in _libBornAgainCore:
+_libBornAgainCore.Ellipse_swigregister(Ellipse)
+
+class Line(IShape2D):
+    r"""
+
+
+    A line segment.
+
+    C++ includes: Line.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def clone(self):
+    def __init__(self, x1, y1, x2, y2):
         r"""
-        clone(IntensityFunctionSqrt self) -> IntensityFunctionSqrt
-        IntensityFunctionSqrt * IntensityFunctionSqrt::clone() const
+        __init__(Line self, double x1, double y1, double x2, double y2) -> Line
+        Line::Line(double x1, double y1, double x2, double y2)
 
         """
-        return _libBornAgainCore.IntensityFunctionSqrt_clone(self)
+        _libBornAgainCore.Line_swiginit(self, _libBornAgainCore.new_Line(x1, y1, x2, y2))
 
-    def evaluate(self, value):
+    def clone(self):
         r"""
-        evaluate(IntensityFunctionSqrt self, double value) -> double
-        double IntensityFunctionSqrt::evaluate(double value) const
+        clone(Line self) -> Line
+        Line* Line::clone() const
 
         """
-        return _libBornAgainCore.IntensityFunctionSqrt_evaluate(self, value)
+        return _libBornAgainCore.Line_clone(self)
 
-    def __init__(self):
+    def contains(self, *args):
         r"""
-        __init__(IntensityFunctionSqrt self) -> IntensityFunctionSqrt
-
-
-        Algorithm for applying sqrt function to the measured intensity.
+        contains(Line self, double x, double y) -> bool
+        contains(Line self, Bin1D binx, Bin1D biny) -> bool
+        bool Line::contains(const Bin1D &binx, const Bin1D &biny) const
 
-        C++ includes: IIntensityFunction.h
+        Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). 
 
         """
-        _libBornAgainCore.IntensityFunctionSqrt_swiginit(self, _libBornAgainCore.new_IntensityFunctionSqrt())
-    __swig_destroy__ = _libBornAgainCore.delete_IntensityFunctionSqrt
+        return _libBornAgainCore.Line_contains(self, *args)
+    __swig_destroy__ = _libBornAgainCore.delete_Line
 
-# Register IntensityFunctionSqrt in _libBornAgainCore:
-_libBornAgainCore.IntensityFunctionSqrt_swigregister(IntensityFunctionSqrt)
+# Register Line in _libBornAgainCore:
+_libBornAgainCore.Line_swigregister(Line)
 
-class IIntensityNormalizer(ICloneable, INode):
+class VerticalLine(IShape2D):
     r"""
 
 
-    Interface to  OutputData normalizers.
+    An infinite vertical line.
 
-    C++ includes: IIntensityNormalizer.h
+    C++ includes: Line.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IIntensityNormalizer
 
-    def clone(self):
+    def __init__(self, x):
         r"""
-        clone(IIntensityNormalizer self) -> IIntensityNormalizer
-        virtual IIntensityNormalizer* IIntensityNormalizer::clone() const =0
+        __init__(VerticalLine self, double x) -> VerticalLine
+        VerticalLine::VerticalLine(double x)
+
+        Parameters:
+        -----------
+
+        x: 
+        The value at which it crosses x-axes 
 
         """
-        return _libBornAgainCore.IIntensityNormalizer_clone(self)
+        _libBornAgainCore.VerticalLine_swiginit(self, _libBornAgainCore.new_VerticalLine(x))
 
-    def createNormalizedData(self, data):
+    def clone(self):
         r"""
-        createNormalizedData(IIntensityNormalizer self, IntensityData data) -> IntensityData
-        virtual OutputData<double>* IIntensityNormalizer::createNormalizedData(const OutputData< double > &data) const =0
+        clone(VerticalLine self) -> VerticalLine
+        VerticalLine* VerticalLine::clone() const
 
         """
-        return _libBornAgainCore.IIntensityNormalizer_createNormalizedData(self, data)
+        return _libBornAgainCore.VerticalLine_clone(self)
 
-    def apply(self, data):
+    def contains(self, *args):
         r"""
-        apply(IIntensityNormalizer self, IntensityData data)
-        virtual void IIntensityNormalizer::apply(OutputData< double > &data) const =0
+        contains(VerticalLine self, double x, double y) -> bool
+        contains(VerticalLine self, Bin1D binx, Bin1D biny) -> bool
+        bool VerticalLine::contains(const Bin1D &binx, const Bin1D &biny) const
+
+        Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). 
 
         """
-        return _libBornAgainCore.IIntensityNormalizer_apply(self, data)
+        return _libBornAgainCore.VerticalLine_contains(self, *args)
 
-    def setMaximumIntensity(self, arg2):
+    def getXpos(self):
         r"""
-        setMaximumIntensity(IIntensityNormalizer self, double arg2)
-        virtual void IIntensityNormalizer::setMaximumIntensity(double)=0
+        getXpos(VerticalLine self) -> double
+        double VerticalLine::getXpos() const
 
         """
-        return _libBornAgainCore.IIntensityNormalizer_setMaximumIntensity(self, arg2)
+        return _libBornAgainCore.VerticalLine_getXpos(self)
+    __swig_destroy__ = _libBornAgainCore.delete_VerticalLine
 
-# Register IIntensityNormalizer in _libBornAgainCore:
-_libBornAgainCore.IIntensityNormalizer_swigregister(IIntensityNormalizer)
+# Register VerticalLine in _libBornAgainCore:
+_libBornAgainCore.VerticalLine_swigregister(VerticalLine)
 
-class IntensityNormalizer(IIntensityNormalizer):
+class HorizontalLine(IShape2D):
     r"""
 
 
-    Standard  OutputData normalizer, with configurable max_intensity.
+    An infinite horizontal line.
 
-    C++ includes: IIntensityNormalizer.h
+    C++ includes: Line.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, scale=1.0, shift=0.0):
+    def __init__(self, y):
         r"""
-        __init__(IntensityNormalizer self, double scale=1.0, double shift=0.0) -> IntensityNormalizer
-        IntensityNormalizer::IntensityNormalizer(double scale=1.0, double shift=0.0)
+        __init__(HorizontalLine self, double y) -> HorizontalLine
+        HorizontalLine::HorizontalLine(double y)
 
-        """
-        _libBornAgainCore.IntensityNormalizer_swiginit(self, _libBornAgainCore.new_IntensityNormalizer(scale, shift))
-    __swig_destroy__ = _libBornAgainCore.delete_IntensityNormalizer
+        Parameters:
+        -----------
 
-    def clone(self):
-        r"""
-        clone(IntensityNormalizer self) -> IntensityNormalizer
-        IntensityNormalizer * IntensityNormalizer::clone() const
+        y: 
+        The value at which it crosses y-axes 
 
         """
-        return _libBornAgainCore.IntensityNormalizer_clone(self)
+        _libBornAgainCore.HorizontalLine_swiginit(self, _libBornAgainCore.new_HorizontalLine(y))
 
-    def accept(self, visitor):
+    def clone(self):
         r"""
-        accept(IntensityNormalizer self, INodeVisitor visitor)
-        void IntensityNormalizer::accept(INodeVisitor *visitor) const
-
-        Calls the  INodeVisitor's visit method. 
+        clone(HorizontalLine self) -> HorizontalLine
+        HorizontalLine* HorizontalLine::clone() const
 
         """
-        return _libBornAgainCore.IntensityNormalizer_accept(self, visitor)
+        return _libBornAgainCore.HorizontalLine_clone(self)
 
-    def createNormalizedData(self, data):
+    def contains(self, *args):
         r"""
-        createNormalizedData(IntensityNormalizer self, IntensityData data) -> IntensityData
-        OutputData< double > * IntensityNormalizer::createNormalizedData(const OutputData< double > &data) const
-
-        """
-        return _libBornAgainCore.IntensityNormalizer_createNormalizedData(self, data)
+        contains(HorizontalLine self, double x, double y) -> bool
+        contains(HorizontalLine self, Bin1D binx, Bin1D biny) -> bool
+        bool HorizontalLine::contains(const Bin1D &binx, const Bin1D &biny) const
 
-    def apply(self, data):
-        r"""
-        apply(IntensityNormalizer self, IntensityData data)
-        void IntensityNormalizer::apply(OutputData< double > &data) const final
+        Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). 
 
         """
-        return _libBornAgainCore.IntensityNormalizer_apply(self, data)
+        return _libBornAgainCore.HorizontalLine_contains(self, *args)
 
-    def setMaximumIntensity(self, max_intensity):
+    def getYpos(self):
         r"""
-        setMaximumIntensity(IntensityNormalizer self, double max_intensity)
-        virtual void IntensityNormalizer::setMaximumIntensity(double max_intensity)
+        getYpos(HorizontalLine self) -> double
+        double HorizontalLine::getYpos() const
 
         """
-        return _libBornAgainCore.IntensityNormalizer_setMaximumIntensity(self, max_intensity)
+        return _libBornAgainCore.HorizontalLine_getYpos(self)
+    __swig_destroy__ = _libBornAgainCore.delete_HorizontalLine
 
-# Register IntensityNormalizer in _libBornAgainCore:
-_libBornAgainCore.IntensityNormalizer_swigregister(IntensityNormalizer)
+# Register HorizontalLine in _libBornAgainCore:
+_libBornAgainCore.HorizontalLine_swigregister(HorizontalLine)
 
-class IntensityScaleAndShiftNormalizer(IntensityNormalizer):
+class Polygon(IShape2D):
     r"""
 
 
-    Simplified  OutputData normalizer, with max_intensity=1.
+    A polygon in 2D space.  Polygon defined by two arrays with x and y coordinates of points. Sizes of arrays should coincide. If polygon is unclosed (the last point doesn't repeat the first one), it will be closed automatically.
 
-    C++ includes: IIntensityNormalizer.h
+    C++ includes: Polygon.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, scale=1.0, shift=0.0):
+    def __init__(self, *args):
         r"""
-        __init__(IntensityScaleAndShiftNormalizer self, double scale=1.0, double shift=0.0) -> IntensityScaleAndShiftNormalizer
-        IntensityScaleAndShiftNormalizer::IntensityScaleAndShiftNormalizer(double scale=1.0, double shift=0.0)
+        __init__(Polygon self, vdouble1d_t x, vdouble1d_t y) -> Polygon
+        __init__(Polygon self, vdouble2d_t points) -> Polygon
+        __init__(Polygon self, PolygonPrivate const * d) -> Polygon
+        Polygon::Polygon(const PolygonPrivate *d)
 
         """
-        _libBornAgainCore.IntensityScaleAndShiftNormalizer_swiginit(self, _libBornAgainCore.new_IntensityScaleAndShiftNormalizer(scale, shift))
-    __swig_destroy__ = _libBornAgainCore.delete_IntensityScaleAndShiftNormalizer
+        _libBornAgainCore.Polygon_swiginit(self, _libBornAgainCore.new_Polygon(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_Polygon
 
-    def accept(self, visitor):
+    def clone(self):
         r"""
-        accept(IntensityScaleAndShiftNormalizer self, INodeVisitor visitor)
-        void IntensityScaleAndShiftNormalizer::accept(INodeVisitor *visitor) const final
+        clone(Polygon self) -> Polygon
+        virtual Polygon* Polygon::clone() const
 
-        Calls the  INodeVisitor's visit method. 
+        """
+        return _libBornAgainCore.Polygon_clone(self)
+
+    def contains(self, *args):
+        r"""
+        contains(Polygon self, double x, double y) -> bool
+        contains(Polygon self, Bin1D binx, Bin1D biny) -> bool
+        bool Polygon::contains(const Bin1D &binx, const Bin1D &biny) const
+
+        Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). 
 
         """
-        return _libBornAgainCore.IntensityScaleAndShiftNormalizer_accept(self, visitor)
+        return _libBornAgainCore.Polygon_contains(self, *args)
 
-    def setMaximumIntensity(self, arg2):
+    def getArea(self):
         r"""
-        setMaximumIntensity(IntensityScaleAndShiftNormalizer self, double arg2)
-        void IntensityScaleAndShiftNormalizer::setMaximumIntensity(double) final
+        getArea(Polygon self) -> double
+        double Polygon::getArea() const
 
         """
-        return _libBornAgainCore.IntensityScaleAndShiftNormalizer_setMaximumIntensity(self, arg2)
+        return _libBornAgainCore.Polygon_getArea(self)
 
-    def clone(self):
+    def getPoints(self, xpos, ypos):
         r"""
-        clone(IntensityScaleAndShiftNormalizer self) -> IntensityScaleAndShiftNormalizer
-        IntensityScaleAndShiftNormalizer* IntensityScaleAndShiftNormalizer::clone() const final
+        getPoints(Polygon self, vdouble1d_t xpos, vdouble1d_t ypos)
+        void Polygon::getPoints(std::vector< double > &xpos, std::vector< double > &ypos) const
 
         """
-        return _libBornAgainCore.IntensityScaleAndShiftNormalizer_clone(self)
+        return _libBornAgainCore.Polygon_getPoints(self, xpos, ypos)
 
-# Register IntensityScaleAndShiftNormalizer in _libBornAgainCore:
-_libBornAgainCore.IntensityScaleAndShiftNormalizer_swigregister(IntensityScaleAndShiftNormalizer)
+# Register Polygon in _libBornAgainCore:
+_libBornAgainCore.Polygon_swigregister(Polygon)
 
-class IVarianceFunction(object):
+class Rectangle(IShape2D):
     r"""
 
 
-    Variance function interface.
+    The rectangle shape having its axis aligned to the (non-rotated) coordinate system.
 
-    C++ includes: VarianceFunctions.h
+    C++ includes: Rectangle.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
-    __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IVarianceFunction
-
-    def clone(self):
-        r"""
-        clone(IVarianceFunction self) -> IVarianceFunction
-        virtual IVarianceFunction* IVarianceFunction::clone() const =0
-
-        """
-        return _libBornAgainCore.IVarianceFunction_clone(self)
-
-    def variance(self, real_value, simulated_value):
+    def __init__(self, xlow, ylow, xup, yup):
         r"""
-        variance(IVarianceFunction self, double real_value, double simulated_value) -> double
-        virtual double IVarianceFunction::variance(double real_value, double simulated_value) const =0
-
-        """
-        return _libBornAgainCore.IVarianceFunction_variance(self, real_value, simulated_value)
-
-# Register IVarianceFunction in _libBornAgainCore:
-_libBornAgainCore.IVarianceFunction_swigregister(IVarianceFunction)
+        __init__(Rectangle self, double xlow, double ylow, double xup, double yup) -> Rectangle
+        Rectangle::Rectangle(double xlow, double ylow, double xup, double yup)
 
-class VarianceConstantFunction(IVarianceFunction):
-    r"""
+        Parameters:
+        -----------
 
+        xlow: 
+        x-coordinate of lower left corner
 
-    Returns 1.0 as variance value
+        ylow: 
+        y-coordinate of lower left corner
 
-    C++ includes: VarianceFunctions.h
+        xup: 
+        x-coordinate of upper right corner
 
-    """
+        yup: 
+        y-coordinate of upper right corner 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        _libBornAgainCore.Rectangle_swiginit(self, _libBornAgainCore.new_Rectangle(xlow, ylow, xup, yup))
 
     def clone(self):
         r"""
-        clone(VarianceConstantFunction self) -> VarianceConstantFunction
-        VarianceConstantFunction * VarianceConstantFunction::clone() const override
+        clone(Rectangle self) -> Rectangle
+        Rectangle* Rectangle::clone() const
 
         """
-        return _libBornAgainCore.VarianceConstantFunction_clone(self)
+        return _libBornAgainCore.Rectangle_clone(self)
 
-    def variance(self, arg2, arg3):
+    def contains(self, *args):
         r"""
-        variance(VarianceConstantFunction self, double arg2, double arg3) -> double
-        double VarianceConstantFunction::variance(double, double) const override
+        contains(Rectangle self, double x, double y) -> bool
+        contains(Rectangle self, Bin1D binx, Bin1D biny) -> bool
+        bool Rectangle::contains(const Bin1D &binx, const Bin1D &biny) const
+
+        Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). 
 
         """
-        return _libBornAgainCore.VarianceConstantFunction_variance(self, arg2, arg3)
+        return _libBornAgainCore.Rectangle_contains(self, *args)
 
-    def __init__(self):
+    def getArea(self):
         r"""
-        __init__(VarianceConstantFunction self) -> VarianceConstantFunction
-
-
-        Returns 1.0 as variance value
-
-        C++ includes: VarianceFunctions.h
+        getArea(Rectangle self) -> double
+        double Rectangle::getArea() const
 
         """
-        _libBornAgainCore.VarianceConstantFunction_swiginit(self, _libBornAgainCore.new_VarianceConstantFunction())
-    __swig_destroy__ = _libBornAgainCore.delete_VarianceConstantFunction
-
-# Register VarianceConstantFunction in _libBornAgainCore:
-_libBornAgainCore.VarianceConstantFunction_swigregister(VarianceConstantFunction)
-
-class VarianceSimFunction(IVarianceFunction):
-    r"""
-
-
-    Returns max(sim, epsilon)
-
-    C++ includes: VarianceFunctions.h
+        return _libBornAgainCore.Rectangle_getArea(self)
 
-    """
+    def getXlow(self):
+        r"""
+        getXlow(Rectangle self) -> double
+        double Rectangle::getXlow() const
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.Rectangle_getXlow(self)
 
-    def __init__(self, epsilon=1.0):
+    def getYlow(self):
         r"""
-        __init__(VarianceSimFunction self, double epsilon=1.0) -> VarianceSimFunction
-        VarianceSimFunction::VarianceSimFunction(double epsilon=1.0)
+        getYlow(Rectangle self) -> double
+        double Rectangle::getYlow() const
 
         """
-        _libBornAgainCore.VarianceSimFunction_swiginit(self, _libBornAgainCore.new_VarianceSimFunction(epsilon))
+        return _libBornAgainCore.Rectangle_getYlow(self)
 
-    def clone(self):
+    def getXup(self):
         r"""
-        clone(VarianceSimFunction self) -> VarianceSimFunction
-        VarianceSimFunction * VarianceSimFunction::clone() const override
+        getXup(Rectangle self) -> double
+        double Rectangle::getXup() const
 
         """
-        return _libBornAgainCore.VarianceSimFunction_clone(self)
+        return _libBornAgainCore.Rectangle_getXup(self)
 
-    def variance(self, exp, sim):
+    def getYup(self):
         r"""
-        variance(VarianceSimFunction self, double exp, double sim) -> double
-        double VarianceSimFunction::variance(double exp, double sim) const override
+        getYup(Rectangle self) -> double
+        double Rectangle::getYup() const
 
         """
-        return _libBornAgainCore.VarianceSimFunction_variance(self, exp, sim)
-    __swig_destroy__ = _libBornAgainCore.delete_VarianceSimFunction
+        return _libBornAgainCore.Rectangle_getYup(self)
+    __swig_destroy__ = _libBornAgainCore.delete_Rectangle
 
-# Register VarianceSimFunction in _libBornAgainCore:
-_libBornAgainCore.VarianceSimFunction_swigregister(VarianceSimFunction)
+# Register Rectangle in _libBornAgainCore:
+_libBornAgainCore.Rectangle_swigregister(Rectangle)
 
-class ChiSquaredModule(IChiSquaredModule):
+class ISample(ICloneable, INode):
     r"""
 
 
-    Calculation of chi2 between two data sets.
+    Pure virtual base class for sample components and properties related to scattering.
 
-    C++ includes: ChiSquaredModule.h
+    C++ includes: ISample.h
 
     """
 
@@ -4949,1164 +4930,1066 @@ class ChiSquaredModule(IChiSquaredModule):
 
     def __init__(self, *args):
         r"""
-        __init__(ChiSquaredModule self) -> ChiSquaredModule
-        __init__(ChiSquaredModule self, ChiSquaredModule other) -> ChiSquaredModule
-        ChiSquaredModule::ChiSquaredModule(const ChiSquaredModule &other)
+        __init__(ISample self) -> ISample
+        __init__(ISample self, INode parent, std::vector< char const *,std::allocator< char const * > > const PName, std::vector< char const *,std::allocator< char const * > > const PUnit, vdouble1d_t PMin, vdouble1d_t PMax, vdouble1d_t PDefault, vdouble1d_t P) -> ISample
 
-        """
-        _libBornAgainCore.ChiSquaredModule_swiginit(self, _libBornAgainCore.new_ChiSquaredModule(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_ChiSquaredModule
 
-    def clone(self):
-        r"""
-        clone(ChiSquaredModule self) -> ChiSquaredModule
-        virtual ChiSquaredModule* ChiSquaredModule::clone() const
+        Pure virtual base class for sample components and properties related to scattering.
 
-        clone method 
+        C++ includes: ISample.h
 
         """
-        return _libBornAgainCore.ChiSquaredModule_clone(self)
+        if self.__class__ == ISample:
+            _self = None
+        else:
+            _self = self
+        _libBornAgainCore.ISample_swiginit(self, _libBornAgainCore.new_ISample(_self, *args))
 
-    def residual(self, a, b, weight):
+    def clone(self):
         r"""
-        residual(ChiSquaredModule self, double a, double b, double weight) -> double
-        double ChiSquaredModule::residual(double a, double b, double weight)
+        clone(ISample self) -> ISample
+        ISample* ISample::clone() const override=0
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.ChiSquaredModule_residual(self, a, b, weight)
+        return _libBornAgainCore.ISample_clone(self)
 
-# Register ChiSquaredModule in _libBornAgainCore:
-_libBornAgainCore.ChiSquaredModule_swigregister(ChiSquaredModule)
+    def material(self):
+        r"""
+        material(ISample self) -> Material
+        virtual const Material* ISample::material() const
 
-class FitOptions(object):
-    r"""Proxy of C++ FitOptions class."""
+        Returns nullptr, unless overwritten to return a specific material. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.ISample_material(self)
 
-    def __init__(self):
-        r"""__init__(FitOptions self) -> FitOptions"""
-        _libBornAgainCore.FitOptions_swiginit(self, _libBornAgainCore.new_FitOptions())
+    def containedMaterials(self):
+        r"""
+        containedMaterials(ISample self) -> std::vector< Material const *,std::allocator< Material const * > >
+        std::vector< const Material * > ISample::containedMaterials() const
 
-    def derivEpsilon(self):
-        r"""derivEpsilon(FitOptions self) -> double"""
-        return _libBornAgainCore.FitOptions_derivEpsilon(self)
+        Returns set of unique materials contained in this  ISample. 
 
-    def setDerivEpsilon(self, deriv_epsilon):
-        r"""setDerivEpsilon(FitOptions self, double deriv_epsilon)"""
-        return _libBornAgainCore.FitOptions_setDerivEpsilon(self, deriv_epsilon)
+        """
+        return _libBornAgainCore.ISample_containedMaterials(self)
+    __swig_destroy__ = _libBornAgainCore.delete_ISample
+    def __disown__(self):
+        self.this.disown()
+        _libBornAgainCore.disown_ISample(self)
+        return weakref.proxy(self)
 
-    def stepFactor(self):
-        r"""stepFactor(FitOptions self) -> double"""
-        return _libBornAgainCore.FitOptions_stepFactor(self)
+# Register ISample in _libBornAgainCore:
+_libBornAgainCore.ISample_swigregister(ISample)
 
-    def setStepFactor(self, step_factor):
-        r"""setStepFactor(FitOptions self, double step_factor)"""
-        return _libBornAgainCore.FitOptions_setStepFactor(self, step_factor)
-    __swig_destroy__ = _libBornAgainCore.delete_FitOptions
+class IFormFactor(ISample):
+    r"""
 
-# Register FitOptions in _libBornAgainCore:
-_libBornAgainCore.FitOptions_swigregister(FitOptions)
 
-class PyBuilderCallback(object):
-    r"""
+    Pure virtual base class for all form factors.
 
+    The actual form factor is returned by the complex valued function  IFormFactor::evaluate, which depends on the incoming and outgoing wave vectors ki and kf. If it only depends on the scattering vector q=ki-kf, then it is a IBornFormFactor.
 
-    Builds simulation object using a Python callable. Base class to wrap Python callable and pass it to C++. Used in swig interface file, intended to be overloaded from Python.
+    Other children besides IBornFormFactor are  IFormFactorDecorator,  FormFactorWeighted,  FormFactorDWBA,  FormFactorDWBAPol and  FormFactorCrystal.
 
-    C++ includes: PyFittingCallbacks.h
+    C++ includes: IFormFactor.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self):
+    def __init__(self, *args):
         r"""
-        __init__(PyBuilderCallback self) -> PyBuilderCallback
-        PyBuilderCallback::PyBuilderCallback()
+        __init__(IFormFactor self) -> IFormFactor
+        __init__(IFormFactor self, INode parent, std::vector< char const *,std::allocator< char const * > > const PName, std::vector< char const *,std::allocator< char const * > > const PUnit, vdouble1d_t PMin, vdouble1d_t PMax, vdouble1d_t PDefault, vdouble1d_t P) -> IFormFactor
+        IFormFactor::IFormFactor()
 
         """
-        if self.__class__ == PyBuilderCallback:
+        if self.__class__ == IFormFactor:
             _self = None
         else:
             _self = self
-        _libBornAgainCore.PyBuilderCallback_swiginit(self, _libBornAgainCore.new_PyBuilderCallback(_self, ))
-    __swig_destroy__ = _libBornAgainCore.delete_PyBuilderCallback
+        _libBornAgainCore.IFormFactor_swiginit(self, _libBornAgainCore.new_IFormFactor(_self, *args))
+    __swig_destroy__ = _libBornAgainCore.delete_IFormFactor
 
-    def build_simulation(self, arg0):
+    def clone(self):
         r"""
-        build_simulation(PyBuilderCallback self, Parameters arg0) -> Simulation
-        Simulation * PyBuilderCallback::build_simulation(Fit::Parameters)
+        clone(IFormFactor self) -> IFormFactor
+        IFormFactor* IFormFactor::clone() const override=0
 
-        """
-        return _libBornAgainCore.PyBuilderCallback_build_simulation(self, arg0)
-    def __disown__(self):
-        self.this.disown()
-        _libBornAgainCore.disown_PyBuilderCallback(self)
-        return weakref.proxy(self)
+        Returns a clone of this  ISample object. 
 
-# Register PyBuilderCallback in _libBornAgainCore:
-_libBornAgainCore.PyBuilderCallback_swigregister(PyBuilderCallback)
+        """
+        return _libBornAgainCore.IFormFactor_clone(self)
 
-class PyObserverCallback(object):
-    r"""
+    def createSlicedFormFactor(self, limits, rot, translation):
+        r"""
+        createSlicedFormFactor(IFormFactor self, ZLimits limits, IRotation rot, kvector_t translation) -> IFormFactor
+        IFormFactor * IFormFactor::createSlicedFormFactor(ZLimits limits, const IRotation &rot, kvector_t translation) const
 
+        Creates a (possibly sliced) form factor with the given rotation and translation. 
 
-    Observer for  FitObjective based on Python callable. Base class to wrap Python callable and pass it to C++. Used in swig interface file, intended to be overloaded from Python.
+        """
+        return _libBornAgainCore.IFormFactor_createSlicedFormFactor(self, limits, rot, translation)
 
-    C++ includes: PyFittingCallbacks.h
+    def setAmbientMaterial(self, arg0):
+        r"""
+        setAmbientMaterial(IFormFactor self, Material arg0)
+        virtual void IFormFactor::setAmbientMaterial(Material)=0
 
-    """
+        Passes the material in which this particle is embedded. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.IFormFactor_setAmbientMaterial(self, arg0)
 
-    def __init__(self):
+    def evaluate(self, wavevectors):
         r"""
-        __init__(PyObserverCallback self) -> PyObserverCallback
-        PyObserverCallback::PyObserverCallback()
+        evaluate(IFormFactor self, WavevectorInfo wavevectors) -> complex_t
+        virtual complex_t IFormFactor::evaluate(const WavevectorInfo &wavevectors) const =0
+
+        Returns scattering amplitude for complex wavevectors ki, kf. 
 
         """
-        if self.__class__ == PyObserverCallback:
-            _self = None
-        else:
-            _self = self
-        _libBornAgainCore.PyObserverCallback_swiginit(self, _libBornAgainCore.new_PyObserverCallback(_self, ))
-    __swig_destroy__ = _libBornAgainCore.delete_PyObserverCallback
+        return _libBornAgainCore.IFormFactor_evaluate(self, wavevectors)
 
-    def update(self, arg0):
+    def volume(self):
         r"""
-        update(PyObserverCallback self, FitObjective arg0)
-        void PyObserverCallback::update(const FitObjective &)
+        volume(IFormFactor self) -> double
+        double IFormFactor::volume() const
+
+        Returns the total volume of the particle of this form factor's shape. 
 
         """
-        return _libBornAgainCore.PyObserverCallback_update(self, arg0)
+        return _libBornAgainCore.IFormFactor_volume(self)
+
+    def radialExtension(self):
+        r"""
+        radialExtension(IFormFactor self) -> double
+        virtual double IFormFactor::radialExtension() const =0
+
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+
+        """
+        return _libBornAgainCore.IFormFactor_radialExtension(self)
+
+    def bottomZ(self, rotation):
+        r"""
+        bottomZ(IFormFactor self, IRotation rotation) -> double
+        virtual double IFormFactor::bottomZ(const IRotation &rotation) const =0
+
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+
+        """
+        return _libBornAgainCore.IFormFactor_bottomZ(self, rotation)
+
+    def topZ(self, rotation):
+        r"""
+        topZ(IFormFactor self, IRotation rotation) -> double
+        virtual double IFormFactor::topZ(const IRotation &rotation) const =0
+
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+
+        """
+        return _libBornAgainCore.IFormFactor_topZ(self, rotation)
+
+    def canSliceAnalytically(self, rot):
+        r"""canSliceAnalytically(IFormFactor self, IRotation rot) -> bool"""
+        return _libBornAgainCore.IFormFactor_canSliceAnalytically(self, rot)
+
+    def sliceFormFactor(self, limits, rot, translation):
+        r"""sliceFormFactor(IFormFactor self, ZLimits limits, IRotation rot, kvector_t translation) -> IFormFactor"""
+        return _libBornAgainCore.IFormFactor_sliceFormFactor(self, limits, rot, translation)
     def __disown__(self):
         self.this.disown()
-        _libBornAgainCore.disown_PyObserverCallback(self)
+        _libBornAgainCore.disown_IFormFactor(self)
         return weakref.proxy(self)
 
-# Register PyObserverCallback in _libBornAgainCore:
-_libBornAgainCore.PyObserverCallback_swigregister(PyObserverCallback)
+# Register IFormFactor in _libBornAgainCore:
+_libBornAgainCore.IFormFactor_swigregister(IFormFactor)
 
-class FitObjective(object):
+
+def CreateTransformedFormFactor(formfactor, rot, translation):
+    r"""
+    CreateTransformedFormFactor(IFormFactor formfactor, IRotation rot, kvector_t translation) -> IFormFactor
+    IFormFactor* CreateTransformedFormFactor(const IFormFactor &formfactor, const IRotation &rot, kvector_t translation)
+
+    """
+    return _libBornAgainCore.CreateTransformedFormFactor(formfactor, rot, translation)
+class IFormFactorBorn(IFormFactor):
     r"""
 
 
-    Holds vector of   SimDataPairs (experimental data and simulation results) for use in fitting.
+    Pure virtual base class for Born form factors.
 
-    C++ includes: FitObjective.h
+    In contrast to the generic  IFormFactor, a Born form factor does not depend on the incoming and outgoing wave vectors ki and kf, except through their difference, the scattering vector q=ki-kf.
+
+    C++ includes: IFormFactorBorn.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self):
+    def __init__(self, *args):
         r"""
-        __init__(FitObjective self) -> FitObjective
-        FitObjective::FitObjective()
+        __init__(IFormFactorBorn self) -> IFormFactorBorn
+        __init__(IFormFactorBorn self, INode parent, std::vector< char const *,std::allocator< char const * > > const PName, std::vector< char const *,std::allocator< char const * > > const PUnit, vdouble1d_t PMin, vdouble1d_t PMax, vdouble1d_t PDefault, vdouble1d_t P) -> IFormFactorBorn
+        IFormFactorBorn::IFormFactorBorn()=default
 
         """
-        if self.__class__ == FitObjective:
+        if self.__class__ == IFormFactorBorn:
             _self = None
         else:
             _self = self
-        _libBornAgainCore.FitObjective_swiginit(self, _libBornAgainCore.new_FitObjective(_self, ))
-    __swig_destroy__ = _libBornAgainCore.delete_FitObjective
+        _libBornAgainCore.IFormFactorBorn_swiginit(self, _libBornAgainCore.new_IFormFactorBorn(_self, *args))
 
-    def evaluate_cpp(self, params):
+    def clone(self):
         r"""
-        evaluate_cpp(FitObjective self, Parameters params) -> double
-        double FitObjective::evaluate(const Fit::Parameters &params)
-
-        """
-        return _libBornAgainCore.FitObjective_evaluate_cpp(self, params)
+        clone(IFormFactorBorn self) -> IFormFactorBorn
+        IFormFactorBorn* IFormFactorBorn::clone() const override=0
 
-    def evaluate_residuals_cpp(self, params):
-        r"""
-        evaluate_residuals_cpp(FitObjective self, Parameters params) -> vdouble1d_t
-        std::vector< double > FitObjective::evaluate_residuals(const Fit::Parameters &params)
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FitObjective_evaluate_residuals_cpp(self, params)
+        return _libBornAgainCore.IFormFactorBorn_clone(self)
 
-    def numberOfFitElements(self):
+    def setAmbientMaterial(self, arg0):
         r"""
-        numberOfFitElements(FitObjective self) -> size_t
-        size_t FitObjective::numberOfFitElements() const
+        setAmbientMaterial(IFormFactorBorn self, Material arg0)
+        void IFormFactorBorn::setAmbientMaterial(Material) override
+
+        Passes the material in which this particle is embedded. 
 
         """
-        return _libBornAgainCore.FitObjective_numberOfFitElements(self)
+        return _libBornAgainCore.IFormFactorBorn_setAmbientMaterial(self, arg0)
 
-    def simulationResult(self, i_item=0):
+    def evaluate(self, wavevectors):
         r"""
-        simulationResult(FitObjective self, size_t i_item=0) -> SimulationResult
-        SimulationResult FitObjective::simulationResult(size_t i_item=0) const
+        evaluate(IFormFactorBorn self, WavevectorInfo wavevectors) -> complex_t
+        complex_t IFormFactorBorn::evaluate(const WavevectorInfo &wavevectors) const override
 
-        Returns simulation result in the form of  SimulationResult. 
+        Returns scattering amplitude for complex wavevectors ki, kf. 
 
         """
-        return _libBornAgainCore.FitObjective_simulationResult(self, i_item)
+        return _libBornAgainCore.IFormFactorBorn_evaluate(self, wavevectors)
 
-    def experimentalData(self, i_item=0):
+    def bottomZ(self, rotation):
         r"""
-        experimentalData(FitObjective self, size_t i_item=0) -> SimulationResult
-        SimulationResult FitObjective::experimentalData(size_t i_item=0) const
+        bottomZ(IFormFactorBorn self, IRotation rotation) -> double
+        double IFormFactorBorn::bottomZ(const IRotation &rotation) const override
 
-        Returns experimental data in the form of  SimulationResult. 
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.FitObjective_experimentalData(self, i_item)
+        return _libBornAgainCore.IFormFactorBorn_bottomZ(self, rotation)
 
-    def uncertaintyData_cpp(self, i_item=0):
+    def topZ(self, rotation):
         r"""
-        uncertaintyData_cpp(FitObjective self, size_t i_item=0) -> SimulationResult
-        SimulationResult FitObjective::uncertaintyData(size_t i_item=0) const
+        topZ(IFormFactorBorn self, IRotation rotation) -> double
+        double IFormFactorBorn::topZ(const IRotation &rotation) const override
 
-        Returns experimental data uncertainties in the form of  SimulationResult. 
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.FitObjective_uncertaintyData_cpp(self, i_item)
+        return _libBornAgainCore.IFormFactorBorn_topZ(self, rotation)
 
-    def relativeDifference(self, i_item=0):
+    def evaluate_for_q(self, q):
         r"""
-        relativeDifference(FitObjective self, size_t i_item=0) -> SimulationResult
-        SimulationResult FitObjective::relativeDifference(size_t i_item=0) const
+        evaluate_for_q(IFormFactorBorn self, cvector_t q) -> complex_t
+        virtual complex_t IFormFactorBorn::evaluate_for_q(cvector_t q) const =0
 
-        Returns relative difference between simulation and experimental data in the form of  SimulationResult. 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.FitObjective_relativeDifference(self, i_item)
+        return _libBornAgainCore.IFormFactorBorn_evaluate_for_q(self, q)
 
-    def absoluteDifference(self, i_item=0):
-        r"""
-        absoluteDifference(FitObjective self, size_t i_item=0) -> SimulationResult
-        SimulationResult FitObjective::absoluteDifference(size_t i_item=0) const
+    def canSliceAnalytically(self, rot):
+        r"""canSliceAnalytically(IFormFactorBorn self, IRotation rot) -> bool"""
+        return _libBornAgainCore.IFormFactorBorn_canSliceAnalytically(self, rot)
+    __swig_destroy__ = _libBornAgainCore.delete_IFormFactorBorn
+    def __disown__(self):
+        self.this.disown()
+        _libBornAgainCore.disown_IFormFactorBorn(self)
+        return weakref.proxy(self)
 
-        Returns absolute value of difference between simulation and experimental data in the form of  SimulationResult. 
+    def sliceFormFactor(self, limits, rot, translation):
+        r"""sliceFormFactor(IFormFactorBorn self, ZLimits limits, IRotation rot, kvector_t translation) -> IFormFactor"""
+        return _libBornAgainCore.IFormFactorBorn_sliceFormFactor(self, limits, rot, translation)
 
-        """
-        return _libBornAgainCore.FitObjective_absoluteDifference(self, i_item)
+# Register IFormFactorBorn in _libBornAgainCore:
+_libBornAgainCore.IFormFactorBorn_swigregister(IFormFactorBorn)
 
-    def experimental_array(self):
-        r"""
-        experimental_array(FitObjective self) -> vdouble1d_t
-        std::vector< double > FitObjective::experimental_array() const
+class SlicingEffects(object):
+    r"""
 
-        Returns one dimensional array representing merged experimental data. The area outside of the region of interest is not included, masked data is nullified. 
 
-        """
-        return _libBornAgainCore.FitObjective_experimental_array(self)
+    Nested structure that holds slicing effects on position and removed parts.
 
-    def simulation_array(self):
-        r"""
-        simulation_array(FitObjective self) -> vdouble1d_t
-        std::vector< double > FitObjective::simulation_array() const
+    C++ includes: IFormFactorBorn.h
 
-        Returns one dimensional array representing merged simulated intensities data. The area outside of the region of interest is not included, masked data is nullified. 
+    """
 
-        """
-        return _libBornAgainCore.FitObjective_simulation_array(self)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+    position = property(_libBornAgainCore.SlicingEffects_position_get, _libBornAgainCore.SlicingEffects_position_set, doc=r"""position : kvector_t""")
+    dz_bottom = property(_libBornAgainCore.SlicingEffects_dz_bottom_get, _libBornAgainCore.SlicingEffects_dz_bottom_set, doc=r"""dz_bottom : double""")
+    dz_top = property(_libBornAgainCore.SlicingEffects_dz_top_get, _libBornAgainCore.SlicingEffects_dz_top_set, doc=r"""dz_top : double""")
 
-    def uncertainties_cpp(self):
+    def __init__(self):
         r"""
-        uncertainties_cpp(FitObjective self) -> vdouble1d_t
-        std::vector< double > FitObjective::uncertainties() const
-
-        Returns one-dimensional array representing merged data uncertainties. The area outside of the region of interest is not included, masked data is nullified. 
+        __init__(SlicingEffects self) -> SlicingEffects
 
-        """
-        return _libBornAgainCore.FitObjective_uncertainties_cpp(self)
 
-    def weights_array(self):
-        r"""
-        weights_array(FitObjective self) -> vdouble1d_t
-        std::vector< double > FitObjective::weights_array() const
+        Nested structure that holds slicing effects on position and removed parts.
 
-        Returns one-dimensional array representing merged user weights. The area outside of the region of interest is not included, masked data is nullified. 
+        C++ includes: IFormFactorBorn.h
 
         """
-        return _libBornAgainCore.FitObjective_weights_array(self)
+        _libBornAgainCore.SlicingEffects_swiginit(self, _libBornAgainCore.new_SlicingEffects())
+    __swig_destroy__ = _libBornAgainCore.delete_SlicingEffects
 
-    def initPrint(self, every_nth):
-        r"""
-        initPrint(FitObjective self, int every_nth)
-        void FitObjective::initPrint(int every_nth)
+# Register SlicingEffects in _libBornAgainCore:
+_libBornAgainCore.SlicingEffects_swigregister(SlicingEffects)
 
-        Initializes printing to standard output during the fitting.
+class vector_IFormFactorPtr_t(object):
+    r"""Proxy of C++ std::vector< IFormFactor * > class."""
 
-        Parameters:
-        -----------
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-        every_nth: 
-        Print every n'th iteration. 
+    def iterator(self):
+        r"""iterator(vector_IFormFactorPtr_t self) -> SwigPyIterator"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_iterator(self)
+    def __iter__(self):
+        return self.iterator()
 
-        """
-        return _libBornAgainCore.FitObjective_initPrint(self, every_nth)
-
-    def initPlot_cpp(self, every_nth, callback):
-        r"""
-        initPlot_cpp(FitObjective self, int every_nth, PyObserverCallback callback)
-        void FitObjective::initPlot(int every_nth, fit_observer_t observer)
+    def __nonzero__(self):
+        r"""__nonzero__(vector_IFormFactorPtr_t self) -> bool"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t___nonzero__(self)
 
-        """
-        return _libBornAgainCore.FitObjective_initPlot_cpp(self, every_nth, callback)
+    def __bool__(self):
+        r"""__bool__(vector_IFormFactorPtr_t self) -> bool"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t___bool__(self)
 
-    def iterationInfo(self):
-        r"""
-        iterationInfo(FitObjective self) -> IterationInfo
-        IterationInfo FitObjective::iterationInfo() const
+    def __len__(self):
+        r"""__len__(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::size_type"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t___len__(self)
 
-        """
-        return _libBornAgainCore.FitObjective_iterationInfo(self)
+    def __getslice__(self, i, j):
+        r"""__getslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j) -> vector_IFormFactorPtr_t"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t___getslice__(self, i, j)
 
-    def minimizerResult(self):
+    def __setslice__(self, *args):
         r"""
-        minimizerResult(FitObjective self) -> Fit::MinimizerResult
-        Fit::MinimizerResult FitObjective::minimizerResult() const
-
+        __setslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j)
+        __setslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j, vector_IFormFactorPtr_t v)
         """
-        return _libBornAgainCore.FitObjective_minimizerResult(self)
-
-    def finalize_cpp(self, result):
-        r"""
-        finalize_cpp(FitObjective self, Fit::MinimizerResult const & result)
-        void FitObjective::finalize(const Fit::MinimizerResult &result)
-
-        Should be explicitely called on last iteration to notify all observers. 
+        return _libBornAgainCore.vector_IFormFactorPtr_t___setslice__(self, *args)
 
-        """
-        return _libBornAgainCore.FitObjective_finalize_cpp(self, result)
+    def __delslice__(self, i, j):
+        r"""__delslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j)"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t___delslice__(self, i, j)
 
-    def fitObjectCount(self):
+    def __delitem__(self, *args):
         r"""
-        fitObjectCount(FitObjective self) -> unsigned int
-        unsigned FitObjective::fitObjectCount() const
-
+        __delitem__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i)
+        __delitem__(vector_IFormFactorPtr_t self, PySliceObject * slice)
         """
-        return _libBornAgainCore.FitObjective_fitObjectCount(self)
+        return _libBornAgainCore.vector_IFormFactorPtr_t___delitem__(self, *args)
 
-    def run_simulations(self, params):
+    def __getitem__(self, *args):
         r"""
-        run_simulations(FitObjective self, Parameters params)
-        void FitObjective::run_simulations(const Fit::Parameters &params)
-
+        __getitem__(vector_IFormFactorPtr_t self, PySliceObject * slice) -> vector_IFormFactorPtr_t
+        __getitem__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i) -> IFormFactor
         """
-        return _libBornAgainCore.FitObjective_run_simulations(self, params)
+        return _libBornAgainCore.vector_IFormFactorPtr_t___getitem__(self, *args)
 
-    def setChiSquaredModule(self, module):
+    def __setitem__(self, *args):
         r"""
-        setChiSquaredModule(FitObjective self, IChiSquaredModule module)
-        void FitObjective::setChiSquaredModule(const IChiSquaredModule &module)
-
+        __setitem__(vector_IFormFactorPtr_t self, PySliceObject * slice, vector_IFormFactorPtr_t v)
+        __setitem__(vector_IFormFactorPtr_t self, PySliceObject * slice)
+        __setitem__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, IFormFactor x)
         """
-        return _libBornAgainCore.FitObjective_setChiSquaredModule(self, module)
-
-    def setObjectiveMetric(self, *args):
-        r"""
-        setObjectiveMetric(FitObjective self, std::string const & metric)
-        setObjectiveMetric(FitObjective self, std::string const & metric, std::string const & norm)
-        void FitObjective::setObjectiveMetric(std::unique_ptr< ObjectiveMetric > metric)
+        return _libBornAgainCore.vector_IFormFactorPtr_t___setitem__(self, *args)
 
-        """
-        return _libBornAgainCore.FitObjective_setObjectiveMetric(self, *args)
+    def pop(self):
+        r"""pop(vector_IFormFactorPtr_t self) -> IFormFactor"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_pop(self)
 
-    def containsUncertainties_cpp(self, i_item):
-        r"""
-        containsUncertainties_cpp(FitObjective self, size_t i_item) -> bool
-        bool FitObjective::containsUncertainties(size_t i_item) const
+    def append(self, x):
+        r"""append(vector_IFormFactorPtr_t self, IFormFactor x)"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_append(self, x)
 
-        Returns true if the specified DataPair element contains uncertainties. 
+    def empty(self):
+        r"""empty(vector_IFormFactorPtr_t self) -> bool"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_empty(self)
 
-        """
-        return _libBornAgainCore.FitObjective_containsUncertainties_cpp(self, i_item)
+    def size(self):
+        r"""size(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::size_type"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_size(self)
 
-    def allPairsHaveUncertainties_cpp(self):
+    def swap(self, v):
         r"""
-        allPairsHaveUncertainties_cpp(FitObjective self) -> bool
-        bool FitObjective::allPairsHaveUncertainties() const
+        swap(vector_IFormFactorPtr_t self, vector_IFormFactorPtr_t v)
+        void swap(OutputDataIterator< TValue, TContainer > &left, OutputDataIterator< TValue, TContainer > &right)
 
-        Returns true if all the data pairs in  FitObjective instance contain uncertainties. 
+        make Swappable 
 
         """
-        return _libBornAgainCore.FitObjective_allPairsHaveUncertainties_cpp(self)
-
-    @staticmethod
-    def availableMetricOptions():
-        r"""availableMetricOptions() -> std::string"""
-        return _libBornAgainCore.FitObjective_availableMetricOptions()
+        return _libBornAgainCore.vector_IFormFactorPtr_t_swap(self, v)
 
-    def addSimulationAndData_cpp(self, *args):
-        r"""
-        addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble1d_t data, double weight=1.0)
-        addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble1d_t data, vdouble1d_t uncertainties, double weight=1.0)
-        addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble2d_t data, double weight=1.0)
-        addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble2d_t data, vdouble2d_t uncertainties, double weight=1.0)
-        void FitObjective::addSimulationAndData(PyBuilderCallback &callback, const T &data, const T &uncertainties, double weight=1.0)
+    def begin(self):
+        r"""begin(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::iterator"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_begin(self)
 
-        Constructs simulation/data pair for later fit.
+    def end(self):
+        r"""end(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::iterator"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_end(self)
 
-        Parameters:
-        -----------
+    def rbegin(self):
+        r"""rbegin(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::reverse_iterator"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_rbegin(self)
 
-        callback: 
-        simulation builder capable of producing simulations
+    def rend(self):
+        r"""rend(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::reverse_iterator"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_rend(self)
 
-        data: 
-        experimental data array
+    def clear(self):
+        r"""clear(vector_IFormFactorPtr_t self)"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_clear(self)
 
-        uncertainties: 
-        data uncertainties array
+    def get_allocator(self):
+        r"""get_allocator(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::allocator_type"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_get_allocator(self)
 
-        weight: 
-        weight of dataset in metric calculations 
+    def pop_back(self):
+        r"""pop_back(vector_IFormFactorPtr_t self)"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_pop_back(self)
 
+    def erase(self, *args):
+        r"""
+        erase(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator pos) -> std::vector< IFormFactor * >::iterator
+        erase(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator first, std::vector< IFormFactor * >::iterator last) -> std::vector< IFormFactor * >::iterator
         """
-        return _libBornAgainCore.FitObjective_addSimulationAndData_cpp(self, *args)
+        return _libBornAgainCore.vector_IFormFactorPtr_t_erase(self, *args)
 
-    def addSimulationAndData(self, callback, data, *args, **kwargs):
+    def __init__(self, *args):
+        r"""
+        __init__(vector_IFormFactorPtr_t self) -> vector_IFormFactorPtr_t
+        __init__(vector_IFormFactorPtr_t self, vector_IFormFactorPtr_t other) -> vector_IFormFactorPtr_t
+        __init__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type size) -> vector_IFormFactorPtr_t
+        __init__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type size, IFormFactor value) -> vector_IFormFactorPtr_t
         """
-        Sets simulation and experimental data to the fit objective.
-        Optionally accepts experimental data uncertainties and
-        user-defined dataset weight.
+        _libBornAgainCore.vector_IFormFactorPtr_t_swiginit(self, _libBornAgainCore.new_vector_IFormFactorPtr_t(*args))
 
-        Arguments:
+    def push_back(self, x):
+        r"""push_back(vector_IFormFactorPtr_t self, IFormFactor x)"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_push_back(self, x)
 
-        callback -- user-defined function returning fully-defined bornagain.Simulation object.
-        The function must use fit parameter dictionary as its input.
+    def front(self):
+        r"""front(vector_IFormFactorPtr_t self) -> IFormFactor"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_front(self)
 
-        data -- numpy array with experimental data.
+    def back(self):
+        r"""back(vector_IFormFactorPtr_t self) -> IFormFactor"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_back(self)
 
-        uncertainties -- numpy array with experimental data uncertainties.
-        Array shape must correspond to the shape of data. Optional argument.
+    def assign(self, n, x):
+        r"""assign(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type n, IFormFactor x)"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_assign(self, n, x)
 
-        weight -- user-defined weight of the dataset. If not specified, defaults to 1.0.
+    def resize(self, *args):
+        r"""
+        resize(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type new_size)
+        resize(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type new_size, IFormFactor x)
         """
-        if not hasattr(self, 'callback_container'):
-            self.callback_container = []
-        wrp = SimulationBuilderWrapper(callback)
-        self.callback_container.append(wrp)
-        return self.addSimulationAndData_cpp(wrp, data, *args, **kwargs)
+        return _libBornAgainCore.vector_IFormFactorPtr_t_resize(self, *args)
 
-    def convert_params(self, params):
-        """
-        Converts parameters to what FitObjective::evaluate expects
+    def insert(self, *args):
+        r"""
+        insert(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator pos, IFormFactor x) -> std::vector< IFormFactor * >::iterator
+        insert(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator pos, std::vector< IFormFactor * >::size_type n, IFormFactor x)
         """
+        return _libBornAgainCore.vector_IFormFactorPtr_t_insert(self, *args)
 
-        if str(params.__module__) == "lmfit.parameter":
-            bapars = libBornAgainFit.Parameters()
-            for p in params:
-                bapars.add(p, params[p].value)
-            return bapars
-        else:
-            return params
+    def reserve(self, n):
+        r"""reserve(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type n)"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_reserve(self, n)
 
-    def evaluate_residuals(self, params):
-        return self.evaluate_residuals_cpp(self.convert_params(params))
+    def capacity(self):
+        r"""capacity(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::size_type"""
+        return _libBornAgainCore.vector_IFormFactorPtr_t_capacity(self)
+    __swig_destroy__ = _libBornAgainCore.delete_vector_IFormFactorPtr_t
 
-    def evaluate(self, params):
-        return self.evaluate_cpp(self.convert_params(params))
+# Register vector_IFormFactorPtr_t in _libBornAgainCore:
+_libBornAgainCore.vector_IFormFactorPtr_t_swigregister(vector_IFormFactorPtr_t)
 
-    def convert_result(self, minim_result):
-        """
-        Converts result reported by arbitrary minimizer to ba.MinimizerResult
-        """
+class IRotation(ISample):
+    r"""
 
-        if str(minim_result.__module__) == "lmfit.minimizer":
-            return libBornAgainFit.MinimizerResult()
-        else:
-            return minim_result
 
-    def finalize(self, minimizer_result):
-        return self.finalize_cpp(self.convert_result(minimizer_result))
+    Pure virtual interface for rotations.
 
-    def create_default_plotter(self):
-        import plot_utils
-        self.m_plotter = plot_utils.PlotterGISAS()
-        return self.m_plotter.plot
+    C++ includes: Rotations.h
 
-    def initPlot(self, every_nth, callback = None):
-        if not callback:
-            callback = self.create_default_plotter()
+    """
 
-        self.wrp_plot_observer = ObserverCallbackWrapper(callback)
-        return self.initPlot_cpp(every_nth, self.wrp_plot_observer)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
 
-    def uncertainties(self):
-        """
-        Returns one-dimensional array representing merged data uncertainties.
-        If any of the associated data pairs lack uncertainties, returns None.
-        """
-        if self.allPairsHaveUncertainties_cpp():
-            return self.uncertainties_cpp()
-        return None
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
 
-    def uncertaintyData(self, i=0):
-        """
-        Returns uncertainties for i-th simulation-data pair. If
-        no uncertainties are assigned to the data pair, returns
-        None.
-        """
-        if self.containsUncertainties_cpp(i):
-            return self.uncertaintyData_cpp(i)
-        return None
+    @staticmethod
+    def createRotation(transform):
+        r"""createRotation(Transform3D const & transform) -> IRotation"""
+        return _libBornAgainCore.IRotation_createRotation(transform)
 
-    def __disown__(self):
-        self.this.disown()
-        _libBornAgainCore.disown_FitObjective(self)
-        return weakref.proxy(self)
+    @staticmethod
+    def createIdentity():
+        r"""createIdentity() -> IRotation"""
+        return _libBornAgainCore.IRotation_createIdentity()
+    __swig_destroy__ = _libBornAgainCore.delete_IRotation
 
-# Register FitObjective in _libBornAgainCore:
-_libBornAgainCore.FitObjective_swigregister(FitObjective)
+    def clone(self):
+        r"""
+        clone(IRotation self) -> IRotation
+        virtual IRotation* IRotation::clone() const =0
 
-def FitObjective_availableMetricOptions():
-    r"""FitObjective_availableMetricOptions() -> std::string"""
-    return _libBornAgainCore.FitObjective_availableMetricOptions()
+        Returns a clone of this  ISample object. 
 
+        """
+        return _libBornAgainCore.IRotation_clone(self)
 
-def StandardNormal(x):
-    r"""
-    StandardNormal(double x) -> double
-    double MathFunctions::StandardNormal(double x)
+    def createInverse(self):
+        r"""
+        createInverse(IRotation self) -> IRotation
+        virtual IRotation* IRotation::createInverse() const =0
 
-    """
-    return _libBornAgainCore.StandardNormal(x)
+        Returns a new  IRotation object that is the current object's inverse. 
 
-def Gaussian(x, average, std_dev):
-    r"""
-    Gaussian(double x, double average, double std_dev) -> double
-    double MathFunctions::Gaussian(double x, double average, double std_dev)
+        """
+        return _libBornAgainCore.IRotation_createInverse(self)
 
-    """
-    return _libBornAgainCore.Gaussian(x, average, std_dev)
+    def accept(self, visitor):
+        r"""
+        accept(IRotation self, INodeVisitor visitor)
+        void IRotation::accept(INodeVisitor *visitor) const
 
-def IntegratedGaussian(x, average, std_dev):
-    r"""
-    IntegratedGaussian(double x, double average, double std_dev) -> double
-    double MathFunctions::IntegratedGaussian(double x, double average, double std_dev)
+        Calls the  INodeVisitor's visit method. 
 
-    """
-    return _libBornAgainCore.IntegratedGaussian(x, average, std_dev)
+        """
+        return _libBornAgainCore.IRotation_accept(self, visitor)
 
-def cot(x):
-    r"""
-    cot(double x) -> double
-    double MathFunctions::cot(double x)
+    def getTransform3D(self):
+        r"""
+        getTransform3D(IRotation self) -> Transform3D
+        virtual Transform3D IRotation::getTransform3D() const =0
 
-    cotangent function:  $cot(x)\\equiv1/tan(x)$
+        Returns transformation. 
 
-    """
-    return _libBornAgainCore.cot(x)
+        """
+        return _libBornAgainCore.IRotation_getTransform3D(self)
 
-def Si(x):
-    r"""
-    Si(double x) -> double
-    double MathFunctions::Si(double x)
+    def isIdentity(self):
+        r"""
+        isIdentity(IRotation self) -> bool
+        bool IRotation::isIdentity() const
 
-    Sine integral function:  $Si(x)\\equiv\\int_0^x du \\sin(u)/u$. 
+        Returns true if rotation matrix is identity matrix (no rotations) 
 
-    """
-    return _libBornAgainCore.Si(x)
+        """
+        return _libBornAgainCore.IRotation_isIdentity(self)
 
-def sinc(*args):
-    r"""
-    sinc(double x) -> double
-    sinc(complex_t const z) -> complex_t
-    complex_t MathFunctions::sinc(const complex_t z)
+# Register IRotation in _libBornAgainCore:
+_libBornAgainCore.IRotation_swigregister(IRotation)
 
-    Complex sinc function:  $sinc(x)\\equiv\\sin(x)/x$. 
+def IRotation_createRotation(transform):
+    r"""IRotation_createRotation(Transform3D const & transform) -> IRotation"""
+    return _libBornAgainCore.IRotation_createRotation(transform)
 
-    """
-    return _libBornAgainCore.sinc(*args)
+def IRotation_createIdentity():
+    r"""IRotation_createIdentity() -> IRotation"""
+    return _libBornAgainCore.IRotation_createIdentity()
 
-def tanhc(z):
+
+def createProduct(left, right):
     r"""
-    tanhc(complex_t const z) -> complex_t
-    complex_t MathFunctions::tanhc(const complex_t z)
+    createProduct(IRotation left, IRotation right) -> IRotation
+    BA_CORE_API_ IRotation* createProduct(const IRotation &left, const IRotation &right)
 
-    Complex tanhc function:  $tanhc(x)\\equiv\\tanh(x)/x$. 
+    Returns concatenated rotation (first right, then left). 
 
     """
-    return _libBornAgainCore.tanhc(z)
+    return _libBornAgainCore.createProduct(left, right)
 
-def Laue(x, N):
+def IsZRotation(rot):
     r"""
-    Laue(double const x, size_t N) -> double
-    double MathFunctions::Laue(const double x, size_t N)
-
-    Real Laue function:  $Laue(x,N)\\equiv\\sin(Nx)/sin(x)$. 
+    IsZRotation(IRotation rot) -> bool
+    bool IsZRotation(const IRotation &rot)
 
     """
-    return _libBornAgainCore.Laue(x, N)
-
-def erf(arg):
+    return _libBornAgainCore.IsZRotation(rot)
+class IdentityRotation(IRotation):
     r"""
-    erf(double arg) -> double
-    double MathFunctions::erf(double arg)
 
-    Error function of real-valued argument. 
+
+    The identity rotation, which leaves everything in place.
+
+    C++ includes: Rotations.h
 
     """
-    return _libBornAgainCore.erf(arg)
 
-def Bessel_I0(x):
-    r"""
-    Bessel_I0(double x) -> double
-    double MathFunctions::Bessel_I0(double x)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    Modified Bessel function of the first kind and order 0. 
+    def __init__(self):
+        r"""
+        __init__(IdentityRotation self) -> IdentityRotation
+        IdentityRotation::IdentityRotation()=default
 
-    """
-    return _libBornAgainCore.Bessel_I0(x)
+        """
+        _libBornAgainCore.IdentityRotation_swiginit(self, _libBornAgainCore.new_IdentityRotation())
 
-def Bessel_J0(*args):
-    r"""
-    Bessel_J0(double x) -> double
-    Bessel_J0(complex_t const z) -> complex_t
-    complex_t MathFunctions::Bessel_J0(const complex_t z)
+    def clone(self):
+        r"""
+        clone(IdentityRotation self) -> IdentityRotation
+        IdentityRotation* IdentityRotation::clone() const
 
-    Complex Bessel function of the first kind and order 0. 
+        Returns a clone of this  ISample object. 
 
-    """
-    return _libBornAgainCore.Bessel_J0(*args)
+        """
+        return _libBornAgainCore.IdentityRotation_clone(self)
 
-def Bessel_J1(*args):
-    r"""
-    Bessel_J1(double x) -> double
-    Bessel_J1(complex_t const z) -> complex_t
-    complex_t MathFunctions::Bessel_J1(const complex_t z)
+    def createInverse(self):
+        r"""
+        createInverse(IdentityRotation self) -> IdentityRotation
+        IdentityRotation* IdentityRotation::createInverse() const
 
-    Complex Bessel function of the first kind and order 1. 
+        Returns a new  IRotation object that is the current object's inverse. 
 
-    """
-    return _libBornAgainCore.Bessel_J1(*args)
+        """
+        return _libBornAgainCore.IdentityRotation_createInverse(self)
 
-def Bessel_J1c(*args):
-    r"""
-    Bessel_J1c(double x) -> double
-    Bessel_J1c(complex_t const z) -> complex_t
-    complex_t MathFunctions::Bessel_J1c(const complex_t z)
+    def accept(self, visitor):
+        r"""
+        accept(IdentityRotation self, INodeVisitor visitor)
+        void IdentityRotation::accept(INodeVisitor *visitor) const
 
-    Complex Bessel function Bessel_J1(x)/x. 
+        Calls the  INodeVisitor's visit method. 
 
-    """
-    return _libBornAgainCore.Bessel_J1c(*args)
-FORWARD_FFT = _libBornAgainCore.FORWARD_FFT
+        """
+        return _libBornAgainCore.IdentityRotation_accept(self, visitor)
 
-BACKWARD_FFT = _libBornAgainCore.BACKWARD_FFT
+    def getTransform3D(self):
+        r"""
+        getTransform3D(IdentityRotation self) -> Transform3D
+        Transform3D IdentityRotation::getTransform3D() const
 
+        Returns transformation. 
 
-def FastFourierTransform(*args):
-    r"""
-    FastFourierTransform(vector_complex_t data, MathFunctions::EFFTDirection tcase) -> vector_complex_t
-    FastFourierTransform(vdouble1d_t data, MathFunctions::EFFTDirection tcase) -> vector_complex_t
-    std::vector< complex_t > MathFunctions::FastFourierTransform(const std::vector< double > &data, EFFTDirection tcase)
+        """
+        return _libBornAgainCore.IdentityRotation_getTransform3D(self)
 
-    simple (and unoptimized) wrapper function for the discrete fast Fourier transformation library (fftw3); transforms real to complex 
+    def isIdentity(self):
+        r"""
+        isIdentity(IdentityRotation self) -> bool
+        bool IdentityRotation::isIdentity() const
 
-    """
-    return _libBornAgainCore.FastFourierTransform(*args)
+        Returns true if rotation matrix is identity matrix (no rotations) 
 
-def ConvolveFFT(signal, resfunc):
+        """
+        return _libBornAgainCore.IdentityRotation_isIdentity(self)
+    __swig_destroy__ = _libBornAgainCore.delete_IdentityRotation
+
+# Register IdentityRotation in _libBornAgainCore:
+_libBornAgainCore.IdentityRotation_swigregister(IdentityRotation)
+
+class RotationX(IRotation):
     r"""
-    ConvolveFFT(vdouble1d_t signal, vdouble1d_t resfunc) -> vector_complex_t
-    std::vector< complex_t > MathFunctions::ConvolveFFT(const std::vector< double > &signal, const std::vector< double > &resfunc)
 
-    convolution of two real vectors of equal size 
 
-    """
-    return _libBornAgainCore.ConvolveFFT(signal, resfunc)
+    A rotation about the x axis.
 
-def GenerateUniformRandom():
-    r"""
-    GenerateUniformRandom() -> double
-    double MathFunctions::GenerateUniformRandom()
+    C++ includes: Rotations.h
 
     """
-    return _libBornAgainCore.GenerateUniformRandom()
 
-def GenerateStandardNormalRandom():
-    r"""
-    GenerateStandardNormalRandom() -> double
-    double MathFunctions::GenerateStandardNormalRandom()
-
-    """
-    return _libBornAgainCore.GenerateStandardNormalRandom()
-
-def GenerateNormalRandom(average, std_dev):
-    r"""
-    GenerateNormalRandom(double average, double std_dev) -> double
-    double MathFunctions::GenerateNormalRandom(double average, double std_dev)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    """
-    return _libBornAgainCore.GenerateNormalRandom(average, std_dev)
+    def __init__(self, angle):
+        r"""
+        __init__(RotationX self, double angle) -> RotationX
+        RotationX::RotationX(double angle)
 
-def GeneratePoissonRandom(average):
-    r"""
-    GeneratePoissonRandom(double average) -> double
-    double MathFunctions::GeneratePoissonRandom(double average)
+        Constructor of rotation around x-axis
 
-    """
-    return _libBornAgainCore.GeneratePoissonRandom(average)
-class IMultiLayerBuilder(IParameterized):
-    r"""
+        Parameters:
+        -----------
 
+        angle: 
+        rotation angle around x-axis in radians 
 
-    Interface to the class capable to build samples to simulate.
+        """
+        _libBornAgainCore.RotationX_swiginit(self, _libBornAgainCore.new_RotationX(angle))
 
-    C++ includes: IMultiLayerBuilder.h
+    def clone(self):
+        r"""
+        clone(RotationX self) -> RotationX
+        RotationX* RotationX::clone() const
 
-    """
+        Returns a clone of this  ISample object. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.RotationX_clone(self)
 
-    def __init__(self):
+    def createInverse(self):
         r"""
-        __init__(IMultiLayerBuilder self) -> IMultiLayerBuilder
-        IMultiLayerBuilder::IMultiLayerBuilder()
+        createInverse(RotationX self) -> RotationX
+        RotationX* RotationX::createInverse() const
+
+        Returns a new  IRotation object that is the current object's inverse. 
 
         """
-        if self.__class__ == IMultiLayerBuilder:
-            _self = None
-        else:
-            _self = self
-        _libBornAgainCore.IMultiLayerBuilder_swiginit(self, _libBornAgainCore.new_IMultiLayerBuilder(_self, ))
-    __swig_destroy__ = _libBornAgainCore.delete_IMultiLayerBuilder
+        return _libBornAgainCore.RotationX_createInverse(self)
 
-    def buildSample(self):
+    def accept(self, visitor):
         r"""
-        buildSample(IMultiLayerBuilder self) -> MultiLayer
-        virtual MultiLayer* IMultiLayerBuilder::buildSample() const =0
+        accept(RotationX self, INodeVisitor visitor)
+        void RotationX::accept(INodeVisitor *visitor) const
+
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IMultiLayerBuilder_buildSample(self)
+        return _libBornAgainCore.RotationX_accept(self, visitor)
 
-    def createSample(self, index=0):
+    def getAngle(self):
         r"""
-        createSample(IMultiLayerBuilder self, size_t index=0) -> MultiLayer
-        virtual MultiLayer* IMultiLayerBuilder::createSample(size_t index=0)
+        getAngle(RotationX self) -> double
+        double RotationX::getAngle() const
 
         """
-        return _libBornAgainCore.IMultiLayerBuilder_createSample(self, index)
+        return _libBornAgainCore.RotationX_getAngle(self)
 
-    def size(self):
+    def getTransform3D(self):
         r"""
-        size(IMultiLayerBuilder self) -> size_t
-        virtual size_t IMultiLayerBuilder::size()
+        getTransform3D(RotationX self) -> Transform3D
+        Transform3D RotationX::getTransform3D() const
+
+        Returns transformation. 
 
         """
-        return _libBornAgainCore.IMultiLayerBuilder_size(self)
+        return _libBornAgainCore.RotationX_getTransform3D(self)
+    __swig_destroy__ = _libBornAgainCore.delete_RotationX
 
-    def registerParameter(self, name, parpointer):
+# Register RotationX in _libBornAgainCore:
+_libBornAgainCore.RotationX_swigregister(RotationX)
+
+class RotationY(IRotation):
+    r"""
+
+
+    A rotation about the y axis.
+
+    C++ includes: Rotations.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, angle):
         r"""
-        registerParameter(IMultiLayerBuilder self, std::string const & name, int64_t parpointer) -> RealParameter
-        RealParameter & IParameterized::registerParameter(const std::string &name, double *parpointer)
+        __init__(RotationY self, double angle) -> RotationY
+        RotationY::RotationY(double angle)
+
+        Constructor of rotation around y-axis
+
+        Parameters:
+        -----------
+
+        angle: 
+        rotation angle around y-axis in radians 
 
         """
-        return _libBornAgainCore.IMultiLayerBuilder_registerParameter(self, name, parpointer)
+        _libBornAgainCore.RotationY_swiginit(self, _libBornAgainCore.new_RotationY(angle))
 
-    def setParameterValue(self, name, value):
+    def clone(self):
         r"""
-        setParameterValue(IMultiLayerBuilder self, std::string const & name, double value)
-        void IParameterized::setParameterValue(const std::string &name, double value)
+        clone(RotationY self) -> RotationY
+        RotationY* RotationY::clone() const
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.IMultiLayerBuilder_setParameterValue(self, name, value)
+        return _libBornAgainCore.RotationY_clone(self)
 
-    def parametersToString(self):
+    def createInverse(self):
         r"""
-        parametersToString(IMultiLayerBuilder self) -> std::string
-        std::string IParameterized::parametersToString() const
+        createInverse(RotationY self) -> RotationY
+        RotationY* RotationY::createInverse() const
 
-        Returns multiline string representing available parameters. 
+        Returns a new  IRotation object that is the current object's inverse. 
 
         """
-        return _libBornAgainCore.IMultiLayerBuilder_parametersToString(self)
+        return _libBornAgainCore.RotationY_createInverse(self)
 
-    def createParameterTree(self):
+    def accept(self, visitor):
         r"""
-        createParameterTree(IMultiLayerBuilder self) -> ParameterPool
-        ParameterPool * IParameterized::createParameterTree() const
+        accept(RotationY self, INodeVisitor visitor)
+        void RotationY::accept(INodeVisitor *visitor) const
 
-        Creates new parameter pool, with all local parameters and those of its children. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IMultiLayerBuilder_createParameterTree(self)
+        return _libBornAgainCore.RotationY_accept(self, visitor)
 
-    def parameterPool(self):
+    def getAngle(self):
         r"""
-        parameterPool(IMultiLayerBuilder self) -> ParameterPool
-        ParameterPool* IParameterized::parameterPool() const
-
-        Returns pointer to the parameter pool. 
+        getAngle(RotationY self) -> double
+        double RotationY::getAngle() const
 
         """
-        return _libBornAgainCore.IMultiLayerBuilder_parameterPool(self)
+        return _libBornAgainCore.RotationY_getAngle(self)
 
-    def onChange(self):
+    def getTransform3D(self):
         r"""
-        onChange(IMultiLayerBuilder self)
-        virtual void IParameterized::onChange()
+        getTransform3D(RotationY self) -> Transform3D
+        Transform3D RotationY::getTransform3D() const
 
-        Action to be taken in inherited class when a parameter has changed. 
+        Returns transformation. 
 
         """
-        return _libBornAgainCore.IMultiLayerBuilder_onChange(self)
-    def __disown__(self):
-        self.this.disown()
-        _libBornAgainCore.disown_IMultiLayerBuilder(self)
-        return weakref.proxy(self)
+        return _libBornAgainCore.RotationY_getTransform3D(self)
+    __swig_destroy__ = _libBornAgainCore.delete_RotationY
 
-# Register IMultiLayerBuilder in _libBornAgainCore:
-_libBornAgainCore.IMultiLayerBuilder_swigregister(IMultiLayerBuilder)
+# Register RotationY in _libBornAgainCore:
+_libBornAgainCore.RotationY_swigregister(RotationY)
 
-class INodeVisitor(object):
+class RotationZ(IRotation):
     r"""
 
 
-    From visitor pattern to achieve double dispatch.
-
-    Visitor interface to visit  ISample objects.
+    A rotation about the z axis.
 
-    C++ includes: INodeVisitor.h
+    C++ includes: Rotations.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self):
+    def __init__(self, angle=0.0):
         r"""
-        __init__(INodeVisitor self) -> INodeVisitor
-        INodeVisitor::INodeVisitor()
+        __init__(RotationZ self, double angle=0.0) -> RotationZ
+        RotationZ::RotationZ(double angle=0.0)
+
+        Constructor of rotation around z-axis
+
+        Parameters:
+        -----------
+
+        angle: 
+        rotation angle around z-axis in radians 
 
         """
-        _libBornAgainCore.INodeVisitor_swiginit(self, _libBornAgainCore.new_INodeVisitor())
-    __swig_destroy__ = _libBornAgainCore.delete_INodeVisitor
+        _libBornAgainCore.RotationZ_swiginit(self, _libBornAgainCore.new_RotationZ(angle))
 
-    def visit(self, *args):
+    def clone(self):
         r"""
-        visit(INodeVisitor self, BasicLattice arg2)
-        visit(INodeVisitor self, Beam arg2)
-        visit(INodeVisitor self, ConstantBackground arg2)
-        visit(INodeVisitor self, ConvolutionDetectorResolution const * arg2)
-        visit(INodeVisitor self, Crystal arg2)
-        visit(INodeVisitor self, DistributionCosine arg2)
-        visit(INodeVisitor self, DistributionGate arg2)
-        visit(INodeVisitor self, DistributionGaussian arg2)
-        visit(INodeVisitor self, DistributionLogNormal arg2)
-        visit(INodeVisitor self, DistributionLorentz arg2)
-        visit(INodeVisitor self, DistributionTrapezoid arg2)
-        visit(INodeVisitor self, FootprintGauss arg2)
-        visit(INodeVisitor self, FootprintSquare arg2)
-        visit(INodeVisitor self, FormFactorAnisoPyramid arg2)
-        visit(INodeVisitor self, FormFactorBarGauss const * arg2)
-        visit(INodeVisitor self, FormFactorBarLorentz const * arg2)
-        visit(INodeVisitor self, FormFactorBox arg2)
-        visit(INodeVisitor self, FormFactorCantellatedCube arg2)
-        visit(INodeVisitor self, FormFactorCone arg2)
-        visit(INodeVisitor self, FormFactorCone6 arg2)
-        visit(INodeVisitor self, FormFactorCoreShell const * arg2)
-        visit(INodeVisitor self, FormFactorCrystal arg2)
-        visit(INodeVisitor self, FormFactorCuboctahedron arg2)
-        visit(INodeVisitor self, FormFactorCylinder arg2)
-        visit(INodeVisitor self, FormFactorDWBA const * arg2)
-        visit(INodeVisitor self, FormFactorDWBAPol const * arg2)
-        visit(INodeVisitor self, FormFactorDecoratorMaterial const * arg2)
-        visit(INodeVisitor self, FormFactorDecoratorPositionFactor const * arg2)
-        visit(INodeVisitor self, FormFactorDecoratorRotation const * arg2)
-        visit(INodeVisitor self, FormFactorDodecahedron arg2)
-        visit(INodeVisitor self, FormFactorDot arg2)
-        visit(INodeVisitor self, FormFactorEllipsoidalCylinder arg2)
-        visit(INodeVisitor self, FormFactorFullSphere arg2)
-        visit(INodeVisitor self, FormFactorFullSpheroid arg2)
-        visit(INodeVisitor self, FormFactorGauss arg2)
-        visit(INodeVisitor self, FormFactorHemiEllipsoid arg2)
-        visit(INodeVisitor self, FormFactorIcosahedron arg2)
-        visit(INodeVisitor self, FormFactorLongBoxGauss arg2)
-        visit(INodeVisitor self, FormFactorLongBoxLorentz arg2)
-        visit(INodeVisitor self, FormFactorLorentz arg2)
-        visit(INodeVisitor self, FormFactorPrism3 arg2)
-        visit(INodeVisitor self, FormFactorPrism6 arg2)
-        visit(INodeVisitor self, FormFactorPyramid arg2)
-        visit(INodeVisitor self, FormFactorRipple1Box arg2)
-        visit(INodeVisitor self, FormFactorRipple1Gauss arg2)
-        visit(INodeVisitor self, FormFactorRipple1Lorentz arg2)
-        visit(INodeVisitor self, FormFactorRipple2Box arg2)
-        visit(INodeVisitor self, FormFactorRipple2Gauss arg2)
-        visit(INodeVisitor self, FormFactorRipple2Lorentz arg2)
-        visit(INodeVisitor self, FormFactorSphereGaussianRadius arg2)
-        visit(INodeVisitor self, FormFactorSphereLogNormalRadius arg2)
-        visit(INodeVisitor self, FormFactorTetrahedron arg2)
-        visit(INodeVisitor self, FormFactorTruncatedCube arg2)
-        visit(INodeVisitor self, FormFactorTruncatedSphere arg2)
-        visit(INodeVisitor self, FormFactorTruncatedSpheroid arg2)
-        visit(INodeVisitor self, FormFactorWeighted arg2)
-        visit(INodeVisitor self, FTDecayFunction1DCauchy arg2)
-        visit(INodeVisitor self, FTDecayFunction1DGauss arg2)
-        visit(INodeVisitor self, FTDecayFunction1DTriangle arg2)
-        visit(INodeVisitor self, FTDecayFunction1DVoigt arg2)
-        visit(INodeVisitor self, FTDecayFunction2DCauchy arg2)
-        visit(INodeVisitor self, FTDecayFunction2DGauss arg2)
-        visit(INodeVisitor self, FTDecayFunction2DVoigt arg2)
-        visit(INodeVisitor self, FTDistribution1DCauchy arg2)
-        visit(INodeVisitor self, FTDistribution1DCosine arg2)
-        visit(INodeVisitor self, FTDistribution1DGate arg2)
-        visit(INodeVisitor self, FTDistribution1DGauss arg2)
-        visit(INodeVisitor self, FTDistribution1DTriangle arg2)
-        visit(INodeVisitor self, FTDistribution1DVoigt arg2)
-        visit(INodeVisitor self, FTDistribution2DCauchy arg2)
-        visit(INodeVisitor self, FTDistribution2DCone arg2)
-        visit(INodeVisitor self, FTDistribution2DGate arg2)
-        visit(INodeVisitor self, FTDistribution2DGauss arg2)
-        visit(INodeVisitor self, FTDistribution2DVoigt arg2)
-        visit(INodeVisitor self, GISASSimulation arg2)
-        visit(INodeVisitor self, HexagonalLattice arg2)
-        visit(INodeVisitor self, IAbstractParticle arg2)
-        visit(INodeVisitor self, IClusteredParticles arg2)
-        visit(INodeVisitor self, IdentityRotation arg2)
-        visit(INodeVisitor self, IFormFactor arg2)
-        visit(INodeVisitor self, IFormFactorBorn arg2)
-        visit(INodeVisitor self, IFormFactorDecorator arg2)
-        visit(INodeVisitor self, IInterferenceFunction arg2)
-        visit(INodeVisitor self, ILayout arg2)
-        visit(INodeVisitor self, INode arg2)
-        visit(INodeVisitor self, Instrument arg2)
-        visit(INodeVisitor self, IntensityNormalizer arg2)
-        visit(INodeVisitor self, IntensityScaleAndShiftNormalizer arg2)
-        visit(INodeVisitor self, InterferenceFunction1DLattice arg2)
-        visit(INodeVisitor self, InterferenceFunction2DLattice arg2)
-        visit(INodeVisitor self, InterferenceFunction2DParaCrystal arg2)
-        visit(INodeVisitor self, InterferenceFunction2DSuperLattice arg2)
-        visit(INodeVisitor self, InterferenceFunction3DLattice arg2)
-        visit(INodeVisitor self, InterferenceFunctionFinite2DLattice arg2)
-        visit(INodeVisitor self, InterferenceFunctionFinite3DLattice arg2)
-        visit(INodeVisitor self, InterferenceFunctionHardDisk arg2)
-        visit(INodeVisitor self, InterferenceFunctionRadialParaCrystal arg2)
-        visit(INodeVisitor self, InterferenceFunctionTwin arg2)
-        visit(INodeVisitor self, InterferenceFunctionNone arg2)
-        visit(INodeVisitor self, IParticle arg2)
-        visit(INodeVisitor self, IPeakShape arg2)
-        visit(INodeVisitor self, IRotation arg2)
-        visit(INodeVisitor self, ISample arg2)
-        visit(INodeVisitor self, IsGISAXSDetector arg2)
-        visit(INodeVisitor self, Layer arg2)
-        visit(INodeVisitor self, LayerInterface const * arg2)
-        visit(INodeVisitor self, LayerRoughness arg2)
-        visit(INodeVisitor self, MesoCrystal arg2)
-        visit(INodeVisitor self, MultiLayer arg2)
-        visit(INodeVisitor self, OffSpecSimulation arg2)
-        visit(INodeVisitor self, Particle arg2)
-        visit(INodeVisitor self, ParticleComposition arg2)
-        visit(INodeVisitor self, ParticleCoreShell arg2)
-        visit(INodeVisitor self, ParticleDistribution arg2)
-        visit(INodeVisitor self, ParticleLayout arg2)
-        visit(INodeVisitor self, PoissonNoiseBackground arg2)
-        visit(INodeVisitor self, RectangularDetector arg2)
-        visit(INodeVisitor self, ResolutionFunction2DGaussian arg2)
-        visit(INodeVisitor self, RotationEuler arg2)
-        visit(INodeVisitor self, RotationX arg2)
-        visit(INodeVisitor self, RotationY arg2)
-        visit(INodeVisitor self, RotationZ arg2)
-        visit(INodeVisitor self, SpecularDetector1D const * arg2)
-        visit(INodeVisitor self, SpecularSimulation arg2)
-        visit(INodeVisitor self, SphericalDetector arg2)
-        visit(INodeVisitor self, SquareLattice arg2)
-        virtual void INodeVisitor::visit(const SquareLattice *)
-
-        """
-        return _libBornAgainCore.INodeVisitor_visit(self, *args)
-
-    def depth(self):
-        r"""
-        depth(INodeVisitor self) -> int
-        int INodeVisitor::depth() const
+        clone(RotationZ self) -> RotationZ
+        RotationZ* RotationZ::clone() const
 
-        Returns depth of the visitor in the composite hierarchy. 
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.INodeVisitor_depth(self)
+        return _libBornAgainCore.RotationZ_clone(self)
 
-    def setDepth(self, depth):
+    def createInverse(self):
         r"""
-        setDepth(INodeVisitor self, int depth)
-        void INodeVisitor::setDepth(int depth)
+        createInverse(RotationZ self) -> RotationZ
+        RotationZ* RotationZ::createInverse() const
 
-        Sets depth of the visitor in the composite hierarchy. 
+        Returns a new  IRotation object that is the current object's inverse. 
 
         """
-        return _libBornAgainCore.INodeVisitor_setDepth(self, depth)
-
-# Register INodeVisitor in _libBornAgainCore:
-_libBornAgainCore.INodeVisitor_swigregister(INodeVisitor)
-
-
-def VisitNodesPreorder(node, visitor):
-    r"""
-    VisitNodesPreorder(INode node, INodeVisitor visitor)
-    BA_CORE_API_ void VisitNodesPreorder(const INode &node, INodeVisitor &visitor)
-
-    """
-    return _libBornAgainCore.VisitNodesPreorder(node, visitor)
-
-def VisitNodesPostorder(node, visitor):
-    r"""
-    VisitNodesPostorder(INode node, INodeVisitor visitor)
-    BA_CORE_API_ void VisitNodesPostorder(const INode &node, INodeVisitor &visitor)
-
-    """
-    return _libBornAgainCore.VisitNodesPostorder(node, visitor)
-class IClusteredParticles(ISample):
-    r"""
-
-
-    An ordered assembly of particles. Currently, the only child class is  Crystal.
-
-    C++ includes: IClusteredParticles.h
-
-    """
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
-    __repr__ = _swig_repr
+        return _libBornAgainCore.RotationZ_createInverse(self)
 
-    def clone(self):
+    def accept(self, visitor):
         r"""
-        clone(IClusteredParticles self) -> IClusteredParticles
-        IClusteredParticles* IClusteredParticles::clone() const override=0
+        accept(RotationZ self, INodeVisitor visitor)
+        void RotationZ::accept(INodeVisitor *visitor) const
 
-        Returns a clone of this  ISample object. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IClusteredParticles_clone(self)
+        return _libBornAgainCore.RotationZ_accept(self, visitor)
 
-    def createTotalFormFactor(self, arg2, arg3, arg4):
+    def getAngle(self):
         r"""
-        createTotalFormFactor(IClusteredParticles self, IFormFactor arg2, IRotation arg3, kvector_t arg4) -> IFormFactor
-        virtual IFormFactor* IClusteredParticles::createTotalFormFactor(const IFormFactor &, const IRotation *, const kvector_t &) const =0
-
-        Creates a total form factor for the mesocrystal with a specific shape and content The bulk content of the mesocrystal is encapsulated by the  IClusteredParticles object itself 
+        getAngle(RotationZ self) -> double
+        double RotationZ::getAngle() const
 
         """
-        return _libBornAgainCore.IClusteredParticles_createTotalFormFactor(self, arg2, arg3, arg4)
+        return _libBornAgainCore.RotationZ_getAngle(self)
 
-    def homogeneousRegions(self):
+    def getTransform3D(self):
         r"""
-        homogeneousRegions(IClusteredParticles self) -> std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >
-        virtual std::vector<HomogeneousRegion> IClusteredParticles::homogeneousRegions() const =0
+        getTransform3D(RotationZ self) -> Transform3D
+        Transform3D RotationZ::getTransform3D() const
 
-        Creates region information with volumetric densities instead of absolute volume These densities need to be multiplied by the total mesocrystal volume 
+        Returns transformation. 
 
         """
-        return _libBornAgainCore.IClusteredParticles_homogeneousRegions(self)
-    __swig_destroy__ = _libBornAgainCore.delete_IClusteredParticles
+        return _libBornAgainCore.RotationZ_getTransform3D(self)
+    __swig_destroy__ = _libBornAgainCore.delete_RotationZ
 
-# Register IClusteredParticles in _libBornAgainCore:
-_libBornAgainCore.IClusteredParticles_swigregister(IClusteredParticles)
+# Register RotationZ in _libBornAgainCore:
+_libBornAgainCore.RotationZ_swigregister(RotationZ)
 
-class Crystal(IClusteredParticles):
+class RotationEuler(IRotation):
     r"""
 
 
-    A crystal structure with a  ParticleComposition as a basis. Used in  MesoCrystal, where it is given an outer shape.
+    A sequence of rotations about the z-x'-z'' axes.
 
-    C++ includes: Crystal.h
+    C++ includes: Rotations.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, lattice_basis, lattice):
+    def __init__(self, alpha, beta, gamma):
         r"""
-        __init__(Crystal self, IParticle lattice_basis, Lattice lattice) -> Crystal
-        Crystal::Crystal(const IParticle &lattice_basis, const Lattice &lattice)
+        __init__(RotationEuler self, double alpha, double beta, double gamma) -> RotationEuler
+        RotationEuler::RotationEuler(double alpha, double beta, double gamma)
+
+        Constructor of Euler rotation (sequence of three rotations following Euler angles notation z-x'-z').
+
+        Parameters:
+        -----------
+
+        alpha: 
+        first Euler angle in radians
+
+        beta: 
+        second Euler angle in radians
+
+        gamma: 
+        third Euler angle in radians 
 
         """
-        _libBornAgainCore.Crystal_swiginit(self, _libBornAgainCore.new_Crystal(lattice_basis, lattice))
-    __swig_destroy__ = _libBornAgainCore.delete_Crystal
+        _libBornAgainCore.RotationEuler_swiginit(self, _libBornAgainCore.new_RotationEuler(alpha, beta, gamma))
 
     def clone(self):
         r"""
-        clone(Crystal self) -> Crystal
-        Crystal * Crystal::clone() const override final
+        clone(RotationEuler self) -> RotationEuler
+        RotationEuler* RotationEuler::clone() const
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.Crystal_clone(self)
+        return _libBornAgainCore.RotationEuler_clone(self)
 
-    def accept(self, visitor):
+    def createInverse(self):
         r"""
-        accept(Crystal self, INodeVisitor visitor)
-        void Crystal::accept(INodeVisitor *visitor) const override final
+        createInverse(RotationEuler self) -> IRotation
+        IRotation * RotationEuler::createInverse() const
 
-        Calls the  INodeVisitor's visit method. 
+        Returns a new  IRotation object that is the current object's inverse. 
 
         """
-        return _libBornAgainCore.Crystal_accept(self, visitor)
+        return _libBornAgainCore.RotationEuler_createInverse(self)
 
-    def createTotalFormFactor(self, meso_crystal_form_factor, p_rotation, translation):
+    def accept(self, visitor):
         r"""
-        createTotalFormFactor(Crystal self, IFormFactor meso_crystal_form_factor, IRotation p_rotation, kvector_t translation) -> IFormFactor
-        IFormFactor * Crystal::createTotalFormFactor(const IFormFactor &meso_crystal_form_factor, const IRotation *p_rotation, const kvector_t &translation) const override final
+        accept(RotationEuler self, INodeVisitor visitor)
+        void RotationEuler::accept(INodeVisitor *visitor) const
 
-        Creates a total form factor for the mesocrystal with a specific shape and content The bulk content of the mesocrystal is encapsulated by the  IClusteredParticles object itself 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.Crystal_createTotalFormFactor(self, meso_crystal_form_factor, p_rotation, translation)
+        return _libBornAgainCore.RotationEuler_accept(self, visitor)
 
-    def homogeneousRegions(self):
+    def getAlpha(self):
         r"""
-        homogeneousRegions(Crystal self) -> std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >
-        std::vector< HomogeneousRegion > Crystal::homogeneousRegions() const override final
-
-        Creates region information with volumetric densities instead of absolute volume These densities need to be multiplied by the total mesocrystal volume 
+        getAlpha(RotationEuler self) -> double
+        double RotationEuler::getAlpha() const
 
         """
-        return _libBornAgainCore.Crystal_homogeneousRegions(self)
+        return _libBornAgainCore.RotationEuler_getAlpha(self)
 
-    def transformedLattice(self, p_rotation=None):
+    def getBeta(self):
         r"""
-        transformedLattice(Crystal self, IRotation p_rotation=None) -> Lattice
-        Lattice Crystal::transformedLattice(const IRotation *p_rotation=nullptr) const
+        getBeta(RotationEuler self) -> double
+        double RotationEuler::getBeta() const
 
         """
-        return _libBornAgainCore.Crystal_transformedLattice(self, p_rotation)
+        return _libBornAgainCore.RotationEuler_getBeta(self)
 
-    def setPositionVariance(self, position_variance):
+    def getGamma(self):
         r"""
-        setPositionVariance(Crystal self, double position_variance)
-        void Crystal::setPositionVariance(double position_variance)
+        getGamma(RotationEuler self) -> double
+        double RotationEuler::getGamma() const
 
         """
-        return _libBornAgainCore.Crystal_setPositionVariance(self, position_variance)
+        return _libBornAgainCore.RotationEuler_getGamma(self)
 
-    def getChildren(self):
+    def getTransform3D(self):
         r"""
-        getChildren(Crystal self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > Crystal::getChildren() const override final
+        getTransform3D(RotationEuler self) -> Transform3D
+        Transform3D RotationEuler::getTransform3D() const
 
-        Returns a vector of children (const). 
+        Returns transformation. 
 
         """
-        return _libBornAgainCore.Crystal_getChildren(self)
+        return _libBornAgainCore.RotationEuler_getTransform3D(self)
+    __swig_destroy__ = _libBornAgainCore.delete_RotationEuler
 
-# Register Crystal in _libBornAgainCore:
-_libBornAgainCore.Crystal_swigregister(Crystal)
+# Register RotationEuler in _libBornAgainCore:
+_libBornAgainCore.RotationEuler_swigregister(RotationEuler)
 
-class IDistribution1D(ICloneable, INode):
+class FitOptions(object):
+    r"""Proxy of C++ FitOptions class."""
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self):
+        r"""__init__(FitOptions self) -> FitOptions"""
+        _libBornAgainCore.FitOptions_swiginit(self, _libBornAgainCore.new_FitOptions())
+
+    def derivEpsilon(self):
+        r"""derivEpsilon(FitOptions self) -> double"""
+        return _libBornAgainCore.FitOptions_derivEpsilon(self)
+
+    def setDerivEpsilon(self, deriv_epsilon):
+        r"""setDerivEpsilon(FitOptions self, double deriv_epsilon)"""
+        return _libBornAgainCore.FitOptions_setDerivEpsilon(self, deriv_epsilon)
+
+    def stepFactor(self):
+        r"""stepFactor(FitOptions self) -> double"""
+        return _libBornAgainCore.FitOptions_stepFactor(self)
+
+    def setStepFactor(self, step_factor):
+        r"""setStepFactor(FitOptions self, double step_factor)"""
+        return _libBornAgainCore.FitOptions_setStepFactor(self, step_factor)
+    __swig_destroy__ = _libBornAgainCore.delete_FitOptions
+
+# Register FitOptions in _libBornAgainCore:
+_libBornAgainCore.FitOptions_swigregister(FitOptions)
+
+class IObserver(object):
     r"""
 
 
-    Interface for one-dimensional distributions.
+    Observer interface from Observer pattern.
 
-    C++ includes: Distributions.h
+    C++ includes: IObserver.h
 
     """
 
@@ -6115,924 +5998,815 @@ class IDistribution1D(ICloneable, INode):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IDistribution1D
-
-    def clone(self):
-        r"""
-        clone(IDistribution1D self) -> IDistribution1D
-        virtual IDistribution1D* IDistribution1D::clone() const =0
-
-        """
-        return _libBornAgainCore.IDistribution1D_clone(self)
+    __swig_destroy__ = _libBornAgainCore.delete_IObserver
 
-    def probabilityDensity(self, x):
+    def notify(self, subject):
         r"""
-        probabilityDensity(IDistribution1D self, double x) -> double
-        virtual double IDistribution1D::probabilityDensity(double x) const =0
+        notify(IObserver self, IObservable subject)
+        virtual void IObserver::notify(IObservable *subject)=0
 
-        Returns the distribution-specific probability density for value x. 
+        method which is used by observable subject to notify change in status 
 
         """
-        return _libBornAgainCore.IDistribution1D_probabilityDensity(self, x)
-
-    def getMean(self):
-        r"""
-        getMean(IDistribution1D self) -> double
-        virtual double IDistribution1D::getMean() const =0
-
-        Returns the distribution-specific mean. 
+        return _libBornAgainCore.IObserver_notify(self, subject)
 
-        """
-        return _libBornAgainCore.IDistribution1D_getMean(self)
+# Register IObserver in _libBornAgainCore:
+_libBornAgainCore.IObserver_swigregister(IObserver)
 
-    def equidistantSamples(self, *args):
-        r"""
-        equidistantSamples(IDistribution1D self, size_t nbr_samples, double sigma_factor=0., RealLimits limits=RealLimits()) -> ParameterSampleVector
-        std::vector< ParameterSample > IDistribution1D::equidistantSamples(size_t nbr_samples, double sigma_factor=0., const RealLimits &limits=RealLimits()) const
+class IObservable(object):
+    r"""
 
-        Returns equidistant samples, using intrinsic parameters, weighted with  probabilityDensity(). 
 
-        """
-        return _libBornAgainCore.IDistribution1D_equidistantSamples(self, *args)
+    Observable interface from Observer pattern
 
-    def equidistantSamplesInRange(self, nbr_samples, xmin, xmax):
-        r"""
-        equidistantSamplesInRange(IDistribution1D self, size_t nbr_samples, double xmin, double xmax) -> ParameterSampleVector
-        std::vector< ParameterSample > IDistribution1D::equidistantSamplesInRange(size_t nbr_samples, double xmin, double xmax) const
+    C++ includes: IObserver.h
 
-        Returns equidistant samples from xmin to xmax, weighted with  probabilityDensity(). 
+    """
 
-        """
-        return _libBornAgainCore.IDistribution1D_equidistantSamplesInRange(self, nbr_samples, xmin, xmax)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IObservable
 
-    def equidistantPoints(self, *args):
+    def attachObserver(self, obj):
         r"""
-        equidistantPoints(IDistribution1D self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
-        virtual std::vector<double> IDistribution1D::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const =0
+        attachObserver(IObservable self, IObservable::observer_t obj)
+        void IObservable::attachObserver(observer_t obj)
 
-        Returns equidistant interpolation points, with range computed in distribution-specific way from mean and width parameter, taking into account limits and sigma_factor. 
+        attach observer to the list of observers 
 
         """
-        return _libBornAgainCore.IDistribution1D_equidistantPoints(self, *args)
+        return _libBornAgainCore.IObservable_attachObserver(self, obj)
 
-    def equidistantPointsInRange(self, nbr_samples, xmin, xmax):
+    def notifyObservers(self):
         r"""
-        equidistantPointsInRange(IDistribution1D self, size_t nbr_samples, double xmin, double xmax) -> vdouble1d_t
-        std::vector< double > IDistribution1D::equidistantPointsInRange(size_t nbr_samples, double xmin, double xmax) const
+        notifyObservers(IObservable self)
+        void IObservable::notifyObservers()
 
-        Returns equidistant interpolation points from xmin to xmax. 
+        notify observers about change in status 
 
         """
-        return _libBornAgainCore.IDistribution1D_equidistantPointsInRange(self, nbr_samples, xmin, xmax)
+        return _libBornAgainCore.IObservable_notifyObservers(self)
 
-    def isDelta(self):
+    def __init__(self):
         r"""
-        isDelta(IDistribution1D self) -> bool
-        virtual bool IDistribution1D::isDelta() const =0
-
-        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
+        __init__(IObservable self) -> IObservable
 
-        """
-        return _libBornAgainCore.IDistribution1D_isDelta(self)
 
-    def setUnits(self, units):
-        r"""
-        setUnits(IDistribution1D self, std::string const & units)
-        void IDistribution1D::setUnits(const std::string &units)
+        Observable interface from Observer pattern
 
-        Sets distribution units. 
+        C++ includes: IObserver.h
 
         """
-        return _libBornAgainCore.IDistribution1D_setUnits(self, units)
+        _libBornAgainCore.IObservable_swiginit(self, _libBornAgainCore.new_IObservable())
 
-# Register IDistribution1D in _libBornAgainCore:
-_libBornAgainCore.IDistribution1D_swigregister(IDistribution1D)
+# Register IObservable in _libBornAgainCore:
+_libBornAgainCore.IObservable_swigregister(IObservable)
 
-class DistributionGate(IDistribution1D):
+class IterationInfo(object):
     r"""
 
 
-    Uniform distribution function with half width hwhm.
+    Stores fit iteration info to track fit flow from various observers. Used in context of  FitObjective.
 
-    C++ includes: Distributions.h
+    C++ includes: IterationInfo.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
-        r"""
-        __init__(DistributionGate self) -> DistributionGate
-        __init__(DistributionGate self, double min, double max) -> DistributionGate
-        DistributionGate::DistributionGate(double min, double max)
-
-        """
-        _libBornAgainCore.DistributionGate_swiginit(self, _libBornAgainCore.new_DistributionGate(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_DistributionGate
-
-    def clone(self):
-        r"""
-        clone(DistributionGate self) -> DistributionGate
-        DistributionGate* DistributionGate::clone() const final
-
-        """
-        return _libBornAgainCore.DistributionGate_clone(self)
-
-    def probabilityDensity(self, x):
+    def __init__(self):
         r"""
-        probabilityDensity(DistributionGate self, double x) -> double
-        double DistributionGate::probabilityDensity(double x) const final
-
-        Returns the distribution-specific probability density for value x. 
+        __init__(IterationInfo self) -> IterationInfo
+        IterationInfo::IterationInfo()
 
         """
-        return _libBornAgainCore.DistributionGate_probabilityDensity(self, x)
+        _libBornAgainCore.IterationInfo_swiginit(self, _libBornAgainCore.new_IterationInfo())
 
-    def getMean(self):
+    def update(self, params, chi2):
         r"""
-        getMean(DistributionGate self) -> double
-        double DistributionGate::getMean() const final
-
-        Returns the distribution-specific mean. 
+        update(IterationInfo self, Parameters params, double chi2)
+        void IterationInfo::update(const Fit::Parameters &params, double chi2)
 
         """
-        return _libBornAgainCore.DistributionGate_getMean(self)
+        return _libBornAgainCore.IterationInfo_update(self, params, chi2)
 
-    def getMin(self):
+    def iterationCount(self):
         r"""
-        getMin(DistributionGate self) -> double
-        double DistributionGate::getMin() const
-
-        """
-        return _libBornAgainCore.DistributionGate_getMin(self)
+        iterationCount(IterationInfo self) -> unsigned int
+        unsigned IterationInfo::iterationCount() const
 
-    def getMax(self):
-        r"""
-        getMax(DistributionGate self) -> double
-        double DistributionGate::getMax() const
+        Returns current number of minimizer iterations. 
 
         """
-        return _libBornAgainCore.DistributionGate_getMax(self)
+        return _libBornAgainCore.IterationInfo_iterationCount(self)
 
-    def equidistantPoints(self, *args):
+    def chi2(self):
         r"""
-        equidistantPoints(DistributionGate self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
-        std::vector< double > DistributionGate::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const
-
-        Returns list of sample values. 
+        chi2(IterationInfo self) -> double
+        double IterationInfo::chi2() const
 
         """
-        return _libBornAgainCore.DistributionGate_equidistantPoints(self, *args)
+        return _libBornAgainCore.IterationInfo_chi2(self)
 
-    def isDelta(self):
+    def parameters(self):
         r"""
-        isDelta(DistributionGate self) -> bool
-        bool DistributionGate::isDelta() const final
-
-        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
+        parameters(IterationInfo self) -> Parameters
+        Fit::Parameters IterationInfo::parameters() const
 
         """
-        return _libBornAgainCore.DistributionGate_isDelta(self)
+        return _libBornAgainCore.IterationInfo_parameters(self)
 
-    def accept(self, visitor):
+    def parameterMap(self):
         r"""
-        accept(DistributionGate self, INodeVisitor visitor)
-        void DistributionGate::accept(INodeVisitor *visitor) const final
+        parameterMap(IterationInfo self) -> map_string_double_t
+        std::map< std::string, double > IterationInfo::parameterMap() const
 
-        Calls the  INodeVisitor's visit method. 
+        Returns map of fit parameter names and its current values. 
 
         """
-        return _libBornAgainCore.DistributionGate_accept(self, visitor)
+        return _libBornAgainCore.IterationInfo_parameterMap(self)
+    __swig_destroy__ = _libBornAgainCore.delete_IterationInfo
 
-# Register DistributionGate in _libBornAgainCore:
-_libBornAgainCore.DistributionGate_swigregister(DistributionGate)
+# Register IterationInfo in _libBornAgainCore:
+_libBornAgainCore.IterationInfo_swigregister(IterationInfo)
 
-class DistributionLorentz(IDistribution1D):
+class PyBuilderCallback(object):
     r"""
 
 
-    Lorentz distribution with half width hwhm.
+    Builds simulation object using a Python callable. Base class to wrap Python callable and pass it to C++. Used in swig interface file, intended to be overloaded from Python.
 
-    C++ includes: Distributions.h
+    C++ includes: PyFittingCallbacks.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self):
         r"""
-        __init__(DistributionLorentz self) -> DistributionLorentz
-        __init__(DistributionLorentz self, double mean, double hwhm) -> DistributionLorentz
-        DistributionLorentz::DistributionLorentz(double mean, double hwhm)
+        __init__(PyBuilderCallback self) -> PyBuilderCallback
+        PyBuilderCallback::PyBuilderCallback()
 
         """
-        _libBornAgainCore.DistributionLorentz_swiginit(self, _libBornAgainCore.new_DistributionLorentz(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_DistributionLorentz
-
-    def clone(self):
-        r"""
-        clone(DistributionLorentz self) -> DistributionLorentz
-        DistributionLorentz* DistributionLorentz::clone() const final
-
-        """
-        return _libBornAgainCore.DistributionLorentz_clone(self)
+        if self.__class__ == PyBuilderCallback:
+            _self = None
+        else:
+            _self = self
+        _libBornAgainCore.PyBuilderCallback_swiginit(self, _libBornAgainCore.new_PyBuilderCallback(_self, ))
+    __swig_destroy__ = _libBornAgainCore.delete_PyBuilderCallback
 
-    def probabilityDensity(self, x):
+    def build_simulation(self, arg0):
         r"""
-        probabilityDensity(DistributionLorentz self, double x) -> double
-        double DistributionLorentz::probabilityDensity(double x) const final
-
-        Returns the distribution-specific probability density for value x. 
+        build_simulation(PyBuilderCallback self, Parameters arg0) -> Simulation
+        Simulation * PyBuilderCallback::build_simulation(Fit::Parameters)
 
         """
-        return _libBornAgainCore.DistributionLorentz_probabilityDensity(self, x)
-
-    def getMean(self):
-        r"""
-        getMean(DistributionLorentz self) -> double
-        double DistributionLorentz::getMean() const final
+        return _libBornAgainCore.PyBuilderCallback_build_simulation(self, arg0)
+    def __disown__(self):
+        self.this.disown()
+        _libBornAgainCore.disown_PyBuilderCallback(self)
+        return weakref.proxy(self)
 
-        Returns the distribution-specific mean. 
+# Register PyBuilderCallback in _libBornAgainCore:
+_libBornAgainCore.PyBuilderCallback_swigregister(PyBuilderCallback)
 
-        """
-        return _libBornAgainCore.DistributionLorentz_getMean(self)
+class PyObserverCallback(object):
+    r"""
 
-    def getHWHM(self):
-        r"""
-        getHWHM(DistributionLorentz self) -> double
-        double DistributionLorentz::getHWHM() const
 
-        """
-        return _libBornAgainCore.DistributionLorentz_getHWHM(self)
+    Observer for  FitObjective based on Python callable. Base class to wrap Python callable and pass it to C++. Used in swig interface file, intended to be overloaded from Python.
 
-    def equidistantPoints(self, *args):
-        r"""
-        equidistantPoints(DistributionLorentz self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
-        std::vector< double > DistributionLorentz::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const
+    C++ includes: PyFittingCallbacks.h
 
-        generate list of sample values 
+    """
 
-        """
-        return _libBornAgainCore.DistributionLorentz_equidistantPoints(self, *args)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    def isDelta(self):
+    def __init__(self):
         r"""
-        isDelta(DistributionLorentz self) -> bool
-        bool DistributionLorentz::isDelta() const final
-
-        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
+        __init__(PyObserverCallback self) -> PyObserverCallback
+        PyObserverCallback::PyObserverCallback()
 
         """
-        return _libBornAgainCore.DistributionLorentz_isDelta(self)
+        if self.__class__ == PyObserverCallback:
+            _self = None
+        else:
+            _self = self
+        _libBornAgainCore.PyObserverCallback_swiginit(self, _libBornAgainCore.new_PyObserverCallback(_self, ))
+    __swig_destroy__ = _libBornAgainCore.delete_PyObserverCallback
 
-    def accept(self, visitor):
+    def update(self, arg0):
         r"""
-        accept(DistributionLorentz self, INodeVisitor visitor)
-        void DistributionLorentz::accept(INodeVisitor *visitor) const final
-
-        Calls the  INodeVisitor's visit method. 
+        update(PyObserverCallback self, FitObjective arg0)
+        void PyObserverCallback::update(const FitObjective &)
 
         """
-        return _libBornAgainCore.DistributionLorentz_accept(self, visitor)
+        return _libBornAgainCore.PyObserverCallback_update(self, arg0)
+    def __disown__(self):
+        self.this.disown()
+        _libBornAgainCore.disown_PyObserverCallback(self)
+        return weakref.proxy(self)
 
-# Register DistributionLorentz in _libBornAgainCore:
-_libBornAgainCore.DistributionLorentz_swigregister(DistributionLorentz)
+# Register PyObserverCallback in _libBornAgainCore:
+_libBornAgainCore.PyObserverCallback_swigregister(PyObserverCallback)
 
-class DistributionGaussian(IDistribution1D):
+class FitObjective(object):
     r"""
 
 
-    Gaussian distribution with standard deviation std_dev.
+    Holds vector of   SimDataPairs (experimental data and simulation results) for use in fitting.
 
-    C++ includes: Distributions.h
+    C++ includes: FitObjective.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self):
         r"""
-        __init__(DistributionGaussian self) -> DistributionGaussian
-        __init__(DistributionGaussian self, double mean, double std_dev) -> DistributionGaussian
-        DistributionGaussian::DistributionGaussian(double mean, double std_dev)
+        __init__(FitObjective self) -> FitObjective
+        FitObjective::FitObjective()
 
         """
-        _libBornAgainCore.DistributionGaussian_swiginit(self, _libBornAgainCore.new_DistributionGaussian(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_DistributionGaussian
+        if self.__class__ == FitObjective:
+            _self = None
+        else:
+            _self = self
+        _libBornAgainCore.FitObjective_swiginit(self, _libBornAgainCore.new_FitObjective(_self, ))
+    __swig_destroy__ = _libBornAgainCore.delete_FitObjective
 
-    def clone(self):
+    def evaluate_cpp(self, params):
         r"""
-        clone(DistributionGaussian self) -> DistributionGaussian
-        DistributionGaussian* DistributionGaussian::clone() const final
+        evaluate_cpp(FitObjective self, Parameters params) -> double
+        double FitObjective::evaluate(const Fit::Parameters &params)
 
         """
-        return _libBornAgainCore.DistributionGaussian_clone(self)
+        return _libBornAgainCore.FitObjective_evaluate_cpp(self, params)
 
-    def probabilityDensity(self, x):
+    def evaluate_residuals_cpp(self, params):
         r"""
-        probabilityDensity(DistributionGaussian self, double x) -> double
-        double DistributionGaussian::probabilityDensity(double x) const final
-
-        Returns the distribution-specific probability density for value x. 
+        evaluate_residuals_cpp(FitObjective self, Parameters params) -> vdouble1d_t
+        std::vector< double > FitObjective::evaluate_residuals(const Fit::Parameters &params)
 
         """
-        return _libBornAgainCore.DistributionGaussian_probabilityDensity(self, x)
+        return _libBornAgainCore.FitObjective_evaluate_residuals_cpp(self, params)
 
-    def getMean(self):
+    def numberOfFitElements(self):
         r"""
-        getMean(DistributionGaussian self) -> double
-        double DistributionGaussian::getMean() const final
-
-        Returns the distribution-specific mean. 
+        numberOfFitElements(FitObjective self) -> size_t
+        size_t FitObjective::numberOfFitElements() const
 
         """
-        return _libBornAgainCore.DistributionGaussian_getMean(self)
+        return _libBornAgainCore.FitObjective_numberOfFitElements(self)
 
-    def getStdDev(self):
+    def simulationResult(self, i_item=0):
         r"""
-        getStdDev(DistributionGaussian self) -> double
-        double DistributionGaussian::getStdDev() const
+        simulationResult(FitObjective self, size_t i_item=0) -> SimulationResult
+        SimulationResult FitObjective::simulationResult(size_t i_item=0) const
+
+        Returns simulation result in the form of  SimulationResult. 
 
         """
-        return _libBornAgainCore.DistributionGaussian_getStdDev(self)
+        return _libBornAgainCore.FitObjective_simulationResult(self, i_item)
 
-    def equidistantPoints(self, *args):
+    def experimentalData(self, i_item=0):
         r"""
-        equidistantPoints(DistributionGaussian self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
-        std::vector< double > DistributionGaussian::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const
+        experimentalData(FitObjective self, size_t i_item=0) -> SimulationResult
+        SimulationResult FitObjective::experimentalData(size_t i_item=0) const
 
-        generate list of sample values 
+        Returns experimental data in the form of  SimulationResult. 
 
         """
-        return _libBornAgainCore.DistributionGaussian_equidistantPoints(self, *args)
+        return _libBornAgainCore.FitObjective_experimentalData(self, i_item)
 
-    def isDelta(self):
+    def uncertaintyData_cpp(self, i_item=0):
         r"""
-        isDelta(DistributionGaussian self) -> bool
-        bool DistributionGaussian::isDelta() const final
+        uncertaintyData_cpp(FitObjective self, size_t i_item=0) -> SimulationResult
+        SimulationResult FitObjective::uncertaintyData(size_t i_item=0) const
 
-        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
+        Returns experimental data uncertainties in the form of  SimulationResult. 
 
         """
-        return _libBornAgainCore.DistributionGaussian_isDelta(self)
+        return _libBornAgainCore.FitObjective_uncertaintyData_cpp(self, i_item)
 
-    def accept(self, visitor):
+    def relativeDifference(self, i_item=0):
         r"""
-        accept(DistributionGaussian self, INodeVisitor visitor)
-        void DistributionGaussian::accept(INodeVisitor *visitor) const final
+        relativeDifference(FitObjective self, size_t i_item=0) -> SimulationResult
+        SimulationResult FitObjective::relativeDifference(size_t i_item=0) const
 
-        Calls the  INodeVisitor's visit method. 
+        Returns relative difference between simulation and experimental data in the form of  SimulationResult. 
 
         """
-        return _libBornAgainCore.DistributionGaussian_accept(self, visitor)
-
-# Register DistributionGaussian in _libBornAgainCore:
-_libBornAgainCore.DistributionGaussian_swigregister(DistributionGaussian)
+        return _libBornAgainCore.FitObjective_relativeDifference(self, i_item)
 
-class DistributionLogNormal(IDistribution1D):
-    r"""
+    def absoluteDifference(self, i_item=0):
+        r"""
+        absoluteDifference(FitObjective self, size_t i_item=0) -> SimulationResult
+        SimulationResult FitObjective::absoluteDifference(size_t i_item=0) const
 
+        Returns absolute value of difference between simulation and experimental data in the form of  SimulationResult. 
 
-    Log-normal distribution.
+        """
+        return _libBornAgainCore.FitObjective_absoluteDifference(self, i_item)
 
-    C++ includes: Distributions.h
+    def experimental_array(self):
+        r"""
+        experimental_array(FitObjective self) -> vdouble1d_t
+        std::vector< double > FitObjective::experimental_array() const
 
-    """
+        Returns one dimensional array representing merged experimental data. The area outside of the region of interest is not included, masked data is nullified. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.FitObjective_experimental_array(self)
 
-    def __init__(self, *args):
+    def simulation_array(self):
         r"""
-        __init__(DistributionLogNormal self, double scale_param) -> DistributionLogNormal
-        __init__(DistributionLogNormal self, double median, double scale_param) -> DistributionLogNormal
-        DistributionLogNormal::DistributionLogNormal(double median, double scale_param)
+        simulation_array(FitObjective self) -> vdouble1d_t
+        std::vector< double > FitObjective::simulation_array() const
+
+        Returns one dimensional array representing merged simulated intensities data. The area outside of the region of interest is not included, masked data is nullified. 
 
         """
-        _libBornAgainCore.DistributionLogNormal_swiginit(self, _libBornAgainCore.new_DistributionLogNormal(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_DistributionLogNormal
+        return _libBornAgainCore.FitObjective_simulation_array(self)
 
-    def clone(self):
+    def uncertainties_cpp(self):
         r"""
-        clone(DistributionLogNormal self) -> DistributionLogNormal
-        DistributionLogNormal* DistributionLogNormal::clone() const final
+        uncertainties_cpp(FitObjective self) -> vdouble1d_t
+        std::vector< double > FitObjective::uncertainties() const
+
+        Returns one-dimensional array representing merged data uncertainties. The area outside of the region of interest is not included, masked data is nullified. 
 
         """
-        return _libBornAgainCore.DistributionLogNormal_clone(self)
+        return _libBornAgainCore.FitObjective_uncertainties_cpp(self)
 
-    def probabilityDensity(self, x):
+    def weights_array(self):
         r"""
-        probabilityDensity(DistributionLogNormal self, double x) -> double
-        double DistributionLogNormal::probabilityDensity(double x) const final
+        weights_array(FitObjective self) -> vdouble1d_t
+        std::vector< double > FitObjective::weights_array() const
 
-        Returns the distribution-specific probability density for value x. 
+        Returns one-dimensional array representing merged user weights. The area outside of the region of interest is not included, masked data is nullified. 
 
         """
-        return _libBornAgainCore.DistributionLogNormal_probabilityDensity(self, x)
+        return _libBornAgainCore.FitObjective_weights_array(self)
 
-    def getMean(self):
+    def initPrint(self, every_nth):
         r"""
-        getMean(DistributionLogNormal self) -> double
-        double DistributionLogNormal::getMean() const final
+        initPrint(FitObjective self, int every_nth)
+        void FitObjective::initPrint(int every_nth)
 
-        Returns the distribution-specific mean. 
+        Initializes printing to standard output during the fitting.
 
-        """
-        return _libBornAgainCore.DistributionLogNormal_getMean(self)
+        Parameters:
+        -----------
 
-    def getMedian(self):
-        r"""
-        getMedian(DistributionLogNormal self) -> double
-        double DistributionLogNormal::getMedian() const
+        every_nth: 
+        Print every n'th iteration. 
 
         """
-        return _libBornAgainCore.DistributionLogNormal_getMedian(self)
+        return _libBornAgainCore.FitObjective_initPrint(self, every_nth)
 
-    def getScalePar(self):
+    def initPlot_cpp(self, every_nth, callback):
         r"""
-        getScalePar(DistributionLogNormal self) -> double
-        double DistributionLogNormal::getScalePar() const
+        initPlot_cpp(FitObjective self, int every_nth, PyObserverCallback callback)
+        void FitObjective::initPlot(int every_nth, fit_observer_t observer)
 
         """
-        return _libBornAgainCore.DistributionLogNormal_getScalePar(self)
+        return _libBornAgainCore.FitObjective_initPlot_cpp(self, every_nth, callback)
 
-    def equidistantPoints(self, *args):
+    def iterationInfo(self):
         r"""
-        equidistantPoints(DistributionLogNormal self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
-        std::vector< double > DistributionLogNormal::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const
-
-        generate list of sample values 
+        iterationInfo(FitObjective self) -> IterationInfo
+        IterationInfo FitObjective::iterationInfo() const
 
         """
-        return _libBornAgainCore.DistributionLogNormal_equidistantPoints(self, *args)
+        return _libBornAgainCore.FitObjective_iterationInfo(self)
 
-    def isDelta(self):
+    def minimizerResult(self):
         r"""
-        isDelta(DistributionLogNormal self) -> bool
-        bool DistributionLogNormal::isDelta() const final
-
-        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
+        minimizerResult(FitObjective self) -> Fit::MinimizerResult
+        Fit::MinimizerResult FitObjective::minimizerResult() const
 
         """
-        return _libBornAgainCore.DistributionLogNormal_isDelta(self)
+        return _libBornAgainCore.FitObjective_minimizerResult(self)
 
-    def accept(self, visitor):
+    def finalize_cpp(self, result):
         r"""
-        accept(DistributionLogNormal self, INodeVisitor visitor)
-        void DistributionLogNormal::accept(INodeVisitor *visitor) const final
+        finalize_cpp(FitObjective self, Fit::MinimizerResult const & result)
+        void FitObjective::finalize(const Fit::MinimizerResult &result)
 
-        Calls the  INodeVisitor's visit method. 
+        Should be explicitely called on last iteration to notify all observers. 
 
         """
-        return _libBornAgainCore.DistributionLogNormal_accept(self, visitor)
+        return _libBornAgainCore.FitObjective_finalize_cpp(self, result)
 
-    def setUnits(self, units):
+    def fitObjectCount(self):
         r"""
-        setUnits(DistributionLogNormal self, std::string const & units)
-        void DistributionLogNormal::setUnits(const std::string &units)
-
-        Sets distribution units. 
+        fitObjectCount(FitObjective self) -> unsigned int
+        unsigned FitObjective::fitObjectCount() const
 
         """
-        return _libBornAgainCore.DistributionLogNormal_setUnits(self, units)
-
-# Register DistributionLogNormal in _libBornAgainCore:
-_libBornAgainCore.DistributionLogNormal_swigregister(DistributionLogNormal)
-
-class DistributionCosine(IDistribution1D):
-    r"""
-
-
-    Cosine distribution.
-
-    C++ includes: Distributions.h
-
-    """
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        return _libBornAgainCore.FitObjective_fitObjectCount(self)
 
-    def __init__(self, *args):
+    def run_simulations(self, params):
         r"""
-        __init__(DistributionCosine self) -> DistributionCosine
-        __init__(DistributionCosine self, double mean, double sigma) -> DistributionCosine
-        DistributionCosine::DistributionCosine(double mean, double sigma)
+        run_simulations(FitObjective self, Parameters params)
+        void FitObjective::run_simulations(const Fit::Parameters &params)
 
         """
-        _libBornAgainCore.DistributionCosine_swiginit(self, _libBornAgainCore.new_DistributionCosine(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_DistributionCosine
+        return _libBornAgainCore.FitObjective_run_simulations(self, params)
 
-    def clone(self):
+    def setChiSquaredModule(self, module):
         r"""
-        clone(DistributionCosine self) -> DistributionCosine
-        DistributionCosine* DistributionCosine::clone() const final
+        setChiSquaredModule(FitObjective self, IChiSquaredModule module)
+        void FitObjective::setChiSquaredModule(const IChiSquaredModule &module)
 
         """
-        return _libBornAgainCore.DistributionCosine_clone(self)
+        return _libBornAgainCore.FitObjective_setChiSquaredModule(self, module)
 
-    def probabilityDensity(self, x):
+    def setObjectiveMetric(self, *args):
         r"""
-        probabilityDensity(DistributionCosine self, double x) -> double
-        double DistributionCosine::probabilityDensity(double x) const final
-
-        Returns the distribution-specific probability density for value x. 
+        setObjectiveMetric(FitObjective self, std::string const & metric)
+        setObjectiveMetric(FitObjective self, std::string const & metric, std::string const & norm)
+        void FitObjective::setObjectiveMetric(std::unique_ptr< ObjectiveMetric > metric)
 
         """
-        return _libBornAgainCore.DistributionCosine_probabilityDensity(self, x)
+        return _libBornAgainCore.FitObjective_setObjectiveMetric(self, *args)
 
-    def getMean(self):
+    def containsUncertainties_cpp(self, i_item):
         r"""
-        getMean(DistributionCosine self) -> double
-        double DistributionCosine::getMean() const final
+        containsUncertainties_cpp(FitObjective self, size_t i_item) -> bool
+        bool FitObjective::containsUncertainties(size_t i_item) const
 
-        Returns the distribution-specific mean. 
+        Returns true if the specified DataPair element contains uncertainties. 
 
         """
-        return _libBornAgainCore.DistributionCosine_getMean(self)
+        return _libBornAgainCore.FitObjective_containsUncertainties_cpp(self, i_item)
 
-    def getSigma(self):
+    def allPairsHaveUncertainties_cpp(self):
         r"""
-        getSigma(DistributionCosine self) -> double
-        double DistributionCosine::getSigma() const
+        allPairsHaveUncertainties_cpp(FitObjective self) -> bool
+        bool FitObjective::allPairsHaveUncertainties() const
+
+        Returns true if all the data pairs in  FitObjective instance contain uncertainties. 
 
         """
-        return _libBornAgainCore.DistributionCosine_getSigma(self)
+        return _libBornAgainCore.FitObjective_allPairsHaveUncertainties_cpp(self)
 
-    def equidistantPoints(self, *args):
-        r"""
-        equidistantPoints(DistributionCosine self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
-        std::vector< double > DistributionCosine::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const
+    @staticmethod
+    def availableMetricOptions():
+        r"""availableMetricOptions() -> std::string"""
+        return _libBornAgainCore.FitObjective_availableMetricOptions()
 
-        generate list of sample values 
+    def addSimulationAndData_cpp(self, *args):
+        r"""
+        addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble1d_t data, double weight=1.0)
+        addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble1d_t data, vdouble1d_t uncertainties, double weight=1.0)
+        addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble2d_t data, double weight=1.0)
+        addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble2d_t data, vdouble2d_t uncertainties, double weight=1.0)
+        void FitObjective::addSimulationAndData(PyBuilderCallback &callback, const T &data, const T &uncertainties, double weight=1.0)
 
-        """
-        return _libBornAgainCore.DistributionCosine_equidistantPoints(self, *args)
+        Constructs simulation/data pair for later fit.
 
-    def isDelta(self):
-        r"""
-        isDelta(DistributionCosine self) -> bool
-        bool DistributionCosine::isDelta() const final
+        Parameters:
+        -----------
 
-        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
+        callback: 
+        simulation builder capable of producing simulations
 
-        """
-        return _libBornAgainCore.DistributionCosine_isDelta(self)
+        data: 
+        experimental data array
 
-    def accept(self, visitor):
-        r"""
-        accept(DistributionCosine self, INodeVisitor visitor)
-        void DistributionCosine::accept(INodeVisitor *visitor) const final
+        uncertainties: 
+        data uncertainties array
 
-        Calls the  INodeVisitor's visit method. 
+        weight: 
+        weight of dataset in metric calculations 
 
         """
-        return _libBornAgainCore.DistributionCosine_accept(self, visitor)
+        return _libBornAgainCore.FitObjective_addSimulationAndData_cpp(self, *args)
 
-# Register DistributionCosine in _libBornAgainCore:
-_libBornAgainCore.DistributionCosine_swigregister(DistributionCosine)
+    def addSimulationAndData(self, callback, data, *args, **kwargs):
+        """
+        Sets simulation and experimental data to the fit objective.
+        Optionally accepts experimental data uncertainties and
+        user-defined dataset weight.
 
-class DistributionTrapezoid(IDistribution1D):
-    r"""
+        Arguments:
 
+        callback -- user-defined function returning fully-defined bornagain.Simulation object.
+        The function must use fit parameter dictionary as its input.
 
-    Trapezoidal distribution.
+        data -- numpy array with experimental data.
 
-    C++ includes: Distributions.h
+        uncertainties -- numpy array with experimental data uncertainties.
+        Array shape must correspond to the shape of data. Optional argument.
 
-    """
+        weight -- user-defined weight of the dataset. If not specified, defaults to 1.0.
+        """
+        if not hasattr(self, 'callback_container'):
+            self.callback_container = []
+        wrp = SimulationBuilderWrapper(callback)
+        self.callback_container.append(wrp)
+        return self.addSimulationAndData_cpp(wrp, data, *args, **kwargs)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+    def convert_params(self, params):
+        """
+        Converts parameters to what FitObjective::evaluate expects
+        """
 
-    def __init__(self, *args):
-        r"""
-        __init__(DistributionTrapezoid self) -> DistributionTrapezoid
-        __init__(DistributionTrapezoid self, double center, double left_width, double middle_width, double right_width) -> DistributionTrapezoid
-        DistributionTrapezoid::DistributionTrapezoid(double center, double left_width, double middle_width, double right_width)
+        if str(params.__module__) == "lmfit.parameter":
+            bapars = libBornAgainFit.Parameters()
+            for p in params:
+                bapars.add(p, params[p].value)
+            return bapars
+        else:
+            return params
 
-        """
-        _libBornAgainCore.DistributionTrapezoid_swiginit(self, _libBornAgainCore.new_DistributionTrapezoid(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_DistributionTrapezoid
+    def evaluate_residuals(self, params):
+        return self.evaluate_residuals_cpp(self.convert_params(params))
 
-    def clone(self):
-        r"""
-        clone(DistributionTrapezoid self) -> DistributionTrapezoid
-        DistributionTrapezoid* DistributionTrapezoid::clone() const final
+    def evaluate(self, params):
+        return self.evaluate_cpp(self.convert_params(params))
 
+    def convert_result(self, minim_result):
+        """
+        Converts result reported by arbitrary minimizer to ba.MinimizerResult
         """
-        return _libBornAgainCore.DistributionTrapezoid_clone(self)
 
-    def probabilityDensity(self, x):
-        r"""
-        probabilityDensity(DistributionTrapezoid self, double x) -> double
-        double DistributionTrapezoid::probabilityDensity(double x) const final
+        if str(minim_result.__module__) == "lmfit.minimizer":
+            return libBornAgainFit.MinimizerResult()
+        else:
+            return minim_result
 
-        Returns the distribution-specific probability density for value x. 
+    def finalize(self, minimizer_result):
+        return self.finalize_cpp(self.convert_result(minimizer_result))
 
-        """
-        return _libBornAgainCore.DistributionTrapezoid_probabilityDensity(self, x)
+    def create_default_plotter(self):
+        import plot_utils
+        self.m_plotter = plot_utils.PlotterGISAS()
+        return self.m_plotter.plot
 
-    def getMean(self):
-        r"""
-        getMean(DistributionTrapezoid self) -> double
-        double DistributionTrapezoid::getMean() const final
+    def initPlot(self, every_nth, callback = None):
+        if not callback:
+            callback = self.create_default_plotter()
 
-        Returns the distribution-specific mean. 
+        self.wrp_plot_observer = ObserverCallbackWrapper(callback)
+        return self.initPlot_cpp(every_nth, self.wrp_plot_observer)
 
+    def uncertainties(self):
         """
-        return _libBornAgainCore.DistributionTrapezoid_getMean(self)
-
-    def getLeftWidth(self):
-        r"""
-        getLeftWidth(DistributionTrapezoid self) -> double
-        double DistributionTrapezoid::getLeftWidth() const
-
+        Returns one-dimensional array representing merged data uncertainties.
+        If any of the associated data pairs lack uncertainties, returns None.
         """
-        return _libBornAgainCore.DistributionTrapezoid_getLeftWidth(self)
-
-    def getMiddleWidth(self):
-        r"""
-        getMiddleWidth(DistributionTrapezoid self) -> double
-        double DistributionTrapezoid::getMiddleWidth() const
-
-        """
-        return _libBornAgainCore.DistributionTrapezoid_getMiddleWidth(self)
-
-    def getRightWidth(self):
-        r"""
-        getRightWidth(DistributionTrapezoid self) -> double
-        double DistributionTrapezoid::getRightWidth() const
-
-        """
-        return _libBornAgainCore.DistributionTrapezoid_getRightWidth(self)
-
-    def equidistantPoints(self, *args):
-        r"""
-        equidistantPoints(DistributionTrapezoid self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
-        std::vector< double > DistributionTrapezoid::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const
-
-        generate list of sample values 
+        if self.allPairsHaveUncertainties_cpp():
+            return self.uncertainties_cpp()
+        return None
 
+    def uncertaintyData(self, i=0):
         """
-        return _libBornAgainCore.DistributionTrapezoid_equidistantPoints(self, *args)
-
-    def isDelta(self):
-        r"""
-        isDelta(DistributionTrapezoid self) -> bool
-        bool DistributionTrapezoid::isDelta() const final
-
-        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
-
+        Returns uncertainties for i-th simulation-data pair. If
+        no uncertainties are assigned to the data pair, returns
+        None.
         """
-        return _libBornAgainCore.DistributionTrapezoid_isDelta(self)
-
-    def accept(self, visitor):
-        r"""
-        accept(DistributionTrapezoid self, INodeVisitor visitor)
-        void DistributionTrapezoid::accept(INodeVisitor *visitor) const final
+        if self.containsUncertainties_cpp(i):
+            return self.uncertaintyData_cpp(i)
+        return None
 
-        Calls the  INodeVisitor's visit method. 
+    def __disown__(self):
+        self.this.disown()
+        _libBornAgainCore.disown_FitObjective(self)
+        return weakref.proxy(self)
 
-        """
-        return _libBornAgainCore.DistributionTrapezoid_accept(self, visitor)
+# Register FitObjective in _libBornAgainCore:
+_libBornAgainCore.FitObjective_swigregister(FitObjective)
 
-# Register DistributionTrapezoid in _libBornAgainCore:
-_libBornAgainCore.DistributionTrapezoid_swigregister(DistributionTrapezoid)
+def FitObjective_availableMetricOptions():
+    r"""FitObjective_availableMetricOptions() -> std::string"""
+    return _libBornAgainCore.FitObjective_availableMetricOptions()
 
-class DetectorMask(object):
+class FormFactorCrystal(IFormFactor):
     r"""
 
 
-    Collection of detector masks.
+    The form factor of a  MesoCrystal.
 
-    C++ includes: DetectorMask.h
+    C++ includes: FormFactorCrystal.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self, lattice, basis_form_factor, meso_form_factor, position_variance=0.0):
         r"""
-        __init__(DetectorMask self) -> DetectorMask
-        __init__(DetectorMask self, DetectorMask other) -> DetectorMask
-        DetectorMask::DetectorMask(const DetectorMask &other)
+        __init__(FormFactorCrystal self, Lattice lattice, IFormFactor basis_form_factor, IFormFactor meso_form_factor, double position_variance=0.0) -> FormFactorCrystal
+        FormFactorCrystal::FormFactorCrystal(const Lattice &lattice, const IFormFactor &basis_form_factor, const IFormFactor &meso_form_factor, double position_variance=0.0)
 
         """
-        _libBornAgainCore.DetectorMask_swiginit(self, _libBornAgainCore.new_DetectorMask(*args))
+        _libBornAgainCore.FormFactorCrystal_swiginit(self, _libBornAgainCore.new_FormFactorCrystal(lattice, basis_form_factor, meso_form_factor, position_variance))
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorCrystal
 
-    def addMask(self, shape, mask_value):
+    def clone(self):
         r"""
-        addMask(DetectorMask self, IShape2D shape, bool mask_value)
-        void DetectorMask::addMask(const IShape2D &shape, bool mask_value)
-
-        Add mask to the stack of detector masks. The value "true" means that the area will be excluded from the analysis.
-
-        Parameters:
-        -----------
-
-        shape: 
-        The shape of mask.
+        clone(FormFactorCrystal self) -> FormFactorCrystal
+        FormFactorCrystal* FormFactorCrystal::clone() const override final
 
-        mask_value: 
-        The value of mask 
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.DetectorMask_addMask(self, shape, mask_value)
+        return _libBornAgainCore.FormFactorCrystal_clone(self)
 
-    def initMaskData(self, *args):
+    def accept(self, visitor):
         r"""
-        initMaskData(DetectorMask self, IDetector2D detector)
-        initMaskData(DetectorMask self, IntensityData data)
-        void DetectorMask::initMaskData(const OutputData< double > &data)
-
-        """
-        return _libBornAgainCore.DetectorMask_initMaskData(self, *args)
+        accept(FormFactorCrystal self, INodeVisitor visitor)
+        void FormFactorCrystal::accept(INodeVisitor *visitor) const override final
 
-    def isMasked(self, index):
-        r"""
-        isMasked(DetectorMask self, size_t index) -> bool
-        bool DetectorMask::isMasked(size_t index) const
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.DetectorMask_isMasked(self, index)
+        return _libBornAgainCore.FormFactorCrystal_accept(self, visitor)
 
-    def getMaskData(self):
+    def setAmbientMaterial(self, material):
         r"""
-        getMaskData(DetectorMask self) -> OutputData< bool > const *
-        const OutputData<bool>* DetectorMask::getMaskData() const
-
-        """
-        return _libBornAgainCore.DetectorMask_getMaskData(self)
+        setAmbientMaterial(FormFactorCrystal self, Material material)
+        void FormFactorCrystal::setAmbientMaterial(Material material) override
 
-    def createHistogram(self):
-        r"""
-        createHistogram(DetectorMask self) -> Histogram2D
-        Histogram2D * DetectorMask::createHistogram() const
+        Passes the material in which this particle is embedded. 
 
         """
-        return _libBornAgainCore.DetectorMask_createHistogram(self)
+        return _libBornAgainCore.FormFactorCrystal_setAmbientMaterial(self, material)
 
-    def removeMasks(self):
+    def volume(self):
         r"""
-        removeMasks(DetectorMask self)
-        void DetectorMask::removeMasks()
+        volume(FormFactorCrystal self) -> double
+        double FormFactorCrystal::volume() const override final
 
-        remove all masks and return object to initial state 
+        Returns the total volume of the particle of this form factor's shape. 
 
         """
-        return _libBornAgainCore.DetectorMask_removeMasks(self)
+        return _libBornAgainCore.FormFactorCrystal_volume(self)
 
-    def hasMasks(self):
+    def radialExtension(self):
         r"""
-        hasMasks(DetectorMask self) -> bool
-        bool DetectorMask::hasMasks() const
+        radialExtension(FormFactorCrystal self) -> double
+        double FormFactorCrystal::radialExtension() const override final
 
-        returns true if has masks 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.DetectorMask_hasMasks(self)
+        return _libBornAgainCore.FormFactorCrystal_radialExtension(self)
 
-    def numberOfMaskedChannels(self):
+    def bottomZ(self, rotation):
         r"""
-        numberOfMaskedChannels(DetectorMask self) -> int
-        int DetectorMask::numberOfMaskedChannels() const
+        bottomZ(FormFactorCrystal self, IRotation rotation) -> double
+        double FormFactorCrystal::bottomZ(const IRotation &rotation) const override
+
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.DetectorMask_numberOfMaskedChannels(self)
+        return _libBornAgainCore.FormFactorCrystal_bottomZ(self, rotation)
 
-    def numberOfMasks(self):
+    def topZ(self, rotation):
         r"""
-        numberOfMasks(DetectorMask self) -> size_t
-        size_t DetectorMask::numberOfMasks() const
+        topZ(FormFactorCrystal self, IRotation rotation) -> double
+        double FormFactorCrystal::topZ(const IRotation &rotation) const override final
+
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.DetectorMask_numberOfMasks(self)
+        return _libBornAgainCore.FormFactorCrystal_topZ(self, rotation)
 
-    def getMaskShape(self, mask_index, mask_value):
+    def evaluate(self, wavevectors):
         r"""
-        getMaskShape(DetectorMask self, size_t mask_index, bool & mask_value) -> IShape2D
-        const IShape2D * DetectorMask::getMaskShape(size_t mask_index, bool &mask_value) const
+        evaluate(FormFactorCrystal self, WavevectorInfo wavevectors) -> complex_t
+        complex_t FormFactorCrystal::evaluate(const WavevectorInfo &wavevectors) const override final
+
+        Returns scattering amplitude for complex wavevectors ki, kf. 
 
         """
-        return _libBornAgainCore.DetectorMask_getMaskShape(self, mask_index, mask_value)
-    __swig_destroy__ = _libBornAgainCore.delete_DetectorMask
+        return _libBornAgainCore.FormFactorCrystal_evaluate(self, wavevectors)
 
-# Register DetectorMask in _libBornAgainCore:
-_libBornAgainCore.DetectorMask_swigregister(DetectorMask)
+# Register FormFactorCrystal in _libBornAgainCore:
+_libBornAgainCore.FormFactorCrystal_swigregister(FormFactorCrystal)
 
-class Ellipse(IShape2D):
+class FormFactorWeighted(IFormFactor):
     r"""
 
 
-    Ellipse shape.
+    Coherent sum of different scalar  IFormFactor's with different weights.
 
-    C++ includes: Ellipse.h
+    Used by  ParticleComposition. If same particles are at different positions, then consider FormFactorDecoratorMultiPositionFactor (restore from commit 0500a26de76).
+
+    C++ includes: FormFactorWeighted.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, xcenter, ycenter, xradius, yradius, theta=0.0):
+    def __init__(self):
         r"""
-        __init__(Ellipse self, double xcenter, double ycenter, double xradius, double yradius, double theta=0.0) -> Ellipse
-        Ellipse::Ellipse(double xcenter, double ycenter, double xradius, double yradius, double theta=0.0)
+        __init__(FormFactorWeighted self) -> FormFactorWeighted
+        FormFactorWeighted::FormFactorWeighted()
 
-        Parameters:
-        -----------
+        """
+        _libBornAgainCore.FormFactorWeighted_swiginit(self, _libBornAgainCore.new_FormFactorWeighted())
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorWeighted
 
-        xcenter: 
-        x-coordinate of  Ellipse's center
+    def clone(self):
+        r"""
+        clone(FormFactorWeighted self) -> FormFactorWeighted
+        FormFactorWeighted * FormFactorWeighted::clone() const override final
 
-        ycenter: 
-        y-coordinate of  Ellipse's center
+        Returns a clone of this  ISample object. 
 
-        xradius: 
-        Radius along x-axis
+        """
+        return _libBornAgainCore.FormFactorWeighted_clone(self)
 
-        yradius: 
-        Radius along y-axis
+    def accept(self, visitor):
+        r"""
+        accept(FormFactorWeighted self, INodeVisitor visitor)
+        void FormFactorWeighted::accept(INodeVisitor *visitor) const override final
 
-        theta: 
-        Angle of  Ellipse rotation in radians 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        _libBornAgainCore.Ellipse_swiginit(self, _libBornAgainCore.new_Ellipse(xcenter, ycenter, xradius, yradius, theta))
+        return _libBornAgainCore.FormFactorWeighted_accept(self, visitor)
 
-    def clone(self):
+    def radialExtension(self):
         r"""
-        clone(Ellipse self) -> Ellipse
-        Ellipse* Ellipse::clone() const
+        radialExtension(FormFactorWeighted self) -> double
+        double FormFactorWeighted::radialExtension() const override final
+
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.Ellipse_clone(self)
+        return _libBornAgainCore.FormFactorWeighted_radialExtension(self)
 
-    def contains(self, *args):
+    def bottomZ(self, rotation):
         r"""
-        contains(Ellipse self, double x, double y) -> bool
-        contains(Ellipse self, Bin1D binx, Bin1D biny) -> bool
-        bool Ellipse::contains(const Bin1D &binx, const Bin1D &biny) const
+        bottomZ(FormFactorWeighted self, IRotation rotation) -> double
+        double FormFactorWeighted::bottomZ(const IRotation &rotation) const override final
 
-        Returns true if area defined by two bins is inside or on border of ellipse; more precisely, if mid point of two bins satisfy this condition. 
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.Ellipse_contains(self, *args)
+        return _libBornAgainCore.FormFactorWeighted_bottomZ(self, rotation)
 
-    def getCenterX(self):
+    def topZ(self, rotation):
         r"""
-        getCenterX(Ellipse self) -> double
-        double Ellipse::getCenterX() const
+        topZ(FormFactorWeighted self, IRotation rotation) -> double
+        double FormFactorWeighted::topZ(const IRotation &rotation) const override final
+
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.Ellipse_getCenterX(self)
+        return _libBornAgainCore.FormFactorWeighted_topZ(self, rotation)
 
-    def getCenterY(self):
+    def addFormFactor(self, form_factor, weight=1.0):
         r"""
-        getCenterY(Ellipse self) -> double
-        double Ellipse::getCenterY() const
+        addFormFactor(FormFactorWeighted self, IFormFactor form_factor, double weight=1.0)
+        void FormFactorWeighted::addFormFactor(const IFormFactor &form_factor, double weight=1.0)
 
         """
-        return _libBornAgainCore.Ellipse_getCenterY(self)
+        return _libBornAgainCore.FormFactorWeighted_addFormFactor(self, form_factor, weight)
 
-    def getRadiusX(self):
+    def setAmbientMaterial(self, material):
         r"""
-        getRadiusX(Ellipse self) -> double
-        double Ellipse::getRadiusX() const
-
-        """
-        return _libBornAgainCore.Ellipse_getRadiusX(self)
+        setAmbientMaterial(FormFactorWeighted self, Material material)
+        void FormFactorWeighted::setAmbientMaterial(Material material) override final
 
-    def getRadiusY(self):
-        r"""
-        getRadiusY(Ellipse self) -> double
-        double Ellipse::getRadiusY() const
+        Passes the material in which this particle is embedded. 
 
         """
-        return _libBornAgainCore.Ellipse_getRadiusY(self)
+        return _libBornAgainCore.FormFactorWeighted_setAmbientMaterial(self, material)
 
-    def getTheta(self):
+    def evaluate(self, wavevectors):
         r"""
-        getTheta(Ellipse self) -> double
-        double Ellipse::getTheta() const
+        evaluate(FormFactorWeighted self, WavevectorInfo wavevectors) -> complex_t
+        complex_t FormFactorWeighted::evaluate(const WavevectorInfo &wavevectors) const override final
+
+        Returns scattering amplitude for complex wavevectors ki, kf. 
 
         """
-        return _libBornAgainCore.Ellipse_getTheta(self)
-    __swig_destroy__ = _libBornAgainCore.delete_Ellipse
+        return _libBornAgainCore.FormFactorWeighted_evaluate(self, wavevectors)
 
-# Register Ellipse in _libBornAgainCore:
-_libBornAgainCore.Ellipse_swigregister(Ellipse)
+# Register FormFactorWeighted in _libBornAgainCore:
+_libBornAgainCore.FormFactorWeighted_swigregister(FormFactorWeighted)
 
-class IFTDecayFunction1D(ICloneable, INode):
+class IAbstractParticle(ISample):
     r"""
 
 
-    Interface for a one-dimensional decay function, with evaluate(q) returning the Fourier transform, normalized to  $\\int dq\\; {\\rm evaluate}(q) = 1$.
+    Interface for a generic particle.
 
-    C++ includes: FTDecayFunctions.h
+    Inherited by  IParticle and  ParticleDistribution.
+
+    C++ includes: IAbstractParticle.h
 
     """
 
@@ -7041,265 +6815,254 @@ class IFTDecayFunction1D(ICloneable, INode):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IAbstractParticle
 
     def clone(self):
         r"""
-        clone(IFTDecayFunction1D self) -> IFTDecayFunction1D
-        virtual IFTDecayFunction1D* IFTDecayFunction1D::clone() const =0
+        clone(IAbstractParticle self) -> IAbstractParticle
+        virtual IAbstractParticle* IAbstractParticle::clone() const =0
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.IFTDecayFunction1D_clone(self)
+        return _libBornAgainCore.IAbstractParticle_clone(self)
 
-    def evaluate(self, q):
+    def accept(self, visitor):
         r"""
-        evaluate(IFTDecayFunction1D self, double q) -> double
-        virtual double IFTDecayFunction1D::evaluate(double q) const =0
+        accept(IAbstractParticle self, INodeVisitor visitor)
+        void IAbstractParticle::accept(INodeVisitor *visitor) const
+
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IFTDecayFunction1D_evaluate(self, q)
+        return _libBornAgainCore.IAbstractParticle_accept(self, visitor)
 
-    def decayLength(self):
+    def abundance(self):
         r"""
-        decayLength(IFTDecayFunction1D self) -> double
-        double IFTDecayFunction1D::decayLength() const
+        abundance(IAbstractParticle self) -> double
+        double IAbstractParticle::abundance() const
 
         """
-        return _libBornAgainCore.IFTDecayFunction1D_decayLength(self)
-    __swig_destroy__ = _libBornAgainCore.delete_IFTDecayFunction1D
-
-# Register IFTDecayFunction1D in _libBornAgainCore:
-_libBornAgainCore.IFTDecayFunction1D_swigregister(IFTDecayFunction1D)
-
-class FTDecayFunction1DCauchy(IFTDecayFunction1D):
-    r"""
-
-
-    One-dimensional Cauchy decay function in reciprocal space; corresponds to exp(-|x|/decay_length) in real space.
-
-    C++ includes: FTDecayFunctions.h
-
-    """
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        return _libBornAgainCore.IAbstractParticle_abundance(self)
 
-    def __init__(self, decay_length):
+    def setAbundance(self, abundance):
         r"""
-        __init__(FTDecayFunction1DCauchy self, double decay_length) -> FTDecayFunction1DCauchy
-        FTDecayFunction1DCauchy::FTDecayFunction1DCauchy(double decay_length)
+        setAbundance(IAbstractParticle self, double abundance)
+        void IAbstractParticle::setAbundance(double abundance)
 
-        """
-        _libBornAgainCore.FTDecayFunction1DCauchy_swiginit(self, _libBornAgainCore.new_FTDecayFunction1DCauchy(decay_length))
+        Sets particle abundance.
 
-    def clone(self):
-        r"""
-        clone(FTDecayFunction1DCauchy self) -> FTDecayFunction1DCauchy
-        FTDecayFunction1DCauchy * FTDecayFunction1DCauchy::clone() const
+        Parameters:
+        -----------
+
+        abundance: 
+        proportion of this type of particles normalized to the total number of particles in the layout. 
 
         """
-        return _libBornAgainCore.FTDecayFunction1DCauchy_clone(self)
+        return _libBornAgainCore.IAbstractParticle_setAbundance(self, abundance)
 
-    def accept(self, visitor):
+    def translate(self, translation):
         r"""
-        accept(FTDecayFunction1DCauchy self, INodeVisitor visitor)
-        void FTDecayFunction1DCauchy::accept(INodeVisitor *visitor) const final
+        translate(IAbstractParticle self, kvector_t translation)
+        virtual void IAbstractParticle::translate(kvector_t translation)=0
 
-        Calls the  INodeVisitor's visit method. 
+        Translates the particle with the given vector. 
 
         """
-        return _libBornAgainCore.FTDecayFunction1DCauchy_accept(self, visitor)
+        return _libBornAgainCore.IAbstractParticle_translate(self, translation)
 
-    def evaluate(self, q):
+    def rotate(self, rotation):
         r"""
-        evaluate(FTDecayFunction1DCauchy self, double q) -> double
-        double FTDecayFunction1DCauchy::evaluate(double q) const final
+        rotate(IAbstractParticle self, IRotation rotation)
+        virtual void IAbstractParticle::rotate(const IRotation &rotation)=0
+
+        Applies the given rotation to the particle. 
 
         """
-        return _libBornAgainCore.FTDecayFunction1DCauchy_evaluate(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction1DCauchy
+        return _libBornAgainCore.IAbstractParticle_rotate(self, rotation)
 
-# Register FTDecayFunction1DCauchy in _libBornAgainCore:
-_libBornAgainCore.FTDecayFunction1DCauchy_swigregister(FTDecayFunction1DCauchy)
+# Register IAbstractParticle in _libBornAgainCore:
+_libBornAgainCore.IAbstractParticle_swigregister(IAbstractParticle)
 
-class FTDecayFunction1DGauss(IFTDecayFunction1D):
+class IClusteredParticles(ISample):
     r"""
 
 
-    One-dimensional Gauss decay function in reciprocal space; corresponds to exp[-x^2/(2*decay_length^2)] in real space.
+    An ordered assembly of particles. Currently, the only child class is  Crystal.
 
-    C++ includes: FTDecayFunctions.h
+    C++ includes: IClusteredParticles.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
-
-    def __init__(self, decay_length):
-        r"""
-        __init__(FTDecayFunction1DGauss self, double decay_length) -> FTDecayFunction1DGauss
-        FTDecayFunction1DGauss::FTDecayFunction1DGauss(double decay_length)
 
-        """
-        _libBornAgainCore.FTDecayFunction1DGauss_swiginit(self, _libBornAgainCore.new_FTDecayFunction1DGauss(decay_length))
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
 
     def clone(self):
         r"""
-        clone(FTDecayFunction1DGauss self) -> FTDecayFunction1DGauss
-        FTDecayFunction1DGauss * FTDecayFunction1DGauss::clone() const
+        clone(IClusteredParticles self) -> IClusteredParticles
+        IClusteredParticles* IClusteredParticles::clone() const override=0
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FTDecayFunction1DGauss_clone(self)
+        return _libBornAgainCore.IClusteredParticles_clone(self)
 
-    def accept(self, visitor):
+    def createTotalFormFactor(self, arg2, arg3, arg4):
         r"""
-        accept(FTDecayFunction1DGauss self, INodeVisitor visitor)
-        void FTDecayFunction1DGauss::accept(INodeVisitor *visitor) const final
+        createTotalFormFactor(IClusteredParticles self, IFormFactor arg2, IRotation arg3, kvector_t arg4) -> IFormFactor
+        virtual IFormFactor* IClusteredParticles::createTotalFormFactor(const IFormFactor &, const IRotation *, const kvector_t &) const =0
 
-        Calls the  INodeVisitor's visit method. 
+        Creates a total form factor for the mesocrystal with a specific shape and content The bulk content of the mesocrystal is encapsulated by the  IClusteredParticles object itself 
 
         """
-        return _libBornAgainCore.FTDecayFunction1DGauss_accept(self, visitor)
+        return _libBornAgainCore.IClusteredParticles_createTotalFormFactor(self, arg2, arg3, arg4)
 
-    def evaluate(self, q):
+    def homogeneousRegions(self):
         r"""
-        evaluate(FTDecayFunction1DGauss self, double q) -> double
-        double FTDecayFunction1DGauss::evaluate(double q) const final
+        homogeneousRegions(IClusteredParticles self) -> std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >
+        virtual std::vector<HomogeneousRegion> IClusteredParticles::homogeneousRegions() const =0
+
+        Creates region information with volumetric densities instead of absolute volume These densities need to be multiplied by the total mesocrystal volume 
 
         """
-        return _libBornAgainCore.FTDecayFunction1DGauss_evaluate(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction1DGauss
+        return _libBornAgainCore.IClusteredParticles_homogeneousRegions(self)
+    __swig_destroy__ = _libBornAgainCore.delete_IClusteredParticles
 
-# Register FTDecayFunction1DGauss in _libBornAgainCore:
-_libBornAgainCore.FTDecayFunction1DGauss_swigregister(FTDecayFunction1DGauss)
+# Register IClusteredParticles in _libBornAgainCore:
+_libBornAgainCore.IClusteredParticles_swigregister(IClusteredParticles)
 
-class FTDecayFunction1DTriangle(IFTDecayFunction1D):
+class Crystal(IClusteredParticles):
     r"""
 
 
-    One-dimensional triangle decay function in reciprocal space; corresponds to 1-|x|/decay_length if |x|<decay_length (and 0 otherwise) in real space.
+    A crystal structure with a  ParticleComposition as a basis. Used in  MesoCrystal, where it is given an outer shape.
 
-    C++ includes: FTDecayFunctions.h
+    C++ includes: Crystal.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, decay_length):
+    def __init__(self, lattice_basis, lattice):
         r"""
-        __init__(FTDecayFunction1DTriangle self, double decay_length) -> FTDecayFunction1DTriangle
-        FTDecayFunction1DTriangle::FTDecayFunction1DTriangle(double decay_length)
+        __init__(Crystal self, IParticle lattice_basis, Lattice lattice) -> Crystal
+        Crystal::Crystal(const IParticle &lattice_basis, const Lattice &lattice)
 
         """
-        _libBornAgainCore.FTDecayFunction1DTriangle_swiginit(self, _libBornAgainCore.new_FTDecayFunction1DTriangle(decay_length))
+        _libBornAgainCore.Crystal_swiginit(self, _libBornAgainCore.new_Crystal(lattice_basis, lattice))
+    __swig_destroy__ = _libBornAgainCore.delete_Crystal
 
     def clone(self):
         r"""
-        clone(FTDecayFunction1DTriangle self) -> FTDecayFunction1DTriangle
-        FTDecayFunction1DTriangle * FTDecayFunction1DTriangle::clone() const
+        clone(Crystal self) -> Crystal
+        Crystal * Crystal::clone() const override final
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FTDecayFunction1DTriangle_clone(self)
+        return _libBornAgainCore.Crystal_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FTDecayFunction1DTriangle self, INodeVisitor visitor)
-        void FTDecayFunction1DTriangle::accept(INodeVisitor *visitor) const final
+        accept(Crystal self, INodeVisitor visitor)
+        void Crystal::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FTDecayFunction1DTriangle_accept(self, visitor)
+        return _libBornAgainCore.Crystal_accept(self, visitor)
 
-    def evaluate(self, q):
+    def createTotalFormFactor(self, meso_crystal_form_factor, p_rotation, translation):
         r"""
-        evaluate(FTDecayFunction1DTriangle self, double q) -> double
-        double FTDecayFunction1DTriangle::evaluate(double q) const final
+        createTotalFormFactor(Crystal self, IFormFactor meso_crystal_form_factor, IRotation p_rotation, kvector_t translation) -> IFormFactor
+        IFormFactor * Crystal::createTotalFormFactor(const IFormFactor &meso_crystal_form_factor, const IRotation *p_rotation, const kvector_t &translation) const override final
+
+        Creates a total form factor for the mesocrystal with a specific shape and content The bulk content of the mesocrystal is encapsulated by the  IClusteredParticles object itself 
 
         """
-        return _libBornAgainCore.FTDecayFunction1DTriangle_evaluate(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction1DTriangle
+        return _libBornAgainCore.Crystal_createTotalFormFactor(self, meso_crystal_form_factor, p_rotation, translation)
 
-# Register FTDecayFunction1DTriangle in _libBornAgainCore:
-_libBornAgainCore.FTDecayFunction1DTriangle_swigregister(FTDecayFunction1DTriangle)
+    def homogeneousRegions(self):
+        r"""
+        homogeneousRegions(Crystal self) -> std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >
+        std::vector< HomogeneousRegion > Crystal::homogeneousRegions() const override final
 
-class FTDecayFunction1DVoigt(IFTDecayFunction1D):
-    r"""
+        Creates region information with volumetric densities instead of absolute volume These densities need to be multiplied by the total mesocrystal volume 
 
+        """
+        return _libBornAgainCore.Crystal_homogeneousRegions(self)
 
-    One-dimensional pseudo-Voigt decay function in reciprocal space; corresponds to eta*Gauss + (1-eta)*Cauchy.
+    def transformedLattice(self, p_rotation=None):
+        r"""
+        transformedLattice(Crystal self, IRotation p_rotation=None) -> Lattice
+        Lattice Crystal::transformedLattice(const IRotation *p_rotation=nullptr) const
 
-    C++ includes: FTDecayFunctions.h
+        """
+        return _libBornAgainCore.Crystal_transformedLattice(self, p_rotation)
 
-    """
+    def setPositionVariance(self, position_variance):
+        r"""
+        setPositionVariance(Crystal self, double position_variance)
+        void Crystal::setPositionVariance(double position_variance)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.Crystal_setPositionVariance(self, position_variance)
 
-    def __init__(self, decay_length, eta):
+    def getChildren(self):
         r"""
-        __init__(FTDecayFunction1DVoigt self, double decay_length, double eta) -> FTDecayFunction1DVoigt
-        FTDecayFunction1DVoigt::FTDecayFunction1DVoigt(double decay_length, double eta)
-
-        Constructor of pseudo-Voigt decay function.
+        getChildren(Crystal self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > Crystal::getChildren() const override final
 
-        Parameters:
-        -----------
+        Returns a vector of children (const). 
 
-        decay_length: 
-        half-width of the distribution in nanometers
+        """
+        return _libBornAgainCore.Crystal_getChildren(self)
 
-        eta: 
-        parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0) 
+# Register Crystal in _libBornAgainCore:
+_libBornAgainCore.Crystal_swigregister(Crystal)
 
-        """
-        _libBornAgainCore.FTDecayFunction1DVoigt_swiginit(self, _libBornAgainCore.new_FTDecayFunction1DVoigt(decay_length, eta))
+class ParticleLimits(object):
+    r"""
 
-    def clone(self):
-        r"""
-        clone(FTDecayFunction1DVoigt self) -> FTDecayFunction1DVoigt
-        FTDecayFunction1DVoigt * FTDecayFunction1DVoigt::clone() const
 
-        """
-        return _libBornAgainCore.FTDecayFunction1DVoigt_clone(self)
+    Vertical extension of a particle, specified by bottom and top z coordinate.
 
-    def accept(self, visitor):
-        r"""
-        accept(FTDecayFunction1DVoigt self, INodeVisitor visitor)
-        void FTDecayFunction1DVoigt::accept(INodeVisitor *visitor) const final
+    C++ includes: IParticle.h
 
-        Calls the  INodeVisitor's visit method. 
+    """
 
-        """
-        return _libBornAgainCore.FTDecayFunction1DVoigt_accept(self, visitor)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+    m_bottom = property(_libBornAgainCore.ParticleLimits_m_bottom_get, _libBornAgainCore.ParticleLimits_m_bottom_set, doc=r"""m_bottom : double""")
+    m_top = property(_libBornAgainCore.ParticleLimits_m_top_get, _libBornAgainCore.ParticleLimits_m_top_set, doc=r"""m_top : double""")
 
-    def evaluate(self, q):
+    def __init__(self):
         r"""
-        evaluate(FTDecayFunction1DVoigt self, double q) -> double
-        double FTDecayFunction1DVoigt::evaluate(double q) const final
+        __init__(ParticleLimits self) -> ParticleLimits
 
-        """
-        return _libBornAgainCore.FTDecayFunction1DVoigt_evaluate(self, q)
 
-    def eEta(self):
-        r"""
-        eEta(FTDecayFunction1DVoigt self) -> double
-        double FTDecayFunction1DVoigt::eEta() const
+        Vertical extension of a particle, specified by bottom and top z coordinate.
+
+        C++ includes: IParticle.h
 
         """
-        return _libBornAgainCore.FTDecayFunction1DVoigt_eEta(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction1DVoigt
+        _libBornAgainCore.ParticleLimits_swiginit(self, _libBornAgainCore.new_ParticleLimits())
+    __swig_destroy__ = _libBornAgainCore.delete_ParticleLimits
 
-# Register FTDecayFunction1DVoigt in _libBornAgainCore:
-_libBornAgainCore.FTDecayFunction1DVoigt_swigregister(FTDecayFunction1DVoigt)
+# Register ParticleLimits in _libBornAgainCore:
+_libBornAgainCore.ParticleLimits_swigregister(ParticleLimits)
 
-class IFTDecayFunction2D(ICloneable, INode):
+class IParticle(IAbstractParticle):
     r"""
 
 
-    Interface for two-dimensional decay function in reciprocal space.
+    Pure virtual base class for  Particle,  ParticleComposition,  ParticleCoreShell,  MesoCrystal. Provides position/rotation and form factor. Abundance is inherited from  IAbstractParticle.
 
-    C++ includes: FTDecayFunctions.h
+    C++ includes: IParticle.h
 
     """
 
@@ -7308,1686 +7071,1631 @@ class IFTDecayFunction2D(ICloneable, INode):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IParticle
 
     def clone(self):
         r"""
-        clone(IFTDecayFunction2D self) -> IFTDecayFunction2D
-        virtual IFTDecayFunction2D* IFTDecayFunction2D::clone() const =0
+        clone(IParticle self) -> IParticle
+        IParticle* IParticle::clone() const override=0
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.IFTDecayFunction2D_clone(self)
+        return _libBornAgainCore.IParticle_clone(self)
 
-    def setGamma(self, gamma):
+    def createFormFactor(self):
         r"""
-        setGamma(IFTDecayFunction2D self, double gamma)
-        void IFTDecayFunction2D::setGamma(double gamma)
+        createFormFactor(IParticle self) -> IFormFactor
+        IFormFactor * IParticle::createFormFactor() const
 
-        set angle between first lattice vector and X-axis of distribution (both in direct space) 
+        Create a form factor for this particle. 
 
         """
-        return _libBornAgainCore.IFTDecayFunction2D_setGamma(self, gamma)
+        return _libBornAgainCore.IParticle_createFormFactor(self)
 
-    def gamma(self):
+    def createSlicedParticle(self, limits):
         r"""
-        gamma(IFTDecayFunction2D self) -> double
-        double IFTDecayFunction2D::gamma() const
+        createSlicedParticle(IParticle self, ZLimits limits) -> SlicedParticle
+        SlicedParticle IParticle::createSlicedParticle(ZLimits limits) const
 
-        get angle between first lattice vector and X-axis of distribution (both in direct space) 
+        Create a sliced form factor for this particle. 
 
         """
-        return _libBornAgainCore.IFTDecayFunction2D_gamma(self)
+        return _libBornAgainCore.IParticle_createSlicedParticle(self, limits)
 
-    def decayLengthX(self):
+    def position(self):
         r"""
-        decayLengthX(IFTDecayFunction2D self) -> double
-        double IFTDecayFunction2D::decayLengthX() const
+        position(IParticle self) -> kvector_t
+        kvector_t IParticle::position() const
 
-        get decay length in distribution's X-direction 
+        Returns particle position. 
 
         """
-        return _libBornAgainCore.IFTDecayFunction2D_decayLengthX(self)
+        return _libBornAgainCore.IParticle_position(self)
 
-    def decayLengthY(self):
+    def setPosition(self, *args):
         r"""
-        decayLengthY(IFTDecayFunction2D self) -> double
-        double IFTDecayFunction2D::decayLengthY() const
+        setPosition(IParticle self, kvector_t position)
+        setPosition(IParticle self, double x, double y, double z)
+        void IParticle::setPosition(double x, double y, double z)
 
-        get decay length in distribution's Y-direction 
+        Sets relative position of the particle's reference point in the coordinate system of parent.
+
+        Parameters:
+        -----------
+
+        x: 
+        x-coordinate in nanometers
+
+        y: 
+        y-coordinate in nanometers
+
+        z: 
+        z-coordinate in nanometers 
 
         """
-        return _libBornAgainCore.IFTDecayFunction2D_decayLengthY(self)
+        return _libBornAgainCore.IParticle_setPosition(self, *args)
 
-    def evaluate(self, qx, qy):
+    def translate(self, translation):
         r"""
-        evaluate(IFTDecayFunction2D self, double qx, double qy) -> double
-        virtual double IFTDecayFunction2D::evaluate(double qx, double qy) const =0
+        translate(IParticle self, kvector_t translation)
+        void IParticle::translate(kvector_t translation) override final
 
-        evaluate Fourier transformed decay function for q in X,Y coordinates 
+        Translates the particle. 
 
         """
-        return _libBornAgainCore.IFTDecayFunction2D_evaluate(self, qx, qy)
+        return _libBornAgainCore.IParticle_translate(self, translation)
 
-    def boundingReciprocalLatticeCoordinates(self, qX, qY, a, b, alpha):
+    def rotation(self):
         r"""
-        boundingReciprocalLatticeCoordinates(IFTDecayFunction2D self, double qX, double qY, double a, double b, double alpha) -> pair_double_t
-        std::pair< double, double > IFTDecayFunction2D::boundingReciprocalLatticeCoordinates(double qX, double qY, double a, double b, double alpha) const
-
-        transform back to a*, b* basis:
+        rotation(IParticle self) -> IRotation
+        const IRotation * IParticle::rotation() const
 
-        Calculates bounding values of reciprocal lattice coordinates that contain the centered rectangle with a corner defined by qX and qY 
+        Returns rotation object. 
 
         """
-        return _libBornAgainCore.IFTDecayFunction2D_boundingReciprocalLatticeCoordinates(self, qX, qY, a, b, alpha)
-    __swig_destroy__ = _libBornAgainCore.delete_IFTDecayFunction2D
+        return _libBornAgainCore.IParticle_rotation(self)
 
-# Register IFTDecayFunction2D in _libBornAgainCore:
-_libBornAgainCore.IFTDecayFunction2D_swigregister(IFTDecayFunction2D)
+    def setRotation(self, rotation):
+        r"""
+        setRotation(IParticle self, IRotation rotation)
+        void IParticle::setRotation(const IRotation &rotation)
 
-class FTDecayFunction2DCauchy(IFTDecayFunction2D):
-    r"""
+        Sets transformation. 
 
+        """
+        return _libBornAgainCore.IParticle_setRotation(self, rotation)
 
-    Two-dimensional Cauchy decay function in reciprocal space; corresponds to exp(-r) in real space, with  $r=\\sqrt{(\\frac{x}{\\omega_x})^2 + (\\frac{y}{\\omega_y})^2}$.
+    def rotate(self, rotation):
+        r"""
+        rotate(IParticle self, IRotation rotation)
+        void IParticle::rotate(const IRotation &rotation) override final
 
-    C++ includes: FTDecayFunctions.h
+        Rotates the particle. 
 
-    """
+        """
+        return _libBornAgainCore.IParticle_rotate(self, rotation)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+    def getChildren(self):
+        r"""
+        getChildren(IParticle self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > IParticle::getChildren() const override
 
-    def __init__(self, decay_length_x, decay_length_y, gamma=0):
+        Returns a vector of children (const). 
+
+        """
+        return _libBornAgainCore.IParticle_getChildren(self)
+
+    def registerAbundance(self, make_registered=True):
         r"""
-        __init__(FTDecayFunction2DCauchy self, double decay_length_x, double decay_length_y, double gamma=0) -> FTDecayFunction2DCauchy
-        FTDecayFunction2DCauchy::FTDecayFunction2DCauchy(double decay_length_x, double decay_length_y, double gamma=0)
+        registerAbundance(IParticle self, bool make_registered=True)
+        void IParticle::registerAbundance(bool make_registered=true)
 
         """
-        _libBornAgainCore.FTDecayFunction2DCauchy_swiginit(self, _libBornAgainCore.new_FTDecayFunction2DCauchy(decay_length_x, decay_length_y, gamma))
+        return _libBornAgainCore.IParticle_registerAbundance(self, make_registered)
 
-    def clone(self):
+    def registerPosition(self, make_registered=True):
         r"""
-        clone(FTDecayFunction2DCauchy self) -> FTDecayFunction2DCauchy
-        FTDecayFunction2DCauchy * FTDecayFunction2DCauchy::clone() const
+        registerPosition(IParticle self, bool make_registered=True)
+        void IParticle::registerPosition(bool make_registered=true)
+
+        Registers the three components of its position. 
 
         """
-        return _libBornAgainCore.FTDecayFunction2DCauchy_clone(self)
+        return _libBornAgainCore.IParticle_registerPosition(self, make_registered)
 
-    def accept(self, visitor):
+    def decompose(self):
         r"""
-        accept(FTDecayFunction2DCauchy self, INodeVisitor visitor)
-        void FTDecayFunction2DCauchy::accept(INodeVisitor *visitor) const final
+        decompose(IParticle self) -> SafePointerVector< IParticle >
+        SafePointerVector< IParticle > IParticle::decompose() const
 
-        Calls the  INodeVisitor's visit method. 
+        Decompose in constituent  IParticle objects. 
 
         """
-        return _libBornAgainCore.FTDecayFunction2DCauchy_accept(self, visitor)
+        return _libBornAgainCore.IParticle_decompose(self)
 
-    def evaluate(self, qx, qy):
+    def bottomTopZ(self):
         r"""
-        evaluate(FTDecayFunction2DCauchy self, double qx, double qy) -> double
-        double FTDecayFunction2DCauchy::evaluate(double qx, double qy) const final
+        bottomTopZ(IParticle self) -> ParticleLimits
+        ParticleLimits IParticle::bottomTopZ() const
 
-        evaluate Fourier transformed decay function for q in X,Y coordinates 
+        Top and bottom z-coordinate. 
 
         """
-        return _libBornAgainCore.FTDecayFunction2DCauchy_evaluate(self, qx, qy)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction2DCauchy
+        return _libBornAgainCore.IParticle_bottomTopZ(self)
 
-# Register FTDecayFunction2DCauchy in _libBornAgainCore:
-_libBornAgainCore.FTDecayFunction2DCauchy_swigregister(FTDecayFunction2DCauchy)
+# Register IParticle in _libBornAgainCore:
+_libBornAgainCore.IParticle_swigregister(IParticle)
 
-class FTDecayFunction2DGauss(IFTDecayFunction2D):
+class MesoCrystal(IParticle):
     r"""
 
 
-    Two-dimensional Gauss decay function in reciprocal space; corresponds to exp(-r^2/2) in real space, with  $r=\\sqrt{(\\frac{x}{\\omega_x})^2 + (\\frac{y}{\\omega_y})^2}$.
+    A particle with an internal structure of smaller particles.
 
-    C++ includes: FTDecayFunctions.h
+    C++ includes: MesoCrystal.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, decay_length_x, decay_length_y, gamma=0):
+    def __init__(self, particle_structure, form_factor):
         r"""
-        __init__(FTDecayFunction2DGauss self, double decay_length_x, double decay_length_y, double gamma=0) -> FTDecayFunction2DGauss
-        FTDecayFunction2DGauss::FTDecayFunction2DGauss(double decay_length_x, double decay_length_y, double gamma=0)
+        __init__(MesoCrystal self, IClusteredParticles particle_structure, IFormFactor form_factor) -> MesoCrystal
+        MesoCrystal::MesoCrystal(const IClusteredParticles &particle_structure, const IFormFactor &form_factor)
 
         """
-        _libBornAgainCore.FTDecayFunction2DGauss_swiginit(self, _libBornAgainCore.new_FTDecayFunction2DGauss(decay_length_x, decay_length_y, gamma))
+        _libBornAgainCore.MesoCrystal_swiginit(self, _libBornAgainCore.new_MesoCrystal(particle_structure, form_factor))
+    __swig_destroy__ = _libBornAgainCore.delete_MesoCrystal
 
     def clone(self):
         r"""
-        clone(FTDecayFunction2DGauss self) -> FTDecayFunction2DGauss
-        FTDecayFunction2DGauss * FTDecayFunction2DGauss::clone() const
+        clone(MesoCrystal self) -> MesoCrystal
+        MesoCrystal * MesoCrystal::clone() const override final
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FTDecayFunction2DGauss_clone(self)
+        return _libBornAgainCore.MesoCrystal_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FTDecayFunction2DGauss self, INodeVisitor visitor)
-        void FTDecayFunction2DGauss::accept(INodeVisitor *visitor) const final
+        accept(MesoCrystal self, INodeVisitor visitor)
+        void MesoCrystal::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FTDecayFunction2DGauss_accept(self, visitor)
+        return _libBornAgainCore.MesoCrystal_accept(self, visitor)
 
-    def evaluate(self, qx, qy):
+    def createSlicedParticle(self, limits):
         r"""
-        evaluate(FTDecayFunction2DGauss self, double qx, double qy) -> double
-        double FTDecayFunction2DGauss::evaluate(double qx, double qy) const final
+        createSlicedParticle(MesoCrystal self, ZLimits limits) -> SlicedParticle
+        SlicedParticle MesoCrystal::createSlicedParticle(ZLimits limits) const override final
 
-        evaluate Fourier transformed decay function for q in X,Y coordinates 
+        Create a sliced form factor for this particle. 
 
         """
-        return _libBornAgainCore.FTDecayFunction2DGauss_evaluate(self, qx, qy)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction2DGauss
+        return _libBornAgainCore.MesoCrystal_createSlicedParticle(self, limits)
 
-# Register FTDecayFunction2DGauss in _libBornAgainCore:
-_libBornAgainCore.FTDecayFunction2DGauss_swigregister(FTDecayFunction2DGauss)
+    def getChildren(self):
+        r"""
+        getChildren(MesoCrystal self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > MesoCrystal::getChildren() const override final
 
-class FTDecayFunction2DVoigt(IFTDecayFunction2D):
+        Returns a vector of children (const). 
+
+        """
+        return _libBornAgainCore.MesoCrystal_getChildren(self)
+
+# Register MesoCrystal in _libBornAgainCore:
+_libBornAgainCore.MesoCrystal_swigregister(MesoCrystal)
+
+class Particle(IParticle):
     r"""
 
 
-    Two-dimensional pseudo-Voigt decay function in reciprocal space; corresponds to eta*Gauss + (1-eta)*Cauchy.
+    A particle with a form factor and refractive index.
 
-    C++ includes: FTDecayFunctions.h
+    C++ includes: Particle.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, decay_length_x, decay_length_y, eta, gamma=0):
+    def __init__(self, *args):
         r"""
-        __init__(FTDecayFunction2DVoigt self, double decay_length_x, double decay_length_y, double eta, double gamma=0) -> FTDecayFunction2DVoigt
-        FTDecayFunction2DVoigt::FTDecayFunction2DVoigt(double decay_length_x, double decay_length_y, double eta, double gamma=0)
-
-        Constructor of two-dimensional pseudo-Voigt decay function in reciprocal space.
-
-        Parameters:
-        -----------
-
-        decay_length_x: 
-        the decay length in nanometers along x-axis of the distribution
-
-        decay_length_y: 
-        the decay length in nanometers along y-axis of the distribution
-
-        eta: 
-        parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0)
-
-        gamma: 
-        distribution orientation with respect to the first lattice vector in radians 
+        __init__(Particle self) -> Particle
+        __init__(Particle self, Material material) -> Particle
+        __init__(Particle self, Material material, IFormFactor form_factor) -> Particle
+        __init__(Particle self, Material material, IFormFactor form_factor, IRotation rotation) -> Particle
+        Particle::Particle(Material material, const IFormFactor &form_factor, const IRotation &rotation)
 
         """
-        _libBornAgainCore.FTDecayFunction2DVoigt_swiginit(self, _libBornAgainCore.new_FTDecayFunction2DVoigt(decay_length_x, decay_length_y, eta, gamma))
+        _libBornAgainCore.Particle_swiginit(self, _libBornAgainCore.new_Particle(*args))
 
     def clone(self):
         r"""
-        clone(FTDecayFunction2DVoigt self) -> FTDecayFunction2DVoigt
-        FTDecayFunction2DVoigt * FTDecayFunction2DVoigt::clone() const
+        clone(Particle self) -> Particle
+        Particle * Particle::clone() const override final
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FTDecayFunction2DVoigt_clone(self)
+        return _libBornAgainCore.Particle_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FTDecayFunction2DVoigt self, INodeVisitor visitor)
-        void FTDecayFunction2DVoigt::accept(INodeVisitor *visitor) const final
+        accept(Particle self, INodeVisitor visitor)
+        void Particle::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FTDecayFunction2DVoigt_accept(self, visitor)
+        return _libBornAgainCore.Particle_accept(self, visitor)
 
-    def evaluate(self, qx, qy):
+    def createSlicedParticle(self, limits):
         r"""
-        evaluate(FTDecayFunction2DVoigt self, double qx, double qy) -> double
-        double FTDecayFunction2DVoigt::evaluate(double qx, double qy) const final
-
-        evaluate Fourier transformed decay function for q in X,Y coordinates 
-
-        """
-        return _libBornAgainCore.FTDecayFunction2DVoigt_evaluate(self, qx, qy)
+        createSlicedParticle(Particle self, ZLimits limits) -> SlicedParticle
+        SlicedParticle Particle::createSlicedParticle(ZLimits limits) const override final
 
-    def eta(self):
-        r"""
-        eta(FTDecayFunction2DVoigt self) -> double
-        double FTDecayFunction2DVoigt::eta() const
+        Create a sliced form factor for this particle. 
 
         """
-        return _libBornAgainCore.FTDecayFunction2DVoigt_eta(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction2DVoigt
-
-# Register FTDecayFunction2DVoigt in _libBornAgainCore:
-_libBornAgainCore.FTDecayFunction2DVoigt_swigregister(FTDecayFunction2DVoigt)
-
-class IFTDistribution1D(ICloneable, INode):
-    r"""
-
-
-    Interface for a one-dimensional distribution, with normalization adjusted so that the Fourier transform evaluate(q) is a decay function that starts at evaluate(0)=1.
-
-    C++ includes: FTDistributions1D.h
-
-    """
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
-    __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IFTDistribution1D
+        return _libBornAgainCore.Particle_createSlicedParticle(self, limits)
 
-    def clone(self):
+    def setMaterial(self, material):
         r"""
-        clone(IFTDistribution1D self) -> IFTDistribution1D
-        virtual IFTDistribution1D* IFTDistribution1D::clone() const =0
+        setMaterial(Particle self, Material material)
+        void Particle::setMaterial(Material material)
 
         """
-        return _libBornAgainCore.IFTDistribution1D_clone(self)
+        return _libBornAgainCore.Particle_setMaterial(self, material)
 
-    def evaluate(self, q):
+    def material(self):
         r"""
-        evaluate(IFTDistribution1D self, double q) -> double
-        virtual double IFTDistribution1D::evaluate(double q) const =0
-
-        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
-
-        """
-        return _libBornAgainCore.IFTDistribution1D_evaluate(self, q)
+        material(Particle self) -> Material
+        const Material* Particle::material() const override final
 
-    def setOmega(self, omega):
-        r"""
-        setOmega(IFTDistribution1D self, double omega)
-        void IFTDistribution1D::setOmega(double omega)
+        Returns nullptr, unless overwritten to return a specific material. 
 
         """
-        return _libBornAgainCore.IFTDistribution1D_setOmega(self, omega)
+        return _libBornAgainCore.Particle_material(self)
 
-    def omega(self):
+    def setFormFactor(self, form_factor):
         r"""
-        omega(IFTDistribution1D self) -> double
-        double IFTDistribution1D::omega() const
+        setFormFactor(Particle self, IFormFactor form_factor)
+        void Particle::setFormFactor(const IFormFactor &form_factor)
 
         """
-        return _libBornAgainCore.IFTDistribution1D_omega(self)
+        return _libBornAgainCore.Particle_setFormFactor(self, form_factor)
 
-    def qSecondDerivative(self):
+    def getChildren(self):
         r"""
-        qSecondDerivative(IFTDistribution1D self) -> double
-        virtual double IFTDistribution1D::qSecondDerivative() const =0
+        getChildren(Particle self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > Particle::getChildren() const override final
 
-        Returns the negative of the second order derivative in q space around q=0. 
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.IFTDistribution1D_qSecondDerivative(self)
+        return _libBornAgainCore.Particle_getChildren(self)
+    __swig_destroy__ = _libBornAgainCore.delete_Particle
 
-# Register IFTDistribution1D in _libBornAgainCore:
-_libBornAgainCore.IFTDistribution1D_swigregister(IFTDistribution1D)
+# Register Particle in _libBornAgainCore:
+_libBornAgainCore.Particle_swigregister(Particle)
 
-class FTDistribution1DCauchy(IFTDistribution1D):
+class ParticleComposition(IParticle):
     r"""
 
 
-    Exponential  IFTDistribution1D exp(-|omega*x|); its Fourier transform evaluate(q) is a Cauchy-Lorentzian starting at evaluate(0)=1.
+    A composition of particles at fixed positions
 
-    C++ includes: FTDistributions1D.h
+    C++ includes: ParticleComposition.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, omega):
+    def __init__(self, *args):
         r"""
-        __init__(FTDistribution1DCauchy self, double omega) -> FTDistribution1DCauchy
-        FTDistribution1DCauchy::FTDistribution1DCauchy(double omega)
+        __init__(ParticleComposition self) -> ParticleComposition
+        __init__(ParticleComposition self, IParticle particle, vector_kvector_t positions) -> ParticleComposition
+        ParticleComposition::ParticleComposition(const IParticle &particle, std::vector< kvector_t > positions)
 
         """
-        _libBornAgainCore.FTDistribution1DCauchy_swiginit(self, _libBornAgainCore.new_FTDistribution1DCauchy(omega))
+        _libBornAgainCore.ParticleComposition_swiginit(self, _libBornAgainCore.new_ParticleComposition(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_ParticleComposition
 
     def clone(self):
         r"""
-        clone(FTDistribution1DCauchy self) -> FTDistribution1DCauchy
-        FTDistribution1DCauchy * FTDistribution1DCauchy::clone() const override final
+        clone(ParticleComposition self) -> ParticleComposition
+        ParticleComposition * ParticleComposition::clone() const override final
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FTDistribution1DCauchy_clone(self)
+        return _libBornAgainCore.ParticleComposition_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FTDistribution1DCauchy self, INodeVisitor visitor)
-        void FTDistribution1DCauchy::accept(INodeVisitor *visitor) const override final
+        accept(ParticleComposition self, INodeVisitor visitor)
+        void ParticleComposition::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FTDistribution1DCauchy_accept(self, visitor)
+        return _libBornAgainCore.ParticleComposition_accept(self, visitor)
 
-    def evaluate(self, q):
+    def createFormFactor(self):
         r"""
-        evaluate(FTDistribution1DCauchy self, double q) -> double
-        double FTDistribution1DCauchy::evaluate(double q) const override final
+        createFormFactor(ParticleComposition self) -> IFormFactor
+        IFormFactor * ParticleComposition::createFormFactor() const override final
 
-        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
+        Create a form factor for this particle. 
 
         """
-        return _libBornAgainCore.FTDistribution1DCauchy_evaluate(self, q)
+        return _libBornAgainCore.ParticleComposition_createFormFactor(self)
 
-    def qSecondDerivative(self):
+    def addParticle(self, *args):
         r"""
-        qSecondDerivative(FTDistribution1DCauchy self) -> double
-        double FTDistribution1DCauchy::qSecondDerivative() const override final
-
-        Returns the negative of the second order derivative in q space around q=0. 
+        addParticle(ParticleComposition self, IParticle particle)
+        addParticle(ParticleComposition self, IParticle particle, kvector_t position)
+        void ParticleComposition::addParticle(const IParticle &particle, kvector_t position)
 
         """
-        return _libBornAgainCore.FTDistribution1DCauchy_qSecondDerivative(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution1DCauchy
-
-# Register FTDistribution1DCauchy in _libBornAgainCore:
-_libBornAgainCore.FTDistribution1DCauchy_swigregister(FTDistribution1DCauchy)
-
-class FTDistribution1DGauss(IFTDistribution1D):
-    r"""
+        return _libBornAgainCore.ParticleComposition_addParticle(self, *args)
 
+    def addParticles(self, particle, positions):
+        r"""
+        addParticles(ParticleComposition self, IParticle particle, vector_kvector_t positions)
+        void ParticleComposition::addParticles(const IParticle &particle, std::vector< kvector_t > positions)
 
-    Gaussian  IFTDistribution1D; its Fourier transform evaluate(q) is a Gaussian starting at evaluate(0)=1.
+        """
+        return _libBornAgainCore.ParticleComposition_addParticles(self, particle, positions)
 
-    C++ includes: FTDistributions1D.h
+    def nbrParticles(self):
+        r"""
+        nbrParticles(ParticleComposition self) -> size_t
+        size_t ParticleComposition::nbrParticles() const
 
-    """
+        Returns number of different particles. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.ParticleComposition_nbrParticles(self)
 
-    def __init__(self, omega):
+    def getChildren(self):
         r"""
-        __init__(FTDistribution1DGauss self, double omega) -> FTDistribution1DGauss
-        FTDistribution1DGauss::FTDistribution1DGauss(double omega)
+        getChildren(ParticleComposition self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > ParticleComposition::getChildren() const override final
+
+        Returns a vector of children (const). 
 
         """
-        _libBornAgainCore.FTDistribution1DGauss_swiginit(self, _libBornAgainCore.new_FTDistribution1DGauss(omega))
+        return _libBornAgainCore.ParticleComposition_getChildren(self)
 
-    def clone(self):
+    def decompose(self):
         r"""
-        clone(FTDistribution1DGauss self) -> FTDistribution1DGauss
-        FTDistribution1DGauss * FTDistribution1DGauss::clone() const override final
+        decompose(ParticleComposition self) -> SafePointerVector< IParticle >
+        SafePointerVector< IParticle > ParticleComposition::decompose() const override final
 
-        """
-        return _libBornAgainCore.FTDistribution1DGauss_clone(self)
-
-    def accept(self, visitor):
-        r"""
-        accept(FTDistribution1DGauss self, INodeVisitor visitor)
-        void FTDistribution1DGauss::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
-
-        """
-        return _libBornAgainCore.FTDistribution1DGauss_accept(self, visitor)
-
-    def evaluate(self, q):
-        r"""
-        evaluate(FTDistribution1DGauss self, double q) -> double
-        double FTDistribution1DGauss::evaluate(double q) const override final
-
-        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
+        Decompose in constituent  IParticle objects. 
 
         """
-        return _libBornAgainCore.FTDistribution1DGauss_evaluate(self, q)
+        return _libBornAgainCore.ParticleComposition_decompose(self)
 
-    def qSecondDerivative(self):
+    def bottomTopZ(self):
         r"""
-        qSecondDerivative(FTDistribution1DGauss self) -> double
-        double FTDistribution1DGauss::qSecondDerivative() const override final
+        bottomTopZ(ParticleComposition self) -> ParticleLimits
+        ParticleLimits ParticleComposition::bottomTopZ() const override final
 
-        Returns the negative of the second order derivative in q space around q=0. 
+        Top and bottom z-coordinate. 
 
         """
-        return _libBornAgainCore.FTDistribution1DGauss_qSecondDerivative(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution1DGauss
+        return _libBornAgainCore.ParticleComposition_bottomTopZ(self)
 
-# Register FTDistribution1DGauss in _libBornAgainCore:
-_libBornAgainCore.FTDistribution1DGauss_swigregister(FTDistribution1DGauss)
+# Register ParticleComposition in _libBornAgainCore:
+_libBornAgainCore.ParticleComposition_swigregister(ParticleComposition)
 
-class FTDistribution1DGate(IFTDistribution1D):
+class ParticleCoreShell(IParticle):
     r"""
 
 
-    Square gate  IFTDistribution1D; its Fourier transform evaluate(q) is a sinc function starting at evaluate(0)=1.
+    A particle with a core/shell geometry.
 
-    C++ includes: FTDistributions1D.h
+    C++ includes: ParticleCoreShell.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, omega):
+    def __init__(self, *args):
         r"""
-        __init__(FTDistribution1DGate self, double omega) -> FTDistribution1DGate
-        FTDistribution1DGate::FTDistribution1DGate(double omega)
+        __init__(ParticleCoreShell self, Particle shell, Particle core, kvector_t relative_core_position=kvector_t(0.0, 0.0, 0.0)) -> ParticleCoreShell
+        ParticleCoreShell::ParticleCoreShell(const Particle &shell, const Particle &core, kvector_t relative_core_position=kvector_t(0.0, 0.0, 0.0))
 
         """
-        _libBornAgainCore.FTDistribution1DGate_swiginit(self, _libBornAgainCore.new_FTDistribution1DGate(omega))
+        _libBornAgainCore.ParticleCoreShell_swiginit(self, _libBornAgainCore.new_ParticleCoreShell(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_ParticleCoreShell
 
     def clone(self):
         r"""
-        clone(FTDistribution1DGate self) -> FTDistribution1DGate
-        FTDistribution1DGate * FTDistribution1DGate::clone() const override final
+        clone(ParticleCoreShell self) -> ParticleCoreShell
+        ParticleCoreShell * ParticleCoreShell::clone() const override final
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FTDistribution1DGate_clone(self)
+        return _libBornAgainCore.ParticleCoreShell_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FTDistribution1DGate self, INodeVisitor visitor)
-        void FTDistribution1DGate::accept(INodeVisitor *visitor) const override final
+        accept(ParticleCoreShell self, INodeVisitor visitor)
+        void ParticleCoreShell::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FTDistribution1DGate_accept(self, visitor)
+        return _libBornAgainCore.ParticleCoreShell_accept(self, visitor)
 
-    def evaluate(self, q):
+    def createSlicedParticle(self, limits):
         r"""
-        evaluate(FTDistribution1DGate self, double q) -> double
-        double FTDistribution1DGate::evaluate(double q) const override final
+        createSlicedParticle(ParticleCoreShell self, ZLimits limits) -> SlicedParticle
+        SlicedParticle ParticleCoreShell::createSlicedParticle(ZLimits limits) const override final
 
-        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
+        Create a sliced form factor for this particle. 
 
         """
-        return _libBornAgainCore.FTDistribution1DGate_evaluate(self, q)
+        return _libBornAgainCore.ParticleCoreShell_createSlicedParticle(self, limits)
 
-    def qSecondDerivative(self):
+    def coreParticle(self):
         r"""
-        qSecondDerivative(FTDistribution1DGate self) -> double
-        double FTDistribution1DGate::qSecondDerivative() const override final
+        coreParticle(ParticleCoreShell self) -> Particle
+        const Particle * ParticleCoreShell::coreParticle() const
 
-        Returns the negative of the second order derivative in q space around q=0. 
+        """
+        return _libBornAgainCore.ParticleCoreShell_coreParticle(self)
+
+    def shellParticle(self):
+        r"""
+        shellParticle(ParticleCoreShell self) -> Particle
+        const Particle * ParticleCoreShell::shellParticle() const
 
         """
-        return _libBornAgainCore.FTDistribution1DGate_qSecondDerivative(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution1DGate
+        return _libBornAgainCore.ParticleCoreShell_shellParticle(self)
 
-# Register FTDistribution1DGate in _libBornAgainCore:
-_libBornAgainCore.FTDistribution1DGate_swigregister(FTDistribution1DGate)
+    def getChildren(self):
+        r"""
+        getChildren(ParticleCoreShell self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > ParticleCoreShell::getChildren() const override final
 
-class FTDistribution1DTriangle(IFTDistribution1D):
+        Returns a vector of children (const). 
+
+        """
+        return _libBornAgainCore.ParticleCoreShell_getChildren(self)
+
+# Register ParticleCoreShell in _libBornAgainCore:
+_libBornAgainCore.ParticleCoreShell_swigregister(ParticleCoreShell)
+
+class ParticleDistribution(IAbstractParticle):
     r"""
 
 
-    Triangle  IFTDistribution1D [1-|x|/omega if |x|<omega, and 0 otherwise]; its Fourier transform evaluate(q) is a squared sinc function starting at evaluate(0)=1.
+    A particle type that is a parametric distribution of  IParticle's.
 
-    C++ includes: FTDistributions1D.h
+    C++ includes: ParticleDistribution.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, omega):
+    def __init__(self, prototype, par_distr):
         r"""
-        __init__(FTDistribution1DTriangle self, double omega) -> FTDistribution1DTriangle
-        FTDistribution1DTriangle::FTDistribution1DTriangle(double omega)
+        __init__(ParticleDistribution self, IParticle prototype, ParameterDistribution par_distr) -> ParticleDistribution
+        ParticleDistribution::ParticleDistribution(const IParticle &prototype, const ParameterDistribution &par_distr)
 
         """
-        _libBornAgainCore.FTDistribution1DTriangle_swiginit(self, _libBornAgainCore.new_FTDistribution1DTriangle(omega))
+        _libBornAgainCore.ParticleDistribution_swiginit(self, _libBornAgainCore.new_ParticleDistribution(prototype, par_distr))
 
     def clone(self):
         r"""
-        clone(FTDistribution1DTriangle self) -> FTDistribution1DTriangle
-        FTDistribution1DTriangle * FTDistribution1DTriangle::clone() const override final
+        clone(ParticleDistribution self) -> ParticleDistribution
+        ParticleDistribution * ParticleDistribution::clone() const override final
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FTDistribution1DTriangle_clone(self)
+        return _libBornAgainCore.ParticleDistribution_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FTDistribution1DTriangle self, INodeVisitor visitor)
-        void FTDistribution1DTriangle::accept(INodeVisitor *visitor) const override final
+        accept(ParticleDistribution self, INodeVisitor visitor)
+        void ParticleDistribution::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FTDistribution1DTriangle_accept(self, visitor)
+        return _libBornAgainCore.ParticleDistribution_accept(self, visitor)
 
-    def evaluate(self, q):
+    def translate(self, translation):
         r"""
-        evaluate(FTDistribution1DTriangle self, double q) -> double
-        double FTDistribution1DTriangle::evaluate(double q) const override final
+        translate(ParticleDistribution self, kvector_t translation)
+        void ParticleDistribution::translate(kvector_t translation) override final
 
-        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
+        Translates the particle with the given vector. 
 
         """
-        return _libBornAgainCore.FTDistribution1DTriangle_evaluate(self, q)
+        return _libBornAgainCore.ParticleDistribution_translate(self, translation)
 
-    def qSecondDerivative(self):
+    def rotate(self, rotation):
         r"""
-        qSecondDerivative(FTDistribution1DTriangle self) -> double
-        double FTDistribution1DTriangle::qSecondDerivative() const override final
+        rotate(ParticleDistribution self, IRotation rotation)
+        void ParticleDistribution::rotate(const IRotation &rotation) override final
 
-        Returns the negative of the second order derivative in q space around q=0. 
+        Applies the given rotation to the particle. 
 
         """
-        return _libBornAgainCore.FTDistribution1DTriangle_qSecondDerivative(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution1DTriangle
-
-# Register FTDistribution1DTriangle in _libBornAgainCore:
-_libBornAgainCore.FTDistribution1DTriangle_swigregister(FTDistribution1DTriangle)
-
-class FTDistribution1DCosine(IFTDistribution1D):
-    r"""
-
-
-    IFTDistribution1D consisting of one cosine wave [1+cos(pi*x/omega) if |x|<omega, and 0 otherwise]; its Fourier transform evaluate(q) starts at evaluate(0)=1.
-
-    C++ includes: FTDistributions1D.h
-
-    """
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        return _libBornAgainCore.ParticleDistribution_rotate(self, rotation)
 
-    def __init__(self, omega):
+    def generateParticles(self):
         r"""
-        __init__(FTDistribution1DCosine self, double omega) -> FTDistribution1DCosine
-        FTDistribution1DCosine::FTDistribution1DCosine(double omega)
+        generateParticles(ParticleDistribution self) -> SafePointerVector< IParticle >
+        SafePointerVector< IParticle > ParticleDistribution::generateParticles() const
 
-        """
-        _libBornAgainCore.FTDistribution1DCosine_swiginit(self, _libBornAgainCore.new_FTDistribution1DCosine(omega))
+        Returns list of new particles generated according to a distribution.
 
-    def clone(self):
-        r"""
-        clone(FTDistribution1DCosine self) -> FTDistribution1DCosine
-        FTDistribution1DCosine * FTDistribution1DCosine::clone() const override final
+        Returns particle clones with parameter values drawn from distribution. 
 
         """
-        return _libBornAgainCore.FTDistribution1DCosine_clone(self)
+        return _libBornAgainCore.ParticleDistribution_generateParticles(self)
 
-    def accept(self, visitor):
+    def prototype(self):
         r"""
-        accept(FTDistribution1DCosine self, INodeVisitor visitor)
-        void FTDistribution1DCosine::accept(INodeVisitor *visitor) const override final
+        prototype(ParticleDistribution self) -> IParticle
+        const IParticle& ParticleDistribution::prototype() const
 
-        Calls the  INodeVisitor's visit method. 
+        Returns the prototype particle, used for generating multiple ones. 
 
         """
-        return _libBornAgainCore.FTDistribution1DCosine_accept(self, visitor)
+        return _libBornAgainCore.ParticleDistribution_prototype(self)
 
-    def evaluate(self, q):
+    def parameterDistribution(self):
         r"""
-        evaluate(FTDistribution1DCosine self, double q) -> double
-        double FTDistribution1DCosine::evaluate(double q) const override final
+        parameterDistribution(ParticleDistribution self) -> ParameterDistribution
+        ParameterDistribution ParticleDistribution::parameterDistribution() const
 
-        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
+        Returns the distributed parameter data. 
 
         """
-        return _libBornAgainCore.FTDistribution1DCosine_evaluate(self, q)
+        return _libBornAgainCore.ParticleDistribution_parameterDistribution(self)
 
-    def qSecondDerivative(self):
+    def getChildren(self):
         r"""
-        qSecondDerivative(FTDistribution1DCosine self) -> double
-        double FTDistribution1DCosine::qSecondDerivative() const override final
+        getChildren(ParticleDistribution self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > ParticleDistribution::getChildren() const override final
 
-        Returns the negative of the second order derivative in q space around q=0. 
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.FTDistribution1DCosine_qSecondDerivative(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution1DCosine
+        return _libBornAgainCore.ParticleDistribution_getChildren(self)
+    __swig_destroy__ = _libBornAgainCore.delete_ParticleDistribution
 
-# Register FTDistribution1DCosine in _libBornAgainCore:
-_libBornAgainCore.FTDistribution1DCosine_swigregister(FTDistribution1DCosine)
+# Register ParticleDistribution in _libBornAgainCore:
+_libBornAgainCore.ParticleDistribution_swigregister(ParticleDistribution)
 
-class FTDistribution1DVoigt(IFTDistribution1D):
+class IFTDecayFunction1D(ICloneable, INode):
     r"""
 
 
-    IFTDistribution1D that provides a Fourier transform evaluate(q) in form of a pseudo-Voigt decay function eta*Gauss + (1-eta)*Cauchy, with both components starting at 1 for q=0.
+    Interface for a one-dimensional decay function, with evaluate(q) returning the Fourier transform, normalized to  $\\int dq\\; {\\rm evaluate}(q) = 1$.
 
-    C++ includes: FTDistributions1D.h
+    C++ includes: FTDecayFunctions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
 
-    def __init__(self, omega, eta):
+    def clone(self):
         r"""
-        __init__(FTDistribution1DVoigt self, double omega, double eta) -> FTDistribution1DVoigt
-        FTDistribution1DVoigt::FTDistribution1DVoigt(double omega, double eta)
-
-        Constructor of one-dimensional pseudo-Voigt probability distribution.
-
-        Parameters:
-        -----------
+        clone(IFTDecayFunction1D self) -> IFTDecayFunction1D
+        virtual IFTDecayFunction1D* IFTDecayFunction1D::clone() const =0
 
-        omega: 
-        half-width of the distribution in nanometers
+        """
+        return _libBornAgainCore.IFTDecayFunction1D_clone(self)
 
-        eta: 
-        parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0) 
+    def evaluate(self, q):
+        r"""
+        evaluate(IFTDecayFunction1D self, double q) -> double
+        virtual double IFTDecayFunction1D::evaluate(double q) const =0
 
         """
-        _libBornAgainCore.FTDistribution1DVoigt_swiginit(self, _libBornAgainCore.new_FTDistribution1DVoigt(omega, eta))
+        return _libBornAgainCore.IFTDecayFunction1D_evaluate(self, q)
 
-    def clone(self):
-        r"""
-        clone(FTDistribution1DVoigt self) -> FTDistribution1DVoigt
-        FTDistribution1DVoigt * FTDistribution1DVoigt::clone() const override final
-
-        """
-        return _libBornAgainCore.FTDistribution1DVoigt_clone(self)
-
-    def accept(self, visitor):
-        r"""
-        accept(FTDistribution1DVoigt self, INodeVisitor visitor)
-        void FTDistribution1DVoigt::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
-
-        """
-        return _libBornAgainCore.FTDistribution1DVoigt_accept(self, visitor)
-
-    def evaluate(self, q):
-        r"""
-        evaluate(FTDistribution1DVoigt self, double q) -> double
-        double FTDistribution1DVoigt::evaluate(double q) const override final
-
-        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
-
-        """
-        return _libBornAgainCore.FTDistribution1DVoigt_evaluate(self, q)
-
-    def eta(self):
-        r"""
-        eta(FTDistribution1DVoigt self) -> double
-        double FTDistribution1DVoigt::eta() const
-
-        """
-        return _libBornAgainCore.FTDistribution1DVoigt_eta(self)
-
-    def qSecondDerivative(self):
+    def decayLength(self):
         r"""
-        qSecondDerivative(FTDistribution1DVoigt self) -> double
-        double FTDistribution1DVoigt::qSecondDerivative() const override final
-
-        Returns the negative of the second order derivative in q space around q=0. 
+        decayLength(IFTDecayFunction1D self) -> double
+        double IFTDecayFunction1D::decayLength() const
 
         """
-        return _libBornAgainCore.FTDistribution1DVoigt_qSecondDerivative(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution1DVoigt
+        return _libBornAgainCore.IFTDecayFunction1D_decayLength(self)
+    __swig_destroy__ = _libBornAgainCore.delete_IFTDecayFunction1D
 
-# Register FTDistribution1DVoigt in _libBornAgainCore:
-_libBornAgainCore.FTDistribution1DVoigt_swigregister(FTDistribution1DVoigt)
+# Register IFTDecayFunction1D in _libBornAgainCore:
+_libBornAgainCore.IFTDecayFunction1D_swigregister(IFTDecayFunction1D)
 
-class IFTDistribution2D(ICloneable, INode):
+class FTDecayFunction1DCauchy(IFTDecayFunction1D):
     r"""
 
 
-    Interface for two-dimensional distributions in Fourier space.
+    One-dimensional Cauchy decay function in reciprocal space; corresponds to exp(-|x|/decay_length) in real space.
 
-    C++ includes: FTDistributions2D.h
+    C++ includes: FTDecayFunctions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
 
-    def clone(self):
-        r"""
-        clone(IFTDistribution2D self) -> IFTDistribution2D
-        IFTDistribution2D* IFTDistribution2D::clone() const =0
-
-        """
-        return _libBornAgainCore.IFTDistribution2D_clone(self)
-
-    def setGamma(self, gamma):
-        r"""
-        setGamma(IFTDistribution2D self, double gamma)
-        void IFTDistribution2D::setGamma(double gamma)
-
-        """
-        return _libBornAgainCore.IFTDistribution2D_setGamma(self, gamma)
-
-    def gamma(self):
+    def __init__(self, decay_length):
         r"""
-        gamma(IFTDistribution2D self) -> double
-        double IFTDistribution2D::gamma() const
+        __init__(FTDecayFunction1DCauchy self, double decay_length) -> FTDecayFunction1DCauchy
+        FTDecayFunction1DCauchy::FTDecayFunction1DCauchy(double decay_length)
 
         """
-        return _libBornAgainCore.IFTDistribution2D_gamma(self)
+        _libBornAgainCore.FTDecayFunction1DCauchy_swiginit(self, _libBornAgainCore.new_FTDecayFunction1DCauchy(decay_length))
 
-    def delta(self):
+    def clone(self):
         r"""
-        delta(IFTDistribution2D self) -> double
-        double IFTDistribution2D::delta() const
+        clone(FTDecayFunction1DCauchy self) -> FTDecayFunction1DCauchy
+        FTDecayFunction1DCauchy * FTDecayFunction1DCauchy::clone() const
 
         """
-        return _libBornAgainCore.IFTDistribution2D_delta(self)
+        return _libBornAgainCore.FTDecayFunction1DCauchy_clone(self)
 
-    def omegaX(self):
+    def accept(self, visitor):
         r"""
-        omegaX(IFTDistribution2D self) -> double
-        double IFTDistribution2D::omegaX() const
-
-        """
-        return _libBornAgainCore.IFTDistribution2D_omegaX(self)
+        accept(FTDecayFunction1DCauchy self, INodeVisitor visitor)
+        void FTDecayFunction1DCauchy::accept(INodeVisitor *visitor) const final
 
-    def omegaY(self):
-        r"""
-        omegaY(IFTDistribution2D self) -> double
-        double IFTDistribution2D::omegaY() const
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IFTDistribution2D_omegaY(self)
+        return _libBornAgainCore.FTDecayFunction1DCauchy_accept(self, visitor)
 
-    def evaluate(self, qx, qy):
+    def evaluate(self, q):
         r"""
-        evaluate(IFTDistribution2D self, double qx, double qy) -> double
-        virtual double IFTDistribution2D::evaluate(double qx, double qy) const =0
-
-        evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 
+        evaluate(FTDecayFunction1DCauchy self, double q) -> double
+        double FTDecayFunction1DCauchy::evaluate(double q) const final
 
         """
-        return _libBornAgainCore.IFTDistribution2D_evaluate(self, qx, qy)
-    __swig_destroy__ = _libBornAgainCore.delete_IFTDistribution2D
+        return _libBornAgainCore.FTDecayFunction1DCauchy_evaluate(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction1DCauchy
 
-# Register IFTDistribution2D in _libBornAgainCore:
-_libBornAgainCore.IFTDistribution2D_swigregister(IFTDistribution2D)
+# Register FTDecayFunction1DCauchy in _libBornAgainCore:
+_libBornAgainCore.FTDecayFunction1DCauchy_swigregister(FTDecayFunction1DCauchy)
 
-class FTDistribution2DCauchy(IFTDistribution2D):
+class FTDecayFunction1DGauss(IFTDecayFunction1D):
     r"""
 
 
-    Two-dimensional Cauchy distribution in Fourier space; corresponds to a normalized exp(-r) in real space, with  $r=\\sqrt{(\\frac{x}{\\omega_x})^2 + (\\frac{y}{\\omega_y})^2}$.
+    One-dimensional Gauss decay function in reciprocal space; corresponds to exp[-x^2/(2*decay_length^2)] in real space.
 
-    C++ includes: FTDistributions2D.h
+    C++ includes: FTDecayFunctions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, omega_x, omega_y, gamma=0):
+    def __init__(self, decay_length):
         r"""
-        __init__(FTDistribution2DCauchy self, double omega_x, double omega_y, double gamma=0) -> FTDistribution2DCauchy
-        FTDistribution2DCauchy::FTDistribution2DCauchy(double omega_x, double omega_y, double gamma=0)
+        __init__(FTDecayFunction1DGauss self, double decay_length) -> FTDecayFunction1DGauss
+        FTDecayFunction1DGauss::FTDecayFunction1DGauss(double decay_length)
 
         """
-        _libBornAgainCore.FTDistribution2DCauchy_swiginit(self, _libBornAgainCore.new_FTDistribution2DCauchy(omega_x, omega_y, gamma))
+        _libBornAgainCore.FTDecayFunction1DGauss_swiginit(self, _libBornAgainCore.new_FTDecayFunction1DGauss(decay_length))
 
     def clone(self):
         r"""
-        clone(FTDistribution2DCauchy self) -> FTDistribution2DCauchy
-        FTDistribution2DCauchy * FTDistribution2DCauchy::clone() const final
+        clone(FTDecayFunction1DGauss self) -> FTDecayFunction1DGauss
+        FTDecayFunction1DGauss * FTDecayFunction1DGauss::clone() const
 
         """
-        return _libBornAgainCore.FTDistribution2DCauchy_clone(self)
+        return _libBornAgainCore.FTDecayFunction1DGauss_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FTDistribution2DCauchy self, INodeVisitor visitor)
-        void FTDistribution2DCauchy::accept(INodeVisitor *visitor) const final
+        accept(FTDecayFunction1DGauss self, INodeVisitor visitor)
+        void FTDecayFunction1DGauss::accept(INodeVisitor *visitor) const final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FTDistribution2DCauchy_accept(self, visitor)
+        return _libBornAgainCore.FTDecayFunction1DGauss_accept(self, visitor)
 
-    def evaluate(self, qx, qy):
+    def evaluate(self, q):
         r"""
-        evaluate(FTDistribution2DCauchy self, double qx, double qy) -> double
-        double FTDistribution2DCauchy::evaluate(double qx, double qy) const final
-
-        evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 
+        evaluate(FTDecayFunction1DGauss self, double q) -> double
+        double FTDecayFunction1DGauss::evaluate(double q) const final
 
         """
-        return _libBornAgainCore.FTDistribution2DCauchy_evaluate(self, qx, qy)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution2DCauchy
+        return _libBornAgainCore.FTDecayFunction1DGauss_evaluate(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction1DGauss
 
-# Register FTDistribution2DCauchy in _libBornAgainCore:
-_libBornAgainCore.FTDistribution2DCauchy_swigregister(FTDistribution2DCauchy)
+# Register FTDecayFunction1DGauss in _libBornAgainCore:
+_libBornAgainCore.FTDecayFunction1DGauss_swigregister(FTDecayFunction1DGauss)
 
-class FTDistribution2DGauss(IFTDistribution2D):
+class FTDecayFunction1DTriangle(IFTDecayFunction1D):
     r"""
 
 
-    Two-dimensional Gauss distribution in Fourier space; corresponds to normalized exp(-r^2/2) in real space with  $r=\\sqrt{(\\frac{x}{\\omega_x})^2 + (\\frac{y}{\\omega_y})^2}$.
+    One-dimensional triangle decay function in reciprocal space; corresponds to 1-|x|/decay_length if |x|<decay_length (and 0 otherwise) in real space.
 
-    C++ includes: FTDistributions2D.h
+    C++ includes: FTDecayFunctions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, omega_x, omega_y, gamma=0):
+    def __init__(self, decay_length):
         r"""
-        __init__(FTDistribution2DGauss self, double omega_x, double omega_y, double gamma=0) -> FTDistribution2DGauss
-        FTDistribution2DGauss::FTDistribution2DGauss(double omega_x, double omega_y, double gamma=0)
+        __init__(FTDecayFunction1DTriangle self, double decay_length) -> FTDecayFunction1DTriangle
+        FTDecayFunction1DTriangle::FTDecayFunction1DTriangle(double decay_length)
 
         """
-        _libBornAgainCore.FTDistribution2DGauss_swiginit(self, _libBornAgainCore.new_FTDistribution2DGauss(omega_x, omega_y, gamma))
+        _libBornAgainCore.FTDecayFunction1DTriangle_swiginit(self, _libBornAgainCore.new_FTDecayFunction1DTriangle(decay_length))
 
     def clone(self):
         r"""
-        clone(FTDistribution2DGauss self) -> FTDistribution2DGauss
-        FTDistribution2DGauss * FTDistribution2DGauss::clone() const final
+        clone(FTDecayFunction1DTriangle self) -> FTDecayFunction1DTriangle
+        FTDecayFunction1DTriangle * FTDecayFunction1DTriangle::clone() const
 
         """
-        return _libBornAgainCore.FTDistribution2DGauss_clone(self)
+        return _libBornAgainCore.FTDecayFunction1DTriangle_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FTDistribution2DGauss self, INodeVisitor visitor)
-        void FTDistribution2DGauss::accept(INodeVisitor *visitor) const final
+        accept(FTDecayFunction1DTriangle self, INodeVisitor visitor)
+        void FTDecayFunction1DTriangle::accept(INodeVisitor *visitor) const final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FTDistribution2DGauss_accept(self, visitor)
+        return _libBornAgainCore.FTDecayFunction1DTriangle_accept(self, visitor)
 
-    def evaluate(self, qx, qy):
+    def evaluate(self, q):
         r"""
-        evaluate(FTDistribution2DGauss self, double qx, double qy) -> double
-        double FTDistribution2DGauss::evaluate(double qx, double qy) const final
-
-        evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 
+        evaluate(FTDecayFunction1DTriangle self, double q) -> double
+        double FTDecayFunction1DTriangle::evaluate(double q) const final
 
         """
-        return _libBornAgainCore.FTDistribution2DGauss_evaluate(self, qx, qy)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution2DGauss
+        return _libBornAgainCore.FTDecayFunction1DTriangle_evaluate(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction1DTriangle
 
-# Register FTDistribution2DGauss in _libBornAgainCore:
-_libBornAgainCore.FTDistribution2DGauss_swigregister(FTDistribution2DGauss)
+# Register FTDecayFunction1DTriangle in _libBornAgainCore:
+_libBornAgainCore.FTDecayFunction1DTriangle_swigregister(FTDecayFunction1DTriangle)
 
-class FTDistribution2DGate(IFTDistribution2D):
+class FTDecayFunction1DVoigt(IFTDecayFunction1D):
     r"""
 
 
-    Two-dimensional gate distribution in Fourier space; corresponds to normalized constant if r<1 (and 0 otherwise) in real space, with  $r=\\sqrt{(\\frac{x}{\\omega_x})^2 + (\\frac{y}{\\omega_y})^2}$.
+    One-dimensional pseudo-Voigt decay function in reciprocal space; corresponds to eta*Gauss + (1-eta)*Cauchy.
 
-    C++ includes: FTDistributions2D.h
+    C++ includes: FTDecayFunctions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, omega_x, omega_y, gamma=0):
+    def __init__(self, decay_length, eta):
         r"""
-        __init__(FTDistribution2DGate self, double omega_x, double omega_y, double gamma=0) -> FTDistribution2DGate
-        FTDistribution2DGate::FTDistribution2DGate(double omega_x, double omega_y, double gamma=0)
+        __init__(FTDecayFunction1DVoigt self, double decay_length, double eta) -> FTDecayFunction1DVoigt
+        FTDecayFunction1DVoigt::FTDecayFunction1DVoigt(double decay_length, double eta)
+
+        Constructor of pseudo-Voigt decay function.
+
+        Parameters:
+        -----------
+
+        decay_length: 
+        half-width of the distribution in nanometers
+
+        eta: 
+        parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0) 
 
         """
-        _libBornAgainCore.FTDistribution2DGate_swiginit(self, _libBornAgainCore.new_FTDistribution2DGate(omega_x, omega_y, gamma))
+        _libBornAgainCore.FTDecayFunction1DVoigt_swiginit(self, _libBornAgainCore.new_FTDecayFunction1DVoigt(decay_length, eta))
 
     def clone(self):
         r"""
-        clone(FTDistribution2DGate self) -> FTDistribution2DGate
-        FTDistribution2DGate * FTDistribution2DGate::clone() const final
+        clone(FTDecayFunction1DVoigt self) -> FTDecayFunction1DVoigt
+        FTDecayFunction1DVoigt * FTDecayFunction1DVoigt::clone() const
 
         """
-        return _libBornAgainCore.FTDistribution2DGate_clone(self)
+        return _libBornAgainCore.FTDecayFunction1DVoigt_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FTDistribution2DGate self, INodeVisitor visitor)
-        void FTDistribution2DGate::accept(INodeVisitor *visitor) const final
+        accept(FTDecayFunction1DVoigt self, INodeVisitor visitor)
+        void FTDecayFunction1DVoigt::accept(INodeVisitor *visitor) const final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FTDistribution2DGate_accept(self, visitor)
+        return _libBornAgainCore.FTDecayFunction1DVoigt_accept(self, visitor)
 
-    def evaluate(self, qx, qy):
+    def evaluate(self, q):
         r"""
-        evaluate(FTDistribution2DGate self, double qx, double qy) -> double
-        double FTDistribution2DGate::evaluate(double qx, double qy) const final
-
-        evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 
+        evaluate(FTDecayFunction1DVoigt self, double q) -> double
+        double FTDecayFunction1DVoigt::evaluate(double q) const final
 
         """
-        return _libBornAgainCore.FTDistribution2DGate_evaluate(self, qx, qy)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution2DGate
+        return _libBornAgainCore.FTDecayFunction1DVoigt_evaluate(self, q)
 
-# Register FTDistribution2DGate in _libBornAgainCore:
-_libBornAgainCore.FTDistribution2DGate_swigregister(FTDistribution2DGate)
+    def eEta(self):
+        r"""
+        eEta(FTDecayFunction1DVoigt self) -> double
+        double FTDecayFunction1DVoigt::eEta() const
 
-class FTDistribution2DCone(IFTDistribution2D):
+        """
+        return _libBornAgainCore.FTDecayFunction1DVoigt_eEta(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction1DVoigt
+
+# Register FTDecayFunction1DVoigt in _libBornAgainCore:
+_libBornAgainCore.FTDecayFunction1DVoigt_swigregister(FTDecayFunction1DVoigt)
+
+class IFTDecayFunction2D(ICloneable, INode):
     r"""
 
 
-    Two-dimensional cone distribution in Fourier space; corresponds to 1-r if r<1 (and 0 otherwise) in real space with  $r=\\sqrt{(\\frac{x}{\\omega_x})^2 + (\\frac{y}{\\omega_y})^2}$.
+    Interface for two-dimensional decay function in reciprocal space.
 
-    C++ includes: FTDistributions2D.h
+    C++ includes: FTDecayFunctions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
 
-    def __init__(self, omega_x, omega_y, gamma=0):
+    def clone(self):
         r"""
-        __init__(FTDistribution2DCone self, double omega_x, double omega_y, double gamma=0) -> FTDistribution2DCone
-        FTDistribution2DCone::FTDistribution2DCone(double omega_x, double omega_y, double gamma=0)
+        clone(IFTDecayFunction2D self) -> IFTDecayFunction2D
+        virtual IFTDecayFunction2D* IFTDecayFunction2D::clone() const =0
 
         """
-        _libBornAgainCore.FTDistribution2DCone_swiginit(self, _libBornAgainCore.new_FTDistribution2DCone(omega_x, omega_y, gamma))
+        return _libBornAgainCore.IFTDecayFunction2D_clone(self)
 
-    def clone(self):
+    def setGamma(self, gamma):
         r"""
-        clone(FTDistribution2DCone self) -> FTDistribution2DCone
-        FTDistribution2DCone * FTDistribution2DCone::clone() const final
+        setGamma(IFTDecayFunction2D self, double gamma)
+        void IFTDecayFunction2D::setGamma(double gamma)
+
+        set angle between first lattice vector and X-axis of distribution (both in direct space) 
 
         """
-        return _libBornAgainCore.FTDistribution2DCone_clone(self)
+        return _libBornAgainCore.IFTDecayFunction2D_setGamma(self, gamma)
 
-    def accept(self, visitor):
+    def gamma(self):
         r"""
-        accept(FTDistribution2DCone self, INodeVisitor visitor)
-        void FTDistribution2DCone::accept(INodeVisitor *visitor) const final
+        gamma(IFTDecayFunction2D self) -> double
+        double IFTDecayFunction2D::gamma() const
 
-        Calls the  INodeVisitor's visit method. 
+        get angle between first lattice vector and X-axis of distribution (both in direct space) 
 
         """
-        return _libBornAgainCore.FTDistribution2DCone_accept(self, visitor)
+        return _libBornAgainCore.IFTDecayFunction2D_gamma(self)
+
+    def decayLengthX(self):
+        r"""
+        decayLengthX(IFTDecayFunction2D self) -> double
+        double IFTDecayFunction2D::decayLengthX() const
+
+        get decay length in distribution's X-direction 
+
+        """
+        return _libBornAgainCore.IFTDecayFunction2D_decayLengthX(self)
+
+    def decayLengthY(self):
+        r"""
+        decayLengthY(IFTDecayFunction2D self) -> double
+        double IFTDecayFunction2D::decayLengthY() const
+
+        get decay length in distribution's Y-direction 
+
+        """
+        return _libBornAgainCore.IFTDecayFunction2D_decayLengthY(self)
 
     def evaluate(self, qx, qy):
         r"""
-        evaluate(FTDistribution2DCone self, double qx, double qy) -> double
-        double FTDistribution2DCone::evaluate(double qx, double qy) const final
+        evaluate(IFTDecayFunction2D self, double qx, double qy) -> double
+        virtual double IFTDecayFunction2D::evaluate(double qx, double qy) const =0
 
-        evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 
+        evaluate Fourier transformed decay function for q in X,Y coordinates 
 
         """
-        return _libBornAgainCore.FTDistribution2DCone_evaluate(self, qx, qy)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution2DCone
+        return _libBornAgainCore.IFTDecayFunction2D_evaluate(self, qx, qy)
 
-# Register FTDistribution2DCone in _libBornAgainCore:
-_libBornAgainCore.FTDistribution2DCone_swigregister(FTDistribution2DCone)
+    def boundingReciprocalLatticeCoordinates(self, qX, qY, a, b, alpha):
+        r"""
+        boundingReciprocalLatticeCoordinates(IFTDecayFunction2D self, double qX, double qY, double a, double b, double alpha) -> pair_double_t
+        std::pair< double, double > IFTDecayFunction2D::boundingReciprocalLatticeCoordinates(double qX, double qY, double a, double b, double alpha) const
 
-class FTDistribution2DVoigt(IFTDistribution2D):
+        transform back to a*, b* basis:
+
+        Calculates bounding values of reciprocal lattice coordinates that contain the centered rectangle with a corner defined by qX and qY 
+
+        """
+        return _libBornAgainCore.IFTDecayFunction2D_boundingReciprocalLatticeCoordinates(self, qX, qY, a, b, alpha)
+    __swig_destroy__ = _libBornAgainCore.delete_IFTDecayFunction2D
+
+# Register IFTDecayFunction2D in _libBornAgainCore:
+_libBornAgainCore.IFTDecayFunction2D_swigregister(IFTDecayFunction2D)
+
+class FTDecayFunction2DCauchy(IFTDecayFunction2D):
     r"""
 
 
-    Two-dimensional Voigt distribution in Fourier space; corresponds to eta*Gauss + (1-eta)*Cauchy
+    Two-dimensional Cauchy decay function in reciprocal space; corresponds to exp(-r) in real space, with  $r=\\sqrt{(\\frac{x}{\\omega_x})^2 + (\\frac{y}{\\omega_y})^2}$.
 
-    C++ includes: FTDistributions2D.h
+    C++ includes: FTDecayFunctions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, omega_x, omega_y, eta, gamma=0):
+    def __init__(self, decay_length_x, decay_length_y, gamma=0):
         r"""
-        __init__(FTDistribution2DVoigt self, double omega_x, double omega_y, double eta, double gamma=0) -> FTDistribution2DVoigt
-        FTDistribution2DVoigt::FTDistribution2DVoigt(double omega_x, double omega_y, double eta, double gamma=0)
+        __init__(FTDecayFunction2DCauchy self, double decay_length_x, double decay_length_y, double gamma=0) -> FTDecayFunction2DCauchy
+        FTDecayFunction2DCauchy::FTDecayFunction2DCauchy(double decay_length_x, double decay_length_y, double gamma=0)
 
-        Constructor of two-dimensional pseudo-Voigt probability distribution.
+        """
+        _libBornAgainCore.FTDecayFunction2DCauchy_swiginit(self, _libBornAgainCore.new_FTDecayFunction2DCauchy(decay_length_x, decay_length_y, gamma))
 
-        Parameters:
-        -----------
+    def clone(self):
+        r"""
+        clone(FTDecayFunction2DCauchy self) -> FTDecayFunction2DCauchy
+        FTDecayFunction2DCauchy * FTDecayFunction2DCauchy::clone() const
 
-        omega_x: 
-        half-width of the distribution along its x-axis in nanometers
+        """
+        return _libBornAgainCore.FTDecayFunction2DCauchy_clone(self)
 
-        omega_y: 
-        half-width of the distribution along its y-axis in nanometers
+    def accept(self, visitor):
+        r"""
+        accept(FTDecayFunction2DCauchy self, INodeVisitor visitor)
+        void FTDecayFunction2DCauchy::accept(INodeVisitor *visitor) const final
 
-        eta: 
-        parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0)
+        Calls the  INodeVisitor's visit method. 
 
-        gamma: 
-        angle in direct space between first lattice vector and x-axis of the distribution in radians 
+        """
+        return _libBornAgainCore.FTDecayFunction2DCauchy_accept(self, visitor)
+
+    def evaluate(self, qx, qy):
+        r"""
+        evaluate(FTDecayFunction2DCauchy self, double qx, double qy) -> double
+        double FTDecayFunction2DCauchy::evaluate(double qx, double qy) const final
+
+        evaluate Fourier transformed decay function for q in X,Y coordinates 
 
         """
-        _libBornAgainCore.FTDistribution2DVoigt_swiginit(self, _libBornAgainCore.new_FTDistribution2DVoigt(omega_x, omega_y, eta, gamma))
+        return _libBornAgainCore.FTDecayFunction2DCauchy_evaluate(self, qx, qy)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction2DCauchy
+
+# Register FTDecayFunction2DCauchy in _libBornAgainCore:
+_libBornAgainCore.FTDecayFunction2DCauchy_swigregister(FTDecayFunction2DCauchy)
+
+class FTDecayFunction2DGauss(IFTDecayFunction2D):
+    r"""
+
+
+    Two-dimensional Gauss decay function in reciprocal space; corresponds to exp(-r^2/2) in real space, with  $r=\\sqrt{(\\frac{x}{\\omega_x})^2 + (\\frac{y}{\\omega_y})^2}$.
+
+    C++ includes: FTDecayFunctions.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, decay_length_x, decay_length_y, gamma=0):
+        r"""
+        __init__(FTDecayFunction2DGauss self, double decay_length_x, double decay_length_y, double gamma=0) -> FTDecayFunction2DGauss
+        FTDecayFunction2DGauss::FTDecayFunction2DGauss(double decay_length_x, double decay_length_y, double gamma=0)
+
+        """
+        _libBornAgainCore.FTDecayFunction2DGauss_swiginit(self, _libBornAgainCore.new_FTDecayFunction2DGauss(decay_length_x, decay_length_y, gamma))
 
     def clone(self):
         r"""
-        clone(FTDistribution2DVoigt self) -> FTDistribution2DVoigt
-        FTDistribution2DVoigt * FTDistribution2DVoigt::clone() const final
+        clone(FTDecayFunction2DGauss self) -> FTDecayFunction2DGauss
+        FTDecayFunction2DGauss * FTDecayFunction2DGauss::clone() const
 
         """
-        return _libBornAgainCore.FTDistribution2DVoigt_clone(self)
+        return _libBornAgainCore.FTDecayFunction2DGauss_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FTDistribution2DVoigt self, INodeVisitor visitor)
-        void FTDistribution2DVoigt::accept(INodeVisitor *visitor) const final
+        accept(FTDecayFunction2DGauss self, INodeVisitor visitor)
+        void FTDecayFunction2DGauss::accept(INodeVisitor *visitor) const final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FTDistribution2DVoigt_accept(self, visitor)
+        return _libBornAgainCore.FTDecayFunction2DGauss_accept(self, visitor)
 
     def evaluate(self, qx, qy):
         r"""
-        evaluate(FTDistribution2DVoigt self, double qx, double qy) -> double
-        double FTDistribution2DVoigt::evaluate(double qx, double qy) const final
-
-        evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 
-
-        """
-        return _libBornAgainCore.FTDistribution2DVoigt_evaluate(self, qx, qy)
+        evaluate(FTDecayFunction2DGauss self, double qx, double qy) -> double
+        double FTDecayFunction2DGauss::evaluate(double qx, double qy) const final
 
-    def eta(self):
-        r"""
-        eta(FTDistribution2DVoigt self) -> double
-        double FTDistribution2DVoigt::eta() const
+        evaluate Fourier transformed decay function for q in X,Y coordinates 
 
         """
-        return _libBornAgainCore.FTDistribution2DVoigt_eta(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution2DVoigt
+        return _libBornAgainCore.FTDecayFunction2DGauss_evaluate(self, qx, qy)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction2DGauss
 
-# Register FTDistribution2DVoigt in _libBornAgainCore:
-_libBornAgainCore.FTDistribution2DVoigt_swigregister(FTDistribution2DVoigt)
+# Register FTDecayFunction2DGauss in _libBornAgainCore:
+_libBornAgainCore.FTDecayFunction2DGauss_swigregister(FTDecayFunction2DGauss)
 
-class FixedBinAxis(IAxis):
+class FTDecayFunction2DVoigt(IFTDecayFunction2D):
     r"""
 
 
-    Axis with fixed bin size.
+    Two-dimensional pseudo-Voigt decay function in reciprocal space; corresponds to eta*Gauss + (1-eta)*Cauchy.
 
-    C++ includes: FixedBinAxis.h
+    C++ includes: FTDecayFunctions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, name, nbins, start, end):
+    def __init__(self, decay_length_x, decay_length_y, eta, gamma=0):
         r"""
-        __init__(FixedBinAxis self, std::string const & name, size_t nbins, double start, double end) -> FixedBinAxis
-        FixedBinAxis::FixedBinAxis(const std::string &name, size_t nbins, double start, double end)
+        __init__(FTDecayFunction2DVoigt self, double decay_length_x, double decay_length_y, double eta, double gamma=0) -> FTDecayFunction2DVoigt
+        FTDecayFunction2DVoigt::FTDecayFunction2DVoigt(double decay_length_x, double decay_length_y, double eta, double gamma=0)
 
-        FixedBinAxis constructor.
+        Constructor of two-dimensional pseudo-Voigt decay function in reciprocal space.
 
         Parameters:
         -----------
 
-        name: 
-        Axis name
+        decay_length_x: 
+        the decay length in nanometers along x-axis of the distribution
 
-        nbins: 
-        number of bins
+        decay_length_y: 
+        the decay length in nanometers along y-axis of the distribution
 
-        start: 
-        low edge of first bin
+        eta: 
+        parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0)
 
-        end: 
-        upper edge of last bin 
+        gamma: 
+        distribution orientation with respect to the first lattice vector in radians 
 
         """
-        _libBornAgainCore.FixedBinAxis_swiginit(self, _libBornAgainCore.new_FixedBinAxis(name, nbins, start, end))
-    __swig_destroy__ = _libBornAgainCore.delete_FixedBinAxis
+        _libBornAgainCore.FTDecayFunction2DVoigt_swiginit(self, _libBornAgainCore.new_FTDecayFunction2DVoigt(decay_length_x, decay_length_y, eta, gamma))
 
     def clone(self):
         r"""
-        clone(FixedBinAxis self) -> FixedBinAxis
-        FixedBinAxis * FixedBinAxis::clone() const
-
-        clone function 
+        clone(FTDecayFunction2DVoigt self) -> FTDecayFunction2DVoigt
+        FTDecayFunction2DVoigt * FTDecayFunction2DVoigt::clone() const
 
         """
-        return _libBornAgainCore.FixedBinAxis_clone(self)
+        return _libBornAgainCore.FTDecayFunction2DVoigt_clone(self)
 
-    def size(self):
+    def accept(self, visitor):
         r"""
-        size(FixedBinAxis self) -> size_t
-        size_t FixedBinAxis::size() const
+        accept(FTDecayFunction2DVoigt self, INodeVisitor visitor)
+        void FTDecayFunction2DVoigt::accept(INodeVisitor *visitor) const final
 
-        retrieve the number of bins 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FixedBinAxis_size(self)
+        return _libBornAgainCore.FTDecayFunction2DVoigt_accept(self, visitor)
 
-    def getBin(self, index):
+    def evaluate(self, qx, qy):
         r"""
-        getBin(FixedBinAxis self, size_t index) -> Bin1D
-        Bin1D FixedBinAxis::getBin(size_t index) const
+        evaluate(FTDecayFunction2DVoigt self, double qx, double qy) -> double
+        double FTDecayFunction2DVoigt::evaluate(double qx, double qy) const final
 
-        retrieve a 1d bin for the given index 
+        evaluate Fourier transformed decay function for q in X,Y coordinates 
 
         """
-        return _libBornAgainCore.FixedBinAxis_getBin(self, index)
+        return _libBornAgainCore.FTDecayFunction2DVoigt_evaluate(self, qx, qy)
 
-    def getMin(self):
+    def eta(self):
         r"""
-        getMin(FixedBinAxis self) -> double
-        double FixedBinAxis::getMin() const
-
-        Returns value of first point of axis. 
+        eta(FTDecayFunction2DVoigt self) -> double
+        double FTDecayFunction2DVoigt::eta() const
 
         """
-        return _libBornAgainCore.FixedBinAxis_getMin(self)
+        return _libBornAgainCore.FTDecayFunction2DVoigt_eta(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDecayFunction2DVoigt
 
-    def getMax(self):
-        r"""
-        getMax(FixedBinAxis self) -> double
-        double FixedBinAxis::getMax() const
+# Register FTDecayFunction2DVoigt in _libBornAgainCore:
+_libBornAgainCore.FTDecayFunction2DVoigt_swigregister(FTDecayFunction2DVoigt)
 
-        Returns value of last point of axis. 
+class IFTDistribution1D(ICloneable, INode):
+    r"""
 
-        """
-        return _libBornAgainCore.FixedBinAxis_getMax(self)
 
-    def getBinCenter(self, index):
+    Interface for a one-dimensional distribution, with normalization adjusted so that the Fourier transform evaluate(q) is a decay function that starts at evaluate(0)=1.
+
+    C++ includes: FTDistributions1D.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IFTDistribution1D
+
+    def clone(self):
         r"""
-        getBinCenter(FixedBinAxis self, size_t index) -> double
-        double FixedBinAxis::getBinCenter(size_t index) const
+        clone(IFTDistribution1D self) -> IFTDistribution1D
+        virtual IFTDistribution1D* IFTDistribution1D::clone() const =0
 
         """
-        return _libBornAgainCore.FixedBinAxis_getBinCenter(self, index)
+        return _libBornAgainCore.IFTDistribution1D_clone(self)
 
-    def findClosestIndex(self, value):
+    def evaluate(self, q):
         r"""
-        findClosestIndex(FixedBinAxis self, double value) -> size_t
-        size_t FixedBinAxis::findClosestIndex(double value) const
+        evaluate(IFTDistribution1D self, double q) -> double
+        virtual double IFTDistribution1D::evaluate(double q) const =0
 
-        find bin index which is best match for given value 
+        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
 
         """
-        return _libBornAgainCore.FixedBinAxis_findClosestIndex(self, value)
+        return _libBornAgainCore.IFTDistribution1D_evaluate(self, q)
 
-    def getBinCenters(self):
+    def setOmega(self, omega):
         r"""
-        getBinCenters(FixedBinAxis self) -> vdouble1d_t
-        std::vector< double > FixedBinAxis::getBinCenters() const
+        setOmega(IFTDistribution1D self, double omega)
+        void IFTDistribution1D::setOmega(double omega)
 
         """
-        return _libBornAgainCore.FixedBinAxis_getBinCenters(self)
+        return _libBornAgainCore.IFTDistribution1D_setOmega(self, omega)
 
-    def getBinBoundaries(self):
+    def omega(self):
         r"""
-        getBinBoundaries(FixedBinAxis self) -> vdouble1d_t
-        std::vector< double > FixedBinAxis::getBinBoundaries() const
+        omega(IFTDistribution1D self) -> double
+        double IFTDistribution1D::omega() const
 
         """
-        return _libBornAgainCore.FixedBinAxis_getBinBoundaries(self)
+        return _libBornAgainCore.IFTDistribution1D_omega(self)
 
-    def createClippedAxis(self, left, right):
+    def qSecondDerivative(self):
         r"""
-        createClippedAxis(FixedBinAxis self, double left, double right) -> FixedBinAxis
-        FixedBinAxis * FixedBinAxis::createClippedAxis(double left, double right) const
+        qSecondDerivative(IFTDistribution1D self) -> double
+        virtual double IFTDistribution1D::qSecondDerivative() const =0
 
-        Creates a new clipped axis. 
+        Returns the negative of the second order derivative in q space around q=0. 
 
         """
-        return _libBornAgainCore.FixedBinAxis_createClippedAxis(self, left, right)
-
-    def __getitem__(self, i):
-        r"""__getitem__(FixedBinAxis self, unsigned int i) -> double"""
-        return _libBornAgainCore.FixedBinAxis___getitem__(self, i)
+        return _libBornAgainCore.IFTDistribution1D_qSecondDerivative(self)
 
-# Register FixedBinAxis in _libBornAgainCore:
-_libBornAgainCore.FixedBinAxis_swigregister(FixedBinAxis)
+# Register IFTDistribution1D in _libBornAgainCore:
+_libBornAgainCore.IFTDistribution1D_swigregister(IFTDistribution1D)
 
-class IFormFactor(ISample):
+class FTDistribution1DCauchy(IFTDistribution1D):
     r"""
 
 
-    Pure virtual base class for all form factors.
-
-    The actual form factor is returned by the complex valued function  IFormFactor::evaluate, which depends on the incoming and outgoing wave vectors ki and kf. If it only depends on the scattering vector q=ki-kf, then it is a IBornFormFactor.
-
-    Other children besides IBornFormFactor are  IFormFactorDecorator,  FormFactorWeighted,  FormFactorDWBA,  FormFactorDWBAPol and  FormFactorCrystal.
+    Exponential  IFTDistribution1D exp(-|omega*x|); its Fourier transform evaluate(q) is a Cauchy-Lorentzian starting at evaluate(0)=1.
 
-    C++ includes: IFormFactor.h
+    C++ includes: FTDistributions1D.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self, omega):
         r"""
-        __init__(IFormFactor self) -> IFormFactor
-        __init__(IFormFactor self, INode parent, std::vector< char const *,std::allocator< char const * > > const PName, std::vector< char const *,std::allocator< char const * > > const PUnit, vdouble1d_t PMin, vdouble1d_t PMax, vdouble1d_t PDefault, vdouble1d_t P) -> IFormFactor
-        IFormFactor::IFormFactor()
+        __init__(FTDistribution1DCauchy self, double omega) -> FTDistribution1DCauchy
+        FTDistribution1DCauchy::FTDistribution1DCauchy(double omega)
 
         """
-        if self.__class__ == IFormFactor:
-            _self = None
-        else:
-            _self = self
-        _libBornAgainCore.IFormFactor_swiginit(self, _libBornAgainCore.new_IFormFactor(_self, *args))
-    __swig_destroy__ = _libBornAgainCore.delete_IFormFactor
+        _libBornAgainCore.FTDistribution1DCauchy_swiginit(self, _libBornAgainCore.new_FTDistribution1DCauchy(omega))
 
     def clone(self):
         r"""
-        clone(IFormFactor self) -> IFormFactor
-        IFormFactor* IFormFactor::clone() const override=0
-
-        Returns a clone of this  ISample object. 
+        clone(FTDistribution1DCauchy self) -> FTDistribution1DCauchy
+        FTDistribution1DCauchy * FTDistribution1DCauchy::clone() const override final
 
         """
-        return _libBornAgainCore.IFormFactor_clone(self)
+        return _libBornAgainCore.FTDistribution1DCauchy_clone(self)
 
-    def createSlicedFormFactor(self, limits, rot, translation):
+    def accept(self, visitor):
         r"""
-        createSlicedFormFactor(IFormFactor self, ZLimits limits, IRotation rot, kvector_t translation) -> IFormFactor
-        IFormFactor * IFormFactor::createSlicedFormFactor(ZLimits limits, const IRotation &rot, kvector_t translation) const
+        accept(FTDistribution1DCauchy self, INodeVisitor visitor)
+        void FTDistribution1DCauchy::accept(INodeVisitor *visitor) const override final
 
-        Creates a (possibly sliced) form factor with the given rotation and translation. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IFormFactor_createSlicedFormFactor(self, limits, rot, translation)
+        return _libBornAgainCore.FTDistribution1DCauchy_accept(self, visitor)
 
-    def setAmbientMaterial(self, arg0):
+    def evaluate(self, q):
         r"""
-        setAmbientMaterial(IFormFactor self, Material arg0)
-        virtual void IFormFactor::setAmbientMaterial(Material)=0
+        evaluate(FTDistribution1DCauchy self, double q) -> double
+        double FTDistribution1DCauchy::evaluate(double q) const override final
 
-        Passes the material in which this particle is embedded. 
+        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
 
         """
-        return _libBornAgainCore.IFormFactor_setAmbientMaterial(self, arg0)
+        return _libBornAgainCore.FTDistribution1DCauchy_evaluate(self, q)
 
-    def evaluate(self, wavevectors):
+    def qSecondDerivative(self):
         r"""
-        evaluate(IFormFactor self, WavevectorInfo wavevectors) -> complex_t
-        virtual complex_t IFormFactor::evaluate(const WavevectorInfo &wavevectors) const =0
+        qSecondDerivative(FTDistribution1DCauchy self) -> double
+        double FTDistribution1DCauchy::qSecondDerivative() const override final
 
-        Returns scattering amplitude for complex wavevectors ki, kf. 
+        Returns the negative of the second order derivative in q space around q=0. 
 
         """
-        return _libBornAgainCore.IFormFactor_evaluate(self, wavevectors)
+        return _libBornAgainCore.FTDistribution1DCauchy_qSecondDerivative(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution1DCauchy
 
-    def volume(self):
+# Register FTDistribution1DCauchy in _libBornAgainCore:
+_libBornAgainCore.FTDistribution1DCauchy_swigregister(FTDistribution1DCauchy)
+
+class FTDistribution1DGauss(IFTDistribution1D):
+    r"""
+
+
+    Gaussian  IFTDistribution1D; its Fourier transform evaluate(q) is a Gaussian starting at evaluate(0)=1.
+
+    C++ includes: FTDistributions1D.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, omega):
         r"""
-        volume(IFormFactor self) -> double
-        double IFormFactor::volume() const
+        __init__(FTDistribution1DGauss self, double omega) -> FTDistribution1DGauss
+        FTDistribution1DGauss::FTDistribution1DGauss(double omega)
 
-        Returns the total volume of the particle of this form factor's shape. 
+        """
+        _libBornAgainCore.FTDistribution1DGauss_swiginit(self, _libBornAgainCore.new_FTDistribution1DGauss(omega))
+
+    def clone(self):
+        r"""
+        clone(FTDistribution1DGauss self) -> FTDistribution1DGauss
+        FTDistribution1DGauss * FTDistribution1DGauss::clone() const override final
 
         """
-        return _libBornAgainCore.IFormFactor_volume(self)
+        return _libBornAgainCore.FTDistribution1DGauss_clone(self)
 
-    def radialExtension(self):
+    def accept(self, visitor):
         r"""
-        radialExtension(IFormFactor self) -> double
-        virtual double IFormFactor::radialExtension() const =0
+        accept(FTDistribution1DGauss self, INodeVisitor visitor)
+        void FTDistribution1DGauss::accept(INodeVisitor *visitor) const override final
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IFormFactor_radialExtension(self)
+        return _libBornAgainCore.FTDistribution1DGauss_accept(self, visitor)
 
-    def bottomZ(self, rotation):
+    def evaluate(self, q):
         r"""
-        bottomZ(IFormFactor self, IRotation rotation) -> double
-        virtual double IFormFactor::bottomZ(const IRotation &rotation) const =0
+        evaluate(FTDistribution1DGauss self, double q) -> double
+        double FTDistribution1DGauss::evaluate(double q) const override final
 
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
 
         """
-        return _libBornAgainCore.IFormFactor_bottomZ(self, rotation)
+        return _libBornAgainCore.FTDistribution1DGauss_evaluate(self, q)
 
-    def topZ(self, rotation):
+    def qSecondDerivative(self):
         r"""
-        topZ(IFormFactor self, IRotation rotation) -> double
-        virtual double IFormFactor::topZ(const IRotation &rotation) const =0
+        qSecondDerivative(FTDistribution1DGauss self) -> double
+        double FTDistribution1DGauss::qSecondDerivative() const override final
 
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        Returns the negative of the second order derivative in q space around q=0. 
 
         """
-        return _libBornAgainCore.IFormFactor_topZ(self, rotation)
+        return _libBornAgainCore.FTDistribution1DGauss_qSecondDerivative(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution1DGauss
 
-    def canSliceAnalytically(self, rot):
-        r"""canSliceAnalytically(IFormFactor self, IRotation rot) -> bool"""
-        return _libBornAgainCore.IFormFactor_canSliceAnalytically(self, rot)
+# Register FTDistribution1DGauss in _libBornAgainCore:
+_libBornAgainCore.FTDistribution1DGauss_swigregister(FTDistribution1DGauss)
 
-    def sliceFormFactor(self, limits, rot, translation):
-        r"""sliceFormFactor(IFormFactor self, ZLimits limits, IRotation rot, kvector_t translation) -> IFormFactor"""
-        return _libBornAgainCore.IFormFactor_sliceFormFactor(self, limits, rot, translation)
-    def __disown__(self):
-        self.this.disown()
-        _libBornAgainCore.disown_IFormFactor(self)
-        return weakref.proxy(self)
+class FTDistribution1DGate(IFTDistribution1D):
+    r"""
 
-# Register IFormFactor in _libBornAgainCore:
-_libBornAgainCore.IFormFactor_swigregister(IFormFactor)
 
+    Square gate  IFTDistribution1D; its Fourier transform evaluate(q) is a sinc function starting at evaluate(0)=1.
 
-def CreateTransformedFormFactor(formfactor, rot, translation):
-    r"""
-    CreateTransformedFormFactor(IFormFactor formfactor, IRotation rot, kvector_t translation) -> IFormFactor
-    IFormFactor* CreateTransformedFormFactor(const IFormFactor &formfactor, const IRotation &rot, kvector_t translation)
+    C++ includes: FTDistributions1D.h
 
     """
-    return _libBornAgainCore.CreateTransformedFormFactor(formfactor, rot, translation)
-class vector_IFormFactorPtr_t(object):
-    r"""Proxy of C++ std::vector< IFormFactor * > class."""
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def iterator(self):
-        r"""iterator(vector_IFormFactorPtr_t self) -> SwigPyIterator"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_iterator(self)
-    def __iter__(self):
-        return self.iterator()
+    def __init__(self, omega):
+        r"""
+        __init__(FTDistribution1DGate self, double omega) -> FTDistribution1DGate
+        FTDistribution1DGate::FTDistribution1DGate(double omega)
 
-    def __nonzero__(self):
-        r"""__nonzero__(vector_IFormFactorPtr_t self) -> bool"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t___nonzero__(self)
-
-    def __bool__(self):
-        r"""__bool__(vector_IFormFactorPtr_t self) -> bool"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t___bool__(self)
-
-    def __len__(self):
-        r"""__len__(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::size_type"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t___len__(self)
-
-    def __getslice__(self, i, j):
-        r"""__getslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j) -> vector_IFormFactorPtr_t"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t___getslice__(self, i, j)
-
-    def __setslice__(self, *args):
-        r"""
-        __setslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j)
-        __setslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j, vector_IFormFactorPtr_t v)
         """
-        return _libBornAgainCore.vector_IFormFactorPtr_t___setslice__(self, *args)
-
-    def __delslice__(self, i, j):
-        r"""__delslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j)"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t___delslice__(self, i, j)
+        _libBornAgainCore.FTDistribution1DGate_swiginit(self, _libBornAgainCore.new_FTDistribution1DGate(omega))
 
-    def __delitem__(self, *args):
+    def clone(self):
         r"""
-        __delitem__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i)
-        __delitem__(vector_IFormFactorPtr_t self, PySliceObject * slice)
-        """
-        return _libBornAgainCore.vector_IFormFactorPtr_t___delitem__(self, *args)
+        clone(FTDistribution1DGate self) -> FTDistribution1DGate
+        FTDistribution1DGate * FTDistribution1DGate::clone() const override final
 
-    def __getitem__(self, *args):
-        r"""
-        __getitem__(vector_IFormFactorPtr_t self, PySliceObject * slice) -> vector_IFormFactorPtr_t
-        __getitem__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i) -> IFormFactor
         """
-        return _libBornAgainCore.vector_IFormFactorPtr_t___getitem__(self, *args)
+        return _libBornAgainCore.FTDistribution1DGate_clone(self)
 
-    def __setitem__(self, *args):
+    def accept(self, visitor):
         r"""
-        __setitem__(vector_IFormFactorPtr_t self, PySliceObject * slice, vector_IFormFactorPtr_t v)
-        __setitem__(vector_IFormFactorPtr_t self, PySliceObject * slice)
-        __setitem__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, IFormFactor x)
-        """
-        return _libBornAgainCore.vector_IFormFactorPtr_t___setitem__(self, *args)
+        accept(FTDistribution1DGate self, INodeVisitor visitor)
+        void FTDistribution1DGate::accept(INodeVisitor *visitor) const override final
 
-    def pop(self):
-        r"""pop(vector_IFormFactorPtr_t self) -> IFormFactor"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_pop(self)
+        Calls the  INodeVisitor's visit method. 
 
-    def append(self, x):
-        r"""append(vector_IFormFactorPtr_t self, IFormFactor x)"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_append(self, x)
+        """
+        return _libBornAgainCore.FTDistribution1DGate_accept(self, visitor)
 
-    def empty(self):
-        r"""empty(vector_IFormFactorPtr_t self) -> bool"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_empty(self)
+    def evaluate(self, q):
+        r"""
+        evaluate(FTDistribution1DGate self, double q) -> double
+        double FTDistribution1DGate::evaluate(double q) const override final
 
-    def size(self):
-        r"""size(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::size_type"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_size(self)
+        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
 
-    def swap(self, v):
+        """
+        return _libBornAgainCore.FTDistribution1DGate_evaluate(self, q)
+
+    def qSecondDerivative(self):
         r"""
-        swap(vector_IFormFactorPtr_t self, vector_IFormFactorPtr_t v)
-        void swap(OutputDataIterator< TValue, TContainer > &left, OutputDataIterator< TValue, TContainer > &right)
+        qSecondDerivative(FTDistribution1DGate self) -> double
+        double FTDistribution1DGate::qSecondDerivative() const override final
 
-        make Swappable 
+        Returns the negative of the second order derivative in q space around q=0. 
 
         """
-        return _libBornAgainCore.vector_IFormFactorPtr_t_swap(self, v)
+        return _libBornAgainCore.FTDistribution1DGate_qSecondDerivative(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution1DGate
 
-    def begin(self):
-        r"""begin(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::iterator"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_begin(self)
+# Register FTDistribution1DGate in _libBornAgainCore:
+_libBornAgainCore.FTDistribution1DGate_swigregister(FTDistribution1DGate)
 
-    def end(self):
-        r"""end(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::iterator"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_end(self)
+class FTDistribution1DTriangle(IFTDistribution1D):
+    r"""
 
-    def rbegin(self):
-        r"""rbegin(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::reverse_iterator"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_rbegin(self)
 
-    def rend(self):
-        r"""rend(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::reverse_iterator"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_rend(self)
+    Triangle  IFTDistribution1D [1-|x|/omega if |x|<omega, and 0 otherwise]; its Fourier transform evaluate(q) is a squared sinc function starting at evaluate(0)=1.
 
-    def clear(self):
-        r"""clear(vector_IFormFactorPtr_t self)"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_clear(self)
+    C++ includes: FTDistributions1D.h
 
-    def get_allocator(self):
-        r"""get_allocator(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::allocator_type"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_get_allocator(self)
+    """
 
-    def pop_back(self):
-        r"""pop_back(vector_IFormFactorPtr_t self)"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_pop_back(self)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    def erase(self, *args):
+    def __init__(self, omega):
         r"""
-        erase(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator pos) -> std::vector< IFormFactor * >::iterator
-        erase(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator first, std::vector< IFormFactor * >::iterator last) -> std::vector< IFormFactor * >::iterator
+        __init__(FTDistribution1DTriangle self, double omega) -> FTDistribution1DTriangle
+        FTDistribution1DTriangle::FTDistribution1DTriangle(double omega)
+
         """
-        return _libBornAgainCore.vector_IFormFactorPtr_t_erase(self, *args)
+        _libBornAgainCore.FTDistribution1DTriangle_swiginit(self, _libBornAgainCore.new_FTDistribution1DTriangle(omega))
 
-    def __init__(self, *args):
+    def clone(self):
         r"""
-        __init__(vector_IFormFactorPtr_t self) -> vector_IFormFactorPtr_t
-        __init__(vector_IFormFactorPtr_t self, vector_IFormFactorPtr_t other) -> vector_IFormFactorPtr_t
-        __init__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type size) -> vector_IFormFactorPtr_t
-        __init__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type size, IFormFactor value) -> vector_IFormFactorPtr_t
-        """
-        _libBornAgainCore.vector_IFormFactorPtr_t_swiginit(self, _libBornAgainCore.new_vector_IFormFactorPtr_t(*args))
+        clone(FTDistribution1DTriangle self) -> FTDistribution1DTriangle
+        FTDistribution1DTriangle * FTDistribution1DTriangle::clone() const override final
 
-    def push_back(self, x):
-        r"""push_back(vector_IFormFactorPtr_t self, IFormFactor x)"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_push_back(self, x)
+        """
+        return _libBornAgainCore.FTDistribution1DTriangle_clone(self)
 
-    def front(self):
-        r"""front(vector_IFormFactorPtr_t self) -> IFormFactor"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_front(self)
+    def accept(self, visitor):
+        r"""
+        accept(FTDistribution1DTriangle self, INodeVisitor visitor)
+        void FTDistribution1DTriangle::accept(INodeVisitor *visitor) const override final
 
-    def back(self):
-        r"""back(vector_IFormFactorPtr_t self) -> IFormFactor"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_back(self)
+        Calls the  INodeVisitor's visit method. 
 
-    def assign(self, n, x):
-        r"""assign(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type n, IFormFactor x)"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_assign(self, n, x)
+        """
+        return _libBornAgainCore.FTDistribution1DTriangle_accept(self, visitor)
 
-    def resize(self, *args):
+    def evaluate(self, q):
         r"""
-        resize(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type new_size)
-        resize(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type new_size, IFormFactor x)
+        evaluate(FTDistribution1DTriangle self, double q) -> double
+        double FTDistribution1DTriangle::evaluate(double q) const override final
+
+        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
+
         """
-        return _libBornAgainCore.vector_IFormFactorPtr_t_resize(self, *args)
+        return _libBornAgainCore.FTDistribution1DTriangle_evaluate(self, q)
 
-    def insert(self, *args):
+    def qSecondDerivative(self):
         r"""
-        insert(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator pos, IFormFactor x) -> std::vector< IFormFactor * >::iterator
-        insert(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator pos, std::vector< IFormFactor * >::size_type n, IFormFactor x)
-        """
-        return _libBornAgainCore.vector_IFormFactorPtr_t_insert(self, *args)
+        qSecondDerivative(FTDistribution1DTriangle self) -> double
+        double FTDistribution1DTriangle::qSecondDerivative() const override final
 
-    def reserve(self, n):
-        r"""reserve(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type n)"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_reserve(self, n)
+        Returns the negative of the second order derivative in q space around q=0. 
 
-    def capacity(self):
-        r"""capacity(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::size_type"""
-        return _libBornAgainCore.vector_IFormFactorPtr_t_capacity(self)
-    __swig_destroy__ = _libBornAgainCore.delete_vector_IFormFactorPtr_t
+        """
+        return _libBornAgainCore.FTDistribution1DTriangle_qSecondDerivative(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution1DTriangle
 
-# Register vector_IFormFactorPtr_t in _libBornAgainCore:
-_libBornAgainCore.vector_IFormFactorPtr_t_swigregister(vector_IFormFactorPtr_t)
+# Register FTDistribution1DTriangle in _libBornAgainCore:
+_libBornAgainCore.FTDistribution1DTriangle_swigregister(FTDistribution1DTriangle)
 
-class IFormFactorBorn(IFormFactor):
+class FTDistribution1DCosine(IFTDistribution1D):
     r"""
 
 
-    Pure virtual base class for Born form factors.
-
-    In contrast to the generic  IFormFactor, a Born form factor does not depend on the incoming and outgoing wave vectors ki and kf, except through their difference, the scattering vector q=ki-kf.
+    IFTDistribution1D consisting of one cosine wave [1+cos(pi*x/omega) if |x|<omega, and 0 otherwise]; its Fourier transform evaluate(q) starts at evaluate(0)=1.
 
-    C++ includes: IFormFactorBorn.h
+    C++ includes: FTDistributions1D.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self, omega):
         r"""
-        __init__(IFormFactorBorn self) -> IFormFactorBorn
-        __init__(IFormFactorBorn self, INode parent, std::vector< char const *,std::allocator< char const * > > const PName, std::vector< char const *,std::allocator< char const * > > const PUnit, vdouble1d_t PMin, vdouble1d_t PMax, vdouble1d_t PDefault, vdouble1d_t P) -> IFormFactorBorn
-        IFormFactorBorn::IFormFactorBorn()=default
+        __init__(FTDistribution1DCosine self, double omega) -> FTDistribution1DCosine
+        FTDistribution1DCosine::FTDistribution1DCosine(double omega)
 
         """
-        if self.__class__ == IFormFactorBorn:
-            _self = None
-        else:
-            _self = self
-        _libBornAgainCore.IFormFactorBorn_swiginit(self, _libBornAgainCore.new_IFormFactorBorn(_self, *args))
+        _libBornAgainCore.FTDistribution1DCosine_swiginit(self, _libBornAgainCore.new_FTDistribution1DCosine(omega))
 
     def clone(self):
         r"""
-        clone(IFormFactorBorn self) -> IFormFactorBorn
-        IFormFactorBorn* IFormFactorBorn::clone() const override=0
-
-        Returns a clone of this  ISample object. 
+        clone(FTDistribution1DCosine self) -> FTDistribution1DCosine
+        FTDistribution1DCosine * FTDistribution1DCosine::clone() const override final
 
         """
-        return _libBornAgainCore.IFormFactorBorn_clone(self)
+        return _libBornAgainCore.FTDistribution1DCosine_clone(self)
 
-    def setAmbientMaterial(self, arg0):
+    def accept(self, visitor):
         r"""
-        setAmbientMaterial(IFormFactorBorn self, Material arg0)
-        void IFormFactorBorn::setAmbientMaterial(Material) override
+        accept(FTDistribution1DCosine self, INodeVisitor visitor)
+        void FTDistribution1DCosine::accept(INodeVisitor *visitor) const override final
 
-        Passes the material in which this particle is embedded. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IFormFactorBorn_setAmbientMaterial(self, arg0)
+        return _libBornAgainCore.FTDistribution1DCosine_accept(self, visitor)
 
-    def evaluate(self, wavevectors):
+    def evaluate(self, q):
         r"""
-        evaluate(IFormFactorBorn self, WavevectorInfo wavevectors) -> complex_t
-        complex_t IFormFactorBorn::evaluate(const WavevectorInfo &wavevectors) const override
+        evaluate(FTDistribution1DCosine self, double q) -> double
+        double FTDistribution1DCosine::evaluate(double q) const override final
 
-        Returns scattering amplitude for complex wavevectors ki, kf. 
+        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
 
         """
-        return _libBornAgainCore.IFormFactorBorn_evaluate(self, wavevectors)
+        return _libBornAgainCore.FTDistribution1DCosine_evaluate(self, q)
 
-    def bottomZ(self, rotation):
+    def qSecondDerivative(self):
         r"""
-        bottomZ(IFormFactorBorn self, IRotation rotation) -> double
-        double IFormFactorBorn::bottomZ(const IRotation &rotation) const override
+        qSecondDerivative(FTDistribution1DCosine self) -> double
+        double FTDistribution1DCosine::qSecondDerivative() const override final
 
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        Returns the negative of the second order derivative in q space around q=0. 
 
         """
-        return _libBornAgainCore.IFormFactorBorn_bottomZ(self, rotation)
+        return _libBornAgainCore.FTDistribution1DCosine_qSecondDerivative(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution1DCosine
 
-    def topZ(self, rotation):
-        r"""
-        topZ(IFormFactorBorn self, IRotation rotation) -> double
-        double IFormFactorBorn::topZ(const IRotation &rotation) const override
+# Register FTDistribution1DCosine in _libBornAgainCore:
+_libBornAgainCore.FTDistribution1DCosine_swigregister(FTDistribution1DCosine)
 
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+class FTDistribution1DVoigt(IFTDistribution1D):
+    r"""
 
-        """
-        return _libBornAgainCore.IFormFactorBorn_topZ(self, rotation)
 
-    def evaluate_for_q(self, q):
+    IFTDistribution1D that provides a Fourier transform evaluate(q) in form of a pseudo-Voigt decay function eta*Gauss + (1-eta)*Cauchy, with both components starting at 1 for q=0.
+
+    C++ includes: FTDistributions1D.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, omega, eta):
         r"""
-        evaluate_for_q(IFormFactorBorn self, cvector_t q) -> complex_t
-        virtual complex_t IFormFactorBorn::evaluate_for_q(cvector_t q) const =0
+        __init__(FTDistribution1DVoigt self, double omega, double eta) -> FTDistribution1DVoigt
+        FTDistribution1DVoigt::FTDistribution1DVoigt(double omega, double eta)
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Constructor of one-dimensional pseudo-Voigt probability distribution.
 
-        """
-        return _libBornAgainCore.IFormFactorBorn_evaluate_for_q(self, q)
+        Parameters:
+        -----------
 
-    def canSliceAnalytically(self, rot):
-        r"""canSliceAnalytically(IFormFactorBorn self, IRotation rot) -> bool"""
-        return _libBornAgainCore.IFormFactorBorn_canSliceAnalytically(self, rot)
-    __swig_destroy__ = _libBornAgainCore.delete_IFormFactorBorn
-    def __disown__(self):
-        self.this.disown()
-        _libBornAgainCore.disown_IFormFactorBorn(self)
-        return weakref.proxy(self)
+        omega: 
+        half-width of the distribution in nanometers
 
-    def sliceFormFactor(self, limits, rot, translation):
-        r"""sliceFormFactor(IFormFactorBorn self, ZLimits limits, IRotation rot, kvector_t translation) -> IFormFactor"""
-        return _libBornAgainCore.IFormFactorBorn_sliceFormFactor(self, limits, rot, translation)
+        eta: 
+        parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0) 
 
-# Register IFormFactorBorn in _libBornAgainCore:
-_libBornAgainCore.IFormFactorBorn_swigregister(IFormFactorBorn)
+        """
+        _libBornAgainCore.FTDistribution1DVoigt_swiginit(self, _libBornAgainCore.new_FTDistribution1DVoigt(omega, eta))
 
-class SlicingEffects(object):
-    r"""
+    def clone(self):
+        r"""
+        clone(FTDistribution1DVoigt self) -> FTDistribution1DVoigt
+        FTDistribution1DVoigt * FTDistribution1DVoigt::clone() const override final
 
+        """
+        return _libBornAgainCore.FTDistribution1DVoigt_clone(self)
 
-    Nested structure that holds slicing effects on position and removed parts.
+    def accept(self, visitor):
+        r"""
+        accept(FTDistribution1DVoigt self, INodeVisitor visitor)
+        void FTDistribution1DVoigt::accept(INodeVisitor *visitor) const override final
 
-    C++ includes: IFormFactorBorn.h
+        Calls the  INodeVisitor's visit method. 
 
-    """
+        """
+        return _libBornAgainCore.FTDistribution1DVoigt_accept(self, visitor)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
-    position = property(_libBornAgainCore.SlicingEffects_position_get, _libBornAgainCore.SlicingEffects_position_set, doc=r"""position : kvector_t""")
-    dz_bottom = property(_libBornAgainCore.SlicingEffects_dz_bottom_get, _libBornAgainCore.SlicingEffects_dz_bottom_set, doc=r"""dz_bottom : double""")
-    dz_top = property(_libBornAgainCore.SlicingEffects_dz_top_get, _libBornAgainCore.SlicingEffects_dz_top_set, doc=r"""dz_top : double""")
+    def evaluate(self, q):
+        r"""
+        evaluate(FTDistribution1DVoigt self, double q) -> double
+        double FTDistribution1DVoigt::evaluate(double q) const override final
 
-    def __init__(self):
+        Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. 
+
+        """
+        return _libBornAgainCore.FTDistribution1DVoigt_evaluate(self, q)
+
+    def eta(self):
         r"""
-        __init__(SlicingEffects self) -> SlicingEffects
+        eta(FTDistribution1DVoigt self) -> double
+        double FTDistribution1DVoigt::eta() const
 
+        """
+        return _libBornAgainCore.FTDistribution1DVoigt_eta(self)
 
-        Nested structure that holds slicing effects on position and removed parts.
+    def qSecondDerivative(self):
+        r"""
+        qSecondDerivative(FTDistribution1DVoigt self) -> double
+        double FTDistribution1DVoigt::qSecondDerivative() const override final
 
-        C++ includes: IFormFactorBorn.h
+        Returns the negative of the second order derivative in q space around q=0. 
 
         """
-        _libBornAgainCore.SlicingEffects_swiginit(self, _libBornAgainCore.new_SlicingEffects())
-    __swig_destroy__ = _libBornAgainCore.delete_SlicingEffects
+        return _libBornAgainCore.FTDistribution1DVoigt_qSecondDerivative(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution1DVoigt
 
-# Register SlicingEffects in _libBornAgainCore:
-_libBornAgainCore.SlicingEffects_swigregister(SlicingEffects)
+# Register FTDistribution1DVoigt in _libBornAgainCore:
+_libBornAgainCore.FTDistribution1DVoigt_swigregister(FTDistribution1DVoigt)
 
-class IFormFactorDecorator(IFormFactor):
+class IFTDistribution2D(ICloneable, INode):
     r"""
 
 
-    Encapsulates another formfactor and adds extra functionality (a scalar factor, a position-dependent phase factor, ...).
-
-    This class is designed according to the Decorator Pattern. It inherits from  IFormFactor and has a member of type IFormFactor*.
+    Interface for two-dimensional distributions in Fourier space.
 
-    C++ includes: IFormFactorDecorator.h
+    C++ includes: FTDistributions2D.h
 
     """
 
@@ -8996,502 +8704,474 @@ class IFormFactorDecorator(IFormFactor):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IFormFactorDecorator
 
     def clone(self):
         r"""
-        clone(IFormFactorDecorator self) -> IFormFactorDecorator
-        IFormFactorDecorator* IFormFactorDecorator::clone() const override=0
-
-        Returns a clone of this  ISample object. 
+        clone(IFTDistribution2D self) -> IFTDistribution2D
+        IFTDistribution2D* IFTDistribution2D::clone() const =0
 
         """
-        return _libBornAgainCore.IFormFactorDecorator_clone(self)
+        return _libBornAgainCore.IFTDistribution2D_clone(self)
 
-    def setAmbientMaterial(self, material):
+    def setGamma(self, gamma):
         r"""
-        setAmbientMaterial(IFormFactorDecorator self, Material material)
-        void IFormFactorDecorator::setAmbientMaterial(Material material) override
-
-        Passes the material in which this particle is embedded. 
+        setGamma(IFTDistribution2D self, double gamma)
+        void IFTDistribution2D::setGamma(double gamma)
 
         """
-        return _libBornAgainCore.IFormFactorDecorator_setAmbientMaterial(self, material)
+        return _libBornAgainCore.IFTDistribution2D_setGamma(self, gamma)
 
-    def volume(self):
+    def gamma(self):
         r"""
-        volume(IFormFactorDecorator self) -> double
-        double IFormFactorDecorator::volume() const override
-
-        Returns the total volume of the particle of this form factor's shape. 
+        gamma(IFTDistribution2D self) -> double
+        double IFTDistribution2D::gamma() const
 
         """
-        return _libBornAgainCore.IFormFactorDecorator_volume(self)
+        return _libBornAgainCore.IFTDistribution2D_gamma(self)
 
-    def radialExtension(self):
+    def delta(self):
         r"""
-        radialExtension(IFormFactorDecorator self) -> double
-        double IFormFactorDecorator::radialExtension() const override
-
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        delta(IFTDistribution2D self) -> double
+        double IFTDistribution2D::delta() const
 
         """
-        return _libBornAgainCore.IFormFactorDecorator_radialExtension(self)
+        return _libBornAgainCore.IFTDistribution2D_delta(self)
 
-    def bottomZ(self, rotation):
+    def omegaX(self):
         r"""
-        bottomZ(IFormFactorDecorator self, IRotation rotation) -> double
-        double IFormFactorDecorator::bottomZ(const IRotation &rotation) const override
-
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        omegaX(IFTDistribution2D self) -> double
+        double IFTDistribution2D::omegaX() const
 
         """
-        return _libBornAgainCore.IFormFactorDecorator_bottomZ(self, rotation)
+        return _libBornAgainCore.IFTDistribution2D_omegaX(self)
 
-    def topZ(self, rotation):
+    def omegaY(self):
         r"""
-        topZ(IFormFactorDecorator self, IRotation rotation) -> double
-        double IFormFactorDecorator::topZ(const IRotation &rotation) const override
-
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        omegaY(IFTDistribution2D self) -> double
+        double IFTDistribution2D::omegaY() const
 
         """
-        return _libBornAgainCore.IFormFactorDecorator_topZ(self, rotation)
+        return _libBornAgainCore.IFTDistribution2D_omegaY(self)
 
-    def getFormFactor(self):
+    def evaluate(self, qx, qy):
         r"""
-        getFormFactor(IFormFactorDecorator self) -> IFormFactor
-        const IFormFactor* IFormFactorDecorator::getFormFactor() const
+        evaluate(IFTDistribution2D self, double qx, double qy) -> double
+        virtual double IFTDistribution2D::evaluate(double qx, double qy) const =0
+
+        evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 
 
         """
-        return _libBornAgainCore.IFormFactorDecorator_getFormFactor(self)
+        return _libBornAgainCore.IFTDistribution2D_evaluate(self, qx, qy)
+    __swig_destroy__ = _libBornAgainCore.delete_IFTDistribution2D
 
-# Register IFormFactorDecorator in _libBornAgainCore:
-_libBornAgainCore.IFormFactorDecorator_swigregister(IFormFactorDecorator)
+# Register IFTDistribution2D in _libBornAgainCore:
+_libBornAgainCore.IFTDistribution2D_swigregister(IFTDistribution2D)
 
-class PolygonalTopology(object):
+class FTDistribution2DCauchy(IFTDistribution2D):
     r"""
 
 
-    For internal use in  PolyhedralFace.
+    Two-dimensional Cauchy distribution in Fourier space; corresponds to a normalized exp(-r) in real space, with  $r=\\sqrt{(\\frac{x}{\\omega_x})^2 + (\\frac{y}{\\omega_y})^2}$.
 
-    C++ includes: FormFactorPolyhedron.h
+    C++ includes: FTDistributions2D.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
-    vertexIndices = property(_libBornAgainCore.PolygonalTopology_vertexIndices_get, _libBornAgainCore.PolygonalTopology_vertexIndices_set, doc=r"""vertexIndices : std::vector<(int,std::allocator<(int)>)>""")
-    symmetry_S2 = property(_libBornAgainCore.PolygonalTopology_symmetry_S2_get, _libBornAgainCore.PolygonalTopology_symmetry_S2_set, doc=r"""symmetry_S2 : bool""")
 
-    def __init__(self):
+    def __init__(self, omega_x, omega_y, gamma=0):
         r"""
-        __init__(PolygonalTopology self) -> PolygonalTopology
-
-
-        For internal use in  PolyhedralFace.
-
-        C++ includes: FormFactorPolyhedron.h
+        __init__(FTDistribution2DCauchy self, double omega_x, double omega_y, double gamma=0) -> FTDistribution2DCauchy
+        FTDistribution2DCauchy::FTDistribution2DCauchy(double omega_x, double omega_y, double gamma=0)
 
         """
-        _libBornAgainCore.PolygonalTopology_swiginit(self, _libBornAgainCore.new_PolygonalTopology())
-    __swig_destroy__ = _libBornAgainCore.delete_PolygonalTopology
-
-# Register PolygonalTopology in _libBornAgainCore:
-_libBornAgainCore.PolygonalTopology_swigregister(PolygonalTopology)
-
-class PolyhedralTopology(object):
-    r"""
+        _libBornAgainCore.FTDistribution2DCauchy_swiginit(self, _libBornAgainCore.new_FTDistribution2DCauchy(omega_x, omega_y, gamma))
 
+    def clone(self):
+        r"""
+        clone(FTDistribution2DCauchy self) -> FTDistribution2DCauchy
+        FTDistribution2DCauchy * FTDistribution2DCauchy::clone() const final
 
-    For internal use in  FormFactorPolyhedron.
+        """
+        return _libBornAgainCore.FTDistribution2DCauchy_clone(self)
 
-    C++ includes: FormFactorPolyhedron.h
+    def accept(self, visitor):
+        r"""
+        accept(FTDistribution2DCauchy self, INodeVisitor visitor)
+        void FTDistribution2DCauchy::accept(INodeVisitor *visitor) const final
 
-    """
+        Calls the  INodeVisitor's visit method. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
-    faces = property(_libBornAgainCore.PolyhedralTopology_faces_get, _libBornAgainCore.PolyhedralTopology_faces_set, doc=r"""faces : std::vector<(PolygonalTopology,std::allocator<(PolygonalTopology)>)>""")
-    symmetry_Ci = property(_libBornAgainCore.PolyhedralTopology_symmetry_Ci_get, _libBornAgainCore.PolyhedralTopology_symmetry_Ci_set, doc=r"""symmetry_Ci : bool""")
+        """
+        return _libBornAgainCore.FTDistribution2DCauchy_accept(self, visitor)
 
-    def __init__(self):
+    def evaluate(self, qx, qy):
         r"""
-        __init__(PolyhedralTopology self) -> PolyhedralTopology
-
-
-        For internal use in  FormFactorPolyhedron.
+        evaluate(FTDistribution2DCauchy self, double qx, double qy) -> double
+        double FTDistribution2DCauchy::evaluate(double qx, double qy) const final
 
-        C++ includes: FormFactorPolyhedron.h
+        evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 
 
         """
-        _libBornAgainCore.PolyhedralTopology_swiginit(self, _libBornAgainCore.new_PolyhedralTopology())
-    __swig_destroy__ = _libBornAgainCore.delete_PolyhedralTopology
+        return _libBornAgainCore.FTDistribution2DCauchy_evaluate(self, qx, qy)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution2DCauchy
 
-# Register PolyhedralTopology in _libBornAgainCore:
-_libBornAgainCore.PolyhedralTopology_swigregister(PolyhedralTopology)
+# Register FTDistribution2DCauchy in _libBornAgainCore:
+_libBornAgainCore.FTDistribution2DCauchy_swigregister(FTDistribution2DCauchy)
 
-class PolyhedralEdge(object):
+class FTDistribution2DGauss(IFTDistribution2D):
     r"""
 
 
-    One edge of a polygon, for form factor computation.
+    Two-dimensional Gauss distribution in Fourier space; corresponds to normalized exp(-r^2/2) in real space with  $r=\\sqrt{(\\frac{x}{\\omega_x})^2 + (\\frac{y}{\\omega_y})^2}$.
 
-    C++ includes: FormFactorPolyhedron.h
+    C++ includes: FTDistributions2D.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, _Vlow, _Vhig):
+    def __init__(self, omega_x, omega_y, gamma=0):
         r"""
-        __init__(PolyhedralEdge self, kvector_t _Vlow, kvector_t _Vhig) -> PolyhedralEdge
-        PolyhedralEdge::PolyhedralEdge(const kvector_t _Vlow, const kvector_t _Vhig)
+        __init__(FTDistribution2DGauss self, double omega_x, double omega_y, double gamma=0) -> FTDistribution2DGauss
+        FTDistribution2DGauss::FTDistribution2DGauss(double omega_x, double omega_y, double gamma=0)
 
         """
-        _libBornAgainCore.PolyhedralEdge_swiginit(self, _libBornAgainCore.new_PolyhedralEdge(_Vlow, _Vhig))
+        _libBornAgainCore.FTDistribution2DGauss_swiginit(self, _libBornAgainCore.new_FTDistribution2DGauss(omega_x, omega_y, gamma))
 
-    def E(self):
-        r"""
-        E(PolyhedralEdge self) -> kvector_t
-        kvector_t PolyhedralEdge::E() const
-
-        """
-        return _libBornAgainCore.PolyhedralEdge_E(self)
-
-    def R(self):
+    def clone(self):
         r"""
-        R(PolyhedralEdge self) -> kvector_t
-        kvector_t PolyhedralEdge::R() const
+        clone(FTDistribution2DGauss self) -> FTDistribution2DGauss
+        FTDistribution2DGauss * FTDistribution2DGauss::clone() const final
 
         """
-        return _libBornAgainCore.PolyhedralEdge_R(self)
+        return _libBornAgainCore.FTDistribution2DGauss_clone(self)
 
-    def qE(self, q):
+    def accept(self, visitor):
         r"""
-        qE(PolyhedralEdge self, cvector_t q) -> complex_t
-        complex_t PolyhedralEdge::qE(cvector_t q) const
-
-        """
-        return _libBornAgainCore.PolyhedralEdge_qE(self, q)
+        accept(FTDistribution2DGauss self, INodeVisitor visitor)
+        void FTDistribution2DGauss::accept(INodeVisitor *visitor) const final
 
-    def qR(self, q):
-        r"""
-        qR(PolyhedralEdge self, cvector_t q) -> complex_t
-        complex_t PolyhedralEdge::qR(cvector_t q) const
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.PolyhedralEdge_qR(self, q)
+        return _libBornAgainCore.FTDistribution2DGauss_accept(self, visitor)
 
-    def contrib(self, m, qpa, qrperp):
+    def evaluate(self, qx, qy):
         r"""
-        contrib(PolyhedralEdge self, int m, cvector_t qpa, complex_t qrperp) -> complex_t
-        complex_t PolyhedralEdge::contrib(int m, cvector_t qpa, complex_t qrperp) const
+        evaluate(FTDistribution2DGauss self, double qx, double qy) -> double
+        double FTDistribution2DGauss::evaluate(double qx, double qy) const final
 
-        Returns sum_l=0^M/2 u^2l v^(M-2l) / (2l+1)!(M-2l)! - vperp^M/M! 
+        evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 
 
         """
-        return _libBornAgainCore.PolyhedralEdge_contrib(self, m, qpa, qrperp)
-    __swig_destroy__ = _libBornAgainCore.delete_PolyhedralEdge
+        return _libBornAgainCore.FTDistribution2DGauss_evaluate(self, qx, qy)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution2DGauss
 
-# Register PolyhedralEdge in _libBornAgainCore:
-_libBornAgainCore.PolyhedralEdge_swigregister(PolyhedralEdge)
+# Register FTDistribution2DGauss in _libBornAgainCore:
+_libBornAgainCore.FTDistribution2DGauss_swigregister(FTDistribution2DGauss)
 
-class PolyhedralFace(object):
+class FTDistribution2DGate(IFTDistribution2D):
     r"""
 
 
-    A polygon, for form factor computation.
+    Two-dimensional gate distribution in Fourier space; corresponds to normalized constant if r<1 (and 0 otherwise) in real space, with  $r=\\sqrt{(\\frac{x}{\\omega_x})^2 + (\\frac{y}{\\omega_y})^2}$.
 
-    C++ includes: FormFactorPolyhedron.h
+    C++ includes: FTDistributions2D.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    @staticmethod
-    def diameter(V):
-        r"""diameter(vector_kvector_t V) -> double"""
-        return _libBornAgainCore.PolyhedralFace_diameter(V)
-
-    def __init__(self, *args):
+    def __init__(self, omega_x, omega_y, gamma=0):
         r"""
-        __init__(PolyhedralFace self, vector_kvector_t _V=std::vector< kvector_t >(), bool _sym_S2=False) -> PolyhedralFace
-        PolyhedralFace::PolyhedralFace(const std::vector< kvector_t > &_V=std::vector< kvector_t >(), bool _sym_S2=false)
-
-        Sets internal variables for given vertex chain.
-
-        Parameters:
-        -----------
-
-        V: 
-        oriented vertex list
-
-        _sym_S2: 
-        true if face has a perpedicular two-fold symmetry axis 
+        __init__(FTDistribution2DGate self, double omega_x, double omega_y, double gamma=0) -> FTDistribution2DGate
+        FTDistribution2DGate::FTDistribution2DGate(double omega_x, double omega_y, double gamma=0)
 
         """
-        _libBornAgainCore.PolyhedralFace_swiginit(self, _libBornAgainCore.new_PolyhedralFace(*args))
+        _libBornAgainCore.FTDistribution2DGate_swiginit(self, _libBornAgainCore.new_FTDistribution2DGate(omega_x, omega_y, gamma))
 
-    def area(self):
+    def clone(self):
         r"""
-        area(PolyhedralFace self) -> double
-        double PolyhedralFace::area() const
+        clone(FTDistribution2DGate self) -> FTDistribution2DGate
+        FTDistribution2DGate * FTDistribution2DGate::clone() const final
 
         """
-        return _libBornAgainCore.PolyhedralFace_area(self)
+        return _libBornAgainCore.FTDistribution2DGate_clone(self)
 
-    def pyramidalVolume(self):
+    def accept(self, visitor):
         r"""
-        pyramidalVolume(PolyhedralFace self) -> double
-        double PolyhedralFace::pyramidalVolume() const
+        accept(FTDistribution2DGate self, INodeVisitor visitor)
+        void FTDistribution2DGate::accept(INodeVisitor *visitor) const final
+
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.PolyhedralFace_pyramidalVolume(self)
+        return _libBornAgainCore.FTDistribution2DGate_accept(self, visitor)
 
-    def radius3d(self):
+    def evaluate(self, qx, qy):
         r"""
-        radius3d(PolyhedralFace self) -> double
-        double PolyhedralFace::radius3d() const
+        evaluate(FTDistribution2DGate self, double qx, double qy) -> double
+        double FTDistribution2DGate::evaluate(double qx, double qy) const final
+
+        evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 
 
         """
-        return _libBornAgainCore.PolyhedralFace_radius3d(self)
+        return _libBornAgainCore.FTDistribution2DGate_evaluate(self, qx, qy)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution2DGate
 
-    def normalProjectionConj(self, q):
-        r"""
-        normalProjectionConj(PolyhedralFace self, cvector_t q) -> complex_t
-        complex_t PolyhedralFace::normalProjectionConj(cvector_t q) const
+# Register FTDistribution2DGate in _libBornAgainCore:
+_libBornAgainCore.FTDistribution2DGate_swigregister(FTDistribution2DGate)
 
-        Returns conj(q)*normal [ BasicVector3D::dot is antilinear in 'this' argument]. 
+class FTDistribution2DCone(IFTDistribution2D):
+    r"""
 
-        """
-        return _libBornAgainCore.PolyhedralFace_normalProjectionConj(self, q)
 
-    def ff_n(self, m, q):
-        r"""
-        ff_n(PolyhedralFace self, int m, cvector_t q) -> complex_t
-        complex_t PolyhedralFace::ff_n(int m, cvector_t q) const
+    Two-dimensional cone distribution in Fourier space; corresponds to 1-r if r<1 (and 0 otherwise) in real space with  $r=\\sqrt{(\\frac{x}{\\omega_x})^2 + (\\frac{y}{\\omega_y})^2}$.
 
-        Returns contribution qn*f_n [of order q^(n+1)] from this face to the polyhedral form factor. 
+    C++ includes: FTDistributions2D.h
 
-        """
-        return _libBornAgainCore.PolyhedralFace_ff_n(self, m, q)
+    """
 
-    def ff(self, q, sym_Ci):
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, omega_x, omega_y, gamma=0):
         r"""
-        ff(PolyhedralFace self, cvector_t q, bool sym_Ci) -> complex_t
-        complex_t PolyhedralFace::ff(cvector_t q, bool sym_Ci) const
+        __init__(FTDistribution2DCone self, double omega_x, double omega_y, double gamma=0) -> FTDistribution2DCone
+        FTDistribution2DCone::FTDistribution2DCone(double omega_x, double omega_y, double gamma=0)
 
-        Returns the contribution ff(q) of this face to the polyhedral form factor. 
+        """
+        _libBornAgainCore.FTDistribution2DCone_swiginit(self, _libBornAgainCore.new_FTDistribution2DCone(omega_x, omega_y, gamma))
+
+    def clone(self):
+        r"""
+        clone(FTDistribution2DCone self) -> FTDistribution2DCone
+        FTDistribution2DCone * FTDistribution2DCone::clone() const final
 
         """
-        return _libBornAgainCore.PolyhedralFace_ff(self, q, sym_Ci)
+        return _libBornAgainCore.FTDistribution2DCone_clone(self)
 
-    def ff_2D(self, qpa):
+    def accept(self, visitor):
         r"""
-        ff_2D(PolyhedralFace self, cvector_t qpa) -> complex_t
-        complex_t PolyhedralFace::ff_2D(cvector_t qpa) const
+        accept(FTDistribution2DCone self, INodeVisitor visitor)
+        void FTDistribution2DCone::accept(INodeVisitor *visitor) const final
 
-        Returns the two-dimensional form factor of this face, for use in a prism. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.PolyhedralFace_ff_2D(self, qpa)
+        return _libBornAgainCore.FTDistribution2DCone_accept(self, visitor)
 
-    def assert_Ci(self, other):
+    def evaluate(self, qx, qy):
         r"""
-        assert_Ci(PolyhedralFace self, PolyhedralFace other)
-        void PolyhedralFace::assert_Ci(const PolyhedralFace &other) const
+        evaluate(FTDistribution2DCone self, double qx, double qy) -> double
+        double FTDistribution2DCone::evaluate(double qx, double qy) const final
 
-        Throws if deviation from inversion symmetry is detected. Does not check vertices. 
+        evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 
 
         """
-        return _libBornAgainCore.PolyhedralFace_assert_Ci(self, other)
-    __swig_destroy__ = _libBornAgainCore.delete_PolyhedralFace
-
-# Register PolyhedralFace in _libBornAgainCore:
-_libBornAgainCore.PolyhedralFace_swigregister(PolyhedralFace)
+        return _libBornAgainCore.FTDistribution2DCone_evaluate(self, qx, qy)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution2DCone
 
-def PolyhedralFace_diameter(V):
-    r"""PolyhedralFace_diameter(vector_kvector_t V) -> double"""
-    return _libBornAgainCore.PolyhedralFace_diameter(V)
+# Register FTDistribution2DCone in _libBornAgainCore:
+_libBornAgainCore.FTDistribution2DCone_swigregister(FTDistribution2DCone)
 
-class FormFactorPolyhedron(IFormFactorBorn):
+class FTDistribution2DVoigt(IFTDistribution2D):
     r"""
 
 
-    A polyhedron, for form factor computation.
+    Two-dimensional Voigt distribution in Fourier space; corresponds to eta*Gauss + (1-eta)*Cauchy
 
-    C++ includes: FormFactorPolyhedron.h
+    C++ includes: FTDistributions2D.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
 
-    def bottomZ(self, rotation):
+    def __init__(self, omega_x, omega_y, eta, gamma=0):
         r"""
-        bottomZ(FormFactorPolyhedron self, IRotation rotation) -> double
-        double FormFactorPolyhedron::bottomZ(const IRotation &rotation) const override final
-
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        __init__(FTDistribution2DVoigt self, double omega_x, double omega_y, double eta, double gamma=0) -> FTDistribution2DVoigt
+        FTDistribution2DVoigt::FTDistribution2DVoigt(double omega_x, double omega_y, double eta, double gamma=0)
 
-        """
-        return _libBornAgainCore.FormFactorPolyhedron_bottomZ(self, rotation)
+        Constructor of two-dimensional pseudo-Voigt probability distribution.
 
-    def topZ(self, rotation):
-        r"""
-        topZ(FormFactorPolyhedron self, IRotation rotation) -> double
-        double FormFactorPolyhedron::topZ(const IRotation &rotation) const override final
+        Parameters:
+        -----------
 
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        omega_x: 
+        half-width of the distribution along its x-axis in nanometers
 
-        """
-        return _libBornAgainCore.FormFactorPolyhedron_topZ(self, rotation)
+        omega_y: 
+        half-width of the distribution along its y-axis in nanometers
 
-    def evaluate_for_q(self, q):
-        r"""
-        evaluate_for_q(FormFactorPolyhedron self, cvector_t q) -> complex_t
-        complex_t FormFactorPolyhedron::evaluate_for_q(cvector_t q) const override final
+        eta: 
+        parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0)
 
-        Returns the form factor F(q) of this polyhedron, respecting the offset z_bottom. 
+        gamma: 
+        angle in direct space between first lattice vector and x-axis of the distribution in radians 
 
         """
-        return _libBornAgainCore.FormFactorPolyhedron_evaluate_for_q(self, q)
+        _libBornAgainCore.FTDistribution2DVoigt_swiginit(self, _libBornAgainCore.new_FTDistribution2DVoigt(omega_x, omega_y, eta, gamma))
 
-    def evaluate_centered(self, q):
+    def clone(self):
         r"""
-        evaluate_centered(FormFactorPolyhedron self, cvector_t q) -> complex_t
-        complex_t FormFactorPolyhedron::evaluate_centered(cvector_t q) const
-
-        Returns the form factor F(q) of this polyhedron, with origin at z=0. 
+        clone(FTDistribution2DVoigt self) -> FTDistribution2DVoigt
+        FTDistribution2DVoigt * FTDistribution2DVoigt::clone() const final
 
         """
-        return _libBornAgainCore.FormFactorPolyhedron_evaluate_centered(self, q)
+        return _libBornAgainCore.FTDistribution2DVoigt_clone(self)
 
-    def volume(self):
+    def accept(self, visitor):
         r"""
-        volume(FormFactorPolyhedron self) -> double
-        double FormFactorPolyhedron::volume() const override final
+        accept(FTDistribution2DVoigt self, INodeVisitor visitor)
+        void FTDistribution2DVoigt::accept(INodeVisitor *visitor) const final
 
-        Returns the total volume of the particle of this form factor's shape. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorPolyhedron_volume(self)
+        return _libBornAgainCore.FTDistribution2DVoigt_accept(self, visitor)
 
-    def radialExtension(self):
+    def evaluate(self, qx, qy):
         r"""
-        radialExtension(FormFactorPolyhedron self) -> double
-        double FormFactorPolyhedron::radialExtension() const override final
+        evaluate(FTDistribution2DVoigt self, double qx, double qy) -> double
+        double FTDistribution2DVoigt::evaluate(double qx, double qy) const final
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 
 
         """
-        return _libBornAgainCore.FormFactorPolyhedron_radialExtension(self)
+        return _libBornAgainCore.FTDistribution2DVoigt_evaluate(self, qx, qy)
 
-    def assert_platonic(self):
+    def eta(self):
         r"""
-        assert_platonic(FormFactorPolyhedron self)
-        void FormFactorPolyhedron::assert_platonic() const
-
-        Assertions for Platonic solid. 
+        eta(FTDistribution2DVoigt self) -> double
+        double FTDistribution2DVoigt::eta() const
 
         """
-        return _libBornAgainCore.FormFactorPolyhedron_assert_platonic(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorPolyhedron
+        return _libBornAgainCore.FTDistribution2DVoigt_eta(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FTDistribution2DVoigt
 
-# Register FormFactorPolyhedron in _libBornAgainCore:
-_libBornAgainCore.FormFactorPolyhedron_swigregister(FormFactorPolyhedron)
+# Register FTDistribution2DVoigt in _libBornAgainCore:
+_libBornAgainCore.FTDistribution2DVoigt_swigregister(FTDistribution2DVoigt)
 
-class FormFactorPolygonalPrism(IFormFactorBorn):
+class IInterferenceFunction(ISample):
     r"""
 
 
-    A prism with a polygonal base, for form factor computation.
+    Pure virtual base class of interference functions.
 
-    C++ includes: FormFactorPolyhedron.h
+    C++ includes: IInterferenceFunction.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
 
-    def bottomZ(self, rotation):
+    def __init__(self, *args):
         r"""
-        bottomZ(FormFactorPolygonalPrism self, IRotation rotation) -> double
-        double FormFactorPolygonalPrism::bottomZ(const IRotation &rotation) const override final
+        __init__(IInterferenceFunction self) -> IInterferenceFunction
+        __init__(IInterferenceFunction self, IInterferenceFunction other) -> IInterferenceFunction
+        IInterferenceFunction::IInterferenceFunction(const IInterferenceFunction &other)
 
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        """
+        if self.__class__ == IInterferenceFunction:
+            _self = None
+        else:
+            _self = self
+        _libBornAgainCore.IInterferenceFunction_swiginit(self, _libBornAgainCore.new_IInterferenceFunction(_self, *args))
+    __swig_destroy__ = _libBornAgainCore.delete_IInterferenceFunction
+
+    def clone(self):
+        r"""
+        clone(IInterferenceFunction self) -> IInterferenceFunction
+        virtual IInterferenceFunction* IInterferenceFunction::clone() const =0
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorPolygonalPrism_bottomZ(self, rotation)
+        return _libBornAgainCore.IInterferenceFunction_clone(self)
 
-    def topZ(self, rotation):
+    def evaluate(self, q, outer_iff=1.0):
         r"""
-        topZ(FormFactorPolygonalPrism self, IRotation rotation) -> double
-        double FormFactorPolygonalPrism::topZ(const IRotation &rotation) const override final
+        evaluate(IInterferenceFunction self, kvector_t q, double outer_iff=1.0) -> double
+        double IInterferenceFunction::evaluate(const kvector_t q, double outer_iff=1.0) const
 
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        Evaluates the interference function for a given wavevector transfer. 
 
         """
-        return _libBornAgainCore.FormFactorPolygonalPrism_topZ(self, rotation)
+        return _libBornAgainCore.IInterferenceFunction_evaluate(self, q, outer_iff)
 
-    def evaluate_for_q(self, q):
+    def setPositionVariance(self, var):
         r"""
-        evaluate_for_q(FormFactorPolygonalPrism self, cvector_t q) -> complex_t
-        complex_t FormFactorPolygonalPrism::evaluate_for_q(cvector_t q) const override
+        setPositionVariance(IInterferenceFunction self, double var)
+        void IInterferenceFunction::setPositionVariance(double var)
 
-        Returns the form factor F(q) of this polyhedron, respecting the offset height/2. 
+        Sets the variance of the position for the calculation of the DW factor It is defined as the variance in each relevant dimension 
 
         """
-        return _libBornAgainCore.FormFactorPolygonalPrism_evaluate_for_q(self, q)
+        return _libBornAgainCore.IInterferenceFunction_setPositionVariance(self, var)
 
-    def volume(self):
+    def positionVariance(self):
         r"""
-        volume(FormFactorPolygonalPrism self) -> double
-        double FormFactorPolygonalPrism::volume() const override
+        positionVariance(IInterferenceFunction self) -> double
+        double IInterferenceFunction::positionVariance() const
 
-        Returns the volume of this prism. 
+        Returns the position variance. 
 
         """
-        return _libBornAgainCore.FormFactorPolygonalPrism_volume(self)
+        return _libBornAgainCore.IInterferenceFunction_positionVariance(self)
 
-    def getHeight(self):
+    def getParticleDensity(self):
         r"""
-        getHeight(FormFactorPolygonalPrism self) -> double
-        double FormFactorPolygonalPrism::getHeight() const
+        getParticleDensity(IInterferenceFunction self) -> double
+        virtual double IInterferenceFunction::getParticleDensity() const
+
+        If defined by this interference function's parameters, returns the particle density (per area). Otherwise, returns zero or a user-defined value 
 
         """
-        return _libBornAgainCore.FormFactorPolygonalPrism_getHeight(self)
+        return _libBornAgainCore.IInterferenceFunction_getParticleDensity(self)
 
-    def radialExtension(self):
+    def supportsMultilayer(self):
         r"""
-        radialExtension(FormFactorPolygonalPrism self) -> double
-        virtual double FormFactorPolygonalPrism::radialExtension() const override
+        supportsMultilayer(IInterferenceFunction self) -> bool
+        virtual bool IInterferenceFunction::supportsMultilayer() const
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Indicates if this interference function can be used with a multilayer (DWBA mode) 
 
         """
-        return _libBornAgainCore.FormFactorPolygonalPrism_radialExtension(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorPolygonalPrism
+        return _libBornAgainCore.IInterferenceFunction_supportsMultilayer(self)
 
-# Register FormFactorPolygonalPrism in _libBornAgainCore:
-_libBornAgainCore.FormFactorPolygonalPrism_swigregister(FormFactorPolygonalPrism)
+    def DWfactor(self, q):
+        r"""
+        DWfactor(IInterferenceFunction self, kvector_t q) -> double
+        double IInterferenceFunction::DWfactor(kvector_t q) const
 
-class FormFactorPolygonalSurface(IFormFactorBorn):
+        Evaluates the Debye-Waller factor for a given wavevector transfer. 
+
+        """
+        return _libBornAgainCore.IInterferenceFunction_DWfactor(self, q)
+
+    def iff_without_dw(self, q):
+        r"""iff_without_dw(IInterferenceFunction self, kvector_t q) -> double"""
+        return _libBornAgainCore.IInterferenceFunction_iff_without_dw(self, q)
+    def __disown__(self):
+        self.this.disown()
+        _libBornAgainCore.disown_IInterferenceFunction(self)
+        return weakref.proxy(self)
+
+# Register IInterferenceFunction in _libBornAgainCore:
+_libBornAgainCore.IInterferenceFunction_swigregister(IInterferenceFunction)
+
+class ILayout(ISample):
     r"""
 
 
-    A polygonal surface, for testing form factor computations.
+    Pure virtual interface class to equip a sample layer with scattering properties. Currently only inherited by  ParticleLayout; in the future also by domain structure.
 
-    C++ includes: FormFactorPolyhedron.h
+    C++ includes: ILayout.h
 
     """
 
@@ -9500,112 +9180,108 @@ class FormFactorPolygonalSurface(IFormFactorBorn):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_ILayout
 
-    def evaluate_for_q(self, q):
+    def clone(self):
         r"""
-        evaluate_for_q(FormFactorPolygonalSurface self, cvector_t q) -> complex_t
-        complex_t FormFactorPolygonalSurface::evaluate_for_q(cvector_t q) const override final
+        clone(ILayout self) -> ILayout
+        virtual ILayout* ILayout::clone() const =0
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorPolygonalSurface_evaluate_for_q(self, q)
+        return _libBornAgainCore.ILayout_clone(self)
 
-    def volume(self):
+    def accept(self, visitor):
         r"""
-        volume(FormFactorPolygonalSurface self) -> double
-        double FormFactorPolygonalSurface::volume() const override
+        accept(ILayout self, INodeVisitor visitor)
+        virtual void ILayout::accept(INodeVisitor *visitor) const =0
 
-        Returns the total volume of the particle of this form factor's shape. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorPolygonalSurface_volume(self)
+        return _libBornAgainCore.ILayout_accept(self, visitor)
 
-    def radialExtension(self):
+    def particles(self):
         r"""
-        radialExtension(FormFactorPolygonalSurface self) -> double
-        double FormFactorPolygonalSurface::radialExtension() const override final
+        particles(ILayout self) -> SafePointerVector< IParticle >
+        virtual SafePointerVector<IParticle> ILayout::particles() const =0
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Returns information on all particles (type and abundance) and generates new particles if an  IAbstractParticle denotes a collection 
 
         """
-        return _libBornAgainCore.FormFactorPolygonalSurface_radialExtension(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorPolygonalSurface
-
-# Register FormFactorPolygonalSurface in _libBornAgainCore:
-_libBornAgainCore.FormFactorPolygonalSurface_swigregister(FormFactorPolygonalSurface)
-
-class ProfileBar(IFormFactorBorn):
-    r"""
-
-
-    Base class for form factors with a cosine ripple profile in the yz plane.
-
-    C++ includes: ProfileBar.h
+        return _libBornAgainCore.ILayout_particles(self)
 
-    """
+    def interferenceFunction(self):
+        r"""
+        interferenceFunction(ILayout self) -> IInterferenceFunction
+        virtual const IInterferenceFunction* ILayout::interferenceFunction() const =0
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+        Returns the interference function. 
 
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.ILayout_interferenceFunction(self)
 
-    def getLength(self):
+    def getTotalAbundance(self):
         r"""
-        getLength(ProfileBar self) -> double
-        double ProfileBar::getLength() const
+        getTotalAbundance(ILayout self) -> double
+        virtual double ILayout::getTotalAbundance() const =0
+
+        Get total abundance of all particles. 
 
         """
-        return _libBornAgainCore.ProfileBar_getLength(self)
+        return _libBornAgainCore.ILayout_getTotalAbundance(self)
 
-    def getHeight(self):
+    def totalParticleSurfaceDensity(self):
         r"""
-        getHeight(ProfileBar self) -> double
-        double ProfileBar::getHeight() const
+        totalParticleSurfaceDensity(ILayout self) -> double
+        virtual double ILayout::totalParticleSurfaceDensity() const =0
+
+        Returns surface density of all particles. 
 
         """
-        return _libBornAgainCore.ProfileBar_getHeight(self)
+        return _libBornAgainCore.ILayout_totalParticleSurfaceDensity(self)
 
-    def getWidth(self):
+    def setTotalParticleSurfaceDensity(self, particle_density):
         r"""
-        getWidth(ProfileBar self) -> double
-        double ProfileBar::getWidth() const
+        setTotalParticleSurfaceDensity(ILayout self, double particle_density)
+        virtual void ILayout::setTotalParticleSurfaceDensity(double particle_density)=0
+
+        Sets surface density of all particles. 
 
         """
-        return _libBornAgainCore.ProfileBar_getWidth(self)
+        return _libBornAgainCore.ILayout_setTotalParticleSurfaceDensity(self, particle_density)
 
-    def radialExtension(self):
+    def weight(self):
         r"""
-        radialExtension(ProfileBar self) -> double
-        double ProfileBar::radialExtension() const override final
+        weight(ILayout self) -> double
+        double ILayout::weight() const
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Returns the relative weight of this layout. 
 
         """
-        return _libBornAgainCore.ProfileBar_radialExtension(self)
+        return _libBornAgainCore.ILayout_weight(self)
 
-    def evaluate_for_q(self, q):
+    def setWeight(self, weight):
         r"""
-        evaluate_for_q(ProfileBar self, cvector_t q) -> complex_t
-        complex_t ProfileBar::evaluate_for_q(cvector_t q) const override final
+        setWeight(ILayout self, double weight)
+        void ILayout::setWeight(double weight)
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Sets the relative weight of this layout. 
 
         """
-        return _libBornAgainCore.ProfileBar_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_ProfileBar
+        return _libBornAgainCore.ILayout_setWeight(self, weight)
 
-# Register ProfileBar in _libBornAgainCore:
-_libBornAgainCore.ProfileBar_swigregister(ProfileBar)
+# Register ILayout in _libBornAgainCore:
+_libBornAgainCore.ILayout_swigregister(ILayout)
 
-class ProfileRipple1(IFormFactorBorn):
+class IPeakShape(ISample):
     r"""
 
 
-    Base class for form factors with a cosine ripple profile in the yz plane.
+    Pure virtual interface class that defines the peak shape of a Bragg peak.
 
-    C++ includes: ProfileRipple1.h
+    C++ includes: IPeakShape.h
 
     """
 
@@ -9614,1889 +9290,1883 @@ class ProfileRipple1(IFormFactorBorn):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IPeakShape
 
-    def getLength(self):
+    def clone(self):
         r"""
-        getLength(ProfileRipple1 self) -> double
-        double ProfileRipple1::getLength() const
+        clone(IPeakShape self) -> IPeakShape
+        virtual IPeakShape* IPeakShape::clone() const =0
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.ProfileRipple1_getLength(self)
+        return _libBornAgainCore.IPeakShape_clone(self)
 
-    def getHeight(self):
+    def evaluate(self, q, q_lattice_point):
         r"""
-        getHeight(ProfileRipple1 self) -> double
-        double ProfileRipple1::getHeight() const
+        evaluate(IPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
+        virtual double IPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const =0
 
-        """
-        return _libBornAgainCore.ProfileRipple1_getHeight(self)
-
-    def getWidth(self):
-        r"""
-        getWidth(ProfileRipple1 self) -> double
-        double ProfileRipple1::getWidth() const
-
-        """
-        return _libBornAgainCore.ProfileRipple1_getWidth(self)
-
-    def radialExtension(self):
-        r"""
-        radialExtension(ProfileRipple1 self) -> double
-        double ProfileRipple1::radialExtension() const override final
-
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
 
         """
-        return _libBornAgainCore.ProfileRipple1_radialExtension(self)
+        return _libBornAgainCore.IPeakShape_evaluate(self, q, q_lattice_point)
 
-    def evaluate_for_q(self, q):
+    def angularDisorder(self):
         r"""
-        evaluate_for_q(ProfileRipple1 self, cvector_t q) -> complex_t
-        complex_t ProfileRipple1::evaluate_for_q(cvector_t q) const override final
+        angularDisorder(IPeakShape self) -> bool
+        virtual bool IPeakShape::angularDisorder() const
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed 
 
         """
-        return _libBornAgainCore.ProfileRipple1_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_ProfileRipple1
+        return _libBornAgainCore.IPeakShape_angularDisorder(self)
 
-# Register ProfileRipple1 in _libBornAgainCore:
-_libBornAgainCore.ProfileRipple1_swigregister(ProfileRipple1)
+# Register IPeakShape in _libBornAgainCore:
+_libBornAgainCore.IPeakShape_swigregister(IPeakShape)
 
-class ProfileRipple2(IFormFactorBorn):
+class IsotropicGaussPeakShape(IPeakShape):
     r"""
 
 
-    Base class for form factors with a cosine ripple profile in the yz plane.
+    Class that implements an isotropic Gaussian peak shape of a Bragg peak.
 
-    C++ includes: ProfileRipple2.h
+    C++ includes: IPeakShape.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
 
-    def getLength(self):
-        r"""
-        getLength(ProfileRipple2 self) -> double
-        double ProfileRipple2::getLength() const
-
-        """
-        return _libBornAgainCore.ProfileRipple2_getLength(self)
-
-    def getHeight(self):
+    def __init__(self, max_intensity, domainsize):
         r"""
-        getHeight(ProfileRipple2 self) -> double
-        double ProfileRipple2::getHeight() const
+        __init__(IsotropicGaussPeakShape self, double max_intensity, double domainsize) -> IsotropicGaussPeakShape
+        IsotropicGaussPeakShape::IsotropicGaussPeakShape(double max_intensity, double domainsize)
 
         """
-        return _libBornAgainCore.ProfileRipple2_getHeight(self)
+        _libBornAgainCore.IsotropicGaussPeakShape_swiginit(self, _libBornAgainCore.new_IsotropicGaussPeakShape(max_intensity, domainsize))
+    __swig_destroy__ = _libBornAgainCore.delete_IsotropicGaussPeakShape
 
-    def getWidth(self):
+    def clone(self):
         r"""
-        getWidth(ProfileRipple2 self) -> double
-        double ProfileRipple2::getWidth() const
-
-        """
-        return _libBornAgainCore.ProfileRipple2_getWidth(self)
+        clone(IsotropicGaussPeakShape self) -> IsotropicGaussPeakShape
+        IsotropicGaussPeakShape * IsotropicGaussPeakShape::clone() const override
 
-    def getAsymmetry(self):
-        r"""
-        getAsymmetry(ProfileRipple2 self) -> double
-        double ProfileRipple2::getAsymmetry() const
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.ProfileRipple2_getAsymmetry(self)
+        return _libBornAgainCore.IsotropicGaussPeakShape_clone(self)
 
-    def radialExtension(self):
+    def accept(self, visitor):
         r"""
-        radialExtension(ProfileRipple2 self) -> double
-        double ProfileRipple2::radialExtension() const override final
+        accept(IsotropicGaussPeakShape self, INodeVisitor visitor)
+        void IsotropicGaussPeakShape::accept(INodeVisitor *visitor) const override
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.ProfileRipple2_radialExtension(self)
+        return _libBornAgainCore.IsotropicGaussPeakShape_accept(self, visitor)
 
-    def evaluate_for_q(self, q):
+    def evaluate(self, q, q_lattice_point):
         r"""
-        evaluate_for_q(ProfileRipple2 self, cvector_t q) -> complex_t
-        complex_t ProfileRipple2::evaluate_for_q(cvector_t q) const override final
+        evaluate(IsotropicGaussPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
+        double IsotropicGaussPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
 
         """
-        return _libBornAgainCore.ProfileRipple2_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_ProfileRipple2
-
-# Register ProfileRipple2 in _libBornAgainCore:
-_libBornAgainCore.ProfileRipple2_swigregister(ProfileRipple2)
-
-
-def factor_x_box(q, l):
-    r"""
-    factor_x_box(complex_t q, double l) -> complex_t
-    complex_t ripples::factor_x_box(complex_t q, double l)
-
-    """
-    return _libBornAgainCore.factor_x_box(q, l)
-
-def factor_x_Gauss(q, l):
-    r"""
-    factor_x_Gauss(complex_t q, double l) -> complex_t
-    complex_t ripples::factor_x_Gauss(complex_t q, double l)
-
-    """
-    return _libBornAgainCore.factor_x_Gauss(q, l)
+        return _libBornAgainCore.IsotropicGaussPeakShape_evaluate(self, q, q_lattice_point)
 
-def factor_x_Lorentz(q, l):
-    r"""
-    factor_x_Lorentz(complex_t q, double l) -> complex_t
-    complex_t ripples::factor_x_Lorentz(complex_t q, double l)
+# Register IsotropicGaussPeakShape in _libBornAgainCore:
+_libBornAgainCore.IsotropicGaussPeakShape_swigregister(IsotropicGaussPeakShape)
 
-    """
-    return _libBornAgainCore.factor_x_Lorentz(q, l)
-class FormFactorAnisoPyramid(FormFactorPolyhedron):
+class IsotropicLorentzPeakShape(IPeakShape):
     r"""
 
 
-    A frustum (truncated pyramid) with rectangular base.
+    Class that implements an isotropic Lorentzian peak shape of a Bragg peak.
 
-    C++ includes: FormFactorAnisoPyramid.h
+    C++ includes: IPeakShape.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, length, width, height, alpha):
+    def __init__(self, max_intensity, domainsize):
         r"""
-        __init__(FormFactorAnisoPyramid self, double length, double width, double height, double alpha) -> FormFactorAnisoPyramid
-        FormFactorAnisoPyramid::FormFactorAnisoPyramid(double length, double width, double height, double alpha)
-
-        Constructor of a truncated pyramid with a rectangular base.
-
-        Parameters:
-        -----------
-
-        length: 
-        length of the rectangular base in nm
-
-        width: 
-        width of the rectangular base in nm
-
-        height: 
-        height of pyramid in nm
-
-        alpha: 
-        dihedral angle in radians between base and facet 
+        __init__(IsotropicLorentzPeakShape self, double max_intensity, double domainsize) -> IsotropicLorentzPeakShape
+        IsotropicLorentzPeakShape::IsotropicLorentzPeakShape(double max_intensity, double domainsize)
 
         """
-        _libBornAgainCore.FormFactorAnisoPyramid_swiginit(self, _libBornAgainCore.new_FormFactorAnisoPyramid(length, width, height, alpha))
+        _libBornAgainCore.IsotropicLorentzPeakShape_swiginit(self, _libBornAgainCore.new_IsotropicLorentzPeakShape(max_intensity, domainsize))
+    __swig_destroy__ = _libBornAgainCore.delete_IsotropicLorentzPeakShape
 
     def clone(self):
         r"""
-        clone(FormFactorAnisoPyramid self) -> FormFactorAnisoPyramid
-        FormFactorAnisoPyramid* FormFactorAnisoPyramid::clone() const override final
+        clone(IsotropicLorentzPeakShape self) -> IsotropicLorentzPeakShape
+        IsotropicLorentzPeakShape * IsotropicLorentzPeakShape::clone() const override
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorAnisoPyramid_clone(self)
+        return _libBornAgainCore.IsotropicLorentzPeakShape_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorAnisoPyramid self, INodeVisitor visitor)
-        void FormFactorAnisoPyramid::accept(INodeVisitor *visitor) const override final
+        accept(IsotropicLorentzPeakShape self, INodeVisitor visitor)
+        void IsotropicLorentzPeakShape::accept(INodeVisitor *visitor) const override
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorAnisoPyramid_accept(self, visitor)
-
-    def getLength(self):
-        r"""
-        getLength(FormFactorAnisoPyramid self) -> double
-        double FormFactorAnisoPyramid::getLength() const
-
-        """
-        return _libBornAgainCore.FormFactorAnisoPyramid_getLength(self)
-
-    def getWidth(self):
-        r"""
-        getWidth(FormFactorAnisoPyramid self) -> double
-        double FormFactorAnisoPyramid::getWidth() const
-
-        """
-        return _libBornAgainCore.FormFactorAnisoPyramid_getWidth(self)
+        return _libBornAgainCore.IsotropicLorentzPeakShape_accept(self, visitor)
 
-    def getHeight(self):
+    def evaluate(self, q, q_lattice_point):
         r"""
-        getHeight(FormFactorAnisoPyramid self) -> double
-        double FormFactorAnisoPyramid::getHeight() const
-
-        """
-        return _libBornAgainCore.FormFactorAnisoPyramid_getHeight(self)
+        evaluate(IsotropicLorentzPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
+        double IsotropicLorentzPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override
 
-    def getAlpha(self):
-        r"""
-        getAlpha(FormFactorAnisoPyramid self) -> double
-        double FormFactorAnisoPyramid::getAlpha() const
+        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
 
         """
-        return _libBornAgainCore.FormFactorAnisoPyramid_getAlpha(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorAnisoPyramid
+        return _libBornAgainCore.IsotropicLorentzPeakShape_evaluate(self, q, q_lattice_point)
 
-# Register FormFactorAnisoPyramid in _libBornAgainCore:
-_libBornAgainCore.FormFactorAnisoPyramid_swigregister(FormFactorAnisoPyramid)
+# Register IsotropicLorentzPeakShape in _libBornAgainCore:
+_libBornAgainCore.IsotropicLorentzPeakShape_swigregister(IsotropicLorentzPeakShape)
 
-class FormFactorBox(FormFactorPolygonalPrism):
+class GaussFisherPeakShape(IPeakShape):
     r"""
 
 
-    A rectangular prism (parallelepiped).
+    Class that implements a peak shape that is Gaussian in the radial direction and uses the von Mises-Fisher distribution in the angular direction.
 
-    C++ includes: FormFactorBox.h
+    C++ includes: IPeakShape.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, length, width, height):
+    def __init__(self, max_intensity, radial_size, kappa):
         r"""
-        __init__(FormFactorBox self, double length, double width, double height) -> FormFactorBox
-        FormFactorBox::FormFactorBox(double length, double width, double height)
-
-        Constructor of a rectangular cuboid.
-
-        Parameters:
-        -----------
-
-        length: 
-        length of the base in nanometers
-
-        width: 
-        width of the base in nanometers
-
-        height: 
-        height of the box in nanometers 
+        __init__(GaussFisherPeakShape self, double max_intensity, double radial_size, double kappa) -> GaussFisherPeakShape
+        GaussFisherPeakShape::GaussFisherPeakShape(double max_intensity, double radial_size, double kappa)
 
         """
-        _libBornAgainCore.FormFactorBox_swiginit(self, _libBornAgainCore.new_FormFactorBox(length, width, height))
+        _libBornAgainCore.GaussFisherPeakShape_swiginit(self, _libBornAgainCore.new_GaussFisherPeakShape(max_intensity, radial_size, kappa))
+    __swig_destroy__ = _libBornAgainCore.delete_GaussFisherPeakShape
 
     def clone(self):
         r"""
-        clone(FormFactorBox self) -> FormFactorBox
-        FormFactorBox* FormFactorBox::clone() const override final
+        clone(GaussFisherPeakShape self) -> GaussFisherPeakShape
+        GaussFisherPeakShape * GaussFisherPeakShape::clone() const override
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorBox_clone(self)
+        return _libBornAgainCore.GaussFisherPeakShape_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorBox self, INodeVisitor visitor)
-        void FormFactorBox::accept(INodeVisitor *visitor) const override final
+        accept(GaussFisherPeakShape self, INodeVisitor visitor)
+        void GaussFisherPeakShape::accept(INodeVisitor *visitor) const override
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorBox_accept(self, visitor)
+        return _libBornAgainCore.GaussFisherPeakShape_accept(self, visitor)
 
-    def getLength(self):
+    def evaluate(self, q, q_lattice_point):
         r"""
-        getLength(FormFactorBox self) -> double
-        double FormFactorBox::getLength() const
+        evaluate(GaussFisherPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
+        double GaussFisherPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override
 
-        """
-        return _libBornAgainCore.FormFactorBox_getLength(self)
-
-    def getWidth(self):
-        r"""
-        getWidth(FormFactorBox self) -> double
-        double FormFactorBox::getWidth() const
-
-        """
-        return _libBornAgainCore.FormFactorBox_getWidth(self)
-
-    def volume(self):
-        r"""
-        volume(FormFactorBox self) -> double
-        double FormFactorBox::volume() const override final
-
-        Returns the volume of this prism. 
-
-        """
-        return _libBornAgainCore.FormFactorBox_volume(self)
-
-    def radialExtension(self):
-        r"""
-        radialExtension(FormFactorBox self) -> double
-        double FormFactorBox::radialExtension() const override final
-
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
 
         """
-        return _libBornAgainCore.FormFactorBox_radialExtension(self)
+        return _libBornAgainCore.GaussFisherPeakShape_evaluate(self, q, q_lattice_point)
 
-    def evaluate_for_q(self, q):
+    def angularDisorder(self):
         r"""
-        evaluate_for_q(FormFactorBox self, cvector_t q) -> complex_t
-        complex_t FormFactorBox::evaluate_for_q(cvector_t q) const override final
+        angularDisorder(GaussFisherPeakShape self) -> bool
+        bool GaussFisherPeakShape::angularDisorder() const override
 
-        Returns the form factor F(q) of this polyhedron, respecting the offset height/2. 
+        Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed 
 
         """
-        return _libBornAgainCore.FormFactorBox_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorBox
+        return _libBornAgainCore.GaussFisherPeakShape_angularDisorder(self)
 
-# Register FormFactorBox in _libBornAgainCore:
-_libBornAgainCore.FormFactorBox_swigregister(FormFactorBox)
+# Register GaussFisherPeakShape in _libBornAgainCore:
+_libBornAgainCore.GaussFisherPeakShape_swigregister(GaussFisherPeakShape)
 
-class FormFactorCantellatedCube(FormFactorPolyhedron):
+class LorentzFisherPeakShape(IPeakShape):
     r"""
 
 
-    A cube, with truncation of all edges and corners, as in Croset (2017) Fig 7
+    Class that implements a peak shape that is Lorentzian in the radial direction and uses the von Mises-Fisher distribution in the angular direction.
 
-    C++ includes: FormFactorCantellatedCube.h
+    C++ includes: IPeakShape.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, length, removed_length):
+    def __init__(self, max_intensity, radial_size, kappa):
         r"""
-        __init__(FormFactorCantellatedCube self, double length, double removed_length) -> FormFactorCantellatedCube
-        FormFactorCantellatedCube::FormFactorCantellatedCube(double length, double removed_length)
-
-        Constructor of a truncated cube.
-
-        Parameters:
-        -----------
-
-        length: 
-        length of the full cube's edge in nanometers
-
-        removed_length: 
-        removed length from each edge of the cube in nanometers 
+        __init__(LorentzFisherPeakShape self, double max_intensity, double radial_size, double kappa) -> LorentzFisherPeakShape
+        LorentzFisherPeakShape::LorentzFisherPeakShape(double max_intensity, double radial_size, double kappa)
 
         """
-        _libBornAgainCore.FormFactorCantellatedCube_swiginit(self, _libBornAgainCore.new_FormFactorCantellatedCube(length, removed_length))
+        _libBornAgainCore.LorentzFisherPeakShape_swiginit(self, _libBornAgainCore.new_LorentzFisherPeakShape(max_intensity, radial_size, kappa))
+    __swig_destroy__ = _libBornAgainCore.delete_LorentzFisherPeakShape
 
     def clone(self):
         r"""
-        clone(FormFactorCantellatedCube self) -> FormFactorCantellatedCube
-        FormFactorCantellatedCube* FormFactorCantellatedCube::clone() const override final
+        clone(LorentzFisherPeakShape self) -> LorentzFisherPeakShape
+        LorentzFisherPeakShape * LorentzFisherPeakShape::clone() const override
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorCantellatedCube_clone(self)
+        return _libBornAgainCore.LorentzFisherPeakShape_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorCantellatedCube self, INodeVisitor visitor)
-        void FormFactorCantellatedCube::accept(INodeVisitor *visitor) const override final
+        accept(LorentzFisherPeakShape self, INodeVisitor visitor)
+        void LorentzFisherPeakShape::accept(INodeVisitor *visitor) const override
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorCantellatedCube_accept(self, visitor)
+        return _libBornAgainCore.LorentzFisherPeakShape_accept(self, visitor)
 
-    def getLength(self):
+    def evaluate(self, q, q_lattice_point):
         r"""
-        getLength(FormFactorCantellatedCube self) -> double
-        double FormFactorCantellatedCube::getLength() const
+        evaluate(LorentzFisherPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
+        double LorentzFisherPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override
+
+        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
 
         """
-        return _libBornAgainCore.FormFactorCantellatedCube_getLength(self)
+        return _libBornAgainCore.LorentzFisherPeakShape_evaluate(self, q, q_lattice_point)
 
-    def getRemovedLength(self):
+    def angularDisorder(self):
         r"""
-        getRemovedLength(FormFactorCantellatedCube self) -> double
-        double FormFactorCantellatedCube::getRemovedLength() const
+        angularDisorder(LorentzFisherPeakShape self) -> bool
+        bool LorentzFisherPeakShape::angularDisorder() const override
+
+        Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed 
 
         """
-        return _libBornAgainCore.FormFactorCantellatedCube_getRemovedLength(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorCantellatedCube
+        return _libBornAgainCore.LorentzFisherPeakShape_angularDisorder(self)
 
-# Register FormFactorCantellatedCube in _libBornAgainCore:
-_libBornAgainCore.FormFactorCantellatedCube_swigregister(FormFactorCantellatedCube)
+# Register LorentzFisherPeakShape in _libBornAgainCore:
+_libBornAgainCore.LorentzFisherPeakShape_swigregister(LorentzFisherPeakShape)
 
-class FormFactorCone(IFormFactorBorn):
+class VonMisesFisherGaussPeakShape(IPeakShape):
     r"""
 
 
-    A conical frustum (cone truncated parallel to the base) with circular base.
+    Class that implements a peak shape that is Gaussian in the radial direction and a convolution of a von Mises-Fisher distribution with a von Mises distribution on the two-sphere
 
-    C++ includes: FormFactorCone.h
+    C++ includes: IPeakShape.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, radius, height, alpha):
+    def __init__(self, max_intensity, radial_size, zenith, kappa_1, kappa_2):
         r"""
-        __init__(FormFactorCone self, double radius, double height, double alpha) -> FormFactorCone
-        FormFactorCone::FormFactorCone(double radius, double height, double alpha)
-
-        Constructor of a truncated cone with circular base.
-
-        Parameters:
-        -----------
-
-        radius: 
-        radius of the base in nanometers
-
-        height: 
-        height of the cone in nanometers
-
-        alpha: 
-        angle between the base and the side surface in radians 
+        __init__(VonMisesFisherGaussPeakShape self, double max_intensity, double radial_size, kvector_t zenith, double kappa_1, double kappa_2) -> VonMisesFisherGaussPeakShape
+        VonMisesFisherGaussPeakShape::VonMisesFisherGaussPeakShape(double max_intensity, double radial_size, kvector_t zenith, double kappa_1, double kappa_2)
 
         """
-        _libBornAgainCore.FormFactorCone_swiginit(self, _libBornAgainCore.new_FormFactorCone(radius, height, alpha))
+        _libBornAgainCore.VonMisesFisherGaussPeakShape_swiginit(self, _libBornAgainCore.new_VonMisesFisherGaussPeakShape(max_intensity, radial_size, zenith, kappa_1, kappa_2))
+    __swig_destroy__ = _libBornAgainCore.delete_VonMisesFisherGaussPeakShape
 
     def clone(self):
         r"""
-        clone(FormFactorCone self) -> FormFactorCone
-        FormFactorCone* FormFactorCone::clone() const override final
+        clone(VonMisesFisherGaussPeakShape self) -> VonMisesFisherGaussPeakShape
+        VonMisesFisherGaussPeakShape * VonMisesFisherGaussPeakShape::clone() const override
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorCone_clone(self)
+        return _libBornAgainCore.VonMisesFisherGaussPeakShape_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorCone self, INodeVisitor visitor)
-        void FormFactorCone::accept(INodeVisitor *visitor) const override final
+        accept(VonMisesFisherGaussPeakShape self, INodeVisitor visitor)
+        void VonMisesFisherGaussPeakShape::accept(INodeVisitor *visitor) const override
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorCone_accept(self, visitor)
-
-    def getHeight(self):
-        r"""
-        getHeight(FormFactorCone self) -> double
-        double FormFactorCone::getHeight() const
-
-        """
-        return _libBornAgainCore.FormFactorCone_getHeight(self)
-
-    def getAlpha(self):
-        r"""
-        getAlpha(FormFactorCone self) -> double
-        double FormFactorCone::getAlpha() const
-
-        """
-        return _libBornAgainCore.FormFactorCone_getAlpha(self)
-
-    def getRadius(self):
-        r"""
-        getRadius(FormFactorCone self) -> double
-        double FormFactorCone::getRadius() const
-
-        """
-        return _libBornAgainCore.FormFactorCone_getRadius(self)
+        return _libBornAgainCore.VonMisesFisherGaussPeakShape_accept(self, visitor)
 
-    def radialExtension(self):
+    def evaluate(self, q, q_lattice_point):
         r"""
-        radialExtension(FormFactorCone self) -> double
-        double FormFactorCone::radialExtension() const override final
+        evaluate(VonMisesFisherGaussPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
+        double VonMisesFisherGaussPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
 
         """
-        return _libBornAgainCore.FormFactorCone_radialExtension(self)
+        return _libBornAgainCore.VonMisesFisherGaussPeakShape_evaluate(self, q, q_lattice_point)
 
-    def evaluate_for_q(self, q):
+    def angularDisorder(self):
         r"""
-        evaluate_for_q(FormFactorCone self, cvector_t q) -> complex_t
-        complex_t FormFactorCone::evaluate_for_q(cvector_t q) const override final
+        angularDisorder(VonMisesFisherGaussPeakShape self) -> bool
+        bool VonMisesFisherGaussPeakShape::angularDisorder() const override
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed 
 
         """
-        return _libBornAgainCore.FormFactorCone_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorCone
+        return _libBornAgainCore.VonMisesFisherGaussPeakShape_angularDisorder(self)
 
-# Register FormFactorCone in _libBornAgainCore:
-_libBornAgainCore.FormFactorCone_swigregister(FormFactorCone)
+# Register VonMisesFisherGaussPeakShape in _libBornAgainCore:
+_libBornAgainCore.VonMisesFisherGaussPeakShape_swigregister(VonMisesFisherGaussPeakShape)
 
-class FormFactorCone6(FormFactorPolyhedron):
+class VonMisesGaussPeakShape(IPeakShape):
     r"""
 
 
-    A frustum (truncated pyramid) with regular hexagonal base.
+    Class that implements a peak shape that is a convolution of a von Mises-Fisher distribution with a 3d Gaussian
 
-    C++ includes: FormFactorCone6.h
+    C++ includes: IPeakShape.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, base_edge, height, alpha):
+    def __init__(self, max_intensity, radial_size, zenith, kappa):
         r"""
-        __init__(FormFactorCone6 self, double base_edge, double height, double alpha) -> FormFactorCone6
-        FormFactorCone6::FormFactorCone6(double base_edge, double height, double alpha)
-
-        Constructor of a truncated pyramid, based on a regular hexagon
-
-        Parameters:
-        -----------
-
-        base_edge: 
-        Edge of the regular hexagonal base in nanometers
-
-        height: 
-        height of a truncated pyramid in nanometers
-
-        alpha: 
-        dihedral angle in radians between base and facet 
+        __init__(VonMisesGaussPeakShape self, double max_intensity, double radial_size, kvector_t zenith, double kappa) -> VonMisesGaussPeakShape
+        VonMisesGaussPeakShape::VonMisesGaussPeakShape(double max_intensity, double radial_size, kvector_t zenith, double kappa)
 
         """
-        _libBornAgainCore.FormFactorCone6_swiginit(self, _libBornAgainCore.new_FormFactorCone6(base_edge, height, alpha))
+        _libBornAgainCore.VonMisesGaussPeakShape_swiginit(self, _libBornAgainCore.new_VonMisesGaussPeakShape(max_intensity, radial_size, zenith, kappa))
+    __swig_destroy__ = _libBornAgainCore.delete_VonMisesGaussPeakShape
 
     def clone(self):
         r"""
-        clone(FormFactorCone6 self) -> FormFactorCone6
-        FormFactorCone6* FormFactorCone6::clone() const override final
+        clone(VonMisesGaussPeakShape self) -> VonMisesGaussPeakShape
+        VonMisesGaussPeakShape * VonMisesGaussPeakShape::clone() const override
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorCone6_clone(self)
+        return _libBornAgainCore.VonMisesGaussPeakShape_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorCone6 self, INodeVisitor visitor)
-        void FormFactorCone6::accept(INodeVisitor *visitor) const override final
+        accept(VonMisesGaussPeakShape self, INodeVisitor visitor)
+        void VonMisesGaussPeakShape::accept(INodeVisitor *visitor) const override
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorCone6_accept(self, visitor)
+        return _libBornAgainCore.VonMisesGaussPeakShape_accept(self, visitor)
 
-    def getBaseEdge(self):
+    def evaluate(self, q, q_lattice_point):
         r"""
-        getBaseEdge(FormFactorCone6 self) -> double
-        double FormFactorCone6::getBaseEdge() const
+        evaluate(VonMisesGaussPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
+        double VonMisesGaussPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override
+
+        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
 
         """
-        return _libBornAgainCore.FormFactorCone6_getBaseEdge(self)
+        return _libBornAgainCore.VonMisesGaussPeakShape_evaluate(self, q, q_lattice_point)
 
-    def getHeight(self):
+    def angularDisorder(self):
         r"""
-        getHeight(FormFactorCone6 self) -> double
-        double FormFactorCone6::getHeight() const
+        angularDisorder(VonMisesGaussPeakShape self) -> bool
+        bool VonMisesGaussPeakShape::angularDisorder() const override
+
+        Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed 
 
         """
-        return _libBornAgainCore.FormFactorCone6_getHeight(self)
+        return _libBornAgainCore.VonMisesGaussPeakShape_angularDisorder(self)
 
-    def getAlpha(self):
-        r"""
-        getAlpha(FormFactorCone6 self) -> double
-        double FormFactorCone6::getAlpha() const
-
-        """
-        return _libBornAgainCore.FormFactorCone6_getAlpha(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorCone6
-
-# Register FormFactorCone6 in _libBornAgainCore:
-_libBornAgainCore.FormFactorCone6_swigregister(FormFactorCone6)
+# Register VonMisesGaussPeakShape in _libBornAgainCore:
+_libBornAgainCore.VonMisesGaussPeakShape_swigregister(VonMisesGaussPeakShape)
 
-class FormFactorCrystal(IFormFactor):
+class InterferenceFunction1DLattice(IInterferenceFunction):
     r"""
 
 
-    The form factor of a  MesoCrystal.
+    Interference function of a 1D lattice.
 
-    C++ includes: FormFactorCrystal.h
+    C++ includes: InterferenceFunction1DLattice.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, lattice, basis_form_factor, meso_form_factor, position_variance=0.0):
-        r"""
-        __init__(FormFactorCrystal self, Lattice lattice, IFormFactor basis_form_factor, IFormFactor meso_form_factor, double position_variance=0.0) -> FormFactorCrystal
-        FormFactorCrystal::FormFactorCrystal(const Lattice &lattice, const IFormFactor &basis_form_factor, const IFormFactor &meso_form_factor, double position_variance=0.0)
-
-        """
-        _libBornAgainCore.FormFactorCrystal_swiginit(self, _libBornAgainCore.new_FormFactorCrystal(lattice, basis_form_factor, meso_form_factor, position_variance))
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorCrystal
-
-    def clone(self):
+    def __init__(self, length, xi):
         r"""
-        clone(FormFactorCrystal self) -> FormFactorCrystal
-        FormFactorCrystal* FormFactorCrystal::clone() const override final
+        __init__(InterferenceFunction1DLattice self, double length, double xi) -> InterferenceFunction1DLattice
+        InterferenceFunction1DLattice::InterferenceFunction1DLattice(double length, double xi)
 
-        Returns a clone of this  ISample object. 
+        Constructor of interference function of one-dimensional lattice.
 
-        """
-        return _libBornAgainCore.FormFactorCrystal_clone(self)
+        Parameters:
+        -----------
 
-    def accept(self, visitor):
-        r"""
-        accept(FormFactorCrystal self, INodeVisitor visitor)
-        void FormFactorCrystal::accept(INodeVisitor *visitor) const override final
+        length: 
+        lattice constant in nanometers
 
-        Calls the  INodeVisitor's visit method. 
+        xi: 
+        rotation of lattice with respect to x-axis in radians 
 
         """
-        return _libBornAgainCore.FormFactorCrystal_accept(self, visitor)
+        _libBornAgainCore.InterferenceFunction1DLattice_swiginit(self, _libBornAgainCore.new_InterferenceFunction1DLattice(length, xi))
+    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunction1DLattice
 
-    def setAmbientMaterial(self, material):
+    def clone(self):
         r"""
-        setAmbientMaterial(FormFactorCrystal self, Material material)
-        void FormFactorCrystal::setAmbientMaterial(Material material) override
+        clone(InterferenceFunction1DLattice self) -> InterferenceFunction1DLattice
+        InterferenceFunction1DLattice * InterferenceFunction1DLattice::clone() const override final
 
-        Passes the material in which this particle is embedded. 
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorCrystal_setAmbientMaterial(self, material)
+        return _libBornAgainCore.InterferenceFunction1DLattice_clone(self)
 
-    def volume(self):
+    def accept(self, visitor):
         r"""
-        volume(FormFactorCrystal self) -> double
-        double FormFactorCrystal::volume() const override final
+        accept(InterferenceFunction1DLattice self, INodeVisitor visitor)
+        void InterferenceFunction1DLattice::accept(INodeVisitor *visitor) const override final
 
-        Returns the total volume of the particle of this form factor's shape. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorCrystal_volume(self)
+        return _libBornAgainCore.InterferenceFunction1DLattice_accept(self, visitor)
 
-    def radialExtension(self):
+    def setDecayFunction(self, decay):
         r"""
-        radialExtension(FormFactorCrystal self) -> double
-        double FormFactorCrystal::radialExtension() const override final
-
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        setDecayFunction(InterferenceFunction1DLattice self, IFTDecayFunction1D decay)
+        void InterferenceFunction1DLattice::setDecayFunction(const IFTDecayFunction1D &decay)
 
-        """
-        return _libBornAgainCore.FormFactorCrystal_radialExtension(self)
+        Sets one-dimensional decay function.
 
-    def bottomZ(self, rotation):
-        r"""
-        bottomZ(FormFactorCrystal self, IRotation rotation) -> double
-        double FormFactorCrystal::bottomZ(const IRotation &rotation) const override
+        Parameters:
+        -----------
 
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        decay: 
+        one-dimensional decay function in reciprocal space 
 
         """
-        return _libBornAgainCore.FormFactorCrystal_bottomZ(self, rotation)
+        return _libBornAgainCore.InterferenceFunction1DLattice_setDecayFunction(self, decay)
 
-    def topZ(self, rotation):
+    def getLatticeParameters(self):
         r"""
-        topZ(FormFactorCrystal self, IRotation rotation) -> double
-        double FormFactorCrystal::topZ(const IRotation &rotation) const override final
-
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        getLatticeParameters(InterferenceFunction1DLattice self) -> Lattice1DParameters
+        Lattice1DParameters InterferenceFunction1DLattice::getLatticeParameters() const
 
         """
-        return _libBornAgainCore.FormFactorCrystal_topZ(self, rotation)
+        return _libBornAgainCore.InterferenceFunction1DLattice_getLatticeParameters(self)
 
-    def evaluate(self, wavevectors):
+    def getChildren(self):
         r"""
-        evaluate(FormFactorCrystal self, WavevectorInfo wavevectors) -> complex_t
-        complex_t FormFactorCrystal::evaluate(const WavevectorInfo &wavevectors) const override final
+        getChildren(InterferenceFunction1DLattice self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > InterferenceFunction1DLattice::getChildren() const override final
 
-        Returns scattering amplitude for complex wavevectors ki, kf. 
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.FormFactorCrystal_evaluate(self, wavevectors)
+        return _libBornAgainCore.InterferenceFunction1DLattice_getChildren(self)
 
-# Register FormFactorCrystal in _libBornAgainCore:
-_libBornAgainCore.FormFactorCrystal_swigregister(FormFactorCrystal)
+# Register InterferenceFunction1DLattice in _libBornAgainCore:
+_libBornAgainCore.InterferenceFunction1DLattice_swigregister(InterferenceFunction1DLattice)
 
-class FormFactorCuboctahedron(FormFactorPolyhedron):
+class InterferenceFunction2DLattice(IInterferenceFunction):
     r"""
 
 
-    A truncated bifrustum with quadratic base.
+    Interference function of a 2D lattice.
 
-    C++ includes: FormFactorCuboctahedron.h
+    C++ includes: InterferenceFunction2DLattice.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, length, height, height_ratio, alpha):
+    def __init__(self, *args):
         r"""
-        __init__(FormFactorCuboctahedron self, double length, double height, double height_ratio, double alpha) -> FormFactorCuboctahedron
-        FormFactorCuboctahedron::FormFactorCuboctahedron(double length, double height, double height_ratio, double alpha)
+        __init__(InterferenceFunction2DLattice self, Lattice2D lattice) -> InterferenceFunction2DLattice
+        __init__(InterferenceFunction2DLattice self, double length_1, double length_2, double alpha, double xi=0.0) -> InterferenceFunction2DLattice
+        InterferenceFunction2DLattice::InterferenceFunction2DLattice(double length_1, double length_2, double alpha, double xi=0.0)
 
-        Constructor of cuboctahedron (compound of two truncated pyramids with a common square base and opposite orientations).
+        Constructor of two-dimensional interference function.
 
         Parameters:
         -----------
 
-        length: 
-        side length of the common square base in nanometers
-
-        height: 
-        height of the lower pyramid in nanometers
+        length_1: 
+        length of the first basis vector in nanometers
 
-        height_ratio: 
-        ratio of heights of top to bottom pyramids
+        length_2: 
+        length of the second basis vector in nanometers
 
         alpha: 
-        dihedral angle in radians between base and facet 
+        angle between the basis vectors in radians
+
+        xi: 
+        rotation of the lattice with respect to the x-axis (beam direction) in radians 
 
         """
-        _libBornAgainCore.FormFactorCuboctahedron_swiginit(self, _libBornAgainCore.new_FormFactorCuboctahedron(length, height, height_ratio, alpha))
+        _libBornAgainCore.InterferenceFunction2DLattice_swiginit(self, _libBornAgainCore.new_InterferenceFunction2DLattice(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunction2DLattice
 
     def clone(self):
         r"""
-        clone(FormFactorCuboctahedron self) -> FormFactorCuboctahedron
-        FormFactorCuboctahedron* FormFactorCuboctahedron::clone() const override final
+        clone(InterferenceFunction2DLattice self) -> InterferenceFunction2DLattice
+        InterferenceFunction2DLattice * InterferenceFunction2DLattice::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorCuboctahedron_clone(self)
+        return _libBornAgainCore.InterferenceFunction2DLattice_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorCuboctahedron self, INodeVisitor visitor)
-        void FormFactorCuboctahedron::accept(INodeVisitor *visitor) const override final
+        accept(InterferenceFunction2DLattice self, INodeVisitor visitor)
+        void InterferenceFunction2DLattice::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorCuboctahedron_accept(self, visitor)
+        return _libBornAgainCore.InterferenceFunction2DLattice_accept(self, visitor)
 
-    def getLength(self):
+    @staticmethod
+    def createSquare(lattice_length, xi=0.0):
+        r"""createSquare(double lattice_length, double xi=0.0) -> InterferenceFunction2DLattice"""
+        return _libBornAgainCore.InterferenceFunction2DLattice_createSquare(lattice_length, xi)
+
+    @staticmethod
+    def createHexagonal(lattice_length, xi=0.0):
+        r"""createHexagonal(double lattice_length, double xi=0.0) -> InterferenceFunction2DLattice"""
+        return _libBornAgainCore.InterferenceFunction2DLattice_createHexagonal(lattice_length, xi)
+
+    def setDecayFunction(self, decay):
         r"""
-        getLength(FormFactorCuboctahedron self) -> double
-        double FormFactorCuboctahedron::getLength() const
+        setDecayFunction(InterferenceFunction2DLattice self, IFTDecayFunction2D decay)
+        void InterferenceFunction2DLattice::setDecayFunction(const IFTDecayFunction2D &decay)
+
+        Sets two-dimensional decay function.
+
+        Parameters:
+        -----------
+
+        decay: 
+        two-dimensional decay function in reciprocal space 
 
         """
-        return _libBornAgainCore.FormFactorCuboctahedron_getLength(self)
+        return _libBornAgainCore.InterferenceFunction2DLattice_setDecayFunction(self, decay)
 
-    def getHeight(self):
+    def setIntegrationOverXi(self, integrate_xi):
         r"""
-        getHeight(FormFactorCuboctahedron self) -> double
-        double FormFactorCuboctahedron::getHeight() const
+        setIntegrationOverXi(InterferenceFunction2DLattice self, bool integrate_xi)
+        void InterferenceFunction2DLattice::setIntegrationOverXi(bool integrate_xi)
 
         """
-        return _libBornAgainCore.FormFactorCuboctahedron_getHeight(self)
+        return _libBornAgainCore.InterferenceFunction2DLattice_setIntegrationOverXi(self, integrate_xi)
 
-    def getHeightRatio(self):
+    def integrationOverXi(self):
         r"""
-        getHeightRatio(FormFactorCuboctahedron self) -> double
-        double FormFactorCuboctahedron::getHeightRatio() const
+        integrationOverXi(InterferenceFunction2DLattice self) -> bool
+        bool InterferenceFunction2DLattice::integrationOverXi() const
 
         """
-        return _libBornAgainCore.FormFactorCuboctahedron_getHeightRatio(self)
+        return _libBornAgainCore.InterferenceFunction2DLattice_integrationOverXi(self)
 
-    def getAlpha(self):
+    def lattice(self):
         r"""
-        getAlpha(FormFactorCuboctahedron self) -> double
-        double FormFactorCuboctahedron::getAlpha() const
+        lattice(InterferenceFunction2DLattice self) -> Lattice2D
+        const Lattice2D & InterferenceFunction2DLattice::lattice() const
 
         """
-        return _libBornAgainCore.FormFactorCuboctahedron_getAlpha(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorCuboctahedron
-
-# Register FormFactorCuboctahedron in _libBornAgainCore:
-_libBornAgainCore.FormFactorCuboctahedron_swigregister(FormFactorCuboctahedron)
+        return _libBornAgainCore.InterferenceFunction2DLattice_lattice(self)
 
-class FormFactorCylinder(IFormFactorBorn):
-    r"""
+    def getParticleDensity(self):
+        r"""
+        getParticleDensity(InterferenceFunction2DLattice self) -> double
+        double InterferenceFunction2DLattice::getParticleDensity() const override final
 
+        Returns the particle density associated with this 2d lattice. 
 
-    A circular cylinder.
+        """
+        return _libBornAgainCore.InterferenceFunction2DLattice_getParticleDensity(self)
 
-    C++ includes: FormFactorCylinder.h
+    def getChildren(self):
+        r"""
+        getChildren(InterferenceFunction2DLattice self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > InterferenceFunction2DLattice::getChildren() const override final
 
-    """
+        Returns a vector of children (const). 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.InterferenceFunction2DLattice_getChildren(self)
 
-    def __init__(self, radius, height):
+    def onChange(self):
         r"""
-        __init__(FormFactorCylinder self, double radius, double height) -> FormFactorCylinder
-        FormFactorCylinder::FormFactorCylinder(double radius, double height)
+        onChange(InterferenceFunction2DLattice self)
+        void InterferenceFunction2DLattice::onChange() override final
 
-        Constructor of a cylinder with a circular base.
+        Action to be taken in inherited class when a parameter has changed. 
 
-        Parameters:
-        -----------
+        """
+        return _libBornAgainCore.InterferenceFunction2DLattice_onChange(self)
 
-        radius: 
-        radius of the circular base in nanometers
+# Register InterferenceFunction2DLattice in _libBornAgainCore:
+_libBornAgainCore.InterferenceFunction2DLattice_swigregister(InterferenceFunction2DLattice)
 
-        height: 
-        height of the cylinder in nanometers 
+def InterferenceFunction2DLattice_createSquare(lattice_length, xi=0.0):
+    r"""InterferenceFunction2DLattice_createSquare(double lattice_length, double xi=0.0) -> InterferenceFunction2DLattice"""
+    return _libBornAgainCore.InterferenceFunction2DLattice_createSquare(lattice_length, xi)
+
+def InterferenceFunction2DLattice_createHexagonal(lattice_length, xi=0.0):
+    r"""InterferenceFunction2DLattice_createHexagonal(double lattice_length, double xi=0.0) -> InterferenceFunction2DLattice"""
+    return _libBornAgainCore.InterferenceFunction2DLattice_createHexagonal(lattice_length, xi)
+
+class InterferenceFunction2DParaCrystal(IInterferenceFunction):
+    r"""
+
+
+    Interference function of a 2D paracrystal.
+
+    C++ includes: InterferenceFunction2DParaCrystal.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, *args):
+        r"""
+        __init__(InterferenceFunction2DParaCrystal self, Lattice2D lattice, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal
+        __init__(InterferenceFunction2DParaCrystal self, double length_1, double length_2, double alpha, double xi=0.0, double damping_length=0.0) -> InterferenceFunction2DParaCrystal
+        InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(double length_1, double length_2, double alpha, double xi=0.0, double damping_length=0.0)
+
+        Constructor of interference function of two-dimensional paracrystal.
+
+        Parameters:
+        -----------
+
+        length_1: 
+        length of first lattice vector in nanometers
+
+        length_2: 
+        length of second lattice vector in nanometers
+
+        alpha: 
+        angle between lattice vectors in radians
+
+        xi: 
+        rotation of lattice with respect to x-axis (beam direction) in radians
+
+        damping_length: 
+        the damping (coherence) length of the paracrystal in nanometers 
 
         """
-        _libBornAgainCore.FormFactorCylinder_swiginit(self, _libBornAgainCore.new_FormFactorCylinder(radius, height))
+        _libBornAgainCore.InterferenceFunction2DParaCrystal_swiginit(self, _libBornAgainCore.new_InterferenceFunction2DParaCrystal(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunction2DParaCrystal
 
     def clone(self):
         r"""
-        clone(FormFactorCylinder self) -> FormFactorCylinder
-        FormFactorCylinder* FormFactorCylinder::clone() const override final
+        clone(InterferenceFunction2DParaCrystal self) -> InterferenceFunction2DParaCrystal
+        InterferenceFunction2DParaCrystal * InterferenceFunction2DParaCrystal::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorCylinder_clone(self)
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorCylinder self, INodeVisitor visitor)
-        void FormFactorCylinder::accept(INodeVisitor *visitor) const override final
+        accept(InterferenceFunction2DParaCrystal self, INodeVisitor visitor)
+        void InterferenceFunction2DParaCrystal::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorCylinder_accept(self, visitor)
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_accept(self, visitor)
 
-    def getHeight(self):
-        r"""
-        getHeight(FormFactorCylinder self) -> double
-        double FormFactorCylinder::getHeight() const
+    @staticmethod
+    def createSquare(lattice_length, damping_length=0.0, domain_size_1=0.0, domain_size_2=0.0):
+        r"""createSquare(double lattice_length, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal"""
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_createSquare(lattice_length, damping_length, domain_size_1, domain_size_2)
 
-        """
-        return _libBornAgainCore.FormFactorCylinder_getHeight(self)
+    @staticmethod
+    def createHexagonal(lattice_length, damping_length=0.0, domain_size_1=0.0, domain_size_2=0.0):
+        r"""createHexagonal(double lattice_length, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal"""
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_createHexagonal(lattice_length, damping_length, domain_size_1, domain_size_2)
 
-    def getRadius(self):
+    def setDomainSizes(self, size_1, size_2):
         r"""
-        getRadius(FormFactorCylinder self) -> double
-        double FormFactorCylinder::getRadius() const
+        setDomainSizes(InterferenceFunction2DParaCrystal self, double size_1, double size_2)
+        void InterferenceFunction2DParaCrystal::setDomainSizes(double size_1, double size_2)
+
+        Sets the sizes of coherence domains.
+
+        Parameters:
+        -----------
+
+        size_1: 
+        coherence domain size along the first basis vector in nanometers
+
+        size_2: 
+        coherence domain size along the second basis vector in nanometers 
 
         """
-        return _libBornAgainCore.FormFactorCylinder_getRadius(self)
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_setDomainSizes(self, size_1, size_2)
 
-    def radialExtension(self):
+    def setProbabilityDistributions(self, pdf_1, pdf_2):
         r"""
-        radialExtension(FormFactorCylinder self) -> double
-        double FormFactorCylinder::radialExtension() const override final
+        setProbabilityDistributions(InterferenceFunction2DParaCrystal self, IFTDistribution2D pdf_1, IFTDistribution2D pdf_2)
+        void InterferenceFunction2DParaCrystal::setProbabilityDistributions(const IFTDistribution2D &pdf_1, const IFTDistribution2D &pdf_2)
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Sets the probability distributions (Fourier transformed) for the two lattice directions.
+
+        Parameters:
+        -----------
+
+        pdf_1: 
+        probability distribution in first lattice direction
+
+        pdf_2: 
+        probability distribution in second lattice direction 
 
         """
-        return _libBornAgainCore.FormFactorCylinder_radialExtension(self)
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_setProbabilityDistributions(self, pdf_1, pdf_2)
 
-    def evaluate_for_q(self, q):
+    def setDampingLength(self, damping_length):
         r"""
-        evaluate_for_q(FormFactorCylinder self, cvector_t q) -> complex_t
-        complex_t FormFactorCylinder::evaluate_for_q(cvector_t q) const override final
+        setDampingLength(InterferenceFunction2DParaCrystal self, double damping_length)
+        void InterferenceFunction2DParaCrystal::setDampingLength(double damping_length)
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Sets the damping length.
+
+        Parameters:
+        -----------
+
+        damping_length: 
+        the damping (coherence) length of the paracrystal in nanometers 
 
         """
-        return _libBornAgainCore.FormFactorCylinder_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorCylinder
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_setDampingLength(self, damping_length)
 
-# Register FormFactorCylinder in _libBornAgainCore:
-_libBornAgainCore.FormFactorCylinder_swigregister(FormFactorCylinder)
+    def domainSizes(self):
+        r"""
+        domainSizes(InterferenceFunction2DParaCrystal self) -> vdouble1d_t
+        std::vector< double > InterferenceFunction2DParaCrystal::domainSizes() const
 
-class FormFactorDebyeBueche(IFormFactorBorn):
-    r"""
+        """
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_domainSizes(self)
 
+    def setIntegrationOverXi(self, integrate_xi):
+        r"""
+        setIntegrationOverXi(InterferenceFunction2DParaCrystal self, bool integrate_xi)
+        void InterferenceFunction2DParaCrystal::setIntegrationOverXi(bool integrate_xi)
 
-    The form factor of a Debye-Bueche (see doi:10.1038/pj.2010.110).
+        Enables/disables averaging over the lattice rotation angle.
 
-    C++ includes: FormFactorDebyeBueche.h
+        Parameters:
+        -----------
 
-    """
+        integrate_xi: 
+        integration flag 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_setIntegrationOverXi(self, integrate_xi)
 
-    def __init__(self, I0, xi):
+    def integrationOverXi(self):
         r"""
-        __init__(FormFactorDebyeBueche self, double I0, double xi) -> FormFactorDebyeBueche
-        FormFactorDebyeBueche::FormFactorDebyeBueche(double I0, double xi)
+        integrationOverXi(InterferenceFunction2DParaCrystal self) -> bool
+        bool InterferenceFunction2DParaCrystal::integrationOverXi() const
 
         """
-        _libBornAgainCore.FormFactorDebyeBueche_swiginit(self, _libBornAgainCore.new_FormFactorDebyeBueche(I0, xi))
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_integrationOverXi(self)
 
-    def clone(self):
+    def dampingLength(self):
         r"""
-        clone(FormFactorDebyeBueche self) -> FormFactorDebyeBueche
-        FormFactorDebyeBueche* FormFactorDebyeBueche::clone() const override final
+        dampingLength(InterferenceFunction2DParaCrystal self) -> double
+        double InterferenceFunction2DParaCrystal::dampingLength() const
 
-        Returns a clone of this  ISample object. 
+        """
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_dampingLength(self)
+
+    def lattice(self):
+        r"""
+        lattice(InterferenceFunction2DParaCrystal self) -> Lattice2D
+        const Lattice2D & InterferenceFunction2DParaCrystal::lattice() const
 
         """
-        return _libBornAgainCore.FormFactorDebyeBueche_clone(self)
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_lattice(self)
 
-    def accept(self, visitor):
+    def getParticleDensity(self):
         r"""
-        accept(FormFactorDebyeBueche self, INodeVisitor visitor)
-        void FormFactorDebyeBueche::accept(INodeVisitor *visitor) const override final
+        getParticleDensity(InterferenceFunction2DParaCrystal self) -> double
+        double InterferenceFunction2DParaCrystal::getParticleDensity() const override final
 
-        Calls the  INodeVisitor's visit method. 
+        If defined by this interference function's parameters, returns the particle density (per area). Otherwise, returns zero or a user-defined value 
 
         """
-        return _libBornAgainCore.FormFactorDebyeBueche_accept(self, visitor)
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_getParticleDensity(self)
 
-    def radialExtension(self):
+    def getChildren(self):
         r"""
-        radialExtension(FormFactorDebyeBueche self) -> double
-        double FormFactorDebyeBueche::radialExtension() const override final
+        getChildren(InterferenceFunction2DParaCrystal self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > InterferenceFunction2DParaCrystal::getChildren() const override final
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.FormFactorDebyeBueche_radialExtension(self)
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_getChildren(self)
 
-    def evaluate_for_q(self, q):
+    def pdf1(self):
         r"""
-        evaluate_for_q(FormFactorDebyeBueche self, cvector_t q) -> complex_t
-        complex_t FormFactorDebyeBueche::evaluate_for_q(cvector_t q) const override final
+        pdf1(InterferenceFunction2DParaCrystal self) -> IFTDistribution2D
+        const IFTDistribution2D* InterferenceFunction2DParaCrystal::pdf1() const
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        """
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_pdf1(self)
+
+    def pdf2(self):
+        r"""
+        pdf2(InterferenceFunction2DParaCrystal self) -> IFTDistribution2D
+        const IFTDistribution2D* InterferenceFunction2DParaCrystal::pdf2() const
 
         """
-        return _libBornAgainCore.FormFactorDebyeBueche_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorDebyeBueche
+        return _libBornAgainCore.InterferenceFunction2DParaCrystal_pdf2(self)
 
-# Register FormFactorDebyeBueche in _libBornAgainCore:
-_libBornAgainCore.FormFactorDebyeBueche_swigregister(FormFactorDebyeBueche)
+# Register InterferenceFunction2DParaCrystal in _libBornAgainCore:
+_libBornAgainCore.InterferenceFunction2DParaCrystal_swigregister(InterferenceFunction2DParaCrystal)
 
-class FormFactorDodecahedron(FormFactorPolyhedron):
+def InterferenceFunction2DParaCrystal_createSquare(lattice_length, damping_length=0.0, domain_size_1=0.0, domain_size_2=0.0):
+    r"""InterferenceFunction2DParaCrystal_createSquare(double lattice_length, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal"""
+    return _libBornAgainCore.InterferenceFunction2DParaCrystal_createSquare(lattice_length, damping_length, domain_size_1, domain_size_2)
+
+def InterferenceFunction2DParaCrystal_createHexagonal(lattice_length, damping_length=0.0, domain_size_1=0.0, domain_size_2=0.0):
+    r"""InterferenceFunction2DParaCrystal_createHexagonal(double lattice_length, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal"""
+    return _libBornAgainCore.InterferenceFunction2DParaCrystal_createHexagonal(lattice_length, damping_length, domain_size_1, domain_size_2)
+
+class InterferenceFunction2DSuperLattice(IInterferenceFunction):
     r"""
 
 
-    A regular dodecahedron.
+    Interference function of a 2D superlattice with a configurable interference function for each lattice site.
 
-    C++ includes: FormFactorDodecahedron.h
+    C++ includes: InterferenceFunction2DSuperLattice.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, edge):
+    def __init__(self, *args):
         r"""
-        __init__(FormFactorDodecahedron self, double edge) -> FormFactorDodecahedron
-        FormFactorDodecahedron::FormFactorDodecahedron(double edge)
+        __init__(InterferenceFunction2DSuperLattice self, Lattice2D lattice, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice
+        __init__(InterferenceFunction2DSuperLattice self, double length_1, double length_2, double alpha, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice
+        InterferenceFunction2DSuperLattice::InterferenceFunction2DSuperLattice(double length_1, double length_2, double alpha, double xi, unsigned size_1, unsigned size_2)
 
-        Constructs a regular dodecahedron.
+        Constructor of two-dimensional interference function.
 
         Parameters:
         -----------
 
-        edge: 
-        length
+        length_1: 
+        length of first lattice vector in nanometers
 
-        Constructor of a dodecahedron.
+        length_2: 
+        length of second lattice vector in nanometers
 
-        Parameters:
-        -----------
+        alpha: 
+        angle between lattice vectors in radians
 
-        edge: 
-        length of the edge in nanometers 
+        xi: 
+        rotation of lattice with respect to x-axis (beam direction) in radians 
 
         """
-        _libBornAgainCore.FormFactorDodecahedron_swiginit(self, _libBornAgainCore.new_FormFactorDodecahedron(edge))
+        _libBornAgainCore.InterferenceFunction2DSuperLattice_swiginit(self, _libBornAgainCore.new_InterferenceFunction2DSuperLattice(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunction2DSuperLattice
 
     def clone(self):
         r"""
-        clone(FormFactorDodecahedron self) -> FormFactorDodecahedron
-        FormFactorDodecahedron* FormFactorDodecahedron::clone() const override final
+        clone(InterferenceFunction2DSuperLattice self) -> InterferenceFunction2DSuperLattice
+        InterferenceFunction2DSuperLattice * InterferenceFunction2DSuperLattice::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorDodecahedron_clone(self)
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorDodecahedron self, INodeVisitor visitor)
-        void FormFactorDodecahedron::accept(INodeVisitor *visitor) const override final
+        accept(InterferenceFunction2DSuperLattice self, INodeVisitor visitor)
+        void InterferenceFunction2DSuperLattice::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorDodecahedron_accept(self, visitor)
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_accept(self, visitor)
 
-    def getEdge(self):
+    def setSubstructureIFF(self, sub_iff):
         r"""
-        getEdge(FormFactorDodecahedron self) -> double
-        double FormFactorDodecahedron::getEdge() const
+        setSubstructureIFF(InterferenceFunction2DSuperLattice self, IInterferenceFunction sub_iff)
+        void InterferenceFunction2DSuperLattice::setSubstructureIFF(const IInterferenceFunction &sub_iff)
 
         """
-        return _libBornAgainCore.FormFactorDodecahedron_getEdge(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorDodecahedron
-
-# Register FormFactorDodecahedron in _libBornAgainCore:
-_libBornAgainCore.FormFactorDodecahedron_swigregister(FormFactorDodecahedron)
-
-class FormFactorDot(IFormFactorBorn):
-    r"""
-
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_setSubstructureIFF(self, sub_iff)
 
-    A dot, with scattering power as a sphere of radius rscat, but with F(q)=const.
+    def substructureIFF(self):
+        r"""
+        substructureIFF(InterferenceFunction2DSuperLattice self) -> IInterferenceFunction
+        const IInterferenceFunction & InterferenceFunction2DSuperLattice::substructureIFF() const
 
-    C++ includes: FormFactorDot.h
+        """
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_substructureIFF(self)
 
-    """
+    @staticmethod
+    def createSquare(lattice_length, xi, size_1, size_2):
+        r"""createSquare(double lattice_length, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice"""
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_createSquare(lattice_length, xi, size_1, size_2)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+    @staticmethod
+    def createHexagonal(lattice_length, xi, size_1, size_2):
+        r"""createHexagonal(double lattice_length, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice"""
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_createHexagonal(lattice_length, xi, size_1, size_2)
 
-    def __init__(self, radius):
+    def evaluate(self, q, outer_iff=1.0):
         r"""
-        __init__(FormFactorDot self, double radius) -> FormFactorDot
-        FormFactorDot::FormFactorDot(double radius)
-
-        Constructor.
-
-        Parameters:
-        -----------
+        evaluate(InterferenceFunction2DSuperLattice self, kvector_t q, double outer_iff=1.0) -> double
+        double InterferenceFunction2DSuperLattice::evaluate(const kvector_t q, double outer_iff=1.0) const override final
 
-        rscat: 
-        radius of a sphere with same forward scattering power, in nanometers 
+        Evaluates the interference function for a given wavevector transfer. 
 
         """
-        _libBornAgainCore.FormFactorDot_swiginit(self, _libBornAgainCore.new_FormFactorDot(radius))
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_evaluate(self, q, outer_iff)
 
-    def clone(self):
+    def domainSize1(self):
         r"""
-        clone(FormFactorDot self) -> FormFactorDot
-        FormFactorDot* FormFactorDot::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        domainSize1(InterferenceFunction2DSuperLattice self) -> unsigned int
+        unsigned InterferenceFunction2DSuperLattice::domainSize1() const
 
         """
-        return _libBornAgainCore.FormFactorDot_clone(self)
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_domainSize1(self)
 
-    def accept(self, visitor):
+    def domainSize2(self):
         r"""
-        accept(FormFactorDot self, INodeVisitor visitor)
-        void FormFactorDot::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
+        domainSize2(InterferenceFunction2DSuperLattice self) -> unsigned int
+        unsigned InterferenceFunction2DSuperLattice::domainSize2() const
 
         """
-        return _libBornAgainCore.FormFactorDot_accept(self, visitor)
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_domainSize2(self)
 
-    def getRadius(self):
+    def setIntegrationOverXi(self, integrate_xi):
         r"""
-        getRadius(FormFactorDot self) -> double
-        double FormFactorDot::getRadius() const
+        setIntegrationOverXi(InterferenceFunction2DSuperLattice self, bool integrate_xi)
+        void InterferenceFunction2DSuperLattice::setIntegrationOverXi(bool integrate_xi)
 
         """
-        return _libBornAgainCore.FormFactorDot_getRadius(self)
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_setIntegrationOverXi(self, integrate_xi)
 
-    def radialExtension(self):
+    def integrationOverXi(self):
         r"""
-        radialExtension(FormFactorDot self) -> double
-        double FormFactorDot::radialExtension() const override final
-
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        integrationOverXi(InterferenceFunction2DSuperLattice self) -> bool
+        bool InterferenceFunction2DSuperLattice::integrationOverXi() const
 
         """
-        return _libBornAgainCore.FormFactorDot_radialExtension(self)
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_integrationOverXi(self)
 
-    def bottomZ(self, arg2):
+    def lattice(self):
         r"""
-        bottomZ(FormFactorDot self, IRotation arg2) -> double
-        double FormFactorDot::bottomZ(const IRotation &) const override final
-
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        lattice(InterferenceFunction2DSuperLattice self) -> Lattice2D
+        const Lattice2D & InterferenceFunction2DSuperLattice::lattice() const
 
         """
-        return _libBornAgainCore.FormFactorDot_bottomZ(self, arg2)
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_lattice(self)
 
-    def topZ(self, arg2):
+    def getChildren(self):
         r"""
-        topZ(FormFactorDot self, IRotation arg2) -> double
-        double FormFactorDot::topZ(const IRotation &) const override final
+        getChildren(InterferenceFunction2DSuperLattice self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > InterferenceFunction2DSuperLattice::getChildren() const override final
 
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.FormFactorDot_topZ(self, arg2)
-
-    def evaluate_for_q(self, q):
-        r"""
-        evaluate_for_q(FormFactorDot self, cvector_t q) -> complex_t
-        complex_t FormFactorDot::evaluate_for_q(cvector_t q) const override final
+        return _libBornAgainCore.InterferenceFunction2DSuperLattice_getChildren(self)
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+# Register InterferenceFunction2DSuperLattice in _libBornAgainCore:
+_libBornAgainCore.InterferenceFunction2DSuperLattice_swigregister(InterferenceFunction2DSuperLattice)
 
-        """
-        return _libBornAgainCore.FormFactorDot_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorDot
+def InterferenceFunction2DSuperLattice_createSquare(lattice_length, xi, size_1, size_2):
+    r"""InterferenceFunction2DSuperLattice_createSquare(double lattice_length, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice"""
+    return _libBornAgainCore.InterferenceFunction2DSuperLattice_createSquare(lattice_length, xi, size_1, size_2)
 
-# Register FormFactorDot in _libBornAgainCore:
-_libBornAgainCore.FormFactorDot_swigregister(FormFactorDot)
+def InterferenceFunction2DSuperLattice_createHexagonal(lattice_length, xi, size_1, size_2):
+    r"""InterferenceFunction2DSuperLattice_createHexagonal(double lattice_length, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice"""
+    return _libBornAgainCore.InterferenceFunction2DSuperLattice_createHexagonal(lattice_length, xi, size_1, size_2)
 
-class FormFactorEllipsoidalCylinder(IFormFactorBorn):
+class InterferenceFunction3DLattice(IInterferenceFunction):
     r"""
 
 
-    A cylinder with elliptical base.
+    Interference function of a 3D lattice.
 
-    C++ includes: FormFactorEllipsoidalCylinder.h
+    C++ includes: InterferenceFunction3DLattice.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, radius_x, radius_y, height):
+    def __init__(self, lattice):
         r"""
-        __init__(FormFactorEllipsoidalCylinder self, double radius_x, double radius_y, double height) -> FormFactorEllipsoidalCylinder
-        FormFactorEllipsoidalCylinder::FormFactorEllipsoidalCylinder(double radius_x, double radius_y, double height)
-
-        Constructor of a cylinder with an ellipse cross section.
-
-        Parameters:
-        -----------
-
-        radius_x: 
-        radius of the ellipse base in the x-direction, in nanometers
-
-        radius_y: 
-        radius of the ellipse base in the y-direction, in nanometers
-
-        height: 
-        height of the ellipsoidal cylinder in nanometers 
+        __init__(InterferenceFunction3DLattice self, Lattice lattice) -> InterferenceFunction3DLattice
+        InterferenceFunction3DLattice::InterferenceFunction3DLattice(const Lattice &lattice)
 
         """
-        _libBornAgainCore.FormFactorEllipsoidalCylinder_swiginit(self, _libBornAgainCore.new_FormFactorEllipsoidalCylinder(radius_x, radius_y, height))
+        _libBornAgainCore.InterferenceFunction3DLattice_swiginit(self, _libBornAgainCore.new_InterferenceFunction3DLattice(lattice))
+    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunction3DLattice
 
     def clone(self):
         r"""
-        clone(FormFactorEllipsoidalCylinder self) -> FormFactorEllipsoidalCylinder
-        FormFactorEllipsoidalCylinder* FormFactorEllipsoidalCylinder::clone() const override final
+        clone(InterferenceFunction3DLattice self) -> InterferenceFunction3DLattice
+        InterferenceFunction3DLattice * InterferenceFunction3DLattice::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorEllipsoidalCylinder_clone(self)
+        return _libBornAgainCore.InterferenceFunction3DLattice_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorEllipsoidalCylinder self, INodeVisitor visitor)
-        void FormFactorEllipsoidalCylinder::accept(INodeVisitor *visitor) const override final
+        accept(InterferenceFunction3DLattice self, INodeVisitor visitor)
+        void InterferenceFunction3DLattice::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorEllipsoidalCylinder_accept(self, visitor)
+        return _libBornAgainCore.InterferenceFunction3DLattice_accept(self, visitor)
 
-    def getRadiusX(self):
+    def setPeakShape(self, peak_shape):
         r"""
-        getRadiusX(FormFactorEllipsoidalCylinder self) -> double
-        double FormFactorEllipsoidalCylinder::getRadiusX() const
+        setPeakShape(InterferenceFunction3DLattice self, IPeakShape peak_shape)
+        void InterferenceFunction3DLattice::setPeakShape(const IPeakShape &peak_shape)
 
         """
-        return _libBornAgainCore.FormFactorEllipsoidalCylinder_getRadiusX(self)
+        return _libBornAgainCore.InterferenceFunction3DLattice_setPeakShape(self, peak_shape)
 
-    def getRadiusY(self):
+    def lattice(self):
         r"""
-        getRadiusY(FormFactorEllipsoidalCylinder self) -> double
-        double FormFactorEllipsoidalCylinder::getRadiusY() const
+        lattice(InterferenceFunction3DLattice self) -> Lattice
+        const Lattice & InterferenceFunction3DLattice::lattice() const
 
         """
-        return _libBornAgainCore.FormFactorEllipsoidalCylinder_getRadiusY(self)
+        return _libBornAgainCore.InterferenceFunction3DLattice_lattice(self)
 
-    def getHeight(self):
+    def supportsMultilayer(self):
         r"""
-        getHeight(FormFactorEllipsoidalCylinder self) -> double
-        double FormFactorEllipsoidalCylinder::getHeight() const
+        supportsMultilayer(InterferenceFunction3DLattice self) -> bool
+        bool InterferenceFunction3DLattice::supportsMultilayer() const override final
+
+        Indicates if this interference function can be used with a multilayer (DWBA mode) 
 
         """
-        return _libBornAgainCore.FormFactorEllipsoidalCylinder_getHeight(self)
+        return _libBornAgainCore.InterferenceFunction3DLattice_supportsMultilayer(self)
 
-    def radialExtension(self):
+    def getChildren(self):
         r"""
-        radialExtension(FormFactorEllipsoidalCylinder self) -> double
-        double FormFactorEllipsoidalCylinder::radialExtension() const override final
+        getChildren(InterferenceFunction3DLattice self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > InterferenceFunction3DLattice::getChildren() const override final
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.FormFactorEllipsoidalCylinder_radialExtension(self)
+        return _libBornAgainCore.InterferenceFunction3DLattice_getChildren(self)
 
-    def evaluate_for_q(self, q):
+    def onChange(self):
         r"""
-        evaluate_for_q(FormFactorEllipsoidalCylinder self, cvector_t q) -> complex_t
-        complex_t FormFactorEllipsoidalCylinder::evaluate_for_q(cvector_t q) const override final
+        onChange(InterferenceFunction3DLattice self)
+        void InterferenceFunction3DLattice::onChange() override final
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Action to be taken in inherited class when a parameter has changed. 
 
         """
-        return _libBornAgainCore.FormFactorEllipsoidalCylinder_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorEllipsoidalCylinder
+        return _libBornAgainCore.InterferenceFunction3DLattice_onChange(self)
 
-# Register FormFactorEllipsoidalCylinder in _libBornAgainCore:
-_libBornAgainCore.FormFactorEllipsoidalCylinder_swigregister(FormFactorEllipsoidalCylinder)
+# Register InterferenceFunction3DLattice in _libBornAgainCore:
+_libBornAgainCore.InterferenceFunction3DLattice_swigregister(InterferenceFunction3DLattice)
 
-class FormFactorFullSphere(IFormFactorBorn):
+class InterferenceFunctionFinite2DLattice(IInterferenceFunction):
     r"""
 
 
-    A full sphere.
+    Interference function of a finite 2D lattice.
 
-    C++ includes: FormFactorFullSphere.h
+    C++ includes: InterferenceFunctionFinite2DLattice.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, radius, position_at_center=False):
+    def __init__(self, *args):
         r"""
-        __init__(FormFactorFullSphere self, double radius, bool position_at_center=False) -> FormFactorFullSphere
-        FormFactorFullSphere::FormFactorFullSphere(double radius, bool position_at_center=false)
+        __init__(InterferenceFunctionFinite2DLattice self, Lattice2D lattice, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice
+        __init__(InterferenceFunctionFinite2DLattice self, double length_1, double length_2, double alpha, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice
+        InterferenceFunctionFinite2DLattice::InterferenceFunctionFinite2DLattice(double length_1, double length_2, double alpha, double xi, unsigned N_1, unsigned N_2)
 
-        Constructor of a full sphere.
+        Constructor of two-dimensional finite lattice interference function.
 
         Parameters:
         -----------
 
-        radius: 
-        radius of the sphere in nanometers 
+        length_1: 
+        length of first lattice vector in nanometers
+
+        length_2: 
+        length of second lattice vector in nanometers
+
+        alpha: 
+        angle between lattice vectors in radians
+
+        xi: 
+        rotation of lattice with respect to x-axis (beam direction) in radians
+
+        N_1: 
+        number of lattice cells in the first lattice direction
+
+        N_2: 
+        number of lattice cells in the second lattice direction 
 
         """
-        _libBornAgainCore.FormFactorFullSphere_swiginit(self, _libBornAgainCore.new_FormFactorFullSphere(radius, position_at_center))
+        _libBornAgainCore.InterferenceFunctionFinite2DLattice_swiginit(self, _libBornAgainCore.new_InterferenceFunctionFinite2DLattice(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunctionFinite2DLattice
 
     def clone(self):
         r"""
-        clone(FormFactorFullSphere self) -> FormFactorFullSphere
-        FormFactorFullSphere* FormFactorFullSphere::clone() const override final
+        clone(InterferenceFunctionFinite2DLattice self) -> InterferenceFunctionFinite2DLattice
+        InterferenceFunctionFinite2DLattice * InterferenceFunctionFinite2DLattice::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorFullSphere_clone(self)
+        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorFullSphere self, INodeVisitor visitor)
-        void FormFactorFullSphere::accept(INodeVisitor *visitor) const override final
+        accept(InterferenceFunctionFinite2DLattice self, INodeVisitor visitor)
+        void InterferenceFunctionFinite2DLattice::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorFullSphere_accept(self, visitor)
+        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_accept(self, visitor)
 
-    def getRadius(self):
+    @staticmethod
+    def createSquare(lattice_length, xi, N_1, N_2):
+        r"""createSquare(double lattice_length, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice"""
+        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_createSquare(lattice_length, xi, N_1, N_2)
+
+    @staticmethod
+    def createHexagonal(lattice_length, xi, N_1, N_2):
+        r"""createHexagonal(double lattice_length, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice"""
+        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_createHexagonal(lattice_length, xi, N_1, N_2)
+
+    def numberUnitCells1(self):
         r"""
-        getRadius(FormFactorFullSphere self) -> double
-        double FormFactorFullSphere::getRadius() const
+        numberUnitCells1(InterferenceFunctionFinite2DLattice self) -> unsigned int
+        unsigned InterferenceFunctionFinite2DLattice::numberUnitCells1() const
 
         """
-        return _libBornAgainCore.FormFactorFullSphere_getRadius(self)
+        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_numberUnitCells1(self)
 
-    def radialExtension(self):
+    def numberUnitCells2(self):
         r"""
-        radialExtension(FormFactorFullSphere self) -> double
-        double FormFactorFullSphere::radialExtension() const override final
+        numberUnitCells2(InterferenceFunctionFinite2DLattice self) -> unsigned int
+        unsigned InterferenceFunctionFinite2DLattice::numberUnitCells2() const
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        """
+        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_numberUnitCells2(self)
+
+    def setIntegrationOverXi(self, integrate_xi):
+        r"""
+        setIntegrationOverXi(InterferenceFunctionFinite2DLattice self, bool integrate_xi)
+        void InterferenceFunctionFinite2DLattice::setIntegrationOverXi(bool integrate_xi)
 
         """
-        return _libBornAgainCore.FormFactorFullSphere_radialExtension(self)
+        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_setIntegrationOverXi(self, integrate_xi)
 
-    def bottomZ(self, rotation):
+    def integrationOverXi(self):
         r"""
-        bottomZ(FormFactorFullSphere self, IRotation rotation) -> double
-        double FormFactorFullSphere::bottomZ(const IRotation &rotation) const override final
+        integrationOverXi(InterferenceFunctionFinite2DLattice self) -> bool
+        bool InterferenceFunctionFinite2DLattice::integrationOverXi() const
 
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        """
+        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_integrationOverXi(self)
+
+    def lattice(self):
+        r"""
+        lattice(InterferenceFunctionFinite2DLattice self) -> Lattice2D
+        const Lattice2D & InterferenceFunctionFinite2DLattice::lattice() const
 
         """
-        return _libBornAgainCore.FormFactorFullSphere_bottomZ(self, rotation)
+        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_lattice(self)
 
-    def topZ(self, rotation):
+    def getParticleDensity(self):
         r"""
-        topZ(FormFactorFullSphere self, IRotation rotation) -> double
-        double FormFactorFullSphere::topZ(const IRotation &rotation) const override final
+        getParticleDensity(InterferenceFunctionFinite2DLattice self) -> double
+        double InterferenceFunctionFinite2DLattice::getParticleDensity() const override final
 
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        Returns the particle density associated with this 2d lattice. 
 
         """
-        return _libBornAgainCore.FormFactorFullSphere_topZ(self, rotation)
+        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_getParticleDensity(self)
 
-    def evaluate_for_q(self, q):
+    def getChildren(self):
         r"""
-        evaluate_for_q(FormFactorFullSphere self, cvector_t q) -> complex_t
-        complex_t FormFactorFullSphere::evaluate_for_q(cvector_t q) const override final
+        getChildren(InterferenceFunctionFinite2DLattice self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > InterferenceFunctionFinite2DLattice::getChildren() const override final
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.FormFactorFullSphere_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorFullSphere
+        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_getChildren(self)
 
-# Register FormFactorFullSphere in _libBornAgainCore:
-_libBornAgainCore.FormFactorFullSphere_swigregister(FormFactorFullSphere)
+# Register InterferenceFunctionFinite2DLattice in _libBornAgainCore:
+_libBornAgainCore.InterferenceFunctionFinite2DLattice_swigregister(InterferenceFunctionFinite2DLattice)
 
-class FormFactorFullSpheroid(IFormFactorBorn):
+def InterferenceFunctionFinite2DLattice_createSquare(lattice_length, xi, N_1, N_2):
+    r"""InterferenceFunctionFinite2DLattice_createSquare(double lattice_length, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice"""
+    return _libBornAgainCore.InterferenceFunctionFinite2DLattice_createSquare(lattice_length, xi, N_1, N_2)
+
+def InterferenceFunctionFinite2DLattice_createHexagonal(lattice_length, xi, N_1, N_2):
+    r"""InterferenceFunctionFinite2DLattice_createHexagonal(double lattice_length, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice"""
+    return _libBornAgainCore.InterferenceFunctionFinite2DLattice_createHexagonal(lattice_length, xi, N_1, N_2)
+
+class InterferenceFunctionFinite3DLattice(IInterferenceFunction):
     r"""
 
 
-    A full spheroid (an ellipsoid with two equal axes, hence with circular cross section)
+    Interference function of a finite 3D lattice.
 
-    C++ includes: FormFactorFullSpheroid.h
+    C++ includes: InterferenceFunctionFinite3DLattice.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, radius, height):
+    def __init__(self, lattice, N_1, N_2, N_3):
         r"""
-        __init__(FormFactorFullSpheroid self, double radius, double height) -> FormFactorFullSpheroid
-        FormFactorFullSpheroid::FormFactorFullSpheroid(double radius, double height)
+        __init__(InterferenceFunctionFinite3DLattice self, Lattice lattice, unsigned int N_1, unsigned int N_2, unsigned int N_3) -> InterferenceFunctionFinite3DLattice
+        InterferenceFunctionFinite3DLattice::InterferenceFunctionFinite3DLattice(const Lattice &lattice, unsigned N_1, unsigned N_2, unsigned N_3)
 
-        Constructor of full spheroid.
+        Constructor of three-dimensional finite lattice interference function.
 
         Parameters:
         -----------
 
-        radius: 
-        radius of the circular cross section in nanometers
+        lattice: 
+        object specifying a 2d lattice structure
 
-        height: 
-        height of the full spheroid in nanometers 
+        N_1: 
+        number of lattice cells in the first lattice direction
+
+        N_2: 
+        number of lattice cells in the second lattice direction 
 
         """
-        _libBornAgainCore.FormFactorFullSpheroid_swiginit(self, _libBornAgainCore.new_FormFactorFullSpheroid(radius, height))
+        _libBornAgainCore.InterferenceFunctionFinite3DLattice_swiginit(self, _libBornAgainCore.new_InterferenceFunctionFinite3DLattice(lattice, N_1, N_2, N_3))
+    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunctionFinite3DLattice
 
     def clone(self):
         r"""
-        clone(FormFactorFullSpheroid self) -> FormFactorFullSpheroid
-        FormFactorFullSpheroid* FormFactorFullSpheroid::clone() const override final
+        clone(InterferenceFunctionFinite3DLattice self) -> InterferenceFunctionFinite3DLattice
+        InterferenceFunctionFinite3DLattice * InterferenceFunctionFinite3DLattice::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorFullSpheroid_clone(self)
+        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorFullSpheroid self, INodeVisitor visitor)
-        void FormFactorFullSpheroid::accept(INodeVisitor *visitor) const override final
+        accept(InterferenceFunctionFinite3DLattice self, INodeVisitor visitor)
+        void InterferenceFunctionFinite3DLattice::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorFullSpheroid_accept(self, visitor)
+        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_accept(self, visitor)
 
-    def getHeight(self):
+    def numberUnitCells1(self):
         r"""
-        getHeight(FormFactorFullSpheroid self) -> double
-        double FormFactorFullSpheroid::getHeight() const
+        numberUnitCells1(InterferenceFunctionFinite3DLattice self) -> unsigned int
+        unsigned InterferenceFunctionFinite3DLattice::numberUnitCells1() const
 
         """
-        return _libBornAgainCore.FormFactorFullSpheroid_getHeight(self)
+        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_numberUnitCells1(self)
 
-    def getRadius(self):
+    def numberUnitCells2(self):
         r"""
-        getRadius(FormFactorFullSpheroid self) -> double
-        double FormFactorFullSpheroid::getRadius() const
+        numberUnitCells2(InterferenceFunctionFinite3DLattice self) -> unsigned int
+        unsigned InterferenceFunctionFinite3DLattice::numberUnitCells2() const
 
         """
-        return _libBornAgainCore.FormFactorFullSpheroid_getRadius(self)
+        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_numberUnitCells2(self)
 
-    def radialExtension(self):
+    def numberUnitCells3(self):
         r"""
-        radialExtension(FormFactorFullSpheroid self) -> double
-        double FormFactorFullSpheroid::radialExtension() const override final
+        numberUnitCells3(InterferenceFunctionFinite3DLattice self) -> unsigned int
+        unsigned InterferenceFunctionFinite3DLattice::numberUnitCells3() const
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        """
+        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_numberUnitCells3(self)
+
+    def lattice(self):
+        r"""
+        lattice(InterferenceFunctionFinite3DLattice self) -> Lattice
+        const Lattice & InterferenceFunctionFinite3DLattice::lattice() const
 
         """
-        return _libBornAgainCore.FormFactorFullSpheroid_radialExtension(self)
+        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_lattice(self)
 
-    def evaluate_for_q(self, q):
+    def supportsMultilayer(self):
         r"""
-        evaluate_for_q(FormFactorFullSpheroid self, cvector_t q) -> complex_t
-        complex_t FormFactorFullSpheroid::evaluate_for_q(cvector_t q) const override final
+        supportsMultilayer(InterferenceFunctionFinite3DLattice self) -> bool
+        bool InterferenceFunctionFinite3DLattice::supportsMultilayer() const override final
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Indicates if this interference function can be used with a multilayer (DWBA mode) 
 
         """
-        return _libBornAgainCore.FormFactorFullSpheroid_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorFullSpheroid
+        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_supportsMultilayer(self)
 
-# Register FormFactorFullSpheroid in _libBornAgainCore:
-_libBornAgainCore.FormFactorFullSpheroid_swigregister(FormFactorFullSpheroid)
+    def getChildren(self):
+        r"""
+        getChildren(InterferenceFunctionFinite3DLattice self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > InterferenceFunctionFinite3DLattice::getChildren() const override final
 
-class FormFactorGauss(IFormFactorBorn):
+        Returns a vector of children (const). 
+
+        """
+        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_getChildren(self)
+
+# Register InterferenceFunctionFinite3DLattice in _libBornAgainCore:
+_libBornAgainCore.InterferenceFunctionFinite3DLattice_swigregister(InterferenceFunctionFinite3DLattice)
+
+class InterferenceFunctionHardDisk(IInterferenceFunction):
     r"""
 
 
-    The form factor of a gaussian.
+    Percus-Yevick hard disk interference function.
 
-    C++ includes: FormFactorGauss.h
+    M.S. Ripoll & C.F. Tejero (1995) Approximate analytical expression for the direct correlation function of hard discs within the Percus-Yevick equation, Molecular Physics, 85:2, 423-428, DOI: 10.1080/00268979500101211
+
+    C++ includes: InterferenceFunctionHardDisk.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self, radius, density):
         r"""
-        __init__(FormFactorGauss self, double length) -> FormFactorGauss
-        __init__(FormFactorGauss self, double width, double height) -> FormFactorGauss
-        FormFactorGauss::FormFactorGauss(double width, double height)
+        __init__(InterferenceFunctionHardDisk self, double radius, double density) -> InterferenceFunctionHardDisk
+        InterferenceFunctionHardDisk::InterferenceFunctionHardDisk(double radius, double density)
 
         """
-        _libBornAgainCore.FormFactorGauss_swiginit(self, _libBornAgainCore.new_FormFactorGauss(*args))
+        _libBornAgainCore.InterferenceFunctionHardDisk_swiginit(self, _libBornAgainCore.new_InterferenceFunctionHardDisk(radius, density))
+    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunctionHardDisk
 
     def clone(self):
         r"""
-        clone(FormFactorGauss self) -> FormFactorGauss
-        FormFactorGauss* FormFactorGauss::clone() const override final
+        clone(InterferenceFunctionHardDisk self) -> InterferenceFunctionHardDisk
+        InterferenceFunctionHardDisk * InterferenceFunctionHardDisk::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorGauss_clone(self)
+        return _libBornAgainCore.InterferenceFunctionHardDisk_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorGauss self, INodeVisitor visitor)
-        void FormFactorGauss::accept(INodeVisitor *visitor) const override final
+        accept(InterferenceFunctionHardDisk self, INodeVisitor visitor)
+        void InterferenceFunctionHardDisk::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorGauss_accept(self, visitor)
+        return _libBornAgainCore.InterferenceFunctionHardDisk_accept(self, visitor)
 
-    def getWidth(self):
+    def getParticleDensity(self):
         r"""
-        getWidth(FormFactorGauss self) -> double
-        double FormFactorGauss::getWidth() const
+        getParticleDensity(InterferenceFunctionHardDisk self) -> double
+        double InterferenceFunctionHardDisk::getParticleDensity() const override final
+
+        If defined by this interference function's parameters, returns the particle density (per area). Otherwise, returns zero or a user-defined value 
 
         """
-        return _libBornAgainCore.FormFactorGauss_getWidth(self)
+        return _libBornAgainCore.InterferenceFunctionHardDisk_getParticleDensity(self)
 
-    def getHeight(self):
+    def radius(self):
         r"""
-        getHeight(FormFactorGauss self) -> double
-        double FormFactorGauss::getHeight() const
+        radius(InterferenceFunctionHardDisk self) -> double
+        double InterferenceFunctionHardDisk::radius() const
 
         """
-        return _libBornAgainCore.FormFactorGauss_getHeight(self)
+        return _libBornAgainCore.InterferenceFunctionHardDisk_radius(self)
 
-    def radialExtension(self):
+    def density(self):
         r"""
-        radialExtension(FormFactorGauss self) -> double
-        double FormFactorGauss::radialExtension() const override final
+        density(InterferenceFunctionHardDisk self) -> double
+        double InterferenceFunctionHardDisk::density() const
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        """
+        return _libBornAgainCore.InterferenceFunctionHardDisk_density(self)
+
+# Register InterferenceFunctionHardDisk in _libBornAgainCore:
+_libBornAgainCore.InterferenceFunctionHardDisk_swigregister(InterferenceFunctionHardDisk)
+
+class InterferenceFunctionNone(IInterferenceFunction):
+    r"""
+
+
+    Default interference function (i.e. absence of any interference).
+
+    C++ includes: InterferenceFunctionNone.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self):
+        r"""
+        __init__(InterferenceFunctionNone self) -> InterferenceFunctionNone
+        InterferenceFunctionNone::InterferenceFunctionNone()
 
         """
-        return _libBornAgainCore.FormFactorGauss_radialExtension(self)
+        _libBornAgainCore.InterferenceFunctionNone_swiginit(self, _libBornAgainCore.new_InterferenceFunctionNone())
 
-    def evaluate_for_q(self, q):
+    def clone(self):
         r"""
-        evaluate_for_q(FormFactorGauss self, cvector_t q) -> complex_t
-        complex_t FormFactorGauss::evaluate_for_q(cvector_t q) const override final
+        clone(InterferenceFunctionNone self) -> InterferenceFunctionNone
+        InterferenceFunctionNone * InterferenceFunctionNone::clone() const override final
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorGauss_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorGauss
+        return _libBornAgainCore.InterferenceFunctionNone_clone(self)
 
-# Register FormFactorGauss in _libBornAgainCore:
-_libBornAgainCore.FormFactorGauss_swigregister(FormFactorGauss)
+    def accept(self, visitor):
+        r"""
+        accept(InterferenceFunctionNone self, INodeVisitor visitor)
+        void InterferenceFunctionNone::accept(INodeVisitor *visitor) const override final
 
-class FormFactorHemiEllipsoid(IFormFactorBorn):
+        Calls the  INodeVisitor's visit method. 
+
+        """
+        return _libBornAgainCore.InterferenceFunctionNone_accept(self, visitor)
+    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunctionNone
+
+# Register InterferenceFunctionNone in _libBornAgainCore:
+_libBornAgainCore.InterferenceFunctionNone_swigregister(InterferenceFunctionNone)
+
+class InterferenceFunctionRadialParaCrystal(IInterferenceFunction):
     r"""
 
 
-    An hemi ellipsoid, obtained by truncating a full ellipsoid in the middle plane spanned by two principal axes.
+    Interference function of radial paracrystal.
 
-    C++ includes: FormFactorHemiEllipsoid.h
+    C++ includes: InterferenceFunctionRadialParaCrystal.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, radius_x, radius_y, height):
+    def __init__(self, peak_distance, damping_length=0.0):
         r"""
-        __init__(FormFactorHemiEllipsoid self, double radius_x, double radius_y, double height) -> FormFactorHemiEllipsoid
-        FormFactorHemiEllipsoid::FormFactorHemiEllipsoid(double radius_x, double radius_y, double height)
+        __init__(InterferenceFunctionRadialParaCrystal self, double peak_distance, double damping_length=0.0) -> InterferenceFunctionRadialParaCrystal
+        InterferenceFunctionRadialParaCrystal::InterferenceFunctionRadialParaCrystal(double peak_distance, double damping_length=0.0)
 
-        Constructor of horizontally oriented ellipsoid, truncated at the central plane.
+        Constructor of interference function of radial paracrystal.
 
         Parameters:
         -----------
 
-        radius_x: 
-        radius of the ellipse base in the x-direction, in nanometers
-
-        radius_y: 
-        radius of the ellipse base in the y-direction, in nanometers
+        peak_distance: 
+        average distance to the next neighbor in nanometers
 
-        height: 
-        height of the hemi ellipsoid in nanometers 
+        damping_length: 
+        the damping (coherence) length of the paracrystal in nanometers 
 
         """
-        _libBornAgainCore.FormFactorHemiEllipsoid_swiginit(self, _libBornAgainCore.new_FormFactorHemiEllipsoid(radius_x, radius_y, height))
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorHemiEllipsoid
+        _libBornAgainCore.InterferenceFunctionRadialParaCrystal_swiginit(self, _libBornAgainCore.new_InterferenceFunctionRadialParaCrystal(peak_distance, damping_length))
 
     def clone(self):
         r"""
-        clone(FormFactorHemiEllipsoid self) -> FormFactorHemiEllipsoid
-        FormFactorHemiEllipsoid* FormFactorHemiEllipsoid::clone() const override final
+        clone(InterferenceFunctionRadialParaCrystal self) -> InterferenceFunctionRadialParaCrystal
+        InterferenceFunctionRadialParaCrystal * InterferenceFunctionRadialParaCrystal::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorHemiEllipsoid_clone(self)
+        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorHemiEllipsoid self, INodeVisitor visitor)
-        void FormFactorHemiEllipsoid::accept(INodeVisitor *visitor) const override final
+        accept(InterferenceFunctionRadialParaCrystal self, INodeVisitor visitor)
+        void InterferenceFunctionRadialParaCrystal::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorHemiEllipsoid_accept(self, visitor)
+        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_accept(self, visitor)
 
-    def getHeight(self):
+    def setKappa(self, kappa):
         r"""
-        getHeight(FormFactorHemiEllipsoid self) -> double
-        double FormFactorHemiEllipsoid::getHeight() const
-
-        """
-        return _libBornAgainCore.FormFactorHemiEllipsoid_getHeight(self)
+        setKappa(InterferenceFunctionRadialParaCrystal self, double kappa)
+        void InterferenceFunctionRadialParaCrystal::setKappa(double kappa)
 
-    def getRadiusX(self):
-        r"""
-        getRadiusX(FormFactorHemiEllipsoid self) -> double
-        double FormFactorHemiEllipsoid::getRadiusX() const
+        Sets size spacing coupling parameter of the Size Spacing Correlation Approximation.
 
-        """
-        return _libBornAgainCore.FormFactorHemiEllipsoid_getRadiusX(self)
+        Parameters:
+        -----------
 
-    def getRadiusY(self):
-        r"""
-        getRadiusY(FormFactorHemiEllipsoid self) -> double
-        double FormFactorHemiEllipsoid::getRadiusY() const
+        size: 
+        spacing coupling parameter 
 
         """
-        return _libBornAgainCore.FormFactorHemiEllipsoid_getRadiusY(self)
+        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_setKappa(self, kappa)
 
-    def radialExtension(self):
+    def kappa(self):
         r"""
-        radialExtension(FormFactorHemiEllipsoid self) -> double
-        double FormFactorHemiEllipsoid::radialExtension() const override final
-
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        kappa(InterferenceFunctionRadialParaCrystal self) -> double
+        double InterferenceFunctionRadialParaCrystal::kappa() const
 
         """
-        return _libBornAgainCore.FormFactorHemiEllipsoid_radialExtension(self)
+        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_kappa(self)
 
-    def evaluate_for_q(self, q):
+    def setDomainSize(self, size):
         r"""
-        evaluate_for_q(FormFactorHemiEllipsoid self, cvector_t q) -> complex_t
-        complex_t FormFactorHemiEllipsoid::evaluate_for_q(cvector_t q) const override final
-
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        setDomainSize(InterferenceFunctionRadialParaCrystal self, double size)
+        void InterferenceFunctionRadialParaCrystal::setDomainSize(double size)
 
-        """
-        return _libBornAgainCore.FormFactorHemiEllipsoid_evaluate_for_q(self, q)
+        Sets domain size (finite size corrections).
 
-# Register FormFactorHemiEllipsoid in _libBornAgainCore:
-_libBornAgainCore.FormFactorHemiEllipsoid_swigregister(FormFactorHemiEllipsoid)
+        Parameters:
+        -----------
 
-class FormFactorIcosahedron(FormFactorPolyhedron):
-    r"""
+        size: 
+        size of coherence domain along the lattice main axis in nanometers 
 
+        """
+        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_setDomainSize(self, size)
 
-    A regular icosahedron.
+    def domainSize(self):
+        r"""
+        domainSize(InterferenceFunctionRadialParaCrystal self) -> double
+        double InterferenceFunctionRadialParaCrystal::domainSize() const
 
-    C++ includes: FormFactorIcosahedron.h
+        """
+        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_domainSize(self)
 
-    """
+    def FTPDF(self, qpar):
+        r"""
+        FTPDF(InterferenceFunctionRadialParaCrystal self, double qpar) -> complex_t
+        complex_t InterferenceFunctionRadialParaCrystal::FTPDF(double qpar) const
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_FTPDF(self, qpar)
 
-    def __init__(self, edge):
+    def setProbabilityDistribution(self, pdf):
         r"""
-        __init__(FormFactorIcosahedron self, double edge) -> FormFactorIcosahedron
-        FormFactorIcosahedron::FormFactorIcosahedron(double edge)
+        setProbabilityDistribution(InterferenceFunctionRadialParaCrystal self, IFTDistribution1D pdf)
+        void InterferenceFunctionRadialParaCrystal::setProbabilityDistribution(const IFTDistribution1D &pdf)
 
-        Constructor of a icosahedron.
+        Sets one-dimensional probability distribution.
 
         Parameters:
         -----------
 
-        edge: 
-        length of the edge in nanometers 
+        pdf: 
+        probability distribution (Fourier transform of probability density) 
 
         """
-        _libBornAgainCore.FormFactorIcosahedron_swiginit(self, _libBornAgainCore.new_FormFactorIcosahedron(edge))
+        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_setProbabilityDistribution(self, pdf)
 
-    def clone(self):
+    def peakDistance(self):
         r"""
-        clone(FormFactorIcosahedron self) -> FormFactorIcosahedron
-        FormFactorIcosahedron* FormFactorIcosahedron::clone() const override final
+        peakDistance(InterferenceFunctionRadialParaCrystal self) -> double
+        double InterferenceFunctionRadialParaCrystal::peakDistance() const
 
-        Returns a clone of this  ISample object. 
+        """
+        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_peakDistance(self)
+
+    def dampingLength(self):
+        r"""
+        dampingLength(InterferenceFunctionRadialParaCrystal self) -> double
+        double InterferenceFunctionRadialParaCrystal::dampingLength() const
 
         """
-        return _libBornAgainCore.FormFactorIcosahedron_clone(self)
+        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_dampingLength(self)
 
-    def accept(self, visitor):
+    def getChildren(self):
         r"""
-        accept(FormFactorIcosahedron self, INodeVisitor visitor)
-        void FormFactorIcosahedron::accept(INodeVisitor *visitor) const override final
+        getChildren(InterferenceFunctionRadialParaCrystal self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > InterferenceFunctionRadialParaCrystal::getChildren() const override final
 
-        Calls the  INodeVisitor's visit method. 
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.FormFactorIcosahedron_accept(self, visitor)
+        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_getChildren(self)
 
-    def getEdge(self):
+    def randomSample(self):
         r"""
-        getEdge(FormFactorIcosahedron self) -> double
-        double FormFactorIcosahedron::getEdge() const
+        randomSample(InterferenceFunctionRadialParaCrystal self) -> double
+        double InterferenceFunctionRadialParaCrystal::randomSample() const
 
         """
-        return _libBornAgainCore.FormFactorIcosahedron_getEdge(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorIcosahedron
+        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_randomSample(self)
+    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunctionRadialParaCrystal
 
-# Register FormFactorIcosahedron in _libBornAgainCore:
-_libBornAgainCore.FormFactorIcosahedron_swigregister(FormFactorIcosahedron)
+# Register InterferenceFunctionRadialParaCrystal in _libBornAgainCore:
+_libBornAgainCore.InterferenceFunctionRadialParaCrystal_swigregister(InterferenceFunctionRadialParaCrystal)
 
-class FormFactorLongBoxGauss(IFormFactorBorn):
+class InterferenceFunctionTwin(IInterferenceFunction):
     r"""
 
 
-    The form factor for a long rectangular box.
+    Interference function for two particles at a mean distance and given standard deviation from each other in a given direction.
 
-    C++ includes: FormFactorLongBoxGauss.h
+    C++ includes: InterferenceFunctionTwin.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, length, width, height):
+    def __init__(self, direction, mean_distance, std_dev):
         r"""
-        __init__(FormFactorLongBoxGauss self, double length, double width, double height) -> FormFactorLongBoxGauss
-        FormFactorLongBoxGauss::FormFactorLongBoxGauss(double length, double width, double height)
+        __init__(InterferenceFunctionTwin self, kvector_t direction, double mean_distance, double std_dev) -> InterferenceFunctionTwin
+        InterferenceFunctionTwin::InterferenceFunctionTwin(const kvector_t &direction, double mean_distance, double std_dev)
 
-        Box constructor.
+        """
+        _libBornAgainCore.InterferenceFunctionTwin_swiginit(self, _libBornAgainCore.new_InterferenceFunctionTwin(direction, mean_distance, std_dev))
 
-        Parameters:
-        -----------
+    def clone(self):
+        r"""
+        clone(InterferenceFunctionTwin self) -> InterferenceFunctionTwin
+        InterferenceFunctionTwin * InterferenceFunctionTwin::clone() const override final
 
-        length: 
-        of  Box's base
-
-        width: 
-        of  Box's base
-
-        height: 
-        of  Box
-
-        """
-        _libBornAgainCore.FormFactorLongBoxGauss_swiginit(self, _libBornAgainCore.new_FormFactorLongBoxGauss(length, width, height))
-
-    def clone(self):
-        r"""
-        clone(FormFactorLongBoxGauss self) -> FormFactorLongBoxGauss
-        FormFactorLongBoxGauss* FormFactorLongBoxGauss::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorLongBoxGauss_clone(self)
+        return _libBornAgainCore.InterferenceFunctionTwin_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorLongBoxGauss self, INodeVisitor visitor)
-        void FormFactorLongBoxGauss::accept(INodeVisitor *visitor) const override final
+        accept(InterferenceFunctionTwin self, INodeVisitor visitor)
+        void InterferenceFunctionTwin::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorLongBoxGauss_accept(self, visitor)
+        return _libBornAgainCore.InterferenceFunctionTwin_accept(self, visitor)
 
-    def getLength(self):
+    def direction(self):
         r"""
-        getLength(FormFactorLongBoxGauss self) -> double
-        double FormFactorLongBoxGauss::getLength() const
+        direction(InterferenceFunctionTwin self) -> kvector_t
+        kvector_t InterferenceFunctionTwin::direction() const
 
         """
-        return _libBornAgainCore.FormFactorLongBoxGauss_getLength(self)
+        return _libBornAgainCore.InterferenceFunctionTwin_direction(self)
 
-    def getHeight(self):
+    def meanDistance(self):
         r"""
-        getHeight(FormFactorLongBoxGauss self) -> double
-        double FormFactorLongBoxGauss::getHeight() const
+        meanDistance(InterferenceFunctionTwin self) -> double
+        double InterferenceFunctionTwin::meanDistance() const
 
         """
-        return _libBornAgainCore.FormFactorLongBoxGauss_getHeight(self)
+        return _libBornAgainCore.InterferenceFunctionTwin_meanDistance(self)
 
-    def getWidth(self):
+    def stdDev(self):
         r"""
-        getWidth(FormFactorLongBoxGauss self) -> double
-        double FormFactorLongBoxGauss::getWidth() const
+        stdDev(InterferenceFunctionTwin self) -> double
+        double InterferenceFunctionTwin::stdDev() const
 
         """
-        return _libBornAgainCore.FormFactorLongBoxGauss_getWidth(self)
+        return _libBornAgainCore.InterferenceFunctionTwin_stdDev(self)
+    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunctionTwin
 
-    def radialExtension(self):
-        r"""
-        radialExtension(FormFactorLongBoxGauss self) -> double
-        double FormFactorLongBoxGauss::radialExtension() const override final
+# Register InterferenceFunctionTwin in _libBornAgainCore:
+_libBornAgainCore.InterferenceFunctionTwin_swigregister(InterferenceFunctionTwin)
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+class ParticleLayout(ILayout):
+    r"""
 
-        """
-        return _libBornAgainCore.FormFactorLongBoxGauss_radialExtension(self)
 
-    def evaluate_for_q(self, q):
-        r"""
-        evaluate_for_q(FormFactorLongBoxGauss self, cvector_t q) -> complex_t
-        complex_t FormFactorLongBoxGauss::evaluate_for_q(cvector_t q) const override final
+    Decorator class that adds particles to  ISample objects.
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+    C++ includes: ParticleLayout.h
 
-        """
-        return _libBornAgainCore.FormFactorLongBoxGauss_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorLongBoxGauss
+    """
 
-# Register FormFactorLongBoxGauss in _libBornAgainCore:
-_libBornAgainCore.FormFactorLongBoxGauss_swigregister(FormFactorLongBoxGauss)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-class FormFactorLongBoxLorentz(IFormFactorBorn):
-    r"""
+    def __init__(self, *args):
+        r"""
+        __init__(ParticleLayout self) -> ParticleLayout
+        __init__(ParticleLayout self, IAbstractParticle particle, double abundance=-1.0) -> ParticleLayout
+        ParticleLayout::ParticleLayout(const IAbstractParticle &particle, double abundance=-1.0)
 
+        """
+        _libBornAgainCore.ParticleLayout_swiginit(self, _libBornAgainCore.new_ParticleLayout(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_ParticleLayout
 
-    The form factor for a long rectangular box.
+    def clone(self):
+        r"""
+        clone(ParticleLayout self) -> ParticleLayout
+        ParticleLayout * ParticleLayout::clone() const final override
 
-    C++ includes: FormFactorLongBoxLorentz.h
+        Returns a clone of this  ISample object. 
 
-    """
+        """
+        return _libBornAgainCore.ParticleLayout_clone(self)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+    def accept(self, visitor):
+        r"""
+        accept(ParticleLayout self, INodeVisitor visitor)
+        void ParticleLayout::accept(INodeVisitor *visitor) const final override
 
-    def __init__(self, length, width, height):
+        Calls the  INodeVisitor's visit method. 
+
+        """
+        return _libBornAgainCore.ParticleLayout_accept(self, visitor)
+
+    def addParticle(self, *args):
         r"""
-        __init__(FormFactorLongBoxLorentz self, double length, double width, double height) -> FormFactorLongBoxLorentz
-        FormFactorLongBoxLorentz::FormFactorLongBoxLorentz(double length, double width, double height)
+        addParticle(ParticleLayout self, IAbstractParticle particle, double abundance=-1.0, kvector_t position={}, IRotation rotation=IdentityRotation())
+        void ParticleLayout::addParticle(const IAbstractParticle &particle, double abundance=-1.0, const kvector_t position={}, const IRotation &rotation=IdentityRotation())
 
-        Box constructor.
+        Adds particle to the layout with abundance, position and the rotation defined.
 
         Parameters:
         -----------
 
-        length: 
-        of  Box's base
+        particle: 
+        to be added
 
-        width: 
-        of  Box's base
+        abundance: 
+         Particle abundance
 
-        height: 
-        of  Box
+        position: 
+         Particle position
+
+        rotation: 
+         Particle rotation 
 
         """
-        _libBornAgainCore.FormFactorLongBoxLorentz_swiginit(self, _libBornAgainCore.new_FormFactorLongBoxLorentz(length, width, height))
+        return _libBornAgainCore.ParticleLayout_addParticle(self, *args)
 
-    def clone(self):
+    def particles(self):
         r"""
-        clone(FormFactorLongBoxLorentz self) -> FormFactorLongBoxLorentz
-        FormFactorLongBoxLorentz* FormFactorLongBoxLorentz::clone() const override final
+        particles(ParticleLayout self) -> SafePointerVector< IParticle >
+        SafePointerVector< IParticle > ParticleLayout::particles() const final override
 
-        Returns a clone of this  ISample object. 
+        Returns information on all particles (type and abundance) and generates new particles if an  IAbstractParticle denotes a collection 
 
         """
-        return _libBornAgainCore.FormFactorLongBoxLorentz_clone(self)
+        return _libBornAgainCore.ParticleLayout_particles(self)
 
-    def accept(self, visitor):
+    def interferenceFunction(self):
         r"""
-        accept(FormFactorLongBoxLorentz self, INodeVisitor visitor)
-        void FormFactorLongBoxLorentz::accept(INodeVisitor *visitor) const override final
+        interferenceFunction(ParticleLayout self) -> IInterferenceFunction
+        const IInterferenceFunction * ParticleLayout::interferenceFunction() const final override
 
-        Calls the  INodeVisitor's visit method. 
+        Returns the interference function. 
 
         """
-        return _libBornAgainCore.FormFactorLongBoxLorentz_accept(self, visitor)
+        return _libBornAgainCore.ParticleLayout_interferenceFunction(self)
 
-    def getLength(self):
+    def getTotalAbundance(self):
         r"""
-        getLength(FormFactorLongBoxLorentz self) -> double
-        double FormFactorLongBoxLorentz::getLength() const
+        getTotalAbundance(ParticleLayout self) -> double
+        double ParticleLayout::getTotalAbundance() const final override
+
+        Get total abundance of all particles. 
 
         """
-        return _libBornAgainCore.FormFactorLongBoxLorentz_getLength(self)
+        return _libBornAgainCore.ParticleLayout_getTotalAbundance(self)
 
-    def getHeight(self):
+    def setInterferenceFunction(self, interference_function):
         r"""
-        getHeight(FormFactorLongBoxLorentz self) -> double
-        double FormFactorLongBoxLorentz::getHeight() const
+        setInterferenceFunction(ParticleLayout self, IInterferenceFunction interference_function)
+        void ParticleLayout::setInterferenceFunction(const IInterferenceFunction &interference_function)
+
+        Adds interference functions. 
 
         """
-        return _libBornAgainCore.FormFactorLongBoxLorentz_getHeight(self)
+        return _libBornAgainCore.ParticleLayout_setInterferenceFunction(self, interference_function)
 
-    def getWidth(self):
+    def totalParticleSurfaceDensity(self):
         r"""
-        getWidth(FormFactorLongBoxLorentz self) -> double
-        double FormFactorLongBoxLorentz::getWidth() const
+        totalParticleSurfaceDensity(ParticleLayout self) -> double
+        double ParticleLayout::totalParticleSurfaceDensity() const final override
+
+        Returns surface density of all particles. 
 
         """
-        return _libBornAgainCore.FormFactorLongBoxLorentz_getWidth(self)
+        return _libBornAgainCore.ParticleLayout_totalParticleSurfaceDensity(self)
 
-    def radialExtension(self):
+    def setTotalParticleSurfaceDensity(self, particle_density):
         r"""
-        radialExtension(FormFactorLongBoxLorentz self) -> double
-        double FormFactorLongBoxLorentz::radialExtension() const override final
+        setTotalParticleSurfaceDensity(ParticleLayout self, double particle_density)
+        void ParticleLayout::setTotalParticleSurfaceDensity(double particle_density) final override
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Sets total particle surface density.
+
+        Parameters:
+        -----------
+
+        particle_density: 
+        number of particles per square nanometer 
 
         """
-        return _libBornAgainCore.FormFactorLongBoxLorentz_radialExtension(self)
+        return _libBornAgainCore.ParticleLayout_setTotalParticleSurfaceDensity(self, particle_density)
 
-    def evaluate_for_q(self, q):
+    def getChildren(self):
         r"""
-        evaluate_for_q(FormFactorLongBoxLorentz self, cvector_t q) -> complex_t
-        complex_t FormFactorLongBoxLorentz::evaluate_for_q(cvector_t q) const override final
+        getChildren(ParticleLayout self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > ParticleLayout::getChildren() const final override
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.FormFactorLongBoxLorentz_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorLongBoxLorentz
+        return _libBornAgainCore.ParticleLayout_getChildren(self)
 
-# Register FormFactorLongBoxLorentz in _libBornAgainCore:
-_libBornAgainCore.FormFactorLongBoxLorentz_swigregister(FormFactorLongBoxLorentz)
+# Register ParticleLayout in _libBornAgainCore:
+_libBornAgainCore.ParticleLayout_swigregister(ParticleLayout)
 
-class FormFactorLorentz(IFormFactorBorn):
+class Beam(INode):
     r"""
 
 
-    The form factor of a lorentzian.
+    Beam defined by wavelength, direction and intensity.
 
-    C++ includes: FormFactorLorentz.h
+    C++ includes: Beam.h
 
     """
 
@@ -11505,1854 +11175,1773 @@ class FormFactorLorentz(IFormFactorBorn):
 
     def __init__(self, *args):
         r"""
-        __init__(FormFactorLorentz self, double length) -> FormFactorLorentz
-        __init__(FormFactorLorentz self, double width, double height) -> FormFactorLorentz
-        FormFactorLorentz::FormFactorLorentz(double width, double height)
+        __init__(Beam self) -> Beam
+        __init__(Beam self, Beam other) -> Beam
+        Beam::Beam(const Beam &other)
 
         """
-        _libBornAgainCore.FormFactorLorentz_swiginit(self, _libBornAgainCore.new_FormFactorLorentz(*args))
+        _libBornAgainCore.Beam_swiginit(self, _libBornAgainCore.new_Beam(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_Beam
 
-    def clone(self):
+    def getCentralK(self):
         r"""
-        clone(FormFactorLorentz self) -> FormFactorLorentz
-        FormFactorLorentz* FormFactorLorentz::clone() const override final
+        getCentralK(Beam self) -> kvector_t
+        kvector_t Beam::getCentralK() const
 
-        Returns a clone of this  ISample object. 
+        Returns the wavevector. 
 
         """
-        return _libBornAgainCore.FormFactorLorentz_clone(self)
+        return _libBornAgainCore.Beam_getCentralK(self)
 
-    def accept(self, visitor):
+    def setCentralK(self, wavelength, alpha_i, phi_i):
         r"""
-        accept(FormFactorLorentz self, INodeVisitor visitor)
-        void FormFactorLorentz::accept(INodeVisitor *visitor) const override final
+        setCentralK(Beam self, double wavelength, double alpha_i, double phi_i)
+        void Beam::setCentralK(double wavelength, double alpha_i, double phi_i)
 
-        Calls the  INodeVisitor's visit method. 
+        Sets the wavevector in terms of wavelength and incoming angles. 
 
         """
-        return _libBornAgainCore.FormFactorLorentz_accept(self, visitor)
+        return _libBornAgainCore.Beam_setCentralK(self, wavelength, alpha_i, phi_i)
 
-    def getWidth(self):
+    def getIntensity(self):
         r"""
-        getWidth(FormFactorLorentz self) -> double
-        double FormFactorLorentz::getWidth() const
+        getIntensity(Beam self) -> double
+        double Beam::getIntensity() const
+
+        Returns the beam intensity in neutrons/sec. 
 
         """
-        return _libBornAgainCore.FormFactorLorentz_getWidth(self)
+        return _libBornAgainCore.Beam_getIntensity(self)
 
-    def getHeight(self):
+    def setIntensity(self, intensity):
         r"""
-        getHeight(FormFactorLorentz self) -> double
-        double FormFactorLorentz::getHeight() const
+        setIntensity(Beam self, double intensity)
+        void Beam::setIntensity(double intensity)
+
+        Sets the beam intensity in neutrons/sec. 
 
         """
-        return _libBornAgainCore.FormFactorLorentz_getHeight(self)
+        return _libBornAgainCore.Beam_setIntensity(self, intensity)
 
-    def radialExtension(self):
+    def footprintFactor(self):
         r"""
-        radialExtension(FormFactorLorentz self) -> double
-        double FormFactorLorentz::radialExtension() const override final
+        footprintFactor(Beam self) -> IFootprintFactor
+        const IFootprintFactor * Beam::footprintFactor() const
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Returns footprint factor. 
 
         """
-        return _libBornAgainCore.FormFactorLorentz_radialExtension(self)
+        return _libBornAgainCore.Beam_footprintFactor(self)
 
-    def evaluate_for_q(self, q):
+    def setFootprintFactor(self, shape_factor):
         r"""
-        evaluate_for_q(FormFactorLorentz self, cvector_t q) -> complex_t
-        complex_t FormFactorLorentz::evaluate_for_q(cvector_t q) const override final
+        setFootprintFactor(Beam self, IFootprintFactor shape_factor)
+        void Beam::setFootprintFactor(const IFootprintFactor &shape_factor)
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Sets footprint factor to the beam. 
 
         """
-        return _libBornAgainCore.FormFactorLorentz_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorLorentz
-
-# Register FormFactorLorentz in _libBornAgainCore:
-_libBornAgainCore.FormFactorLorentz_swigregister(FormFactorLorentz)
+        return _libBornAgainCore.Beam_setFootprintFactor(self, shape_factor)
 
-class FormFactorOrnsteinZernike(IFormFactorBorn):
-    r"""
+    def setWidthRatio(self, width_ratio):
+        r"""
+        setWidthRatio(Beam self, double width_ratio)
+        void Beam::setWidthRatio(double width_ratio)
 
+        Sets beam to sample width ratio in footprint factor. 
 
-    The form factor of a Ornstein-Zernike (see doi:10.1038/pj.2010.110).
+        """
+        return _libBornAgainCore.Beam_setWidthRatio(self, width_ratio)
 
-    C++ includes: FormFactorOrnsteinZernike.h
+    def setPolarization(self, bloch_vector):
+        r"""
+        setPolarization(Beam self, kvector_t bloch_vector)
+        void Beam::setPolarization(const kvector_t bloch_vector)
 
-    """
+        Sets the polarization density matrix according to the given Bloch vector. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.Beam_setPolarization(self, bloch_vector)
 
-    def __init__(self, I0, xi_xy, xi_z):
+    def getBlochVector(self):
         r"""
-        __init__(FormFactorOrnsteinZernike self, double I0, double xi_xy, double xi_z) -> FormFactorOrnsteinZernike
-        FormFactorOrnsteinZernike::FormFactorOrnsteinZernike(double I0, double xi_xy, double xi_z)
+        getBlochVector(Beam self) -> kvector_t
+        kvector_t Beam::getBlochVector() const
 
         """
-        _libBornAgainCore.FormFactorOrnsteinZernike_swiginit(self, _libBornAgainCore.new_FormFactorOrnsteinZernike(I0, xi_xy, xi_z))
+        return _libBornAgainCore.Beam_getBlochVector(self)
 
-    def clone(self):
+    def getWavelength(self):
         r"""
-        clone(FormFactorOrnsteinZernike self) -> FormFactorOrnsteinZernike
-        FormFactorOrnsteinZernike* FormFactorOrnsteinZernike::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        getWavelength(Beam self) -> double
+        double Beam::getWavelength() const
 
         """
-        return _libBornAgainCore.FormFactorOrnsteinZernike_clone(self)
+        return _libBornAgainCore.Beam_getWavelength(self)
 
-    def accept(self, visitor):
+    def getAlpha(self):
         r"""
-        accept(FormFactorOrnsteinZernike self, INodeVisitor visitor)
-        void FormFactorOrnsteinZernike::accept(INodeVisitor *visitor) const override final
+        getAlpha(Beam self) -> double
+        double Beam::getAlpha() const
 
-        Calls the  INodeVisitor's visit method. 
+        """
+        return _libBornAgainCore.Beam_getAlpha(self)
+
+    def getPhi(self):
+        r"""
+        getPhi(Beam self) -> double
+        double Beam::getPhi() const
 
         """
-        return _libBornAgainCore.FormFactorOrnsteinZernike_accept(self, visitor)
+        return _libBornAgainCore.Beam_getPhi(self)
 
-    def radialExtension(self):
+    def accept(self, visitor):
         r"""
-        radialExtension(FormFactorOrnsteinZernike self) -> double
-        double FormFactorOrnsteinZernike::radialExtension() const override final
+        accept(Beam self, INodeVisitor visitor)
+        void Beam::accept(INodeVisitor *visitor) const override
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorOrnsteinZernike_radialExtension(self)
+        return _libBornAgainCore.Beam_accept(self, visitor)
 
-    def evaluate_for_q(self, q):
+    def getChildren(self):
         r"""
-        evaluate_for_q(FormFactorOrnsteinZernike self, cvector_t q) -> complex_t
-        complex_t FormFactorOrnsteinZernike::evaluate_for_q(cvector_t q) const override final
+        getChildren(Beam self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > Beam::getChildren() const override
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.FormFactorOrnsteinZernike_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorOrnsteinZernike
+        return _libBornAgainCore.Beam_getChildren(self)
 
-# Register FormFactorOrnsteinZernike in _libBornAgainCore:
-_libBornAgainCore.FormFactorOrnsteinZernike_swigregister(FormFactorOrnsteinZernike)
+# Register Beam in _libBornAgainCore:
+_libBornAgainCore.Beam_swigregister(Beam)
 
-class FormFactorPrism3(FormFactorPolygonalPrism):
+class IFootprintFactor(ICloneable, INode):
     r"""
 
 
-    A prism based on an equilateral triangle.
+    Abstract base for classes that calculate the beam footprint factor
 
-    C++ includes: FormFactorPrism3.h
+    C++ includes: IFootprintFactor.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IFootprintFactor
 
-    def __init__(self, base_edge, height):
+    def clone(self):
         r"""
-        __init__(FormFactorPrism3 self, double base_edge, double height) -> FormFactorPrism3
-        FormFactorPrism3::FormFactorPrism3(double base_edge, double height)
-
-        Constructor of a prism with an equilaterial triangle base.
-
-        Parameters:
-        -----------
-
-        base_edge: 
-        length of the base edge in nanometers
-
-        height: 
-        height in nanometers 
+        clone(IFootprintFactor self) -> IFootprintFactor
+        virtual IFootprintFactor* IFootprintFactor::clone() const =0
 
         """
-        _libBornAgainCore.FormFactorPrism3_swiginit(self, _libBornAgainCore.new_FormFactorPrism3(base_edge, height))
+        return _libBornAgainCore.IFootprintFactor_clone(self)
 
-    def clone(self):
+    def setWidthRatio(self, width_ratio):
         r"""
-        clone(FormFactorPrism3 self) -> FormFactorPrism3
-        FormFactorPrism3* FormFactorPrism3::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        setWidthRatio(IFootprintFactor self, double width_ratio)
+        void IFootprintFactor::setWidthRatio(double width_ratio)
 
         """
-        return _libBornAgainCore.FormFactorPrism3_clone(self)
+        return _libBornAgainCore.IFootprintFactor_setWidthRatio(self, width_ratio)
 
-    def accept(self, visitor):
+    def widthRatio(self):
         r"""
-        accept(FormFactorPrism3 self, INodeVisitor visitor)
-        void FormFactorPrism3::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
+        widthRatio(IFootprintFactor self) -> double
+        double IFootprintFactor::widthRatio() const
 
         """
-        return _libBornAgainCore.FormFactorPrism3_accept(self, visitor)
+        return _libBornAgainCore.IFootprintFactor_widthRatio(self)
 
-    def getBaseEdge(self):
+    def calculate(self, alpha):
         r"""
-        getBaseEdge(FormFactorPrism3 self) -> double
-        double FormFactorPrism3::getBaseEdge() const
+        calculate(IFootprintFactor self, double alpha) -> double
+        virtual double IFootprintFactor::calculate(double alpha) const =0
 
-        """
-        return _libBornAgainCore.FormFactorPrism3_getBaseEdge(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorPrism3
+        Calculate footprint correction coefficient from the beam incident angle  alpha. 
 
-# Register FormFactorPrism3 in _libBornAgainCore:
-_libBornAgainCore.FormFactorPrism3_swigregister(FormFactorPrism3)
+        """
+        return _libBornAgainCore.IFootprintFactor_calculate(self, alpha)
 
-class FormFactorPrism6(FormFactorPolygonalPrism):
-    r"""
+    def _print(self):
+        r"""
+        _print(IFootprintFactor self) -> std::string
+        virtual std::string IFootprintFactor::print() const =0
 
+        Print python-formatted footprint definition. 
 
-    A prism based on a regular hexagonal.
+        """
+        return _libBornAgainCore.IFootprintFactor__print(self)
 
-    C++ includes: FormFactorPrism6.h
+# Register IFootprintFactor in _libBornAgainCore:
+_libBornAgainCore.IFootprintFactor_swigregister(IFootprintFactor)
 
-    """
+class FootprintGauss(IFootprintFactor):
+    r"""Proxy of C++ FootprintGauss class."""
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, base_edge, height):
-        r"""
-        __init__(FormFactorPrism6 self, double base_edge, double height) -> FormFactorPrism6
-        FormFactorPrism6::FormFactorPrism6(double base_edge, double height)
-
-        Constructor of a prism with a regular hexagonal base.
-
-        Parameters:
-        -----------
+    def __init__(self, width_ratio):
+        r"""__init__(FootprintGauss self, double width_ratio) -> FootprintGauss"""
+        _libBornAgainCore.FootprintGauss_swiginit(self, _libBornAgainCore.new_FootprintGauss(width_ratio))
 
-        base_edge: 
-        length of the hexagonal base in nanometers
+    def accept(self, visitor):
+        r"""
+        accept(FootprintGauss self, INodeVisitor visitor)
+        virtual void INode::accept(INodeVisitor *visitor) const =0
 
-        height: 
-        height in nanometers 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        _libBornAgainCore.FormFactorPrism6_swiginit(self, _libBornAgainCore.new_FormFactorPrism6(base_edge, height))
+        return _libBornAgainCore.FootprintGauss_accept(self, visitor)
 
     def clone(self):
         r"""
-        clone(FormFactorPrism6 self) -> FormFactorPrism6
-        FormFactorPrism6* FormFactorPrism6::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        clone(FootprintGauss self) -> FootprintGauss
+        virtual IFootprintFactor* IFootprintFactor::clone() const =0
 
         """
-        return _libBornAgainCore.FormFactorPrism6_clone(self)
+        return _libBornAgainCore.FootprintGauss_clone(self)
 
-    def accept(self, visitor):
+    def calculate(self, alpha):
         r"""
-        accept(FormFactorPrism6 self, INodeVisitor visitor)
-        void FormFactorPrism6::accept(INodeVisitor *visitor) const override final
+        calculate(FootprintGauss self, double alpha) -> double
+        virtual double IFootprintFactor::calculate(double alpha) const =0
 
-        Calls the  INodeVisitor's visit method. 
+        Calculate footprint correction coefficient from the beam incident angle  alpha. 
 
         """
-        return _libBornAgainCore.FormFactorPrism6_accept(self, visitor)
+        return _libBornAgainCore.FootprintGauss_calculate(self, alpha)
 
-    def getBaseEdge(self):
+    def _print(self):
         r"""
-        getBaseEdge(FormFactorPrism6 self) -> double
-        double FormFactorPrism6::getBaseEdge() const
+        _print(FootprintGauss self) -> std::string
+        virtual std::string IFootprintFactor::print() const =0
+
+        Print python-formatted footprint definition. 
 
         """
-        return _libBornAgainCore.FormFactorPrism6_getBaseEdge(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorPrism6
+        return _libBornAgainCore.FootprintGauss__print(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FootprintGauss
 
-# Register FormFactorPrism6 in _libBornAgainCore:
-_libBornAgainCore.FormFactorPrism6_swigregister(FormFactorPrism6)
+# Register FootprintGauss in _libBornAgainCore:
+_libBornAgainCore.FootprintGauss_swigregister(FootprintGauss)
 
-class FormFactorPyramid(FormFactorPolyhedron):
-    r"""
+class FootprintSquare(IFootprintFactor):
+    r"""Proxy of C++ FootprintSquare class."""
 
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    A frustum with a quadratic base.
-
-    C++ includes: FormFactorPyramid.h
-
-    """
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+    def __init__(self, width_ratio):
+        r"""__init__(FootprintSquare self, double width_ratio) -> FootprintSquare"""
+        _libBornAgainCore.FootprintSquare_swiginit(self, _libBornAgainCore.new_FootprintSquare(width_ratio))
 
-    def __init__(self, base_edge, height, alpha):
+    def accept(self, visitor):
         r"""
-        __init__(FormFactorPyramid self, double base_edge, double height, double alpha) -> FormFactorPyramid
-        FormFactorPyramid::FormFactorPyramid(double base_edge, double height, double alpha)
-
-        Constructor of a truncated pyramid with a square base
-
-        Parameters:
-        -----------
-
-        base_edge: 
-        length of the square base in nanometers
-
-        height: 
-        height of the pyramid in nanometers
+        accept(FootprintSquare self, INodeVisitor visitor)
+        virtual void INode::accept(INodeVisitor *visitor) const =0
 
-        alpha: 
-        dihedral angle between the base and a side face in radians 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        _libBornAgainCore.FormFactorPyramid_swiginit(self, _libBornAgainCore.new_FormFactorPyramid(base_edge, height, alpha))
+        return _libBornAgainCore.FootprintSquare_accept(self, visitor)
 
     def clone(self):
         r"""
-        clone(FormFactorPyramid self) -> FormFactorPyramid
-        FormFactorPyramid* FormFactorPyramid::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        clone(FootprintSquare self) -> FootprintSquare
+        virtual IFootprintFactor* IFootprintFactor::clone() const =0
 
         """
-        return _libBornAgainCore.FormFactorPyramid_clone(self)
+        return _libBornAgainCore.FootprintSquare_clone(self)
 
-    def accept(self, visitor):
+    def calculate(self, alpha):
         r"""
-        accept(FormFactorPyramid self, INodeVisitor visitor)
-        void FormFactorPyramid::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
-
-        """
-        return _libBornAgainCore.FormFactorPyramid_accept(self, visitor)
+        calculate(FootprintSquare self, double alpha) -> double
+        virtual double IFootprintFactor::calculate(double alpha) const =0
 
-    def getHeight(self):
-        r"""
-        getHeight(FormFactorPyramid self) -> double
-        double FormFactorPyramid::getHeight() const
+        Calculate footprint correction coefficient from the beam incident angle  alpha. 
 
         """
-        return _libBornAgainCore.FormFactorPyramid_getHeight(self)
+        return _libBornAgainCore.FootprintSquare_calculate(self, alpha)
 
-    def getBaseEdge(self):
+    def _print(self):
         r"""
-        getBaseEdge(FormFactorPyramid self) -> double
-        double FormFactorPyramid::getBaseEdge() const
-
-        """
-        return _libBornAgainCore.FormFactorPyramid_getBaseEdge(self)
+        _print(FootprintSquare self) -> std::string
+        virtual std::string IFootprintFactor::print() const =0
 
-    def getAlpha(self):
-        r"""
-        getAlpha(FormFactorPyramid self) -> double
-        double FormFactorPyramid::getAlpha() const
+        Print python-formatted footprint definition. 
 
         """
-        return _libBornAgainCore.FormFactorPyramid_getAlpha(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorPyramid
+        return _libBornAgainCore.FootprintSquare__print(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FootprintSquare
 
-# Register FormFactorPyramid in _libBornAgainCore:
-_libBornAgainCore.FormFactorPyramid_swigregister(FormFactorPyramid)
+# Register FootprintSquare in _libBornAgainCore:
+_libBornAgainCore.FootprintSquare_swigregister(FootprintSquare)
 
-class FormFactorRipple1Box(ProfileRipple1):
+class IFormFactorDecorator(IFormFactor):
     r"""
 
 
-    The form factor for a cosine ripple, with box profile in elongation direction.
+    Encapsulates another formfactor and adds extra functionality (a scalar factor, a position-dependent phase factor, ...).
 
-    C++ includes: FormFactorRipple1.h
+    This class is designed according to the Decorator Pattern. It inherits from  IFormFactor and has a member of type IFormFactor*.
+
+    C++ includes: IFormFactorDecorator.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
-
-    def __init__(self, length, width, height):
-        r"""
-        __init__(FormFactorRipple1Box self, double length, double width, double height) -> FormFactorRipple1Box
-        FormFactorRipple1Box::FormFactorRipple1Box(double length, double width, double height)
 
-        """
-        _libBornAgainCore.FormFactorRipple1Box_swiginit(self, _libBornAgainCore.new_FormFactorRipple1Box(length, width, height))
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IFormFactorDecorator
 
     def clone(self):
         r"""
-        clone(FormFactorRipple1Box self) -> FormFactorRipple1Box
-        FormFactorRipple1Box * FormFactorRipple1Box::clone() const override final
+        clone(IFormFactorDecorator self) -> IFormFactorDecorator
+        IFormFactorDecorator* IFormFactorDecorator::clone() const override=0
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorRipple1Box_clone(self)
+        return _libBornAgainCore.IFormFactorDecorator_clone(self)
 
-    def accept(self, visitor):
+    def setAmbientMaterial(self, material):
         r"""
-        accept(FormFactorRipple1Box self, INodeVisitor visitor)
-        void FormFactorRipple1Box::accept(INodeVisitor *visitor) const override final
+        setAmbientMaterial(IFormFactorDecorator self, Material material)
+        void IFormFactorDecorator::setAmbientMaterial(Material material) override
 
-        Calls the  INodeVisitor's visit method. 
+        Passes the material in which this particle is embedded. 
 
         """
-        return _libBornAgainCore.FormFactorRipple1Box_accept(self, visitor)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorRipple1Box
-
-# Register FormFactorRipple1Box in _libBornAgainCore:
-_libBornAgainCore.FormFactorRipple1Box_swigregister(FormFactorRipple1Box)
+        return _libBornAgainCore.IFormFactorDecorator_setAmbientMaterial(self, material)
 
-class FormFactorRipple1Gauss(ProfileRipple1):
-    r"""
+    def volume(self):
+        r"""
+        volume(IFormFactorDecorator self) -> double
+        double IFormFactorDecorator::volume() const override
 
+        Returns the total volume of the particle of this form factor's shape. 
 
-    The form factor for a cosine ripple, with Gaussian profile in elongation direction.
+        """
+        return _libBornAgainCore.IFormFactorDecorator_volume(self)
 
-    C++ includes: FormFactorRipple1.h
+    def radialExtension(self):
+        r"""
+        radialExtension(IFormFactorDecorator self) -> double
+        double IFormFactorDecorator::radialExtension() const override
 
-    """
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.IFormFactorDecorator_radialExtension(self)
 
-    def __init__(self, length, width, height):
+    def bottomZ(self, rotation):
         r"""
-        __init__(FormFactorRipple1Gauss self, double length, double width, double height) -> FormFactorRipple1Gauss
-        FormFactorRipple1Gauss::FormFactorRipple1Gauss(double length, double width, double height)
+        bottomZ(IFormFactorDecorator self, IRotation rotation) -> double
+        double IFormFactorDecorator::bottomZ(const IRotation &rotation) const override
+
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        _libBornAgainCore.FormFactorRipple1Gauss_swiginit(self, _libBornAgainCore.new_FormFactorRipple1Gauss(length, width, height))
+        return _libBornAgainCore.IFormFactorDecorator_bottomZ(self, rotation)
 
-    def clone(self):
+    def topZ(self, rotation):
         r"""
-        clone(FormFactorRipple1Gauss self) -> FormFactorRipple1Gauss
-        FormFactorRipple1Gauss * FormFactorRipple1Gauss::clone() const override final
+        topZ(IFormFactorDecorator self, IRotation rotation) -> double
+        double IFormFactorDecorator::topZ(const IRotation &rotation) const override
 
-        Returns a clone of this  ISample object. 
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.FormFactorRipple1Gauss_clone(self)
+        return _libBornAgainCore.IFormFactorDecorator_topZ(self, rotation)
 
-    def accept(self, visitor):
+    def getFormFactor(self):
         r"""
-        accept(FormFactorRipple1Gauss self, INodeVisitor visitor)
-        void FormFactorRipple1Gauss::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
+        getFormFactor(IFormFactorDecorator self) -> IFormFactor
+        const IFormFactor* IFormFactorDecorator::getFormFactor() const
 
         """
-        return _libBornAgainCore.FormFactorRipple1Gauss_accept(self, visitor)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorRipple1Gauss
+        return _libBornAgainCore.IFormFactorDecorator_getFormFactor(self)
 
-# Register FormFactorRipple1Gauss in _libBornAgainCore:
-_libBornAgainCore.FormFactorRipple1Gauss_swigregister(FormFactorRipple1Gauss)
+# Register IFormFactorDecorator in _libBornAgainCore:
+_libBornAgainCore.IFormFactorDecorator_swigregister(IFormFactorDecorator)
 
-class FormFactorRipple1Lorentz(ProfileRipple1):
+class IMultiLayerBuilder(IParameterized):
     r"""
 
 
-    The form factor for a cosine ripple, with Lorentz form factor in elongation direction.
+    Interface to the class capable to build samples to simulate.
 
-    C++ includes: FormFactorRipple1.h
+    C++ includes: IMultiLayerBuilder.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, length, width, height):
+    def __init__(self):
         r"""
-        __init__(FormFactorRipple1Lorentz self, double length, double width, double height) -> FormFactorRipple1Lorentz
-        FormFactorRipple1Lorentz::FormFactorRipple1Lorentz(double length, double width, double height)
+        __init__(IMultiLayerBuilder self) -> IMultiLayerBuilder
+        IMultiLayerBuilder::IMultiLayerBuilder()
 
         """
-        _libBornAgainCore.FormFactorRipple1Lorentz_swiginit(self, _libBornAgainCore.new_FormFactorRipple1Lorentz(length, width, height))
+        if self.__class__ == IMultiLayerBuilder:
+            _self = None
+        else:
+            _self = self
+        _libBornAgainCore.IMultiLayerBuilder_swiginit(self, _libBornAgainCore.new_IMultiLayerBuilder(_self, ))
+    __swig_destroy__ = _libBornAgainCore.delete_IMultiLayerBuilder
 
-    def clone(self):
+    def buildSample(self):
         r"""
-        clone(FormFactorRipple1Lorentz self) -> FormFactorRipple1Lorentz
-        FormFactorRipple1Lorentz * FormFactorRipple1Lorentz::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        buildSample(IMultiLayerBuilder self) -> MultiLayer
+        virtual MultiLayer* IMultiLayerBuilder::buildSample() const =0
 
         """
-        return _libBornAgainCore.FormFactorRipple1Lorentz_clone(self)
+        return _libBornAgainCore.IMultiLayerBuilder_buildSample(self)
 
-    def accept(self, visitor):
+    def createSample(self, index=0):
         r"""
-        accept(FormFactorRipple1Lorentz self, INodeVisitor visitor)
-        void FormFactorRipple1Lorentz::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
+        createSample(IMultiLayerBuilder self, size_t index=0) -> MultiLayer
+        virtual MultiLayer* IMultiLayerBuilder::createSample(size_t index=0)
 
         """
-        return _libBornAgainCore.FormFactorRipple1Lorentz_accept(self, visitor)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorRipple1Lorentz
-
-# Register FormFactorRipple1Lorentz in _libBornAgainCore:
-_libBornAgainCore.FormFactorRipple1Lorentz_swigregister(FormFactorRipple1Lorentz)
-
-class FormFactorRipple2Box(ProfileRipple2):
-    r"""
-
+        return _libBornAgainCore.IMultiLayerBuilder_createSample(self, index)
 
-    The form factor for a cosine ripple, with box profile in elongation direction.
+    def size(self):
+        r"""
+        size(IMultiLayerBuilder self) -> size_t
+        virtual size_t IMultiLayerBuilder::size()
 
-    C++ includes: FormFactorRipple2.h
+        """
+        return _libBornAgainCore.IMultiLayerBuilder_size(self)
 
-    """
+    def registerParameter(self, name, parpointer):
+        r"""
+        registerParameter(IMultiLayerBuilder self, std::string const & name, int64_t parpointer) -> RealParameter
+        RealParameter & IParameterized::registerParameter(const std::string &name, double *parpointer)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.IMultiLayerBuilder_registerParameter(self, name, parpointer)
 
-    def __init__(self, length, width, height, asymmetry):
+    def setParameterValue(self, name, value):
         r"""
-        __init__(FormFactorRipple2Box self, double length, double width, double height, double asymmetry) -> FormFactorRipple2Box
-        FormFactorRipple2Box::FormFactorRipple2Box(double length, double width, double height, double asymmetry)
+        setParameterValue(IMultiLayerBuilder self, std::string const & name, double value)
+        void IParameterized::setParameterValue(const std::string &name, double value)
 
         """
-        _libBornAgainCore.FormFactorRipple2Box_swiginit(self, _libBornAgainCore.new_FormFactorRipple2Box(length, width, height, asymmetry))
+        return _libBornAgainCore.IMultiLayerBuilder_setParameterValue(self, name, value)
 
-    def clone(self):
+    def parametersToString(self):
         r"""
-        clone(FormFactorRipple2Box self) -> FormFactorRipple2Box
-        FormFactorRipple2Box * FormFactorRipple2Box::clone() const override final
+        parametersToString(IMultiLayerBuilder self) -> std::string
+        std::string IParameterized::parametersToString() const
 
-        Returns a clone of this  ISample object. 
+        Returns multiline string representing available parameters. 
 
         """
-        return _libBornAgainCore.FormFactorRipple2Box_clone(self)
+        return _libBornAgainCore.IMultiLayerBuilder_parametersToString(self)
 
-    def accept(self, visitor):
+    def createParameterTree(self):
         r"""
-        accept(FormFactorRipple2Box self, INodeVisitor visitor)
-        void FormFactorRipple2Box::accept(INodeVisitor *visitor) const override final
+        createParameterTree(IMultiLayerBuilder self) -> ParameterPool
+        ParameterPool * IParameterized::createParameterTree() const
 
-        Calls the  INodeVisitor's visit method. 
+        Creates new parameter pool, with all local parameters and those of its children. 
 
         """
-        return _libBornAgainCore.FormFactorRipple2Box_accept(self, visitor)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorRipple2Box
+        return _libBornAgainCore.IMultiLayerBuilder_createParameterTree(self)
 
-# Register FormFactorRipple2Box in _libBornAgainCore:
-_libBornAgainCore.FormFactorRipple2Box_swigregister(FormFactorRipple2Box)
+    def parameterPool(self):
+        r"""
+        parameterPool(IMultiLayerBuilder self) -> ParameterPool
+        ParameterPool* IParameterized::parameterPool() const
 
-class FormFactorRipple2Gauss(ProfileRipple2):
+        Returns pointer to the parameter pool. 
+
+        """
+        return _libBornAgainCore.IMultiLayerBuilder_parameterPool(self)
+
+    def onChange(self):
+        r"""
+        onChange(IMultiLayerBuilder self)
+        virtual void IParameterized::onChange()
+
+        Action to be taken in inherited class when a parameter has changed. 
+
+        """
+        return _libBornAgainCore.IMultiLayerBuilder_onChange(self)
+    def __disown__(self):
+        self.this.disown()
+        _libBornAgainCore.disown_IMultiLayerBuilder(self)
+        return weakref.proxy(self)
+
+# Register IMultiLayerBuilder in _libBornAgainCore:
+_libBornAgainCore.IMultiLayerBuilder_swigregister(IMultiLayerBuilder)
+
+class Layer(ISample):
     r"""
 
 
-    The form factor for a cosine ripple, with Gaussian profile in elongation direction.
+    A layer, with thickness (in nanometer) and material.
 
-    C++ includes: FormFactorRipple2.h
+    C++ includes: Layer.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, length, width, height, asymmetry):
+    def __init__(self, material, thickness=0):
         r"""
-        __init__(FormFactorRipple2Gauss self, double length, double width, double height, double asymmetry) -> FormFactorRipple2Gauss
-        FormFactorRipple2Gauss::FormFactorRipple2Gauss(double length, double width, double height, double asymmetry)
+        __init__(Layer self, Material material, double thickness=0) -> Layer
+        Layer::Layer(Material material, double thickness=0)
+
+        Constructor of a layer with thickness and material
+
+        Parameters:
+        -----------
+
+        material: 
+        material the layer is made of
+
+        thickness: 
+        thickness of a layer in nanometers 
 
         """
-        _libBornAgainCore.FormFactorRipple2Gauss_swiginit(self, _libBornAgainCore.new_FormFactorRipple2Gauss(length, width, height, asymmetry))
+        _libBornAgainCore.Layer_swiginit(self, _libBornAgainCore.new_Layer(material, thickness))
+    __swig_destroy__ = _libBornAgainCore.delete_Layer
 
     def clone(self):
         r"""
-        clone(FormFactorRipple2Gauss self) -> FormFactorRipple2Gauss
-        FormFactorRipple2Gauss * FormFactorRipple2Gauss::clone() const override final
+        clone(Layer self) -> Layer
+        Layer * Layer::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorRipple2Gauss_clone(self)
+        return _libBornAgainCore.Layer_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorRipple2Gauss self, INodeVisitor visitor)
-        void FormFactorRipple2Gauss::accept(INodeVisitor *visitor) const override final
+        accept(Layer self, INodeVisitor visitor)
+        void Layer::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorRipple2Gauss_accept(self, visitor)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorRipple2Gauss
-
-# Register FormFactorRipple2Gauss in _libBornAgainCore:
-_libBornAgainCore.FormFactorRipple2Gauss_swigregister(FormFactorRipple2Gauss)
-
-class FormFactorRipple2Lorentz(ProfileRipple2):
-    r"""
-
-
-    The form factor for a cosine ripple, with Lorentz form factor in elongation direction.
+        return _libBornAgainCore.Layer_accept(self, visitor)
 
-    C++ includes: FormFactorRipple2.h
+    def setThickness(self, thickness):
+        r"""
+        setThickness(Layer self, double thickness)
+        void Layer::setThickness(double thickness)
 
-    """
+        Sets layer thickness in nanometers. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.Layer_setThickness(self, thickness)
 
-    def __init__(self, length, width, height, asymmetry):
+    def thickness(self):
         r"""
-        __init__(FormFactorRipple2Lorentz self, double length, double width, double height, double asymmetry) -> FormFactorRipple2Lorentz
-        FormFactorRipple2Lorentz::FormFactorRipple2Lorentz(double length, double width, double height, double asymmetry)
+        thickness(Layer self) -> double
+        double Layer::thickness() const
 
         """
-        _libBornAgainCore.FormFactorRipple2Lorentz_swiginit(self, _libBornAgainCore.new_FormFactorRipple2Lorentz(length, width, height, asymmetry))
+        return _libBornAgainCore.Layer_thickness(self)
 
-    def clone(self):
+    def material(self):
         r"""
-        clone(FormFactorRipple2Lorentz self) -> FormFactorRipple2Lorentz
-        FormFactorRipple2Lorentz * FormFactorRipple2Lorentz::clone() const override final
+        material(Layer self) -> Material
+        const Material* Layer::material() const override final
 
-        Returns a clone of this  ISample object. 
+        Returns nullptr, unless overwritten to return a specific material. 
 
         """
-        return _libBornAgainCore.FormFactorRipple2Lorentz_clone(self)
+        return _libBornAgainCore.Layer_material(self)
 
-    def accept(self, visitor):
+    def setMaterial(self, material):
         r"""
-        accept(FormFactorRipple2Lorentz self, INodeVisitor visitor)
-        void FormFactorRipple2Lorentz::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
+        setMaterial(Layer self, Material material)
+        void Layer::setMaterial(Material material)
 
         """
-        return _libBornAgainCore.FormFactorRipple2Lorentz_accept(self, visitor)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorRipple2Lorentz
-
-# Register FormFactorRipple2Lorentz in _libBornAgainCore:
-_libBornAgainCore.FormFactorRipple2Lorentz_swigregister(FormFactorRipple2Lorentz)
-
-class FormFactorSphereGaussianRadius(IFormFactorBorn):
-    r"""
-
+        return _libBornAgainCore.Layer_setMaterial(self, material)
 
-    A sphere with gaussian radius distribution.
+    def addLayout(self, decoration):
+        r"""
+        addLayout(Layer self, ILayout decoration)
+        void Layer::addLayout(const ILayout &decoration)
 
-    C++ includes: FormFactorSphereGaussianRadius.h
+        """
+        return _libBornAgainCore.Layer_addLayout(self, decoration)
 
-    """
+    def numberOfLayouts(self):
+        r"""
+        numberOfLayouts(Layer self) -> size_t
+        size_t Layer::numberOfLayouts() const
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.Layer_numberOfLayouts(self)
 
-    def __init__(self, mean, sigma):
+    def layouts(self):
         r"""
-        __init__(FormFactorSphereGaussianRadius self, double mean, double sigma) -> FormFactorSphereGaussianRadius
-        FormFactorSphereGaussianRadius::FormFactorSphereGaussianRadius(double mean, double sigma)
+        layouts(Layer self) -> std::vector< ILayout const *,std::allocator< ILayout const * > >
+        std::vector< const ILayout * > Layer::layouts() const
 
         """
-        _libBornAgainCore.FormFactorSphereGaussianRadius_swiginit(self, _libBornAgainCore.new_FormFactorSphereGaussianRadius(mean, sigma))
+        return _libBornAgainCore.Layer_layouts(self)
 
-    def clone(self):
+    def getChildren(self):
         r"""
-        clone(FormFactorSphereGaussianRadius self) -> FormFactorSphereGaussianRadius
-        FormFactorSphereGaussianRadius* FormFactorSphereGaussianRadius::clone() const override final
+        getChildren(Layer self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > Layer::getChildren() const override final
 
-        Returns a clone of this  ISample object. 
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.FormFactorSphereGaussianRadius_clone(self)
+        return _libBornAgainCore.Layer_getChildren(self)
 
-    def accept(self, visitor):
+    def registerThickness(self, make_registered=True):
         r"""
-        accept(FormFactorSphereGaussianRadius self, INodeVisitor visitor)
-        void FormFactorSphereGaussianRadius::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
+        registerThickness(Layer self, bool make_registered=True)
+        void Layer::registerThickness(bool make_registered=true)
 
         """
-        return _libBornAgainCore.FormFactorSphereGaussianRadius_accept(self, visitor)
+        return _libBornAgainCore.Layer_registerThickness(self, make_registered)
 
-    def radialExtension(self):
+    def setNumberOfSlices(self, n_slices):
         r"""
-        radialExtension(FormFactorSphereGaussianRadius self) -> double
-        double FormFactorSphereGaussianRadius::radialExtension() const override final
-
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        setNumberOfSlices(Layer self, unsigned int n_slices)
+        void Layer::setNumberOfSlices(unsigned int n_slices)
 
         """
-        return _libBornAgainCore.FormFactorSphereGaussianRadius_radialExtension(self)
+        return _libBornAgainCore.Layer_setNumberOfSlices(self, n_slices)
 
-    def evaluate_for_q(self, q):
+    def numberOfSlices(self):
         r"""
-        evaluate_for_q(FormFactorSphereGaussianRadius self, cvector_t q) -> complex_t
-        complex_t FormFactorSphereGaussianRadius::evaluate_for_q(cvector_t q) const override final
-
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        numberOfSlices(Layer self) -> unsigned int
+        unsigned int Layer::numberOfSlices() const
 
         """
-        return _libBornAgainCore.FormFactorSphereGaussianRadius_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorSphereGaussianRadius
+        return _libBornAgainCore.Layer_numberOfSlices(self)
 
-# Register FormFactorSphereGaussianRadius in _libBornAgainCore:
-_libBornAgainCore.FormFactorSphereGaussianRadius_swigregister(FormFactorSphereGaussianRadius)
+# Register Layer in _libBornAgainCore:
+_libBornAgainCore.Layer_swigregister(Layer)
 
-class FormFactorSphereLogNormalRadius(IFormFactorBorn):
+class LayerRoughness(ISample):
     r"""
 
 
-    A sphere with log normal radius distribution.
+    A roughness of interface between two layers.
 
-    C++ includes: FormFactorSphereLogNormalRadius.h
+    Based on the article D.K.G. de Boer, Physical review B, Volume 51, Number 8, 15 February 1995 "X-ray reflection and transmission by rough surfaces"
+
+    C++ includes: LayerRoughness.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, mean, scale_param, n_samples):
+    def __init__(self, *args):
         r"""
-        __init__(FormFactorSphereLogNormalRadius self, double mean, double scale_param, size_t n_samples) -> FormFactorSphereLogNormalRadius
-        FormFactorSphereLogNormalRadius::FormFactorSphereLogNormalRadius(double mean, double scale_param, size_t n_samples)
+        __init__(LayerRoughness self) -> LayerRoughness
+        __init__(LayerRoughness self, double sigma, double hurstParameter, double lateralCorrLength) -> LayerRoughness
+        LayerRoughness::LayerRoughness(double sigma, double hurstParameter, double lateralCorrLength)
+
+        Constructor of layer roughness.
+
+        Parameters:
+        -----------
+
+        sigma: 
+        rms of the roughness in nanometers
+
+        hurstParameter: 
+        hurst parameter which describes how jagged the interface, dimensionless [0.0, 1.0], where 0.0 gives more spikes, 1.0 more smoothness
+
+        lateralCorrLength: 
+        lateral correlation length of the roughness in nanometers 
 
         """
-        _libBornAgainCore.FormFactorSphereLogNormalRadius_swiginit(self, _libBornAgainCore.new_FormFactorSphereLogNormalRadius(mean, scale_param, n_samples))
+        _libBornAgainCore.LayerRoughness_swiginit(self, _libBornAgainCore.new_LayerRoughness(*args))
 
     def clone(self):
         r"""
-        clone(FormFactorSphereLogNormalRadius self) -> FormFactorSphereLogNormalRadius
-        FormFactorSphereLogNormalRadius* FormFactorSphereLogNormalRadius::clone() const override final
+        clone(LayerRoughness self) -> LayerRoughness
+        LayerRoughness* LayerRoughness::clone() const
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.FormFactorSphereLogNormalRadius_clone(self)
+        return _libBornAgainCore.LayerRoughness_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorSphereLogNormalRadius self, INodeVisitor visitor)
-        void FormFactorSphereLogNormalRadius::accept(INodeVisitor *visitor) const override final
+        accept(LayerRoughness self, INodeVisitor visitor)
+        virtual void LayerRoughness::accept(INodeVisitor *visitor) const
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorSphereLogNormalRadius_accept(self, visitor)
+        return _libBornAgainCore.LayerRoughness_accept(self, visitor)
 
-    def radialExtension(self):
+    def getSpectralFun(self, kvec):
         r"""
-        radialExtension(FormFactorSphereLogNormalRadius self) -> double
-        double FormFactorSphereLogNormalRadius::radialExtension() const override final
+        getSpectralFun(LayerRoughness self, kvector_t kvec) -> double
+        double LayerRoughness::getSpectralFun(const kvector_t kvec) const
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
-
-        """
-        return _libBornAgainCore.FormFactorSphereLogNormalRadius_radialExtension(self)
+        Returns power spectral density of the surface roughness.
 
-    def evaluate_for_q(self, q):
-        r"""
-        evaluate_for_q(FormFactorSphereLogNormalRadius self, cvector_t q) -> complex_t
-        complex_t FormFactorSphereLogNormalRadius::evaluate_for_q(cvector_t q) const override final
+        Power spectral density of the surface roughness is a result of two-dimensional Fourier transform of the correlation function of the roughness profile.
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Based on the article D.K.G. de Boer, Physical review B, Volume 51, Number 8, 15 February 1995 "X-ray reflection and transmission by rough surfaces" 
 
         """
-        return _libBornAgainCore.FormFactorSphereLogNormalRadius_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorSphereLogNormalRadius
-
-# Register FormFactorSphereLogNormalRadius in _libBornAgainCore:
-_libBornAgainCore.FormFactorSphereLogNormalRadius_swigregister(FormFactorSphereLogNormalRadius)
+        return _libBornAgainCore.LayerRoughness_getSpectralFun(self, kvec)
 
-class FormFactorSphereUniformRadius(IFormFactorBorn):
-    r"""
+    def getCorrFun(self, k):
+        r"""
+        getCorrFun(LayerRoughness self, kvector_t k) -> double
+        double LayerRoughness::getCorrFun(const kvector_t k) const
 
+        Correlation function of the roughness profile. 
 
-    Integrated full sphere form factor over a uniform distribution of radii.
+        """
+        return _libBornAgainCore.LayerRoughness_getCorrFun(self, k)
 
-    C++ includes: FormFactorSphereUniformRadius.h
+    def setSigma(self, sigma):
+        r"""
+        setSigma(LayerRoughness self, double sigma)
+        void LayerRoughness::setSigma(double sigma)
 
-    """
+        Sets rms of roughness. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.LayerRoughness_setSigma(self, sigma)
 
-    def __init__(self, mean, full_width):
+    def getSigma(self):
         r"""
-        __init__(FormFactorSphereUniformRadius self, double mean, double full_width) -> FormFactorSphereUniformRadius
-        FormFactorSphereUniformRadius::FormFactorSphereUniformRadius(double mean, double full_width)
+        getSigma(LayerRoughness self) -> double
+        double LayerRoughness::getSigma() const
+
+        Returns rms of roughness. 
 
         """
-        _libBornAgainCore.FormFactorSphereUniformRadius_swiginit(self, _libBornAgainCore.new_FormFactorSphereUniformRadius(mean, full_width))
+        return _libBornAgainCore.LayerRoughness_getSigma(self)
 
-    def clone(self):
+    def setHurstParameter(self, hurstParameter):
         r"""
-        clone(FormFactorSphereUniformRadius self) -> FormFactorSphereUniformRadius
-        FormFactorSphereUniformRadius* FormFactorSphereUniformRadius::clone() const override final
+        setHurstParameter(LayerRoughness self, double hurstParameter)
+        void LayerRoughness::setHurstParameter(double hurstParameter)
 
-        Returns a clone of this  ISample object. 
+        Sets hurst parameter. It describes how jagged the surface is. 
 
         """
-        return _libBornAgainCore.FormFactorSphereUniformRadius_clone(self)
+        return _libBornAgainCore.LayerRoughness_setHurstParameter(self, hurstParameter)
 
-    def accept(self, visitor):
+    def getHurstParameter(self):
         r"""
-        accept(FormFactorSphereUniformRadius self, INodeVisitor visitor)
-        void FormFactorSphereUniformRadius::accept(INodeVisitor *visitor) const override final
+        getHurstParameter(LayerRoughness self) -> double
+        double LayerRoughness::getHurstParameter() const
 
-        Calls the  INodeVisitor's visit method. 
+        Returns hurst parameter. 
 
         """
-        return _libBornAgainCore.FormFactorSphereUniformRadius_accept(self, visitor)
+        return _libBornAgainCore.LayerRoughness_getHurstParameter(self)
 
-    def radialExtension(self):
+    def setLatteralCorrLength(self, lateralCorrLength):
         r"""
-        radialExtension(FormFactorSphereUniformRadius self) -> double
-        double FormFactorSphereUniformRadius::radialExtension() const override final
+        setLatteralCorrLength(LayerRoughness self, double lateralCorrLength)
+        void LayerRoughness::setLatteralCorrLength(double lateralCorrLength)
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Sets lateral correlation length. 
 
         """
-        return _libBornAgainCore.FormFactorSphereUniformRadius_radialExtension(self)
+        return _libBornAgainCore.LayerRoughness_setLatteralCorrLength(self, lateralCorrLength)
 
-    def evaluate_for_q(self, q):
+    def getLatteralCorrLength(self):
         r"""
-        evaluate_for_q(FormFactorSphereUniformRadius self, cvector_t q) -> complex_t
-        complex_t FormFactorSphereUniformRadius::evaluate_for_q(cvector_t q) const override final
+        getLatteralCorrLength(LayerRoughness self) -> double
+        double LayerRoughness::getLatteralCorrLength() const
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Returns lateral correlation length. 
 
         """
-        return _libBornAgainCore.FormFactorSphereUniformRadius_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorSphereUniformRadius
+        return _libBornAgainCore.LayerRoughness_getLatteralCorrLength(self)
+    __swig_destroy__ = _libBornAgainCore.delete_LayerRoughness
 
-# Register FormFactorSphereUniformRadius in _libBornAgainCore:
-_libBornAgainCore.FormFactorSphereUniformRadius_swigregister(FormFactorSphereUniformRadius)
+# Register LayerRoughness in _libBornAgainCore:
+_libBornAgainCore.LayerRoughness_swigregister(LayerRoughness)
 
-class FormFactorTetrahedron(FormFactorPolyhedron):
+class MultiLayer(ISample):
     r"""
 
 
-    A frustum with equilateral trigonal base.
+    Our sample model: a stack of layers one below the other. Example of system of 4 layers (3 interfaces):
 
-    C++ includes: FormFactorTetrahedron.h
+    ambience layer #0 ------ interface #0 z=0.0 Fe, 20A layer #1 ------ interface #1 z=-20.0 Cr, 40A layer #2 ------ interface #2 z=-60.0 substrate layer #3
+
+    C++ includes: MultiLayer.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, base_edge, height, alpha):
+    def __init__(self):
         r"""
-        __init__(FormFactorTetrahedron self, double base_edge, double height, double alpha) -> FormFactorTetrahedron
-        FormFactorTetrahedron::FormFactorTetrahedron(double base_edge, double height, double alpha)
-
-        Constructor of a truncated tethrahedron.
-
-        Parameters:
-        -----------
-
-        base_edge: 
-        length of one edge of the equilateral triangular base in nanometers
-
-        height: 
-        height of the tetrahedron in nanometers
-
-        alpha: 
-        dihedral angle in radians between base and facet 
+        __init__(MultiLayer self) -> MultiLayer
+        MultiLayer::MultiLayer()
 
         """
-        _libBornAgainCore.FormFactorTetrahedron_swiginit(self, _libBornAgainCore.new_FormFactorTetrahedron(base_edge, height, alpha))
+        _libBornAgainCore.MultiLayer_swiginit(self, _libBornAgainCore.new_MultiLayer())
+    __swig_destroy__ = _libBornAgainCore.delete_MultiLayer
 
     def clone(self):
         r"""
-        clone(FormFactorTetrahedron self) -> FormFactorTetrahedron
-        FormFactorTetrahedron* FormFactorTetrahedron::clone() const override final
+        clone(MultiLayer self) -> MultiLayer
+        MultiLayer * MultiLayer::clone() const final override
 
-        Returns a clone of this  ISample object. 
+        Returns a clone of multilayer with clones of all layers and interfaces between layers 
 
         """
-        return _libBornAgainCore.FormFactorTetrahedron_clone(self)
+        return _libBornAgainCore.MultiLayer_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(FormFactorTetrahedron self, INodeVisitor visitor)
-        void FormFactorTetrahedron::accept(INodeVisitor *visitor) const override final
+        accept(MultiLayer self, INodeVisitor visitor)
+        void MultiLayer::accept(INodeVisitor *visitor) const final override
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorTetrahedron_accept(self, visitor)
+        return _libBornAgainCore.MultiLayer_accept(self, visitor)
 
-    def getBaseEdge(self):
+    def numberOfLayers(self):
         r"""
-        getBaseEdge(FormFactorTetrahedron self) -> double
-        double FormFactorTetrahedron::getBaseEdge() const
+        numberOfLayers(MultiLayer self) -> size_t
+        size_t MultiLayer::numberOfLayers() const
 
         """
-        return _libBornAgainCore.FormFactorTetrahedron_getBaseEdge(self)
+        return _libBornAgainCore.MultiLayer_numberOfLayers(self)
 
-    def getHeight(self):
+    def addLayer(self, layer):
         r"""
-        getHeight(FormFactorTetrahedron self) -> double
-        double FormFactorTetrahedron::getHeight() const
+        addLayer(MultiLayer self, Layer layer)
+        void MultiLayer::addLayer(const Layer &layer)
+
+        Adds object to multilayer.
+
+        Adds layer with default (zero) roughness. 
 
         """
-        return _libBornAgainCore.FormFactorTetrahedron_getHeight(self)
+        return _libBornAgainCore.MultiLayer_addLayer(self, layer)
 
-    def getAlpha(self):
+    def addLayerWithTopRoughness(self, layer, roughness):
         r"""
-        getAlpha(FormFactorTetrahedron self) -> double
-        double FormFactorTetrahedron::getAlpha() const
+        addLayerWithTopRoughness(MultiLayer self, Layer layer, LayerRoughness roughness)
+        void MultiLayer::addLayerWithTopRoughness(const Layer &layer, const LayerRoughness &roughness)
 
-        """
-        return _libBornAgainCore.FormFactorTetrahedron_getAlpha(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorTetrahedron
+        Adds layer with top roughness. 
 
-# Register FormFactorTetrahedron in _libBornAgainCore:
-_libBornAgainCore.FormFactorTetrahedron_swigregister(FormFactorTetrahedron)
+        """
+        return _libBornAgainCore.MultiLayer_addLayerWithTopRoughness(self, layer, roughness)
 
-class FormFactorTruncatedCube(FormFactorPolyhedron):
-    r"""
+    def layer(self, i_layer):
+        r"""
+        layer(MultiLayer self, size_t i_layer) -> Layer
+        const Layer * MultiLayer::layer(size_t i_layer) const
 
+        Returns layer with given index. 
 
-    A cube, with tetrahedral truncation of all corners
+        """
+        return _libBornAgainCore.MultiLayer_layer(self, i_layer)
 
-    C++ includes: FormFactorTruncatedCube.h
+    def layerInterface(self, i_interface):
+        r"""
+        layerInterface(MultiLayer self, size_t i_interface) -> LayerInterface const *
+        const LayerInterface * MultiLayer::layerInterface(size_t i_interface) const
 
-    """
+        Returns interface with given index. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.MultiLayer_layerInterface(self, i_interface)
 
-    def __init__(self, length, removed_length):
+    def setCrossCorrLength(self, crossCorrLength):
         r"""
-        __init__(FormFactorTruncatedCube self, double length, double removed_length) -> FormFactorTruncatedCube
-        FormFactorTruncatedCube::FormFactorTruncatedCube(double length, double removed_length)
+        setCrossCorrLength(MultiLayer self, double crossCorrLength)
+        void MultiLayer::setCrossCorrLength(double crossCorrLength)
 
-        Constructor of a truncated cube.
+        Sets cross correlation length of roughnesses between interfaces. 
 
-        Parameters:
-        -----------
+        """
+        return _libBornAgainCore.MultiLayer_setCrossCorrLength(self, crossCorrLength)
 
-        length: 
-        length of the full cube's edge in nanometers
+    def crossCorrLength(self):
+        r"""
+        crossCorrLength(MultiLayer self) -> double
+        double MultiLayer::crossCorrLength() const
 
-        removed_length: 
-        removed length from each edge of the cube in nanometers 
+        Returns cross correlation length of roughnesses between interfaces. 
 
         """
-        _libBornAgainCore.FormFactorTruncatedCube_swiginit(self, _libBornAgainCore.new_FormFactorTruncatedCube(length, removed_length))
+        return _libBornAgainCore.MultiLayer_crossCorrLength(self)
 
-    def clone(self):
+    def setExternalField(self, ext_field):
         r"""
-        clone(FormFactorTruncatedCube self) -> FormFactorTruncatedCube
-        FormFactorTruncatedCube* FormFactorTruncatedCube::clone() const override final
+        setExternalField(MultiLayer self, kvector_t ext_field)
+        void MultiLayer::setExternalField(kvector_t ext_field)
 
-        Returns a clone of this  ISample object. 
+        Sets the external field applied to the multilayer (units: A/m) 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedCube_clone(self)
+        return _libBornAgainCore.MultiLayer_setExternalField(self, ext_field)
 
-    def accept(self, visitor):
+    def externalField(self):
         r"""
-        accept(FormFactorTruncatedCube self, INodeVisitor visitor)
-        void FormFactorTruncatedCube::accept(INodeVisitor *visitor) const override final
+        externalField(MultiLayer self) -> kvector_t
+        kvector_t MultiLayer::externalField() const
 
-        Calls the  INodeVisitor's visit method. 
+        Returns the external field applied to the multilayer (units: A/m) 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedCube_accept(self, visitor)
+        return _libBornAgainCore.MultiLayer_externalField(self)
 
-    def getLength(self):
+    def getChildren(self):
         r"""
-        getLength(FormFactorTruncatedCube self) -> double
-        double FormFactorTruncatedCube::getLength() const
+        getChildren(MultiLayer self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > MultiLayer::getChildren() const final override
+
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedCube_getLength(self)
+        return _libBornAgainCore.MultiLayer_getChildren(self)
 
-    def getRemovedLength(self):
+    def setRoughnessModel(self, roughnessModel):
         r"""
-        getRemovedLength(FormFactorTruncatedCube self) -> double
-        double FormFactorTruncatedCube::getRemovedLength() const
+        setRoughnessModel(MultiLayer self, RoughnessModel roughnessModel)
+        void MultiLayer::setRoughnessModel(RoughnessModel roughnessModel)
 
         """
-        return _libBornAgainCore.FormFactorTruncatedCube_getRemovedLength(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorTruncatedCube
+        return _libBornAgainCore.MultiLayer_setRoughnessModel(self, roughnessModel)
 
-# Register FormFactorTruncatedCube in _libBornAgainCore:
-_libBornAgainCore.FormFactorTruncatedCube_swigregister(FormFactorTruncatedCube)
+    def roughnessModel(self):
+        r"""
+        roughnessModel(MultiLayer self) -> RoughnessModel
+        RoughnessModel MultiLayer::roughnessModel() const
 
-class FormFactorTruncatedSphere(IFormFactorBorn):
-    r"""
+        """
+        return _libBornAgainCore.MultiLayer_roughnessModel(self)
 
+# Register MultiLayer in _libBornAgainCore:
+_libBornAgainCore.MultiLayer_swigregister(MultiLayer)
 
-    A truncated Sphere.
 
-    C++ includes: FormFactorTruncatedSphere.h
+def MaterialProfile_cpp(multilayer, n_points, z_min, z_max):
+    r"""
+    MaterialProfile_cpp(MultiLayer multilayer, int n_points, double z_min, double z_max) -> vector_complex_t
+    BA_CORE_API_ std::vector<complex_t> MaterialProfile(const MultiLayer &multilayer, int n_points, double z_min, double z_max)
+
+    Calculate average material profile for given multilayer. 
 
     """
+    return _libBornAgainCore.MaterialProfile_cpp(multilayer, n_points, z_min, z_max)
+
+def DefaultMaterialProfileLimits(multilayer):
+    r"""
+    DefaultMaterialProfileLimits(MultiLayer multilayer) -> pair_double_t
+    BA_CORE_API_ std::pair<double, double> DefaultMaterialProfileLimits(const MultiLayer &multilayer)
+
+    Get default z limits for generating a material profile. 
+
+    """
+    return _libBornAgainCore.DefaultMaterialProfileLimits(multilayer)
+
+def GenerateZValues(n_points, z_min, z_max):
+    r"""
+    GenerateZValues(int n_points, double z_min, double z_max) -> vdouble1d_t
+    BA_CORE_API_ std::vector<double> GenerateZValues(int n_points, double z_min, double z_max)
+
+    Generate z values (equidistant) for use in MaterialProfile. 
+
+    """
+    return _libBornAgainCore.GenerateZValues(n_points, z_min, z_max)
+class RoughnessModel(object):
+    r"""Proxy of C++ RoughnessModelWrap class."""
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined")
     __repr__ = _swig_repr
+    DEFAULT = _libBornAgainCore.RoughnessModel_DEFAULT
+    
+    TANH = _libBornAgainCore.RoughnessModel_TANH
+    
+    NEVOT_CROCE = _libBornAgainCore.RoughnessModel_NEVOT_CROCE
+    
+    __swig_destroy__ = _libBornAgainCore.delete_RoughnessModel
 
-    def __init__(self, radius, height, dh=0.0):
-        r"""
-        __init__(FormFactorTruncatedSphere self, double radius, double height, double dh=0.0) -> FormFactorTruncatedSphere
-        FormFactorTruncatedSphere::FormFactorTruncatedSphere(double radius, double height, double dh=0.0)
+# Register RoughnessModel in _libBornAgainCore:
+_libBornAgainCore.RoughnessModel_swigregister(RoughnessModel)
 
-        Constructor of a spherical dome.
 
-        Parameters:
-        -----------
+def rad2deg(angle):
+    r"""
+    rad2deg(double angle) -> double
+    double Units::rad2deg(double angle)
 
-        radius: 
-        radius of the truncated sphere in nanometers
+    """
+    return _libBornAgainCore.rad2deg(angle)
 
-        height: 
-        height of the truncated sphere in nanometers
+def deg2rad(angle):
+    r"""
+    deg2rad(double angle) -> double
+    double Units::deg2rad(double angle)
 
-        dh: 
-        length of cup truncated from the top 
+    """
+    return _libBornAgainCore.deg2rad(angle)
+class IDistribution1D(ICloneable, INode):
+    r"""
 
-        """
-        _libBornAgainCore.FormFactorTruncatedSphere_swiginit(self, _libBornAgainCore.new_FormFactorTruncatedSphere(radius, height, dh))
+
+    Interface for one-dimensional distributions.
+
+    C++ includes: Distributions.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IDistribution1D
 
     def clone(self):
         r"""
-        clone(FormFactorTruncatedSphere self) -> FormFactorTruncatedSphere
-        FormFactorTruncatedSphere* FormFactorTruncatedSphere::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        clone(IDistribution1D self) -> IDistribution1D
+        virtual IDistribution1D* IDistribution1D::clone() const =0
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSphere_clone(self)
+        return _libBornAgainCore.IDistribution1D_clone(self)
 
-    def accept(self, visitor):
+    def probabilityDensity(self, x):
         r"""
-        accept(FormFactorTruncatedSphere self, INodeVisitor visitor)
-        void FormFactorTruncatedSphere::accept(INodeVisitor *visitor) const override final
+        probabilityDensity(IDistribution1D self, double x) -> double
+        virtual double IDistribution1D::probabilityDensity(double x) const =0
 
-        Calls the  INodeVisitor's visit method. 
+        Returns the distribution-specific probability density for value x. 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSphere_accept(self, visitor)
+        return _libBornAgainCore.IDistribution1D_probabilityDensity(self, x)
 
-    def getHeight(self):
+    def getMean(self):
         r"""
-        getHeight(FormFactorTruncatedSphere self) -> double
-        double FormFactorTruncatedSphere::getHeight() const
+        getMean(IDistribution1D self) -> double
+        virtual double IDistribution1D::getMean() const =0
+
+        Returns the distribution-specific mean. 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSphere_getHeight(self)
+        return _libBornAgainCore.IDistribution1D_getMean(self)
 
-    def getRadius(self):
+    def equidistantSamples(self, *args):
         r"""
-        getRadius(FormFactorTruncatedSphere self) -> double
-        double FormFactorTruncatedSphere::getRadius() const
+        equidistantSamples(IDistribution1D self, size_t nbr_samples, double sigma_factor=0., RealLimits limits=RealLimits()) -> ParameterSampleVector
+        std::vector< ParameterSample > IDistribution1D::equidistantSamples(size_t nbr_samples, double sigma_factor=0., const RealLimits &limits=RealLimits()) const
+
+        Returns equidistant samples, using intrinsic parameters, weighted with  probabilityDensity(). 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSphere_getRadius(self)
+        return _libBornAgainCore.IDistribution1D_equidistantSamples(self, *args)
 
-    def getRemovedTop(self):
+    def equidistantSamplesInRange(self, nbr_samples, xmin, xmax):
         r"""
-        getRemovedTop(FormFactorTruncatedSphere self) -> double
-        double FormFactorTruncatedSphere::getRemovedTop() const
+        equidistantSamplesInRange(IDistribution1D self, size_t nbr_samples, double xmin, double xmax) -> ParameterSampleVector
+        std::vector< ParameterSample > IDistribution1D::equidistantSamplesInRange(size_t nbr_samples, double xmin, double xmax) const
+
+        Returns equidistant samples from xmin to xmax, weighted with  probabilityDensity(). 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSphere_getRemovedTop(self)
+        return _libBornAgainCore.IDistribution1D_equidistantSamplesInRange(self, nbr_samples, xmin, xmax)
 
-    def radialExtension(self):
+    def equidistantPoints(self, *args):
         r"""
-        radialExtension(FormFactorTruncatedSphere self) -> double
-        double FormFactorTruncatedSphere::radialExtension() const override final
+        equidistantPoints(IDistribution1D self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
+        virtual std::vector<double> IDistribution1D::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const =0
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Returns equidistant interpolation points, with range computed in distribution-specific way from mean and width parameter, taking into account limits and sigma_factor. 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSphere_radialExtension(self)
+        return _libBornAgainCore.IDistribution1D_equidistantPoints(self, *args)
 
-    def evaluate_for_q(self, q):
+    def equidistantPointsInRange(self, nbr_samples, xmin, xmax):
         r"""
-        evaluate_for_q(FormFactorTruncatedSphere self, cvector_t q) -> complex_t
-        complex_t FormFactorTruncatedSphere::evaluate_for_q(cvector_t q) const override final
+        equidistantPointsInRange(IDistribution1D self, size_t nbr_samples, double xmin, double xmax) -> vdouble1d_t
+        std::vector< double > IDistribution1D::equidistantPointsInRange(size_t nbr_samples, double xmin, double xmax) const
 
-        Complex form factor. 
+        Returns equidistant interpolation points from xmin to xmax. 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSphere_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorTruncatedSphere
+        return _libBornAgainCore.IDistribution1D_equidistantPointsInRange(self, nbr_samples, xmin, xmax)
 
-# Register FormFactorTruncatedSphere in _libBornAgainCore:
-_libBornAgainCore.FormFactorTruncatedSphere_swigregister(FormFactorTruncatedSphere)
+    def isDelta(self):
+        r"""
+        isDelta(IDistribution1D self) -> bool
+        virtual bool IDistribution1D::isDelta() const =0
 
-class FormFactorTruncatedSpheroid(IFormFactorBorn):
-    r"""
+        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
 
+        """
+        return _libBornAgainCore.IDistribution1D_isDelta(self)
 
-    A truncated spheroid. An ellipsoid with two equal axis, truncated by a plane perpendicular to the third axis.
+    def setUnits(self, units):
+        r"""
+        setUnits(IDistribution1D self, std::string const & units)
+        void IDistribution1D::setUnits(const std::string &units)
 
-    C++ includes: FormFactorTruncatedSpheroid.h
+        Sets distribution units. 
 
-    """
+        """
+        return _libBornAgainCore.IDistribution1D_setUnits(self, units)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+# Register IDistribution1D in _libBornAgainCore:
+_libBornAgainCore.IDistribution1D_swigregister(IDistribution1D)
+nanometer = cvar.nanometer
+angstrom = cvar.angstrom
+micrometer = cvar.micrometer
+millimeter = cvar.millimeter
+meter = cvar.meter
+nm = cvar.nm
+nm2 = cvar.nm2
+barn = cvar.barn
+radian = cvar.radian
+milliradian = cvar.milliradian
+degree = cvar.degree
+steradian = cvar.steradian
+rad = cvar.rad
+mrad = cvar.mrad
+sr = cvar.sr
+deg = cvar.deg
+tesla = cvar.tesla
+gauss = cvar.gauss
 
-    def __init__(self, radius, height, height_flattening, dh=0.0):
-        r"""
-        __init__(FormFactorTruncatedSpheroid self, double radius, double height, double height_flattening, double dh=0.0) -> FormFactorTruncatedSpheroid
-        FormFactorTruncatedSpheroid::FormFactorTruncatedSpheroid(double radius, double height, double height_flattening, double dh=0.0)
+class DistributionGate(IDistribution1D):
+    r"""
 
-        Constructor of a spheroidal dome.
 
-        Parameters:
-        -----------
+    Uniform distribution function with half width hwhm.
 
-        radius: 
-        radius of the truncated spheroid in nanometers
+    C++ includes: Distributions.h
 
-        height: 
-        height of the truncated spheroid in nanometers
+    """
 
-        height_flattening: 
-        ratio of the height of the corresponding full spheroid to its diameter
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-        dh: 
-        length of cup truncated from the top 
+    def __init__(self, *args):
+        r"""
+        __init__(DistributionGate self) -> DistributionGate
+        __init__(DistributionGate self, double min, double max) -> DistributionGate
+        DistributionGate::DistributionGate(double min, double max)
 
         """
-        _libBornAgainCore.FormFactorTruncatedSpheroid_swiginit(self, _libBornAgainCore.new_FormFactorTruncatedSpheroid(radius, height, height_flattening, dh))
+        _libBornAgainCore.DistributionGate_swiginit(self, _libBornAgainCore.new_DistributionGate(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_DistributionGate
 
     def clone(self):
         r"""
-        clone(FormFactorTruncatedSpheroid self) -> FormFactorTruncatedSpheroid
-        FormFactorTruncatedSpheroid* FormFactorTruncatedSpheroid::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        clone(DistributionGate self) -> DistributionGate
+        DistributionGate* DistributionGate::clone() const final
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSpheroid_clone(self)
+        return _libBornAgainCore.DistributionGate_clone(self)
 
-    def accept(self, visitor):
+    def probabilityDensity(self, x):
         r"""
-        accept(FormFactorTruncatedSpheroid self, INodeVisitor visitor)
-        void FormFactorTruncatedSpheroid::accept(INodeVisitor *visitor) const override final
+        probabilityDensity(DistributionGate self, double x) -> double
+        double DistributionGate::probabilityDensity(double x) const final
 
-        Calls the  INodeVisitor's visit method. 
+        Returns the distribution-specific probability density for value x. 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSpheroid_accept(self, visitor)
+        return _libBornAgainCore.DistributionGate_probabilityDensity(self, x)
 
-    def getRadius(self):
+    def getMean(self):
         r"""
-        getRadius(FormFactorTruncatedSpheroid self) -> double
-        double FormFactorTruncatedSpheroid::getRadius() const
+        getMean(DistributionGate self) -> double
+        double DistributionGate::getMean() const final
+
+        Returns the distribution-specific mean. 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSpheroid_getRadius(self)
+        return _libBornAgainCore.DistributionGate_getMean(self)
 
-    def getHeight(self):
+    def getMin(self):
         r"""
-        getHeight(FormFactorTruncatedSpheroid self) -> double
-        double FormFactorTruncatedSpheroid::getHeight() const
+        getMin(DistributionGate self) -> double
+        double DistributionGate::getMin() const
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSpheroid_getHeight(self)
+        return _libBornAgainCore.DistributionGate_getMin(self)
 
-    def getHeightFlattening(self):
+    def getMax(self):
         r"""
-        getHeightFlattening(FormFactorTruncatedSpheroid self) -> double
-        double FormFactorTruncatedSpheroid::getHeightFlattening() const
+        getMax(DistributionGate self) -> double
+        double DistributionGate::getMax() const
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSpheroid_getHeightFlattening(self)
+        return _libBornAgainCore.DistributionGate_getMax(self)
 
-    def getRemovedTop(self):
+    def equidistantPoints(self, *args):
         r"""
-        getRemovedTop(FormFactorTruncatedSpheroid self) -> double
-        double FormFactorTruncatedSpheroid::getRemovedTop() const
+        equidistantPoints(DistributionGate self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
+        std::vector< double > DistributionGate::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const
+
+        Returns list of sample values. 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSpheroid_getRemovedTop(self)
+        return _libBornAgainCore.DistributionGate_equidistantPoints(self, *args)
 
-    def radialExtension(self):
+    def isDelta(self):
         r"""
-        radialExtension(FormFactorTruncatedSpheroid self) -> double
-        double FormFactorTruncatedSpheroid::radialExtension() const override final
+        isDelta(DistributionGate self) -> bool
+        bool DistributionGate::isDelta() const final
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSpheroid_radialExtension(self)
+        return _libBornAgainCore.DistributionGate_isDelta(self)
 
-    def evaluate_for_q(self, q):
+    def accept(self, visitor):
         r"""
-        evaluate_for_q(FormFactorTruncatedSpheroid self, cvector_t q) -> complex_t
-        complex_t FormFactorTruncatedSpheroid::evaluate_for_q(cvector_t q) const override final
+        accept(DistributionGate self, INodeVisitor visitor)
+        void DistributionGate::accept(INodeVisitor *visitor) const final
 
-        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorTruncatedSpheroid_evaluate_for_q(self, q)
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorTruncatedSpheroid
+        return _libBornAgainCore.DistributionGate_accept(self, visitor)
 
-# Register FormFactorTruncatedSpheroid in _libBornAgainCore:
-_libBornAgainCore.FormFactorTruncatedSpheroid_swigregister(FormFactorTruncatedSpheroid)
+# Register DistributionGate in _libBornAgainCore:
+_libBornAgainCore.DistributionGate_swigregister(DistributionGate)
 
-class FormFactorWeighted(IFormFactor):
+class DistributionLorentz(IDistribution1D):
     r"""
 
 
-    Coherent sum of different scalar  IFormFactor's with different weights.
-
-    Used by  ParticleComposition. If same particles are at different positions, then consider FormFactorDecoratorMultiPositionFactor (restore from commit 0500a26de76).
+    Lorentz distribution with half width hwhm.
 
-    C++ includes: FormFactorWeighted.h
+    C++ includes: Distributions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self):
+    def __init__(self, *args):
         r"""
-        __init__(FormFactorWeighted self) -> FormFactorWeighted
-        FormFactorWeighted::FormFactorWeighted()
+        __init__(DistributionLorentz self) -> DistributionLorentz
+        __init__(DistributionLorentz self, double mean, double hwhm) -> DistributionLorentz
+        DistributionLorentz::DistributionLorentz(double mean, double hwhm)
 
         """
-        _libBornAgainCore.FormFactorWeighted_swiginit(self, _libBornAgainCore.new_FormFactorWeighted())
-    __swig_destroy__ = _libBornAgainCore.delete_FormFactorWeighted
+        _libBornAgainCore.DistributionLorentz_swiginit(self, _libBornAgainCore.new_DistributionLorentz(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_DistributionLorentz
 
     def clone(self):
         r"""
-        clone(FormFactorWeighted self) -> FormFactorWeighted
-        FormFactorWeighted * FormFactorWeighted::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        clone(DistributionLorentz self) -> DistributionLorentz
+        DistributionLorentz* DistributionLorentz::clone() const final
 
         """
-        return _libBornAgainCore.FormFactorWeighted_clone(self)
+        return _libBornAgainCore.DistributionLorentz_clone(self)
 
-    def accept(self, visitor):
+    def probabilityDensity(self, x):
         r"""
-        accept(FormFactorWeighted self, INodeVisitor visitor)
-        void FormFactorWeighted::accept(INodeVisitor *visitor) const override final
+        probabilityDensity(DistributionLorentz self, double x) -> double
+        double DistributionLorentz::probabilityDensity(double x) const final
 
-        Calls the  INodeVisitor's visit method. 
+        Returns the distribution-specific probability density for value x. 
 
         """
-        return _libBornAgainCore.FormFactorWeighted_accept(self, visitor)
+        return _libBornAgainCore.DistributionLorentz_probabilityDensity(self, x)
 
-    def radialExtension(self):
+    def getMean(self):
         r"""
-        radialExtension(FormFactorWeighted self) -> double
-        double FormFactorWeighted::radialExtension() const override final
+        getMean(DistributionLorentz self) -> double
+        double DistributionLorentz::getMean() const final
 
-        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+        Returns the distribution-specific mean. 
 
         """
-        return _libBornAgainCore.FormFactorWeighted_radialExtension(self)
+        return _libBornAgainCore.DistributionLorentz_getMean(self)
 
-    def bottomZ(self, rotation):
+    def getHWHM(self):
         r"""
-        bottomZ(FormFactorWeighted self, IRotation rotation) -> double
-        double FormFactorWeighted::bottomZ(const IRotation &rotation) const override final
-
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
+        getHWHM(DistributionLorentz self) -> double
+        double DistributionLorentz::getHWHM() const
 
         """
-        return _libBornAgainCore.FormFactorWeighted_bottomZ(self, rotation)
+        return _libBornAgainCore.DistributionLorentz_getHWHM(self)
 
-    def topZ(self, rotation):
+    def equidistantPoints(self, *args):
         r"""
-        topZ(FormFactorWeighted self, IRotation rotation) -> double
-        double FormFactorWeighted::topZ(const IRotation &rotation) const override final
-
-        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
-
-        """
-        return _libBornAgainCore.FormFactorWeighted_topZ(self, rotation)
+        equidistantPoints(DistributionLorentz self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
+        std::vector< double > DistributionLorentz::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const
 
-    def addFormFactor(self, form_factor, weight=1.0):
-        r"""
-        addFormFactor(FormFactorWeighted self, IFormFactor form_factor, double weight=1.0)
-        void FormFactorWeighted::addFormFactor(const IFormFactor &form_factor, double weight=1.0)
+        generate list of sample values 
 
         """
-        return _libBornAgainCore.FormFactorWeighted_addFormFactor(self, form_factor, weight)
+        return _libBornAgainCore.DistributionLorentz_equidistantPoints(self, *args)
 
-    def setAmbientMaterial(self, material):
+    def isDelta(self):
         r"""
-        setAmbientMaterial(FormFactorWeighted self, Material material)
-        void FormFactorWeighted::setAmbientMaterial(Material material) override final
+        isDelta(DistributionLorentz self) -> bool
+        bool DistributionLorentz::isDelta() const final
 
-        Passes the material in which this particle is embedded. 
+        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
 
         """
-        return _libBornAgainCore.FormFactorWeighted_setAmbientMaterial(self, material)
+        return _libBornAgainCore.DistributionLorentz_isDelta(self)
 
-    def evaluate(self, wavevectors):
+    def accept(self, visitor):
         r"""
-        evaluate(FormFactorWeighted self, WavevectorInfo wavevectors) -> complex_t
-        complex_t FormFactorWeighted::evaluate(const WavevectorInfo &wavevectors) const override final
+        accept(DistributionLorentz self, INodeVisitor visitor)
+        void DistributionLorentz::accept(INodeVisitor *visitor) const final
 
-        Returns scattering amplitude for complex wavevectors ki, kf. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FormFactorWeighted_evaluate(self, wavevectors)
+        return _libBornAgainCore.DistributionLorentz_accept(self, visitor)
 
-# Register FormFactorWeighted in _libBornAgainCore:
-_libBornAgainCore.FormFactorWeighted_swigregister(FormFactorWeighted)
+# Register DistributionLorentz in _libBornAgainCore:
+_libBornAgainCore.DistributionLorentz_swigregister(DistributionLorentz)
 
-class IFootprintFactor(ICloneable, INode):
+class DistributionGaussian(IDistribution1D):
     r"""
 
 
-    Abstract base for classes that calculate the beam footprint factor
+    Gaussian distribution with standard deviation std_dev.
 
-    C++ includes: IFootprintFactor.h
+    C++ includes: Distributions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IFootprintFactor
 
-    def clone(self):
+    def __init__(self, *args):
         r"""
-        clone(IFootprintFactor self) -> IFootprintFactor
-        virtual IFootprintFactor* IFootprintFactor::clone() const =0
+        __init__(DistributionGaussian self) -> DistributionGaussian
+        __init__(DistributionGaussian self, double mean, double std_dev) -> DistributionGaussian
+        DistributionGaussian::DistributionGaussian(double mean, double std_dev)
 
         """
-        return _libBornAgainCore.IFootprintFactor_clone(self)
+        _libBornAgainCore.DistributionGaussian_swiginit(self, _libBornAgainCore.new_DistributionGaussian(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_DistributionGaussian
 
-    def setWidthRatio(self, width_ratio):
+    def clone(self):
         r"""
-        setWidthRatio(IFootprintFactor self, double width_ratio)
-        void IFootprintFactor::setWidthRatio(double width_ratio)
+        clone(DistributionGaussian self) -> DistributionGaussian
+        DistributionGaussian* DistributionGaussian::clone() const final
 
         """
-        return _libBornAgainCore.IFootprintFactor_setWidthRatio(self, width_ratio)
+        return _libBornAgainCore.DistributionGaussian_clone(self)
 
-    def widthRatio(self):
+    def probabilityDensity(self, x):
         r"""
-        widthRatio(IFootprintFactor self) -> double
-        double IFootprintFactor::widthRatio() const
+        probabilityDensity(DistributionGaussian self, double x) -> double
+        double DistributionGaussian::probabilityDensity(double x) const final
+
+        Returns the distribution-specific probability density for value x. 
 
         """
-        return _libBornAgainCore.IFootprintFactor_widthRatio(self)
+        return _libBornAgainCore.DistributionGaussian_probabilityDensity(self, x)
 
-    def calculate(self, alpha):
+    def getMean(self):
         r"""
-        calculate(IFootprintFactor self, double alpha) -> double
-        virtual double IFootprintFactor::calculate(double alpha) const =0
+        getMean(DistributionGaussian self) -> double
+        double DistributionGaussian::getMean() const final
 
-        Calculate footprint correction coefficient from the beam incident angle  alpha. 
+        Returns the distribution-specific mean. 
 
         """
-        return _libBornAgainCore.IFootprintFactor_calculate(self, alpha)
+        return _libBornAgainCore.DistributionGaussian_getMean(self)
 
-    def _print(self):
+    def getStdDev(self):
         r"""
-        _print(IFootprintFactor self) -> std::string
-        virtual std::string IFootprintFactor::print() const =0
-
-        Print python-formatted footprint definition. 
+        getStdDev(DistributionGaussian self) -> double
+        double DistributionGaussian::getStdDev() const
 
         """
-        return _libBornAgainCore.IFootprintFactor__print(self)
-
-# Register IFootprintFactor in _libBornAgainCore:
-_libBornAgainCore.IFootprintFactor_swigregister(IFootprintFactor)
-
-class FootprintGauss(IFootprintFactor):
-    r"""Proxy of C++ FootprintGauss class."""
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
-
-    def __init__(self, width_ratio):
-        r"""__init__(FootprintGauss self, double width_ratio) -> FootprintGauss"""
-        _libBornAgainCore.FootprintGauss_swiginit(self, _libBornAgainCore.new_FootprintGauss(width_ratio))
+        return _libBornAgainCore.DistributionGaussian_getStdDev(self)
 
-    def accept(self, visitor):
+    def equidistantPoints(self, *args):
         r"""
-        accept(FootprintGauss self, INodeVisitor visitor)
-        virtual void INode::accept(INodeVisitor *visitor) const =0
+        equidistantPoints(DistributionGaussian self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
+        std::vector< double > DistributionGaussian::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const
 
-        Calls the  INodeVisitor's visit method. 
+        generate list of sample values 
 
         """
-        return _libBornAgainCore.FootprintGauss_accept(self, visitor)
+        return _libBornAgainCore.DistributionGaussian_equidistantPoints(self, *args)
 
-    def clone(self):
+    def isDelta(self):
         r"""
-        clone(FootprintGauss self) -> FootprintGauss
-        virtual IFootprintFactor* IFootprintFactor::clone() const =0
+        isDelta(DistributionGaussian self) -> bool
+        bool DistributionGaussian::isDelta() const final
+
+        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
 
         """
-        return _libBornAgainCore.FootprintGauss_clone(self)
+        return _libBornAgainCore.DistributionGaussian_isDelta(self)
 
-    def calculate(self, alpha):
+    def accept(self, visitor):
         r"""
-        calculate(FootprintGauss self, double alpha) -> double
-        virtual double IFootprintFactor::calculate(double alpha) const =0
+        accept(DistributionGaussian self, INodeVisitor visitor)
+        void DistributionGaussian::accept(INodeVisitor *visitor) const final
 
-        Calculate footprint correction coefficient from the beam incident angle  alpha. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.FootprintGauss_calculate(self, alpha)
+        return _libBornAgainCore.DistributionGaussian_accept(self, visitor)
 
-    def _print(self):
-        r"""
-        _print(FootprintGauss self) -> std::string
-        virtual std::string IFootprintFactor::print() const =0
+# Register DistributionGaussian in _libBornAgainCore:
+_libBornAgainCore.DistributionGaussian_swigregister(DistributionGaussian)
 
-        Print python-formatted footprint definition. 
+class DistributionLogNormal(IDistribution1D):
+    r"""
 
-        """
-        return _libBornAgainCore.FootprintGauss__print(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FootprintGauss
 
-# Register FootprintGauss in _libBornAgainCore:
-_libBornAgainCore.FootprintGauss_swigregister(FootprintGauss)
+    Log-normal distribution.
 
-class FootprintSquare(IFootprintFactor):
-    r"""Proxy of C++ FootprintSquare class."""
+    C++ includes: Distributions.h
+
+    """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, width_ratio):
-        r"""__init__(FootprintSquare self, double width_ratio) -> FootprintSquare"""
-        _libBornAgainCore.FootprintSquare_swiginit(self, _libBornAgainCore.new_FootprintSquare(width_ratio))
-
-    def accept(self, visitor):
+    def __init__(self, *args):
         r"""
-        accept(FootprintSquare self, INodeVisitor visitor)
-        virtual void INode::accept(INodeVisitor *visitor) const =0
-
-        Calls the  INodeVisitor's visit method. 
+        __init__(DistributionLogNormal self, double scale_param) -> DistributionLogNormal
+        __init__(DistributionLogNormal self, double median, double scale_param) -> DistributionLogNormal
+        DistributionLogNormal::DistributionLogNormal(double median, double scale_param)
 
         """
-        return _libBornAgainCore.FootprintSquare_accept(self, visitor)
+        _libBornAgainCore.DistributionLogNormal_swiginit(self, _libBornAgainCore.new_DistributionLogNormal(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_DistributionLogNormal
 
     def clone(self):
         r"""
-        clone(FootprintSquare self) -> FootprintSquare
-        virtual IFootprintFactor* IFootprintFactor::clone() const =0
+        clone(DistributionLogNormal self) -> DistributionLogNormal
+        DistributionLogNormal* DistributionLogNormal::clone() const final
 
         """
-        return _libBornAgainCore.FootprintSquare_clone(self)
+        return _libBornAgainCore.DistributionLogNormal_clone(self)
 
-    def calculate(self, alpha):
+    def probabilityDensity(self, x):
         r"""
-        calculate(FootprintSquare self, double alpha) -> double
-        virtual double IFootprintFactor::calculate(double alpha) const =0
+        probabilityDensity(DistributionLogNormal self, double x) -> double
+        double DistributionLogNormal::probabilityDensity(double x) const final
 
-        Calculate footprint correction coefficient from the beam incident angle  alpha. 
+        Returns the distribution-specific probability density for value x. 
 
         """
-        return _libBornAgainCore.FootprintSquare_calculate(self, alpha)
+        return _libBornAgainCore.DistributionLogNormal_probabilityDensity(self, x)
 
-    def _print(self):
+    def getMean(self):
         r"""
-        _print(FootprintSquare self) -> std::string
-        virtual std::string IFootprintFactor::print() const =0
+        getMean(DistributionLogNormal self) -> double
+        double DistributionLogNormal::getMean() const final
 
-        Print python-formatted footprint definition. 
+        Returns the distribution-specific mean. 
 
         """
-        return _libBornAgainCore.FootprintSquare__print(self)
-    __swig_destroy__ = _libBornAgainCore.delete_FootprintSquare
-
-# Register FootprintSquare in _libBornAgainCore:
-_libBornAgainCore.FootprintSquare_swigregister(FootprintSquare)
-
-class Simulation(ICloneable, INode):
-    r"""
-
-
-    Pure virtual base class of OffSpecularSimulation,  GISASSimulation and  SpecularSimulation. Holds the common infrastructure to run a simulation: multithreading, batch processing, weighting over parameter distributions, ...
-
-    C++ includes: Simulation.h
-
-    """
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
-    __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_Simulation
+        return _libBornAgainCore.DistributionLogNormal_getMean(self)
 
-    def clone(self):
+    def getMedian(self):
         r"""
-        clone(Simulation self) -> Simulation
-        virtual Simulation* Simulation::clone() const =0
+        getMedian(DistributionLogNormal self) -> double
+        double DistributionLogNormal::getMedian() const
 
         """
-        return _libBornAgainCore.Simulation_clone(self)
+        return _libBornAgainCore.DistributionLogNormal_getMedian(self)
 
-    def prepareSimulation(self):
+    def getScalePar(self):
         r"""
-        prepareSimulation(Simulation self)
-        void Simulation::prepareSimulation()
-
-        Put into a clean state for running a simulation. 
+        getScalePar(DistributionLogNormal self) -> double
+        double DistributionLogNormal::getScalePar() const
 
         """
-        return _libBornAgainCore.Simulation_prepareSimulation(self)
+        return _libBornAgainCore.DistributionLogNormal_getScalePar(self)
 
-    def runSimulation(self):
+    def equidistantPoints(self, *args):
         r"""
-        runSimulation(Simulation self)
-        void Simulation::runSimulation()
-
-        Run a simulation, possibly averaged over parameter distributions.
+        equidistantPoints(DistributionLogNormal self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
+        std::vector< double > DistributionLogNormal::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const
 
-        Run simulation with possible averaging over parameter distributions. 
+        generate list of sample values 
 
         """
-        return _libBornAgainCore.Simulation_runSimulation(self)
+        return _libBornAgainCore.DistributionLogNormal_equidistantPoints(self, *args)
 
-    def runMPISimulation(self):
+    def isDelta(self):
         r"""
-        runMPISimulation(Simulation self)
-        void Simulation::runMPISimulation()
+        isDelta(DistributionLogNormal self) -> bool
+        bool DistributionLogNormal::isDelta() const final
 
-        Run a simulation in a MPI environment. 
+        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
 
         """
-        return _libBornAgainCore.Simulation_runMPISimulation(self)
+        return _libBornAgainCore.DistributionLogNormal_isDelta(self)
 
-    def setInstrument(self, instrument):
+    def accept(self, visitor):
         r"""
-        setInstrument(Simulation self, Instrument instrument)
-        void Simulation::setInstrument(const Instrument &instrument)
+        accept(DistributionLogNormal self, INodeVisitor visitor)
+        void DistributionLogNormal::accept(INodeVisitor *visitor) const final
+
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.Simulation_setInstrument(self, instrument)
+        return _libBornAgainCore.DistributionLogNormal_accept(self, visitor)
 
-    def getInstrument(self, *args):
+    def setUnits(self, units):
         r"""
-        getInstrument(Simulation self) -> Instrument
-        getInstrument(Simulation self) -> Instrument
-        Instrument& Simulation::getInstrument()
+        setUnits(DistributionLogNormal self, std::string const & units)
+        void DistributionLogNormal::setUnits(const std::string &units)
+
+        Sets distribution units. 
 
         """
-        return _libBornAgainCore.Simulation_getInstrument(self, *args)
+        return _libBornAgainCore.DistributionLogNormal_setUnits(self, units)
 
-    def setBeamIntensity(self, intensity):
-        r"""
-        setBeamIntensity(Simulation self, double intensity)
-        void Simulation::setBeamIntensity(double intensity)
+# Register DistributionLogNormal in _libBornAgainCore:
+_libBornAgainCore.DistributionLogNormal_swigregister(DistributionLogNormal)
 
-        """
-        return _libBornAgainCore.Simulation_setBeamIntensity(self, intensity)
+class DistributionCosine(IDistribution1D):
+    r"""
 
-    def getBeamIntensity(self):
-        r"""
-        getBeamIntensity(Simulation self) -> double
-        double Simulation::getBeamIntensity() const
 
-        """
-        return _libBornAgainCore.Simulation_getBeamIntensity(self)
+    Cosine distribution.
 
-    def setBeamPolarization(self, bloch_vector):
-        r"""
-        setBeamPolarization(Simulation self, kvector_t bloch_vector)
-        void Simulation::setBeamPolarization(const kvector_t bloch_vector)
+    C++ includes: Distributions.h
 
-        Sets the beam polarization according to the given Bloch vector. 
+    """
 
-        """
-        return _libBornAgainCore.Simulation_setBeamPolarization(self, bloch_vector)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    def setDetectorResolutionFunction(self, resolution_function):
+    def __init__(self, *args):
         r"""
-        setDetectorResolutionFunction(Simulation self, IResolutionFunction2D resolution_function)
-        void Simulation::setDetectorResolutionFunction(const IResolutionFunction2D &resolution_function)
+        __init__(DistributionCosine self) -> DistributionCosine
+        __init__(DistributionCosine self, double mean, double sigma) -> DistributionCosine
+        DistributionCosine::DistributionCosine(double mean, double sigma)
 
         """
-        return _libBornAgainCore.Simulation_setDetectorResolutionFunction(self, resolution_function)
+        _libBornAgainCore.DistributionCosine_swiginit(self, _libBornAgainCore.new_DistributionCosine(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_DistributionCosine
 
-    def removeDetectorResolutionFunction(self):
+    def clone(self):
         r"""
-        removeDetectorResolutionFunction(Simulation self)
-        void Simulation::removeDetectorResolutionFunction()
+        clone(DistributionCosine self) -> DistributionCosine
+        DistributionCosine* DistributionCosine::clone() const final
 
         """
-        return _libBornAgainCore.Simulation_removeDetectorResolutionFunction(self)
+        return _libBornAgainCore.DistributionCosine_clone(self)
 
-    def setAnalyzerProperties(self, direction, efficiency, total_transmission):
+    def probabilityDensity(self, x):
         r"""
-        setAnalyzerProperties(Simulation self, kvector_t direction, double efficiency, double total_transmission)
-        void Simulation::setAnalyzerProperties(const kvector_t direction, double efficiency, double total_transmission)
+        probabilityDensity(DistributionCosine self, double x) -> double
+        double DistributionCosine::probabilityDensity(double x) const final
 
-        Sets the polarization analyzer characteristics of the detector. 
+        Returns the distribution-specific probability density for value x. 
 
         """
-        return _libBornAgainCore.Simulation_setAnalyzerProperties(self, direction, efficiency, total_transmission)
+        return _libBornAgainCore.DistributionCosine_probabilityDensity(self, x)
 
-    def setSample(self, sample):
+    def getMean(self):
         r"""
-        setSample(Simulation self, MultiLayer sample)
-        void Simulation::setSample(const MultiLayer &sample)
+        getMean(DistributionCosine self) -> double
+        double DistributionCosine::getMean() const final
 
-        The  MultiLayer object will not be owned by the  Simulation object. 
+        Returns the distribution-specific mean. 
 
         """
-        return _libBornAgainCore.Simulation_setSample(self, sample)
+        return _libBornAgainCore.DistributionCosine_getMean(self)
 
-    def sample(self):
+    def getSigma(self):
         r"""
-        sample(Simulation self) -> MultiLayer
-        const MultiLayer * Simulation::sample() const
+        getSigma(DistributionCosine self) -> double
+        double DistributionCosine::getSigma() const
 
         """
-        return _libBornAgainCore.Simulation_sample(self)
+        return _libBornAgainCore.DistributionCosine_getSigma(self)
 
-    def setSampleBuilderCpp(self, sample_builder):
+    def equidistantPoints(self, *args):
         r"""
-        setSampleBuilderCpp(Simulation self, std::shared_ptr< IMultiLayerBuilder > const sample_builder)
-        void Simulation::setSampleBuilder(const std::shared_ptr< IMultiLayerBuilder > sample_builder)
-
-        """
-        return _libBornAgainCore.Simulation_setSampleBuilderCpp(self, sample_builder)
+        equidistantPoints(DistributionCosine self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
+        std::vector< double > DistributionCosine::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const
 
-    def setBackground(self, bg):
-        r"""
-        setBackground(Simulation self, IBackground bg)
-        void Simulation::setBackground(const IBackground &bg)
+        generate list of sample values 
 
         """
-        return _libBornAgainCore.Simulation_setBackground(self, bg)
+        return _libBornAgainCore.DistributionCosine_equidistantPoints(self, *args)
 
-    def background(self):
+    def isDelta(self):
         r"""
-        background(Simulation self) -> IBackground
-        const IBackground* Simulation::background() const
+        isDelta(DistributionCosine self) -> bool
+        bool DistributionCosine::isDelta() const final
+
+        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
 
         """
-        return _libBornAgainCore.Simulation_background(self)
+        return _libBornAgainCore.DistributionCosine_isDelta(self)
 
-    def intensityMapSize(self):
+    def accept(self, visitor):
         r"""
-        intensityMapSize(Simulation self) -> size_t
-        virtual size_t Simulation::intensityMapSize() const =0
+        accept(DistributionCosine self, INodeVisitor visitor)
+        void DistributionCosine::accept(INodeVisitor *visitor) const final
 
-        Returns the total number of the intensity values in the simulation result. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.Simulation_intensityMapSize(self)
+        return _libBornAgainCore.DistributionCosine_accept(self, visitor)
 
-    def result(self):
-        r"""
-        result(Simulation self) -> SimulationResult
-        virtual SimulationResult Simulation::result() const =0
+# Register DistributionCosine in _libBornAgainCore:
+_libBornAgainCore.DistributionCosine_swigregister(DistributionCosine)
 
-        Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays 
+class DistributionTrapezoid(IDistribution1D):
+    r"""
 
-        """
-        return _libBornAgainCore.Simulation_result(self)
 
-    def addParameterDistribution(self, *args):
-        r"""
-        addParameterDistribution(Simulation self, std::string const & param_name, IDistribution1D distribution, size_t nbr_samples, double sigma_factor=0.0, RealLimits limits=RealLimits())
-        addParameterDistribution(Simulation self, ParameterDistribution par_distr)
-        void Simulation::addParameterDistribution(const ParameterDistribution &par_distr)
+    Trapezoidal distribution.
 
-        """
-        return _libBornAgainCore.Simulation_addParameterDistribution(self, *args)
-
-    def getDistributionHandler(self):
-        r"""
-        getDistributionHandler(Simulation self) -> DistributionHandler const &
-        const DistributionHandler& Simulation::getDistributionHandler() const
-
-        """
-        return _libBornAgainCore.Simulation_getDistributionHandler(self)
-
-    def setOptions(self, options):
-        r"""
-        setOptions(Simulation self, SimulationOptions options)
-        void Simulation::setOptions(const SimulationOptions &options)
-
-        """
-        return _libBornAgainCore.Simulation_setOptions(self, options)
+    C++ includes: Distributions.h
 
-    def getOptions(self, *args):
-        r"""
-        getOptions(Simulation self) -> SimulationOptions
-        getOptions(Simulation self) -> SimulationOptions
-        SimulationOptions& Simulation::getOptions()
+    """
 
-        """
-        return _libBornAgainCore.Simulation_getOptions(self, *args)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    def subscribe(self, inform):
+    def __init__(self, *args):
         r"""
-        subscribe(Simulation self, ProgressHandler::Callback_t inform)
-        void Simulation::subscribe(ProgressHandler::Callback_t inform)
+        __init__(DistributionTrapezoid self) -> DistributionTrapezoid
+        __init__(DistributionTrapezoid self, double center, double left_width, double middle_width, double right_width) -> DistributionTrapezoid
+        DistributionTrapezoid::DistributionTrapezoid(double center, double left_width, double middle_width, double right_width)
 
         """
-        return _libBornAgainCore.Simulation_subscribe(self, inform)
+        _libBornAgainCore.DistributionTrapezoid_swiginit(self, _libBornAgainCore.new_DistributionTrapezoid(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_DistributionTrapezoid
 
-    def setTerminalProgressMonitor(self):
+    def clone(self):
         r"""
-        setTerminalProgressMonitor(Simulation self)
-        void Simulation::setTerminalProgressMonitor()
-
-        Initializes a progress monitor that prints to stdout. 
+        clone(DistributionTrapezoid self) -> DistributionTrapezoid
+        DistributionTrapezoid* DistributionTrapezoid::clone() const final
 
         """
-        return _libBornAgainCore.Simulation_setTerminalProgressMonitor(self)
+        return _libBornAgainCore.DistributionTrapezoid_clone(self)
 
-    def getChildren(self):
+    def probabilityDensity(self, x):
         r"""
-        getChildren(Simulation self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > Simulation::getChildren() const
-
-        Returns a vector of children (const). 
-
-        """
-        return _libBornAgainCore.Simulation_getChildren(self)
-
-    def setSampleBuilder(self, ptr):
-        self.samplebuilder = ptr
-        self.setSampleBuilderCpp(ptr)
-
-
-# Register Simulation in _libBornAgainCore:
-_libBornAgainCore.Simulation_swigregister(Simulation)
-
-class Simulation2D(Simulation):
-    r"""
-
-
-    Pure virtual base class of OffSpecularSimulation and  GISASSimulation. Holds the common implementations for simulations with a 2D detector
-
-    C++ includes: Simulation2D.h
-
-    """
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
-    __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_Simulation2D
+        probabilityDensity(DistributionTrapezoid self, double x) -> double
+        double DistributionTrapezoid::probabilityDensity(double x) const final
 
-    def clone(self):
-        r"""
-        clone(Simulation2D self) -> Simulation2D
-        Simulation2D* Simulation2D::clone() const override=0
+        Returns the distribution-specific probability density for value x. 
 
         """
-        return _libBornAgainCore.Simulation2D_clone(self)
+        return _libBornAgainCore.DistributionTrapezoid_probabilityDensity(self, x)
 
-    def prepareSimulation(self):
+    def getMean(self):
         r"""
-        prepareSimulation(Simulation2D self)
-        void Simulation2D::prepareSimulation() override
+        getMean(DistributionTrapezoid self) -> double
+        double DistributionTrapezoid::getMean() const final
 
-        Put into a clean state for running a simulation. 
+        Returns the distribution-specific mean. 
 
         """
-        return _libBornAgainCore.Simulation2D_prepareSimulation(self)
+        return _libBornAgainCore.DistributionTrapezoid_getMean(self)
 
-    def setDetectorParameters(self, n_phi, phi_min, phi_max, n_alpha, alpha_min, alpha_max):
+    def getLeftWidth(self):
         r"""
-        setDetectorParameters(Simulation2D self, size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max)
-        void Simulation2D::setDetectorParameters(size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max)
-
-        Sets spherical detector parameters using angle ranges
-
-        Parameters:
-        -----------
-
-        n_phi: 
-        number of phi-axis bins
-
-        phi_min: 
-        low edge of first phi-bin
-
-        phi_max: 
-        upper edge of last phi-bin
-
-        n_alpha: 
-        number of alpha-axis bins
-
-        alpha_min: 
-        low edge of first alpha-bin
-
-        alpha_max: 
-        upper edge of last alpha-bin 
+        getLeftWidth(DistributionTrapezoid self) -> double
+        double DistributionTrapezoid::getLeftWidth() const
 
         """
-        return _libBornAgainCore.Simulation2D_setDetectorParameters(self, n_phi, phi_min, phi_max, n_alpha, alpha_min, alpha_max)
+        return _libBornAgainCore.DistributionTrapezoid_getLeftWidth(self)
 
-    def setDetector(self, detector):
+    def getMiddleWidth(self):
         r"""
-        setDetector(Simulation2D self, IDetector2D detector)
-        void Simulation2D::setDetector(const IDetector2D &detector)
-
-        Sets the detector (axes can be overwritten later) 
+        getMiddleWidth(DistributionTrapezoid self) -> double
+        double DistributionTrapezoid::getMiddleWidth() const
 
         """
-        return _libBornAgainCore.Simulation2D_setDetector(self, detector)
+        return _libBornAgainCore.DistributionTrapezoid_getMiddleWidth(self)
 
-    def removeMasks(self):
+    def getRightWidth(self):
         r"""
-        removeMasks(Simulation2D self)
-        void Simulation2D::removeMasks()
-
-        removes all masks from the detector 
+        getRightWidth(DistributionTrapezoid self) -> double
+        double DistributionTrapezoid::getRightWidth() const
 
         """
-        return _libBornAgainCore.Simulation2D_removeMasks(self)
+        return _libBornAgainCore.DistributionTrapezoid_getRightWidth(self)
 
-    def addMask(self, shape, mask_value=True):
+    def equidistantPoints(self, *args):
         r"""
-        addMask(Simulation2D self, IShape2D shape, bool mask_value=True)
-        void Simulation2D::addMask(const IShape2D &shape, bool mask_value=true)
-
-        Adds mask of given shape to the stack of detector masks. The mask value 'true' means that the channel will be excluded from the simulation. The mask which is added last has priority.
-
-        Parameters:
-        -----------
-
-        shape: 
-        The shape of mask ( Rectangle,  Polygon,  Line,  Ellipse)
+        equidistantPoints(DistributionTrapezoid self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t
+        std::vector< double > DistributionTrapezoid::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const
 
-        mask_value: 
-        The value of mask 
+        generate list of sample values 
 
         """
-        return _libBornAgainCore.Simulation2D_addMask(self, shape, mask_value)
+        return _libBornAgainCore.DistributionTrapezoid_equidistantPoints(self, *args)
 
-    def maskAll(self):
+    def isDelta(self):
         r"""
-        maskAll(Simulation2D self)
-        void Simulation2D::maskAll()
+        isDelta(DistributionTrapezoid self) -> bool
+        bool DistributionTrapezoid::isDelta() const final
 
-        Put the mask for all detector channels (i.e. exclude whole detector from the analysis) 
+        Returns true if the distribution is in the limit case of a Dirac delta distribution. 
 
         """
-        return _libBornAgainCore.Simulation2D_maskAll(self)
+        return _libBornAgainCore.DistributionTrapezoid_isDelta(self)
 
-    def setRegionOfInterest(self, xlow, ylow, xup, yup):
+    def accept(self, visitor):
         r"""
-        setRegionOfInterest(Simulation2D self, double xlow, double ylow, double xup, double yup)
-        void Simulation2D::setRegionOfInterest(double xlow, double ylow, double xup, double yup)
+        accept(DistributionTrapezoid self, INodeVisitor visitor)
+        void DistributionTrapezoid::accept(INodeVisitor *visitor) const final
 
-        Sets rectangular region of interest with lower left and upper right corners defined. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.Simulation2D_setRegionOfInterest(self, xlow, ylow, xup, yup)
+        return _libBornAgainCore.DistributionTrapezoid_accept(self, visitor)
 
-# Register Simulation2D in _libBornAgainCore:
-_libBornAgainCore.Simulation2D_swigregister(Simulation2D)
+# Register DistributionTrapezoid in _libBornAgainCore:
+_libBornAgainCore.DistributionTrapezoid_swigregister(DistributionTrapezoid)
 
-class SimulationOptions(object):
+class INodeVisitor(object):
     r"""
 
 
-    Collect the different options for simulation.
+    From visitor pattern to achieve double dispatch.
 
-    SimulationOptions
+    Visitor interface to visit  ISample objects.
 
-    C++ includes: SimulationOptions.h
+    C++ includes: INodeVisitor.h
 
     """
 
@@ -13361,741 +12950,620 @@ class SimulationOptions(object):
 
     def __init__(self):
         r"""
-        __init__(SimulationOptions self) -> SimulationOptions
-        SimulationOptions::SimulationOptions()
-
-        """
-        _libBornAgainCore.SimulationOptions_swiginit(self, _libBornAgainCore.new_SimulationOptions())
-
-    def isIntegrate(self):
-        r"""
-        isIntegrate(SimulationOptions self) -> bool
-        bool SimulationOptions::isIntegrate() const
-
-        """
-        return _libBornAgainCore.SimulationOptions_isIntegrate(self)
-
-    def getMcPoints(self):
-        r"""
-        getMcPoints(SimulationOptions self) -> size_t
-        size_t SimulationOptions::getMcPoints() const
-
-        """
-        return _libBornAgainCore.SimulationOptions_getMcPoints(self)
-
-    def setMonteCarloIntegration(self, flag=True, mc_points=50):
-        r"""
-        setMonteCarloIntegration(SimulationOptions self, bool flag=True, size_t mc_points=50)
-        void SimulationOptions::setMonteCarloIntegration(bool flag=true, size_t mc_points=50)
-
-        Enables/disables MonetCarlo integration.
-
-        Parameters:
-        -----------
-
-        flag: 
-        If true, MonteCarlo integration will be used, otherwise analytical calculations
-
-        mc_points: 
-        Number of points for MonteCarlo integrator 
+        __init__(INodeVisitor self) -> INodeVisitor
+        INodeVisitor::INodeVisitor()
 
         """
-        return _libBornAgainCore.SimulationOptions_setMonteCarloIntegration(self, flag, mc_points)
+        _libBornAgainCore.INodeVisitor_swiginit(self, _libBornAgainCore.new_INodeVisitor())
+    __swig_destroy__ = _libBornAgainCore.delete_INodeVisitor
 
-    def setNumberOfThreads(self, nthreads):
+    def visit(self, *args):
         r"""
-        setNumberOfThreads(SimulationOptions self, int nthreads)
-        void SimulationOptions::setNumberOfThreads(int nthreads)
-
-        Sets number of threads to use during the simulation (0 - take the default value from the hardware) 
-
-        """
-        return _libBornAgainCore.SimulationOptions_setNumberOfThreads(self, nthreads)
-
-    def getNumberOfThreads(self):
-        r"""
-        getNumberOfThreads(SimulationOptions self) -> unsigned int
-        unsigned SimulationOptions::getNumberOfThreads() const
-
-        """
-        return _libBornAgainCore.SimulationOptions_getNumberOfThreads(self)
-
-    def setNumberOfBatches(self, nbatches):
-        r"""
-        setNumberOfBatches(SimulationOptions self, int nbatches)
-        void SimulationOptions::setNumberOfBatches(int nbatches)
-
-        Sets number of batches to split. 
-
-        """
-        return _libBornAgainCore.SimulationOptions_setNumberOfBatches(self, nbatches)
-
-    def getNumberOfBatches(self):
-        r"""
-        getNumberOfBatches(SimulationOptions self) -> unsigned int
-        unsigned SimulationOptions::getNumberOfBatches() const
-
-        """
-        return _libBornAgainCore.SimulationOptions_getNumberOfBatches(self)
-
-    def getCurrentBatch(self):
-        r"""
-        getCurrentBatch(SimulationOptions self) -> unsigned int
-        unsigned SimulationOptions::getCurrentBatch() const
-
-        """
-        return _libBornAgainCore.SimulationOptions_getCurrentBatch(self)
-
-    def setThreadInfo(self, thread_info):
-        r"""
-        setThreadInfo(SimulationOptions self, ThreadInfo thread_info)
-        void SimulationOptions::setThreadInfo(const ThreadInfo &thread_info)
-
-        Sets the batch and thread information to be used. 
+        visit(INodeVisitor self, BasicLattice arg2)
+        visit(INodeVisitor self, Beam arg2)
+        visit(INodeVisitor self, ConstantBackground arg2)
+        visit(INodeVisitor self, ConvolutionDetectorResolution const * arg2)
+        visit(INodeVisitor self, Crystal arg2)
+        visit(INodeVisitor self, DistributionCosine arg2)
+        visit(INodeVisitor self, DistributionGate arg2)
+        visit(INodeVisitor self, DistributionGaussian arg2)
+        visit(INodeVisitor self, DistributionLogNormal arg2)
+        visit(INodeVisitor self, DistributionLorentz arg2)
+        visit(INodeVisitor self, DistributionTrapezoid arg2)
+        visit(INodeVisitor self, FootprintGauss arg2)
+        visit(INodeVisitor self, FootprintSquare arg2)
+        visit(INodeVisitor self, FormFactorAnisoPyramid arg2)
+        visit(INodeVisitor self, FormFactorBarGauss const * arg2)
+        visit(INodeVisitor self, FormFactorBarLorentz const * arg2)
+        visit(INodeVisitor self, FormFactorBox arg2)
+        visit(INodeVisitor self, FormFactorCantellatedCube arg2)
+        visit(INodeVisitor self, FormFactorCone arg2)
+        visit(INodeVisitor self, FormFactorCone6 arg2)
+        visit(INodeVisitor self, FormFactorCoreShell const * arg2)
+        visit(INodeVisitor self, FormFactorCrystal arg2)
+        visit(INodeVisitor self, FormFactorCuboctahedron arg2)
+        visit(INodeVisitor self, FormFactorCylinder arg2)
+        visit(INodeVisitor self, FormFactorDWBA const * arg2)
+        visit(INodeVisitor self, FormFactorDWBAPol const * arg2)
+        visit(INodeVisitor self, FormFactorDecoratorMaterial const * arg2)
+        visit(INodeVisitor self, FormFactorDecoratorPositionFactor const * arg2)
+        visit(INodeVisitor self, FormFactorDecoratorRotation const * arg2)
+        visit(INodeVisitor self, FormFactorDodecahedron arg2)
+        visit(INodeVisitor self, FormFactorDot arg2)
+        visit(INodeVisitor self, FormFactorEllipsoidalCylinder arg2)
+        visit(INodeVisitor self, FormFactorFullSphere arg2)
+        visit(INodeVisitor self, FormFactorFullSpheroid arg2)
+        visit(INodeVisitor self, FormFactorGauss arg2)
+        visit(INodeVisitor self, FormFactorHemiEllipsoid arg2)
+        visit(INodeVisitor self, FormFactorIcosahedron arg2)
+        visit(INodeVisitor self, FormFactorLongBoxGauss arg2)
+        visit(INodeVisitor self, FormFactorLongBoxLorentz arg2)
+        visit(INodeVisitor self, FormFactorLorentz arg2)
+        visit(INodeVisitor self, FormFactorPrism3 arg2)
+        visit(INodeVisitor self, FormFactorPrism6 arg2)
+        visit(INodeVisitor self, FormFactorPyramid arg2)
+        visit(INodeVisitor self, FormFactorRipple1Box arg2)
+        visit(INodeVisitor self, FormFactorRipple1Gauss arg2)
+        visit(INodeVisitor self, FormFactorRipple1Lorentz arg2)
+        visit(INodeVisitor self, FormFactorRipple2Box arg2)
+        visit(INodeVisitor self, FormFactorRipple2Gauss arg2)
+        visit(INodeVisitor self, FormFactorRipple2Lorentz arg2)
+        visit(INodeVisitor self, FormFactorSphereGaussianRadius arg2)
+        visit(INodeVisitor self, FormFactorSphereLogNormalRadius arg2)
+        visit(INodeVisitor self, FormFactorTetrahedron arg2)
+        visit(INodeVisitor self, FormFactorTruncatedCube arg2)
+        visit(INodeVisitor self, FormFactorTruncatedSphere arg2)
+        visit(INodeVisitor self, FormFactorTruncatedSpheroid arg2)
+        visit(INodeVisitor self, FormFactorWeighted arg2)
+        visit(INodeVisitor self, FTDecayFunction1DCauchy arg2)
+        visit(INodeVisitor self, FTDecayFunction1DGauss arg2)
+        visit(INodeVisitor self, FTDecayFunction1DTriangle arg2)
+        visit(INodeVisitor self, FTDecayFunction1DVoigt arg2)
+        visit(INodeVisitor self, FTDecayFunction2DCauchy arg2)
+        visit(INodeVisitor self, FTDecayFunction2DGauss arg2)
+        visit(INodeVisitor self, FTDecayFunction2DVoigt arg2)
+        visit(INodeVisitor self, FTDistribution1DCauchy arg2)
+        visit(INodeVisitor self, FTDistribution1DCosine arg2)
+        visit(INodeVisitor self, FTDistribution1DGate arg2)
+        visit(INodeVisitor self, FTDistribution1DGauss arg2)
+        visit(INodeVisitor self, FTDistribution1DTriangle arg2)
+        visit(INodeVisitor self, FTDistribution1DVoigt arg2)
+        visit(INodeVisitor self, FTDistribution2DCauchy arg2)
+        visit(INodeVisitor self, FTDistribution2DCone arg2)
+        visit(INodeVisitor self, FTDistribution2DGate arg2)
+        visit(INodeVisitor self, FTDistribution2DGauss arg2)
+        visit(INodeVisitor self, FTDistribution2DVoigt arg2)
+        visit(INodeVisitor self, GISASSimulation arg2)
+        visit(INodeVisitor self, HexagonalLattice arg2)
+        visit(INodeVisitor self, IAbstractParticle arg2)
+        visit(INodeVisitor self, IClusteredParticles arg2)
+        visit(INodeVisitor self, IdentityRotation arg2)
+        visit(INodeVisitor self, IFormFactor arg2)
+        visit(INodeVisitor self, IFormFactorBorn arg2)
+        visit(INodeVisitor self, IFormFactorDecorator arg2)
+        visit(INodeVisitor self, IInterferenceFunction arg2)
+        visit(INodeVisitor self, ILayout arg2)
+        visit(INodeVisitor self, INode arg2)
+        visit(INodeVisitor self, Instrument arg2)
+        visit(INodeVisitor self, IntensityNormalizer arg2)
+        visit(INodeVisitor self, IntensityScaleAndShiftNormalizer arg2)
+        visit(INodeVisitor self, InterferenceFunction1DLattice arg2)
+        visit(INodeVisitor self, InterferenceFunction2DLattice arg2)
+        visit(INodeVisitor self, InterferenceFunction2DParaCrystal arg2)
+        visit(INodeVisitor self, InterferenceFunction2DSuperLattice arg2)
+        visit(INodeVisitor self, InterferenceFunction3DLattice arg2)
+        visit(INodeVisitor self, InterferenceFunctionFinite2DLattice arg2)
+        visit(INodeVisitor self, InterferenceFunctionFinite3DLattice arg2)
+        visit(INodeVisitor self, InterferenceFunctionHardDisk arg2)
+        visit(INodeVisitor self, InterferenceFunctionRadialParaCrystal arg2)
+        visit(INodeVisitor self, InterferenceFunctionTwin arg2)
+        visit(INodeVisitor self, InterferenceFunctionNone arg2)
+        visit(INodeVisitor self, IParticle arg2)
+        visit(INodeVisitor self, IPeakShape arg2)
+        visit(INodeVisitor self, IRotation arg2)
+        visit(INodeVisitor self, ISample arg2)
+        visit(INodeVisitor self, IsGISAXSDetector arg2)
+        visit(INodeVisitor self, Layer arg2)
+        visit(INodeVisitor self, LayerInterface const * arg2)
+        visit(INodeVisitor self, LayerRoughness arg2)
+        visit(INodeVisitor self, MesoCrystal arg2)
+        visit(INodeVisitor self, MultiLayer arg2)
+        visit(INodeVisitor self, OffSpecSimulation arg2)
+        visit(INodeVisitor self, Particle arg2)
+        visit(INodeVisitor self, ParticleComposition arg2)
+        visit(INodeVisitor self, ParticleCoreShell arg2)
+        visit(INodeVisitor self, ParticleDistribution arg2)
+        visit(INodeVisitor self, ParticleLayout arg2)
+        visit(INodeVisitor self, PoissonNoiseBackground arg2)
+        visit(INodeVisitor self, RectangularDetector arg2)
+        visit(INodeVisitor self, ResolutionFunction2DGaussian arg2)
+        visit(INodeVisitor self, RotationEuler arg2)
+        visit(INodeVisitor self, RotationX arg2)
+        visit(INodeVisitor self, RotationY arg2)
+        visit(INodeVisitor self, RotationZ arg2)
+        visit(INodeVisitor self, SpecularDetector1D const * arg2)
+        visit(INodeVisitor self, SpecularSimulation arg2)
+        visit(INodeVisitor self, SphericalDetector arg2)
+        visit(INodeVisitor self, SquareLattice arg2)
+        virtual void INodeVisitor::visit(const SquareLattice *)
 
         """
-        return _libBornAgainCore.SimulationOptions_setThreadInfo(self, thread_info)
+        return _libBornAgainCore.INodeVisitor_visit(self, *args)
 
-    def getHardwareConcurrency(self):
+    def depth(self):
         r"""
-        getHardwareConcurrency(SimulationOptions self) -> unsigned int
-        unsigned SimulationOptions::getHardwareConcurrency() const
-
-        """
-        return _libBornAgainCore.SimulationOptions_getHardwareConcurrency(self)
+        depth(INodeVisitor self) -> int
+        int INodeVisitor::depth() const
 
-    def setIncludeSpecular(self, include_specular):
-        r"""
-        setIncludeSpecular(SimulationOptions self, bool include_specular)
-        void SimulationOptions::setIncludeSpecular(bool include_specular)
+        Returns depth of the visitor in the composite hierarchy. 
 
         """
-        return _libBornAgainCore.SimulationOptions_setIncludeSpecular(self, include_specular)
+        return _libBornAgainCore.INodeVisitor_depth(self)
 
-    def includeSpecular(self):
+    def setDepth(self, depth):
         r"""
-        includeSpecular(SimulationOptions self) -> bool
-        bool SimulationOptions::includeSpecular() const
-
-        """
-        return _libBornAgainCore.SimulationOptions_includeSpecular(self)
+        setDepth(INodeVisitor self, int depth)
+        void INodeVisitor::setDepth(int depth)
 
-    def setUseAvgMaterials(self, use_avg_materials):
-        r"""
-        setUseAvgMaterials(SimulationOptions self, bool use_avg_materials)
-        void SimulationOptions::setUseAvgMaterials(bool use_avg_materials)
+        Sets depth of the visitor in the composite hierarchy. 
 
         """
-        return _libBornAgainCore.SimulationOptions_setUseAvgMaterials(self, use_avg_materials)
-
-    def useAvgMaterials(self):
-        r"""
-        useAvgMaterials(SimulationOptions self) -> bool
-        bool SimulationOptions::useAvgMaterials() const
+        return _libBornAgainCore.INodeVisitor_setDepth(self, depth)
 
-        """
-        return _libBornAgainCore.SimulationOptions_useAvgMaterials(self)
-    __swig_destroy__ = _libBornAgainCore.delete_SimulationOptions
+# Register INodeVisitor in _libBornAgainCore:
+_libBornAgainCore.INodeVisitor_swigregister(INodeVisitor)
 
-# Register SimulationOptions in _libBornAgainCore:
-_libBornAgainCore.SimulationOptions_swigregister(SimulationOptions)
 
-class GISASSimulation(Simulation2D):
+def VisitNodesPreorder(node, visitor):
     r"""
-
-
-    Main class to run a Grazing-Incidence Small-Angle Scattering simulation.
-
-    C++ includes: GISASSimulation.h
+    VisitNodesPreorder(INode node, INodeVisitor visitor)
+    BA_CORE_API_ void VisitNodesPreorder(const INode &node, INodeVisitor &visitor)
 
     """
+    return _libBornAgainCore.VisitNodesPreorder(node, visitor)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
-
-    def __init__(self, *args):
-        r"""
-        __init__(GISASSimulation self) -> GISASSimulation
-        __init__(GISASSimulation self, MultiLayer p_sample) -> GISASSimulation
-        __init__(GISASSimulation self, std::shared_ptr< IMultiLayerBuilder > const p_sample_builder) -> GISASSimulation
-        GISASSimulation::GISASSimulation(const std::shared_ptr< IMultiLayerBuilder > p_sample_builder)
-
-        """
-        _libBornAgainCore.GISASSimulation_swiginit(self, _libBornAgainCore.new_GISASSimulation(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_GISASSimulation
-
-    def clone(self):
-        r"""
-        clone(GISASSimulation self) -> GISASSimulation
-        GISASSimulation* GISASSimulation::clone() const override
-
-        """
-        return _libBornAgainCore.GISASSimulation_clone(self)
-
-    def accept(self, visitor):
-        r"""
-        accept(GISASSimulation self, INodeVisitor visitor)
-        void GISASSimulation::accept(INodeVisitor *visitor) const override
-
-        Calls the  INodeVisitor's visit method. 
-
-        """
-        return _libBornAgainCore.GISASSimulation_accept(self, visitor)
-
-    def prepareSimulation(self):
-        r"""
-        prepareSimulation(GISASSimulation self)
-        void GISASSimulation::prepareSimulation() override
-
-        Put into a clean state for running a simulation. 
-
-        """
-        return _libBornAgainCore.GISASSimulation_prepareSimulation(self)
-
-    def result(self):
-        r"""
-        result(GISASSimulation self) -> SimulationResult
-        SimulationResult GISASSimulation::result() const override
-
-        Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays 
-
-        """
-        return _libBornAgainCore.GISASSimulation_result(self)
-
-    def setBeamParameters(self, wavelength, alpha_i, phi_i):
-        r"""
-        setBeamParameters(GISASSimulation self, double wavelength, double alpha_i, double phi_i)
-        void GISASSimulation::setBeamParameters(double wavelength, double alpha_i, double phi_i)
-
-        Sets beam parameters from here (forwarded to  Instrument) 
-
-        """
-        return _libBornAgainCore.GISASSimulation_setBeamParameters(self, wavelength, alpha_i, phi_i)
-
-    def intensityMapSize(self):
-        r"""
-        intensityMapSize(GISASSimulation self) -> size_t
-        size_t GISASSimulation::intensityMapSize() const override
-
-        Returns the total number of the intensity values in the simulation result. 
-
-        """
-        return _libBornAgainCore.GISASSimulation_intensityMapSize(self)
-
-# Register GISASSimulation in _libBornAgainCore:
-_libBornAgainCore.GISASSimulation_swigregister(GISASSimulation)
+def VisitNodesPostorder(node, visitor):
+    r"""
+    VisitNodesPostorder(INode node, INodeVisitor visitor)
+    BA_CORE_API_ void VisitNodesPostorder(const INode &node, INodeVisitor &visitor)
 
-class IHistogram(object):
+    """
+    return _libBornAgainCore.VisitNodesPostorder(node, visitor)
+class SimulationOptions(object):
     r"""
 
 
-    Base class for 1D and 2D histograms holding values of double type.
+    Collect the different options for simulation.
 
-    C++ includes: IHistogram.h
+    SimulationOptions
+
+    C++ includes: SimulationOptions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    INTEGRAL = _libBornAgainCore.IHistogram_INTEGRAL
-    
-    AVERAGE = _libBornAgainCore.IHistogram_AVERAGE
-    
-    STANDARD_ERROR = _libBornAgainCore.IHistogram_STANDARD_ERROR
-    
-    NENTRIES = _libBornAgainCore.IHistogram_NENTRIES
-    
-    __swig_destroy__ = _libBornAgainCore.delete_IHistogram
-
-    def clone(self):
-        r"""
-        clone(IHistogram self) -> IHistogram
-        virtual IHistogram* IHistogram::clone() const =0
-
-        """
-        return _libBornAgainCore.IHistogram_clone(self)
-
-    def getRank(self):
-        r"""
-        getRank(IHistogram self) -> size_t
-        virtual size_t IHistogram::getRank() const =0
-
-        Returns number of histogram dimensions. 
-
-        """
-        return _libBornAgainCore.IHistogram_getRank(self)
-
-    def getTotalNumberOfBins(self):
-        r"""
-        getTotalNumberOfBins(IHistogram self) -> size_t
-        size_t IHistogram::getTotalNumberOfBins() const
-
-        Returns total number of histogram bins. For 2D histograms the result will be the product of bin numbers along X and Y axes. 
-
-        """
-        return _libBornAgainCore.IHistogram_getTotalNumberOfBins(self)
-
-    def getXaxis(self):
-        r"""
-        getXaxis(IHistogram self) -> IAxis
-        const IAxis & IHistogram::getXaxis() const
-
-        returns x-axis 
-
-        """
-        return _libBornAgainCore.IHistogram_getXaxis(self)
-
-    def getYaxis(self):
-        r"""
-        getYaxis(IHistogram self) -> IAxis
-        const IAxis & IHistogram::getYaxis() const
-
-        returns y-axis for 2D histograms 
-
-        """
-        return _libBornAgainCore.IHistogram_getYaxis(self)
-
-    def getXmin(self):
-        r"""
-        getXmin(IHistogram self) -> double
-        double IHistogram::getXmin() const
-
-        Returns x-axis min (lower edge of first bin). 
-
-        """
-        return _libBornAgainCore.IHistogram_getXmin(self)
-
-    def getXmax(self):
-        r"""
-        getXmax(IHistogram self) -> double
-        double IHistogram::getXmax() const
-
-        Returns x-axis max (upper edge of last bin). 
-
-        """
-        return _libBornAgainCore.IHistogram_getXmax(self)
-
-    def getNbinsX(self):
-        r"""
-        getNbinsX(IHistogram self) -> size_t
-        size_t IHistogram::getNbinsX() const
-
-        Returns number of bins on x-axis. 
-
-        """
-        return _libBornAgainCore.IHistogram_getNbinsX(self)
 
-    def getYmin(self):
+    def __init__(self):
         r"""
-        getYmin(IHistogram self) -> double
-        double IHistogram::getYmin() const
-
-        Returns y-axis min (lower edge of first bin) for 2D histograms. 
+        __init__(SimulationOptions self) -> SimulationOptions
+        SimulationOptions::SimulationOptions()
 
         """
-        return _libBornAgainCore.IHistogram_getYmin(self)
+        _libBornAgainCore.SimulationOptions_swiginit(self, _libBornAgainCore.new_SimulationOptions())
 
-    def getYmax(self):
+    def isIntegrate(self):
         r"""
-        getYmax(IHistogram self) -> double
-        double IHistogram::getYmax() const
-
-        Returns y-axis max (upper edge of last bin) for 2D histograms. 
+        isIntegrate(SimulationOptions self) -> bool
+        bool SimulationOptions::isIntegrate() const
 
         """
-        return _libBornAgainCore.IHistogram_getYmax(self)
+        return _libBornAgainCore.SimulationOptions_isIntegrate(self)
 
-    def getNbinsY(self):
+    def getMcPoints(self):
         r"""
-        getNbinsY(IHistogram self) -> size_t
-        size_t IHistogram::getNbinsY() const
-
-        Returns number of bins on y-axis. 
+        getMcPoints(SimulationOptions self) -> size_t
+        size_t SimulationOptions::getMcPoints() const
 
         """
-        return _libBornAgainCore.IHistogram_getNbinsY(self)
+        return _libBornAgainCore.SimulationOptions_getMcPoints(self)
 
-    def getGlobalBin(self, binx, biny=0):
+    def setMonteCarloIntegration(self, flag=True, mc_points=50):
         r"""
-        getGlobalBin(IHistogram self, size_t binx, size_t biny=0) -> size_t
-        size_t IHistogram::getGlobalBin(size_t binx, size_t biny=0) const
+        setMonteCarloIntegration(SimulationOptions self, bool flag=True, size_t mc_points=50)
+        void SimulationOptions::setMonteCarloIntegration(bool flag=true, size_t mc_points=50)
 
-        Returns global bin index for given axes indices. For 1D histogram the global bin index coinside with x-axis index.
+        Enables/disables MonetCarlo integration.
 
         Parameters:
         -----------
 
-        binx: 
-        x-axis bin index
-
-        biny: 
-        y-axis bin index (for 2D histograms)
-
-        The global bin index 
-
-        """
-        return _libBornAgainCore.IHistogram_getGlobalBin(self, binx, biny)
+        flag: 
+        If true, MonteCarlo integration will be used, otherwise analytical calculations
 
-    def findGlobalBin(self, x, y):
-        r"""
-        findGlobalBin(IHistogram self, double x, double y) -> size_t
-        size_t IHistogram::findGlobalBin(double x, double y) const
+        mc_points: 
+        Number of points for MonteCarlo integrator 
 
-        Returns closest global bin index for given axes coordinates. For 1D.
+        """
+        return _libBornAgainCore.SimulationOptions_setMonteCarloIntegration(self, flag, mc_points)
 
-        Parameters:
-        -----------
+    def setNumberOfThreads(self, nthreads):
+        r"""
+        setNumberOfThreads(SimulationOptions self, int nthreads)
+        void SimulationOptions::setNumberOfThreads(int nthreads)
 
-        x: 
-        Value on x-axis
+        Sets number of threads to use during the simulation (0 - take the default value from the hardware) 
 
-        y: 
-        Value on y-axis (for 2D histograms)
+        """
+        return _libBornAgainCore.SimulationOptions_setNumberOfThreads(self, nthreads)
 
-        Closest global bin index 
+    def getNumberOfThreads(self):
+        r"""
+        getNumberOfThreads(SimulationOptions self) -> unsigned int
+        unsigned SimulationOptions::getNumberOfThreads() const
 
         """
-        return _libBornAgainCore.IHistogram_findGlobalBin(self, x, y)
+        return _libBornAgainCore.SimulationOptions_getNumberOfThreads(self)
 
-    def getXaxisIndex(self, i):
+    def setNumberOfBatches(self, nbatches):
         r"""
-        getXaxisIndex(IHistogram self, size_t i) -> size_t
-        size_t IHistogram::getXaxisIndex(size_t i) const
+        setNumberOfBatches(SimulationOptions self, int nbatches)
+        void SimulationOptions::setNumberOfBatches(int nbatches)
 
-        Returns x-axis bin index for given globalbin. For 1D histograms returned value conicide with globalbin value. 
+        Sets number of batches to split. 
 
         """
-        return _libBornAgainCore.IHistogram_getXaxisIndex(self, i)
+        return _libBornAgainCore.SimulationOptions_setNumberOfBatches(self, nbatches)
 
-    def getYaxisIndex(self, i):
+    def getNumberOfBatches(self):
         r"""
-        getYaxisIndex(IHistogram self, size_t i) -> size_t
-        size_t IHistogram::getYaxisIndex(size_t i) const
-
-        Returns y-axis bin index for given globalbin (for 2D histograms). 
+        getNumberOfBatches(SimulationOptions self) -> unsigned int
+        unsigned SimulationOptions::getNumberOfBatches() const
 
         """
-        return _libBornAgainCore.IHistogram_getYaxisIndex(self, i)
+        return _libBornAgainCore.SimulationOptions_getNumberOfBatches(self)
 
-    def getXaxisValue(self, i):
+    def getCurrentBatch(self):
         r"""
-        getXaxisValue(IHistogram self, size_t i) -> double
-        double IHistogram::getXaxisValue(size_t i)
-
-        Returns the value on x-axis corresponding to the global bin index.
+        getCurrentBatch(SimulationOptions self) -> unsigned int
+        unsigned SimulationOptions::getCurrentBatch() const
 
-        Parameters:
-        -----------
+        """
+        return _libBornAgainCore.SimulationOptions_getCurrentBatch(self)
 
-        globalbin: 
-        The global bin index
+    def setThreadInfo(self, thread_info):
+        r"""
+        setThreadInfo(SimulationOptions self, ThreadInfo thread_info)
+        void SimulationOptions::setThreadInfo(const ThreadInfo &thread_info)
 
-        The center of corresponding bin of the axis 
+        Sets the batch and thread information to be used. 
 
         """
-        return _libBornAgainCore.IHistogram_getXaxisValue(self, i)
+        return _libBornAgainCore.SimulationOptions_setThreadInfo(self, thread_info)
 
-    def getYaxisValue(self, i):
+    def getHardwareConcurrency(self):
         r"""
-        getYaxisValue(IHistogram self, size_t i) -> double
-        double IHistogram::getYaxisValue(size_t i)
+        getHardwareConcurrency(SimulationOptions self) -> unsigned int
+        unsigned SimulationOptions::getHardwareConcurrency() const
 
-        Returns the value on y-axis corresponding to the 2D histogram global bin index.
+        """
+        return _libBornAgainCore.SimulationOptions_getHardwareConcurrency(self)
 
-        Parameters:
-        -----------
+    def setIncludeSpecular(self, include_specular):
+        r"""
+        setIncludeSpecular(SimulationOptions self, bool include_specular)
+        void SimulationOptions::setIncludeSpecular(bool include_specular)
 
-        globalbin: 
-        The global bin index
+        """
+        return _libBornAgainCore.SimulationOptions_setIncludeSpecular(self, include_specular)
 
-        The center of corresponding bin of the axis 
+    def includeSpecular(self):
+        r"""
+        includeSpecular(SimulationOptions self) -> bool
+        bool SimulationOptions::includeSpecular() const
 
         """
-        return _libBornAgainCore.IHistogram_getYaxisValue(self, i)
+        return _libBornAgainCore.SimulationOptions_includeSpecular(self)
 
-    def getData(self, *args):
+    def setUseAvgMaterials(self, use_avg_materials):
         r"""
-        getData(IHistogram self) -> OutputData< CumulativeValue > const
-        getData(IHistogram self) -> OutputData< CumulativeValue > &
-        OutputData<CumulativeValue>& IHistogram::getData()
+        setUseAvgMaterials(SimulationOptions self, bool use_avg_materials)
+        void SimulationOptions::setUseAvgMaterials(bool use_avg_materials)
 
         """
-        return _libBornAgainCore.IHistogram_getData(self, *args)
+        return _libBornAgainCore.SimulationOptions_setUseAvgMaterials(self, use_avg_materials)
 
-    def getBinContent(self, *args):
+    def useAvgMaterials(self):
         r"""
-        getBinContent(IHistogram self, size_t i) -> double
-        getBinContent(IHistogram self, size_t binx, size_t biny) -> double
-        double IHistogram::getBinContent(size_t binx, size_t biny) const
+        useAvgMaterials(SimulationOptions self) -> bool
+        bool SimulationOptions::useAvgMaterials() const
 
-        Returns content (accumulated value) of the 2D histogram bin with given indices.
+        """
+        return _libBornAgainCore.SimulationOptions_useAvgMaterials(self)
+    __swig_destroy__ = _libBornAgainCore.delete_SimulationOptions
 
-        Parameters:
-        -----------
+# Register SimulationOptions in _libBornAgainCore:
+_libBornAgainCore.SimulationOptions_swigregister(SimulationOptions)
 
-        binx: 
-        x-axis bin index
+class IParameterReal(object):
+    r"""
 
-        biny: 
-        y-axis bin index
 
-        The value accumulated by the bin (integral) 
+    Pure virtual base class for parameter wrapper classes  RealParameter, ComponentParameter. Holds a pointer to the wrapped parameter, a name, and a callback function to be called when the parameter is changed. This class is templated on the data type of the wrapped parameter.
 
-        """
-        return _libBornAgainCore.IHistogram_getBinContent(self, *args)
+    C++ includes: IParameter.h
 
-    def setBinContent(self, i, value):
-        r"""
-        setBinContent(IHistogram self, size_t i, double value)
-        void IHistogram::setBinContent(size_t i, double value)
+    """
 
-        Sets content of the bin corresponding to the globalbin number. 
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
 
-        """
-        return _libBornAgainCore.IHistogram_setBinContent(self, i, value)
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IParameterReal
 
-    def addBinContent(self, i, value):
+    def clone(self, *args):
         r"""
-        addBinContent(IHistogram self, size_t i, double value)
-        void IHistogram::addBinContent(size_t i, double value)
-
-        Add the value to the bin. 
+        clone(IParameterReal self, std::string const & new_name="") -> IParameterReal
+        virtual IParameter* IParameter< T >::clone(const std::string &new_name="") const =0
 
         """
-        return _libBornAgainCore.IHistogram_addBinContent(self, i, value)
+        return _libBornAgainCore.IParameterReal_clone(self, *args)
 
-    def getBinError(self, *args):
+    def isNull(self):
         r"""
-        getBinError(IHistogram self, size_t i) -> double
-        getBinError(IHistogram self, size_t binx, size_t biny) -> double
-        double IHistogram::getBinError(size_t binx, size_t biny) const
+        isNull(IParameterReal self) -> bool
+        virtual bool IParameter< T >::isNull() const
 
-        Returns error of the bin with given indices (for 2D histograms). 
+        Returns true if wrapped parameter was not initialized with proper real value. 
 
         """
-        return _libBornAgainCore.IHistogram_getBinError(self, *args)
+        return _libBornAgainCore.IParameterReal_isNull(self)
 
-    def getBinAverage(self, *args):
+    def getData(self):
         r"""
-        getBinAverage(IHistogram self, size_t i) -> double
-        getBinAverage(IHistogram self, size_t binx, size_t biny) -> double
-        double IHistogram::getBinAverage(size_t binx, size_t biny) const
-
-        Returns average value of the bin with given indices (for 2D histograms). 
+        getData(IParameterReal self) -> double &
+        T& IParameter< T >::getData() const
 
         """
-        return _libBornAgainCore.IHistogram_getBinAverage(self, *args)
+        return _libBornAgainCore.IParameterReal_getData(self)
 
-    def getBinNumberOfEntries(self, *args):
+    def setData(self, data):
         r"""
-        getBinNumberOfEntries(IHistogram self, size_t i) -> int
-        getBinNumberOfEntries(IHistogram self, size_t binx, size_t biny) -> int
-        int IHistogram::getBinNumberOfEntries(size_t binx, size_t biny) const
-
-        Returns number of entries in the bin with given indices (for 2D histograms). 
+        setData(IParameterReal self, double & data)
+        void IParameter< T >::setData(T &data)
 
         """
-        return _libBornAgainCore.IHistogram_getBinNumberOfEntries(self, *args)
+        return _libBornAgainCore.IParameterReal_setData(self, data)
 
-    def getMaximum(self):
+    def hasSameData(self, other):
         r"""
-        getMaximum(IHistogram self) -> double
-        double IHistogram::getMaximum() const
+        hasSameData(IParameterReal self, IParameterReal other) -> bool
+        bool IParameter< T >::hasSameData(const IParameter &other)
 
-        Returns histogram maximum value (maximum of  getBinContent() over all bins) 
+        Returns true if two parameters are pointing to the same raw data. 
 
         """
-        return _libBornAgainCore.IHistogram_getMaximum(self)
+        return _libBornAgainCore.IParameterReal_hasSameData(self, other)
 
-    def getMaximumBinIndex(self):
+    def getName(self):
         r"""
-        getMaximumBinIndex(IHistogram self) -> size_t
-        size_t IHistogram::getMaximumBinIndex() const
-
-        Returns globalbin index with maximum content. 
+        getName(IParameterReal self) -> std::string const &
+        const std::string& IParameter< T >::getName() const
 
         """
-        return _libBornAgainCore.IHistogram_getMaximumBinIndex(self)
+        return _libBornAgainCore.IParameterReal_getName(self)
 
-    def getMinimum(self):
-        r"""
-        getMinimum(IHistogram self) -> double
-        double IHistogram::getMinimum() const
+# Register IParameterReal in _libBornAgainCore:
+_libBornAgainCore.IParameterReal_swigregister(IParameterReal)
 
-        Returns histogram minimum value (minimum of  getBinContent() over all bins) 
+class ParameterSample(object):
+    r"""
 
-        """
-        return _libBornAgainCore.IHistogram_getMinimum(self)
 
-    def getMinimumBinIndex(self):
-        r"""
-        getMinimumBinIndex(IHistogram self) -> size_t
-        size_t IHistogram::getMinimumBinIndex() const
+    A parameter value with a weight, as obtained when sampling from a distribution.
 
-        Returns globalbin index with minimum content. 
+    C++ includes: ParameterSample.h
 
-        """
-        return _libBornAgainCore.IHistogram_getMinimumBinIndex(self)
+    """
 
-    def scale(self, value):
-        r"""
-        scale(IHistogram self, double value)
-        void IHistogram::scale(double value)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-        Multiply this histogram (every bin content value) by a constant. 
+    def __init__(self, _value=0., _weight=1.):
+        r"""
+        __init__(ParameterSample self, double _value=0., double _weight=1.) -> ParameterSample
+        ParameterSample::ParameterSample(double _value=0., double _weight=1.)
 
         """
-        return _libBornAgainCore.IHistogram_scale(self, value)
+        _libBornAgainCore.ParameterSample_swiginit(self, _libBornAgainCore.new_ParameterSample(_value, _weight))
+    value = property(_libBornAgainCore.ParameterSample_value_get, _libBornAgainCore.ParameterSample_value_set, doc=r"""value : double""")
+    weight = property(_libBornAgainCore.ParameterSample_weight_get, _libBornAgainCore.ParameterSample_weight_set, doc=r"""weight : double""")
+    __swig_destroy__ = _libBornAgainCore.delete_ParameterSample
 
-    def integral(self):
-        r"""
-        integral(IHistogram self) -> double
-        double IHistogram::integral() const
+# Register ParameterSample in _libBornAgainCore:
+_libBornAgainCore.ParameterSample_swigregister(ParameterSample)
 
-        Returns integral of bins content (computed as a sum of all bin content). 
+class ParameterSampleVector(object):
+    r"""Proxy of C++ std::vector< ParameterSample > class."""
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def iterator(self):
+        r"""iterator(ParameterSampleVector self) -> SwigPyIterator"""
+        return _libBornAgainCore.ParameterSampleVector_iterator(self)
+    def __iter__(self):
+        return self.iterator()
 
-        """
-        return _libBornAgainCore.IHistogram_integral(self)
+    def __nonzero__(self):
+        r"""__nonzero__(ParameterSampleVector self) -> bool"""
+        return _libBornAgainCore.ParameterSampleVector___nonzero__(self)
 
-    def array(self, *args):
-        r"""
-        array(IHistogram self, IHistogram::DataType dataType=DataType::INTEGRAL) -> PyObject
-        PyObject * IHistogram::array(DataType dataType=DataType::INTEGRAL) const
+    def __bool__(self):
+        r"""__bool__(ParameterSampleVector self) -> bool"""
+        return _libBornAgainCore.ParameterSampleVector___bool__(self)
 
-        Returns numpy array with bin content (accumulated values). 
+    def __len__(self):
+        r"""__len__(ParameterSampleVector self) -> std::vector< ParameterSample >::size_type"""
+        return _libBornAgainCore.ParameterSampleVector___len__(self)
 
-        """
-        return _libBornAgainCore.IHistogram_array(self, *args)
+    def __getslice__(self, i, j):
+        r"""__getslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j) -> ParameterSampleVector"""
+        return _libBornAgainCore.ParameterSampleVector___getslice__(self, i, j)
 
-    def getArrayObsolete(self, *args):
+    def __setslice__(self, *args):
         r"""
-        getArrayObsolete(IHistogram self, IHistogram::DataType dataType=DataType::INTEGRAL) -> PyObject
-        PyObject * IHistogram::getArray(DataType dataType=DataType::INTEGRAL) const
+        __setslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j)
+        __setslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j, ParameterSampleVector v)
+        """
+        return _libBornAgainCore.ParameterSampleVector___setslice__(self, *args)
 
-        Deprecated
-        Use  array() instead. 
+    def __delslice__(self, i, j):
+        r"""__delslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j)"""
+        return _libBornAgainCore.ParameterSampleVector___delslice__(self, i, j)
 
+    def __delitem__(self, *args):
+        r"""
+        __delitem__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i)
+        __delitem__(ParameterSampleVector self, PySliceObject * slice)
         """
-        return _libBornAgainCore.IHistogram_getArrayObsolete(self, *args)
+        return _libBornAgainCore.ParameterSampleVector___delitem__(self, *args)
 
-    def reset(self):
+    def __getitem__(self, *args):
         r"""
-        reset(IHistogram self)
-        void IHistogram::reset()
-
-        Reset histogram content (axes remains) 
-
+        __getitem__(ParameterSampleVector self, PySliceObject * slice) -> ParameterSampleVector
+        __getitem__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i) -> ParameterSample
         """
-        return _libBornAgainCore.IHistogram_reset(self)
-
-    @staticmethod
-    def createHistogram(source):
-        r"""createHistogram(IntensityData source) -> IHistogram"""
-        return _libBornAgainCore.IHistogram_createHistogram(source)
+        return _libBornAgainCore.ParameterSampleVector___getitem__(self, *args)
 
-    @staticmethod
-    def createFrom(*args):
+    def __setitem__(self, *args):
         r"""
-        createFrom(std::string const & filename) -> IHistogram
-        createFrom(vdouble2d_t data) -> IHistogram
+        __setitem__(ParameterSampleVector self, PySliceObject * slice, ParameterSampleVector v)
+        __setitem__(ParameterSampleVector self, PySliceObject * slice)
+        __setitem__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, ParameterSample x)
         """
-        return _libBornAgainCore.IHistogram_createFrom(*args)
+        return _libBornAgainCore.ParameterSampleVector___setitem__(self, *args)
 
-    def createOutputData(self, *args):
-        r"""
-        createOutputData(IHistogram self, IHistogram::DataType dataType=DataType::INTEGRAL) -> IntensityData
-        OutputData< double > * IHistogram::createOutputData(DataType dataType=DataType::INTEGRAL) const
+    def pop(self):
+        r"""pop(ParameterSampleVector self) -> ParameterSample"""
+        return _libBornAgainCore.ParameterSampleVector_pop(self)
 
-        creates new  OutputData with histogram's shape and values corresponding to DataType
+    def append(self, x):
+        r"""append(ParameterSampleVector self, ParameterSample x)"""
+        return _libBornAgainCore.ParameterSampleVector_append(self, x)
 
-        creates new  OutputData with histogram's shape and put there values corresponding to DataType 
+    def empty(self):
+        r"""empty(ParameterSampleVector self) -> bool"""
+        return _libBornAgainCore.ParameterSampleVector_empty(self)
 
-        """
-        return _libBornAgainCore.IHistogram_createOutputData(self, *args)
+    def size(self):
+        r"""size(ParameterSampleVector self) -> std::vector< ParameterSample >::size_type"""
+        return _libBornAgainCore.ParameterSampleVector_size(self)
 
-    def hasSameShape(self, other):
+    def swap(self, v):
         r"""
-        hasSameShape(IHistogram self, IHistogram other) -> bool
-        bool IHistogram::hasSameShape(const IHistogram &other) const
+        swap(ParameterSampleVector self, ParameterSampleVector v)
+        void swap(OutputDataIterator< TValue, TContainer > &left, OutputDataIterator< TValue, TContainer > &right)
 
-        Returns true if objects a) have same dimensions b) bin boundaries of axes coincide. 
+        make Swappable 
 
         """
-        return _libBornAgainCore.IHistogram_hasSameShape(self, other)
+        return _libBornAgainCore.ParameterSampleVector_swap(self, v)
 
-    def hasSameDimensions(self, other):
-        r"""
-        hasSameDimensions(IHistogram self, IHistogram other) -> bool
-        bool IHistogram::hasSameDimensions(const IHistogram &other) const
+    def begin(self):
+        r"""begin(ParameterSampleVector self) -> std::vector< ParameterSample >::iterator"""
+        return _libBornAgainCore.ParameterSampleVector_begin(self)
 
-        Returns true if object have same rank and number of axes bins. 
+    def end(self):
+        r"""end(ParameterSampleVector self) -> std::vector< ParameterSample >::iterator"""
+        return _libBornAgainCore.ParameterSampleVector_end(self)
 
-        """
-        return _libBornAgainCore.IHistogram_hasSameDimensions(self, other)
+    def rbegin(self):
+        r"""rbegin(ParameterSampleVector self) -> std::vector< ParameterSample >::reverse_iterator"""
+        return _libBornAgainCore.ParameterSampleVector_rbegin(self)
 
-    def __iadd__(self, right):
-        r"""__iadd__(IHistogram self, IHistogram right) -> IHistogram"""
-        return _libBornAgainCore.IHistogram___iadd__(self, right)
+    def rend(self):
+        r"""rend(ParameterSampleVector self) -> std::vector< ParameterSample >::reverse_iterator"""
+        return _libBornAgainCore.ParameterSampleVector_rend(self)
 
-    def relativeDifferenceHistogram(self, rhs):
-        r"""
-        relativeDifferenceHistogram(IHistogram self, IHistogram rhs) -> IHistogram
-        IHistogram * IHistogram::relativeDifferenceHistogram(const IHistogram &rhs)
+    def clear(self):
+        r"""clear(ParameterSampleVector self)"""
+        return _libBornAgainCore.ParameterSampleVector_clear(self)
 
-        returns histogram representing relative difference of two histograms. 
+    def get_allocator(self):
+        r"""get_allocator(ParameterSampleVector self) -> std::vector< ParameterSample >::allocator_type"""
+        return _libBornAgainCore.ParameterSampleVector_get_allocator(self)
+
+    def pop_back(self):
+        r"""pop_back(ParameterSampleVector self)"""
+        return _libBornAgainCore.ParameterSampleVector_pop_back(self)
 
+    def erase(self, *args):
+        r"""
+        erase(ParameterSampleVector self, std::vector< ParameterSample >::iterator pos) -> std::vector< ParameterSample >::iterator
+        erase(ParameterSampleVector self, std::vector< ParameterSample >::iterator first, std::vector< ParameterSample >::iterator last) -> std::vector< ParameterSample >::iterator
         """
-        return _libBornAgainCore.IHistogram_relativeDifferenceHistogram(self, rhs)
+        return _libBornAgainCore.ParameterSampleVector_erase(self, *args)
 
-    def save(self, filename):
+    def __init__(self, *args):
         r"""
-        save(IHistogram self, std::string const & filename)
-        void IHistogram::save(const std::string &filename)
+        __init__(ParameterSampleVector self) -> ParameterSampleVector
+        __init__(ParameterSampleVector self, ParameterSampleVector other) -> ParameterSampleVector
+        __init__(ParameterSampleVector self, std::vector< ParameterSample >::size_type size) -> ParameterSampleVector
+        __init__(ParameterSampleVector self, std::vector< ParameterSample >::size_type size, ParameterSample value) -> ParameterSampleVector
+        """
+        _libBornAgainCore.ParameterSampleVector_swiginit(self, _libBornAgainCore.new_ParameterSampleVector(*args))
 
-        Saves histogram in file Following formats are available: *.txt, *.tif, *.int (*.txt.gz, *.tif.gz, *.int.gz) 
+    def push_back(self, x):
+        r"""push_back(ParameterSampleVector self, ParameterSample x)"""
+        return _libBornAgainCore.ParameterSampleVector_push_back(self, x)
 
-        """
-        return _libBornAgainCore.IHistogram_save(self, filename)
+    def front(self):
+        r"""front(ParameterSampleVector self) -> ParameterSample"""
+        return _libBornAgainCore.ParameterSampleVector_front(self)
 
-    def load(self, filename):
-        r"""
-        load(IHistogram self, std::string const & filename)
-        void IHistogram::load(const std::string &filename)
+    def back(self):
+        r"""back(ParameterSampleVector self) -> ParameterSample"""
+        return _libBornAgainCore.ParameterSampleVector_back(self)
 
-        Loads histogram from file, the shape of array in file should match Following formats are available: *.txt, *.tif, *.int (*.txt.gz, *.tif.gz, *.int.gz) Only bin content will be loaded, histogram axes remain the same. 
+    def assign(self, n, x):
+        r"""assign(ParameterSampleVector self, std::vector< ParameterSample >::size_type n, ParameterSample x)"""
+        return _libBornAgainCore.ParameterSampleVector_assign(self, n, x)
 
+    def resize(self, *args):
+        r"""
+        resize(ParameterSampleVector self, std::vector< ParameterSample >::size_type new_size)
+        resize(ParameterSampleVector self, std::vector< ParameterSample >::size_type new_size, ParameterSample x)
         """
-        return _libBornAgainCore.IHistogram_load(self, filename)
-
-    @deprecated("Deprecated. Use array() instead.")
-    def getArray(self):
-        return self.getArrayObsolete()
+        return _libBornAgainCore.ParameterSampleVector_resize(self, *args)
 
+    def insert(self, *args):
+        r"""
+        insert(ParameterSampleVector self, std::vector< ParameterSample >::iterator pos, ParameterSample x) -> std::vector< ParameterSample >::iterator
+        insert(ParameterSampleVector self, std::vector< ParameterSample >::iterator pos, std::vector< ParameterSample >::size_type n, ParameterSample x)
+        """
+        return _libBornAgainCore.ParameterSampleVector_insert(self, *args)
 
-# Register IHistogram in _libBornAgainCore:
-_libBornAgainCore.IHistogram_swigregister(IHistogram)
+    def reserve(self, n):
+        r"""reserve(ParameterSampleVector self, std::vector< ParameterSample >::size_type n)"""
+        return _libBornAgainCore.ParameterSampleVector_reserve(self, n)
 
-def IHistogram_createHistogram(source):
-    r"""IHistogram_createHistogram(IntensityData source) -> IHistogram"""
-    return _libBornAgainCore.IHistogram_createHistogram(source)
+    def capacity(self):
+        r"""capacity(ParameterSampleVector self) -> std::vector< ParameterSample >::size_type"""
+        return _libBornAgainCore.ParameterSampleVector_capacity(self)
+    __swig_destroy__ = _libBornAgainCore.delete_ParameterSampleVector
 
-def IHistogram_createFrom(*args):
-    r"""
-    IHistogram_createFrom(std::string const & filename) -> IHistogram
-    IHistogram_createFrom(vdouble2d_t data) -> IHistogram
-    """
-    return _libBornAgainCore.IHistogram_createFrom(*args)
+# Register ParameterSampleVector in _libBornAgainCore:
+_libBornAgainCore.ParameterSampleVector_swigregister(ParameterSampleVector)
 
-class Histogram1D(IHistogram):
+class ParameterDistribution(IParameterized):
     r"""
 
 
-    One dimensional histogram.
+    A parametric distribution function, for use with any model parameter.
 
-    C++ includes: Histogram1D.h
+    C++ includes: ParameterDistribution.h
 
     """
 
@@ -14104,287 +13572,292 @@ class Histogram1D(IHistogram):
 
     def __init__(self, *args):
         r"""
-        __init__(Histogram1D self, int nbinsx, double xlow, double xup) -> Histogram1D
-        __init__(Histogram1D self, int nbinsx, vdouble1d_t xbins) -> Histogram1D
-        __init__(Histogram1D self, IAxis axis) -> Histogram1D
-        __init__(Histogram1D self, IntensityData data) -> Histogram1D
-        Histogram1D::Histogram1D(const OutputData< double > &data)
-
-        Constructor for 1D histograms from basic  OutputData object. 
+        __init__(ParameterDistribution self, std::string const & par_name, IDistribution1D distribution, size_t nbr_samples, double sigma_factor=0.0, RealLimits limits=RealLimits()) -> ParameterDistribution
+        __init__(ParameterDistribution self, std::string const & par_name, IDistribution1D distribution, size_t nbr_samples, double xmin, double xmax) -> ParameterDistribution
+        __init__(ParameterDistribution self, ParameterDistribution other) -> ParameterDistribution
+        ParameterDistribution::ParameterDistribution(const ParameterDistribution &other)
 
         """
-        _libBornAgainCore.Histogram1D_swiginit(self, _libBornAgainCore.new_Histogram1D(*args))
+        _libBornAgainCore.ParameterDistribution_swiginit(self, _libBornAgainCore.new_ParameterDistribution(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_ParameterDistribution
 
-    def clone(self):
+    def linkParameter(self, par_name):
         r"""
-        clone(Histogram1D self) -> Histogram1D
-        Histogram1D * Histogram1D::clone() const
-
-        Returns clone of other histogram. 
+        linkParameter(ParameterDistribution self, std::string par_name) -> ParameterDistribution
+        ParameterDistribution & ParameterDistribution::linkParameter(std::string par_name)
 
         """
-        return _libBornAgainCore.Histogram1D_clone(self)
+        return _libBornAgainCore.ParameterDistribution_linkParameter(self, par_name)
 
-    def getRank(self):
+    def getMainParameterName(self):
         r"""
-        getRank(Histogram1D self) -> size_t
-        size_t Histogram1D::getRank() const
+        getMainParameterName(ParameterDistribution self) -> std::string
+        std::string ParameterDistribution::getMainParameterName() const
 
-        Returns the number of histogram dimensions. 
+        get the main parameter's name 
 
         """
-        return _libBornAgainCore.Histogram1D_getRank(self)
+        return _libBornAgainCore.ParameterDistribution_getMainParameterName(self)
 
-    def fill(self, x, weight=1.0):
+    def getNbrSamples(self):
         r"""
-        fill(Histogram1D self, double x, double weight=1.0) -> int
-        int Histogram1D::fill(double x, double weight=1.0)
+        getNbrSamples(ParameterDistribution self) -> size_t
+        size_t ParameterDistribution::getNbrSamples() const
 
-        Increment bin with abscissa x with a weight. 
+        get number of samples for this distribution 
 
         """
-        return _libBornAgainCore.Histogram1D_fill(self, x, weight)
+        return _libBornAgainCore.ParameterDistribution_getNbrSamples(self)
 
-    def getBinCenters(self):
+    def getSigmaFactor(self):
         r"""
-        getBinCenters(Histogram1D self) -> vdouble1d_t
-        std::vector< double > Histogram1D::getBinCenters() const
+        getSigmaFactor(ParameterDistribution self) -> double
+        double ParameterDistribution::getSigmaFactor() const
 
-        returns vector of histogram bin centers 
+        get the sigma factor 
 
         """
-        return self.getBinCentersNumpy()
+        return _libBornAgainCore.ParameterDistribution_getSigmaFactor(self)
 
-    def getBinValues(self):
+    def getDistribution(self, *args):
         r"""
-        getBinValues(Histogram1D self) -> vdouble1d_t
-        std::vector< double > Histogram1D::getBinValues() const
-
-        returns vector of bin content (the value accumulated by bins) 
+        getDistribution(ParameterDistribution self) -> IDistribution1D
+        getDistribution(ParameterDistribution self) -> IDistribution1D
+        IDistribution1D * ParameterDistribution::getDistribution()
 
         """
-        return self.getBinValuesNumpy()
+        return _libBornAgainCore.ParameterDistribution_getDistribution(self, *args)
 
-    def getBinErrors(self):
+    def generateSamples(self):
         r"""
-        getBinErrors(Histogram1D self) -> vdouble1d_t
-        std::vector< double > Histogram1D::getBinErrors() const
+        generateSamples(ParameterDistribution self) -> ParameterSampleVector
+        std::vector< ParameterSample > ParameterDistribution::generateSamples() const
 
-        returns vector of bin errors 
+        generate list of sampled values with their weight 
 
         """
-        return self.getBinErrorsNumpy()
+        return _libBornAgainCore.ParameterDistribution_generateSamples(self)
 
-    def getBinCentersNumpy(self):
+    def getLinkedParameterNames(self):
         r"""
-        getBinCentersNumpy(Histogram1D self) -> PyObject *
-        PyObject * Histogram1D::getBinCentersNumpy() const
+        getLinkedParameterNames(ParameterDistribution self) -> vector_string_t
+        std::vector<std::string> ParameterDistribution::getLinkedParameterNames() const
+
+        get list of linked parameter names 
 
         """
-        return _libBornAgainCore.Histogram1D_getBinCentersNumpy(self)
+        return _libBornAgainCore.ParameterDistribution_getLinkedParameterNames(self)
 
-    def getBinValuesNumpy(self):
+    def getLimits(self):
         r"""
-        getBinValuesNumpy(Histogram1D self) -> PyObject *
-        PyObject * Histogram1D::getBinValuesNumpy() const
+        getLimits(ParameterDistribution self) -> RealLimits
+        RealLimits ParameterDistribution::getLimits() const
 
         """
-        return _libBornAgainCore.Histogram1D_getBinValuesNumpy(self)
+        return _libBornAgainCore.ParameterDistribution_getLimits(self)
 
-    def getBinErrorsNumpy(self):
+    def getMinValue(self):
         r"""
-        getBinErrorsNumpy(Histogram1D self) -> PyObject *
-        PyObject * Histogram1D::getBinErrorsNumpy() const
+        getMinValue(ParameterDistribution self) -> double
+        double ParameterDistribution::getMinValue() const
 
         """
-        return _libBornAgainCore.Histogram1D_getBinErrorsNumpy(self)
+        return _libBornAgainCore.ParameterDistribution_getMinValue(self)
 
-    def crop(self, xmin, xmax):
+    def getMaxValue(self):
         r"""
-        crop(Histogram1D self, double xmin, double xmax) -> Histogram1D
-        Histogram1D * Histogram1D::crop(double xmin, double xmax)
-
-        Create new histogram by applying crop on axis. 
+        getMaxValue(ParameterDistribution self) -> double
+        double ParameterDistribution::getMaxValue() const
 
         """
-        return _libBornAgainCore.Histogram1D_crop(self, xmin, xmax)
-    __swig_destroy__ = _libBornAgainCore.delete_Histogram1D
+        return _libBornAgainCore.ParameterDistribution_getMaxValue(self)
 
-# Register Histogram1D in _libBornAgainCore:
-_libBornAgainCore.Histogram1D_swigregister(Histogram1D)
+# Register ParameterDistribution in _libBornAgainCore:
+_libBornAgainCore.ParameterDistribution_swigregister(ParameterDistribution)
 
-class Histogram2D(IHistogram):
+class ParameterPool(ICloneable):
     r"""
 
 
-    Two dimensional histogram.
+    Container with parameters for  IParameterized object.
 
-    C++ includes: Histogram2D.h
+    C++ includes: ParameterPool.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self):
         r"""
-        __init__(Histogram2D self, int nbinsx, double xlow, double xup, int nbinsy, double ylow, double yup) -> Histogram2D
-        __init__(Histogram2D self, int nbinsx, vdouble1d_t xbins, int nbinsy, vdouble1d_t ybins) -> Histogram2D
-        __init__(Histogram2D self, IAxis axis_x, IAxis axis_y) -> Histogram2D
-        __init__(Histogram2D self, IntensityData data) -> Histogram2D
-        __init__(Histogram2D self, vdouble2d_t data) -> Histogram2D
-        Histogram2D::Histogram2D(std::vector< std::vector< double >> data)
+        __init__(ParameterPool self) -> ParameterPool
+        ParameterPool::ParameterPool()
 
-        Constructor for 2D histograms from numpy array (thanks to swig) 
+        Constructs an empty parameter pool. 
 
         """
-        _libBornAgainCore.Histogram2D_swiginit(self, _libBornAgainCore.new_Histogram2D(*args))
+        _libBornAgainCore.ParameterPool_swiginit(self, _libBornAgainCore.new_ParameterPool())
+    __swig_destroy__ = _libBornAgainCore.delete_ParameterPool
 
     def clone(self):
         r"""
-        clone(Histogram2D self) -> Histogram2D
-        Histogram2D * Histogram2D::clone() const
+        clone(ParameterPool self) -> ParameterPool
+        ParameterPool * ParameterPool::clone() const
 
-        Returns clone of other histogram. 
+        Returns a literal clone. 
 
         """
-        return _libBornAgainCore.Histogram2D_clone(self)
+        return _libBornAgainCore.ParameterPool_clone(self)
 
-    def getRank(self):
+    def copyToExternalPool(self, prefix, other_pool):
         r"""
-        getRank(Histogram2D self) -> size_t
-        size_t Histogram2D::getRank() const
+        copyToExternalPool(ParameterPool self, std::string const & prefix, ParameterPool other_pool)
+        void ParameterPool::copyToExternalPool(const std::string &prefix, ParameterPool *other_pool) const
 
-        Returns the number of histogram dimensions. 
+        Copies parameters of given pool to  other pool, prepeding  prefix to the parameter names. 
 
         """
-        return _libBornAgainCore.Histogram2D_getRank(self)
+        return _libBornAgainCore.ParameterPool_copyToExternalPool(self, prefix, other_pool)
 
-    def fill(self, x, y, weight=1.0):
+    def clear(self):
         r"""
-        fill(Histogram2D self, double x, double y, double weight=1.0) -> int
-        int Histogram2D::fill(double x, double y, double weight=1.0)
+        clear(ParameterPool self)
+        void ParameterPool::clear()
 
-        Increment bin with abscissa x and ordinate y with a weight. 
+        Clears the parameter map. 
 
         """
-        return _libBornAgainCore.Histogram2D_fill(self, x, y, weight)
+        return _libBornAgainCore.ParameterPool_clear(self)
 
-    def projectionX(self, *args):
+    def size(self):
         r"""
-        projectionX(Histogram2D self) -> Histogram1D
-        projectionX(Histogram2D self, double yvalue) -> Histogram1D
-        projectionX(Histogram2D self, double ylow, double yup) -> Histogram1D
-        Histogram1D * Histogram2D::projectionX(double ylow, double yup)
+        size(ParameterPool self) -> size_t
+        size_t ParameterPool::size() const
 
-        Project a 2D histogram into 1D histogram along X. The projection is made from all y-bins corresponding to ordinate between ylow and yup.
+        Returns number of parameters in the pool. 
 
-        Parameters:
-        -----------
+        """
+        return _libBornAgainCore.ParameterPool_size(self)
 
-        ylow: 
-        lower edje on y-axis
+    def addParameter(self, newPar):
+        r"""
+        addParameter(ParameterPool self, RealParameter newPar) -> RealParameter
+        RealParameter & ParameterPool::addParameter(RealParameter *newPar)
 
-        yup: 
-        upper edje on y-axis 
+        Adds parameter to the pool, and returns reference to the input pointer.
+
+        Returning the input pointer allows us to concatenate function calls like pool->addParameter( new RealParameter(...) ).setLimits(-1,+1).setFixed().setUnit("nm") 
 
         """
-        return _libBornAgainCore.Histogram2D_projectionX(self, *args)
+        return _libBornAgainCore.ParameterPool_addParameter(self, newPar)
 
-    def projectionY(self, *args):
+    def parameter(self, *args):
         r"""
-        projectionY(Histogram2D self) -> Histogram1D
-        projectionY(Histogram2D self, double xvalue) -> Histogram1D
-        projectionY(Histogram2D self, double xlow, double xup) -> Histogram1D
-        Histogram1D * Histogram2D::projectionY(double xlow, double xup)
+        parameter(ParameterPool self, std::string const & name) -> RealParameter
+        parameter(ParameterPool self, std::string const & name) -> RealParameter
+        const RealParameter * ParameterPool::parameter(const std::string &name) const
 
-        Project a 2D histogram into 1D histogram along Y. The projection is made from all x-bins corresponding to abscissa between xlow and xup.
+        Returns parameter with given  name. 
 
-        Parameters:
-        -----------
+        """
+        return _libBornAgainCore.ParameterPool_parameter(self, *args)
 
-        xlow: 
-        lower edje on x-axis
+    def parameters(self):
+        r"""
+        parameters(ParameterPool self) -> std::vector< RealParameter *,std::allocator< RealParameter * > > const
+        const std::vector<RealParameter*> ParameterPool::parameters() const
 
-        xup: 
-        upper edje on x-axis 
+        Returns full vector of parameters. 
 
         """
-        return _libBornAgainCore.Histogram2D_projectionY(self, *args)
+        return _libBornAgainCore.ParameterPool_parameters(self)
 
-    def crop(self, xmin, ymin, xmax, ymax):
+    def getMatchedParameters(self, pattern):
         r"""
-        crop(Histogram2D self, double xmin, double ymin, double xmax, double ymax) -> Histogram2D
-        Histogram2D * Histogram2D::crop(double xmin, double ymin, double xmax, double ymax)
+        getMatchedParameters(ParameterPool self, std::string const & pattern) -> std::vector< RealParameter *,std::allocator< RealParameter * > >
+        std::vector< RealParameter * > ParameterPool::getMatchedParameters(const std::string &pattern) const
 
-        Create new histogram by applying rectangular clip. 
+        Returns nonempty vector of parameters that match the  pattern ('*' allowed), or throws. 
 
         """
-        return _libBornAgainCore.Histogram2D_crop(self, xmin, ymin, xmax, ymax)
+        return _libBornAgainCore.ParameterPool_getMatchedParameters(self, pattern)
 
-    def setContent(self, data):
+    def getUniqueMatch(self, pattern):
         r"""
-        setContent(Histogram2D self, vdouble2d_t data)
-        void Histogram2D::setContent(const std::vector< std::vector< double >> &data)
+        getUniqueMatch(ParameterPool self, std::string const & pattern) -> RealParameter
+        RealParameter * ParameterPool::getUniqueMatch(const std::string &pattern) const
 
-        Sets the values in histograms channels from numpy array,. 
+        Returns the one parameter that matches the  pattern (wildcards '*' allowed), or throws. 
 
         """
-        return _libBornAgainCore.Histogram2D_setContent(self, data)
+        return _libBornAgainCore.ParameterPool_getUniqueMatch(self, pattern)
 
-    def addContent(self, data):
+    def setParameterValue(self, name, value):
         r"""
-        addContent(Histogram2D self, vdouble2d_t data)
-        void Histogram2D::addContent(const std::vector< std::vector< double >> &data)
+        setParameterValue(ParameterPool self, std::string const & name, double value)
+        void ParameterPool::setParameterValue(const std::string &name, double value)
 
-        Add to values in histograms channels from numpy array,. 
+        Sets parameter value. 
 
         """
-        return _libBornAgainCore.Histogram2D_addContent(self, data)
-    __swig_destroy__ = _libBornAgainCore.delete_Histogram2D
-
-# Register Histogram2D in _libBornAgainCore:
-_libBornAgainCore.Histogram2D_swigregister(Histogram2D)
+        return _libBornAgainCore.ParameterPool_setParameterValue(self, name, value)
 
-class AxisInfo(object):
-    r"""
+    def setMatchedParametersValue(self, wildcards, value):
+        r"""
+        setMatchedParametersValue(ParameterPool self, std::string const & wildcards, double value) -> int
+        int ParameterPool::setMatchedParametersValue(const std::string &wildcards, double value)
 
+        Sets value of the nonzero parameters that match  pattern ('*' allowed), or throws. 
 
-    Information about an axis in specific units. Can be used for plotting.
+        """
+        return _libBornAgainCore.ParameterPool_setMatchedParametersValue(self, wildcards, value)
 
-    C++ includes: SimulationResult.h
+    def setUniqueMatchValue(self, pattern, value):
+        r"""
+        setUniqueMatchValue(ParameterPool self, std::string const & pattern, double value)
+        void ParameterPool::setUniqueMatchValue(const std::string &pattern, double value)
 
-    """
+        Sets value of the one parameter that matches  pattern ('*' allowed), or throws. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
-    m_name = property(_libBornAgainCore.AxisInfo_m_name_get, _libBornAgainCore.AxisInfo_m_name_set, doc=r"""m_name : std::string""")
-    m_min = property(_libBornAgainCore.AxisInfo_m_min_get, _libBornAgainCore.AxisInfo_m_min_set, doc=r"""m_min : double""")
-    m_max = property(_libBornAgainCore.AxisInfo_m_max_get, _libBornAgainCore.AxisInfo_m_max_set, doc=r"""m_max : double""")
+        """
+        return _libBornAgainCore.ParameterPool_setUniqueMatchValue(self, pattern, value)
 
-    def __init__(self):
+    def parameterNames(self):
         r"""
-        __init__(AxisInfo self) -> AxisInfo
+        parameterNames(ParameterPool self) -> vector_string_t
+        std::vector< std::string > ParameterPool::parameterNames() const
 
+        """
+        return _libBornAgainCore.ParameterPool_parameterNames(self)
 
-        Information about an axis in specific units. Can be used for plotting.
+    def removeParameter(self, name):
+        r"""
+        removeParameter(ParameterPool self, std::string const & name)
+        void ParameterPool::removeParameter(const std::string &name)
 
-        C++ includes: SimulationResult.h
+        Removes parameter with given name from the pool. 
 
         """
-        _libBornAgainCore.AxisInfo_swiginit(self, _libBornAgainCore.new_AxisInfo())
-    __swig_destroy__ = _libBornAgainCore.delete_AxisInfo
+        return _libBornAgainCore.ParameterPool_removeParameter(self, name)
+
+    def __getitem__(self, index):
+        r"""__getitem__(ParameterPool self, size_t index) -> RealParameter"""
+        return _libBornAgainCore.ParameterPool___getitem__(self, index)
+
+    def __iter__(self):
+        return ParameterPoolIterator(self)
 
-# Register AxisInfo in _libBornAgainCore:
-_libBornAgainCore.AxisInfo_swigregister(AxisInfo)
 
-class SimulationResult(object):
+# Register ParameterPool in _libBornAgainCore:
+_libBornAgainCore.ParameterPool_swigregister(ParameterPool)
+
+class RangedDistributionGate(object):
     r"""
 
 
-    Wrapper around  OutputData<double> that also provides unit conversions.
+    Uniform distribution function.
 
-    C++ includes: SimulationResult.h
+    C++ includes: RangedDistributions.h
 
     """
 
@@ -14393,581 +13866,568 @@ class SimulationResult(object):
 
     def __init__(self, *args):
         r"""
-        __init__(SimulationResult self) -> SimulationResult
-        __init__(SimulationResult self, IntensityData data, IUnitConverter unit_converter) -> SimulationResult
-        __init__(SimulationResult self, SimulationResult other) -> SimulationResult
-        __init__(SimulationResult self, SimulationResult other) -> SimulationResult
-        SimulationResult::SimulationResult(SimulationResult &&other)
+        __init__(RangedDistributionGate self) -> RangedDistributionGate
+        __init__(RangedDistributionGate self, size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless()) -> RangedDistributionGate
+        __init__(RangedDistributionGate self, size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionGate
+        RangedDistributionGate::RangedDistributionGate(size_t n_samples, double sigma_factor, double min, double max)
+
+        Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). 
 
         """
-        _libBornAgainCore.SimulationResult_swiginit(self, _libBornAgainCore.new_SimulationResult(*args))
+        _libBornAgainCore.RangedDistributionGate_swiginit(self, _libBornAgainCore.new_RangedDistributionGate(*args))
 
-    def histogram2d(self, *args):
+    def clone(self):
         r"""
-        histogram2d(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> Histogram2D
-        Histogram2D * SimulationResult::histogram2d(AxesUnits units=AxesUnits::DEFAULT) const
+        clone(RangedDistributionGate self) -> RangedDistributionGate
+        RangedDistributionGate * RangedDistributionGate::clone() const override
 
         """
-        return _libBornAgainCore.SimulationResult_histogram2d(self, *args)
-
-    def axisInfo(self, *args):
-        r"""
-        axisInfo(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> swig_dummy_type_axisinfo_vector
-        std::vector< AxisInfo > SimulationResult::axisInfo(AxesUnits units=AxesUnits::DEFAULT) const
+        return _libBornAgainCore.RangedDistributionGate_clone(self)
+    __swig_destroy__ = _libBornAgainCore.delete_RangedDistributionGate
 
-        Provide  AxisInfo for each axis and the given units. 
+# Register RangedDistributionGate in _libBornAgainCore:
+_libBornAgainCore.RangedDistributionGate_swigregister(RangedDistributionGate)
 
-        """
-        return _libBornAgainCore.SimulationResult_axisInfo(self, *args)
+class RangedDistributionLorentz(object):
+    r"""
 
-    def converter(self):
-        r"""
-        converter(SimulationResult self) -> IUnitConverter
-        const IUnitConverter & SimulationResult::converter() const
 
-        Returns underlying unit converter. 
+    Lorentz distribution with median and hwhm.
 
-        """
-        return _libBornAgainCore.SimulationResult_converter(self)
+    C++ includes: RangedDistributions.h
 
-    def size(self):
-        r"""
-        size(SimulationResult self) -> size_t
-        size_t SimulationResult::size() const
+    """
 
-        """
-        return _libBornAgainCore.SimulationResult_size(self)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    def array(self, *args):
+    def __init__(self, *args):
         r"""
-        array(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> PyObject
-        PyObject * SimulationResult::array(AxesUnits units=AxesUnits::DEFAULT) const
+        __init__(RangedDistributionLorentz self) -> RangedDistributionLorentz
+        __init__(RangedDistributionLorentz self, size_t n_samples, double hwhm_factor, RealLimits limits=RealLimits::limitless()) -> RangedDistributionLorentz
+        __init__(RangedDistributionLorentz self, size_t n_samples, double hwhm_factor, double min, double max) -> RangedDistributionLorentz
+        RangedDistributionLorentz::RangedDistributionLorentz(size_t n_samples, double hwhm_factor, double min, double max)
 
-        returns intensity data as Python numpy array 
+        Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  hwhm_factor = 2.0, while the limits are (-inf, +inf). 
 
         """
-        return _libBornAgainCore.SimulationResult_array(self, *args)
+        _libBornAgainCore.RangedDistributionLorentz_swiginit(self, _libBornAgainCore.new_RangedDistributionLorentz(*args))
 
-    def axis(self, *args):
+    def clone(self):
         r"""
-        axis(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> vdouble1d_t
-        axis(SimulationResult self, size_t i_axis, AxesUnits units=AxesUnits::DEFAULT) -> vdouble1d_t
-        std::vector< double > SimulationResult::axis(size_t i_axis, AxesUnits units=AxesUnits::DEFAULT) const
-
-        Returns axis coordinates as a numpy array. With no parameters given returns coordinates of x-axis in default units. 
+        clone(RangedDistributionLorentz self) -> RangedDistributionLorentz
+        RangedDistributionLorentz * RangedDistributionLorentz::clone() const override
 
         """
-        return _libBornAgainCore.SimulationResult_axis(self, *args)
-
-    def __getitem__(self, i):
-        r"""__getitem__(SimulationResult self, unsigned int i) -> double"""
-        return _libBornAgainCore.SimulationResult___getitem__(self, i)
-
-    def __setitem__(self, i, value):
-        r"""__setitem__(SimulationResult self, unsigned int i, double value) -> double"""
-        return _libBornAgainCore.SimulationResult___setitem__(self, i, value)
-    __swig_destroy__ = _libBornAgainCore.delete_SimulationResult
+        return _libBornAgainCore.RangedDistributionLorentz_clone(self)
+    __swig_destroy__ = _libBornAgainCore.delete_RangedDistributionLorentz
 
-# Register SimulationResult in _libBornAgainCore:
-_libBornAgainCore.SimulationResult_swigregister(SimulationResult)
+# Register RangedDistributionLorentz in _libBornAgainCore:
+_libBornAgainCore.RangedDistributionLorentz_swigregister(RangedDistributionLorentz)
 
-class IBackground(ICloneable, INode):
+class RangedDistributionGaussian(object):
     r"""
 
 
-    Interface for a simulating the background signal
+    Gaussian distribution with standard deviation std_dev.
 
-    C++ includes: IBackground.h
+    C++ includes: RangedDistributions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IBackground
 
-    def clone(self):
+    def __init__(self, *args):
         r"""
-        clone(IBackground self) -> IBackground
-        virtual IBackground* IBackground::clone() const =0
+        __init__(RangedDistributionGaussian self) -> RangedDistributionGaussian
+        __init__(RangedDistributionGaussian self, size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless()) -> RangedDistributionGaussian
+        __init__(RangedDistributionGaussian self, size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionGaussian
+        RangedDistributionGaussian::RangedDistributionGaussian(size_t n_samples, double sigma_factor, double min, double max)
+
+        Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). 
 
         """
-        return _libBornAgainCore.IBackground_clone(self)
+        _libBornAgainCore.RangedDistributionGaussian_swiginit(self, _libBornAgainCore.new_RangedDistributionGaussian(*args))
 
-    def addBackGround(self, element):
+    def clone(self):
         r"""
-        addBackGround(IBackground self, double element) -> double
-        virtual double IBackground::addBackGround(double element) const =0
+        clone(RangedDistributionGaussian self) -> RangedDistributionGaussian
+        RangedDistributionGaussian * RangedDistributionGaussian::clone() const override
 
         """
-        return _libBornAgainCore.IBackground_addBackGround(self, element)
+        return _libBornAgainCore.RangedDistributionGaussian_clone(self)
+    __swig_destroy__ = _libBornAgainCore.delete_RangedDistributionGaussian
 
-# Register IBackground in _libBornAgainCore:
-_libBornAgainCore.IBackground_swigregister(IBackground)
+# Register RangedDistributionGaussian in _libBornAgainCore:
+_libBornAgainCore.RangedDistributionGaussian_swigregister(RangedDistributionGaussian)
 
-class ConstantBackground(IBackground):
+class RangedDistributionLogNormal(object):
     r"""
 
 
-    Class representing a constant background signal
+    Log-normal distribution.
 
-    C++ includes: ConstantBackground.h
+    C++ includes: RangedDistributions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, background_value):
+    def __init__(self, *args):
         r"""
-        __init__(ConstantBackground self, double background_value) -> ConstantBackground
-        ConstantBackground::ConstantBackground(double background_value)
+        __init__(RangedDistributionLogNormal self) -> RangedDistributionLogNormal
+        __init__(RangedDistributionLogNormal self, size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless()) -> RangedDistributionLogNormal
+        __init__(RangedDistributionLogNormal self, size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionLogNormal
+        RangedDistributionLogNormal::RangedDistributionLogNormal(size_t n_samples, double sigma_factor, double min, double max)
+
+        Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). 
 
         """
-        _libBornAgainCore.ConstantBackground_swiginit(self, _libBornAgainCore.new_ConstantBackground(background_value))
-    __swig_destroy__ = _libBornAgainCore.delete_ConstantBackground
+        _libBornAgainCore.RangedDistributionLogNormal_swiginit(self, _libBornAgainCore.new_RangedDistributionLogNormal(*args))
 
     def clone(self):
         r"""
-        clone(ConstantBackground self) -> ConstantBackground
-        ConstantBackground * ConstantBackground::clone() const override final
+        clone(RangedDistributionLogNormal self) -> RangedDistributionLogNormal
+        RangedDistributionLogNormal * RangedDistributionLogNormal::clone() const override
 
         """
-        return _libBornAgainCore.ConstantBackground_clone(self)
+        return _libBornAgainCore.RangedDistributionLogNormal_clone(self)
+    __swig_destroy__ = _libBornAgainCore.delete_RangedDistributionLogNormal
 
-    def backgroundValue(self):
-        r"""
-        backgroundValue(ConstantBackground self) -> double
-        double ConstantBackground::backgroundValue() const
+# Register RangedDistributionLogNormal in _libBornAgainCore:
+_libBornAgainCore.RangedDistributionLogNormal_swigregister(RangedDistributionLogNormal)
 
-        """
-        return _libBornAgainCore.ConstantBackground_backgroundValue(self)
+class RangedDistributionCosine(object):
+    r"""
 
-    def accept(self, visitor):
+
+    Cosine distribution.
+
+    C++ includes: RangedDistributions.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, *args):
         r"""
-        accept(ConstantBackground self, INodeVisitor visitor)
-        void ConstantBackground::accept(INodeVisitor *visitor) const override
+        __init__(RangedDistributionCosine self) -> RangedDistributionCosine
+        __init__(RangedDistributionCosine self, size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless()) -> RangedDistributionCosine
+        __init__(RangedDistributionCosine self, size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionCosine
+        RangedDistributionCosine::RangedDistributionCosine(size_t n_samples, double sigma_factor, double min, double max)
 
-        Calls the  INodeVisitor's visit method. 
+        Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). 
 
         """
-        return _libBornAgainCore.ConstantBackground_accept(self, visitor)
+        _libBornAgainCore.RangedDistributionCosine_swiginit(self, _libBornAgainCore.new_RangedDistributionCosine(*args))
 
-    def addBackGround(self, intensity):
+    def clone(self):
         r"""
-        addBackGround(ConstantBackground self, double intensity) -> double
-        double ConstantBackground::addBackGround(double intensity) const override final
+        clone(RangedDistributionCosine self) -> RangedDistributionCosine
+        RangedDistributionCosine * RangedDistributionCosine::clone() const override
 
         """
-        return _libBornAgainCore.ConstantBackground_addBackGround(self, intensity)
+        return _libBornAgainCore.RangedDistributionCosine_clone(self)
+    __swig_destroy__ = _libBornAgainCore.delete_RangedDistributionCosine
 
-# Register ConstantBackground in _libBornAgainCore:
-_libBornAgainCore.ConstantBackground_swigregister(ConstantBackground)
+# Register RangedDistributionCosine in _libBornAgainCore:
+_libBornAgainCore.RangedDistributionCosine_swigregister(RangedDistributionCosine)
 
-class IDetector(ICloneable, INode):
+class RealParameter(IParameterReal):
     r"""
 
 
-    Abstract detector interface.
+    Wraps a parameter of type double. In addition to name and on-change callback held by the parent class  IParameter, this class holds Limits, Attributes (currently only fixed or not), and a  Unit.
 
-    C++ includes: IDetector.h
+    C++ includes: RealParameter.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
 
-    def clone(self):
-        r"""
-        clone(IDetector self) -> IDetector
-        IDetector* IDetector::clone() const override=0
-
-        """
-        return _libBornAgainCore.IDetector_clone(self)
-    __swig_destroy__ = _libBornAgainCore.delete_IDetector
-
-    def init(self, arg2):
-        r"""
-        init(IDetector self, Beam arg2)
-        virtual void IDetector::init(const Beam &)
-
-        Inits detector with the beam settings. 
-
-        """
-        return _libBornAgainCore.IDetector_init(self, arg2)
-
-    def clear(self):
-        r"""
-        clear(IDetector self)
-        void IDetector::clear()
-
-        """
-        return _libBornAgainCore.IDetector_clear(self)
-
-    def addAxis(self, axis):
+    def __init__(self, *args):
         r"""
-        addAxis(IDetector self, IAxis axis)
-        void IDetector::addAxis(const IAxis &axis)
+        __init__(RealParameter self, std::string const & name, double * par, std::string const & parent_name="", std::function< void () > const & onChange=std::function< void () >(), RealLimits limits=RealLimits::limitless(), Attributes attr=Attributes::free()) -> RealParameter
+        RealParameter::RealParameter(const std::string &name, double *par, const std::string &parent_name="", const std::function< void()> &onChange=std::function< void()>(), const RealLimits &limits=RealLimits::limitless(), const Attributes &attr=Attributes::free())
 
         """
-        return _libBornAgainCore.IDetector_addAxis(self, axis)
+        _libBornAgainCore.RealParameter_swiginit(self, _libBornAgainCore.new_RealParameter(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_RealParameter
 
-    def getAxis(self, index):
-        r"""
-        getAxis(IDetector self, size_t index) -> IAxis
-        const IAxis & IDetector::getAxis(size_t index) const
+    def clone(self, *args):
+        r"""
+        clone(RealParameter self, std::string const & new_name="") -> RealParameter
+        RealParameter * RealParameter::clone(const std::string &new_name="") const
 
         """
-        return _libBornAgainCore.IDetector_getAxis(self, index)
+        return _libBornAgainCore.RealParameter_clone(self, *args)
 
-    def dimension(self):
+    def setValue(self, value):
         r"""
-        dimension(IDetector self) -> size_t
-        size_t IDetector::dimension() const
+        setValue(RealParameter self, double value)
+        void RealParameter::setValue(double value)
 
-        Returns actual dimensionality of the detector (number of defined axes) 
+        Sets value of wrapped parameter and emit signal. 
 
         """
-        return _libBornAgainCore.IDetector_dimension(self)
+        return _libBornAgainCore.RealParameter_setValue(self, value)
 
-    def axisBinIndex(self, index, selected_axis):
+    def value(self):
         r"""
-        axisBinIndex(IDetector self, size_t index, size_t selected_axis) -> size_t
-        size_t IDetector::axisBinIndex(size_t index, size_t selected_axis) const
+        value(RealParameter self) -> double
+        double RealParameter::value() const
 
-        Calculate axis index for given global index. 
+        Returns value of wrapped parameter. 
 
         """
-        return _libBornAgainCore.IDetector_axisBinIndex(self, index, selected_axis)
+        return _libBornAgainCore.RealParameter_value(self)
 
-    def totalSize(self):
+    def setLimits(self, limits):
         r"""
-        totalSize(IDetector self) -> size_t
-        size_t IDetector::totalSize() const
-
-        Returns total number of pixels. 
+        setLimits(RealParameter self, RealLimits limits) -> RealParameter
+        RealParameter & RealParameter::setLimits(const RealLimits &limits)
 
         """
-        return _libBornAgainCore.IDetector_totalSize(self)
+        return _libBornAgainCore.RealParameter_setLimits(self, limits)
 
-    def detectorMask(self):
+    def limits(self):
         r"""
-        detectorMask(IDetector self) -> DetectorMask
-        virtual const DetectorMask* IDetector::detectorMask() const =0
-
-        Returns detector masks container. 
+        limits(RealParameter self) -> RealLimits
+        RealLimits RealParameter::limits() const
 
         """
-        return _libBornAgainCore.IDetector_detectorMask(self)
+        return _libBornAgainCore.RealParameter_limits(self)
 
-    def setAnalyzerProperties(self, direction, efficiency, total_transmission):
+    def setLimited(self, lower, upper):
         r"""
-        setAnalyzerProperties(IDetector self, kvector_t direction, double efficiency, double total_transmission)
-        void IDetector::setAnalyzerProperties(const kvector_t direction, double efficiency, double total_transmission)
-
-        Sets the polarization analyzer characteristics of the detector. 
+        setLimited(RealParameter self, double lower, double upper) -> RealParameter
+        RealParameter & RealParameter::setLimited(double lower, double upper)
 
         """
-        return _libBornAgainCore.IDetector_setAnalyzerProperties(self, direction, efficiency, total_transmission)
+        return _libBornAgainCore.RealParameter_setLimited(self, lower, upper)
 
-    def setDetectorResolution(self, p_detector_resolution):
+    def setPositive(self):
         r"""
-        setDetectorResolution(IDetector self, IDetectorResolution p_detector_resolution)
-        void IDetector::setDetectorResolution(const IDetectorResolution &p_detector_resolution)
-
-        Sets the detector resolution. 
+        setPositive(RealParameter self) -> RealParameter
+        RealParameter & RealParameter::setPositive()
 
         """
-        return _libBornAgainCore.IDetector_setDetectorResolution(self, p_detector_resolution)
+        return _libBornAgainCore.RealParameter_setPositive(self)
 
-    def setResolutionFunction(self, resFunc):
+    def setNonnegative(self):
         r"""
-        setResolutionFunction(IDetector self, IResolutionFunction2D resFunc)
-        void IDetector::setResolutionFunction(const IResolutionFunction2D &resFunc)
+        setNonnegative(RealParameter self) -> RealParameter
+        RealParameter & RealParameter::setNonnegative()
 
         """
-        return _libBornAgainCore.IDetector_setResolutionFunction(self, resFunc)
+        return _libBornAgainCore.RealParameter_setNonnegative(self)
 
-    def applyDetectorResolution(self, p_intensity_map):
+    def setUnit(self, name):
         r"""
-        applyDetectorResolution(IDetector self, IntensityData p_intensity_map)
-        void IDetector::applyDetectorResolution(OutputData< double > *p_intensity_map) const
-
-        Applies the detector resolution to the given intensity maps. 
+        setUnit(RealParameter self, std::string const & name) -> RealParameter
+        RealParameter & RealParameter::setUnit(const std::string &name)
 
         """
-        return _libBornAgainCore.IDetector_applyDetectorResolution(self, p_intensity_map)
+        return _libBornAgainCore.RealParameter_setUnit(self, name)
 
-    def removeDetectorResolution(self):
+    def unit(self):
         r"""
-        removeDetectorResolution(IDetector self)
-        void IDetector::removeDetectorResolution()
-
-        Removes detector resolution function. 
+        unit(RealParameter self) -> std::string
+        std::string RealParameter::unit() const
 
         """
-        return _libBornAgainCore.IDetector_removeDetectorResolution(self)
+        return _libBornAgainCore.RealParameter_unit(self)
 
-    def detectorResolution(self):
-        r"""
-        detectorResolution(IDetector self) -> IDetectorResolution
-        const IDetectorResolution * IDetector::detectorResolution() const
+# Register RealParameter in _libBornAgainCore:
+_libBornAgainCore.RealParameter_swigregister(RealParameter)
 
-        Returns a pointer to detector resolution object. 
+class ThreadInfo(object):
+    r"""
 
-        """
-        return _libBornAgainCore.IDetector_detectorResolution(self)
 
-    def regionOfInterest(self):
-        r"""
-        regionOfInterest(IDetector self) -> RegionOfInterest const *
-        virtual const RegionOfInterest* IDetector::regionOfInterest() const =0
+    Information to run simulation with dedicated number of threads.
 
-        Returns region of interest if exists. 
+    C++ includes: ThreadInfo.h
 
-        """
-        return _libBornAgainCore.IDetector_regionOfInterest(self)
+    """
 
-    def resetRegionOfInterest(self):
-        r"""
-        resetRegionOfInterest(IDetector self)
-        virtual void IDetector::resetRegionOfInterest()=0
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-        Resets region of interest making whole detector plane available for the simulation. 
+    def __init__(self):
+        r"""
+        __init__(ThreadInfo self) -> ThreadInfo
+        ThreadInfo::ThreadInfo()
 
         """
-        return _libBornAgainCore.IDetector_resetRegionOfInterest(self)
+        _libBornAgainCore.ThreadInfo_swiginit(self, _libBornAgainCore.new_ThreadInfo())
+    n_threads = property(_libBornAgainCore.ThreadInfo_n_threads_get, _libBornAgainCore.ThreadInfo_n_threads_set, doc=r"""n_threads : unsigned int""")
+    n_batches = property(_libBornAgainCore.ThreadInfo_n_batches_get, _libBornAgainCore.ThreadInfo_n_batches_set, doc=r"""n_batches : unsigned int""")
+    current_batch = property(_libBornAgainCore.ThreadInfo_current_batch_get, _libBornAgainCore.ThreadInfo_current_batch_set, doc=r"""current_batch : unsigned int""")
+    __swig_destroy__ = _libBornAgainCore.delete_ThreadInfo
 
-    def detectionProperties(self):
-        r"""
-        detectionProperties(IDetector self) -> DetectionProperties const &
-        const DetectionProperties& IDetector::detectionProperties() const
+# Register ThreadInfo in _libBornAgainCore:
+_libBornAgainCore.ThreadInfo_swigregister(ThreadInfo)
 
-        Returns detection properties. 
+class PolygonalTopology(object):
+    r"""
 
-        """
-        return _libBornAgainCore.IDetector_detectionProperties(self)
 
-    def createDetectorIntensity(self, elements):
-        r"""
-        createDetectorIntensity(IDetector self, std::vector< SimulationElement,std::allocator< SimulationElement > > const & elements) -> IntensityData
-        OutputData< double > * IDetector::createDetectorIntensity(const std::vector< SimulationElement > &elements) const
+    For internal use in  PolyhedralFace.
 
-        Returns new intensity map with detector resolution applied. Map will be cropped to ROI if ROI is present. 
+    C++ includes: FormFactorPolyhedron.h
 
-        """
-        return _libBornAgainCore.IDetector_createDetectorIntensity(self, elements)
+    """
 
-    def defaultAxesUnits(self):
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+    vertexIndices = property(_libBornAgainCore.PolygonalTopology_vertexIndices_get, _libBornAgainCore.PolygonalTopology_vertexIndices_set, doc=r"""vertexIndices : std::vector<(int,std::allocator<(int)>)>""")
+    symmetry_S2 = property(_libBornAgainCore.PolygonalTopology_symmetry_S2_get, _libBornAgainCore.PolygonalTopology_symmetry_S2_set, doc=r"""symmetry_S2 : bool""")
+
+    def __init__(self):
         r"""
-        defaultAxesUnits(IDetector self) -> AxesUnits
-        virtual AxesUnits IDetector::defaultAxesUnits() const
+        __init__(PolygonalTopology self) -> PolygonalTopology
 
-        Return default axes units. 
+
+        For internal use in  PolyhedralFace.
+
+        C++ includes: FormFactorPolyhedron.h
 
         """
-        return _libBornAgainCore.IDetector_defaultAxesUnits(self)
+        _libBornAgainCore.PolygonalTopology_swiginit(self, _libBornAgainCore.new_PolygonalTopology())
+    __swig_destroy__ = _libBornAgainCore.delete_PolygonalTopology
 
-    def numberOfSimulationElements(self):
-        r"""
-        numberOfSimulationElements(IDetector self) -> size_t
-        size_t IDetector::numberOfSimulationElements() const
+# Register PolygonalTopology in _libBornAgainCore:
+_libBornAgainCore.PolygonalTopology_swigregister(PolygonalTopology)
 
-        Returns number of simulation elements. 
+class PolyhedralTopology(object):
+    r"""
 
-        """
-        return _libBornAgainCore.IDetector_numberOfSimulationElements(self)
 
-    def getChildren(self):
-        r"""
-        getChildren(IDetector self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > IDetector::getChildren() const override
+    For internal use in  FormFactorPolyhedron.
 
-        Returns a vector of children (const). 
+    C++ includes: FormFactorPolyhedron.h
 
-        """
-        return _libBornAgainCore.IDetector_getChildren(self)
+    """
 
-    def iterate(self, func, visit_masks=False):
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+    faces = property(_libBornAgainCore.PolyhedralTopology_faces_get, _libBornAgainCore.PolyhedralTopology_faces_set, doc=r"""faces : std::vector<(PolygonalTopology,std::allocator<(PolygonalTopology)>)>""")
+    symmetry_Ci = property(_libBornAgainCore.PolyhedralTopology_symmetry_Ci_get, _libBornAgainCore.PolyhedralTopology_symmetry_Ci_set, doc=r"""symmetry_Ci : bool""")
+
+    def __init__(self):
         r"""
-        iterate(IDetector self, std::function< void (IDetector::const_iterator) > func, bool visit_masks=False)
-        void IDetector::iterate(std::function< void(const_iterator)> func, bool visit_masks=false) const
+        __init__(PolyhedralTopology self) -> PolyhedralTopology
+
+
+        For internal use in  FormFactorPolyhedron.
+
+        C++ includes: FormFactorPolyhedron.h
 
         """
-        return _libBornAgainCore.IDetector_iterate(self, func, visit_masks)
+        _libBornAgainCore.PolyhedralTopology_swiginit(self, _libBornAgainCore.new_PolyhedralTopology())
+    __swig_destroy__ = _libBornAgainCore.delete_PolyhedralTopology
 
-# Register IDetector in _libBornAgainCore:
-_libBornAgainCore.IDetector_swigregister(IDetector)
+# Register PolyhedralTopology in _libBornAgainCore:
+_libBornAgainCore.PolyhedralTopology_swigregister(PolyhedralTopology)
 
-class IDetector2D(IDetector):
+class PolyhedralEdge(object):
     r"""
 
 
-    Abstract 2D detector interface.
+    One edge of a polygon, for form factor computation.
 
-    C++ includes: IDetector2D.h
+    C++ includes: FormFactorPolyhedron.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
 
-    def clone(self):
+    def __init__(self, _Vlow, _Vhig):
         r"""
-        clone(IDetector2D self) -> IDetector2D
-        IDetector2D* IDetector2D::clone() const override=0
+        __init__(PolyhedralEdge self, kvector_t _Vlow, kvector_t _Vhig) -> PolyhedralEdge
+        PolyhedralEdge::PolyhedralEdge(const kvector_t _Vlow, const kvector_t _Vhig)
 
         """
-        return _libBornAgainCore.IDetector2D_clone(self)
-    __swig_destroy__ = _libBornAgainCore.delete_IDetector2D
+        _libBornAgainCore.PolyhedralEdge_swiginit(self, _libBornAgainCore.new_PolyhedralEdge(_Vlow, _Vhig))
 
-    def setDetectorParameters(self, n_x, x_min, x_max, n_y, y_min, y_max):
+    def E(self):
         r"""
-        setDetectorParameters(IDetector2D self, size_t n_x, double x_min, double x_max, size_t n_y, double y_min, double y_max)
-        void IDetector2D::setDetectorParameters(size_t n_x, double x_min, double x_max, size_t n_y, double y_min, double y_max)
+        E(PolyhedralEdge self) -> kvector_t
+        kvector_t PolyhedralEdge::E() const
+
+        """
+        return _libBornAgainCore.PolyhedralEdge_E(self)
+
+    def R(self):
+        r"""
+        R(PolyhedralEdge self) -> kvector_t
+        kvector_t PolyhedralEdge::R() const
+
+        """
+        return _libBornAgainCore.PolyhedralEdge_R(self)
+
+    def qE(self, q):
+        r"""
+        qE(PolyhedralEdge self, cvector_t q) -> complex_t
+        complex_t PolyhedralEdge::qE(cvector_t q) const
+
+        """
+        return _libBornAgainCore.PolyhedralEdge_qE(self, q)
 
-        Sets detector parameters using angle ranges. 
+    def qR(self, q):
+        r"""
+        qR(PolyhedralEdge self, cvector_t q) -> complex_t
+        complex_t PolyhedralEdge::qR(cvector_t q) const
 
         """
-        return _libBornAgainCore.IDetector2D_setDetectorParameters(self, n_x, x_min, x_max, n_y, y_min, y_max)
+        return _libBornAgainCore.PolyhedralEdge_qR(self, q)
 
-    def setDetectorAxes(self, axis0, axis1):
+    def contrib(self, m, qpa, qrperp):
         r"""
-        setDetectorAxes(IDetector2D self, IAxis axis0, IAxis axis1)
-        void IDetector2D::setDetectorAxes(const IAxis &axis0, const IAxis &axis1)
+        contrib(PolyhedralEdge self, int m, cvector_t qpa, complex_t qrperp) -> complex_t
+        complex_t PolyhedralEdge::contrib(int m, cvector_t qpa, complex_t qrperp) const
 
-        Sets detector parameters using axes. 
+        Returns sum_l=0^M/2 u^2l v^(M-2l) / (2l+1)!(M-2l)! - vperp^M/M! 
 
         """
-        return _libBornAgainCore.IDetector2D_setDetectorAxes(self, axis0, axis1)
+        return _libBornAgainCore.PolyhedralEdge_contrib(self, m, qpa, qrperp)
+    __swig_destroy__ = _libBornAgainCore.delete_PolyhedralEdge
 
-    def removeMasks(self):
-        r"""
-        removeMasks(IDetector2D self)
-        void IDetector2D::removeMasks()
+# Register PolyhedralEdge in _libBornAgainCore:
+_libBornAgainCore.PolyhedralEdge_swigregister(PolyhedralEdge)
 
-        Removes all masks from the detector. 
+class PolyhedralFace(object):
+    r"""
 
-        """
-        return _libBornAgainCore.IDetector2D_removeMasks(self)
 
-    def detectorMask(self):
-        r"""
-        detectorMask(IDetector2D self) -> DetectorMask
-        const DetectorMask * IDetector2D::detectorMask() const override
+    A polygon, for form factor computation.
 
-        Returns detector masks container. 
+    C++ includes: FormFactorPolyhedron.h
 
-        """
-        return _libBornAgainCore.IDetector2D_detectorMask(self)
+    """
 
-    def addMask(self, shape, mask_value=True):
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    @staticmethod
+    def diameter(V):
+        r"""diameter(vector_kvector_t V) -> double"""
+        return _libBornAgainCore.PolyhedralFace_diameter(V)
+
+    def __init__(self, *args):
         r"""
-        addMask(IDetector2D self, IShape2D shape, bool mask_value=True)
-        void IDetector2D::addMask(const IShape2D &shape, bool mask_value=true)
+        __init__(PolyhedralFace self, vector_kvector_t _V=std::vector< kvector_t >(), bool _sym_S2=False) -> PolyhedralFace
+        PolyhedralFace::PolyhedralFace(const std::vector< kvector_t > &_V=std::vector< kvector_t >(), bool _sym_S2=false)
 
-        Adds mask of given shape to the stack of detector masks. The mask value 'true' means that the channel will be excluded from the simulation. The mask which is added last has priority.
+        Sets internal variables for given vertex chain.
 
         Parameters:
         -----------
 
-        shape: 
-        The shape of mask ( Rectangle,  Polygon,  Line,  Ellipse)
+        V: 
+        oriented vertex list
 
-        mask_value: 
-        The value of mask 
+        _sym_S2: 
+        true if face has a perpedicular two-fold symmetry axis 
 
         """
-        return _libBornAgainCore.IDetector2D_addMask(self, shape, mask_value)
+        _libBornAgainCore.PolyhedralFace_swiginit(self, _libBornAgainCore.new_PolyhedralFace(*args))
 
-    def maskAll(self):
+    def area(self):
         r"""
-        maskAll(IDetector2D self)
-        void IDetector2D::maskAll()
-
-        Put the mask for all detector channels (i.e. exclude whole detector from the analysis) 
+        area(PolyhedralFace self) -> double
+        double PolyhedralFace::area() const
 
         """
-        return _libBornAgainCore.IDetector2D_maskAll(self)
+        return _libBornAgainCore.PolyhedralFace_area(self)
 
-    def regionOfInterest(self):
+    def pyramidalVolume(self):
         r"""
-        regionOfInterest(IDetector2D self) -> RegionOfInterest const *
-        const RegionOfInterest * IDetector2D::regionOfInterest() const override
+        pyramidalVolume(PolyhedralFace self) -> double
+        double PolyhedralFace::pyramidalVolume() const
 
-        Returns region of interest if exists. 
+        """
+        return _libBornAgainCore.PolyhedralFace_pyramidalVolume(self)
+
+    def radius3d(self):
+        r"""
+        radius3d(PolyhedralFace self) -> double
+        double PolyhedralFace::radius3d() const
 
         """
-        return _libBornAgainCore.IDetector2D_regionOfInterest(self)
+        return _libBornAgainCore.PolyhedralFace_radius3d(self)
 
-    def setRegionOfInterest(self, xlow, ylow, xup, yup):
+    def normalProjectionConj(self, q):
         r"""
-        setRegionOfInterest(IDetector2D self, double xlow, double ylow, double xup, double yup)
-        void IDetector2D::setRegionOfInterest(double xlow, double ylow, double xup, double yup)
+        normalProjectionConj(PolyhedralFace self, cvector_t q) -> complex_t
+        complex_t PolyhedralFace::normalProjectionConj(cvector_t q) const
 
-        Sets rectangular region of interest with lower left and upper right corners defined. 
+        Returns conj(q)*normal [ BasicVector3D::dot is antilinear in 'this' argument]. 
 
         """
-        return _libBornAgainCore.IDetector2D_setRegionOfInterest(self, xlow, ylow, xup, yup)
+        return _libBornAgainCore.PolyhedralFace_normalProjectionConj(self, q)
 
-    def resetRegionOfInterest(self):
+    def ff_n(self, m, q):
         r"""
-        resetRegionOfInterest(IDetector2D self)
-        void IDetector2D::resetRegionOfInterest() override
+        ff_n(PolyhedralFace self, int m, cvector_t q) -> complex_t
+        complex_t PolyhedralFace::ff_n(int m, cvector_t q) const
 
-        Resets region of interest making whole detector plane available for the simulation. 
+        Returns contribution qn*f_n [of order q^(n+1)] from this face to the polyhedral form factor. 
 
         """
-        return _libBornAgainCore.IDetector2D_resetRegionOfInterest(self)
+        return _libBornAgainCore.PolyhedralFace_ff_n(self, m, q)
 
-    def active_indices(self):
+    def ff(self, q, sym_Ci):
         r"""
-        active_indices(IDetector2D self) -> std::vector< size_t,std::allocator< size_t > >
-        std::vector< size_t > IDetector2D::active_indices() const
+        ff(PolyhedralFace self, cvector_t q, bool sym_Ci) -> complex_t
+        complex_t PolyhedralFace::ff(cvector_t q, bool sym_Ci) const
 
-        Returns vector of unmasked detector indices. 
+        Returns the contribution ff(q) of this face to the polyhedral form factor. 
 
         """
-        return _libBornAgainCore.IDetector2D_active_indices(self)
+        return _libBornAgainCore.PolyhedralFace_ff(self, q, sym_Ci)
 
-    def createPixel(self, index):
+    def ff_2D(self, qpa):
         r"""
-        createPixel(IDetector2D self, size_t index) -> IPixel
-        virtual IPixel* IDetector2D::createPixel(size_t index) const =0
+        ff_2D(PolyhedralFace self, cvector_t qpa) -> complex_t
+        complex_t PolyhedralFace::ff_2D(cvector_t qpa) const
 
-        Create an  IPixel for the given  OutputData object and index. 
+        Returns the two-dimensional form factor of this face, for use in a prism. 
 
         """
-        return _libBornAgainCore.IDetector2D_createPixel(self, index)
+        return _libBornAgainCore.PolyhedralFace_ff_2D(self, qpa)
 
-    def getIndexOfSpecular(self, beam):
+    def assert_Ci(self, other):
         r"""
-        getIndexOfSpecular(IDetector2D self, Beam beam) -> size_t
-        virtual size_t IDetector2D::getIndexOfSpecular(const Beam &beam) const =0
+        assert_Ci(PolyhedralFace self, PolyhedralFace other)
+        void PolyhedralFace::assert_Ci(const PolyhedralFace &other) const
 
-        Returns index of pixel that contains the specular wavevector. If no pixel contains this specular wavevector, the number of pixels is returned. This corresponds to an overflow index. 
+        Throws if deviation from inversion symmetry is detected. Does not check vertices. 
 
         """
-        return _libBornAgainCore.IDetector2D_getIndexOfSpecular(self, beam)
+        return _libBornAgainCore.PolyhedralFace_assert_Ci(self, other)
+    __swig_destroy__ = _libBornAgainCore.delete_PolyhedralFace
 
-# Register IDetector2D in _libBornAgainCore:
-_libBornAgainCore.IDetector2D_swigregister(IDetector2D)
+# Register PolyhedralFace in _libBornAgainCore:
+_libBornAgainCore.PolyhedralFace_swigregister(PolyhedralFace)
 
-class IDetectorResolution(ICloneable, INode):
+def PolyhedralFace_diameter(V):
+    r"""PolyhedralFace_diameter(vector_kvector_t V) -> double"""
+    return _libBornAgainCore.PolyhedralFace_diameter(V)
+
+class FormFactorPolyhedron(IFormFactorBorn):
     r"""
 
 
-    Interface for detector resolution algorithms
+    A polyhedron, for form factor computation.
 
-    C++ includes: IDetectorResolution.h
+    C++ includes: FormFactorPolyhedron.h
 
     """
 
@@ -14976,144 +14436,166 @@ class IDetectorResolution(ICloneable, INode):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IDetectorResolution
 
-    def applyDetectorResolution(self, p_intensity_map):
+    def bottomZ(self, rotation):
         r"""
-        applyDetectorResolution(IDetectorResolution self, IntensityData p_intensity_map)
-        virtual void IDetectorResolution::applyDetectorResolution(OutputData< double > *p_intensity_map) const =0
+        bottomZ(FormFactorPolyhedron self, IRotation rotation) -> double
+        double FormFactorPolyhedron::bottomZ(const IRotation &rotation) const override final
 
-        Apply the resolution function to the intensity data. 
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.IDetectorResolution_applyDetectorResolution(self, p_intensity_map)
+        return _libBornAgainCore.FormFactorPolyhedron_bottomZ(self, rotation)
 
-    def clone(self):
+    def topZ(self, rotation):
         r"""
-        clone(IDetectorResolution self) -> IDetectorResolution
-        virtual IDetectorResolution* IDetectorResolution::clone() const =0
+        topZ(FormFactorPolyhedron self, IRotation rotation) -> double
+        double FormFactorPolyhedron::topZ(const IRotation &rotation) const override final
+
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.IDetectorResolution_clone(self)
+        return _libBornAgainCore.FormFactorPolyhedron_topZ(self, rotation)
 
-# Register IDetectorResolution in _libBornAgainCore:
-_libBornAgainCore.IDetectorResolution_swigregister(IDetectorResolution)
+    def evaluate_for_q(self, q):
+        r"""
+        evaluate_for_q(FormFactorPolyhedron self, cvector_t q) -> complex_t
+        complex_t FormFactorPolyhedron::evaluate_for_q(cvector_t q) const override final
 
-class IInterferenceFunction(ISample):
-    r"""
+        Returns the form factor F(q) of this polyhedron, respecting the offset z_bottom. 
 
+        """
+        return _libBornAgainCore.FormFactorPolyhedron_evaluate_for_q(self, q)
 
-    Pure virtual base class of interference functions.
+    def evaluate_centered(self, q):
+        r"""
+        evaluate_centered(FormFactorPolyhedron self, cvector_t q) -> complex_t
+        complex_t FormFactorPolyhedron::evaluate_centered(cvector_t q) const
 
-    C++ includes: IInterferenceFunction.h
+        Returns the form factor F(q) of this polyhedron, with origin at z=0. 
 
-    """
+        """
+        return _libBornAgainCore.FormFactorPolyhedron_evaluate_centered(self, q)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+    def volume(self):
+        r"""
+        volume(FormFactorPolyhedron self) -> double
+        double FormFactorPolyhedron::volume() const override final
 
-    def __init__(self, *args):
+        Returns the total volume of the particle of this form factor's shape. 
+
+        """
+        return _libBornAgainCore.FormFactorPolyhedron_volume(self)
+
+    def radialExtension(self):
         r"""
-        __init__(IInterferenceFunction self) -> IInterferenceFunction
-        __init__(IInterferenceFunction self, IInterferenceFunction other) -> IInterferenceFunction
-        IInterferenceFunction::IInterferenceFunction(const IInterferenceFunction &other)
+        radialExtension(FormFactorPolyhedron self) -> double
+        double FormFactorPolyhedron::radialExtension() const override final
+
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        if self.__class__ == IInterferenceFunction:
-            _self = None
-        else:
-            _self = self
-        _libBornAgainCore.IInterferenceFunction_swiginit(self, _libBornAgainCore.new_IInterferenceFunction(_self, *args))
-    __swig_destroy__ = _libBornAgainCore.delete_IInterferenceFunction
+        return _libBornAgainCore.FormFactorPolyhedron_radialExtension(self)
 
-    def clone(self):
+    def assert_platonic(self):
         r"""
-        clone(IInterferenceFunction self) -> IInterferenceFunction
-        virtual IInterferenceFunction* IInterferenceFunction::clone() const =0
+        assert_platonic(FormFactorPolyhedron self)
+        void FormFactorPolyhedron::assert_platonic() const
 
-        Returns a clone of this  ISample object. 
+        Assertions for Platonic solid. 
 
         """
-        return _libBornAgainCore.IInterferenceFunction_clone(self)
+        return _libBornAgainCore.FormFactorPolyhedron_assert_platonic(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorPolyhedron
 
-    def evaluate(self, q, outer_iff=1.0):
+# Register FormFactorPolyhedron in _libBornAgainCore:
+_libBornAgainCore.FormFactorPolyhedron_swigregister(FormFactorPolyhedron)
+
+class FormFactorPolygonalPrism(IFormFactorBorn):
+    r"""
+
+
+    A prism with a polygonal base, for form factor computation.
+
+    C++ includes: FormFactorPolyhedron.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+
+    def bottomZ(self, rotation):
         r"""
-        evaluate(IInterferenceFunction self, kvector_t q, double outer_iff=1.0) -> double
-        double IInterferenceFunction::evaluate(const kvector_t q, double outer_iff=1.0) const
+        bottomZ(FormFactorPolygonalPrism self, IRotation rotation) -> double
+        double FormFactorPolygonalPrism::bottomZ(const IRotation &rotation) const override final
 
-        Evaluates the interference function for a given wavevector transfer. 
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.IInterferenceFunction_evaluate(self, q, outer_iff)
+        return _libBornAgainCore.FormFactorPolygonalPrism_bottomZ(self, rotation)
 
-    def setPositionVariance(self, var):
+    def topZ(self, rotation):
         r"""
-        setPositionVariance(IInterferenceFunction self, double var)
-        void IInterferenceFunction::setPositionVariance(double var)
+        topZ(FormFactorPolygonalPrism self, IRotation rotation) -> double
+        double FormFactorPolygonalPrism::topZ(const IRotation &rotation) const override final
 
-        Sets the variance of the position for the calculation of the DW factor It is defined as the variance in each relevant dimension 
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.IInterferenceFunction_setPositionVariance(self, var)
+        return _libBornAgainCore.FormFactorPolygonalPrism_topZ(self, rotation)
 
-    def positionVariance(self):
+    def evaluate_for_q(self, q):
         r"""
-        positionVariance(IInterferenceFunction self) -> double
-        double IInterferenceFunction::positionVariance() const
+        evaluate_for_q(FormFactorPolygonalPrism self, cvector_t q) -> complex_t
+        complex_t FormFactorPolygonalPrism::evaluate_for_q(cvector_t q) const override
 
-        Returns the position variance. 
+        Returns the form factor F(q) of this polyhedron, respecting the offset height/2. 
 
         """
-        return _libBornAgainCore.IInterferenceFunction_positionVariance(self)
+        return _libBornAgainCore.FormFactorPolygonalPrism_evaluate_for_q(self, q)
 
-    def getParticleDensity(self):
+    def volume(self):
         r"""
-        getParticleDensity(IInterferenceFunction self) -> double
-        virtual double IInterferenceFunction::getParticleDensity() const
+        volume(FormFactorPolygonalPrism self) -> double
+        double FormFactorPolygonalPrism::volume() const override
 
-        If defined by this interference function's parameters, returns the particle density (per area). Otherwise, returns zero or a user-defined value 
+        Returns the volume of this prism. 
 
         """
-        return _libBornAgainCore.IInterferenceFunction_getParticleDensity(self)
+        return _libBornAgainCore.FormFactorPolygonalPrism_volume(self)
 
-    def supportsMultilayer(self):
+    def getHeight(self):
         r"""
-        supportsMultilayer(IInterferenceFunction self) -> bool
-        virtual bool IInterferenceFunction::supportsMultilayer() const
-
-        Indicates if this interference function can be used with a multilayer (DWBA mode) 
+        getHeight(FormFactorPolygonalPrism self) -> double
+        double FormFactorPolygonalPrism::getHeight() const
 
         """
-        return _libBornAgainCore.IInterferenceFunction_supportsMultilayer(self)
+        return _libBornAgainCore.FormFactorPolygonalPrism_getHeight(self)
 
-    def DWfactor(self, q):
+    def radialExtension(self):
         r"""
-        DWfactor(IInterferenceFunction self, kvector_t q) -> double
-        double IInterferenceFunction::DWfactor(kvector_t q) const
+        radialExtension(FormFactorPolygonalPrism self) -> double
+        virtual double FormFactorPolygonalPrism::radialExtension() const override
 
-        Evaluates the Debye-Waller factor for a given wavevector transfer. 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.IInterferenceFunction_DWfactor(self, q)
-
-    def iff_without_dw(self, q):
-        r"""iff_without_dw(IInterferenceFunction self, kvector_t q) -> double"""
-        return _libBornAgainCore.IInterferenceFunction_iff_without_dw(self, q)
-    def __disown__(self):
-        self.this.disown()
-        _libBornAgainCore.disown_IInterferenceFunction(self)
-        return weakref.proxy(self)
+        return _libBornAgainCore.FormFactorPolygonalPrism_radialExtension(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorPolygonalPrism
 
-# Register IInterferenceFunction in _libBornAgainCore:
-_libBornAgainCore.IInterferenceFunction_swigregister(IInterferenceFunction)
+# Register FormFactorPolygonalPrism in _libBornAgainCore:
+_libBornAgainCore.FormFactorPolygonalPrism_swigregister(FormFactorPolygonalPrism)
 
-class ILayout(ISample):
+class FormFactorPolygonalSurface(IFormFactorBorn):
     r"""
 
 
-    Pure virtual interface class to equip a sample layer with scattering properties. Currently only inherited by  ParticleLayout; in the future also by domain structure.
+    A polygonal surface, for testing form factor computations.
 
-    C++ includes: ILayout.h
+    C++ includes: FormFactorPolyhedron.h
 
     """
 
@@ -15122,110 +14604,112 @@ class ILayout(ISample):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_ILayout
 
-    def clone(self):
+    def evaluate_for_q(self, q):
         r"""
-        clone(ILayout self) -> ILayout
-        virtual ILayout* ILayout::clone() const =0
+        evaluate_for_q(FormFactorPolygonalSurface self, cvector_t q) -> complex_t
+        complex_t FormFactorPolygonalSurface::evaluate_for_q(cvector_t q) const override final
 
-        Returns a clone of this  ISample object. 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.ILayout_clone(self)
+        return _libBornAgainCore.FormFactorPolygonalSurface_evaluate_for_q(self, q)
 
-    def accept(self, visitor):
+    def volume(self):
         r"""
-        accept(ILayout self, INodeVisitor visitor)
-        virtual void ILayout::accept(INodeVisitor *visitor) const =0
+        volume(FormFactorPolygonalSurface self) -> double
+        double FormFactorPolygonalSurface::volume() const override
 
-        Calls the  INodeVisitor's visit method. 
+        Returns the total volume of the particle of this form factor's shape. 
 
         """
-        return _libBornAgainCore.ILayout_accept(self, visitor)
+        return _libBornAgainCore.FormFactorPolygonalSurface_volume(self)
 
-    def particles(self):
+    def radialExtension(self):
         r"""
-        particles(ILayout self) -> SafePointerVector< IParticle >
-        virtual SafePointerVector<IParticle> ILayout::particles() const =0
+        radialExtension(FormFactorPolygonalSurface self) -> double
+        double FormFactorPolygonalSurface::radialExtension() const override final
 
-        Returns information on all particles (type and abundance) and generates new particles if an  IAbstractParticle denotes a collection 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.ILayout_particles(self)
+        return _libBornAgainCore.FormFactorPolygonalSurface_radialExtension(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorPolygonalSurface
 
-    def interferenceFunction(self):
-        r"""
-        interferenceFunction(ILayout self) -> IInterferenceFunction
-        virtual const IInterferenceFunction* ILayout::interferenceFunction() const =0
+# Register FormFactorPolygonalSurface in _libBornAgainCore:
+_libBornAgainCore.FormFactorPolygonalSurface_swigregister(FormFactorPolygonalSurface)
 
-        Returns the interference function. 
+class ProfileBar(IFormFactorBorn):
+    r"""
 
-        """
-        return _libBornAgainCore.ILayout_interferenceFunction(self)
 
-    def getTotalAbundance(self):
-        r"""
-        getTotalAbundance(ILayout self) -> double
-        virtual double ILayout::getTotalAbundance() const =0
+    Base class for form factors with a cosine ripple profile in the yz plane.
 
-        Get total abundance of all particles. 
+    C++ includes: ProfileBar.h
 
-        """
-        return _libBornAgainCore.ILayout_getTotalAbundance(self)
+    """
 
-    def totalParticleSurfaceDensity(self):
-        r"""
-        totalParticleSurfaceDensity(ILayout self) -> double
-        virtual double ILayout::totalParticleSurfaceDensity() const =0
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
 
-        Returns surface density of all particles. 
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+
+    def getLength(self):
+        r"""
+        getLength(ProfileBar self) -> double
+        double ProfileBar::getLength() const
 
         """
-        return _libBornAgainCore.ILayout_totalParticleSurfaceDensity(self)
+        return _libBornAgainCore.ProfileBar_getLength(self)
 
-    def setTotalParticleSurfaceDensity(self, particle_density):
+    def getHeight(self):
         r"""
-        setTotalParticleSurfaceDensity(ILayout self, double particle_density)
-        virtual void ILayout::setTotalParticleSurfaceDensity(double particle_density)=0
+        getHeight(ProfileBar self) -> double
+        double ProfileBar::getHeight() const
 
-        Sets surface density of all particles. 
+        """
+        return _libBornAgainCore.ProfileBar_getHeight(self)
+
+    def getWidth(self):
+        r"""
+        getWidth(ProfileBar self) -> double
+        double ProfileBar::getWidth() const
 
         """
-        return _libBornAgainCore.ILayout_setTotalParticleSurfaceDensity(self, particle_density)
+        return _libBornAgainCore.ProfileBar_getWidth(self)
 
-    def weight(self):
+    def radialExtension(self):
         r"""
-        weight(ILayout self) -> double
-        double ILayout::weight() const
+        radialExtension(ProfileBar self) -> double
+        double ProfileBar::radialExtension() const override final
 
-        Returns the relative weight of this layout. 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.ILayout_weight(self)
+        return _libBornAgainCore.ProfileBar_radialExtension(self)
 
-    def setWeight(self, weight):
+    def evaluate_for_q(self, q):
         r"""
-        setWeight(ILayout self, double weight)
-        void ILayout::setWeight(double weight)
+        evaluate_for_q(ProfileBar self, cvector_t q) -> complex_t
+        complex_t ProfileBar::evaluate_for_q(cvector_t q) const override final
 
-        Sets the relative weight of this layout. 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.ILayout_setWeight(self, weight)
+        return _libBornAgainCore.ProfileBar_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_ProfileBar
 
-# Register ILayout in _libBornAgainCore:
-_libBornAgainCore.ILayout_swigregister(ILayout)
+# Register ProfileBar in _libBornAgainCore:
+_libBornAgainCore.ProfileBar_swigregister(ProfileBar)
 
-class IAbstractParticle(ISample):
+class ProfileRipple1(IFormFactorBorn):
     r"""
 
 
-    Interface for a generic particle.
-
-    Inherited by  IParticle and  ParticleDistribution.
+    Base class for form factors with a cosine ripple profile in the yz plane.
 
-    C++ includes: IAbstractParticle.h
+    C++ includes: ProfileRipple1.h
 
     """
 
@@ -15234,82 +14718,62 @@ class IAbstractParticle(ISample):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IAbstractParticle
-
-    def clone(self):
-        r"""
-        clone(IAbstractParticle self) -> IAbstractParticle
-        virtual IAbstractParticle* IAbstractParticle::clone() const =0
-
-        Returns a clone of this  ISample object. 
 
-        """
-        return _libBornAgainCore.IAbstractParticle_clone(self)
-
-    def accept(self, visitor):
+    def getLength(self):
         r"""
-        accept(IAbstractParticle self, INodeVisitor visitor)
-        void IAbstractParticle::accept(INodeVisitor *visitor) const
-
-        Calls the  INodeVisitor's visit method. 
+        getLength(ProfileRipple1 self) -> double
+        double ProfileRipple1::getLength() const
 
         """
-        return _libBornAgainCore.IAbstractParticle_accept(self, visitor)
+        return _libBornAgainCore.ProfileRipple1_getLength(self)
 
-    def abundance(self):
+    def getHeight(self):
         r"""
-        abundance(IAbstractParticle self) -> double
-        double IAbstractParticle::abundance() const
+        getHeight(ProfileRipple1 self) -> double
+        double ProfileRipple1::getHeight() const
 
         """
-        return _libBornAgainCore.IAbstractParticle_abundance(self)
+        return _libBornAgainCore.ProfileRipple1_getHeight(self)
 
-    def setAbundance(self, abundance):
+    def getWidth(self):
         r"""
-        setAbundance(IAbstractParticle self, double abundance)
-        void IAbstractParticle::setAbundance(double abundance)
-
-        Sets particle abundance.
-
-        Parameters:
-        -----------
-
-        abundance: 
-        proportion of this type of particles normalized to the total number of particles in the layout. 
+        getWidth(ProfileRipple1 self) -> double
+        double ProfileRipple1::getWidth() const
 
         """
-        return _libBornAgainCore.IAbstractParticle_setAbundance(self, abundance)
+        return _libBornAgainCore.ProfileRipple1_getWidth(self)
 
-    def translate(self, translation):
+    def radialExtension(self):
         r"""
-        translate(IAbstractParticle self, kvector_t translation)
-        virtual void IAbstractParticle::translate(kvector_t translation)=0
+        radialExtension(ProfileRipple1 self) -> double
+        double ProfileRipple1::radialExtension() const override final
 
-        Translates the particle with the given vector. 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.IAbstractParticle_translate(self, translation)
+        return _libBornAgainCore.ProfileRipple1_radialExtension(self)
 
-    def rotate(self, rotation):
+    def evaluate_for_q(self, q):
         r"""
-        rotate(IAbstractParticle self, IRotation rotation)
-        virtual void IAbstractParticle::rotate(const IRotation &rotation)=0
+        evaluate_for_q(ProfileRipple1 self, cvector_t q) -> complex_t
+        complex_t ProfileRipple1::evaluate_for_q(cvector_t q) const override final
 
-        Applies the given rotation to the particle. 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.IAbstractParticle_rotate(self, rotation)
+        return _libBornAgainCore.ProfileRipple1_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_ProfileRipple1
 
-# Register IAbstractParticle in _libBornAgainCore:
-_libBornAgainCore.IAbstractParticle_swigregister(IAbstractParticle)
+# Register ProfileRipple1 in _libBornAgainCore:
+_libBornAgainCore.ProfileRipple1_swigregister(ProfileRipple1)
 
-class IParameterReal(object):
+class ProfileRipple2(IFormFactorBorn):
     r"""
 
 
-    Pure virtual base class for parameter wrapper classes  RealParameter, ComponentParameter. Holds a pointer to the wrapped parameter, a name, and a callback function to be called when the parameter is changed. This class is templated on the data type of the wrapped parameter.
+    Base class for form factors with a cosine ripple profile in the yz plane.
 
-    C++ includes: IParameter.h
+    C++ includes: ProfileRipple2.h
 
     """
 
@@ -15318,2422 +14782,2545 @@ class IParameterReal(object):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IParameterReal
 
-    def clone(self, *args):
+    def getLength(self):
         r"""
-        clone(IParameterReal self, std::string const & new_name="") -> IParameterReal
-        virtual IParameter* IParameter< T >::clone(const std::string &new_name="") const =0
+        getLength(ProfileRipple2 self) -> double
+        double ProfileRipple2::getLength() const
 
         """
-        return _libBornAgainCore.IParameterReal_clone(self, *args)
+        return _libBornAgainCore.ProfileRipple2_getLength(self)
 
-    def isNull(self):
+    def getHeight(self):
         r"""
-        isNull(IParameterReal self) -> bool
-        virtual bool IParameter< T >::isNull() const
-
-        Returns true if wrapped parameter was not initialized with proper real value. 
+        getHeight(ProfileRipple2 self) -> double
+        double ProfileRipple2::getHeight() const
 
         """
-        return _libBornAgainCore.IParameterReal_isNull(self)
+        return _libBornAgainCore.ProfileRipple2_getHeight(self)
 
-    def getData(self):
+    def getWidth(self):
         r"""
-        getData(IParameterReal self) -> double &
-        T& IParameter< T >::getData() const
+        getWidth(ProfileRipple2 self) -> double
+        double ProfileRipple2::getWidth() const
 
         """
-        return _libBornAgainCore.IParameterReal_getData(self)
+        return _libBornAgainCore.ProfileRipple2_getWidth(self)
 
-    def setData(self, data):
+    def getAsymmetry(self):
         r"""
-        setData(IParameterReal self, double & data)
-        void IParameter< T >::setData(T &data)
+        getAsymmetry(ProfileRipple2 self) -> double
+        double ProfileRipple2::getAsymmetry() const
 
         """
-        return _libBornAgainCore.IParameterReal_setData(self, data)
+        return _libBornAgainCore.ProfileRipple2_getAsymmetry(self)
 
-    def hasSameData(self, other):
+    def radialExtension(self):
         r"""
-        hasSameData(IParameterReal self, IParameterReal other) -> bool
-        bool IParameter< T >::hasSameData(const IParameter &other)
+        radialExtension(ProfileRipple2 self) -> double
+        double ProfileRipple2::radialExtension() const override final
 
-        Returns true if two parameters are pointing to the same raw data. 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.IParameterReal_hasSameData(self, other)
+        return _libBornAgainCore.ProfileRipple2_radialExtension(self)
 
-    def getName(self):
+    def evaluate_for_q(self, q):
         r"""
-        getName(IParameterReal self) -> std::string const &
-        const std::string& IParameter< T >::getName() const
+        evaluate_for_q(ProfileRipple2 self, cvector_t q) -> complex_t
+        complex_t ProfileRipple2::evaluate_for_q(cvector_t q) const override final
+
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.IParameterReal_getName(self)
+        return _libBornAgainCore.ProfileRipple2_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_ProfileRipple2
 
-# Register IParameterReal in _libBornAgainCore:
-_libBornAgainCore.IParameterReal_swigregister(IParameterReal)
+# Register ProfileRipple2 in _libBornAgainCore:
+_libBornAgainCore.ProfileRipple2_swigregister(ProfileRipple2)
 
-class ParticleLimits(object):
+class FormFactorAnisoPyramid(FormFactorPolyhedron):
     r"""
 
 
-    Vertical extension of a particle, specified by bottom and top z coordinate.
+    A frustum (truncated pyramid) with rectangular base.
 
-    C++ includes: IParticle.h
+    C++ includes: FormFactorAnisoPyramid.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
-    m_bottom = property(_libBornAgainCore.ParticleLimits_m_bottom_get, _libBornAgainCore.ParticleLimits_m_bottom_set, doc=r"""m_bottom : double""")
-    m_top = property(_libBornAgainCore.ParticleLimits_m_top_get, _libBornAgainCore.ParticleLimits_m_top_set, doc=r"""m_top : double""")
 
-    def __init__(self):
+    def __init__(self, length, width, height, alpha):
         r"""
-        __init__(ParticleLimits self) -> ParticleLimits
-
-
-        Vertical extension of a particle, specified by bottom and top z coordinate.
-
-        C++ includes: IParticle.h
-
-        """
-        _libBornAgainCore.ParticleLimits_swiginit(self, _libBornAgainCore.new_ParticleLimits())
-    __swig_destroy__ = _libBornAgainCore.delete_ParticleLimits
-
-# Register ParticleLimits in _libBornAgainCore:
-_libBornAgainCore.ParticleLimits_swigregister(ParticleLimits)
+        __init__(FormFactorAnisoPyramid self, double length, double width, double height, double alpha) -> FormFactorAnisoPyramid
+        FormFactorAnisoPyramid::FormFactorAnisoPyramid(double length, double width, double height, double alpha)
 
-class IParticle(IAbstractParticle):
-    r"""
+        Constructor of a truncated pyramid with a rectangular base.
 
+        Parameters:
+        -----------
 
-    Pure virtual base class for  Particle,  ParticleComposition,  ParticleCoreShell,  MesoCrystal. Provides position/rotation and form factor. Abundance is inherited from  IAbstractParticle.
+        length: 
+        length of the rectangular base in nm
 
-    C++ includes: IParticle.h
+        width: 
+        width of the rectangular base in nm
 
-    """
+        height: 
+        height of pyramid in nm
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+        alpha: 
+        dihedral angle in radians between base and facet 
 
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
-    __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IParticle
+        """
+        _libBornAgainCore.FormFactorAnisoPyramid_swiginit(self, _libBornAgainCore.new_FormFactorAnisoPyramid(length, width, height, alpha))
 
     def clone(self):
         r"""
-        clone(IParticle self) -> IParticle
-        IParticle* IParticle::clone() const override=0
+        clone(FormFactorAnisoPyramid self) -> FormFactorAnisoPyramid
+        FormFactorAnisoPyramid* FormFactorAnisoPyramid::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.IParticle_clone(self)
+        return _libBornAgainCore.FormFactorAnisoPyramid_clone(self)
 
-    def createFormFactor(self):
+    def accept(self, visitor):
         r"""
-        createFormFactor(IParticle self) -> IFormFactor
-        IFormFactor * IParticle::createFormFactor() const
+        accept(FormFactorAnisoPyramid self, INodeVisitor visitor)
+        void FormFactorAnisoPyramid::accept(INodeVisitor *visitor) const override final
 
-        Create a form factor for this particle. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IParticle_createFormFactor(self)
+        return _libBornAgainCore.FormFactorAnisoPyramid_accept(self, visitor)
 
-    def createSlicedParticle(self, limits):
+    def getLength(self):
         r"""
-        createSlicedParticle(IParticle self, ZLimits limits) -> SlicedParticle
-        SlicedParticle IParticle::createSlicedParticle(ZLimits limits) const
-
-        Create a sliced form factor for this particle. 
+        getLength(FormFactorAnisoPyramid self) -> double
+        double FormFactorAnisoPyramid::getLength() const
 
         """
-        return _libBornAgainCore.IParticle_createSlicedParticle(self, limits)
+        return _libBornAgainCore.FormFactorAnisoPyramid_getLength(self)
 
-    def position(self):
+    def getWidth(self):
         r"""
-        position(IParticle self) -> kvector_t
-        kvector_t IParticle::position() const
+        getWidth(FormFactorAnisoPyramid self) -> double
+        double FormFactorAnisoPyramid::getWidth() const
 
-        Returns particle position. 
+        """
+        return _libBornAgainCore.FormFactorAnisoPyramid_getWidth(self)
+
+    def getHeight(self):
+        r"""
+        getHeight(FormFactorAnisoPyramid self) -> double
+        double FormFactorAnisoPyramid::getHeight() const
 
         """
-        return _libBornAgainCore.IParticle_position(self)
+        return _libBornAgainCore.FormFactorAnisoPyramid_getHeight(self)
 
-    def setPosition(self, *args):
+    def getAlpha(self):
         r"""
-        setPosition(IParticle self, kvector_t position)
-        setPosition(IParticle self, double x, double y, double z)
-        void IParticle::setPosition(double x, double y, double z)
+        getAlpha(FormFactorAnisoPyramid self) -> double
+        double FormFactorAnisoPyramid::getAlpha() const
 
-        Sets relative position of the particle's reference point in the coordinate system of parent.
+        """
+        return _libBornAgainCore.FormFactorAnisoPyramid_getAlpha(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorAnisoPyramid
 
-        Parameters:
-        -----------
+# Register FormFactorAnisoPyramid in _libBornAgainCore:
+_libBornAgainCore.FormFactorAnisoPyramid_swigregister(FormFactorAnisoPyramid)
 
-        x: 
-        x-coordinate in nanometers
+class FormFactorBox(FormFactorPolygonalPrism):
+    r"""
 
-        y: 
-        y-coordinate in nanometers
 
-        z: 
-        z-coordinate in nanometers 
+    A rectangular prism (parallelepiped).
 
-        """
-        return _libBornAgainCore.IParticle_setPosition(self, *args)
+    C++ includes: FormFactorBox.h
 
-    def translate(self, translation):
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, length, width, height):
         r"""
-        translate(IParticle self, kvector_t translation)
-        void IParticle::translate(kvector_t translation) override final
+        __init__(FormFactorBox self, double length, double width, double height) -> FormFactorBox
+        FormFactorBox::FormFactorBox(double length, double width, double height)
 
-        Translates the particle. 
+        Constructor of a rectangular cuboid.
 
-        """
-        return _libBornAgainCore.IParticle_translate(self, translation)
+        Parameters:
+        -----------
 
-    def rotation(self):
-        r"""
-        rotation(IParticle self) -> IRotation
-        const IRotation * IParticle::rotation() const
+        length: 
+        length of the base in nanometers
 
-        Returns rotation object. 
+        width: 
+        width of the base in nanometers
+
+        height: 
+        height of the box in nanometers 
 
         """
-        return _libBornAgainCore.IParticle_rotation(self)
+        _libBornAgainCore.FormFactorBox_swiginit(self, _libBornAgainCore.new_FormFactorBox(length, width, height))
 
-    def setRotation(self, rotation):
+    def clone(self):
         r"""
-        setRotation(IParticle self, IRotation rotation)
-        void IParticle::setRotation(const IRotation &rotation)
+        clone(FormFactorBox self) -> FormFactorBox
+        FormFactorBox* FormFactorBox::clone() const override final
 
-        Sets transformation. 
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.IParticle_setRotation(self, rotation)
+        return _libBornAgainCore.FormFactorBox_clone(self)
 
-    def rotate(self, rotation):
+    def accept(self, visitor):
         r"""
-        rotate(IParticle self, IRotation rotation)
-        void IParticle::rotate(const IRotation &rotation) override final
+        accept(FormFactorBox self, INodeVisitor visitor)
+        void FormFactorBox::accept(INodeVisitor *visitor) const override final
 
-        Rotates the particle. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IParticle_rotate(self, rotation)
+        return _libBornAgainCore.FormFactorBox_accept(self, visitor)
 
-    def getChildren(self):
+    def getLength(self):
         r"""
-        getChildren(IParticle self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > IParticle::getChildren() const override
-
-        Returns a vector of children (const). 
+        getLength(FormFactorBox self) -> double
+        double FormFactorBox::getLength() const
 
         """
-        return _libBornAgainCore.IParticle_getChildren(self)
+        return _libBornAgainCore.FormFactorBox_getLength(self)
 
-    def registerAbundance(self, make_registered=True):
+    def getWidth(self):
         r"""
-        registerAbundance(IParticle self, bool make_registered=True)
-        void IParticle::registerAbundance(bool make_registered=true)
+        getWidth(FormFactorBox self) -> double
+        double FormFactorBox::getWidth() const
 
         """
-        return _libBornAgainCore.IParticle_registerAbundance(self, make_registered)
+        return _libBornAgainCore.FormFactorBox_getWidth(self)
 
-    def registerPosition(self, make_registered=True):
+    def volume(self):
         r"""
-        registerPosition(IParticle self, bool make_registered=True)
-        void IParticle::registerPosition(bool make_registered=true)
+        volume(FormFactorBox self) -> double
+        double FormFactorBox::volume() const override final
 
-        Registers the three components of its position. 
+        Returns the volume of this prism. 
 
         """
-        return _libBornAgainCore.IParticle_registerPosition(self, make_registered)
+        return _libBornAgainCore.FormFactorBox_volume(self)
 
-    def decompose(self):
+    def radialExtension(self):
         r"""
-        decompose(IParticle self) -> SafePointerVector< IParticle >
-        SafePointerVector< IParticle > IParticle::decompose() const
+        radialExtension(FormFactorBox self) -> double
+        double FormFactorBox::radialExtension() const override final
 
-        Decompose in constituent  IParticle objects. 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.IParticle_decompose(self)
+        return _libBornAgainCore.FormFactorBox_radialExtension(self)
 
-    def bottomTopZ(self):
+    def evaluate_for_q(self, q):
         r"""
-        bottomTopZ(IParticle self) -> ParticleLimits
-        ParticleLimits IParticle::bottomTopZ() const
+        evaluate_for_q(FormFactorBox self, cvector_t q) -> complex_t
+        complex_t FormFactorBox::evaluate_for_q(cvector_t q) const override final
 
-        Top and bottom z-coordinate. 
+        Returns the form factor F(q) of this polyhedron, respecting the offset height/2. 
 
         """
-        return _libBornAgainCore.IParticle_bottomTopZ(self)
+        return _libBornAgainCore.FormFactorBox_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorBox
 
-# Register IParticle in _libBornAgainCore:
-_libBornAgainCore.IParticle_swigregister(IParticle)
+# Register FormFactorBox in _libBornAgainCore:
+_libBornAgainCore.FormFactorBox_swigregister(FormFactorBox)
 
-class IPeakShape(ISample):
+class FormFactorCantellatedCube(FormFactorPolyhedron):
     r"""
 
 
-    Pure virtual interface class that defines the peak shape of a Bragg peak.
+    A cube, with truncation of all edges and corners, as in Croset (2017) Fig 7
 
-    C++ includes: IPeakShape.h
+    C++ includes: FormFactorCantellatedCube.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IPeakShape
+
+    def __init__(self, length, removed_length):
+        r"""
+        __init__(FormFactorCantellatedCube self, double length, double removed_length) -> FormFactorCantellatedCube
+        FormFactorCantellatedCube::FormFactorCantellatedCube(double length, double removed_length)
+
+        Constructor of a truncated cube.
+
+        Parameters:
+        -----------
+
+        length: 
+        length of the full cube's edge in nanometers
+
+        removed_length: 
+        removed length from each edge of the cube in nanometers 
+
+        """
+        _libBornAgainCore.FormFactorCantellatedCube_swiginit(self, _libBornAgainCore.new_FormFactorCantellatedCube(length, removed_length))
 
     def clone(self):
         r"""
-        clone(IPeakShape self) -> IPeakShape
-        virtual IPeakShape* IPeakShape::clone() const =0
+        clone(FormFactorCantellatedCube self) -> FormFactorCantellatedCube
+        FormFactorCantellatedCube* FormFactorCantellatedCube::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.IPeakShape_clone(self)
+        return _libBornAgainCore.FormFactorCantellatedCube_clone(self)
 
-    def evaluate(self, q, q_lattice_point):
+    def accept(self, visitor):
         r"""
-        evaluate(IPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
-        virtual double IPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const =0
+        accept(FormFactorCantellatedCube self, INodeVisitor visitor)
+        void FormFactorCantellatedCube::accept(INodeVisitor *visitor) const override final
 
-        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IPeakShape_evaluate(self, q, q_lattice_point)
+        return _libBornAgainCore.FormFactorCantellatedCube_accept(self, visitor)
 
-    def angularDisorder(self):
+    def getLength(self):
         r"""
-        angularDisorder(IPeakShape self) -> bool
-        virtual bool IPeakShape::angularDisorder() const
+        getLength(FormFactorCantellatedCube self) -> double
+        double FormFactorCantellatedCube::getLength() const
 
-        Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed 
+        """
+        return _libBornAgainCore.FormFactorCantellatedCube_getLength(self)
+
+    def getRemovedLength(self):
+        r"""
+        getRemovedLength(FormFactorCantellatedCube self) -> double
+        double FormFactorCantellatedCube::getRemovedLength() const
 
         """
-        return _libBornAgainCore.IPeakShape_angularDisorder(self)
+        return _libBornAgainCore.FormFactorCantellatedCube_getRemovedLength(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorCantellatedCube
 
-# Register IPeakShape in _libBornAgainCore:
-_libBornAgainCore.IPeakShape_swigregister(IPeakShape)
+# Register FormFactorCantellatedCube in _libBornAgainCore:
+_libBornAgainCore.FormFactorCantellatedCube_swigregister(FormFactorCantellatedCube)
 
-class IsotropicGaussPeakShape(IPeakShape):
+class FormFactorCone(IFormFactorBorn):
     r"""
 
 
-    Class that implements an isotropic Gaussian peak shape of a Bragg peak.
+    A conical frustum (cone truncated parallel to the base) with circular base.
 
-    C++ includes: IPeakShape.h
+    C++ includes: FormFactorCone.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, max_intensity, domainsize):
+    def __init__(self, radius, height, alpha):
         r"""
-        __init__(IsotropicGaussPeakShape self, double max_intensity, double domainsize) -> IsotropicGaussPeakShape
-        IsotropicGaussPeakShape::IsotropicGaussPeakShape(double max_intensity, double domainsize)
+        __init__(FormFactorCone self, double radius, double height, double alpha) -> FormFactorCone
+        FormFactorCone::FormFactorCone(double radius, double height, double alpha)
+
+        Constructor of a truncated cone with circular base.
+
+        Parameters:
+        -----------
+
+        radius: 
+        radius of the base in nanometers
+
+        height: 
+        height of the cone in nanometers
+
+        alpha: 
+        angle between the base and the side surface in radians 
 
         """
-        _libBornAgainCore.IsotropicGaussPeakShape_swiginit(self, _libBornAgainCore.new_IsotropicGaussPeakShape(max_intensity, domainsize))
-    __swig_destroy__ = _libBornAgainCore.delete_IsotropicGaussPeakShape
+        _libBornAgainCore.FormFactorCone_swiginit(self, _libBornAgainCore.new_FormFactorCone(radius, height, alpha))
 
     def clone(self):
         r"""
-        clone(IsotropicGaussPeakShape self) -> IsotropicGaussPeakShape
-        IsotropicGaussPeakShape * IsotropicGaussPeakShape::clone() const override
+        clone(FormFactorCone self) -> FormFactorCone
+        FormFactorCone* FormFactorCone::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.IsotropicGaussPeakShape_clone(self)
+        return _libBornAgainCore.FormFactorCone_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(IsotropicGaussPeakShape self, INodeVisitor visitor)
-        void IsotropicGaussPeakShape::accept(INodeVisitor *visitor) const override
+        accept(FormFactorCone self, INodeVisitor visitor)
+        void FormFactorCone::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IsotropicGaussPeakShape_accept(self, visitor)
+        return _libBornAgainCore.FormFactorCone_accept(self, visitor)
 
-    def evaluate(self, q, q_lattice_point):
+    def getHeight(self):
         r"""
-        evaluate(IsotropicGaussPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
-        double IsotropicGaussPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override
+        getHeight(FormFactorCone self) -> double
+        double FormFactorCone::getHeight() const
 
-        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
+        """
+        return _libBornAgainCore.FormFactorCone_getHeight(self)
+
+    def getAlpha(self):
+        r"""
+        getAlpha(FormFactorCone self) -> double
+        double FormFactorCone::getAlpha() const
 
         """
-        return _libBornAgainCore.IsotropicGaussPeakShape_evaluate(self, q, q_lattice_point)
+        return _libBornAgainCore.FormFactorCone_getAlpha(self)
 
-# Register IsotropicGaussPeakShape in _libBornAgainCore:
-_libBornAgainCore.IsotropicGaussPeakShape_swigregister(IsotropicGaussPeakShape)
+    def getRadius(self):
+        r"""
+        getRadius(FormFactorCone self) -> double
+        double FormFactorCone::getRadius() const
 
-class IsotropicLorentzPeakShape(IPeakShape):
+        """
+        return _libBornAgainCore.FormFactorCone_getRadius(self)
+
+    def radialExtension(self):
+        r"""
+        radialExtension(FormFactorCone self) -> double
+        double FormFactorCone::radialExtension() const override final
+
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+
+        """
+        return _libBornAgainCore.FormFactorCone_radialExtension(self)
+
+    def evaluate_for_q(self, q):
+        r"""
+        evaluate_for_q(FormFactorCone self, cvector_t q) -> complex_t
+        complex_t FormFactorCone::evaluate_for_q(cvector_t q) const override final
+
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+
+        """
+        return _libBornAgainCore.FormFactorCone_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorCone
+
+# Register FormFactorCone in _libBornAgainCore:
+_libBornAgainCore.FormFactorCone_swigregister(FormFactorCone)
+
+class FormFactorCone6(FormFactorPolyhedron):
     r"""
 
 
-    Class that implements an isotropic Lorentzian peak shape of a Bragg peak.
+    A frustum (truncated pyramid) with regular hexagonal base.
 
-    C++ includes: IPeakShape.h
+    C++ includes: FormFactorCone6.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, max_intensity, domainsize):
+    def __init__(self, base_edge, height, alpha):
         r"""
-        __init__(IsotropicLorentzPeakShape self, double max_intensity, double domainsize) -> IsotropicLorentzPeakShape
-        IsotropicLorentzPeakShape::IsotropicLorentzPeakShape(double max_intensity, double domainsize)
+        __init__(FormFactorCone6 self, double base_edge, double height, double alpha) -> FormFactorCone6
+        FormFactorCone6::FormFactorCone6(double base_edge, double height, double alpha)
+
+        Constructor of a truncated pyramid, based on a regular hexagon
+
+        Parameters:
+        -----------
+
+        base_edge: 
+        Edge of the regular hexagonal base in nanometers
+
+        height: 
+        height of a truncated pyramid in nanometers
+
+        alpha: 
+        dihedral angle in radians between base and facet 
 
         """
-        _libBornAgainCore.IsotropicLorentzPeakShape_swiginit(self, _libBornAgainCore.new_IsotropicLorentzPeakShape(max_intensity, domainsize))
-    __swig_destroy__ = _libBornAgainCore.delete_IsotropicLorentzPeakShape
+        _libBornAgainCore.FormFactorCone6_swiginit(self, _libBornAgainCore.new_FormFactorCone6(base_edge, height, alpha))
 
     def clone(self):
         r"""
-        clone(IsotropicLorentzPeakShape self) -> IsotropicLorentzPeakShape
-        IsotropicLorentzPeakShape * IsotropicLorentzPeakShape::clone() const override
+        clone(FormFactorCone6 self) -> FormFactorCone6
+        FormFactorCone6* FormFactorCone6::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.IsotropicLorentzPeakShape_clone(self)
+        return _libBornAgainCore.FormFactorCone6_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(IsotropicLorentzPeakShape self, INodeVisitor visitor)
-        void IsotropicLorentzPeakShape::accept(INodeVisitor *visitor) const override
+        accept(FormFactorCone6 self, INodeVisitor visitor)
+        void FormFactorCone6::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IsotropicLorentzPeakShape_accept(self, visitor)
+        return _libBornAgainCore.FormFactorCone6_accept(self, visitor)
 
-    def evaluate(self, q, q_lattice_point):
+    def getBaseEdge(self):
         r"""
-        evaluate(IsotropicLorentzPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
-        double IsotropicLorentzPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override
+        getBaseEdge(FormFactorCone6 self) -> double
+        double FormFactorCone6::getBaseEdge() const
 
-        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
+        """
+        return _libBornAgainCore.FormFactorCone6_getBaseEdge(self)
+
+    def getHeight(self):
+        r"""
+        getHeight(FormFactorCone6 self) -> double
+        double FormFactorCone6::getHeight() const
+
+        """
+        return _libBornAgainCore.FormFactorCone6_getHeight(self)
+
+    def getAlpha(self):
+        r"""
+        getAlpha(FormFactorCone6 self) -> double
+        double FormFactorCone6::getAlpha() const
 
         """
-        return _libBornAgainCore.IsotropicLorentzPeakShape_evaluate(self, q, q_lattice_point)
+        return _libBornAgainCore.FormFactorCone6_getAlpha(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorCone6
 
-# Register IsotropicLorentzPeakShape in _libBornAgainCore:
-_libBornAgainCore.IsotropicLorentzPeakShape_swigregister(IsotropicLorentzPeakShape)
+# Register FormFactorCone6 in _libBornAgainCore:
+_libBornAgainCore.FormFactorCone6_swigregister(FormFactorCone6)
 
-class GaussFisherPeakShape(IPeakShape):
+class FormFactorCuboctahedron(FormFactorPolyhedron):
     r"""
 
 
-    Class that implements a peak shape that is Gaussian in the radial direction and uses the von Mises-Fisher distribution in the angular direction.
+    A truncated bifrustum with quadratic base.
 
-    C++ includes: IPeakShape.h
+    C++ includes: FormFactorCuboctahedron.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, max_intensity, radial_size, kappa):
+    def __init__(self, length, height, height_ratio, alpha):
         r"""
-        __init__(GaussFisherPeakShape self, double max_intensity, double radial_size, double kappa) -> GaussFisherPeakShape
-        GaussFisherPeakShape::GaussFisherPeakShape(double max_intensity, double radial_size, double kappa)
+        __init__(FormFactorCuboctahedron self, double length, double height, double height_ratio, double alpha) -> FormFactorCuboctahedron
+        FormFactorCuboctahedron::FormFactorCuboctahedron(double length, double height, double height_ratio, double alpha)
+
+        Constructor of cuboctahedron (compound of two truncated pyramids with a common square base and opposite orientations).
+
+        Parameters:
+        -----------
+
+        length: 
+        side length of the common square base in nanometers
+
+        height: 
+        height of the lower pyramid in nanometers
+
+        height_ratio: 
+        ratio of heights of top to bottom pyramids
+
+        alpha: 
+        dihedral angle in radians between base and facet 
 
         """
-        _libBornAgainCore.GaussFisherPeakShape_swiginit(self, _libBornAgainCore.new_GaussFisherPeakShape(max_intensity, radial_size, kappa))
-    __swig_destroy__ = _libBornAgainCore.delete_GaussFisherPeakShape
+        _libBornAgainCore.FormFactorCuboctahedron_swiginit(self, _libBornAgainCore.new_FormFactorCuboctahedron(length, height, height_ratio, alpha))
 
     def clone(self):
         r"""
-        clone(GaussFisherPeakShape self) -> GaussFisherPeakShape
-        GaussFisherPeakShape * GaussFisherPeakShape::clone() const override
+        clone(FormFactorCuboctahedron self) -> FormFactorCuboctahedron
+        FormFactorCuboctahedron* FormFactorCuboctahedron::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.GaussFisherPeakShape_clone(self)
+        return _libBornAgainCore.FormFactorCuboctahedron_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(GaussFisherPeakShape self, INodeVisitor visitor)
-        void GaussFisherPeakShape::accept(INodeVisitor *visitor) const override
+        accept(FormFactorCuboctahedron self, INodeVisitor visitor)
+        void FormFactorCuboctahedron::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.GaussFisherPeakShape_accept(self, visitor)
+        return _libBornAgainCore.FormFactorCuboctahedron_accept(self, visitor)
 
-    def evaluate(self, q, q_lattice_point):
+    def getLength(self):
         r"""
-        evaluate(GaussFisherPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
-        double GaussFisherPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override
+        getLength(FormFactorCuboctahedron self) -> double
+        double FormFactorCuboctahedron::getLength() const
 
-        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
+        """
+        return _libBornAgainCore.FormFactorCuboctahedron_getLength(self)
+
+    def getHeight(self):
+        r"""
+        getHeight(FormFactorCuboctahedron self) -> double
+        double FormFactorCuboctahedron::getHeight() const
 
         """
-        return _libBornAgainCore.GaussFisherPeakShape_evaluate(self, q, q_lattice_point)
+        return _libBornAgainCore.FormFactorCuboctahedron_getHeight(self)
 
-    def angularDisorder(self):
+    def getHeightRatio(self):
         r"""
-        angularDisorder(GaussFisherPeakShape self) -> bool
-        bool GaussFisherPeakShape::angularDisorder() const override
+        getHeightRatio(FormFactorCuboctahedron self) -> double
+        double FormFactorCuboctahedron::getHeightRatio() const
 
-        Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed 
+        """
+        return _libBornAgainCore.FormFactorCuboctahedron_getHeightRatio(self)
+
+    def getAlpha(self):
+        r"""
+        getAlpha(FormFactorCuboctahedron self) -> double
+        double FormFactorCuboctahedron::getAlpha() const
 
         """
-        return _libBornAgainCore.GaussFisherPeakShape_angularDisorder(self)
+        return _libBornAgainCore.FormFactorCuboctahedron_getAlpha(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorCuboctahedron
 
-# Register GaussFisherPeakShape in _libBornAgainCore:
-_libBornAgainCore.GaussFisherPeakShape_swigregister(GaussFisherPeakShape)
+# Register FormFactorCuboctahedron in _libBornAgainCore:
+_libBornAgainCore.FormFactorCuboctahedron_swigregister(FormFactorCuboctahedron)
 
-class LorentzFisherPeakShape(IPeakShape):
+class FormFactorCylinder(IFormFactorBorn):
     r"""
 
 
-    Class that implements a peak shape that is Lorentzian in the radial direction and uses the von Mises-Fisher distribution in the angular direction.
+    A circular cylinder.
 
-    C++ includes: IPeakShape.h
+    C++ includes: FormFactorCylinder.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, max_intensity, radial_size, kappa):
+    def __init__(self, radius, height):
         r"""
-        __init__(LorentzFisherPeakShape self, double max_intensity, double radial_size, double kappa) -> LorentzFisherPeakShape
-        LorentzFisherPeakShape::LorentzFisherPeakShape(double max_intensity, double radial_size, double kappa)
+        __init__(FormFactorCylinder self, double radius, double height) -> FormFactorCylinder
+        FormFactorCylinder::FormFactorCylinder(double radius, double height)
+
+        Constructor of a cylinder with a circular base.
+
+        Parameters:
+        -----------
+
+        radius: 
+        radius of the circular base in nanometers
+
+        height: 
+        height of the cylinder in nanometers 
 
         """
-        _libBornAgainCore.LorentzFisherPeakShape_swiginit(self, _libBornAgainCore.new_LorentzFisherPeakShape(max_intensity, radial_size, kappa))
-    __swig_destroy__ = _libBornAgainCore.delete_LorentzFisherPeakShape
+        _libBornAgainCore.FormFactorCylinder_swiginit(self, _libBornAgainCore.new_FormFactorCylinder(radius, height))
 
     def clone(self):
         r"""
-        clone(LorentzFisherPeakShape self) -> LorentzFisherPeakShape
-        LorentzFisherPeakShape * LorentzFisherPeakShape::clone() const override
+        clone(FormFactorCylinder self) -> FormFactorCylinder
+        FormFactorCylinder* FormFactorCylinder::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.LorentzFisherPeakShape_clone(self)
+        return _libBornAgainCore.FormFactorCylinder_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(LorentzFisherPeakShape self, INodeVisitor visitor)
-        void LorentzFisherPeakShape::accept(INodeVisitor *visitor) const override
+        accept(FormFactorCylinder self, INodeVisitor visitor)
+        void FormFactorCylinder::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.LorentzFisherPeakShape_accept(self, visitor)
+        return _libBornAgainCore.FormFactorCylinder_accept(self, visitor)
 
-    def evaluate(self, q, q_lattice_point):
+    def getHeight(self):
         r"""
-        evaluate(LorentzFisherPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
-        double LorentzFisherPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override
+        getHeight(FormFactorCylinder self) -> double
+        double FormFactorCylinder::getHeight() const
 
-        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
+        """
+        return _libBornAgainCore.FormFactorCylinder_getHeight(self)
+
+    def getRadius(self):
+        r"""
+        getRadius(FormFactorCylinder self) -> double
+        double FormFactorCylinder::getRadius() const
 
         """
-        return _libBornAgainCore.LorentzFisherPeakShape_evaluate(self, q, q_lattice_point)
+        return _libBornAgainCore.FormFactorCylinder_getRadius(self)
 
-    def angularDisorder(self):
+    def radialExtension(self):
         r"""
-        angularDisorder(LorentzFisherPeakShape self) -> bool
-        bool LorentzFisherPeakShape::angularDisorder() const override
+        radialExtension(FormFactorCylinder self) -> double
+        double FormFactorCylinder::radialExtension() const override final
 
-        Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.LorentzFisherPeakShape_angularDisorder(self)
+        return _libBornAgainCore.FormFactorCylinder_radialExtension(self)
 
-# Register LorentzFisherPeakShape in _libBornAgainCore:
-_libBornAgainCore.LorentzFisherPeakShape_swigregister(LorentzFisherPeakShape)
+    def evaluate_for_q(self, q):
+        r"""
+        evaluate_for_q(FormFactorCylinder self, cvector_t q) -> complex_t
+        complex_t FormFactorCylinder::evaluate_for_q(cvector_t q) const override final
 
-class VonMisesFisherGaussPeakShape(IPeakShape):
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+
+        """
+        return _libBornAgainCore.FormFactorCylinder_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorCylinder
+
+# Register FormFactorCylinder in _libBornAgainCore:
+_libBornAgainCore.FormFactorCylinder_swigregister(FormFactorCylinder)
+
+class FormFactorDodecahedron(FormFactorPolyhedron):
     r"""
 
 
-    Class that implements a peak shape that is Gaussian in the radial direction and a convolution of a von Mises-Fisher distribution with a von Mises distribution on the two-sphere
+    A regular dodecahedron.
 
-    C++ includes: IPeakShape.h
+    C++ includes: FormFactorDodecahedron.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, max_intensity, radial_size, zenith, kappa_1, kappa_2):
+    def __init__(self, edge):
         r"""
-        __init__(VonMisesFisherGaussPeakShape self, double max_intensity, double radial_size, kvector_t zenith, double kappa_1, double kappa_2) -> VonMisesFisherGaussPeakShape
-        VonMisesFisherGaussPeakShape::VonMisesFisherGaussPeakShape(double max_intensity, double radial_size, kvector_t zenith, double kappa_1, double kappa_2)
+        __init__(FormFactorDodecahedron self, double edge) -> FormFactorDodecahedron
+        FormFactorDodecahedron::FormFactorDodecahedron(double edge)
+
+        Constructs a regular dodecahedron.
+
+        Parameters:
+        -----------
+
+        edge: 
+        length
+
+        Constructor of a dodecahedron.
+
+        Parameters:
+        -----------
+
+        edge: 
+        length of the edge in nanometers 
 
         """
-        _libBornAgainCore.VonMisesFisherGaussPeakShape_swiginit(self, _libBornAgainCore.new_VonMisesFisherGaussPeakShape(max_intensity, radial_size, zenith, kappa_1, kappa_2))
-    __swig_destroy__ = _libBornAgainCore.delete_VonMisesFisherGaussPeakShape
+        _libBornAgainCore.FormFactorDodecahedron_swiginit(self, _libBornAgainCore.new_FormFactorDodecahedron(edge))
 
     def clone(self):
         r"""
-        clone(VonMisesFisherGaussPeakShape self) -> VonMisesFisherGaussPeakShape
-        VonMisesFisherGaussPeakShape * VonMisesFisherGaussPeakShape::clone() const override
+        clone(FormFactorDodecahedron self) -> FormFactorDodecahedron
+        FormFactorDodecahedron* FormFactorDodecahedron::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.VonMisesFisherGaussPeakShape_clone(self)
+        return _libBornAgainCore.FormFactorDodecahedron_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(VonMisesFisherGaussPeakShape self, INodeVisitor visitor)
-        void VonMisesFisherGaussPeakShape::accept(INodeVisitor *visitor) const override
+        accept(FormFactorDodecahedron self, INodeVisitor visitor)
+        void FormFactorDodecahedron::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.VonMisesFisherGaussPeakShape_accept(self, visitor)
-
-    def evaluate(self, q, q_lattice_point):
-        r"""
-        evaluate(VonMisesFisherGaussPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
-        double VonMisesFisherGaussPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override
-
-        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
-
-        """
-        return _libBornAgainCore.VonMisesFisherGaussPeakShape_evaluate(self, q, q_lattice_point)
+        return _libBornAgainCore.FormFactorDodecahedron_accept(self, visitor)
 
-    def angularDisorder(self):
+    def getEdge(self):
         r"""
-        angularDisorder(VonMisesFisherGaussPeakShape self) -> bool
-        bool VonMisesFisherGaussPeakShape::angularDisorder() const override
-
-        Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed 
+        getEdge(FormFactorDodecahedron self) -> double
+        double FormFactorDodecahedron::getEdge() const
 
         """
-        return _libBornAgainCore.VonMisesFisherGaussPeakShape_angularDisorder(self)
+        return _libBornAgainCore.FormFactorDodecahedron_getEdge(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorDodecahedron
 
-# Register VonMisesFisherGaussPeakShape in _libBornAgainCore:
-_libBornAgainCore.VonMisesFisherGaussPeakShape_swigregister(VonMisesFisherGaussPeakShape)
+# Register FormFactorDodecahedron in _libBornAgainCore:
+_libBornAgainCore.FormFactorDodecahedron_swigregister(FormFactorDodecahedron)
 
-class VonMisesGaussPeakShape(IPeakShape):
+class FormFactorDot(IFormFactorBorn):
     r"""
 
 
-    Class that implements a peak shape that is a convolution of a von Mises-Fisher distribution with a 3d Gaussian
+    A dot, with scattering power as a sphere of radius rscat, but with F(q)=const.
 
-    C++ includes: IPeakShape.h
+    C++ includes: FormFactorDot.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, max_intensity, radial_size, zenith, kappa):
+    def __init__(self, radius):
         r"""
-        __init__(VonMisesGaussPeakShape self, double max_intensity, double radial_size, kvector_t zenith, double kappa) -> VonMisesGaussPeakShape
-        VonMisesGaussPeakShape::VonMisesGaussPeakShape(double max_intensity, double radial_size, kvector_t zenith, double kappa)
+        __init__(FormFactorDot self, double radius) -> FormFactorDot
+        FormFactorDot::FormFactorDot(double radius)
+
+        Constructor.
+
+        Parameters:
+        -----------
+
+        rscat: 
+        radius of a sphere with same forward scattering power, in nanometers 
 
         """
-        _libBornAgainCore.VonMisesGaussPeakShape_swiginit(self, _libBornAgainCore.new_VonMisesGaussPeakShape(max_intensity, radial_size, zenith, kappa))
-    __swig_destroy__ = _libBornAgainCore.delete_VonMisesGaussPeakShape
+        _libBornAgainCore.FormFactorDot_swiginit(self, _libBornAgainCore.new_FormFactorDot(radius))
 
     def clone(self):
         r"""
-        clone(VonMisesGaussPeakShape self) -> VonMisesGaussPeakShape
-        VonMisesGaussPeakShape * VonMisesGaussPeakShape::clone() const override
+        clone(FormFactorDot self) -> FormFactorDot
+        FormFactorDot* FormFactorDot::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.VonMisesGaussPeakShape_clone(self)
+        return _libBornAgainCore.FormFactorDot_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(VonMisesGaussPeakShape self, INodeVisitor visitor)
-        void VonMisesGaussPeakShape::accept(INodeVisitor *visitor) const override
+        accept(FormFactorDot self, INodeVisitor visitor)
+        void FormFactorDot::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.VonMisesGaussPeakShape_accept(self, visitor)
+        return _libBornAgainCore.FormFactorDot_accept(self, visitor)
 
-    def evaluate(self, q, q_lattice_point):
+    def getRadius(self):
         r"""
-        evaluate(VonMisesGaussPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double
-        double VonMisesGaussPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override
-
-        Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. 
+        getRadius(FormFactorDot self) -> double
+        double FormFactorDot::getRadius() const
 
         """
-        return _libBornAgainCore.VonMisesGaussPeakShape_evaluate(self, q, q_lattice_point)
+        return _libBornAgainCore.FormFactorDot_getRadius(self)
 
-    def angularDisorder(self):
+    def radialExtension(self):
         r"""
-        angularDisorder(VonMisesGaussPeakShape self) -> bool
-        bool VonMisesGaussPeakShape::angularDisorder() const override
+        radialExtension(FormFactorDot self) -> double
+        double FormFactorDot::radialExtension() const override final
 
-        Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.VonMisesGaussPeakShape_angularDisorder(self)
-
-# Register VonMisesGaussPeakShape in _libBornAgainCore:
-_libBornAgainCore.VonMisesGaussPeakShape_swigregister(VonMisesGaussPeakShape)
-
-class IResolutionFunction2D(ICloneable, INode):
-    r"""
-
-
-    Interface providing two-dimensional resolution function.
-
-    C++ includes: IResolutionFunction2D.h
+        return _libBornAgainCore.FormFactorDot_radialExtension(self)
 
-    """
+    def bottomZ(self, arg2):
+        r"""
+        bottomZ(FormFactorDot self, IRotation arg2) -> double
+        double FormFactorDot::bottomZ(const IRotation &) const override final
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
-    __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IResolutionFunction2D
+        """
+        return _libBornAgainCore.FormFactorDot_bottomZ(self, arg2)
 
-    def evaluateCDF(self, x, y):
+    def topZ(self, arg2):
         r"""
-        evaluateCDF(IResolutionFunction2D self, double x, double y) -> double
-        virtual double IResolutionFunction2D::evaluateCDF(double x, double y) const =0
+        topZ(FormFactorDot self, IRotation arg2) -> double
+        double FormFactorDot::topZ(const IRotation &) const override final
+
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.IResolutionFunction2D_evaluateCDF(self, x, y)
+        return _libBornAgainCore.FormFactorDot_topZ(self, arg2)
 
-    def clone(self):
+    def evaluate_for_q(self, q):
         r"""
-        clone(IResolutionFunction2D self) -> IResolutionFunction2D
-        virtual IResolutionFunction2D* IResolutionFunction2D::clone() const =0
+        evaluate_for_q(FormFactorDot self, cvector_t q) -> complex_t
+        complex_t FormFactorDot::evaluate_for_q(cvector_t q) const override final
+
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.IResolutionFunction2D_clone(self)
+        return _libBornAgainCore.FormFactorDot_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorDot
 
-# Register IResolutionFunction2D in _libBornAgainCore:
-_libBornAgainCore.IResolutionFunction2D_swigregister(IResolutionFunction2D)
+# Register FormFactorDot in _libBornAgainCore:
+_libBornAgainCore.FormFactorDot_swigregister(FormFactorDot)
 
-class IRotation(ISample):
+class FormFactorEllipsoidalCylinder(IFormFactorBorn):
     r"""
 
 
-    Pure virtual interface for rotations.
+    A cylinder with elliptical base.
 
-    C++ includes: Rotations.h
+    C++ includes: FormFactorEllipsoidalCylinder.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
 
-    @staticmethod
-    def createRotation(transform):
-        r"""createRotation(Transform3D const & transform) -> IRotation"""
-        return _libBornAgainCore.IRotation_createRotation(transform)
+    def __init__(self, radius_x, radius_y, height):
+        r"""
+        __init__(FormFactorEllipsoidalCylinder self, double radius_x, double radius_y, double height) -> FormFactorEllipsoidalCylinder
+        FormFactorEllipsoidalCylinder::FormFactorEllipsoidalCylinder(double radius_x, double radius_y, double height)
 
-    @staticmethod
-    def createIdentity():
-        r"""createIdentity() -> IRotation"""
-        return _libBornAgainCore.IRotation_createIdentity()
-    __swig_destroy__ = _libBornAgainCore.delete_IRotation
+        Constructor of a cylinder with an ellipse cross section.
 
-    def clone(self):
-        r"""
-        clone(IRotation self) -> IRotation
-        virtual IRotation* IRotation::clone() const =0
+        Parameters:
+        -----------
 
-        Returns a clone of this  ISample object. 
+        radius_x: 
+        radius of the ellipse base in the x-direction, in nanometers
+
+        radius_y: 
+        radius of the ellipse base in the y-direction, in nanometers
+
+        height: 
+        height of the ellipsoidal cylinder in nanometers 
 
         """
-        return _libBornAgainCore.IRotation_clone(self)
+        _libBornAgainCore.FormFactorEllipsoidalCylinder_swiginit(self, _libBornAgainCore.new_FormFactorEllipsoidalCylinder(radius_x, radius_y, height))
 
-    def createInverse(self):
+    def clone(self):
         r"""
-        createInverse(IRotation self) -> IRotation
-        virtual IRotation* IRotation::createInverse() const =0
+        clone(FormFactorEllipsoidalCylinder self) -> FormFactorEllipsoidalCylinder
+        FormFactorEllipsoidalCylinder* FormFactorEllipsoidalCylinder::clone() const override final
 
-        Returns a new  IRotation object that is the current object's inverse. 
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.IRotation_createInverse(self)
+        return _libBornAgainCore.FormFactorEllipsoidalCylinder_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(IRotation self, INodeVisitor visitor)
-        void IRotation::accept(INodeVisitor *visitor) const
+        accept(FormFactorEllipsoidalCylinder self, INodeVisitor visitor)
+        void FormFactorEllipsoidalCylinder::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IRotation_accept(self, visitor)
+        return _libBornAgainCore.FormFactorEllipsoidalCylinder_accept(self, visitor)
 
-    def getTransform3D(self):
+    def getRadiusX(self):
         r"""
-        getTransform3D(IRotation self) -> Transform3D
-        virtual Transform3D IRotation::getTransform3D() const =0
-
-        Returns transformation. 
+        getRadiusX(FormFactorEllipsoidalCylinder self) -> double
+        double FormFactorEllipsoidalCylinder::getRadiusX() const
 
         """
-        return _libBornAgainCore.IRotation_getTransform3D(self)
+        return _libBornAgainCore.FormFactorEllipsoidalCylinder_getRadiusX(self)
 
-    def isIdentity(self):
+    def getRadiusY(self):
         r"""
-        isIdentity(IRotation self) -> bool
-        bool IRotation::isIdentity() const
-
-        Returns true if rotation matrix is identity matrix (no rotations) 
+        getRadiusY(FormFactorEllipsoidalCylinder self) -> double
+        double FormFactorEllipsoidalCylinder::getRadiusY() const
 
         """
-        return _libBornAgainCore.IRotation_isIdentity(self)
+        return _libBornAgainCore.FormFactorEllipsoidalCylinder_getRadiusY(self)
 
-# Register IRotation in _libBornAgainCore:
-_libBornAgainCore.IRotation_swigregister(IRotation)
+    def getHeight(self):
+        r"""
+        getHeight(FormFactorEllipsoidalCylinder self) -> double
+        double FormFactorEllipsoidalCylinder::getHeight() const
 
-def IRotation_createRotation(transform):
-    r"""IRotation_createRotation(Transform3D const & transform) -> IRotation"""
-    return _libBornAgainCore.IRotation_createRotation(transform)
+        """
+        return _libBornAgainCore.FormFactorEllipsoidalCylinder_getHeight(self)
 
-def IRotation_createIdentity():
-    r"""IRotation_createIdentity() -> IRotation"""
-    return _libBornAgainCore.IRotation_createIdentity()
+    def radialExtension(self):
+        r"""
+        radialExtension(FormFactorEllipsoidalCylinder self) -> double
+        double FormFactorEllipsoidalCylinder::radialExtension() const override final
 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
-def createProduct(left, right):
-    r"""
-    createProduct(IRotation left, IRotation right) -> IRotation
-    BA_CORE_API_ IRotation* createProduct(const IRotation &left, const IRotation &right)
+        """
+        return _libBornAgainCore.FormFactorEllipsoidalCylinder_radialExtension(self)
 
-    Returns concatenated rotation (first right, then left). 
+    def evaluate_for_q(self, q):
+        r"""
+        evaluate_for_q(FormFactorEllipsoidalCylinder self, cvector_t q) -> complex_t
+        complex_t FormFactorEllipsoidalCylinder::evaluate_for_q(cvector_t q) const override final
 
-    """
-    return _libBornAgainCore.createProduct(left, right)
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
-def IsZRotation(rot):
-    r"""
-    IsZRotation(IRotation rot) -> bool
-    bool IsZRotation(const IRotation &rot)
+        """
+        return _libBornAgainCore.FormFactorEllipsoidalCylinder_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorEllipsoidalCylinder
 
-    """
-    return _libBornAgainCore.IsZRotation(rot)
-class IdentityRotation(IRotation):
+# Register FormFactorEllipsoidalCylinder in _libBornAgainCore:
+_libBornAgainCore.FormFactorEllipsoidalCylinder_swigregister(FormFactorEllipsoidalCylinder)
+
+class FormFactorFullSphere(IFormFactorBorn):
     r"""
 
 
-    The identity rotation, which leaves everything in place.
+    A full sphere.
 
-    C++ includes: Rotations.h
+    C++ includes: FormFactorFullSphere.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self):
+    def __init__(self, radius, position_at_center=False):
         r"""
-        __init__(IdentityRotation self) -> IdentityRotation
-        IdentityRotation::IdentityRotation()=default
+        __init__(FormFactorFullSphere self, double radius, bool position_at_center=False) -> FormFactorFullSphere
+        FormFactorFullSphere::FormFactorFullSphere(double radius, bool position_at_center=false)
+
+        Constructor of a full sphere.
+
+        Parameters:
+        -----------
+
+        radius: 
+        radius of the sphere in nanometers 
 
         """
-        _libBornAgainCore.IdentityRotation_swiginit(self, _libBornAgainCore.new_IdentityRotation())
+        _libBornAgainCore.FormFactorFullSphere_swiginit(self, _libBornAgainCore.new_FormFactorFullSphere(radius, position_at_center))
 
     def clone(self):
         r"""
-        clone(IdentityRotation self) -> IdentityRotation
-        IdentityRotation* IdentityRotation::clone() const
+        clone(FormFactorFullSphere self) -> FormFactorFullSphere
+        FormFactorFullSphere* FormFactorFullSphere::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.IdentityRotation_clone(self)
+        return _libBornAgainCore.FormFactorFullSphere_clone(self)
 
-    def createInverse(self):
+    def accept(self, visitor):
+        r"""
+        accept(FormFactorFullSphere self, INodeVisitor visitor)
+        void FormFactorFullSphere::accept(INodeVisitor *visitor) const override final
+
+        Calls the  INodeVisitor's visit method. 
+
+        """
+        return _libBornAgainCore.FormFactorFullSphere_accept(self, visitor)
+
+    def getRadius(self):
+        r"""
+        getRadius(FormFactorFullSphere self) -> double
+        double FormFactorFullSphere::getRadius() const
+
+        """
+        return _libBornAgainCore.FormFactorFullSphere_getRadius(self)
+
+    def radialExtension(self):
         r"""
-        createInverse(IdentityRotation self) -> IdentityRotation
-        IdentityRotation* IdentityRotation::createInverse() const
+        radialExtension(FormFactorFullSphere self) -> double
+        double FormFactorFullSphere::radialExtension() const override final
 
-        Returns a new  IRotation object that is the current object's inverse. 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.IdentityRotation_createInverse(self)
+        return _libBornAgainCore.FormFactorFullSphere_radialExtension(self)
 
-    def accept(self, visitor):
+    def bottomZ(self, rotation):
         r"""
-        accept(IdentityRotation self, INodeVisitor visitor)
-        void IdentityRotation::accept(INodeVisitor *visitor) const
+        bottomZ(FormFactorFullSphere self, IRotation rotation) -> double
+        double FormFactorFullSphere::bottomZ(const IRotation &rotation) const override final
 
-        Calls the  INodeVisitor's visit method. 
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.IdentityRotation_accept(self, visitor)
+        return _libBornAgainCore.FormFactorFullSphere_bottomZ(self, rotation)
 
-    def getTransform3D(self):
+    def topZ(self, rotation):
         r"""
-        getTransform3D(IdentityRotation self) -> Transform3D
-        Transform3D IdentityRotation::getTransform3D() const
+        topZ(FormFactorFullSphere self, IRotation rotation) -> double
+        double FormFactorFullSphere::topZ(const IRotation &rotation) const override final
 
-        Returns transformation. 
+        Returns the z-coordinate of the lowest point in this shape after a given rotation. 
 
         """
-        return _libBornAgainCore.IdentityRotation_getTransform3D(self)
+        return _libBornAgainCore.FormFactorFullSphere_topZ(self, rotation)
 
-    def isIdentity(self):
+    def evaluate_for_q(self, q):
         r"""
-        isIdentity(IdentityRotation self) -> bool
-        bool IdentityRotation::isIdentity() const
+        evaluate_for_q(FormFactorFullSphere self, cvector_t q) -> complex_t
+        complex_t FormFactorFullSphere::evaluate_for_q(cvector_t q) const override final
 
-        Returns true if rotation matrix is identity matrix (no rotations) 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.IdentityRotation_isIdentity(self)
-    __swig_destroy__ = _libBornAgainCore.delete_IdentityRotation
+        return _libBornAgainCore.FormFactorFullSphere_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorFullSphere
 
-# Register IdentityRotation in _libBornAgainCore:
-_libBornAgainCore.IdentityRotation_swigregister(IdentityRotation)
+# Register FormFactorFullSphere in _libBornAgainCore:
+_libBornAgainCore.FormFactorFullSphere_swigregister(FormFactorFullSphere)
 
-class RotationX(IRotation):
+class FormFactorFullSpheroid(IFormFactorBorn):
     r"""
 
 
-    A rotation about the x axis.
+    A full spheroid (an ellipsoid with two equal axes, hence with circular cross section)
 
-    C++ includes: Rotations.h
+    C++ includes: FormFactorFullSpheroid.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, angle):
+    def __init__(self, radius, height):
         r"""
-        __init__(RotationX self, double angle) -> RotationX
-        RotationX::RotationX(double angle)
+        __init__(FormFactorFullSpheroid self, double radius, double height) -> FormFactorFullSpheroid
+        FormFactorFullSpheroid::FormFactorFullSpheroid(double radius, double height)
 
-        Constructor of rotation around x-axis
+        Constructor of full spheroid.
 
         Parameters:
         -----------
 
-        angle: 
-        rotation angle around x-axis in radians 
+        radius: 
+        radius of the circular cross section in nanometers
+
+        height: 
+        height of the full spheroid in nanometers 
 
         """
-        _libBornAgainCore.RotationX_swiginit(self, _libBornAgainCore.new_RotationX(angle))
+        _libBornAgainCore.FormFactorFullSpheroid_swiginit(self, _libBornAgainCore.new_FormFactorFullSpheroid(radius, height))
 
     def clone(self):
         r"""
-        clone(RotationX self) -> RotationX
-        RotationX* RotationX::clone() const
+        clone(FormFactorFullSpheroid self) -> FormFactorFullSpheroid
+        FormFactorFullSpheroid* FormFactorFullSpheroid::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.RotationX_clone(self)
+        return _libBornAgainCore.FormFactorFullSpheroid_clone(self)
 
-    def createInverse(self):
+    def accept(self, visitor):
         r"""
-        createInverse(RotationX self) -> RotationX
-        RotationX* RotationX::createInverse() const
+        accept(FormFactorFullSpheroid self, INodeVisitor visitor)
+        void FormFactorFullSpheroid::accept(INodeVisitor *visitor) const override final
 
-        Returns a new  IRotation object that is the current object's inverse. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.RotationX_createInverse(self)
+        return _libBornAgainCore.FormFactorFullSpheroid_accept(self, visitor)
 
-    def accept(self, visitor):
+    def getHeight(self):
         r"""
-        accept(RotationX self, INodeVisitor visitor)
-        void RotationX::accept(INodeVisitor *visitor) const
+        getHeight(FormFactorFullSpheroid self) -> double
+        double FormFactorFullSpheroid::getHeight() const
 
-        Calls the  INodeVisitor's visit method. 
+        """
+        return _libBornAgainCore.FormFactorFullSpheroid_getHeight(self)
+
+    def getRadius(self):
+        r"""
+        getRadius(FormFactorFullSpheroid self) -> double
+        double FormFactorFullSpheroid::getRadius() const
 
         """
-        return _libBornAgainCore.RotationX_accept(self, visitor)
+        return _libBornAgainCore.FormFactorFullSpheroid_getRadius(self)
 
-    def getAngle(self):
+    def radialExtension(self):
         r"""
-        getAngle(RotationX self) -> double
-        double RotationX::getAngle() const
+        radialExtension(FormFactorFullSpheroid self) -> double
+        double FormFactorFullSpheroid::radialExtension() const override final
+
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.RotationX_getAngle(self)
+        return _libBornAgainCore.FormFactorFullSpheroid_radialExtension(self)
 
-    def getTransform3D(self):
+    def evaluate_for_q(self, q):
         r"""
-        getTransform3D(RotationX self) -> Transform3D
-        Transform3D RotationX::getTransform3D() const
+        evaluate_for_q(FormFactorFullSpheroid self, cvector_t q) -> complex_t
+        complex_t FormFactorFullSpheroid::evaluate_for_q(cvector_t q) const override final
 
-        Returns transformation. 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.RotationX_getTransform3D(self)
-    __swig_destroy__ = _libBornAgainCore.delete_RotationX
+        return _libBornAgainCore.FormFactorFullSpheroid_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorFullSpheroid
 
-# Register RotationX in _libBornAgainCore:
-_libBornAgainCore.RotationX_swigregister(RotationX)
+# Register FormFactorFullSpheroid in _libBornAgainCore:
+_libBornAgainCore.FormFactorFullSpheroid_swigregister(FormFactorFullSpheroid)
 
-class RotationY(IRotation):
+class FormFactorHemiEllipsoid(IFormFactorBorn):
     r"""
 
 
-    A rotation about the y axis.
+    An hemi ellipsoid, obtained by truncating a full ellipsoid in the middle plane spanned by two principal axes.
 
-    C++ includes: Rotations.h
+    C++ includes: FormFactorHemiEllipsoid.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, angle):
+    def __init__(self, radius_x, radius_y, height):
         r"""
-        __init__(RotationY self, double angle) -> RotationY
-        RotationY::RotationY(double angle)
+        __init__(FormFactorHemiEllipsoid self, double radius_x, double radius_y, double height) -> FormFactorHemiEllipsoid
+        FormFactorHemiEllipsoid::FormFactorHemiEllipsoid(double radius_x, double radius_y, double height)
 
-        Constructor of rotation around y-axis
+        Constructor of horizontally oriented ellipsoid, truncated at the central plane.
 
         Parameters:
         -----------
 
-        angle: 
-        rotation angle around y-axis in radians 
+        radius_x: 
+        radius of the ellipse base in the x-direction, in nanometers
+
+        radius_y: 
+        radius of the ellipse base in the y-direction, in nanometers
+
+        height: 
+        height of the hemi ellipsoid in nanometers 
 
         """
-        _libBornAgainCore.RotationY_swiginit(self, _libBornAgainCore.new_RotationY(angle))
+        _libBornAgainCore.FormFactorHemiEllipsoid_swiginit(self, _libBornAgainCore.new_FormFactorHemiEllipsoid(radius_x, radius_y, height))
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorHemiEllipsoid
 
     def clone(self):
         r"""
-        clone(RotationY self) -> RotationY
-        RotationY* RotationY::clone() const
+        clone(FormFactorHemiEllipsoid self) -> FormFactorHemiEllipsoid
+        FormFactorHemiEllipsoid* FormFactorHemiEllipsoid::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.RotationY_clone(self)
+        return _libBornAgainCore.FormFactorHemiEllipsoid_clone(self)
 
-    def createInverse(self):
+    def accept(self, visitor):
         r"""
-        createInverse(RotationY self) -> RotationY
-        RotationY* RotationY::createInverse() const
+        accept(FormFactorHemiEllipsoid self, INodeVisitor visitor)
+        void FormFactorHemiEllipsoid::accept(INodeVisitor *visitor) const override final
 
-        Returns a new  IRotation object that is the current object's inverse. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.RotationY_createInverse(self)
+        return _libBornAgainCore.FormFactorHemiEllipsoid_accept(self, visitor)
 
-    def accept(self, visitor):
+    def getHeight(self):
         r"""
-        accept(RotationY self, INodeVisitor visitor)
-        void RotationY::accept(INodeVisitor *visitor) const
+        getHeight(FormFactorHemiEllipsoid self) -> double
+        double FormFactorHemiEllipsoid::getHeight() const
 
-        Calls the  INodeVisitor's visit method. 
+        """
+        return _libBornAgainCore.FormFactorHemiEllipsoid_getHeight(self)
+
+    def getRadiusX(self):
+        r"""
+        getRadiusX(FormFactorHemiEllipsoid self) -> double
+        double FormFactorHemiEllipsoid::getRadiusX() const
 
         """
-        return _libBornAgainCore.RotationY_accept(self, visitor)
+        return _libBornAgainCore.FormFactorHemiEllipsoid_getRadiusX(self)
 
-    def getAngle(self):
+    def getRadiusY(self):
         r"""
-        getAngle(RotationY self) -> double
-        double RotationY::getAngle() const
+        getRadiusY(FormFactorHemiEllipsoid self) -> double
+        double FormFactorHemiEllipsoid::getRadiusY() const
 
         """
-        return _libBornAgainCore.RotationY_getAngle(self)
+        return _libBornAgainCore.FormFactorHemiEllipsoid_getRadiusY(self)
 
-    def getTransform3D(self):
+    def radialExtension(self):
         r"""
-        getTransform3D(RotationY self) -> Transform3D
-        Transform3D RotationY::getTransform3D() const
+        radialExtension(FormFactorHemiEllipsoid self) -> double
+        double FormFactorHemiEllipsoid::radialExtension() const override final
 
-        Returns transformation. 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.RotationY_getTransform3D(self)
-    __swig_destroy__ = _libBornAgainCore.delete_RotationY
-
-# Register RotationY in _libBornAgainCore:
-_libBornAgainCore.RotationY_swigregister(RotationY)
+        return _libBornAgainCore.FormFactorHemiEllipsoid_radialExtension(self)
 
-class RotationZ(IRotation):
-    r"""
+    def evaluate_for_q(self, q):
+        r"""
+        evaluate_for_q(FormFactorHemiEllipsoid self, cvector_t q) -> complex_t
+        complex_t FormFactorHemiEllipsoid::evaluate_for_q(cvector_t q) const override final
 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
-    A rotation about the z axis.
+        """
+        return _libBornAgainCore.FormFactorHemiEllipsoid_evaluate_for_q(self, q)
 
-    C++ includes: Rotations.h
+# Register FormFactorHemiEllipsoid in _libBornAgainCore:
+_libBornAgainCore.FormFactorHemiEllipsoid_swigregister(FormFactorHemiEllipsoid)
 
-    """
+class FormFactorHollowSphere(IFormFactorBorn):
+    r"""Proxy of C++ FormFactorHollowSphere class."""
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, angle=0.0):
-        r"""
-        __init__(RotationZ self, double angle=0.0) -> RotationZ
-        RotationZ::RotationZ(double angle=0.0)
-
-        Constructor of rotation around z-axis
-
-        Parameters:
-        -----------
-
-        angle: 
-        rotation angle around z-axis in radians 
-
-        """
-        _libBornAgainCore.RotationZ_swiginit(self, _libBornAgainCore.new_RotationZ(angle))
+    def __init__(self, mean, full_width):
+        r"""__init__(FormFactorHollowSphere self, double mean, double full_width) -> FormFactorHollowSphere"""
+        _libBornAgainCore.FormFactorHollowSphere_swiginit(self, _libBornAgainCore.new_FormFactorHollowSphere(mean, full_width))
 
     def clone(self):
         r"""
-        clone(RotationZ self) -> RotationZ
-        RotationZ* RotationZ::clone() const
+        clone(FormFactorHollowSphere self) -> FormFactorHollowSphere
+        IFormFactorBorn* IFormFactorBorn::clone() const override=0
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.RotationZ_clone(self)
-
-    def createInverse(self):
-        r"""
-        createInverse(RotationZ self) -> RotationZ
-        RotationZ* RotationZ::createInverse() const
-
-        Returns a new  IRotation object that is the current object's inverse. 
-
-        """
-        return _libBornAgainCore.RotationZ_createInverse(self)
+        return _libBornAgainCore.FormFactorHollowSphere_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(RotationZ self, INodeVisitor visitor)
-        void RotationZ::accept(INodeVisitor *visitor) const
+        accept(FormFactorHollowSphere self, INodeVisitor visitor)
+        virtual void INode::accept(INodeVisitor *visitor) const =0
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.RotationZ_accept(self, visitor)
+        return _libBornAgainCore.FormFactorHollowSphere_accept(self, visitor)
 
-    def getAngle(self):
+    def radialExtension(self):
         r"""
-        getAngle(RotationZ self) -> double
-        double RotationZ::getAngle() const
+        radialExtension(FormFactorHollowSphere self) -> double
+        virtual double IFormFactor::radialExtension() const =0
+
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.RotationZ_getAngle(self)
+        return _libBornAgainCore.FormFactorHollowSphere_radialExtension(self)
 
-    def getTransform3D(self):
+    def evaluate_for_q(self, q):
         r"""
-        getTransform3D(RotationZ self) -> Transform3D
-        Transform3D RotationZ::getTransform3D() const
+        evaluate_for_q(FormFactorHollowSphere self, cvector_t q) -> complex_t
+        virtual complex_t IFormFactorBorn::evaluate_for_q(cvector_t q) const =0
 
-        Returns transformation. 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.RotationZ_getTransform3D(self)
-    __swig_destroy__ = _libBornAgainCore.delete_RotationZ
+        return _libBornAgainCore.FormFactorHollowSphere_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorHollowSphere
 
-# Register RotationZ in _libBornAgainCore:
-_libBornAgainCore.RotationZ_swigregister(RotationZ)
+# Register FormFactorHollowSphere in _libBornAgainCore:
+_libBornAgainCore.FormFactorHollowSphere_swigregister(FormFactorHollowSphere)
 
-class RotationEuler(IRotation):
+class FormFactorIcosahedron(FormFactorPolyhedron):
     r"""
 
 
-    A sequence of rotations about the z-x'-z'' axes.
+    A regular icosahedron.
 
-    C++ includes: Rotations.h
+    C++ includes: FormFactorIcosahedron.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, alpha, beta, gamma):
+    def __init__(self, edge):
         r"""
-        __init__(RotationEuler self, double alpha, double beta, double gamma) -> RotationEuler
-        RotationEuler::RotationEuler(double alpha, double beta, double gamma)
+        __init__(FormFactorIcosahedron self, double edge) -> FormFactorIcosahedron
+        FormFactorIcosahedron::FormFactorIcosahedron(double edge)
 
-        Constructor of Euler rotation (sequence of three rotations following Euler angles notation z-x'-z').
+        Constructor of a icosahedron.
 
         Parameters:
         -----------
 
-        alpha: 
-        first Euler angle in radians
-
-        beta: 
-        second Euler angle in radians
-
-        gamma: 
-        third Euler angle in radians 
+        edge: 
+        length of the edge in nanometers 
 
         """
-        _libBornAgainCore.RotationEuler_swiginit(self, _libBornAgainCore.new_RotationEuler(alpha, beta, gamma))
+        _libBornAgainCore.FormFactorIcosahedron_swiginit(self, _libBornAgainCore.new_FormFactorIcosahedron(edge))
 
     def clone(self):
         r"""
-        clone(RotationEuler self) -> RotationEuler
-        RotationEuler* RotationEuler::clone() const
+        clone(FormFactorIcosahedron self) -> FormFactorIcosahedron
+        FormFactorIcosahedron* FormFactorIcosahedron::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.RotationEuler_clone(self)
-
-    def createInverse(self):
-        r"""
-        createInverse(RotationEuler self) -> IRotation
-        IRotation * RotationEuler::createInverse() const
-
-        Returns a new  IRotation object that is the current object's inverse. 
-
-        """
-        return _libBornAgainCore.RotationEuler_createInverse(self)
+        return _libBornAgainCore.FormFactorIcosahedron_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(RotationEuler self, INodeVisitor visitor)
-        void RotationEuler::accept(INodeVisitor *visitor) const
+        accept(FormFactorIcosahedron self, INodeVisitor visitor)
+        void FormFactorIcosahedron::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.RotationEuler_accept(self, visitor)
-
-    def getAlpha(self):
-        r"""
-        getAlpha(RotationEuler self) -> double
-        double RotationEuler::getAlpha() const
-
-        """
-        return _libBornAgainCore.RotationEuler_getAlpha(self)
-
-    def getBeta(self):
-        r"""
-        getBeta(RotationEuler self) -> double
-        double RotationEuler::getBeta() const
-
-        """
-        return _libBornAgainCore.RotationEuler_getBeta(self)
-
-    def getGamma(self):
-        r"""
-        getGamma(RotationEuler self) -> double
-        double RotationEuler::getGamma() const
-
-        """
-        return _libBornAgainCore.RotationEuler_getGamma(self)
+        return _libBornAgainCore.FormFactorIcosahedron_accept(self, visitor)
 
-    def getTransform3D(self):
+    def getEdge(self):
         r"""
-        getTransform3D(RotationEuler self) -> Transform3D
-        Transform3D RotationEuler::getTransform3D() const
-
-        Returns transformation. 
+        getEdge(FormFactorIcosahedron self) -> double
+        double FormFactorIcosahedron::getEdge() const
 
         """
-        return _libBornAgainCore.RotationEuler_getTransform3D(self)
-    __swig_destroy__ = _libBornAgainCore.delete_RotationEuler
+        return _libBornAgainCore.FormFactorIcosahedron_getEdge(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorIcosahedron
 
-# Register RotationEuler in _libBornAgainCore:
-_libBornAgainCore.RotationEuler_swigregister(RotationEuler)
+# Register FormFactorIcosahedron in _libBornAgainCore:
+_libBornAgainCore.FormFactorIcosahedron_swigregister(FormFactorIcosahedron)
 
-class ISelectionRule(object):
+class FormFactorLongBoxGauss(IFormFactorBorn):
     r"""
 
 
-    Pure virtual base class for selection rules.
+    The form factor for a long rectangular box.
 
-    C++ includes: ISelectionRule.h
+    C++ includes: FormFactorLongBoxGauss.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_ISelectionRule
 
-    def clone(self):
+    def __init__(self, length, width, height):
         r"""
-        clone(ISelectionRule self) -> ISelectionRule
-        virtual ISelectionRule* ISelectionRule::clone() const =0
-
-        """
-        return _libBornAgainCore.ISelectionRule_clone(self)
+        __init__(FormFactorLongBoxGauss self, double length, double width, double height) -> FormFactorLongBoxGauss
+        FormFactorLongBoxGauss::FormFactorLongBoxGauss(double length, double width, double height)
 
-    def coordinateSelected(self, coordinate):
-        r"""
-        coordinateSelected(ISelectionRule self, ivector_t const & coordinate) -> bool
-        virtual bool ISelectionRule::coordinateSelected(const ivector_t &coordinate) const =0
+        Box constructor.
 
-        """
-        return _libBornAgainCore.ISelectionRule_coordinateSelected(self, coordinate)
+        Parameters:
+        -----------
 
-# Register ISelectionRule in _libBornAgainCore:
-_libBornAgainCore.ISelectionRule_swigregister(ISelectionRule)
+        length: 
+        of  Box's base
 
-class SimpleSelectionRule(ISelectionRule):
-    r"""
+        width: 
+        of  Box's base
 
+        height: 
+        of  Box
 
-    Selection rule (v*q)modulus!=0, defined by vector v(a,b,c) and modulus.
+        """
+        _libBornAgainCore.FormFactorLongBoxGauss_swiginit(self, _libBornAgainCore.new_FormFactorLongBoxGauss(length, width, height))
 
-    C++ includes: ISelectionRule.h
+    def clone(self):
+        r"""
+        clone(FormFactorLongBoxGauss self) -> FormFactorLongBoxGauss
+        FormFactorLongBoxGauss* FormFactorLongBoxGauss::clone() const override final
 
-    """
+        Returns a clone of this  ISample object. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.FormFactorLongBoxGauss_clone(self)
 
-    def __init__(self, a, b, c, modulus):
+    def accept(self, visitor):
         r"""
-        __init__(SimpleSelectionRule self, int a, int b, int c, int modulus) -> SimpleSelectionRule
-        SimpleSelectionRule::SimpleSelectionRule(int a, int b, int c, int modulus)
+        accept(FormFactorLongBoxGauss self, INodeVisitor visitor)
+        void FormFactorLongBoxGauss::accept(INodeVisitor *visitor) const override final
+
+        Calls the  INodeVisitor's visit method. 
 
         """
-        _libBornAgainCore.SimpleSelectionRule_swiginit(self, _libBornAgainCore.new_SimpleSelectionRule(a, b, c, modulus))
-    __swig_destroy__ = _libBornAgainCore.delete_SimpleSelectionRule
+        return _libBornAgainCore.FormFactorLongBoxGauss_accept(self, visitor)
 
-    def clone(self):
+    def getLength(self):
         r"""
-        clone(SimpleSelectionRule self) -> SimpleSelectionRule
-        SimpleSelectionRule * SimpleSelectionRule::clone() const
+        getLength(FormFactorLongBoxGauss self) -> double
+        double FormFactorLongBoxGauss::getLength() const
 
         """
-        return _libBornAgainCore.SimpleSelectionRule_clone(self)
+        return _libBornAgainCore.FormFactorLongBoxGauss_getLength(self)
 
-    def coordinateSelected(self, coordinate):
+    def getHeight(self):
         r"""
-        coordinateSelected(SimpleSelectionRule self, ivector_t const & coordinate) -> bool
-        bool SimpleSelectionRule::coordinateSelected(const ivector_t &coordinate) const
+        getHeight(FormFactorLongBoxGauss self) -> double
+        double FormFactorLongBoxGauss::getHeight() const
 
         """
-        return _libBornAgainCore.SimpleSelectionRule_coordinateSelected(self, coordinate)
-
-# Register SimpleSelectionRule in _libBornAgainCore:
-_libBornAgainCore.SimpleSelectionRule_swigregister(SimpleSelectionRule)
-
-class Instrument(INode):
-    r"""
+        return _libBornAgainCore.FormFactorLongBoxGauss_getHeight(self)
 
+    def getWidth(self):
+        r"""
+        getWidth(FormFactorLongBoxGauss self) -> double
+        double FormFactorLongBoxGauss::getWidth() const
 
-    Assembles beam, detector and their relative positions with respect to the sample.
+        """
+        return _libBornAgainCore.FormFactorLongBoxGauss_getWidth(self)
 
-    C++ includes: Instrument.h
+    def radialExtension(self):
+        r"""
+        radialExtension(FormFactorLongBoxGauss self) -> double
+        double FormFactorLongBoxGauss::radialExtension() const override final
 
-    """
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.FormFactorLongBoxGauss_radialExtension(self)
 
-    def __init__(self, *args):
+    def evaluate_for_q(self, q):
         r"""
-        __init__(Instrument self) -> Instrument
-        __init__(Instrument self, Instrument other) -> Instrument
-        Instrument::Instrument(const Instrument &other)
+        evaluate_for_q(FormFactorLongBoxGauss self, cvector_t q) -> complex_t
+        complex_t FormFactorLongBoxGauss::evaluate_for_q(cvector_t q) const override final
+
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        _libBornAgainCore.Instrument_swiginit(self, _libBornAgainCore.new_Instrument(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_Instrument
+        return _libBornAgainCore.FormFactorLongBoxGauss_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorLongBoxGauss
 
-    def accept(self, visitor):
-        r"""
-        accept(Instrument self, INodeVisitor visitor)
-        void Instrument::accept(INodeVisitor *visitor) const final
+# Register FormFactorLongBoxGauss in _libBornAgainCore:
+_libBornAgainCore.FormFactorLongBoxGauss_swigregister(FormFactorLongBoxGauss)
 
-        Calls the  INodeVisitor's visit method. 
+class FormFactorLongBoxLorentz(IFormFactorBorn):
+    r"""
 
-        """
-        return _libBornAgainCore.Instrument_accept(self, visitor)
 
-    def getBeam(self, *args):
-        r"""
-        getBeam(Instrument self) -> Beam
-        getBeam(Instrument self) -> Beam
-        const Beam& Instrument::getBeam() const
+    The form factor for a long rectangular box.
 
-        """
-        return _libBornAgainCore.Instrument_getBeam(self, *args)
+    C++ includes: FormFactorLongBoxLorentz.h
 
-    def setBeam(self, beam):
-        r"""
-        setBeam(Instrument self, Beam beam)
-        void Instrument::setBeam(const Beam &beam)
+    """
 
-        """
-        return _libBornAgainCore.Instrument_setBeam(self, beam)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    def setBeamParameters(self, wavelength, alpha_i, phi_i):
+    def __init__(self, length, width, height):
         r"""
-        setBeamParameters(Instrument self, double wavelength, double alpha_i, double phi_i)
-        void Instrument::setBeamParameters(double wavelength, double alpha_i, double phi_i)
+        __init__(FormFactorLongBoxLorentz self, double length, double width, double height) -> FormFactorLongBoxLorentz
+        FormFactorLongBoxLorentz::FormFactorLongBoxLorentz(double length, double width, double height)
 
-        Sets the beam wavelength and incoming angles. 
+        Box constructor.
 
-        """
-        return _libBornAgainCore.Instrument_setBeamParameters(self, wavelength, alpha_i, phi_i)
+        Parameters:
+        -----------
 
-    def setBeamIntensity(self, intensity):
-        r"""
-        setBeamIntensity(Instrument self, double intensity)
-        void Instrument::setBeamIntensity(double intensity)
+        length: 
+        of  Box's base
 
-        Sets the beam's intensity. 
+        width: 
+        of  Box's base
+
+        height: 
+        of  Box
 
         """
-        return _libBornAgainCore.Instrument_setBeamIntensity(self, intensity)
+        _libBornAgainCore.FormFactorLongBoxLorentz_swiginit(self, _libBornAgainCore.new_FormFactorLongBoxLorentz(length, width, height))
 
-    def setBeamPolarization(self, bloch_vector):
+    def clone(self):
         r"""
-        setBeamPolarization(Instrument self, kvector_t bloch_vector)
-        void Instrument::setBeamPolarization(const kvector_t bloch_vector)
+        clone(FormFactorLongBoxLorentz self) -> FormFactorLongBoxLorentz
+        FormFactorLongBoxLorentz* FormFactorLongBoxLorentz::clone() const override final
 
-        Sets the beam's polarization according to the given Bloch vector. 
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.Instrument_setBeamPolarization(self, bloch_vector)
+        return _libBornAgainCore.FormFactorLongBoxLorentz_clone(self)
 
-    def getBeamIntensity(self):
+    def accept(self, visitor):
         r"""
-        getBeamIntensity(Instrument self) -> double
-        double Instrument::getBeamIntensity() const
+        accept(FormFactorLongBoxLorentz self, INodeVisitor visitor)
+        void FormFactorLongBoxLorentz::accept(INodeVisitor *visitor) const override final
 
-        Returns the beam's intensity. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.Instrument_getBeamIntensity(self)
+        return _libBornAgainCore.FormFactorLongBoxLorentz_accept(self, visitor)
 
-    def getDetector(self, *args):
+    def getLength(self):
         r"""
-        getDetector(Instrument self) -> IDetector
-        getDetector(Instrument self) -> IDetector
-        IDetector * Instrument::getDetector()
+        getLength(FormFactorLongBoxLorentz self) -> double
+        double FormFactorLongBoxLorentz::getLength() const
 
         """
-        return _libBornAgainCore.Instrument_getDetector(self, *args)
+        return _libBornAgainCore.FormFactorLongBoxLorentz_getLength(self)
 
-    def getDetectorMask(self):
+    def getHeight(self):
         r"""
-        getDetectorMask(Instrument self) -> DetectorMask
-        const DetectorMask * Instrument::getDetectorMask() const
+        getHeight(FormFactorLongBoxLorentz self) -> double
+        double FormFactorLongBoxLorentz::getHeight() const
 
         """
-        return _libBornAgainCore.Instrument_getDetectorMask(self)
+        return _libBornAgainCore.FormFactorLongBoxLorentz_getHeight(self)
 
-    def getDetectorAxis(self, index):
+    def getWidth(self):
         r"""
-        getDetectorAxis(Instrument self, size_t index) -> IAxis
-        const IAxis & Instrument::getDetectorAxis(size_t index) const
-
-        Returns a detector axis. 
+        getWidth(FormFactorLongBoxLorentz self) -> double
+        double FormFactorLongBoxLorentz::getWidth() const
 
         """
-        return _libBornAgainCore.Instrument_getDetectorAxis(self, index)
+        return _libBornAgainCore.FormFactorLongBoxLorentz_getWidth(self)
 
-    def getDetectorDimension(self):
+    def radialExtension(self):
         r"""
-        getDetectorDimension(Instrument self) -> size_t
-        size_t Instrument::getDetectorDimension() const
+        radialExtension(FormFactorLongBoxLorentz self) -> double
+        double FormFactorLongBoxLorentz::radialExtension() const override final
 
-        Returns the detector's dimension. 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.Instrument_getDetectorDimension(self)
+        return _libBornAgainCore.FormFactorLongBoxLorentz_radialExtension(self)
 
-    def setDetector(self, detector):
+    def evaluate_for_q(self, q):
         r"""
-        setDetector(Instrument self, IDetector detector)
-        void Instrument::setDetector(const IDetector &detector)
+        evaluate_for_q(FormFactorLongBoxLorentz self, cvector_t q) -> complex_t
+        complex_t FormFactorLongBoxLorentz::evaluate_for_q(cvector_t q) const override final
 
-        Sets the detector (axes can be overwritten later) 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.Instrument_setDetector(self, detector)
+        return _libBornAgainCore.FormFactorLongBoxLorentz_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorLongBoxLorentz
 
-    def setDetectorResolutionFunction(self, p_resolution_function):
-        r"""
-        setDetectorResolutionFunction(Instrument self, IResolutionFunction2D p_resolution_function)
-        void Instrument::setDetectorResolutionFunction(const IResolutionFunction2D &p_resolution_function)
+# Register FormFactorLongBoxLorentz in _libBornAgainCore:
+_libBornAgainCore.FormFactorLongBoxLorentz_swigregister(FormFactorLongBoxLorentz)
 
-        Sets detector resolution function. 
+class FormFactorPrism3(FormFactorPolygonalPrism):
+    r"""
 
-        """
-        return _libBornAgainCore.Instrument_setDetectorResolutionFunction(self, p_resolution_function)
 
-    def removeDetectorResolution(self):
-        r"""
-        removeDetectorResolution(Instrument self)
-        void Instrument::removeDetectorResolution()
+    A prism based on an equilateral triangle.
 
-        Removes detector resolution function. 
+    C++ includes: FormFactorPrism3.h
 
-        """
-        return _libBornAgainCore.Instrument_removeDetectorResolution(self)
+    """
 
-    def setAnalyzerProperties(self, direction, efficiency, total_transmission):
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, base_edge, height):
         r"""
-        setAnalyzerProperties(Instrument self, kvector_t direction, double efficiency, double total_transmission)
-        void Instrument::setAnalyzerProperties(const kvector_t direction, double efficiency, double total_transmission)
+        __init__(FormFactorPrism3 self, double base_edge, double height) -> FormFactorPrism3
+        FormFactorPrism3::FormFactorPrism3(double base_edge, double height)
 
-        Sets the polarization analyzer characteristics of the detector. 
+        Constructor of a prism with an equilaterial triangle base.
 
-        """
-        return _libBornAgainCore.Instrument_setAnalyzerProperties(self, direction, efficiency, total_transmission)
+        Parameters:
+        -----------
 
-    def applyDetectorResolution(self, p_intensity_map):
-        r"""
-        applyDetectorResolution(Instrument self, IntensityData p_intensity_map)
-        void Instrument::applyDetectorResolution(OutputData< double > *p_intensity_map) const
+        base_edge: 
+        length of the base edge in nanometers
 
-        apply the detector resolution to the given intensity map 
+        height: 
+        height in nanometers 
 
         """
-        return _libBornAgainCore.Instrument_applyDetectorResolution(self, p_intensity_map)
+        _libBornAgainCore.FormFactorPrism3_swiginit(self, _libBornAgainCore.new_FormFactorPrism3(base_edge, height))
 
-    def createDetectorIntensity(self, elements):
+    def clone(self):
         r"""
-        createDetectorIntensity(Instrument self, std::vector< SimulationElement,std::allocator< SimulationElement > > const & elements) -> IntensityData
-        OutputData< double > * Instrument::createDetectorIntensity(const std::vector< SimulationElement > &elements) const
+        clone(FormFactorPrism3 self) -> FormFactorPrism3
+        FormFactorPrism3* FormFactorPrism3::clone() const override final
 
-        Returns new intensity map with detector resolution applied and axes in requested units. 
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.Instrument_createDetectorIntensity(self, elements)
+        return _libBornAgainCore.FormFactorPrism3_clone(self)
 
-    def initDetector(self):
+    def accept(self, visitor):
         r"""
-        initDetector(Instrument self)
-        void Instrument::initDetector()
+        accept(FormFactorPrism3 self, INodeVisitor visitor)
+        void FormFactorPrism3::accept(INodeVisitor *visitor) const override final
 
-        init detector with beam settings 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.Instrument_initDetector(self)
+        return _libBornAgainCore.FormFactorPrism3_accept(self, visitor)
 
-    def getChildren(self):
+    def getBaseEdge(self):
         r"""
-        getChildren(Instrument self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > Instrument::getChildren() const
-
-        Returns a vector of children (const). 
+        getBaseEdge(FormFactorPrism3 self) -> double
+        double FormFactorPrism3::getBaseEdge() const
 
         """
-        return _libBornAgainCore.Instrument_getChildren(self)
-
-# Register Instrument in _libBornAgainCore:
-_libBornAgainCore.Instrument_swigregister(Instrument)
+        return _libBornAgainCore.FormFactorPrism3_getBaseEdge(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorPrism3
 
+# Register FormFactorPrism3 in _libBornAgainCore:
+_libBornAgainCore.FormFactorPrism3_swigregister(FormFactorPrism3)
 
-def RelativeDifference(dat, ref):
+class FormFactorPrism6(FormFactorPolygonalPrism):
     r"""
-    RelativeDifference(SimulationResult dat, SimulationResult ref) -> double
-    double IntensityDataFunctions::RelativeDifference(const SimulationResult &dat, const SimulationResult &ref)
-
-    Returns sum of relative differences between each pair of elements: (a, b) -> 2*abs(a - b)/(a + b) ( and zero if a-b=0 )
-
-    Returns sum of relative differences between each pair of elements: (a, b) -> 2*abs(a - b)/(|a| + |b|) ( and zero if a=b=0 within epsilon ) 
 
-    """
-    return _libBornAgainCore.RelativeDifference(dat, ref)
 
-def checkRelativeDifference(dat, ref, threshold):
-    r"""
-    checkRelativeDifference(IntensityData dat, IntensityData ref, double const threshold) -> bool
-    bool IntensityDataFunctions::checkRelativeDifference(const OutputData< double > &dat, const OutputData< double > &ref, const double threshold)
+    A prism based on a regular hexagonal.
 
-    Returns true is relative difference is below threshold; prints informative output. 
+    C++ includes: FormFactorPrism6.h
 
     """
-    return _libBornAgainCore.checkRelativeDifference(dat, ref, threshold)
 
-def getRelativeDifference(*args):
-    r"""
-    getRelativeDifference(IntensityData dat, IntensityData ref) -> double
-    getRelativeDifference(IHistogram dat, IHistogram ref) -> double
-    double IntensityDataFunctions::getRelativeDifference(const IHistogram &dat, const IHistogram &ref)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    """
-    return _libBornAgainCore.getRelativeDifference(*args)
+    def __init__(self, base_edge, height):
+        r"""
+        __init__(FormFactorPrism6 self, double base_edge, double height) -> FormFactorPrism6
+        FormFactorPrism6::FormFactorPrism6(double base_edge, double height)
 
-def coordinateToBinf(*args):
-    r"""
-    coordinateToBinf(double coordinate, IAxis axis) -> double
-    coordinateToBinf(double & x, double & y, IntensityData data)
-    void IntensityDataFunctions::coordinateToBinf(double &x, double &y, const OutputData< double > &data)
+        Constructor of a prism with a regular hexagonal base.
 
-    Transforms x,y coordinate from  OutputData axes coordinates to bin-fraction-coordinates. 
+        Parameters:
+        -----------
 
-    """
-    return _libBornAgainCore.coordinateToBinf(*args)
+        base_edge: 
+        length of the hexagonal base in nanometers
 
-def coordinateFromBinf(*args):
-    r"""
-    coordinateFromBinf(double value, IAxis axis) -> double
-    coordinateFromBinf(double & x, double & y, IntensityData data)
-    void IntensityDataFunctions::coordinateFromBinf(double &x, double &y, const OutputData< double > &data)
+        height: 
+        height in nanometers 
 
-    Transforms x,y coordinate from bin-fraction-coordinates to  OutputData's axes coordinates. 
+        """
+        _libBornAgainCore.FormFactorPrism6_swiginit(self, _libBornAgainCore.new_FormFactorPrism6(base_edge, height))
 
-    """
-    return _libBornAgainCore.coordinateFromBinf(*args)
+    def clone(self):
+        r"""
+        clone(FormFactorPrism6 self) -> FormFactorPrism6
+        FormFactorPrism6* FormFactorPrism6::clone() const override final
 
-def create2DArrayfromOutputData(data):
-    r"""
-    create2DArrayfromOutputData(IntensityData data) -> vdouble2d_t
-    std::vector< std::vector< double > > IntensityDataFunctions::create2DArrayfromOutputData(const OutputData< double > &data)
+        Returns a clone of this  ISample object. 
 
-    Creates a vector of vectors of double (2D Array) from  OutputData. 
+        """
+        return _libBornAgainCore.FormFactorPrism6_clone(self)
 
-    """
-    return _libBornAgainCore.create2DArrayfromOutputData(data)
+    def accept(self, visitor):
+        r"""
+        accept(FormFactorPrism6 self, INodeVisitor visitor)
+        void FormFactorPrism6::accept(INodeVisitor *visitor) const override final
 
-def FT2DArray(signal):
-    r"""
-    FT2DArray(vdouble2d_t signal) -> vdouble2d_t
-    std::vector< std::vector< double > > IntensityDataFunctions::FT2DArray(const std::vector< std::vector< double >> &signal)
+        Calls the  INodeVisitor's visit method. 
 
-    Creates a Fourier Transform of a 2D Array (vector of vectors). 
+        """
+        return _libBornAgainCore.FormFactorPrism6_accept(self, visitor)
+
+    def getBaseEdge(self):
+        r"""
+        getBaseEdge(FormFactorPrism6 self) -> double
+        double FormFactorPrism6::getBaseEdge() const
 
-    """
-    return _libBornAgainCore.FT2DArray(signal)
+        """
+        return _libBornAgainCore.FormFactorPrism6_getBaseEdge(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorPrism6
 
-def ConvertData(*args):
-    r"""
-    ConvertData(Simulation simulation, IntensityData data, bool put_masked_areas_to_zero=True) -> SimulationResult
-    ConvertData(Simulation simulation, vdouble2d_t data, bool put_masked_areas_to_zero=True) -> SimulationResult
-    SimulationResult IntensityDataFunctions::ConvertData(const Simulation &simulation, const std::vector< std::vector< double >> &data, bool put_masked_areas_to_zero=true)
+# Register FormFactorPrism6 in _libBornAgainCore:
+_libBornAgainCore.FormFactorPrism6_swigregister(FormFactorPrism6)
 
-    """
-    return _libBornAgainCore.ConvertData(*args)
-class IntensityDataIOFactory(object):
+class FormFactorPyramid(FormFactorPolyhedron):
     r"""
 
 
-    Provides users with possibility to read and write IntensityData from/to files in different format. Type of the file will be deduced from file name. *.txt - ASCII file with 2D array [nrow][ncol], layout as in numpy. *.int - BornAgain internal ASCII format. *.tif - 32-bits tiff file. If file name ends woth "*.gz" or "*.bz2" the file will be zipped on the fly using appropriate algorithm.
-
-    Usage:
+    A frustum with a quadratic base.
 
-    C++ includes: IntensityDataIOFactory.h
+    C++ includes: FormFactorPyramid.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    @staticmethod
-    def readOutputData(file_name):
-        r"""readOutputData(std::string const & file_name) -> IntensityData"""
-        return _libBornAgainCore.IntensityDataIOFactory_readOutputData(file_name)
+    def __init__(self, base_edge, height, alpha):
+        r"""
+        __init__(FormFactorPyramid self, double base_edge, double height, double alpha) -> FormFactorPyramid
+        FormFactorPyramid::FormFactorPyramid(double base_edge, double height, double alpha)
 
-    @staticmethod
-    def readReflectometryData(file_name):
-        r"""readReflectometryData(std::string const & file_name) -> IntensityData"""
-        return _libBornAgainCore.IntensityDataIOFactory_readReflectometryData(file_name)
+        Constructor of a truncated pyramid with a square base
 
-    @staticmethod
-    def readIntensityData(file_name):
-        r"""readIntensityData(std::string const & file_name) -> IHistogram"""
-        return _libBornAgainCore.IntensityDataIOFactory_readIntensityData(file_name)
+        Parameters:
+        -----------
 
-    @staticmethod
-    def writeOutputData(data, file_name):
-        r"""writeOutputData(IntensityData data, std::string const & file_name)"""
-        return _libBornAgainCore.IntensityDataIOFactory_writeOutputData(data, file_name)
+        base_edge: 
+        length of the square base in nanometers
 
-    @staticmethod
-    def writeIntensityData(histogram, file_name):
-        r"""writeIntensityData(IHistogram histogram, std::string const & file_name)"""
-        return _libBornAgainCore.IntensityDataIOFactory_writeIntensityData(histogram, file_name)
+        height: 
+        height of the pyramid in nanometers
 
-    @staticmethod
-    def writeSimulationResult(result, file_name):
-        r"""writeSimulationResult(SimulationResult result, std::string const & file_name)"""
-        return _libBornAgainCore.IntensityDataIOFactory_writeSimulationResult(result, file_name)
+        alpha: 
+        dihedral angle between the base and a side face in radians 
 
-    def __init__(self):
+        """
+        _libBornAgainCore.FormFactorPyramid_swiginit(self, _libBornAgainCore.new_FormFactorPyramid(base_edge, height, alpha))
+
+    def clone(self):
         r"""
-        __init__(IntensityDataIOFactory self) -> IntensityDataIOFactory
+        clone(FormFactorPyramid self) -> FormFactorPyramid
+        FormFactorPyramid* FormFactorPyramid::clone() const override final
 
+        Returns a clone of this  ISample object. 
 
-        Provides users with possibility to read and write IntensityData from/to files in different format. Type of the file will be deduced from file name. *.txt - ASCII file with 2D array [nrow][ncol], layout as in numpy. *.int - BornAgain internal ASCII format. *.tif - 32-bits tiff file. If file name ends woth "*.gz" or "*.bz2" the file will be zipped on the fly using appropriate algorithm.
+        """
+        return _libBornAgainCore.FormFactorPyramid_clone(self)
 
-        Usage:
+    def accept(self, visitor):
+        r"""
+        accept(FormFactorPyramid self, INodeVisitor visitor)
+        void FormFactorPyramid::accept(INodeVisitor *visitor) const override final
 
-        C++ includes: IntensityDataIOFactory.h
+        Calls the  INodeVisitor's visit method. 
 
         """
-        _libBornAgainCore.IntensityDataIOFactory_swiginit(self, _libBornAgainCore.new_IntensityDataIOFactory())
-    __swig_destroy__ = _libBornAgainCore.delete_IntensityDataIOFactory
+        return _libBornAgainCore.FormFactorPyramid_accept(self, visitor)
 
-# Register IntensityDataIOFactory in _libBornAgainCore:
-_libBornAgainCore.IntensityDataIOFactory_swigregister(IntensityDataIOFactory)
+    def getHeight(self):
+        r"""
+        getHeight(FormFactorPyramid self) -> double
+        double FormFactorPyramid::getHeight() const
 
-def IntensityDataIOFactory_readOutputData(file_name):
-    r"""IntensityDataIOFactory_readOutputData(std::string const & file_name) -> IntensityData"""
-    return _libBornAgainCore.IntensityDataIOFactory_readOutputData(file_name)
+        """
+        return _libBornAgainCore.FormFactorPyramid_getHeight(self)
 
-def IntensityDataIOFactory_readReflectometryData(file_name):
-    r"""IntensityDataIOFactory_readReflectometryData(std::string const & file_name) -> IntensityData"""
-    return _libBornAgainCore.IntensityDataIOFactory_readReflectometryData(file_name)
+    def getBaseEdge(self):
+        r"""
+        getBaseEdge(FormFactorPyramid self) -> double
+        double FormFactorPyramid::getBaseEdge() const
 
-def IntensityDataIOFactory_readIntensityData(file_name):
-    r"""IntensityDataIOFactory_readIntensityData(std::string const & file_name) -> IHistogram"""
-    return _libBornAgainCore.IntensityDataIOFactory_readIntensityData(file_name)
+        """
+        return _libBornAgainCore.FormFactorPyramid_getBaseEdge(self)
 
-def IntensityDataIOFactory_writeOutputData(data, file_name):
-    r"""IntensityDataIOFactory_writeOutputData(IntensityData data, std::string const & file_name)"""
-    return _libBornAgainCore.IntensityDataIOFactory_writeOutputData(data, file_name)
+    def getAlpha(self):
+        r"""
+        getAlpha(FormFactorPyramid self) -> double
+        double FormFactorPyramid::getAlpha() const
 
-def IntensityDataIOFactory_writeIntensityData(histogram, file_name):
-    r"""IntensityDataIOFactory_writeIntensityData(IHistogram histogram, std::string const & file_name)"""
-    return _libBornAgainCore.IntensityDataIOFactory_writeIntensityData(histogram, file_name)
+        """
+        return _libBornAgainCore.FormFactorPyramid_getAlpha(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorPyramid
 
-def IntensityDataIOFactory_writeSimulationResult(result, file_name):
-    r"""IntensityDataIOFactory_writeSimulationResult(SimulationResult result, std::string const & file_name)"""
-    return _libBornAgainCore.IntensityDataIOFactory_writeSimulationResult(result, file_name)
+# Register FormFactorPyramid in _libBornAgainCore:
+_libBornAgainCore.FormFactorPyramid_swigregister(FormFactorPyramid)
 
-class InterferenceFunction1DLattice(IInterferenceFunction):
+class FormFactorRipple1Box(ProfileRipple1):
     r"""
 
 
-    Interference function of a 1D lattice.
+    The form factor for a cosine ripple, with box profile in elongation direction.
 
-    C++ includes: InterferenceFunction1DLattice.h
+    C++ includes: FormFactorRipple1.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, length, xi):
+    def __init__(self, length, width, height):
         r"""
-        __init__(InterferenceFunction1DLattice self, double length, double xi) -> InterferenceFunction1DLattice
-        InterferenceFunction1DLattice::InterferenceFunction1DLattice(double length, double xi)
-
-        Constructor of interference function of one-dimensional lattice.
-
-        Parameters:
-        -----------
-
-        length: 
-        lattice constant in nanometers
-
-        xi: 
-        rotation of lattice with respect to x-axis in radians 
+        __init__(FormFactorRipple1Box self, double length, double width, double height) -> FormFactorRipple1Box
+        FormFactorRipple1Box::FormFactorRipple1Box(double length, double width, double height)
 
         """
-        _libBornAgainCore.InterferenceFunction1DLattice_swiginit(self, _libBornAgainCore.new_InterferenceFunction1DLattice(length, xi))
-    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunction1DLattice
+        _libBornAgainCore.FormFactorRipple1Box_swiginit(self, _libBornAgainCore.new_FormFactorRipple1Box(length, width, height))
 
     def clone(self):
         r"""
-        clone(InterferenceFunction1DLattice self) -> InterferenceFunction1DLattice
-        InterferenceFunction1DLattice * InterferenceFunction1DLattice::clone() const override final
+        clone(FormFactorRipple1Box self) -> FormFactorRipple1Box
+        FormFactorRipple1Box * FormFactorRipple1Box::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunction1DLattice_clone(self)
+        return _libBornAgainCore.FormFactorRipple1Box_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(InterferenceFunction1DLattice self, INodeVisitor visitor)
-        void InterferenceFunction1DLattice::accept(INodeVisitor *visitor) const override final
+        accept(FormFactorRipple1Box self, INodeVisitor visitor)
+        void FormFactorRipple1Box::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.InterferenceFunction1DLattice_accept(self, visitor)
+        return _libBornAgainCore.FormFactorRipple1Box_accept(self, visitor)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorRipple1Box
 
-    def setDecayFunction(self, decay):
-        r"""
-        setDecayFunction(InterferenceFunction1DLattice self, IFTDecayFunction1D decay)
-        void InterferenceFunction1DLattice::setDecayFunction(const IFTDecayFunction1D &decay)
+# Register FormFactorRipple1Box in _libBornAgainCore:
+_libBornAgainCore.FormFactorRipple1Box_swigregister(FormFactorRipple1Box)
 
-        Sets one-dimensional decay function.
+class FormFactorRipple1Gauss(ProfileRipple1):
+    r"""
 
-        Parameters:
-        -----------
 
-        decay: 
-        one-dimensional decay function in reciprocal space 
+    The form factor for a cosine ripple, with Gaussian profile in elongation direction.
+
+    C++ includes: FormFactorRipple1.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, length, width, height):
+        r"""
+        __init__(FormFactorRipple1Gauss self, double length, double width, double height) -> FormFactorRipple1Gauss
+        FormFactorRipple1Gauss::FormFactorRipple1Gauss(double length, double width, double height)
 
         """
-        return _libBornAgainCore.InterferenceFunction1DLattice_setDecayFunction(self, decay)
+        _libBornAgainCore.FormFactorRipple1Gauss_swiginit(self, _libBornAgainCore.new_FormFactorRipple1Gauss(length, width, height))
 
-    def getLatticeParameters(self):
+    def clone(self):
         r"""
-        getLatticeParameters(InterferenceFunction1DLattice self) -> Lattice1DParameters
-        Lattice1DParameters InterferenceFunction1DLattice::getLatticeParameters() const
+        clone(FormFactorRipple1Gauss self) -> FormFactorRipple1Gauss
+        FormFactorRipple1Gauss * FormFactorRipple1Gauss::clone() const override final
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunction1DLattice_getLatticeParameters(self)
+        return _libBornAgainCore.FormFactorRipple1Gauss_clone(self)
 
-    def getChildren(self):
+    def accept(self, visitor):
         r"""
-        getChildren(InterferenceFunction1DLattice self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > InterferenceFunction1DLattice::getChildren() const override final
+        accept(FormFactorRipple1Gauss self, INodeVisitor visitor)
+        void FormFactorRipple1Gauss::accept(INodeVisitor *visitor) const override final
 
-        Returns a vector of children (const). 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.InterferenceFunction1DLattice_getChildren(self)
+        return _libBornAgainCore.FormFactorRipple1Gauss_accept(self, visitor)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorRipple1Gauss
 
-# Register InterferenceFunction1DLattice in _libBornAgainCore:
-_libBornAgainCore.InterferenceFunction1DLattice_swigregister(InterferenceFunction1DLattice)
+# Register FormFactorRipple1Gauss in _libBornAgainCore:
+_libBornAgainCore.FormFactorRipple1Gauss_swigregister(FormFactorRipple1Gauss)
 
-class InterferenceFunction2DLattice(IInterferenceFunction):
+class FormFactorRipple1Lorentz(ProfileRipple1):
     r"""
 
 
-    Interference function of a 2D lattice.
+    The form factor for a cosine ripple, with Lorentz form factor in elongation direction.
 
-    C++ includes: InterferenceFunction2DLattice.h
+    C++ includes: FormFactorRipple1.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self, length, width, height):
         r"""
-        __init__(InterferenceFunction2DLattice self, Lattice2D lattice) -> InterferenceFunction2DLattice
-        __init__(InterferenceFunction2DLattice self, double length_1, double length_2, double alpha, double xi=0.0) -> InterferenceFunction2DLattice
-        InterferenceFunction2DLattice::InterferenceFunction2DLattice(double length_1, double length_2, double alpha, double xi=0.0)
+        __init__(FormFactorRipple1Lorentz self, double length, double width, double height) -> FormFactorRipple1Lorentz
+        FormFactorRipple1Lorentz::FormFactorRipple1Lorentz(double length, double width, double height)
+
+        """
+        _libBornAgainCore.FormFactorRipple1Lorentz_swiginit(self, _libBornAgainCore.new_FormFactorRipple1Lorentz(length, width, height))
+
+    def clone(self):
+        r"""
+        clone(FormFactorRipple1Lorentz self) -> FormFactorRipple1Lorentz
+        FormFactorRipple1Lorentz * FormFactorRipple1Lorentz::clone() const override final
+
+        Returns a clone of this  ISample object. 
+
+        """
+        return _libBornAgainCore.FormFactorRipple1Lorentz_clone(self)
+
+    def accept(self, visitor):
+        r"""
+        accept(FormFactorRipple1Lorentz self, INodeVisitor visitor)
+        void FormFactorRipple1Lorentz::accept(INodeVisitor *visitor) const override final
+
+        Calls the  INodeVisitor's visit method. 
+
+        """
+        return _libBornAgainCore.FormFactorRipple1Lorentz_accept(self, visitor)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorRipple1Lorentz
+
+# Register FormFactorRipple1Lorentz in _libBornAgainCore:
+_libBornAgainCore.FormFactorRipple1Lorentz_swigregister(FormFactorRipple1Lorentz)
 
-        Constructor of two-dimensional interference function.
+class FormFactorRipple2Box(ProfileRipple2):
+    r"""
 
-        Parameters:
-        -----------
 
-        length_1: 
-        length of the first basis vector in nanometers
+    The form factor for a cosine ripple, with box profile in elongation direction.
 
-        length_2: 
-        length of the second basis vector in nanometers
+    C++ includes: FormFactorRipple2.h
 
-        alpha: 
-        angle between the basis vectors in radians
+    """
 
-        xi: 
-        rotation of the lattice with respect to the x-axis (beam direction) in radians 
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, length, width, height, asymmetry):
+        r"""
+        __init__(FormFactorRipple2Box self, double length, double width, double height, double asymmetry) -> FormFactorRipple2Box
+        FormFactorRipple2Box::FormFactorRipple2Box(double length, double width, double height, double asymmetry)
 
         """
-        _libBornAgainCore.InterferenceFunction2DLattice_swiginit(self, _libBornAgainCore.new_InterferenceFunction2DLattice(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunction2DLattice
+        _libBornAgainCore.FormFactorRipple2Box_swiginit(self, _libBornAgainCore.new_FormFactorRipple2Box(length, width, height, asymmetry))
 
     def clone(self):
         r"""
-        clone(InterferenceFunction2DLattice self) -> InterferenceFunction2DLattice
-        InterferenceFunction2DLattice * InterferenceFunction2DLattice::clone() const override final
+        clone(FormFactorRipple2Box self) -> FormFactorRipple2Box
+        FormFactorRipple2Box * FormFactorRipple2Box::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DLattice_clone(self)
+        return _libBornAgainCore.FormFactorRipple2Box_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(InterferenceFunction2DLattice self, INodeVisitor visitor)
-        void InterferenceFunction2DLattice::accept(INodeVisitor *visitor) const override final
+        accept(FormFactorRipple2Box self, INodeVisitor visitor)
+        void FormFactorRipple2Box::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DLattice_accept(self, visitor)
+        return _libBornAgainCore.FormFactorRipple2Box_accept(self, visitor)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorRipple2Box
 
-    @staticmethod
-    def createSquare(lattice_length, xi=0.0):
-        r"""createSquare(double lattice_length, double xi=0.0) -> InterferenceFunction2DLattice"""
-        return _libBornAgainCore.InterferenceFunction2DLattice_createSquare(lattice_length, xi)
+# Register FormFactorRipple2Box in _libBornAgainCore:
+_libBornAgainCore.FormFactorRipple2Box_swigregister(FormFactorRipple2Box)
 
-    @staticmethod
-    def createHexagonal(lattice_length, xi=0.0):
-        r"""createHexagonal(double lattice_length, double xi=0.0) -> InterferenceFunction2DLattice"""
-        return _libBornAgainCore.InterferenceFunction2DLattice_createHexagonal(lattice_length, xi)
+class FormFactorRipple2Gauss(ProfileRipple2):
+    r"""
 
-    def setDecayFunction(self, decay):
-        r"""
-        setDecayFunction(InterferenceFunction2DLattice self, IFTDecayFunction2D decay)
-        void InterferenceFunction2DLattice::setDecayFunction(const IFTDecayFunction2D &decay)
 
-        Sets two-dimensional decay function.
+    The form factor for a cosine ripple, with Gaussian profile in elongation direction.
 
-        Parameters:
-        -----------
+    C++ includes: FormFactorRipple2.h
 
-        decay: 
-        two-dimensional decay function in reciprocal space 
+    """
 
-        """
-        return _libBornAgainCore.InterferenceFunction2DLattice_setDecayFunction(self, decay)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    def setIntegrationOverXi(self, integrate_xi):
+    def __init__(self, length, width, height, asymmetry):
         r"""
-        setIntegrationOverXi(InterferenceFunction2DLattice self, bool integrate_xi)
-        void InterferenceFunction2DLattice::setIntegrationOverXi(bool integrate_xi)
+        __init__(FormFactorRipple2Gauss self, double length, double width, double height, double asymmetry) -> FormFactorRipple2Gauss
+        FormFactorRipple2Gauss::FormFactorRipple2Gauss(double length, double width, double height, double asymmetry)
 
         """
-        return _libBornAgainCore.InterferenceFunction2DLattice_setIntegrationOverXi(self, integrate_xi)
+        _libBornAgainCore.FormFactorRipple2Gauss_swiginit(self, _libBornAgainCore.new_FormFactorRipple2Gauss(length, width, height, asymmetry))
 
-    def integrationOverXi(self):
+    def clone(self):
         r"""
-        integrationOverXi(InterferenceFunction2DLattice self) -> bool
-        bool InterferenceFunction2DLattice::integrationOverXi() const
+        clone(FormFactorRipple2Gauss self) -> FormFactorRipple2Gauss
+        FormFactorRipple2Gauss * FormFactorRipple2Gauss::clone() const override final
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DLattice_integrationOverXi(self)
+        return _libBornAgainCore.FormFactorRipple2Gauss_clone(self)
 
-    def lattice(self):
+    def accept(self, visitor):
         r"""
-        lattice(InterferenceFunction2DLattice self) -> Lattice2D
-        const Lattice2D & InterferenceFunction2DLattice::lattice() const
+        accept(FormFactorRipple2Gauss self, INodeVisitor visitor)
+        void FormFactorRipple2Gauss::accept(INodeVisitor *visitor) const override final
+
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DLattice_lattice(self)
+        return _libBornAgainCore.FormFactorRipple2Gauss_accept(self, visitor)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorRipple2Gauss
 
-    def getParticleDensity(self):
-        r"""
-        getParticleDensity(InterferenceFunction2DLattice self) -> double
-        double InterferenceFunction2DLattice::getParticleDensity() const override final
+# Register FormFactorRipple2Gauss in _libBornAgainCore:
+_libBornAgainCore.FormFactorRipple2Gauss_swigregister(FormFactorRipple2Gauss)
 
-        Returns the particle density associated with this 2d lattice. 
+class FormFactorRipple2Lorentz(ProfileRipple2):
+    r"""
 
-        """
-        return _libBornAgainCore.InterferenceFunction2DLattice_getParticleDensity(self)
 
-    def getChildren(self):
-        r"""
-        getChildren(InterferenceFunction2DLattice self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > InterferenceFunction2DLattice::getChildren() const override final
+    The form factor for a cosine ripple, with Lorentz form factor in elongation direction.
 
-        Returns a vector of children (const). 
+    C++ includes: FormFactorRipple2.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, length, width, height, asymmetry):
+        r"""
+        __init__(FormFactorRipple2Lorentz self, double length, double width, double height, double asymmetry) -> FormFactorRipple2Lorentz
+        FormFactorRipple2Lorentz::FormFactorRipple2Lorentz(double length, double width, double height, double asymmetry)
 
         """
-        return _libBornAgainCore.InterferenceFunction2DLattice_getChildren(self)
+        _libBornAgainCore.FormFactorRipple2Lorentz_swiginit(self, _libBornAgainCore.new_FormFactorRipple2Lorentz(length, width, height, asymmetry))
 
-    def onChange(self):
+    def clone(self):
         r"""
-        onChange(InterferenceFunction2DLattice self)
-        void InterferenceFunction2DLattice::onChange() override final
+        clone(FormFactorRipple2Lorentz self) -> FormFactorRipple2Lorentz
+        FormFactorRipple2Lorentz * FormFactorRipple2Lorentz::clone() const override final
 
-        Action to be taken in inherited class when a parameter has changed. 
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DLattice_onChange(self)
+        return _libBornAgainCore.FormFactorRipple2Lorentz_clone(self)
 
-# Register InterferenceFunction2DLattice in _libBornAgainCore:
-_libBornAgainCore.InterferenceFunction2DLattice_swigregister(InterferenceFunction2DLattice)
+    def accept(self, visitor):
+        r"""
+        accept(FormFactorRipple2Lorentz self, INodeVisitor visitor)
+        void FormFactorRipple2Lorentz::accept(INodeVisitor *visitor) const override final
 
-def InterferenceFunction2DLattice_createSquare(lattice_length, xi=0.0):
-    r"""InterferenceFunction2DLattice_createSquare(double lattice_length, double xi=0.0) -> InterferenceFunction2DLattice"""
-    return _libBornAgainCore.InterferenceFunction2DLattice_createSquare(lattice_length, xi)
+        Calls the  INodeVisitor's visit method. 
 
-def InterferenceFunction2DLattice_createHexagonal(lattice_length, xi=0.0):
-    r"""InterferenceFunction2DLattice_createHexagonal(double lattice_length, double xi=0.0) -> InterferenceFunction2DLattice"""
-    return _libBornAgainCore.InterferenceFunction2DLattice_createHexagonal(lattice_length, xi)
+        """
+        return _libBornAgainCore.FormFactorRipple2Lorentz_accept(self, visitor)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorRipple2Lorentz
 
-class InterferenceFunction2DParaCrystal(IInterferenceFunction):
+# Register FormFactorRipple2Lorentz in _libBornAgainCore:
+_libBornAgainCore.FormFactorRipple2Lorentz_swigregister(FormFactorRipple2Lorentz)
+
+class FormFactorTetrahedron(FormFactorPolyhedron):
     r"""
 
 
-    Interference function of a 2D paracrystal.
+    A frustum with equilateral trigonal base.
 
-    C++ includes: InterferenceFunction2DParaCrystal.h
+    C++ includes: FormFactorTetrahedron.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self, base_edge, height, alpha):
         r"""
-        __init__(InterferenceFunction2DParaCrystal self, Lattice2D lattice, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal
-        __init__(InterferenceFunction2DParaCrystal self, double length_1, double length_2, double alpha, double xi=0.0, double damping_length=0.0) -> InterferenceFunction2DParaCrystal
-        InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(double length_1, double length_2, double alpha, double xi=0.0, double damping_length=0.0)
+        __init__(FormFactorTetrahedron self, double base_edge, double height, double alpha) -> FormFactorTetrahedron
+        FormFactorTetrahedron::FormFactorTetrahedron(double base_edge, double height, double alpha)
 
-        Constructor of interference function of two-dimensional paracrystal.
+        Constructor of a truncated tethrahedron.
 
         Parameters:
         -----------
 
-        length_1: 
-        length of first lattice vector in nanometers
+        base_edge: 
+        length of one edge of the equilateral triangular base in nanometers
 
-        length_2: 
-        length of second lattice vector in nanometers
+        height: 
+        height of the tetrahedron in nanometers
 
         alpha: 
-        angle between lattice vectors in radians
-
-        xi: 
-        rotation of lattice with respect to x-axis (beam direction) in radians
-
-        damping_length: 
-        the damping (coherence) length of the paracrystal in nanometers 
+        dihedral angle in radians between base and facet 
 
         """
-        _libBornAgainCore.InterferenceFunction2DParaCrystal_swiginit(self, _libBornAgainCore.new_InterferenceFunction2DParaCrystal(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunction2DParaCrystal
+        _libBornAgainCore.FormFactorTetrahedron_swiginit(self, _libBornAgainCore.new_FormFactorTetrahedron(base_edge, height, alpha))
 
     def clone(self):
         r"""
-        clone(InterferenceFunction2DParaCrystal self) -> InterferenceFunction2DParaCrystal
-        InterferenceFunction2DParaCrystal * InterferenceFunction2DParaCrystal::clone() const override final
+        clone(FormFactorTetrahedron self) -> FormFactorTetrahedron
+        FormFactorTetrahedron* FormFactorTetrahedron::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_clone(self)
+        return _libBornAgainCore.FormFactorTetrahedron_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(InterferenceFunction2DParaCrystal self, INodeVisitor visitor)
-        void InterferenceFunction2DParaCrystal::accept(INodeVisitor *visitor) const override final
+        accept(FormFactorTetrahedron self, INodeVisitor visitor)
+        void FormFactorTetrahedron::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_accept(self, visitor)
+        return _libBornAgainCore.FormFactorTetrahedron_accept(self, visitor)
 
-    @staticmethod
-    def createSquare(lattice_length, damping_length=0.0, domain_size_1=0.0, domain_size_2=0.0):
-        r"""createSquare(double lattice_length, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal"""
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_createSquare(lattice_length, damping_length, domain_size_1, domain_size_2)
+    def getBaseEdge(self):
+        r"""
+        getBaseEdge(FormFactorTetrahedron self) -> double
+        double FormFactorTetrahedron::getBaseEdge() const
 
-    @staticmethod
-    def createHexagonal(lattice_length, damping_length=0.0, domain_size_1=0.0, domain_size_2=0.0):
-        r"""createHexagonal(double lattice_length, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal"""
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_createHexagonal(lattice_length, damping_length, domain_size_1, domain_size_2)
+        """
+        return _libBornAgainCore.FormFactorTetrahedron_getBaseEdge(self)
 
-    def setDomainSizes(self, size_1, size_2):
+    def getHeight(self):
         r"""
-        setDomainSizes(InterferenceFunction2DParaCrystal self, double size_1, double size_2)
-        void InterferenceFunction2DParaCrystal::setDomainSizes(double size_1, double size_2)
+        getHeight(FormFactorTetrahedron self) -> double
+        double FormFactorTetrahedron::getHeight() const
 
-        Sets the sizes of coherence domains.
+        """
+        return _libBornAgainCore.FormFactorTetrahedron_getHeight(self)
+
+    def getAlpha(self):
+        r"""
+        getAlpha(FormFactorTetrahedron self) -> double
+        double FormFactorTetrahedron::getAlpha() const
+
+        """
+        return _libBornAgainCore.FormFactorTetrahedron_getAlpha(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorTetrahedron
+
+# Register FormFactorTetrahedron in _libBornAgainCore:
+_libBornAgainCore.FormFactorTetrahedron_swigregister(FormFactorTetrahedron)
+
+class FormFactorTruncatedCube(FormFactorPolyhedron):
+    r"""
+
+
+    A cube, with tetrahedral truncation of all corners
+
+    C++ includes: FormFactorTruncatedCube.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, length, removed_length):
+        r"""
+        __init__(FormFactorTruncatedCube self, double length, double removed_length) -> FormFactorTruncatedCube
+        FormFactorTruncatedCube::FormFactorTruncatedCube(double length, double removed_length)
+
+        Constructor of a truncated cube.
 
         Parameters:
         -----------
 
-        size_1: 
-        coherence domain size along the first basis vector in nanometers
+        length: 
+        length of the full cube's edge in nanometers
 
-        size_2: 
-        coherence domain size along the second basis vector in nanometers 
+        removed_length: 
+        removed length from each edge of the cube in nanometers 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_setDomainSizes(self, size_1, size_2)
+        _libBornAgainCore.FormFactorTruncatedCube_swiginit(self, _libBornAgainCore.new_FormFactorTruncatedCube(length, removed_length))
 
-    def setProbabilityDistributions(self, pdf_1, pdf_2):
+    def clone(self):
         r"""
-        setProbabilityDistributions(InterferenceFunction2DParaCrystal self, IFTDistribution2D pdf_1, IFTDistribution2D pdf_2)
-        void InterferenceFunction2DParaCrystal::setProbabilityDistributions(const IFTDistribution2D &pdf_1, const IFTDistribution2D &pdf_2)
-
-        Sets the probability distributions (Fourier transformed) for the two lattice directions.
-
-        Parameters:
-        -----------
-
-        pdf_1: 
-        probability distribution in first lattice direction
+        clone(FormFactorTruncatedCube self) -> FormFactorTruncatedCube
+        FormFactorTruncatedCube* FormFactorTruncatedCube::clone() const override final
 
-        pdf_2: 
-        probability distribution in second lattice direction 
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_setProbabilityDistributions(self, pdf_1, pdf_2)
+        return _libBornAgainCore.FormFactorTruncatedCube_clone(self)
 
-    def setDampingLength(self, damping_length):
+    def accept(self, visitor):
         r"""
-        setDampingLength(InterferenceFunction2DParaCrystal self, double damping_length)
-        void InterferenceFunction2DParaCrystal::setDampingLength(double damping_length)
+        accept(FormFactorTruncatedCube self, INodeVisitor visitor)
+        void FormFactorTruncatedCube::accept(INodeVisitor *visitor) const override final
 
-        Sets the damping length.
+        Calls the  INodeVisitor's visit method. 
 
-        Parameters:
-        -----------
+        """
+        return _libBornAgainCore.FormFactorTruncatedCube_accept(self, visitor)
 
-        damping_length: 
-        the damping (coherence) length of the paracrystal in nanometers 
+    def getLength(self):
+        r"""
+        getLength(FormFactorTruncatedCube self) -> double
+        double FormFactorTruncatedCube::getLength() const
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_setDampingLength(self, damping_length)
+        return _libBornAgainCore.FormFactorTruncatedCube_getLength(self)
 
-    def domainSizes(self):
+    def getRemovedLength(self):
         r"""
-        domainSizes(InterferenceFunction2DParaCrystal self) -> vdouble1d_t
-        std::vector< double > InterferenceFunction2DParaCrystal::domainSizes() const
+        getRemovedLength(FormFactorTruncatedCube self) -> double
+        double FormFactorTruncatedCube::getRemovedLength() const
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_domainSizes(self)
+        return _libBornAgainCore.FormFactorTruncatedCube_getRemovedLength(self)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorTruncatedCube
 
-    def setIntegrationOverXi(self, integrate_xi):
+# Register FormFactorTruncatedCube in _libBornAgainCore:
+_libBornAgainCore.FormFactorTruncatedCube_swigregister(FormFactorTruncatedCube)
+
+class FormFactorTruncatedSphere(IFormFactorBorn):
+    r"""
+
+
+    A truncated Sphere.
+
+    C++ includes: FormFactorTruncatedSphere.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, radius, height, dh=0.0):
         r"""
-        setIntegrationOverXi(InterferenceFunction2DParaCrystal self, bool integrate_xi)
-        void InterferenceFunction2DParaCrystal::setIntegrationOverXi(bool integrate_xi)
+        __init__(FormFactorTruncatedSphere self, double radius, double height, double dh=0.0) -> FormFactorTruncatedSphere
+        FormFactorTruncatedSphere::FormFactorTruncatedSphere(double radius, double height, double dh=0.0)
 
-        Enables/disables averaging over the lattice rotation angle.
+        Constructor of a spherical dome.
 
         Parameters:
         -----------
 
-        integrate_xi: 
-        integration flag 
+        radius: 
+        radius of the truncated sphere in nanometers
 
-        """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_setIntegrationOverXi(self, integrate_xi)
+        height: 
+        height of the truncated sphere in nanometers
 
-    def integrationOverXi(self):
-        r"""
-        integrationOverXi(InterferenceFunction2DParaCrystal self) -> bool
-        bool InterferenceFunction2DParaCrystal::integrationOverXi() const
+        dh: 
+        length of cup truncated from the top 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_integrationOverXi(self)
+        _libBornAgainCore.FormFactorTruncatedSphere_swiginit(self, _libBornAgainCore.new_FormFactorTruncatedSphere(radius, height, dh))
 
-    def dampingLength(self):
+    def clone(self):
         r"""
-        dampingLength(InterferenceFunction2DParaCrystal self) -> double
-        double InterferenceFunction2DParaCrystal::dampingLength() const
+        clone(FormFactorTruncatedSphere self) -> FormFactorTruncatedSphere
+        FormFactorTruncatedSphere* FormFactorTruncatedSphere::clone() const override final
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_dampingLength(self)
+        return _libBornAgainCore.FormFactorTruncatedSphere_clone(self)
 
-    def lattice(self):
+    def accept(self, visitor):
         r"""
-        lattice(InterferenceFunction2DParaCrystal self) -> Lattice2D
-        const Lattice2D & InterferenceFunction2DParaCrystal::lattice() const
+        accept(FormFactorTruncatedSphere self, INodeVisitor visitor)
+        void FormFactorTruncatedSphere::accept(INodeVisitor *visitor) const override final
+
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_lattice(self)
+        return _libBornAgainCore.FormFactorTruncatedSphere_accept(self, visitor)
 
-    def getParticleDensity(self):
+    def getHeight(self):
         r"""
-        getParticleDensity(InterferenceFunction2DParaCrystal self) -> double
-        double InterferenceFunction2DParaCrystal::getParticleDensity() const override final
-
-        If defined by this interference function's parameters, returns the particle density (per area). Otherwise, returns zero or a user-defined value 
+        getHeight(FormFactorTruncatedSphere self) -> double
+        double FormFactorTruncatedSphere::getHeight() const
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_getParticleDensity(self)
+        return _libBornAgainCore.FormFactorTruncatedSphere_getHeight(self)
 
-    def getChildren(self):
+    def getRadius(self):
         r"""
-        getChildren(InterferenceFunction2DParaCrystal self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > InterferenceFunction2DParaCrystal::getChildren() const override final
-
-        Returns a vector of children (const). 
+        getRadius(FormFactorTruncatedSphere self) -> double
+        double FormFactorTruncatedSphere::getRadius() const
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_getChildren(self)
+        return _libBornAgainCore.FormFactorTruncatedSphere_getRadius(self)
 
-    def pdf1(self):
+    def getRemovedTop(self):
         r"""
-        pdf1(InterferenceFunction2DParaCrystal self) -> IFTDistribution2D
-        const IFTDistribution2D* InterferenceFunction2DParaCrystal::pdf1() const
+        getRemovedTop(FormFactorTruncatedSphere self) -> double
+        double FormFactorTruncatedSphere::getRemovedTop() const
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_pdf1(self)
+        return _libBornAgainCore.FormFactorTruncatedSphere_getRemovedTop(self)
 
-    def pdf2(self):
+    def radialExtension(self):
         r"""
-        pdf2(InterferenceFunction2DParaCrystal self) -> IFTDistribution2D
-        const IFTDistribution2D* InterferenceFunction2DParaCrystal::pdf2() const
+        radialExtension(FormFactorTruncatedSphere self) -> double
+        double FormFactorTruncatedSphere::radialExtension() const override final
+
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DParaCrystal_pdf2(self)
+        return _libBornAgainCore.FormFactorTruncatedSphere_radialExtension(self)
 
-# Register InterferenceFunction2DParaCrystal in _libBornAgainCore:
-_libBornAgainCore.InterferenceFunction2DParaCrystal_swigregister(InterferenceFunction2DParaCrystal)
+    def evaluate_for_q(self, q):
+        r"""
+        evaluate_for_q(FormFactorTruncatedSphere self, cvector_t q) -> complex_t
+        complex_t FormFactorTruncatedSphere::evaluate_for_q(cvector_t q) const override final
 
-def InterferenceFunction2DParaCrystal_createSquare(lattice_length, damping_length=0.0, domain_size_1=0.0, domain_size_2=0.0):
-    r"""InterferenceFunction2DParaCrystal_createSquare(double lattice_length, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal"""
-    return _libBornAgainCore.InterferenceFunction2DParaCrystal_createSquare(lattice_length, damping_length, domain_size_1, domain_size_2)
+        Complex form factor. 
 
-def InterferenceFunction2DParaCrystal_createHexagonal(lattice_length, damping_length=0.0, domain_size_1=0.0, domain_size_2=0.0):
-    r"""InterferenceFunction2DParaCrystal_createHexagonal(double lattice_length, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal"""
-    return _libBornAgainCore.InterferenceFunction2DParaCrystal_createHexagonal(lattice_length, damping_length, domain_size_1, domain_size_2)
+        """
+        return _libBornAgainCore.FormFactorTruncatedSphere_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorTruncatedSphere
 
-class InterferenceFunction2DSuperLattice(IInterferenceFunction):
+# Register FormFactorTruncatedSphere in _libBornAgainCore:
+_libBornAgainCore.FormFactorTruncatedSphere_swigregister(FormFactorTruncatedSphere)
+
+class FormFactorTruncatedSpheroid(IFormFactorBorn):
     r"""
 
 
-    Interference function of a 2D superlattice with a configurable interference function for each lattice site.
+    A truncated spheroid. An ellipsoid with two equal axis, truncated by a plane perpendicular to the third axis.
 
-    C++ includes: InterferenceFunction2DSuperLattice.h
+    C++ includes: FormFactorTruncatedSpheroid.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self, radius, height, height_flattening, dh=0.0):
         r"""
-        __init__(InterferenceFunction2DSuperLattice self, Lattice2D lattice, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice
-        __init__(InterferenceFunction2DSuperLattice self, double length_1, double length_2, double alpha, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice
-        InterferenceFunction2DSuperLattice::InterferenceFunction2DSuperLattice(double length_1, double length_2, double alpha, double xi, unsigned size_1, unsigned size_2)
+        __init__(FormFactorTruncatedSpheroid self, double radius, double height, double height_flattening, double dh=0.0) -> FormFactorTruncatedSpheroid
+        FormFactorTruncatedSpheroid::FormFactorTruncatedSpheroid(double radius, double height, double height_flattening, double dh=0.0)
 
-        Constructor of two-dimensional interference function.
+        Constructor of a spheroidal dome.
 
         Parameters:
         -----------
 
-        length_1: 
-        length of first lattice vector in nanometers
+        radius: 
+        radius of the truncated spheroid in nanometers
 
-        length_2: 
-        length of second lattice vector in nanometers
+        height: 
+        height of the truncated spheroid in nanometers
 
-        alpha: 
-        angle between lattice vectors in radians
+        height_flattening: 
+        ratio of the height of the corresponding full spheroid to its diameter
 
-        xi: 
-        rotation of lattice with respect to x-axis (beam direction) in radians 
+        dh: 
+        length of cup truncated from the top 
 
         """
-        _libBornAgainCore.InterferenceFunction2DSuperLattice_swiginit(self, _libBornAgainCore.new_InterferenceFunction2DSuperLattice(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunction2DSuperLattice
+        _libBornAgainCore.FormFactorTruncatedSpheroid_swiginit(self, _libBornAgainCore.new_FormFactorTruncatedSpheroid(radius, height, height_flattening, dh))
 
     def clone(self):
         r"""
-        clone(InterferenceFunction2DSuperLattice self) -> InterferenceFunction2DSuperLattice
-        InterferenceFunction2DSuperLattice * InterferenceFunction2DSuperLattice::clone() const override final
+        clone(FormFactorTruncatedSpheroid self) -> FormFactorTruncatedSpheroid
+        FormFactorTruncatedSpheroid* FormFactorTruncatedSpheroid::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_clone(self)
+        return _libBornAgainCore.FormFactorTruncatedSpheroid_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(InterferenceFunction2DSuperLattice self, INodeVisitor visitor)
-        void InterferenceFunction2DSuperLattice::accept(INodeVisitor *visitor) const override final
+        accept(FormFactorTruncatedSpheroid self, INodeVisitor visitor)
+        void FormFactorTruncatedSpheroid::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_accept(self, visitor)
-
-    def setSubstructureIFF(self, sub_iff):
-        r"""
-        setSubstructureIFF(InterferenceFunction2DSuperLattice self, IInterferenceFunction sub_iff)
-        void InterferenceFunction2DSuperLattice::setSubstructureIFF(const IInterferenceFunction &sub_iff)
-
-        """
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_setSubstructureIFF(self, sub_iff)
-
-    def substructureIFF(self):
-        r"""
-        substructureIFF(InterferenceFunction2DSuperLattice self) -> IInterferenceFunction
-        const IInterferenceFunction & InterferenceFunction2DSuperLattice::substructureIFF() const
-
-        """
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_substructureIFF(self)
-
-    @staticmethod
-    def createSquare(lattice_length, xi, size_1, size_2):
-        r"""createSquare(double lattice_length, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice"""
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_createSquare(lattice_length, xi, size_1, size_2)
-
-    @staticmethod
-    def createHexagonal(lattice_length, xi, size_1, size_2):
-        r"""createHexagonal(double lattice_length, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice"""
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_createHexagonal(lattice_length, xi, size_1, size_2)
-
-    def evaluate(self, q, outer_iff=1.0):
-        r"""
-        evaluate(InterferenceFunction2DSuperLattice self, kvector_t q, double outer_iff=1.0) -> double
-        double InterferenceFunction2DSuperLattice::evaluate(const kvector_t q, double outer_iff=1.0) const override final
-
-        Evaluates the interference function for a given wavevector transfer. 
-
-        """
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_evaluate(self, q, outer_iff)
+        return _libBornAgainCore.FormFactorTruncatedSpheroid_accept(self, visitor)
 
-    def domainSize1(self):
+    def getRadius(self):
         r"""
-        domainSize1(InterferenceFunction2DSuperLattice self) -> unsigned int
-        unsigned InterferenceFunction2DSuperLattice::domainSize1() const
+        getRadius(FormFactorTruncatedSpheroid self) -> double
+        double FormFactorTruncatedSpheroid::getRadius() const
 
         """
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_domainSize1(self)
+        return _libBornAgainCore.FormFactorTruncatedSpheroid_getRadius(self)
 
-    def domainSize2(self):
+    def getHeight(self):
         r"""
-        domainSize2(InterferenceFunction2DSuperLattice self) -> unsigned int
-        unsigned InterferenceFunction2DSuperLattice::domainSize2() const
+        getHeight(FormFactorTruncatedSpheroid self) -> double
+        double FormFactorTruncatedSpheroid::getHeight() const
 
         """
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_domainSize2(self)
+        return _libBornAgainCore.FormFactorTruncatedSpheroid_getHeight(self)
 
-    def setIntegrationOverXi(self, integrate_xi):
+    def getHeightFlattening(self):
         r"""
-        setIntegrationOverXi(InterferenceFunction2DSuperLattice self, bool integrate_xi)
-        void InterferenceFunction2DSuperLattice::setIntegrationOverXi(bool integrate_xi)
+        getHeightFlattening(FormFactorTruncatedSpheroid self) -> double
+        double FormFactorTruncatedSpheroid::getHeightFlattening() const
 
         """
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_setIntegrationOverXi(self, integrate_xi)
+        return _libBornAgainCore.FormFactorTruncatedSpheroid_getHeightFlattening(self)
 
-    def integrationOverXi(self):
+    def getRemovedTop(self):
         r"""
-        integrationOverXi(InterferenceFunction2DSuperLattice self) -> bool
-        bool InterferenceFunction2DSuperLattice::integrationOverXi() const
+        getRemovedTop(FormFactorTruncatedSpheroid self) -> double
+        double FormFactorTruncatedSpheroid::getRemovedTop() const
 
         """
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_integrationOverXi(self)
+        return _libBornAgainCore.FormFactorTruncatedSpheroid_getRemovedTop(self)
 
-    def lattice(self):
+    def radialExtension(self):
         r"""
-        lattice(InterferenceFunction2DSuperLattice self) -> Lattice2D
-        const Lattice2D & InterferenceFunction2DSuperLattice::lattice() const
+        radialExtension(FormFactorTruncatedSpheroid self) -> double
+        double FormFactorTruncatedSpheroid::radialExtension() const override final
+
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_lattice(self)
+        return _libBornAgainCore.FormFactorTruncatedSpheroid_radialExtension(self)
 
-    def getChildren(self):
+    def evaluate_for_q(self, q):
         r"""
-        getChildren(InterferenceFunction2DSuperLattice self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > InterferenceFunction2DSuperLattice::getChildren() const override final
+        evaluate_for_q(FormFactorTruncatedSpheroid self, cvector_t q) -> complex_t
+        complex_t FormFactorTruncatedSpheroid::evaluate_for_q(cvector_t q) const override final
 
-        Returns a vector of children (const). 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.InterferenceFunction2DSuperLattice_getChildren(self)
+        return _libBornAgainCore.FormFactorTruncatedSpheroid_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorTruncatedSpheroid
 
-# Register InterferenceFunction2DSuperLattice in _libBornAgainCore:
-_libBornAgainCore.InterferenceFunction2DSuperLattice_swigregister(InterferenceFunction2DSuperLattice)
+# Register FormFactorTruncatedSpheroid in _libBornAgainCore:
+_libBornAgainCore.FormFactorTruncatedSpheroid_swigregister(FormFactorTruncatedSpheroid)
 
-def InterferenceFunction2DSuperLattice_createSquare(lattice_length, xi, size_1, size_2):
-    r"""InterferenceFunction2DSuperLattice_createSquare(double lattice_length, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice"""
-    return _libBornAgainCore.InterferenceFunction2DSuperLattice_createSquare(lattice_length, xi, size_1, size_2)
 
-def InterferenceFunction2DSuperLattice_createHexagonal(lattice_length, xi, size_1, size_2):
-    r"""InterferenceFunction2DSuperLattice_createHexagonal(double lattice_length, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice"""
-    return _libBornAgainCore.InterferenceFunction2DSuperLattice_createHexagonal(lattice_length, xi, size_1, size_2)
+def factor_x_box(q, l):
+    r"""
+    factor_x_box(complex_t q, double l) -> complex_t
+    complex_t ripples::factor_x_box(complex_t q, double l)
 
-class InterferenceFunction3DLattice(IInterferenceFunction):
+    """
+    return _libBornAgainCore.factor_x_box(q, l)
+
+def factor_x_Gauss(q, l):
     r"""
+    factor_x_Gauss(complex_t q, double l) -> complex_t
+    complex_t ripples::factor_x_Gauss(complex_t q, double l)
 
+    """
+    return _libBornAgainCore.factor_x_Gauss(q, l)
 
-    Interference function of a 3D lattice.
+def factor_x_Lorentz(q, l):
+    r"""
+    factor_x_Lorentz(complex_t q, double l) -> complex_t
+    complex_t ripples::factor_x_Lorentz(complex_t q, double l)
+
+    """
+    return _libBornAgainCore.factor_x_Lorentz(q, l)
+class FormFactorDebyeBueche(IFormFactorBorn):
+    r"""
 
-    C++ includes: InterferenceFunction3DLattice.h
+
+    The form factor of a Debye-Bueche (see doi:10.1038/pj.2010.110).
+
+    C++ includes: FormFactorDebyeBueche.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, lattice):
+    def __init__(self, I0, xi):
         r"""
-        __init__(InterferenceFunction3DLattice self, Lattice lattice) -> InterferenceFunction3DLattice
-        InterferenceFunction3DLattice::InterferenceFunction3DLattice(const Lattice &lattice)
+        __init__(FormFactorDebyeBueche self, double I0, double xi) -> FormFactorDebyeBueche
+        FormFactorDebyeBueche::FormFactorDebyeBueche(double I0, double xi)
 
         """
-        _libBornAgainCore.InterferenceFunction3DLattice_swiginit(self, _libBornAgainCore.new_InterferenceFunction3DLattice(lattice))
-    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunction3DLattice
+        _libBornAgainCore.FormFactorDebyeBueche_swiginit(self, _libBornAgainCore.new_FormFactorDebyeBueche(I0, xi))
 
     def clone(self):
         r"""
-        clone(InterferenceFunction3DLattice self) -> InterferenceFunction3DLattice
-        InterferenceFunction3DLattice * InterferenceFunction3DLattice::clone() const override final
+        clone(FormFactorDebyeBueche self) -> FormFactorDebyeBueche
+        FormFactorDebyeBueche* FormFactorDebyeBueche::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunction3DLattice_clone(self)
+        return _libBornAgainCore.FormFactorDebyeBueche_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(InterferenceFunction3DLattice self, INodeVisitor visitor)
-        void InterferenceFunction3DLattice::accept(INodeVisitor *visitor) const override final
+        accept(FormFactorDebyeBueche self, INodeVisitor visitor)
+        void FormFactorDebyeBueche::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.InterferenceFunction3DLattice_accept(self, visitor)
-
-    def setPeakShape(self, peak_shape):
-        r"""
-        setPeakShape(InterferenceFunction3DLattice self, IPeakShape peak_shape)
-        void InterferenceFunction3DLattice::setPeakShape(const IPeakShape &peak_shape)
-
-        """
-        return _libBornAgainCore.InterferenceFunction3DLattice_setPeakShape(self, peak_shape)
-
-    def lattice(self):
-        r"""
-        lattice(InterferenceFunction3DLattice self) -> Lattice
-        const Lattice & InterferenceFunction3DLattice::lattice() const
-
-        """
-        return _libBornAgainCore.InterferenceFunction3DLattice_lattice(self)
-
-    def supportsMultilayer(self):
-        r"""
-        supportsMultilayer(InterferenceFunction3DLattice self) -> bool
-        bool InterferenceFunction3DLattice::supportsMultilayer() const override final
-
-        Indicates if this interference function can be used with a multilayer (DWBA mode) 
-
-        """
-        return _libBornAgainCore.InterferenceFunction3DLattice_supportsMultilayer(self)
+        return _libBornAgainCore.FormFactorDebyeBueche_accept(self, visitor)
 
-    def getChildren(self):
+    def radialExtension(self):
         r"""
-        getChildren(InterferenceFunction3DLattice self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > InterferenceFunction3DLattice::getChildren() const override final
+        radialExtension(FormFactorDebyeBueche self) -> double
+        double FormFactorDebyeBueche::radialExtension() const override final
 
-        Returns a vector of children (const). 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.InterferenceFunction3DLattice_getChildren(self)
+        return _libBornAgainCore.FormFactorDebyeBueche_radialExtension(self)
 
-    def onChange(self):
+    def evaluate_for_q(self, q):
         r"""
-        onChange(InterferenceFunction3DLattice self)
-        void InterferenceFunction3DLattice::onChange() override final
+        evaluate_for_q(FormFactorDebyeBueche self, cvector_t q) -> complex_t
+        complex_t FormFactorDebyeBueche::evaluate_for_q(cvector_t q) const override final
 
-        Action to be taken in inherited class when a parameter has changed. 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.InterferenceFunction3DLattice_onChange(self)
+        return _libBornAgainCore.FormFactorDebyeBueche_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorDebyeBueche
 
-# Register InterferenceFunction3DLattice in _libBornAgainCore:
-_libBornAgainCore.InterferenceFunction3DLattice_swigregister(InterferenceFunction3DLattice)
+# Register FormFactorDebyeBueche in _libBornAgainCore:
+_libBornAgainCore.FormFactorDebyeBueche_swigregister(FormFactorDebyeBueche)
 
-class InterferenceFunctionFinite2DLattice(IInterferenceFunction):
+class FormFactorGauss(IFormFactorBorn):
     r"""
 
 
-    Interference function of a finite 2D lattice.
+    The form factor of a gaussian.
 
-    C++ includes: InterferenceFunctionFinite2DLattice.h
+    C++ includes: FormFactorGauss.h
 
     """
 
@@ -17742,605 +17329,615 @@ class InterferenceFunctionFinite2DLattice(IInterferenceFunction):
 
     def __init__(self, *args):
         r"""
-        __init__(InterferenceFunctionFinite2DLattice self, Lattice2D lattice, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice
-        __init__(InterferenceFunctionFinite2DLattice self, double length_1, double length_2, double alpha, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice
-        InterferenceFunctionFinite2DLattice::InterferenceFunctionFinite2DLattice(double length_1, double length_2, double alpha, double xi, unsigned N_1, unsigned N_2)
+        __init__(FormFactorGauss self, double length) -> FormFactorGauss
+        __init__(FormFactorGauss self, double width, double height) -> FormFactorGauss
+        FormFactorGauss::FormFactorGauss(double width, double height)
 
-        Constructor of two-dimensional finite lattice interference function.
+        """
+        _libBornAgainCore.FormFactorGauss_swiginit(self, _libBornAgainCore.new_FormFactorGauss(*args))
 
-        Parameters:
-        -----------
+    def clone(self):
+        r"""
+        clone(FormFactorGauss self) -> FormFactorGauss
+        FormFactorGauss* FormFactorGauss::clone() const override final
 
-        length_1: 
-        length of first lattice vector in nanometers
+        Returns a clone of this  ISample object. 
 
-        length_2: 
-        length of second lattice vector in nanometers
+        """
+        return _libBornAgainCore.FormFactorGauss_clone(self)
 
-        alpha: 
-        angle between lattice vectors in radians
+    def accept(self, visitor):
+        r"""
+        accept(FormFactorGauss self, INodeVisitor visitor)
+        void FormFactorGauss::accept(INodeVisitor *visitor) const override final
 
-        xi: 
-        rotation of lattice with respect to x-axis (beam direction) in radians
+        Calls the  INodeVisitor's visit method. 
 
-        N_1: 
-        number of lattice cells in the first lattice direction
+        """
+        return _libBornAgainCore.FormFactorGauss_accept(self, visitor)
 
-        N_2: 
-        number of lattice cells in the second lattice direction 
+    def getWidth(self):
+        r"""
+        getWidth(FormFactorGauss self) -> double
+        double FormFactorGauss::getWidth() const
 
         """
-        _libBornAgainCore.InterferenceFunctionFinite2DLattice_swiginit(self, _libBornAgainCore.new_InterferenceFunctionFinite2DLattice(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunctionFinite2DLattice
+        return _libBornAgainCore.FormFactorGauss_getWidth(self)
 
-    def clone(self):
+    def getHeight(self):
         r"""
-        clone(InterferenceFunctionFinite2DLattice self) -> InterferenceFunctionFinite2DLattice
-        InterferenceFunctionFinite2DLattice * InterferenceFunctionFinite2DLattice::clone() const override final
+        getHeight(FormFactorGauss self) -> double
+        double FormFactorGauss::getHeight() const
 
-        Returns a clone of this  ISample object. 
+        """
+        return _libBornAgainCore.FormFactorGauss_getHeight(self)
+
+    def radialExtension(self):
+        r"""
+        radialExtension(FormFactorGauss self) -> double
+        double FormFactorGauss::radialExtension() const override final
+
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_clone(self)
+        return _libBornAgainCore.FormFactorGauss_radialExtension(self)
 
-    def accept(self, visitor):
+    def evaluate_for_q(self, q):
         r"""
-        accept(InterferenceFunctionFinite2DLattice self, INodeVisitor visitor)
-        void InterferenceFunctionFinite2DLattice::accept(INodeVisitor *visitor) const override final
+        evaluate_for_q(FormFactorGauss self, cvector_t q) -> complex_t
+        complex_t FormFactorGauss::evaluate_for_q(cvector_t q) const override final
 
-        Calls the  INodeVisitor's visit method. 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_accept(self, visitor)
+        return _libBornAgainCore.FormFactorGauss_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorGauss
 
-    @staticmethod
-    def createSquare(lattice_length, xi, N_1, N_2):
-        r"""createSquare(double lattice_length, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice"""
-        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_createSquare(lattice_length, xi, N_1, N_2)
+# Register FormFactorGauss in _libBornAgainCore:
+_libBornAgainCore.FormFactorGauss_swigregister(FormFactorGauss)
+
+class FormFactorLorentz(IFormFactorBorn):
+    r"""
+
+
+    The form factor of a lorentzian.
+
+    C++ includes: FormFactorLorentz.h
 
-    @staticmethod
-    def createHexagonal(lattice_length, xi, N_1, N_2):
-        r"""createHexagonal(double lattice_length, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice"""
-        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_createHexagonal(lattice_length, xi, N_1, N_2)
+    """
 
-    def numberUnitCells1(self):
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, *args):
         r"""
-        numberUnitCells1(InterferenceFunctionFinite2DLattice self) -> unsigned int
-        unsigned InterferenceFunctionFinite2DLattice::numberUnitCells1() const
+        __init__(FormFactorLorentz self, double length) -> FormFactorLorentz
+        __init__(FormFactorLorentz self, double width, double height) -> FormFactorLorentz
+        FormFactorLorentz::FormFactorLorentz(double width, double height)
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_numberUnitCells1(self)
+        _libBornAgainCore.FormFactorLorentz_swiginit(self, _libBornAgainCore.new_FormFactorLorentz(*args))
 
-    def numberUnitCells2(self):
+    def clone(self):
         r"""
-        numberUnitCells2(InterferenceFunctionFinite2DLattice self) -> unsigned int
-        unsigned InterferenceFunctionFinite2DLattice::numberUnitCells2() const
+        clone(FormFactorLorentz self) -> FormFactorLorentz
+        FormFactorLorentz* FormFactorLorentz::clone() const override final
+
+        Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_numberUnitCells2(self)
+        return _libBornAgainCore.FormFactorLorentz_clone(self)
 
-    def setIntegrationOverXi(self, integrate_xi):
+    def accept(self, visitor):
         r"""
-        setIntegrationOverXi(InterferenceFunctionFinite2DLattice self, bool integrate_xi)
-        void InterferenceFunctionFinite2DLattice::setIntegrationOverXi(bool integrate_xi)
+        accept(FormFactorLorentz self, INodeVisitor visitor)
+        void FormFactorLorentz::accept(INodeVisitor *visitor) const override final
+
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_setIntegrationOverXi(self, integrate_xi)
+        return _libBornAgainCore.FormFactorLorentz_accept(self, visitor)
 
-    def integrationOverXi(self):
+    def getWidth(self):
         r"""
-        integrationOverXi(InterferenceFunctionFinite2DLattice self) -> bool
-        bool InterferenceFunctionFinite2DLattice::integrationOverXi() const
+        getWidth(FormFactorLorentz self) -> double
+        double FormFactorLorentz::getWidth() const
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_integrationOverXi(self)
+        return _libBornAgainCore.FormFactorLorentz_getWidth(self)
 
-    def lattice(self):
+    def getHeight(self):
         r"""
-        lattice(InterferenceFunctionFinite2DLattice self) -> Lattice2D
-        const Lattice2D & InterferenceFunctionFinite2DLattice::lattice() const
+        getHeight(FormFactorLorentz self) -> double
+        double FormFactorLorentz::getHeight() const
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_lattice(self)
+        return _libBornAgainCore.FormFactorLorentz_getHeight(self)
 
-    def getParticleDensity(self):
+    def radialExtension(self):
         r"""
-        getParticleDensity(InterferenceFunctionFinite2DLattice self) -> double
-        double InterferenceFunctionFinite2DLattice::getParticleDensity() const override final
+        radialExtension(FormFactorLorentz self) -> double
+        double FormFactorLorentz::radialExtension() const override final
 
-        Returns the particle density associated with this 2d lattice. 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_getParticleDensity(self)
+        return _libBornAgainCore.FormFactorLorentz_radialExtension(self)
 
-    def getChildren(self):
+    def evaluate_for_q(self, q):
         r"""
-        getChildren(InterferenceFunctionFinite2DLattice self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > InterferenceFunctionFinite2DLattice::getChildren() const override final
+        evaluate_for_q(FormFactorLorentz self, cvector_t q) -> complex_t
+        complex_t FormFactorLorentz::evaluate_for_q(cvector_t q) const override final
 
-        Returns a vector of children (const). 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite2DLattice_getChildren(self)
-
-# Register InterferenceFunctionFinite2DLattice in _libBornAgainCore:
-_libBornAgainCore.InterferenceFunctionFinite2DLattice_swigregister(InterferenceFunctionFinite2DLattice)
-
-def InterferenceFunctionFinite2DLattice_createSquare(lattice_length, xi, N_1, N_2):
-    r"""InterferenceFunctionFinite2DLattice_createSquare(double lattice_length, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice"""
-    return _libBornAgainCore.InterferenceFunctionFinite2DLattice_createSquare(lattice_length, xi, N_1, N_2)
+        return _libBornAgainCore.FormFactorLorentz_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorLorentz
 
-def InterferenceFunctionFinite2DLattice_createHexagonal(lattice_length, xi, N_1, N_2):
-    r"""InterferenceFunctionFinite2DLattice_createHexagonal(double lattice_length, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice"""
-    return _libBornAgainCore.InterferenceFunctionFinite2DLattice_createHexagonal(lattice_length, xi, N_1, N_2)
+# Register FormFactorLorentz in _libBornAgainCore:
+_libBornAgainCore.FormFactorLorentz_swigregister(FormFactorLorentz)
 
-class InterferenceFunctionFinite3DLattice(IInterferenceFunction):
+class FormFactorOrnsteinZernike(IFormFactorBorn):
     r"""
 
 
-    Interference function of a finite 3D lattice.
+    The form factor of a Ornstein-Zernike (see doi:10.1038/pj.2010.110).
 
-    C++ includes: InterferenceFunctionFinite3DLattice.h
+    C++ includes: FormFactorOrnsteinZernike.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, lattice, N_1, N_2, N_3):
+    def __init__(self, I0, xi_xy, xi_z):
         r"""
-        __init__(InterferenceFunctionFinite3DLattice self, Lattice lattice, unsigned int N_1, unsigned int N_2, unsigned int N_3) -> InterferenceFunctionFinite3DLattice
-        InterferenceFunctionFinite3DLattice::InterferenceFunctionFinite3DLattice(const Lattice &lattice, unsigned N_1, unsigned N_2, unsigned N_3)
-
-        Constructor of three-dimensional finite lattice interference function.
-
-        Parameters:
-        -----------
-
-        lattice: 
-        object specifying a 2d lattice structure
-
-        N_1: 
-        number of lattice cells in the first lattice direction
-
-        N_2: 
-        number of lattice cells in the second lattice direction 
+        __init__(FormFactorOrnsteinZernike self, double I0, double xi_xy, double xi_z) -> FormFactorOrnsteinZernike
+        FormFactorOrnsteinZernike::FormFactorOrnsteinZernike(double I0, double xi_xy, double xi_z)
 
         """
-        _libBornAgainCore.InterferenceFunctionFinite3DLattice_swiginit(self, _libBornAgainCore.new_InterferenceFunctionFinite3DLattice(lattice, N_1, N_2, N_3))
-    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunctionFinite3DLattice
+        _libBornAgainCore.FormFactorOrnsteinZernike_swiginit(self, _libBornAgainCore.new_FormFactorOrnsteinZernike(I0, xi_xy, xi_z))
 
     def clone(self):
         r"""
-        clone(InterferenceFunctionFinite3DLattice self) -> InterferenceFunctionFinite3DLattice
-        InterferenceFunctionFinite3DLattice * InterferenceFunctionFinite3DLattice::clone() const override final
+        clone(FormFactorOrnsteinZernike self) -> FormFactorOrnsteinZernike
+        FormFactorOrnsteinZernike* FormFactorOrnsteinZernike::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_clone(self)
+        return _libBornAgainCore.FormFactorOrnsteinZernike_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(InterferenceFunctionFinite3DLattice self, INodeVisitor visitor)
-        void InterferenceFunctionFinite3DLattice::accept(INodeVisitor *visitor) const override final
+        accept(FormFactorOrnsteinZernike self, INodeVisitor visitor)
+        void FormFactorOrnsteinZernike::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_accept(self, visitor)
-
-    def numberUnitCells1(self):
-        r"""
-        numberUnitCells1(InterferenceFunctionFinite3DLattice self) -> unsigned int
-        unsigned InterferenceFunctionFinite3DLattice::numberUnitCells1() const
-
-        """
-        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_numberUnitCells1(self)
-
-    def numberUnitCells2(self):
-        r"""
-        numberUnitCells2(InterferenceFunctionFinite3DLattice self) -> unsigned int
-        unsigned InterferenceFunctionFinite3DLattice::numberUnitCells2() const
-
-        """
-        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_numberUnitCells2(self)
-
-    def numberUnitCells3(self):
-        r"""
-        numberUnitCells3(InterferenceFunctionFinite3DLattice self) -> unsigned int
-        unsigned InterferenceFunctionFinite3DLattice::numberUnitCells3() const
-
-        """
-        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_numberUnitCells3(self)
-
-    def lattice(self):
-        r"""
-        lattice(InterferenceFunctionFinite3DLattice self) -> Lattice
-        const Lattice & InterferenceFunctionFinite3DLattice::lattice() const
-
-        """
-        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_lattice(self)
+        return _libBornAgainCore.FormFactorOrnsteinZernike_accept(self, visitor)
 
-    def supportsMultilayer(self):
+    def radialExtension(self):
         r"""
-        supportsMultilayer(InterferenceFunctionFinite3DLattice self) -> bool
-        bool InterferenceFunctionFinite3DLattice::supportsMultilayer() const override final
+        radialExtension(FormFactorOrnsteinZernike self) -> double
+        double FormFactorOrnsteinZernike::radialExtension() const override final
 
-        Indicates if this interference function can be used with a multilayer (DWBA mode) 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_supportsMultilayer(self)
+        return _libBornAgainCore.FormFactorOrnsteinZernike_radialExtension(self)
 
-    def getChildren(self):
+    def evaluate_for_q(self, q):
         r"""
-        getChildren(InterferenceFunctionFinite3DLattice self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > InterferenceFunctionFinite3DLattice::getChildren() const override final
+        evaluate_for_q(FormFactorOrnsteinZernike self, cvector_t q) -> complex_t
+        complex_t FormFactorOrnsteinZernike::evaluate_for_q(cvector_t q) const override final
 
-        Returns a vector of children (const). 
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionFinite3DLattice_getChildren(self)
+        return _libBornAgainCore.FormFactorOrnsteinZernike_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorOrnsteinZernike
 
-# Register InterferenceFunctionFinite3DLattice in _libBornAgainCore:
-_libBornAgainCore.InterferenceFunctionFinite3DLattice_swigregister(InterferenceFunctionFinite3DLattice)
+# Register FormFactorOrnsteinZernike in _libBornAgainCore:
+_libBornAgainCore.FormFactorOrnsteinZernike_swigregister(FormFactorOrnsteinZernike)
 
-class InterferenceFunctionHardDisk(IInterferenceFunction):
+class FormFactorSphereGaussianRadius(IFormFactorBorn):
     r"""
 
 
-    Percus-Yevick hard disk interference function.
-
-    M.S. Ripoll & C.F. Tejero (1995) Approximate analytical expression for the direct correlation function of hard discs within the Percus-Yevick equation, Molecular Physics, 85:2, 423-428, DOI: 10.1080/00268979500101211
+    A sphere with gaussian radius distribution.
 
-    C++ includes: InterferenceFunctionHardDisk.h
+    C++ includes: FormFactorSphereGaussianRadius.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, radius, density):
+    def __init__(self, mean, sigma):
         r"""
-        __init__(InterferenceFunctionHardDisk self, double radius, double density) -> InterferenceFunctionHardDisk
-        InterferenceFunctionHardDisk::InterferenceFunctionHardDisk(double radius, double density)
+        __init__(FormFactorSphereGaussianRadius self, double mean, double sigma) -> FormFactorSphereGaussianRadius
+        FormFactorSphereGaussianRadius::FormFactorSphereGaussianRadius(double mean, double sigma)
 
         """
-        _libBornAgainCore.InterferenceFunctionHardDisk_swiginit(self, _libBornAgainCore.new_InterferenceFunctionHardDisk(radius, density))
-    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunctionHardDisk
+        _libBornAgainCore.FormFactorSphereGaussianRadius_swiginit(self, _libBornAgainCore.new_FormFactorSphereGaussianRadius(mean, sigma))
 
     def clone(self):
         r"""
-        clone(InterferenceFunctionHardDisk self) -> InterferenceFunctionHardDisk
-        InterferenceFunctionHardDisk * InterferenceFunctionHardDisk::clone() const override final
+        clone(FormFactorSphereGaussianRadius self) -> FormFactorSphereGaussianRadius
+        FormFactorSphereGaussianRadius* FormFactorSphereGaussianRadius::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionHardDisk_clone(self)
+        return _libBornAgainCore.FormFactorSphereGaussianRadius_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(InterferenceFunctionHardDisk self, INodeVisitor visitor)
-        void InterferenceFunctionHardDisk::accept(INodeVisitor *visitor) const override final
+        accept(FormFactorSphereGaussianRadius self, INodeVisitor visitor)
+        void FormFactorSphereGaussianRadius::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionHardDisk_accept(self, visitor)
+        return _libBornAgainCore.FormFactorSphereGaussianRadius_accept(self, visitor)
 
-    def getParticleDensity(self):
+    def radialExtension(self):
         r"""
-        getParticleDensity(InterferenceFunctionHardDisk self) -> double
-        double InterferenceFunctionHardDisk::getParticleDensity() const override final
+        radialExtension(FormFactorSphereGaussianRadius self) -> double
+        double FormFactorSphereGaussianRadius::radialExtension() const override final
 
-        If defined by this interference function's parameters, returns the particle density (per area). Otherwise, returns zero or a user-defined value 
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
 
         """
-        return _libBornAgainCore.InterferenceFunctionHardDisk_getParticleDensity(self)
+        return _libBornAgainCore.FormFactorSphereGaussianRadius_radialExtension(self)
 
-    def radius(self):
+    def evaluate_for_q(self, q):
         r"""
-        radius(InterferenceFunctionHardDisk self) -> double
-        double InterferenceFunctionHardDisk::radius() const
-
-        """
-        return _libBornAgainCore.InterferenceFunctionHardDisk_radius(self)
+        evaluate_for_q(FormFactorSphereGaussianRadius self, cvector_t q) -> complex_t
+        complex_t FormFactorSphereGaussianRadius::evaluate_for_q(cvector_t q) const override final
 
-    def density(self):
-        r"""
-        density(InterferenceFunctionHardDisk self) -> double
-        double InterferenceFunctionHardDisk::density() const
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionHardDisk_density(self)
+        return _libBornAgainCore.FormFactorSphereGaussianRadius_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorSphereGaussianRadius
 
-# Register InterferenceFunctionHardDisk in _libBornAgainCore:
-_libBornAgainCore.InterferenceFunctionHardDisk_swigregister(InterferenceFunctionHardDisk)
+# Register FormFactorSphereGaussianRadius in _libBornAgainCore:
+_libBornAgainCore.FormFactorSphereGaussianRadius_swigregister(FormFactorSphereGaussianRadius)
 
-class InterferenceFunctionNone(IInterferenceFunction):
+class FormFactorSphereLogNormalRadius(IFormFactorBorn):
     r"""
 
 
-    Default interference function (i.e. absence of any interference).
+    A sphere with log normal radius distribution.
 
-    C++ includes: InterferenceFunctionNone.h
+    C++ includes: FormFactorSphereLogNormalRadius.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self):
-        r"""
-        __init__(InterferenceFunctionNone self) -> InterferenceFunctionNone
-        InterferenceFunctionNone::InterferenceFunctionNone()
+    def __init__(self, mean, scale_param, n_samples):
+        r"""
+        __init__(FormFactorSphereLogNormalRadius self, double mean, double scale_param, size_t n_samples) -> FormFactorSphereLogNormalRadius
+        FormFactorSphereLogNormalRadius::FormFactorSphereLogNormalRadius(double mean, double scale_param, size_t n_samples)
 
         """
-        _libBornAgainCore.InterferenceFunctionNone_swiginit(self, _libBornAgainCore.new_InterferenceFunctionNone())
+        _libBornAgainCore.FormFactorSphereLogNormalRadius_swiginit(self, _libBornAgainCore.new_FormFactorSphereLogNormalRadius(mean, scale_param, n_samples))
 
     def clone(self):
         r"""
-        clone(InterferenceFunctionNone self) -> InterferenceFunctionNone
-        InterferenceFunctionNone * InterferenceFunctionNone::clone() const override final
+        clone(FormFactorSphereLogNormalRadius self) -> FormFactorSphereLogNormalRadius
+        FormFactorSphereLogNormalRadius* FormFactorSphereLogNormalRadius::clone() const override final
 
         Returns a clone of this  ISample object. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionNone_clone(self)
+        return _libBornAgainCore.FormFactorSphereLogNormalRadius_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(InterferenceFunctionNone self, INodeVisitor visitor)
-        void InterferenceFunctionNone::accept(INodeVisitor *visitor) const override final
+        accept(FormFactorSphereLogNormalRadius self, INodeVisitor visitor)
+        void FormFactorSphereLogNormalRadius::accept(INodeVisitor *visitor) const override final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionNone_accept(self, visitor)
-    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunctionNone
+        return _libBornAgainCore.FormFactorSphereLogNormalRadius_accept(self, visitor)
 
-# Register InterferenceFunctionNone in _libBornAgainCore:
-_libBornAgainCore.InterferenceFunctionNone_swigregister(InterferenceFunctionNone)
+    def radialExtension(self):
+        r"""
+        radialExtension(FormFactorSphereLogNormalRadius self) -> double
+        double FormFactorSphereLogNormalRadius::radialExtension() const override final
 
-class InterferenceFunctionRadialParaCrystal(IInterferenceFunction):
+        Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations 
+
+        """
+        return _libBornAgainCore.FormFactorSphereLogNormalRadius_radialExtension(self)
+
+    def evaluate_for_q(self, q):
+        r"""
+        evaluate_for_q(FormFactorSphereLogNormalRadius self, cvector_t q) -> complex_t
+        complex_t FormFactorSphereLogNormalRadius::evaluate_for_q(cvector_t q) const override final
+
+        Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. 
+
+        """
+        return _libBornAgainCore.FormFactorSphereLogNormalRadius_evaluate_for_q(self, q)
+    __swig_destroy__ = _libBornAgainCore.delete_FormFactorSphereLogNormalRadius
+
+# Register FormFactorSphereLogNormalRadius in _libBornAgainCore:
+_libBornAgainCore.FormFactorSphereLogNormalRadius_swigregister(FormFactorSphereLogNormalRadius)
+
+class Simulation(ICloneable, INode):
     r"""
 
 
-    Interference function of radial paracrystal.
+    Pure virtual base class of OffSpecularSimulation,  GISASSimulation and  SpecularSimulation. Holds the common infrastructure to run a simulation: multithreading, batch processing, weighting over parameter distributions, ...
 
-    C++ includes: InterferenceFunctionRadialParaCrystal.h
+    C++ includes: Simulation.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_Simulation
 
-    def __init__(self, peak_distance, damping_length=0.0):
+    def clone(self):
         r"""
-        __init__(InterferenceFunctionRadialParaCrystal self, double peak_distance, double damping_length=0.0) -> InterferenceFunctionRadialParaCrystal
-        InterferenceFunctionRadialParaCrystal::InterferenceFunctionRadialParaCrystal(double peak_distance, double damping_length=0.0)
-
-        Constructor of interference function of radial paracrystal.
+        clone(Simulation self) -> Simulation
+        virtual Simulation* Simulation::clone() const =0
 
-        Parameters:
-        -----------
+        """
+        return _libBornAgainCore.Simulation_clone(self)
 
-        peak_distance: 
-        average distance to the next neighbor in nanometers
+    def prepareSimulation(self):
+        r"""
+        prepareSimulation(Simulation self)
+        void Simulation::prepareSimulation()
 
-        damping_length: 
-        the damping (coherence) length of the paracrystal in nanometers 
+        Put into a clean state for running a simulation. 
 
         """
-        _libBornAgainCore.InterferenceFunctionRadialParaCrystal_swiginit(self, _libBornAgainCore.new_InterferenceFunctionRadialParaCrystal(peak_distance, damping_length))
+        return _libBornAgainCore.Simulation_prepareSimulation(self)
 
-    def clone(self):
+    def runSimulation(self):
         r"""
-        clone(InterferenceFunctionRadialParaCrystal self) -> InterferenceFunctionRadialParaCrystal
-        InterferenceFunctionRadialParaCrystal * InterferenceFunctionRadialParaCrystal::clone() const override final
+        runSimulation(Simulation self)
+        void Simulation::runSimulation()
 
-        Returns a clone of this  ISample object. 
+        Run a simulation, possibly averaged over parameter distributions.
+
+        Run simulation with possible averaging over parameter distributions. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_clone(self)
+        return _libBornAgainCore.Simulation_runSimulation(self)
 
-    def accept(self, visitor):
+    def runMPISimulation(self):
         r"""
-        accept(InterferenceFunctionRadialParaCrystal self, INodeVisitor visitor)
-        void InterferenceFunctionRadialParaCrystal::accept(INodeVisitor *visitor) const override final
+        runMPISimulation(Simulation self)
+        void Simulation::runMPISimulation()
 
-        Calls the  INodeVisitor's visit method. 
+        Run a simulation in a MPI environment. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_accept(self, visitor)
+        return _libBornAgainCore.Simulation_runMPISimulation(self)
 
-    def setKappa(self, kappa):
+    def setInstrument(self, instrument):
         r"""
-        setKappa(InterferenceFunctionRadialParaCrystal self, double kappa)
-        void InterferenceFunctionRadialParaCrystal::setKappa(double kappa)
-
-        Sets size spacing coupling parameter of the Size Spacing Correlation Approximation.
+        setInstrument(Simulation self, Instrument instrument)
+        void Simulation::setInstrument(const Instrument &instrument)
 
-        Parameters:
-        -----------
+        """
+        return _libBornAgainCore.Simulation_setInstrument(self, instrument)
 
-        size: 
-        spacing coupling parameter 
+    def getInstrument(self, *args):
+        r"""
+        getInstrument(Simulation self) -> Instrument
+        getInstrument(Simulation self) -> Instrument
+        Instrument& Simulation::getInstrument()
 
         """
-        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_setKappa(self, kappa)
+        return _libBornAgainCore.Simulation_getInstrument(self, *args)
 
-    def kappa(self):
+    def setBeamIntensity(self, intensity):
         r"""
-        kappa(InterferenceFunctionRadialParaCrystal self) -> double
-        double InterferenceFunctionRadialParaCrystal::kappa() const
+        setBeamIntensity(Simulation self, double intensity)
+        void Simulation::setBeamIntensity(double intensity)
 
         """
-        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_kappa(self)
+        return _libBornAgainCore.Simulation_setBeamIntensity(self, intensity)
 
-    def setDomainSize(self, size):
+    def getBeamIntensity(self):
         r"""
-        setDomainSize(InterferenceFunctionRadialParaCrystal self, double size)
-        void InterferenceFunctionRadialParaCrystal::setDomainSize(double size)
+        getBeamIntensity(Simulation self) -> double
+        double Simulation::getBeamIntensity() const
 
-        Sets domain size (finite size corrections).
+        """
+        return _libBornAgainCore.Simulation_getBeamIntensity(self)
 
-        Parameters:
-        -----------
+    def setBeamPolarization(self, bloch_vector):
+        r"""
+        setBeamPolarization(Simulation self, kvector_t bloch_vector)
+        void Simulation::setBeamPolarization(const kvector_t bloch_vector)
 
-        size: 
-        size of coherence domain along the lattice main axis in nanometers 
+        Sets the beam polarization according to the given Bloch vector. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_setDomainSize(self, size)
+        return _libBornAgainCore.Simulation_setBeamPolarization(self, bloch_vector)
 
-    def domainSize(self):
+    def setDetectorResolutionFunction(self, resolution_function):
         r"""
-        domainSize(InterferenceFunctionRadialParaCrystal self) -> double
-        double InterferenceFunctionRadialParaCrystal::domainSize() const
+        setDetectorResolutionFunction(Simulation self, IResolutionFunction2D resolution_function)
+        void Simulation::setDetectorResolutionFunction(const IResolutionFunction2D &resolution_function)
 
         """
-        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_domainSize(self)
+        return _libBornAgainCore.Simulation_setDetectorResolutionFunction(self, resolution_function)
 
-    def FTPDF(self, qpar):
+    def removeDetectorResolutionFunction(self):
         r"""
-        FTPDF(InterferenceFunctionRadialParaCrystal self, double qpar) -> complex_t
-        complex_t InterferenceFunctionRadialParaCrystal::FTPDF(double qpar) const
+        removeDetectorResolutionFunction(Simulation self)
+        void Simulation::removeDetectorResolutionFunction()
 
         """
-        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_FTPDF(self, qpar)
+        return _libBornAgainCore.Simulation_removeDetectorResolutionFunction(self)
 
-    def setProbabilityDistribution(self, pdf):
+    def setAnalyzerProperties(self, direction, efficiency, total_transmission):
         r"""
-        setProbabilityDistribution(InterferenceFunctionRadialParaCrystal self, IFTDistribution1D pdf)
-        void InterferenceFunctionRadialParaCrystal::setProbabilityDistribution(const IFTDistribution1D &pdf)
+        setAnalyzerProperties(Simulation self, kvector_t direction, double efficiency, double total_transmission)
+        void Simulation::setAnalyzerProperties(const kvector_t direction, double efficiency, double total_transmission)
 
-        Sets one-dimensional probability distribution.
+        Sets the polarization analyzer characteristics of the detector. 
 
-        Parameters:
-        -----------
+        """
+        return _libBornAgainCore.Simulation_setAnalyzerProperties(self, direction, efficiency, total_transmission)
 
-        pdf: 
-        probability distribution (Fourier transform of probability density) 
+    def setSample(self, sample):
+        r"""
+        setSample(Simulation self, MultiLayer sample)
+        void Simulation::setSample(const MultiLayer &sample)
+
+        The  MultiLayer object will not be owned by the  Simulation object. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_setProbabilityDistribution(self, pdf)
+        return _libBornAgainCore.Simulation_setSample(self, sample)
 
-    def peakDistance(self):
+    def sample(self):
         r"""
-        peakDistance(InterferenceFunctionRadialParaCrystal self) -> double
-        double InterferenceFunctionRadialParaCrystal::peakDistance() const
+        sample(Simulation self) -> MultiLayer
+        const MultiLayer * Simulation::sample() const
 
         """
-        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_peakDistance(self)
+        return _libBornAgainCore.Simulation_sample(self)
 
-    def dampingLength(self):
+    def setSampleBuilderCpp(self, sample_builder):
         r"""
-        dampingLength(InterferenceFunctionRadialParaCrystal self) -> double
-        double InterferenceFunctionRadialParaCrystal::dampingLength() const
+        setSampleBuilderCpp(Simulation self, std::shared_ptr< IMultiLayerBuilder > const sample_builder)
+        void Simulation::setSampleBuilder(const std::shared_ptr< IMultiLayerBuilder > sample_builder)
 
         """
-        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_dampingLength(self)
+        return _libBornAgainCore.Simulation_setSampleBuilderCpp(self, sample_builder)
 
-    def getChildren(self):
+    def setBackground(self, bg):
         r"""
-        getChildren(InterferenceFunctionRadialParaCrystal self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > InterferenceFunctionRadialParaCrystal::getChildren() const override final
-
-        Returns a vector of children (const). 
+        setBackground(Simulation self, IBackground bg)
+        void Simulation::setBackground(const IBackground &bg)
 
         """
-        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_getChildren(self)
+        return _libBornAgainCore.Simulation_setBackground(self, bg)
 
-    def randomSample(self):
+    def background(self):
         r"""
-        randomSample(InterferenceFunctionRadialParaCrystal self) -> double
-        double InterferenceFunctionRadialParaCrystal::randomSample() const
+        background(Simulation self) -> IBackground
+        const IBackground* Simulation::background() const
 
         """
-        return _libBornAgainCore.InterferenceFunctionRadialParaCrystal_randomSample(self)
-    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunctionRadialParaCrystal
-
-# Register InterferenceFunctionRadialParaCrystal in _libBornAgainCore:
-_libBornAgainCore.InterferenceFunctionRadialParaCrystal_swigregister(InterferenceFunctionRadialParaCrystal)
+        return _libBornAgainCore.Simulation_background(self)
 
-class InterferenceFunctionTwin(IInterferenceFunction):
-    r"""
+    def intensityMapSize(self):
+        r"""
+        intensityMapSize(Simulation self) -> size_t
+        virtual size_t Simulation::intensityMapSize() const =0
 
+        Returns the total number of the intensity values in the simulation result. 
 
-    Interference function for two particles at a mean distance and given standard deviation from each other in a given direction.
+        """
+        return _libBornAgainCore.Simulation_intensityMapSize(self)
 
-    C++ includes: InterferenceFunctionTwin.h
+    def result(self):
+        r"""
+        result(Simulation self) -> SimulationResult
+        virtual SimulationResult Simulation::result() const =0
 
-    """
+        Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.Simulation_result(self)
 
-    def __init__(self, direction, mean_distance, std_dev):
+    def addParameterDistribution(self, *args):
         r"""
-        __init__(InterferenceFunctionTwin self, kvector_t direction, double mean_distance, double std_dev) -> InterferenceFunctionTwin
-        InterferenceFunctionTwin::InterferenceFunctionTwin(const kvector_t &direction, double mean_distance, double std_dev)
+        addParameterDistribution(Simulation self, std::string const & param_name, IDistribution1D distribution, size_t nbr_samples, double sigma_factor=0.0, RealLimits limits=RealLimits())
+        addParameterDistribution(Simulation self, ParameterDistribution par_distr)
+        void Simulation::addParameterDistribution(const ParameterDistribution &par_distr)
+
+        """
+        return _libBornAgainCore.Simulation_addParameterDistribution(self, *args)
+
+    def getDistributionHandler(self):
+        r"""
+        getDistributionHandler(Simulation self) -> DistributionHandler const &
+        const DistributionHandler& Simulation::getDistributionHandler() const
 
         """
-        _libBornAgainCore.InterferenceFunctionTwin_swiginit(self, _libBornAgainCore.new_InterferenceFunctionTwin(direction, mean_distance, std_dev))
+        return _libBornAgainCore.Simulation_getDistributionHandler(self)
 
-    def clone(self):
+    def setOptions(self, options):
         r"""
-        clone(InterferenceFunctionTwin self) -> InterferenceFunctionTwin
-        InterferenceFunctionTwin * InterferenceFunctionTwin::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        setOptions(Simulation self, SimulationOptions options)
+        void Simulation::setOptions(const SimulationOptions &options)
 
         """
-        return _libBornAgainCore.InterferenceFunctionTwin_clone(self)
+        return _libBornAgainCore.Simulation_setOptions(self, options)
 
-    def accept(self, visitor):
+    def getOptions(self, *args):
         r"""
-        accept(InterferenceFunctionTwin self, INodeVisitor visitor)
-        void InterferenceFunctionTwin::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
+        getOptions(Simulation self) -> SimulationOptions
+        getOptions(Simulation self) -> SimulationOptions
+        SimulationOptions& Simulation::getOptions()
 
         """
-        return _libBornAgainCore.InterferenceFunctionTwin_accept(self, visitor)
+        return _libBornAgainCore.Simulation_getOptions(self, *args)
 
-    def direction(self):
+    def subscribe(self, inform):
         r"""
-        direction(InterferenceFunctionTwin self) -> kvector_t
-        kvector_t InterferenceFunctionTwin::direction() const
+        subscribe(Simulation self, ProgressHandler::Callback_t inform)
+        void Simulation::subscribe(ProgressHandler::Callback_t inform)
 
         """
-        return _libBornAgainCore.InterferenceFunctionTwin_direction(self)
+        return _libBornAgainCore.Simulation_subscribe(self, inform)
 
-    def meanDistance(self):
+    def setTerminalProgressMonitor(self):
         r"""
-        meanDistance(InterferenceFunctionTwin self) -> double
-        double InterferenceFunctionTwin::meanDistance() const
+        setTerminalProgressMonitor(Simulation self)
+        void Simulation::setTerminalProgressMonitor()
+
+        Initializes a progress monitor that prints to stdout. 
 
         """
-        return _libBornAgainCore.InterferenceFunctionTwin_meanDistance(self)
+        return _libBornAgainCore.Simulation_setTerminalProgressMonitor(self)
 
-    def stdDev(self):
+    def getChildren(self):
         r"""
-        stdDev(InterferenceFunctionTwin self) -> double
-        double InterferenceFunctionTwin::stdDev() const
+        getChildren(Simulation self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > Simulation::getChildren() const
+
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.InterferenceFunctionTwin_stdDev(self)
-    __swig_destroy__ = _libBornAgainCore.delete_InterferenceFunctionTwin
+        return _libBornAgainCore.Simulation_getChildren(self)
 
-# Register InterferenceFunctionTwin in _libBornAgainCore:
-_libBornAgainCore.InterferenceFunctionTwin_swigregister(InterferenceFunctionTwin)
+    def setSampleBuilder(self, ptr):
+        self.samplebuilder = ptr
+        self.setSampleBuilderCpp(ptr)
 
-class IPixel(object):
+
+# Register Simulation in _libBornAgainCore:
+_libBornAgainCore.Simulation_swigregister(Simulation)
+
+class Simulation2D(Simulation):
     r"""
 
 
-    Interface for a function that maps [0,1]x[0,1] to the kvectors in a pixel.
+    Pure virtual base class of OffSpecularSimulation and  GISASSimulation. Holds the common implementations for simulations with a 2D detector
 
-    C++ includes: IPixel.h
+    C++ includes: Simulation2D.h
 
     """
 
@@ -18349,178 +17946,126 @@ class IPixel(object):
     def __init__(self, *args, **kwargs):
         raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IPixel
+    __swig_destroy__ = _libBornAgainCore.delete_Simulation2D
 
     def clone(self):
         r"""
-        clone(IPixel self) -> IPixel
-        virtual IPixel* IPixel::clone() const =0
-
-        """
-        return _libBornAgainCore.IPixel_clone(self)
-
-    def createZeroSizePixel(self, x, y):
-        r"""
-        createZeroSizePixel(IPixel self, double x, double y) -> IPixel
-        virtual IPixel* IPixel::createZeroSizePixel(double x, double y) const =0
+        clone(Simulation2D self) -> Simulation2D
+        Simulation2D* Simulation2D::clone() const override=0
 
         """
-        return _libBornAgainCore.IPixel_createZeroSizePixel(self, x, y)
+        return _libBornAgainCore.Simulation2D_clone(self)
 
-    def getK(self, x, y, wavelength):
+    def prepareSimulation(self):
         r"""
-        getK(IPixel self, double x, double y, double wavelength) -> kvector_t
-        virtual kvector_t IPixel::getK(double x, double y, double wavelength) const =0
-
-        """
-        return _libBornAgainCore.IPixel_getK(self, x, y, wavelength)
+        prepareSimulation(Simulation2D self)
+        void Simulation2D::prepareSimulation() override
 
-    def getIntegrationFactor(self, x, y):
-        r"""
-        getIntegrationFactor(IPixel self, double x, double y) -> double
-        virtual double IPixel::getIntegrationFactor(double x, double y) const =0
+        Put into a clean state for running a simulation. 
 
         """
-        return _libBornAgainCore.IPixel_getIntegrationFactor(self, x, y)
+        return _libBornAgainCore.Simulation2D_prepareSimulation(self)
 
-    def getSolidAngle(self):
+    def setDetectorParameters(self, n_phi, phi_min, phi_max, n_alpha, alpha_min, alpha_max):
         r"""
-        getSolidAngle(IPixel self) -> double
-        virtual double IPixel::getSolidAngle() const =0
-
-        """
-        return _libBornAgainCore.IPixel_getSolidAngle(self)
+        setDetectorParameters(Simulation2D self, size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max)
+        void Simulation2D::setDetectorParameters(size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max)
 
-# Register IPixel in _libBornAgainCore:
-_libBornAgainCore.IPixel_swigregister(IPixel)
+        Sets spherical detector parameters using angle ranges
 
-class SphericalPixel(IPixel):
-    r"""
+        Parameters:
+        -----------
 
+        n_phi: 
+        number of phi-axis bins
 
-    A pixel in a  SphericalDetector.
+        phi_min: 
+        low edge of first phi-bin
 
-    C++ includes: SphericalDetector.h
+        phi_max: 
+        upper edge of last phi-bin
 
-    """
+        n_alpha: 
+        number of alpha-axis bins
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        alpha_min: 
+        low edge of first alpha-bin
 
-    def __init__(self, alpha_bin, phi_bin):
-        r"""
-        __init__(SphericalPixel self, Bin1D alpha_bin, Bin1D phi_bin) -> SphericalPixel
-        SphericalPixel::SphericalPixel(const Bin1D &alpha_bin, const Bin1D &phi_bin)
+        alpha_max: 
+        upper edge of last alpha-bin 
 
         """
-        _libBornAgainCore.SphericalPixel_swiginit(self, _libBornAgainCore.new_SphericalPixel(alpha_bin, phi_bin))
+        return _libBornAgainCore.Simulation2D_setDetectorParameters(self, n_phi, phi_min, phi_max, n_alpha, alpha_min, alpha_max)
 
-    def clone(self):
+    def setDetector(self, detector):
         r"""
-        clone(SphericalPixel self) -> SphericalPixel
-        SphericalPixel * SphericalPixel::clone() const override
-
-        """
-        return _libBornAgainCore.SphericalPixel_clone(self)
+        setDetector(Simulation2D self, IDetector2D detector)
+        void Simulation2D::setDetector(const IDetector2D &detector)
 
-    def createZeroSizePixel(self, x, y):
-        r"""
-        createZeroSizePixel(SphericalPixel self, double x, double y) -> SphericalPixel
-        SphericalPixel * SphericalPixel::createZeroSizePixel(double x, double y) const override
+        Sets the detector (axes can be overwritten later) 
 
         """
-        return _libBornAgainCore.SphericalPixel_createZeroSizePixel(self, x, y)
+        return _libBornAgainCore.Simulation2D_setDetector(self, detector)
 
-    def getK(self, x, y, wavelength):
+    def removeMasks(self):
         r"""
-        getK(SphericalPixel self, double x, double y, double wavelength) -> kvector_t
-        kvector_t SphericalPixel::getK(double x, double y, double wavelength) const override
-
-        """
-        return _libBornAgainCore.SphericalPixel_getK(self, x, y, wavelength)
+        removeMasks(Simulation2D self)
+        void Simulation2D::removeMasks()
 
-    def getIntegrationFactor(self, x, y):
-        r"""
-        getIntegrationFactor(SphericalPixel self, double x, double y) -> double
-        double SphericalPixel::getIntegrationFactor(double x, double y) const override
+        removes all masks from the detector 
 
         """
-        return _libBornAgainCore.SphericalPixel_getIntegrationFactor(self, x, y)
+        return _libBornAgainCore.Simulation2D_removeMasks(self)
 
-    def getSolidAngle(self):
+    def addMask(self, shape, mask_value=True):
         r"""
-        getSolidAngle(SphericalPixel self) -> double
-        double SphericalPixel::getSolidAngle() const override
-
-        """
-        return _libBornAgainCore.SphericalPixel_getSolidAngle(self)
-    __swig_destroy__ = _libBornAgainCore.delete_SphericalPixel
-
-# Register SphericalPixel in _libBornAgainCore:
-_libBornAgainCore.SphericalPixel_swigregister(SphericalPixel)
-
-class SphericalDetector(IDetector2D):
-    r"""
-
-
-    A spherical detector with axes and resolution function.
-
-    C++ includes: SphericalDetector.h
-
-    """
+        addMask(Simulation2D self, IShape2D shape, bool mask_value=True)
+        void Simulation2D::addMask(const IShape2D &shape, bool mask_value=true)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        Adds mask of given shape to the stack of detector masks. The mask value 'true' means that the channel will be excluded from the simulation. The mask which is added last has priority.
 
-    def __init__(self, *args):
-        r"""
-        __init__(SphericalDetector self) -> SphericalDetector
-        __init__(SphericalDetector self, size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max) -> SphericalDetector
-        __init__(SphericalDetector self, SphericalDetector other) -> SphericalDetector
-        SphericalDetector::SphericalDetector(const SphericalDetector &other)
+        Parameters:
+        -----------
 
-        """
-        _libBornAgainCore.SphericalDetector_swiginit(self, _libBornAgainCore.new_SphericalDetector(*args))
+        shape: 
+        The shape of mask ( Rectangle,  Polygon,  Line,  Ellipse)
 
-    def clone(self):
-        r"""
-        clone(SphericalDetector self) -> SphericalDetector
-        SphericalDetector * SphericalDetector::clone() const override
+        mask_value: 
+        The value of mask 
 
         """
-        return _libBornAgainCore.SphericalDetector_clone(self)
+        return _libBornAgainCore.Simulation2D_addMask(self, shape, mask_value)
 
-    def accept(self, visitor):
+    def maskAll(self):
         r"""
-        accept(SphericalDetector self, INodeVisitor visitor)
-        void SphericalDetector::accept(INodeVisitor *visitor) const override
+        maskAll(Simulation2D self)
+        void Simulation2D::maskAll()
 
-        Calls the  INodeVisitor's visit method. 
+        Put the mask for all detector channels (i.e. exclude whole detector from the analysis) 
 
         """
-        return _libBornAgainCore.SphericalDetector_accept(self, visitor)
-    __swig_destroy__ = _libBornAgainCore.delete_SphericalDetector
+        return _libBornAgainCore.Simulation2D_maskAll(self)
 
-    def defaultAxesUnits(self):
+    def setRegionOfInterest(self, xlow, ylow, xup, yup):
         r"""
-        defaultAxesUnits(SphericalDetector self) -> AxesUnits
-        AxesUnits SphericalDetector::defaultAxesUnits() const override
+        setRegionOfInterest(Simulation2D self, double xlow, double ylow, double xup, double yup)
+        void Simulation2D::setRegionOfInterest(double xlow, double ylow, double xup, double yup)
 
-        return default axes units 
+        Sets rectangular region of interest with lower left and upper right corners defined. 
 
         """
-        return _libBornAgainCore.SphericalDetector_defaultAxesUnits(self)
+        return _libBornAgainCore.Simulation2D_setRegionOfInterest(self, xlow, ylow, xup, yup)
 
-# Register SphericalDetector in _libBornAgainCore:
-_libBornAgainCore.SphericalDetector_swigregister(SphericalDetector)
+# Register Simulation2D in _libBornAgainCore:
+_libBornAgainCore.Simulation2D_swigregister(Simulation2D)
 
-class IsGISAXSDetector(SphericalDetector):
+class GISASSimulation(Simulation2D):
     r"""
 
 
-    A spherical detector used for validation with IsGISAXS results.
+    Main class to run a Grazing-Incidence Small-Angle Scattering simulation.
 
-    C++ includes: IsGISAXSDetector.h
+    C++ includes: GISASSimulation.h
 
     """
 
@@ -18529,165 +18074,181 @@ class IsGISAXSDetector(SphericalDetector):
 
     def __init__(self, *args):
         r"""
-        __init__(IsGISAXSDetector self) -> IsGISAXSDetector
-        __init__(IsGISAXSDetector self, size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max) -> IsGISAXSDetector
-        __init__(IsGISAXSDetector self, IsGISAXSDetector other) -> IsGISAXSDetector
-        IsGISAXSDetector::IsGISAXSDetector(const IsGISAXSDetector &other)
+        __init__(GISASSimulation self) -> GISASSimulation
+        __init__(GISASSimulation self, MultiLayer p_sample) -> GISASSimulation
+        __init__(GISASSimulation self, std::shared_ptr< IMultiLayerBuilder > const p_sample_builder) -> GISASSimulation
+        GISASSimulation::GISASSimulation(const std::shared_ptr< IMultiLayerBuilder > p_sample_builder)
 
         """
-        _libBornAgainCore.IsGISAXSDetector_swiginit(self, _libBornAgainCore.new_IsGISAXSDetector(*args))
+        _libBornAgainCore.GISASSimulation_swiginit(self, _libBornAgainCore.new_GISASSimulation(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_GISASSimulation
 
     def clone(self):
         r"""
-        clone(IsGISAXSDetector self) -> IsGISAXSDetector
-        IsGISAXSDetector * IsGISAXSDetector::clone() const override
+        clone(GISASSimulation self) -> GISASSimulation
+        GISASSimulation* GISASSimulation::clone() const override
 
         """
-        return _libBornAgainCore.IsGISAXSDetector_clone(self)
+        return _libBornAgainCore.GISASSimulation_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(IsGISAXSDetector self, INodeVisitor visitor)
-        void IsGISAXSDetector::accept(INodeVisitor *visitor) const final
+        accept(GISASSimulation self, INodeVisitor visitor)
+        void GISASSimulation::accept(INodeVisitor *visitor) const override
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IsGISAXSDetector_accept(self, visitor)
-    __swig_destroy__ = _libBornAgainCore.delete_IsGISAXSDetector
-
-# Register IsGISAXSDetector in _libBornAgainCore:
-_libBornAgainCore.IsGISAXSDetector_swigregister(IsGISAXSDetector)
+        return _libBornAgainCore.GISASSimulation_accept(self, visitor)
 
-class ILatticeOrientation(object):
-    r"""Proxy of C++ ILatticeOrientation class."""
+    def prepareSimulation(self):
+        r"""
+        prepareSimulation(GISASSimulation self)
+        void GISASSimulation::prepareSimulation() override
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+        Put into a clean state for running a simulation. 
 
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
-    __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_ILatticeOrientation
+        """
+        return _libBornAgainCore.GISASSimulation_prepareSimulation(self)
 
-    def clone(self):
+    def result(self):
         r"""
-        clone(ILatticeOrientation self) -> ILatticeOrientation
-        virtual ILatticeOrientation* ILatticeOrientation::clone() const =0
+        result(GISASSimulation self) -> SimulationResult
+        SimulationResult GISASSimulation::result() const override
+
+        Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays 
 
         """
-        return _libBornAgainCore.ILatticeOrientation_clone(self)
+        return _libBornAgainCore.GISASSimulation_result(self)
 
-    def usePrimitiveLattice(self, lattice):
+    def setBeamParameters(self, wavelength, alpha_i, phi_i):
         r"""
-        usePrimitiveLattice(ILatticeOrientation self, Lattice lattice)
-        virtual void ILatticeOrientation::usePrimitiveLattice(const Lattice &lattice)=0
+        setBeamParameters(GISASSimulation self, double wavelength, double alpha_i, double phi_i)
+        void GISASSimulation::setBeamParameters(double wavelength, double alpha_i, double phi_i)
+
+        Sets beam parameters from here (forwarded to  Instrument) 
 
         """
-        return _libBornAgainCore.ILatticeOrientation_usePrimitiveLattice(self, lattice)
+        return _libBornAgainCore.GISASSimulation_setBeamParameters(self, wavelength, alpha_i, phi_i)
 
-    def transformationMatrix(self):
+    def intensityMapSize(self):
         r"""
-        transformationMatrix(ILatticeOrientation self) -> Transform3D
-        virtual Transform3D ILatticeOrientation::transformationMatrix() const =0
+        intensityMapSize(GISASSimulation self) -> size_t
+        size_t GISASSimulation::intensityMapSize() const override
+
+        Returns the total number of the intensity values in the simulation result. 
 
         """
-        return _libBornAgainCore.ILatticeOrientation_transformationMatrix(self)
+        return _libBornAgainCore.GISASSimulation_intensityMapSize(self)
 
-# Register ILatticeOrientation in _libBornAgainCore:
-_libBornAgainCore.ILatticeOrientation_swigregister(ILatticeOrientation)
+# Register GISASSimulation in _libBornAgainCore:
+_libBornAgainCore.GISASSimulation_swigregister(GISASSimulation)
 
-class MillerIndex(object):
-    r"""
+class DepthProbeSimulation(Simulation):
+    r"""Proxy of C++ DepthProbeSimulation class."""
 
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    A direction in reciprocal space, specified by double-valued indices hkl.
+    def __init__(self, *args):
+        r"""
+        __init__(DepthProbeSimulation self) -> DepthProbeSimulation
+        __init__(DepthProbeSimulation self, MultiLayer sample) -> DepthProbeSimulation
+        __init__(DepthProbeSimulation self, std::shared_ptr< IMultiLayerBuilder > const sample_builder) -> DepthProbeSimulation
+        DepthProbeSimulation::DepthProbeSimulation(const std::shared_ptr< IMultiLayerBuilder > sample_builder)
 
-    C++ includes: ILatticeOrientation.h
+        """
+        _libBornAgainCore.DepthProbeSimulation_swiginit(self, _libBornAgainCore.new_DepthProbeSimulation(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_DepthProbeSimulation
 
-    """
+    def clone(self):
+        r"""
+        clone(DepthProbeSimulation self) -> DepthProbeSimulation
+        DepthProbeSimulation * DepthProbeSimulation::clone() const override
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.DepthProbeSimulation_clone(self)
 
-    def __init__(self, h_, k_, l_):
+    def accept(self, visitor):
         r"""
-        __init__(MillerIndex self, double h_, double k_, double l_) -> MillerIndex
-        MillerIndex::MillerIndex(double h_, double k_, double l_)
+        accept(DepthProbeSimulation self, INodeVisitor visitor)
+        void DepthProbeSimulation::accept(INodeVisitor *visitor) const override final
 
-        """
-        _libBornAgainCore.MillerIndex_swiginit(self, _libBornAgainCore.new_MillerIndex(h_, k_, l_))
-    h = property(_libBornAgainCore.MillerIndex_h_get, _libBornAgainCore.MillerIndex_h_set, doc=r"""h : double""")
-    k = property(_libBornAgainCore.MillerIndex_k_get, _libBornAgainCore.MillerIndex_k_set, doc=r"""k : double""")
-    l = property(_libBornAgainCore.MillerIndex_l_get, _libBornAgainCore.MillerIndex_l_set, doc=r"""l : double""")
-    __swig_destroy__ = _libBornAgainCore.delete_MillerIndex
+        Calls the  INodeVisitor's visit method. 
 
-# Register MillerIndex in _libBornAgainCore:
-_libBornAgainCore.MillerIndex_swigregister(MillerIndex)
+        """
+        return _libBornAgainCore.DepthProbeSimulation_accept(self, visitor)
 
-class MillerIndexOrientation(ILatticeOrientation):
-    r"""
+    def result(self):
+        r"""
+        result(DepthProbeSimulation self) -> SimulationResult
+        SimulationResult DepthProbeSimulation::result() const override
 
+        Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays 
 
-    Specifies a rotation of a lattice through the Miller indices of two coordinate axes.
+        """
+        return _libBornAgainCore.DepthProbeSimulation_result(self)
 
-    C++ includes: ILatticeOrientation.h
+    def setBeamParameters(self, _lambda, nbins, alpha_i_min, alpha_i_max, beam_shape=None):
+        r"""
+        setBeamParameters(DepthProbeSimulation self, double _lambda, int nbins, double alpha_i_min, double alpha_i_max, IFootprintFactor beam_shape=None)
+        void DepthProbeSimulation::setBeamParameters(double lambda, int nbins, double alpha_i_min, double alpha_i_max, const IFootprintFactor *beam_shape=nullptr)
 
-    """
+        Sets beam parameters with alpha_i of the beam defined in the range. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
-    QX = _libBornAgainCore.MillerIndexOrientation_QX
-    
-    QY = _libBornAgainCore.MillerIndexOrientation_QY
-    
-    QZ = _libBornAgainCore.MillerIndexOrientation_QZ
-    
+        """
+        return _libBornAgainCore.DepthProbeSimulation_setBeamParameters(self, _lambda, nbins, alpha_i_min, alpha_i_max, beam_shape)
 
-    def __init__(self, q1, index1, q2, index2):
+    def setZSpan(self, n_bins, z_min, z_max):
         r"""
-        __init__(MillerIndexOrientation self, MillerIndexOrientation::QComponent q1, MillerIndex index1, MillerIndexOrientation::QComponent q2, MillerIndex index2) -> MillerIndexOrientation
-        MillerIndexOrientation::MillerIndexOrientation(QComponent q1, MillerIndex index1, QComponent q2, MillerIndex index2)
+        setZSpan(DepthProbeSimulation self, size_t n_bins, double z_min, double z_max)
+        void DepthProbeSimulation::setZSpan(size_t n_bins, double z_min, double z_max)
 
-        This constructor is best explained by an example. Arguments QX, (1,1,0), QY, (0,2,1) mean: Rotate the lattice such that the axis [110] points into x direction, and the axis [021], projected into the yz plane, points into z direction. 
+        Set z positions for intensity calculations. Negative z's correspond to the area under sample surface. The more negative z is, the deeper layer corresponds to it. 
 
         """
-        _libBornAgainCore.MillerIndexOrientation_swiginit(self, _libBornAgainCore.new_MillerIndexOrientation(q1, index1, q2, index2))
-    __swig_destroy__ = _libBornAgainCore.delete_MillerIndexOrientation
+        return _libBornAgainCore.DepthProbeSimulation_setZSpan(self, n_bins, z_min, z_max)
 
-    def clone(self):
+    def getAlphaAxis(self):
         r"""
-        clone(MillerIndexOrientation self) -> MillerIndexOrientation
-        MillerIndexOrientation * MillerIndexOrientation::clone() const override
+        getAlphaAxis(DepthProbeSimulation self) -> IAxis
+        const IAxis * DepthProbeSimulation::getAlphaAxis() const
+
+        Returns a pointer to incident angle axis. 
 
         """
-        return _libBornAgainCore.MillerIndexOrientation_clone(self)
+        return _libBornAgainCore.DepthProbeSimulation_getAlphaAxis(self)
 
-    def usePrimitiveLattice(self, lattice):
+    def getZAxis(self):
         r"""
-        usePrimitiveLattice(MillerIndexOrientation self, Lattice lattice)
-        void MillerIndexOrientation::usePrimitiveLattice(const Lattice &lattice) override
+        getZAxis(DepthProbeSimulation self) -> IAxis
+        const IAxis * DepthProbeSimulation::getZAxis() const
+
+        Returns a pointer to z-position axis. 
 
         """
-        return _libBornAgainCore.MillerIndexOrientation_usePrimitiveLattice(self, lattice)
+        return _libBornAgainCore.DepthProbeSimulation_getZAxis(self)
 
-    def transformationMatrix(self):
+    def intensityMapSize(self):
         r"""
-        transformationMatrix(MillerIndexOrientation self) -> Transform3D
-        Transform3D MillerIndexOrientation::transformationMatrix() const override
+        intensityMapSize(DepthProbeSimulation self) -> size_t
+        size_t DepthProbeSimulation::intensityMapSize() const override
+
+        Returns the total number of the intensity values in the simulation result. 
 
         """
-        return _libBornAgainCore.MillerIndexOrientation_transformationMatrix(self)
+        return _libBornAgainCore.DepthProbeSimulation_intensityMapSize(self)
 
-# Register MillerIndexOrientation in _libBornAgainCore:
-_libBornAgainCore.MillerIndexOrientation_swigregister(MillerIndexOrientation)
+# Register DepthProbeSimulation in _libBornAgainCore:
+_libBornAgainCore.DepthProbeSimulation_swigregister(DepthProbeSimulation)
 
-class Lattice(INode):
+class SpecularSimulation(Simulation):
     r"""
 
 
-    A lattice with three basis vectors.
+    Main class to run a specular simulation.
 
-    C++ includes: Lattice.h
+    C++ includes: SpecularSimulation.h
 
     """
 
@@ -18696,2555 +18257,2743 @@ class Lattice(INode):
 
     def __init__(self, *args):
         r"""
-        __init__(Lattice self) -> Lattice
-        __init__(Lattice self, kvector_t a1, kvector_t a2, kvector_t a3) -> Lattice
-        __init__(Lattice self, Lattice lattice) -> Lattice
-        Lattice::Lattice(const Lattice &lattice)
-
-        """
-        _libBornAgainCore.Lattice_swiginit(self, _libBornAgainCore.new_Lattice(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_Lattice
-
-    def accept(self, visitor):
-        r"""
-        accept(Lattice self, INodeVisitor visitor)
-        void Lattice::accept(INodeVisitor *visitor) const override
-
-        Calls the  INodeVisitor's visit method. 
-
-        """
-        return _libBornAgainCore.Lattice_accept(self, visitor)
-
-    def createTransformedLattice(self, transform):
-        r"""
-        createTransformedLattice(Lattice self, Transform3D const & transform) -> Lattice
-        Lattice Lattice::createTransformedLattice(const Transform3D &transform) const
-
-        Create transformed lattice. 
+        __init__(SpecularSimulation self) -> SpecularSimulation
+        __init__(SpecularSimulation self, MultiLayer sample) -> SpecularSimulation
+        __init__(SpecularSimulation self, std::shared_ptr< IMultiLayerBuilder > const sample_builder) -> SpecularSimulation
+        SpecularSimulation::SpecularSimulation(const std::shared_ptr< IMultiLayerBuilder > sample_builder)
 
         """
-        return _libBornAgainCore.Lattice_createTransformedLattice(self, transform)
+        _libBornAgainCore.SpecularSimulation_swiginit(self, _libBornAgainCore.new_SpecularSimulation(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_SpecularSimulation
 
-    def initialize(self):
+    def clone(self):
         r"""
-        initialize(Lattice self)
-        void Lattice::initialize() const
-
-        Initializes cached data. 
+        clone(SpecularSimulation self) -> SpecularSimulation
+        SpecularSimulation * SpecularSimulation::clone() const override
 
         """
-        return _libBornAgainCore.Lattice_initialize(self)
+        return _libBornAgainCore.SpecularSimulation_clone(self)
 
-    def getBasisVectorA(self):
+    def prepareSimulation(self):
         r"""
-        getBasisVectorA(Lattice self) -> kvector_t
-        kvector_t Lattice::getBasisVectorA() const
+        prepareSimulation(SpecularSimulation self)
+        void SpecularSimulation::prepareSimulation() override
 
-        Returns basis vector a. 
+        Put into a clean state for running a simulation. 
 
         """
-        return _libBornAgainCore.Lattice_getBasisVectorA(self)
+        return _libBornAgainCore.SpecularSimulation_prepareSimulation(self)
 
-    def getBasisVectorB(self):
+    def accept(self, visitor):
         r"""
-        getBasisVectorB(Lattice self) -> kvector_t
-        kvector_t Lattice::getBasisVectorB() const
+        accept(SpecularSimulation self, INodeVisitor visitor)
+        void SpecularSimulation::accept(INodeVisitor *visitor) const override final
 
-        Returns basis vector b. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.Lattice_getBasisVectorB(self)
+        return _libBornAgainCore.SpecularSimulation_accept(self, visitor)
 
-    def getBasisVectorC(self):
+    def result(self):
         r"""
-        getBasisVectorC(Lattice self) -> kvector_t
-        kvector_t Lattice::getBasisVectorC() const
+        result(SpecularSimulation self) -> SimulationResult
+        SimulationResult SpecularSimulation::result() const override
 
-        Returns basis vector c. 
+        Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays. If simulation was not run, returns an array of proper size filled with zeros. 
 
         """
-        return _libBornAgainCore.Lattice_getBasisVectorC(self)
+        return _libBornAgainCore.SpecularSimulation_result(self)
 
-    def resetBasis(self, a1, a2, a3):
+    def setScan(self, scan):
         r"""
-        resetBasis(Lattice self, kvector_t a1, kvector_t a2, kvector_t a3)
-        void Lattice::resetBasis(const kvector_t a1, const kvector_t a2, const kvector_t a3)
+        setScan(SpecularSimulation self, ISpecularScan const & scan)
+        void SpecularSimulation::setScan(const ISpecularScan &scan)
 
-        Resets the basis vectors. 
+        Sets chosen specular scan to the simulation. 
 
         """
-        return _libBornAgainCore.Lattice_resetBasis(self, a1, a2, a3)
+        return _libBornAgainCore.SpecularSimulation_setScan(self, scan)
 
-    def getMillerDirection(self, h, k, l):
+    def coordinateAxis(self):
         r"""
-        getMillerDirection(Lattice self, double h, double k, double l) -> kvector_t
-        kvector_t Lattice::getMillerDirection(double h, double k, double l) const
+        coordinateAxis(SpecularSimulation self) -> IAxis
+        const IAxis * SpecularSimulation::coordinateAxis() const
 
-        Returns normalized direction corresponding to the given Miller indices. 
+        Returns a pointer to coordinate axis. 
 
         """
-        return _libBornAgainCore.Lattice_getMillerDirection(self, h, k, l)
+        return _libBornAgainCore.SpecularSimulation_coordinateAxis(self)
 
-    def volume(self):
+    def footprintFactor(self):
         r"""
-        volume(Lattice self) -> double
-        double Lattice::volume() const
+        footprintFactor(SpecularSimulation self) -> IFootprintFactor
+        const IFootprintFactor * SpecularSimulation::footprintFactor() const
 
-        Returns the volume of the unit cell. 
+        Returns a pointer to footprint factor holder. 
 
         """
-        return _libBornAgainCore.Lattice_volume(self)
+        return _libBornAgainCore.SpecularSimulation_footprintFactor(self)
 
-    def getReciprocalLatticeBasis(self, b1, b2, b3):
+    def intensityMapSize(self):
         r"""
-        getReciprocalLatticeBasis(Lattice self, kvector_t b1, kvector_t b2, kvector_t b3)
-        void Lattice::getReciprocalLatticeBasis(kvector_t &b1, kvector_t &b2, kvector_t &b3) const
+        intensityMapSize(SpecularSimulation self) -> size_t
+        size_t SpecularSimulation::intensityMapSize() const override
 
-        Returns the reciprocal basis vectors. 
+        Returns the total number of the intensity values in the simulation result. 
 
         """
-        return _libBornAgainCore.Lattice_getReciprocalLatticeBasis(self, b1, b2, b3)
+        return _libBornAgainCore.SpecularSimulation_intensityMapSize(self)
 
-    def getNearestLatticeVectorCoordinates(self, vector_in):
-        r"""
-        getNearestLatticeVectorCoordinates(Lattice self, kvector_t vector_in) -> ivector_t
-        ivector_t Lattice::getNearestLatticeVectorCoordinates(const kvector_t vector_in) const
+    def setSampleBuilder(self, ptr):
+        self.samplebuilder = ptr
+        self.setSampleBuilderCpp(ptr)
 
-        Returns the nearest lattice point from a given vector. 
 
-        """
-        return _libBornAgainCore.Lattice_getNearestLatticeVectorCoordinates(self, vector_in)
+# Register SpecularSimulation in _libBornAgainCore:
+_libBornAgainCore.SpecularSimulation_swigregister(SpecularSimulation)
 
-    def getNearestReciprocalLatticeVectorCoordinates(self, vector_in):
-        r"""
-        getNearestReciprocalLatticeVectorCoordinates(Lattice self, kvector_t vector_in) -> ivector_t
-        ivector_t Lattice::getNearestReciprocalLatticeVectorCoordinates(const kvector_t vector_in) const
+class OffSpecSimulation(Simulation2D):
+    r"""
 
-        Returns the nearest reciprocal lattice point from a given vector. 
 
-        """
-        return _libBornAgainCore.Lattice_getNearestReciprocalLatticeVectorCoordinates(self, vector_in)
+    Main class to run an off-specular simulation.
 
-    def reciprocalLatticeVectorsWithinRadius(self, input_vector, radius):
-        r"""
-        reciprocalLatticeVectorsWithinRadius(Lattice self, kvector_t input_vector, double radius) -> vector_kvector_t
-        std::vector< kvector_t > Lattice::reciprocalLatticeVectorsWithinRadius(const kvector_t input_vector, double radius) const
+    C++ includes: OffSpecSimulation.h
 
-        Computes a list of reciprocal lattice vectors within a specified distance of a given vector. 
+    """
 
-        """
-        return _libBornAgainCore.Lattice_reciprocalLatticeVectorsWithinRadius(self, input_vector, radius)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    def setSelectionRule(self, p_selection_rule):
+    def __init__(self, *args):
         r"""
-        setSelectionRule(Lattice self, ISelectionRule p_selection_rule)
-        void Lattice::setSelectionRule(const ISelectionRule &p_selection_rule)
-
-        Sets a selection rule for the reciprocal vectors. 
+        __init__(OffSpecSimulation self) -> OffSpecSimulation
+        __init__(OffSpecSimulation self, MultiLayer p_sample) -> OffSpecSimulation
+        __init__(OffSpecSimulation self, std::shared_ptr< IMultiLayerBuilder > const p_sample_builder) -> OffSpecSimulation
+        OffSpecSimulation::OffSpecSimulation(const std::shared_ptr< class IMultiLayerBuilder > p_sample_builder)
 
         """
-        return _libBornAgainCore.Lattice_setSelectionRule(self, p_selection_rule)
-
-    @staticmethod
-    def createCubicLattice(a):
-        r"""createCubicLattice(double a) -> Lattice"""
-        return _libBornAgainCore.Lattice_createCubicLattice(a)
+        _libBornAgainCore.OffSpecSimulation_swiginit(self, _libBornAgainCore.new_OffSpecSimulation(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_OffSpecSimulation
 
-    @staticmethod
-    def createFCCLattice(a):
-        r"""createFCCLattice(double a) -> Lattice"""
-        return _libBornAgainCore.Lattice_createFCCLattice(a)
+    def clone(self):
+        r"""
+        clone(OffSpecSimulation self) -> OffSpecSimulation
+        OffSpecSimulation* OffSpecSimulation::clone() const override
 
-    @staticmethod
-    def createHexagonalLattice(a, c):
-        r"""createHexagonalLattice(double a, double c) -> Lattice"""
-        return _libBornAgainCore.Lattice_createHexagonalLattice(a, c)
+        """
+        return _libBornAgainCore.OffSpecSimulation_clone(self)
 
-    @staticmethod
-    def createHCPLattice(a, c):
-        r"""createHCPLattice(double a, double c) -> Lattice"""
-        return _libBornAgainCore.Lattice_createHCPLattice(a, c)
+    def accept(self, visitor):
+        r"""
+        accept(OffSpecSimulation self, INodeVisitor visitor)
+        void OffSpecSimulation::accept(INodeVisitor *visitor) const final
 
-    @staticmethod
-    def createTetragonalLattice(a, c):
-        r"""createTetragonalLattice(double a, double c) -> Lattice"""
-        return _libBornAgainCore.Lattice_createTetragonalLattice(a, c)
+        Calls the  INodeVisitor's visit method. 
 
-    @staticmethod
-    def createBCTLattice(a, c):
-        r"""createBCTLattice(double a, double c) -> Lattice"""
-        return _libBornAgainCore.Lattice_createBCTLattice(a, c)
+        """
+        return _libBornAgainCore.OffSpecSimulation_accept(self, visitor)
 
-    def onChange(self):
+    def prepareSimulation(self):
         r"""
-        onChange(Lattice self)
-        void Lattice::onChange() override
+        prepareSimulation(OffSpecSimulation self)
+        void OffSpecSimulation::prepareSimulation() final
 
-        Action to be taken in inherited class when a parameter has changed. 
+        Put into a clean state for running a simulation. 
 
         """
-        return _libBornAgainCore.Lattice_onChange(self)
+        return _libBornAgainCore.OffSpecSimulation_prepareSimulation(self)
 
-# Register Lattice in _libBornAgainCore:
-_libBornAgainCore.Lattice_swigregister(Lattice)
+    def result(self):
+        r"""
+        result(OffSpecSimulation self) -> SimulationResult
+        SimulationResult OffSpecSimulation::result() const override
 
-def Lattice_createCubicLattice(a):
-    r"""Lattice_createCubicLattice(double a) -> Lattice"""
-    return _libBornAgainCore.Lattice_createCubicLattice(a)
+        Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays 
 
-def Lattice_createFCCLattice(a):
-    r"""Lattice_createFCCLattice(double a) -> Lattice"""
-    return _libBornAgainCore.Lattice_createFCCLattice(a)
+        """
+        return _libBornAgainCore.OffSpecSimulation_result(self)
 
-def Lattice_createHexagonalLattice(a, c):
-    r"""Lattice_createHexagonalLattice(double a, double c) -> Lattice"""
-    return _libBornAgainCore.Lattice_createHexagonalLattice(a, c)
+    def setBeamParameters(self, wavelength, alpha_axis, phi_i):
+        r"""
+        setBeamParameters(OffSpecSimulation self, double wavelength, IAxis alpha_axis, double phi_i)
+        void OffSpecSimulation::setBeamParameters(double wavelength, const IAxis &alpha_axis, double phi_i)
 
-def Lattice_createHCPLattice(a, c):
-    r"""Lattice_createHCPLattice(double a, double c) -> Lattice"""
-    return _libBornAgainCore.Lattice_createHCPLattice(a, c)
+        Sets beam parameters from here (forwarded to  Instrument) 
 
-def Lattice_createTetragonalLattice(a, c):
-    r"""Lattice_createTetragonalLattice(double a, double c) -> Lattice"""
-    return _libBornAgainCore.Lattice_createTetragonalLattice(a, c)
+        """
+        return _libBornAgainCore.OffSpecSimulation_setBeamParameters(self, wavelength, alpha_axis, phi_i)
 
-def Lattice_createBCTLattice(a, c):
-    r"""Lattice_createBCTLattice(double a, double c) -> Lattice"""
-    return _libBornAgainCore.Lattice_createBCTLattice(a, c)
+    def beamAxis(self):
+        r"""
+        beamAxis(OffSpecSimulation self) -> IAxis
+        const IAxis * OffSpecSimulation::beamAxis() const
 
+        Returns axis of the beam. 
 
-def CreateFCCLattice(lattice_constant, orientation):
-    r"""
-    CreateFCCLattice(double lattice_constant, ILatticeOrientation orientation) -> Lattice
-    Lattice LatticeUtils::CreateFCCLattice(double lattice_constant, const ILatticeOrientation &orientation)
+        """
+        return _libBornAgainCore.OffSpecSimulation_beamAxis(self)
 
-    """
-    return _libBornAgainCore.CreateFCCLattice(lattice_constant, orientation)
+    def intensityMapSize(self):
+        r"""
+        intensityMapSize(OffSpecSimulation self) -> size_t
+        size_t OffSpecSimulation::intensityMapSize() const override
 
-def CreateHCPLattice(a, c, orientation):
-    r"""
-    CreateHCPLattice(double a, double c, ILatticeOrientation orientation) -> Lattice
-    Lattice LatticeUtils::CreateHCPLattice(double a, double c, const ILatticeOrientation &orientation)
+        Returns the total number of the intensity values in the simulation result. 
 
-    """
-    return _libBornAgainCore.CreateHCPLattice(a, c, orientation)
+        """
+        return _libBornAgainCore.OffSpecSimulation_intensityMapSize(self)
 
-def CreateBCTLattice(a, c, orientation):
-    r"""
-    CreateBCTLattice(double a, double c, ILatticeOrientation orientation) -> Lattice
-    Lattice LatticeUtils::CreateBCTLattice(double a, double c, const ILatticeOrientation &orientation)
+# Register OffSpecSimulation in _libBornAgainCore:
+_libBornAgainCore.OffSpecSimulation_swigregister(OffSpecSimulation)
 
-    """
-    return _libBornAgainCore.CreateBCTLattice(a, c, orientation)
-class Lattice1DParameters(object):
+class IBackground(ICloneable, INode):
     r"""
 
 
-    Basic parameters of a one-dimensional lattice.
+    Interface for a simulating the background signal
 
-    C++ includes: Lattice1DParameters.h
+    C++ includes: IBackground.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IBackground
 
-    def __init__(self, *args):
+    def clone(self):
         r"""
-        __init__(Lattice1DParameters self) -> Lattice1DParameters
-        __init__(Lattice1DParameters self, double length, double xi) -> Lattice1DParameters
-        Lattice1DParameters::Lattice1DParameters(double length, double xi)
-
-        Parameters:
-        -----------
+        clone(IBackground self) -> IBackground
+        virtual IBackground* IBackground::clone() const =0
 
-        length: 
-         Lattice constant.
+        """
+        return _libBornAgainCore.IBackground_clone(self)
 
-        xi: 
-         Lattice rotation angle. 
+    def addBackGround(self, element):
+        r"""
+        addBackGround(IBackground self, double element) -> double
+        virtual double IBackground::addBackGround(double element) const =0
 
         """
-        _libBornAgainCore.Lattice1DParameters_swiginit(self, _libBornAgainCore.new_Lattice1DParameters(*args))
-    m_length = property(_libBornAgainCore.Lattice1DParameters_m_length_get, _libBornAgainCore.Lattice1DParameters_m_length_set, doc=r"""m_length : double""")
-    m_xi = property(_libBornAgainCore.Lattice1DParameters_m_xi_get, _libBornAgainCore.Lattice1DParameters_m_xi_set, doc=r"""m_xi : double""")
-    __swig_destroy__ = _libBornAgainCore.delete_Lattice1DParameters
+        return _libBornAgainCore.IBackground_addBackGround(self, element)
 
-# Register Lattice1DParameters in _libBornAgainCore:
-_libBornAgainCore.Lattice1DParameters_swigregister(Lattice1DParameters)
+# Register IBackground in _libBornAgainCore:
+_libBornAgainCore.IBackground_swigregister(IBackground)
 
-class Lattice2D(ICloneable, INode):
-    r"""Proxy of C++ Lattice2D class."""
+class ConstantBackground(IBackground):
+    r"""
+
+
+    Class representing a constant background signal
+
+    C++ includes: ConstantBackground.h
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    """
 
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def clone(self):
+    def __init__(self, background_value):
         r"""
-        clone(Lattice2D self) -> Lattice2D
-        Lattice2D* Lattice2D::clone() const =0
+        __init__(ConstantBackground self, double background_value) -> ConstantBackground
+        ConstantBackground::ConstantBackground(double background_value)
 
         """
-        return _libBornAgainCore.Lattice2D_clone(self)
+        _libBornAgainCore.ConstantBackground_swiginit(self, _libBornAgainCore.new_ConstantBackground(background_value))
+    __swig_destroy__ = _libBornAgainCore.delete_ConstantBackground
 
-    def length1(self):
+    def clone(self):
         r"""
-        length1(Lattice2D self) -> double
-        virtual double Lattice2D::length1() const =0
+        clone(ConstantBackground self) -> ConstantBackground
+        ConstantBackground * ConstantBackground::clone() const override final
 
         """
-        return _libBornAgainCore.Lattice2D_length1(self)
+        return _libBornAgainCore.ConstantBackground_clone(self)
 
-    def length2(self):
+    def backgroundValue(self):
         r"""
-        length2(Lattice2D self) -> double
-        virtual double Lattice2D::length2() const =0
+        backgroundValue(ConstantBackground self) -> double
+        double ConstantBackground::backgroundValue() const
 
         """
-        return _libBornAgainCore.Lattice2D_length2(self)
+        return _libBornAgainCore.ConstantBackground_backgroundValue(self)
 
-    def latticeAngle(self):
+    def accept(self, visitor):
         r"""
-        latticeAngle(Lattice2D self) -> double
-        virtual double Lattice2D::latticeAngle() const =0
-
-        """
-        return _libBornAgainCore.Lattice2D_latticeAngle(self)
+        accept(ConstantBackground self, INodeVisitor visitor)
+        void ConstantBackground::accept(INodeVisitor *visitor) const override
 
-    def unitCellArea(self):
-        r"""
-        unitCellArea(Lattice2D self) -> double
-        virtual double Lattice2D::unitCellArea() const =0
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.Lattice2D_unitCellArea(self)
+        return _libBornAgainCore.ConstantBackground_accept(self, visitor)
 
-    def rotationAngle(self):
+    def addBackGround(self, intensity):
         r"""
-        rotationAngle(Lattice2D self) -> double
-        double Lattice2D::rotationAngle() const
+        addBackGround(ConstantBackground self, double intensity) -> double
+        double ConstantBackground::addBackGround(double intensity) const override final
 
         """
-        return _libBornAgainCore.Lattice2D_rotationAngle(self)
+        return _libBornAgainCore.ConstantBackground_addBackGround(self, intensity)
 
-    def reciprocalBases(self):
-        r"""
-        reciprocalBases(Lattice2D self) -> Lattice2D::ReciprocalBases
-        Lattice2D::ReciprocalBases Lattice2D::reciprocalBases() const
+# Register ConstantBackground in _libBornAgainCore:
+_libBornAgainCore.ConstantBackground_swigregister(ConstantBackground)
 
-        """
-        return _libBornAgainCore.Lattice2D_reciprocalBases(self)
+class PoissonNoiseBackground(IBackground):
+    r"""
 
-    def setRotationEnabled(self, enabled):
-        r"""
-        setRotationEnabled(Lattice2D self, bool enabled)
-        void Lattice2D::setRotationEnabled(bool enabled)
 
-        """
-        return _libBornAgainCore.Lattice2D_setRotationEnabled(self, enabled)
-    __swig_destroy__ = _libBornAgainCore.delete_Lattice2D
+    Class representing Poisson noise on top of the scattered intensity
 
-# Register Lattice2D in _libBornAgainCore:
-_libBornAgainCore.Lattice2D_swigregister(Lattice2D)
+    C++ includes: PoissonNoiseBackground.h
 
-class BasicLattice(Lattice2D):
-    r"""Proxy of C++ BasicLattice class."""
+    """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, length1, length2, angle, rotation_angle=0.0):
+    def __init__(self):
         r"""
-        __init__(BasicLattice self, double length1, double length2, double angle, double rotation_angle=0.0) -> BasicLattice
-        BasicLattice::BasicLattice(double length1, double length2, double angle, double rotation_angle=0.0)
+        __init__(PoissonNoiseBackground self) -> PoissonNoiseBackground
+        PoissonNoiseBackground::PoissonNoiseBackground()
 
         """
-        _libBornAgainCore.BasicLattice_swiginit(self, _libBornAgainCore.new_BasicLattice(length1, length2, angle, rotation_angle))
+        _libBornAgainCore.PoissonNoiseBackground_swiginit(self, _libBornAgainCore.new_PoissonNoiseBackground())
+    __swig_destroy__ = _libBornAgainCore.delete_PoissonNoiseBackground
 
     def clone(self):
         r"""
-        clone(BasicLattice self) -> BasicLattice
-        BasicLattice * BasicLattice::clone() const
+        clone(PoissonNoiseBackground self) -> PoissonNoiseBackground
+        PoissonNoiseBackground * PoissonNoiseBackground::clone() const override final
 
         """
-        return _libBornAgainCore.BasicLattice_clone(self)
+        return _libBornAgainCore.PoissonNoiseBackground_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(BasicLattice self, INodeVisitor visitor)
-        void BasicLattice::accept(INodeVisitor *visitor) const final
+        accept(PoissonNoiseBackground self, INodeVisitor visitor)
+        void PoissonNoiseBackground::accept(INodeVisitor *visitor) const override
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.BasicLattice_accept(self, visitor)
+        return _libBornAgainCore.PoissonNoiseBackground_accept(self, visitor)
 
-    def length1(self):
+    def addBackGround(self, intensity):
         r"""
-        length1(BasicLattice self) -> double
-        virtual double BasicLattice::length1() const
+        addBackGround(PoissonNoiseBackground self, double intensity) -> double
+        double PoissonNoiseBackground::addBackGround(double intensity) const override final
 
         """
-        return _libBornAgainCore.BasicLattice_length1(self)
-
-    def length2(self):
-        r"""
-        length2(BasicLattice self) -> double
-        virtual double BasicLattice::length2() const
+        return _libBornAgainCore.PoissonNoiseBackground_addBackGround(self, intensity)
 
-        """
-        return _libBornAgainCore.BasicLattice_length2(self)
+# Register PoissonNoiseBackground in _libBornAgainCore:
+_libBornAgainCore.PoissonNoiseBackground_swigregister(PoissonNoiseBackground)
 
-    def latticeAngle(self):
-        r"""
-        latticeAngle(BasicLattice self) -> double
-        virtual double BasicLattice::latticeAngle() const
+class IntensityDataIOFactory(object):
+    r"""
 
-        """
-        return _libBornAgainCore.BasicLattice_latticeAngle(self)
 
-    def unitCellArea(self):
-        r"""
-        unitCellArea(BasicLattice self) -> double
-        double BasicLattice::unitCellArea() const
+    Provides users with possibility to read and write IntensityData from/to files in different format. Type of the file will be deduced from file name. *.txt - ASCII file with 2D array [nrow][ncol], layout as in numpy. *.int - BornAgain internal ASCII format. *.tif - 32-bits tiff file. If file name ends woth "*.gz" or "*.bz2" the file will be zipped on the fly using appropriate algorithm.
 
-        """
-        return _libBornAgainCore.BasicLattice_unitCellArea(self)
-    __swig_destroy__ = _libBornAgainCore.delete_BasicLattice
+    Usage:
 
-# Register BasicLattice in _libBornAgainCore:
-_libBornAgainCore.BasicLattice_swigregister(BasicLattice)
+    C++ includes: IntensityDataIOFactory.h
 
-class SquareLattice(Lattice2D):
-    r"""Proxy of C++ SquareLattice class."""
+    """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, length, rotation_angle=0.0):
-        r"""
-        __init__(SquareLattice self, double length, double rotation_angle=0.0) -> SquareLattice
-        SquareLattice::SquareLattice(double length, double rotation_angle=0.0)
+    @staticmethod
+    def readOutputData(file_name):
+        r"""readOutputData(std::string const & file_name) -> IntensityData"""
+        return _libBornAgainCore.IntensityDataIOFactory_readOutputData(file_name)
 
-        """
-        _libBornAgainCore.SquareLattice_swiginit(self, _libBornAgainCore.new_SquareLattice(length, rotation_angle))
+    @staticmethod
+    def readReflectometryData(file_name):
+        r"""readReflectometryData(std::string const & file_name) -> IntensityData"""
+        return _libBornAgainCore.IntensityDataIOFactory_readReflectometryData(file_name)
 
-    def clone(self):
-        r"""
-        clone(SquareLattice self) -> SquareLattice
-        SquareLattice * SquareLattice::clone() const
+    @staticmethod
+    def readIntensityData(file_name):
+        r"""readIntensityData(std::string const & file_name) -> IHistogram"""
+        return _libBornAgainCore.IntensityDataIOFactory_readIntensityData(file_name)
 
-        """
-        return _libBornAgainCore.SquareLattice_clone(self)
+    @staticmethod
+    def writeOutputData(data, file_name):
+        r"""writeOutputData(IntensityData data, std::string const & file_name)"""
+        return _libBornAgainCore.IntensityDataIOFactory_writeOutputData(data, file_name)
 
-    def accept(self, visitor):
+    @staticmethod
+    def writeIntensityData(histogram, file_name):
+        r"""writeIntensityData(IHistogram histogram, std::string const & file_name)"""
+        return _libBornAgainCore.IntensityDataIOFactory_writeIntensityData(histogram, file_name)
+
+    @staticmethod
+    def writeSimulationResult(result, file_name):
+        r"""writeSimulationResult(SimulationResult result, std::string const & file_name)"""
+        return _libBornAgainCore.IntensityDataIOFactory_writeSimulationResult(result, file_name)
+
+    def __init__(self):
         r"""
-        accept(SquareLattice self, INodeVisitor visitor)
-        void SquareLattice::accept(INodeVisitor *visitor) const final
+        __init__(IntensityDataIOFactory self) -> IntensityDataIOFactory
 
-        Calls the  INodeVisitor's visit method. 
 
-        """
-        return _libBornAgainCore.SquareLattice_accept(self, visitor)
+        Provides users with possibility to read and write IntensityData from/to files in different format. Type of the file will be deduced from file name. *.txt - ASCII file with 2D array [nrow][ncol], layout as in numpy. *.int - BornAgain internal ASCII format. *.tif - 32-bits tiff file. If file name ends woth "*.gz" or "*.bz2" the file will be zipped on the fly using appropriate algorithm.
 
-    def length1(self):
-        r"""
-        length1(SquareLattice self) -> double
-        virtual double SquareLattice::length1() const
+        Usage:
+
+        C++ includes: IntensityDataIOFactory.h
 
         """
-        return _libBornAgainCore.SquareLattice_length1(self)
+        _libBornAgainCore.IntensityDataIOFactory_swiginit(self, _libBornAgainCore.new_IntensityDataIOFactory())
+    __swig_destroy__ = _libBornAgainCore.delete_IntensityDataIOFactory
 
-    def length2(self):
+# Register IntensityDataIOFactory in _libBornAgainCore:
+_libBornAgainCore.IntensityDataIOFactory_swigregister(IntensityDataIOFactory)
+
+def IntensityDataIOFactory_readOutputData(file_name):
+    r"""IntensityDataIOFactory_readOutputData(std::string const & file_name) -> IntensityData"""
+    return _libBornAgainCore.IntensityDataIOFactory_readOutputData(file_name)
+
+def IntensityDataIOFactory_readReflectometryData(file_name):
+    r"""IntensityDataIOFactory_readReflectometryData(std::string const & file_name) -> IntensityData"""
+    return _libBornAgainCore.IntensityDataIOFactory_readReflectometryData(file_name)
+
+def IntensityDataIOFactory_readIntensityData(file_name):
+    r"""IntensityDataIOFactory_readIntensityData(std::string const & file_name) -> IHistogram"""
+    return _libBornAgainCore.IntensityDataIOFactory_readIntensityData(file_name)
+
+def IntensityDataIOFactory_writeOutputData(data, file_name):
+    r"""IntensityDataIOFactory_writeOutputData(IntensityData data, std::string const & file_name)"""
+    return _libBornAgainCore.IntensityDataIOFactory_writeOutputData(data, file_name)
+
+def IntensityDataIOFactory_writeIntensityData(histogram, file_name):
+    r"""IntensityDataIOFactory_writeIntensityData(IHistogram histogram, std::string const & file_name)"""
+    return _libBornAgainCore.IntensityDataIOFactory_writeIntensityData(histogram, file_name)
+
+def IntensityDataIOFactory_writeSimulationResult(result, file_name):
+    r"""IntensityDataIOFactory_writeSimulationResult(SimulationResult result, std::string const & file_name)"""
+    return _libBornAgainCore.IntensityDataIOFactory_writeSimulationResult(result, file_name)
+
+class IHistogram(object):
+    r"""
+
+
+    Base class for 1D and 2D histograms holding values of double type.
+
+    C++ includes: IHistogram.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    INTEGRAL = _libBornAgainCore.IHistogram_INTEGRAL
+    
+    AVERAGE = _libBornAgainCore.IHistogram_AVERAGE
+    
+    STANDARD_ERROR = _libBornAgainCore.IHistogram_STANDARD_ERROR
+    
+    NENTRIES = _libBornAgainCore.IHistogram_NENTRIES
+    
+    __swig_destroy__ = _libBornAgainCore.delete_IHistogram
+
+    def clone(self):
         r"""
-        length2(SquareLattice self) -> double
-        virtual double SquareLattice::length2() const
+        clone(IHistogram self) -> IHistogram
+        virtual IHistogram* IHistogram::clone() const =0
 
         """
-        return _libBornAgainCore.SquareLattice_length2(self)
+        return _libBornAgainCore.IHistogram_clone(self)
 
-    def latticeAngle(self):
+    def getRank(self):
         r"""
-        latticeAngle(SquareLattice self) -> double
-        double SquareLattice::latticeAngle() const
+        getRank(IHistogram self) -> size_t
+        virtual size_t IHistogram::getRank() const =0
+
+        Returns number of histogram dimensions. 
 
         """
-        return _libBornAgainCore.SquareLattice_latticeAngle(self)
+        return _libBornAgainCore.IHistogram_getRank(self)
 
-    def unitCellArea(self):
+    def getTotalNumberOfBins(self):
         r"""
-        unitCellArea(SquareLattice self) -> double
-        double SquareLattice::unitCellArea() const
+        getTotalNumberOfBins(IHistogram self) -> size_t
+        size_t IHistogram::getTotalNumberOfBins() const
+
+        Returns total number of histogram bins. For 2D histograms the result will be the product of bin numbers along X and Y axes. 
 
         """
-        return _libBornAgainCore.SquareLattice_unitCellArea(self)
-    __swig_destroy__ = _libBornAgainCore.delete_SquareLattice
+        return _libBornAgainCore.IHistogram_getTotalNumberOfBins(self)
 
-# Register SquareLattice in _libBornAgainCore:
-_libBornAgainCore.SquareLattice_swigregister(SquareLattice)
+    def getXaxis(self):
+        r"""
+        getXaxis(IHistogram self) -> IAxis
+        const IAxis & IHistogram::getXaxis() const
 
-class HexagonalLattice(Lattice2D):
-    r"""Proxy of C++ HexagonalLattice class."""
+        returns x-axis 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.IHistogram_getXaxis(self)
 
-    def __init__(self, length, rotation_angle=0.0):
+    def getYaxis(self):
         r"""
-        __init__(HexagonalLattice self, double length, double rotation_angle=0.0) -> HexagonalLattice
-        HexagonalLattice::HexagonalLattice(double length, double rotation_angle=0.0)
+        getYaxis(IHistogram self) -> IAxis
+        const IAxis & IHistogram::getYaxis() const
+
+        returns y-axis for 2D histograms 
 
         """
-        _libBornAgainCore.HexagonalLattice_swiginit(self, _libBornAgainCore.new_HexagonalLattice(length, rotation_angle))
+        return _libBornAgainCore.IHistogram_getYaxis(self)
 
-    def clone(self):
+    def getXmin(self):
         r"""
-        clone(HexagonalLattice self) -> HexagonalLattice
-        HexagonalLattice * HexagonalLattice::clone() const
+        getXmin(IHistogram self) -> double
+        double IHistogram::getXmin() const
+
+        Returns x-axis min (lower edge of first bin). 
 
         """
-        return _libBornAgainCore.HexagonalLattice_clone(self)
+        return _libBornAgainCore.IHistogram_getXmin(self)
 
-    def accept(self, visitor):
+    def getXmax(self):
         r"""
-        accept(HexagonalLattice self, INodeVisitor visitor)
-        void HexagonalLattice::accept(INodeVisitor *visitor) const final
+        getXmax(IHistogram self) -> double
+        double IHistogram::getXmax() const
 
-        Calls the  INodeVisitor's visit method. 
+        Returns x-axis max (upper edge of last bin). 
 
         """
-        return _libBornAgainCore.HexagonalLattice_accept(self, visitor)
+        return _libBornAgainCore.IHistogram_getXmax(self)
 
-    def length1(self):
+    def getNbinsX(self):
         r"""
-        length1(HexagonalLattice self) -> double
-        virtual double HexagonalLattice::length1() const
+        getNbinsX(IHistogram self) -> size_t
+        size_t IHistogram::getNbinsX() const
+
+        Returns number of bins on x-axis. 
 
         """
-        return _libBornAgainCore.HexagonalLattice_length1(self)
+        return _libBornAgainCore.IHistogram_getNbinsX(self)
 
-    def length2(self):
+    def getYmin(self):
         r"""
-        length2(HexagonalLattice self) -> double
-        virtual double HexagonalLattice::length2() const
+        getYmin(IHistogram self) -> double
+        double IHistogram::getYmin() const
+
+        Returns y-axis min (lower edge of first bin) for 2D histograms. 
 
         """
-        return _libBornAgainCore.HexagonalLattice_length2(self)
+        return _libBornAgainCore.IHistogram_getYmin(self)
 
-    def latticeAngle(self):
+    def getYmax(self):
         r"""
-        latticeAngle(HexagonalLattice self) -> double
-        double HexagonalLattice::latticeAngle() const
+        getYmax(IHistogram self) -> double
+        double IHistogram::getYmax() const
+
+        Returns y-axis max (upper edge of last bin) for 2D histograms. 
 
         """
-        return _libBornAgainCore.HexagonalLattice_latticeAngle(self)
+        return _libBornAgainCore.IHistogram_getYmax(self)
 
-    def unitCellArea(self):
+    def getNbinsY(self):
         r"""
-        unitCellArea(HexagonalLattice self) -> double
-        double HexagonalLattice::unitCellArea() const
+        getNbinsY(IHistogram self) -> size_t
+        size_t IHistogram::getNbinsY() const
+
+        Returns number of bins on y-axis. 
 
         """
-        return _libBornAgainCore.HexagonalLattice_unitCellArea(self)
-    __swig_destroy__ = _libBornAgainCore.delete_HexagonalLattice
+        return _libBornAgainCore.IHistogram_getNbinsY(self)
 
-# Register HexagonalLattice in _libBornAgainCore:
-_libBornAgainCore.HexagonalLattice_swigregister(HexagonalLattice)
+    def getGlobalBin(self, binx, biny=0):
+        r"""
+        getGlobalBin(IHistogram self, size_t binx, size_t biny=0) -> size_t
+        size_t IHistogram::getGlobalBin(size_t binx, size_t biny=0) const
 
-class Layer(ISample):
-    r"""
+        Returns global bin index for given axes indices. For 1D histogram the global bin index coinside with x-axis index.
 
+        Parameters:
+        -----------
 
-    A layer, with thickness (in nanometer) and material.
+        binx: 
+        x-axis bin index
 
-    C++ includes: Layer.h
+        biny: 
+        y-axis bin index (for 2D histograms)
 
-    """
+        The global bin index 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.IHistogram_getGlobalBin(self, binx, biny)
 
-    def __init__(self, material, thickness=0):
+    def findGlobalBin(self, x, y):
         r"""
-        __init__(Layer self, Material material, double thickness=0) -> Layer
-        Layer::Layer(Material material, double thickness=0)
+        findGlobalBin(IHistogram self, double x, double y) -> size_t
+        size_t IHistogram::findGlobalBin(double x, double y) const
 
-        Constructor of a layer with thickness and material
+        Returns closest global bin index for given axes coordinates. For 1D.
 
         Parameters:
         -----------
 
-        material: 
-        material the layer is made of
+        x: 
+        Value on x-axis
 
-        thickness: 
-        thickness of a layer in nanometers 
+        y: 
+        Value on y-axis (for 2D histograms)
+
+        Closest global bin index 
 
         """
-        _libBornAgainCore.Layer_swiginit(self, _libBornAgainCore.new_Layer(material, thickness))
-    __swig_destroy__ = _libBornAgainCore.delete_Layer
+        return _libBornAgainCore.IHistogram_findGlobalBin(self, x, y)
 
-    def clone(self):
+    def getXaxisIndex(self, i):
         r"""
-        clone(Layer self) -> Layer
-        Layer * Layer::clone() const override final
+        getXaxisIndex(IHistogram self, size_t i) -> size_t
+        size_t IHistogram::getXaxisIndex(size_t i) const
 
-        Returns a clone of this  ISample object. 
+        Returns x-axis bin index for given globalbin. For 1D histograms returned value conicide with globalbin value. 
 
         """
-        return _libBornAgainCore.Layer_clone(self)
+        return _libBornAgainCore.IHistogram_getXaxisIndex(self, i)
 
-    def accept(self, visitor):
+    def getYaxisIndex(self, i):
         r"""
-        accept(Layer self, INodeVisitor visitor)
-        void Layer::accept(INodeVisitor *visitor) const override final
+        getYaxisIndex(IHistogram self, size_t i) -> size_t
+        size_t IHistogram::getYaxisIndex(size_t i) const
 
-        Calls the  INodeVisitor's visit method. 
+        Returns y-axis bin index for given globalbin (for 2D histograms). 
 
         """
-        return _libBornAgainCore.Layer_accept(self, visitor)
+        return _libBornAgainCore.IHistogram_getYaxisIndex(self, i)
 
-    def setThickness(self, thickness):
+    def getXaxisValue(self, i):
         r"""
-        setThickness(Layer self, double thickness)
-        void Layer::setThickness(double thickness)
+        getXaxisValue(IHistogram self, size_t i) -> double
+        double IHistogram::getXaxisValue(size_t i)
 
-        Sets layer thickness in nanometers. 
+        Returns the value on x-axis corresponding to the global bin index.
 
-        """
-        return _libBornAgainCore.Layer_setThickness(self, thickness)
+        Parameters:
+        -----------
 
-    def thickness(self):
-        r"""
-        thickness(Layer self) -> double
-        double Layer::thickness() const
+        globalbin: 
+        The global bin index
+
+        The center of corresponding bin of the axis 
 
         """
-        return _libBornAgainCore.Layer_thickness(self)
+        return _libBornAgainCore.IHistogram_getXaxisValue(self, i)
 
-    def material(self):
+    def getYaxisValue(self, i):
         r"""
-        material(Layer self) -> Material
-        const Material* Layer::material() const override final
+        getYaxisValue(IHistogram self, size_t i) -> double
+        double IHistogram::getYaxisValue(size_t i)
 
-        Returns nullptr, unless overwritten to return a specific material. 
+        Returns the value on y-axis corresponding to the 2D histogram global bin index.
+
+        Parameters:
+        -----------
+
+        globalbin: 
+        The global bin index
+
+        The center of corresponding bin of the axis 
 
         """
-        return _libBornAgainCore.Layer_material(self)
+        return _libBornAgainCore.IHistogram_getYaxisValue(self, i)
 
-    def setMaterial(self, material):
+    def getData(self, *args):
         r"""
-        setMaterial(Layer self, Material material)
-        void Layer::setMaterial(Material material)
+        getData(IHistogram self) -> OutputData< CumulativeValue > const
+        getData(IHistogram self) -> OutputData< CumulativeValue > &
+        OutputData<CumulativeValue>& IHistogram::getData()
 
         """
-        return _libBornAgainCore.Layer_setMaterial(self, material)
+        return _libBornAgainCore.IHistogram_getData(self, *args)
 
-    def addLayout(self, decoration):
+    def getBinContent(self, *args):
         r"""
-        addLayout(Layer self, ILayout decoration)
-        void Layer::addLayout(const ILayout &decoration)
+        getBinContent(IHistogram self, size_t i) -> double
+        getBinContent(IHistogram self, size_t binx, size_t biny) -> double
+        double IHistogram::getBinContent(size_t binx, size_t biny) const
+
+        Returns content (accumulated value) of the 2D histogram bin with given indices.
+
+        Parameters:
+        -----------
+
+        binx: 
+        x-axis bin index
+
+        biny: 
+        y-axis bin index
+
+        The value accumulated by the bin (integral) 
 
         """
-        return _libBornAgainCore.Layer_addLayout(self, decoration)
+        return _libBornAgainCore.IHistogram_getBinContent(self, *args)
 
-    def numberOfLayouts(self):
+    def setBinContent(self, i, value):
         r"""
-        numberOfLayouts(Layer self) -> size_t
-        size_t Layer::numberOfLayouts() const
+        setBinContent(IHistogram self, size_t i, double value)
+        void IHistogram::setBinContent(size_t i, double value)
+
+        Sets content of the bin corresponding to the globalbin number. 
 
         """
-        return _libBornAgainCore.Layer_numberOfLayouts(self)
+        return _libBornAgainCore.IHistogram_setBinContent(self, i, value)
 
-    def layouts(self):
+    def addBinContent(self, i, value):
         r"""
-        layouts(Layer self) -> std::vector< ILayout const *,std::allocator< ILayout const * > >
-        std::vector< const ILayout * > Layer::layouts() const
+        addBinContent(IHistogram self, size_t i, double value)
+        void IHistogram::addBinContent(size_t i, double value)
+
+        Add the value to the bin. 
 
         """
-        return _libBornAgainCore.Layer_layouts(self)
+        return _libBornAgainCore.IHistogram_addBinContent(self, i, value)
 
-    def getChildren(self):
+    def getBinError(self, *args):
         r"""
-        getChildren(Layer self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > Layer::getChildren() const override final
+        getBinError(IHistogram self, size_t i) -> double
+        getBinError(IHistogram self, size_t binx, size_t biny) -> double
+        double IHistogram::getBinError(size_t binx, size_t biny) const
 
-        Returns a vector of children (const). 
+        Returns error of the bin with given indices (for 2D histograms). 
 
         """
-        return _libBornAgainCore.Layer_getChildren(self)
+        return _libBornAgainCore.IHistogram_getBinError(self, *args)
 
-    def registerThickness(self, make_registered=True):
+    def getBinAverage(self, *args):
         r"""
-        registerThickness(Layer self, bool make_registered=True)
-        void Layer::registerThickness(bool make_registered=true)
+        getBinAverage(IHistogram self, size_t i) -> double
+        getBinAverage(IHistogram self, size_t binx, size_t biny) -> double
+        double IHistogram::getBinAverage(size_t binx, size_t biny) const
+
+        Returns average value of the bin with given indices (for 2D histograms). 
 
         """
-        return _libBornAgainCore.Layer_registerThickness(self, make_registered)
+        return _libBornAgainCore.IHistogram_getBinAverage(self, *args)
 
-    def setNumberOfSlices(self, n_slices):
+    def getBinNumberOfEntries(self, *args):
         r"""
-        setNumberOfSlices(Layer self, unsigned int n_slices)
-        void Layer::setNumberOfSlices(unsigned int n_slices)
+        getBinNumberOfEntries(IHistogram self, size_t i) -> int
+        getBinNumberOfEntries(IHistogram self, size_t binx, size_t biny) -> int
+        int IHistogram::getBinNumberOfEntries(size_t binx, size_t biny) const
+
+        Returns number of entries in the bin with given indices (for 2D histograms). 
 
         """
-        return _libBornAgainCore.Layer_setNumberOfSlices(self, n_slices)
+        return _libBornAgainCore.IHistogram_getBinNumberOfEntries(self, *args)
 
-    def numberOfSlices(self):
+    def getMaximum(self):
         r"""
-        numberOfSlices(Layer self) -> unsigned int
-        unsigned int Layer::numberOfSlices() const
+        getMaximum(IHistogram self) -> double
+        double IHistogram::getMaximum() const
+
+        Returns histogram maximum value (maximum of  getBinContent() over all bins) 
 
         """
-        return _libBornAgainCore.Layer_numberOfSlices(self)
+        return _libBornAgainCore.IHistogram_getMaximum(self)
 
-# Register Layer in _libBornAgainCore:
-_libBornAgainCore.Layer_swigregister(Layer)
+    def getMaximumBinIndex(self):
+        r"""
+        getMaximumBinIndex(IHistogram self) -> size_t
+        size_t IHistogram::getMaximumBinIndex() const
 
-class LayerRoughness(ISample):
-    r"""
+        Returns globalbin index with maximum content. 
 
+        """
+        return _libBornAgainCore.IHistogram_getMaximumBinIndex(self)
 
-    A roughness of interface between two layers.
+    def getMinimum(self):
+        r"""
+        getMinimum(IHistogram self) -> double
+        double IHistogram::getMinimum() const
 
-    Based on the article D.K.G. de Boer, Physical review B, Volume 51, Number 8, 15 February 1995 "X-ray reflection and transmission by rough surfaces"
+        Returns histogram minimum value (minimum of  getBinContent() over all bins) 
 
-    C++ includes: LayerRoughness.h
+        """
+        return _libBornAgainCore.IHistogram_getMinimum(self)
 
-    """
+    def getMinimumBinIndex(self):
+        r"""
+        getMinimumBinIndex(IHistogram self) -> size_t
+        size_t IHistogram::getMinimumBinIndex() const
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        Returns globalbin index with minimum content. 
 
-    def __init__(self, *args):
-        r"""
-        __init__(LayerRoughness self) -> LayerRoughness
-        __init__(LayerRoughness self, double sigma, double hurstParameter, double lateralCorrLength) -> LayerRoughness
-        LayerRoughness::LayerRoughness(double sigma, double hurstParameter, double lateralCorrLength)
+        """
+        return _libBornAgainCore.IHistogram_getMinimumBinIndex(self)
 
-        Constructor of layer roughness.
+    def scale(self, value):
+        r"""
+        scale(IHistogram self, double value)
+        void IHistogram::scale(double value)
 
-        Parameters:
-        -----------
+        Multiply this histogram (every bin content value) by a constant. 
 
-        sigma: 
-        rms of the roughness in nanometers
+        """
+        return _libBornAgainCore.IHistogram_scale(self, value)
 
-        hurstParameter: 
-        hurst parameter which describes how jagged the interface, dimensionless [0.0, 1.0], where 0.0 gives more spikes, 1.0 more smoothness
+    def integral(self):
+        r"""
+        integral(IHistogram self) -> double
+        double IHistogram::integral() const
 
-        lateralCorrLength: 
-        lateral correlation length of the roughness in nanometers 
+        Returns integral of bins content (computed as a sum of all bin content). 
 
         """
-        _libBornAgainCore.LayerRoughness_swiginit(self, _libBornAgainCore.new_LayerRoughness(*args))
+        return _libBornAgainCore.IHistogram_integral(self)
 
-    def clone(self):
+    def array(self, *args):
         r"""
-        clone(LayerRoughness self) -> LayerRoughness
-        LayerRoughness* LayerRoughness::clone() const
+        array(IHistogram self, IHistogram::DataType dataType=DataType::INTEGRAL) -> PyObject
+        PyObject * IHistogram::array(DataType dataType=DataType::INTEGRAL) const
 
-        Returns a clone of this  ISample object. 
+        Returns numpy array with bin content (accumulated values). 
 
         """
-        return _libBornAgainCore.LayerRoughness_clone(self)
+        return _libBornAgainCore.IHistogram_array(self, *args)
 
-    def accept(self, visitor):
+    def getArrayObsolete(self, *args):
         r"""
-        accept(LayerRoughness self, INodeVisitor visitor)
-        virtual void LayerRoughness::accept(INodeVisitor *visitor) const
+        getArrayObsolete(IHistogram self, IHistogram::DataType dataType=DataType::INTEGRAL) -> PyObject
+        PyObject * IHistogram::getArray(DataType dataType=DataType::INTEGRAL) const
 
-        Calls the  INodeVisitor's visit method. 
+        Deprecated
+        Use  array() instead. 
 
         """
-        return _libBornAgainCore.LayerRoughness_accept(self, visitor)
+        return _libBornAgainCore.IHistogram_getArrayObsolete(self, *args)
 
-    def getSpectralFun(self, kvec):
+    def reset(self):
         r"""
-        getSpectralFun(LayerRoughness self, kvector_t kvec) -> double
-        double LayerRoughness::getSpectralFun(const kvector_t kvec) const
+        reset(IHistogram self)
+        void IHistogram::reset()
 
-        Returns power spectral density of the surface roughness.
+        Reset histogram content (axes remains) 
 
-        Power spectral density of the surface roughness is a result of two-dimensional Fourier transform of the correlation function of the roughness profile.
+        """
+        return _libBornAgainCore.IHistogram_reset(self)
 
-        Based on the article D.K.G. de Boer, Physical review B, Volume 51, Number 8, 15 February 1995 "X-ray reflection and transmission by rough surfaces" 
+    @staticmethod
+    def createHistogram(source):
+        r"""createHistogram(IntensityData source) -> IHistogram"""
+        return _libBornAgainCore.IHistogram_createHistogram(source)
 
+    @staticmethod
+    def createFrom(*args):
+        r"""
+        createFrom(std::string const & filename) -> IHistogram
+        createFrom(vdouble2d_t data) -> IHistogram
         """
-        return _libBornAgainCore.LayerRoughness_getSpectralFun(self, kvec)
+        return _libBornAgainCore.IHistogram_createFrom(*args)
 
-    def getCorrFun(self, k):
+    def createOutputData(self, *args):
         r"""
-        getCorrFun(LayerRoughness self, kvector_t k) -> double
-        double LayerRoughness::getCorrFun(const kvector_t k) const
+        createOutputData(IHistogram self, IHistogram::DataType dataType=DataType::INTEGRAL) -> IntensityData
+        OutputData< double > * IHistogram::createOutputData(DataType dataType=DataType::INTEGRAL) const
 
-        Correlation function of the roughness profile. 
+        creates new  OutputData with histogram's shape and values corresponding to DataType
+
+        creates new  OutputData with histogram's shape and put there values corresponding to DataType 
 
         """
-        return _libBornAgainCore.LayerRoughness_getCorrFun(self, k)
+        return _libBornAgainCore.IHistogram_createOutputData(self, *args)
 
-    def setSigma(self, sigma):
+    def hasSameShape(self, other):
         r"""
-        setSigma(LayerRoughness self, double sigma)
-        void LayerRoughness::setSigma(double sigma)
+        hasSameShape(IHistogram self, IHistogram other) -> bool
+        bool IHistogram::hasSameShape(const IHistogram &other) const
 
-        Sets rms of roughness. 
+        Returns true if objects a) have same dimensions b) bin boundaries of axes coincide. 
 
         """
-        return _libBornAgainCore.LayerRoughness_setSigma(self, sigma)
+        return _libBornAgainCore.IHistogram_hasSameShape(self, other)
 
-    def getSigma(self):
+    def hasSameDimensions(self, other):
         r"""
-        getSigma(LayerRoughness self) -> double
-        double LayerRoughness::getSigma() const
+        hasSameDimensions(IHistogram self, IHistogram other) -> bool
+        bool IHistogram::hasSameDimensions(const IHistogram &other) const
 
-        Returns rms of roughness. 
+        Returns true if object have same rank and number of axes bins. 
 
         """
-        return _libBornAgainCore.LayerRoughness_getSigma(self)
+        return _libBornAgainCore.IHistogram_hasSameDimensions(self, other)
 
-    def setHurstParameter(self, hurstParameter):
+    def __iadd__(self, right):
+        r"""__iadd__(IHistogram self, IHistogram right) -> IHistogram"""
+        return _libBornAgainCore.IHistogram___iadd__(self, right)
+
+    def relativeDifferenceHistogram(self, rhs):
         r"""
-        setHurstParameter(LayerRoughness self, double hurstParameter)
-        void LayerRoughness::setHurstParameter(double hurstParameter)
+        relativeDifferenceHistogram(IHistogram self, IHistogram rhs) -> IHistogram
+        IHistogram * IHistogram::relativeDifferenceHistogram(const IHistogram &rhs)
 
-        Sets hurst parameter. It describes how jagged the surface is. 
+        returns histogram representing relative difference of two histograms. 
 
         """
-        return _libBornAgainCore.LayerRoughness_setHurstParameter(self, hurstParameter)
+        return _libBornAgainCore.IHistogram_relativeDifferenceHistogram(self, rhs)
 
-    def getHurstParameter(self):
+    def save(self, filename):
         r"""
-        getHurstParameter(LayerRoughness self) -> double
-        double LayerRoughness::getHurstParameter() const
+        save(IHistogram self, std::string const & filename)
+        void IHistogram::save(const std::string &filename)
 
-        Returns hurst parameter. 
+        Saves histogram in file Following formats are available: *.txt, *.tif, *.int (*.txt.gz, *.tif.gz, *.int.gz) 
 
         """
-        return _libBornAgainCore.LayerRoughness_getHurstParameter(self)
+        return _libBornAgainCore.IHistogram_save(self, filename)
 
-    def setLatteralCorrLength(self, lateralCorrLength):
+    def load(self, filename):
         r"""
-        setLatteralCorrLength(LayerRoughness self, double lateralCorrLength)
-        void LayerRoughness::setLatteralCorrLength(double lateralCorrLength)
+        load(IHistogram self, std::string const & filename)
+        void IHistogram::load(const std::string &filename)
 
-        Sets lateral correlation length. 
+        Loads histogram from file, the shape of array in file should match Following formats are available: *.txt, *.tif, *.int (*.txt.gz, *.tif.gz, *.int.gz) Only bin content will be loaded, histogram axes remain the same. 
 
         """
-        return _libBornAgainCore.LayerRoughness_setLatteralCorrLength(self, lateralCorrLength)
+        return _libBornAgainCore.IHistogram_load(self, filename)
 
-    def getLatteralCorrLength(self):
-        r"""
-        getLatteralCorrLength(LayerRoughness self) -> double
-        double LayerRoughness::getLatteralCorrLength() const
+    @deprecated("Deprecated. Use array() instead.")
+    def getArray(self):
+        return self.getArrayObsolete()
 
-        Returns lateral correlation length. 
 
-        """
-        return _libBornAgainCore.LayerRoughness_getLatteralCorrLength(self)
-    __swig_destroy__ = _libBornAgainCore.delete_LayerRoughness
+# Register IHistogram in _libBornAgainCore:
+_libBornAgainCore.IHistogram_swigregister(IHistogram)
 
-# Register LayerRoughness in _libBornAgainCore:
-_libBornAgainCore.LayerRoughness_swigregister(LayerRoughness)
+def IHistogram_createHistogram(source):
+    r"""IHistogram_createHistogram(IntensityData source) -> IHistogram"""
+    return _libBornAgainCore.IHistogram_createHistogram(source)
 
-class Line(IShape2D):
+def IHistogram_createFrom(*args):
+    r"""
+    IHistogram_createFrom(std::string const & filename) -> IHistogram
+    IHistogram_createFrom(vdouble2d_t data) -> IHistogram
+    """
+    return _libBornAgainCore.IHistogram_createFrom(*args)
+
+class Histogram1D(IHistogram):
     r"""
 
 
-    A line segment.
+    One dimensional histogram.
 
-    C++ includes: Line.h
+    C++ includes: Histogram1D.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, x1, y1, x2, y2):
+    def __init__(self, *args):
         r"""
-        __init__(Line self, double x1, double y1, double x2, double y2) -> Line
-        Line::Line(double x1, double y1, double x2, double y2)
+        __init__(Histogram1D self, int nbinsx, double xlow, double xup) -> Histogram1D
+        __init__(Histogram1D self, int nbinsx, vdouble1d_t xbins) -> Histogram1D
+        __init__(Histogram1D self, IAxis axis) -> Histogram1D
+        __init__(Histogram1D self, IntensityData data) -> Histogram1D
+        Histogram1D::Histogram1D(const OutputData< double > &data)
+
+        Constructor for 1D histograms from basic  OutputData object. 
 
         """
-        _libBornAgainCore.Line_swiginit(self, _libBornAgainCore.new_Line(x1, y1, x2, y2))
+        _libBornAgainCore.Histogram1D_swiginit(self, _libBornAgainCore.new_Histogram1D(*args))
 
     def clone(self):
         r"""
-        clone(Line self) -> Line
-        Line* Line::clone() const
+        clone(Histogram1D self) -> Histogram1D
+        Histogram1D * Histogram1D::clone() const
+
+        Returns clone of other histogram. 
 
         """
-        return _libBornAgainCore.Line_clone(self)
+        return _libBornAgainCore.Histogram1D_clone(self)
 
-    def contains(self, *args):
+    def getRank(self):
         r"""
-        contains(Line self, double x, double y) -> bool
-        contains(Line self, Bin1D binx, Bin1D biny) -> bool
-        bool Line::contains(const Bin1D &binx, const Bin1D &biny) const
+        getRank(Histogram1D self) -> size_t
+        size_t Histogram1D::getRank() const
 
-        Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). 
+        Returns the number of histogram dimensions. 
 
         """
-        return _libBornAgainCore.Line_contains(self, *args)
-    __swig_destroy__ = _libBornAgainCore.delete_Line
-
-# Register Line in _libBornAgainCore:
-_libBornAgainCore.Line_swigregister(Line)
+        return _libBornAgainCore.Histogram1D_getRank(self)
 
-class VerticalLine(IShape2D):
-    r"""
+    def fill(self, x, weight=1.0):
+        r"""
+        fill(Histogram1D self, double x, double weight=1.0) -> int
+        int Histogram1D::fill(double x, double weight=1.0)
 
+        Increment bin with abscissa x with a weight. 
 
-    An infinite vertical line.
+        """
+        return _libBornAgainCore.Histogram1D_fill(self, x, weight)
 
-    C++ includes: Line.h
+    def getBinCenters(self):
+        r"""
+        getBinCenters(Histogram1D self) -> vdouble1d_t
+        std::vector< double > Histogram1D::getBinCenters() const
 
-    """
+        returns vector of histogram bin centers 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return self.getBinCentersNumpy()
 
-    def __init__(self, x):
+    def getBinValues(self):
         r"""
-        __init__(VerticalLine self, double x) -> VerticalLine
-        VerticalLine::VerticalLine(double x)
+        getBinValues(Histogram1D self) -> vdouble1d_t
+        std::vector< double > Histogram1D::getBinValues() const
 
-        Parameters:
-        -----------
+        returns vector of bin content (the value accumulated by bins) 
 
-        x: 
-        The value at which it crosses x-axes 
+        """
+        return self.getBinValuesNumpy()
+
+    def getBinErrors(self):
+        r"""
+        getBinErrors(Histogram1D self) -> vdouble1d_t
+        std::vector< double > Histogram1D::getBinErrors() const
+
+        returns vector of bin errors 
 
         """
-        _libBornAgainCore.VerticalLine_swiginit(self, _libBornAgainCore.new_VerticalLine(x))
+        return self.getBinErrorsNumpy()
 
-    def clone(self):
+    def getBinCentersNumpy(self):
         r"""
-        clone(VerticalLine self) -> VerticalLine
-        VerticalLine* VerticalLine::clone() const
+        getBinCentersNumpy(Histogram1D self) -> PyObject *
+        PyObject * Histogram1D::getBinCentersNumpy() const
 
         """
-        return _libBornAgainCore.VerticalLine_clone(self)
+        return _libBornAgainCore.Histogram1D_getBinCentersNumpy(self)
 
-    def contains(self, *args):
+    def getBinValuesNumpy(self):
         r"""
-        contains(VerticalLine self, double x, double y) -> bool
-        contains(VerticalLine self, Bin1D binx, Bin1D biny) -> bool
-        bool VerticalLine::contains(const Bin1D &binx, const Bin1D &biny) const
+        getBinValuesNumpy(Histogram1D self) -> PyObject *
+        PyObject * Histogram1D::getBinValuesNumpy() const
 
-        Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). 
+        """
+        return _libBornAgainCore.Histogram1D_getBinValuesNumpy(self)
+
+    def getBinErrorsNumpy(self):
+        r"""
+        getBinErrorsNumpy(Histogram1D self) -> PyObject *
+        PyObject * Histogram1D::getBinErrorsNumpy() const
 
         """
-        return _libBornAgainCore.VerticalLine_contains(self, *args)
+        return _libBornAgainCore.Histogram1D_getBinErrorsNumpy(self)
 
-    def getXpos(self):
+    def crop(self, xmin, xmax):
         r"""
-        getXpos(VerticalLine self) -> double
-        double VerticalLine::getXpos() const
+        crop(Histogram1D self, double xmin, double xmax) -> Histogram1D
+        Histogram1D * Histogram1D::crop(double xmin, double xmax)
+
+        Create new histogram by applying crop on axis. 
 
         """
-        return _libBornAgainCore.VerticalLine_getXpos(self)
-    __swig_destroy__ = _libBornAgainCore.delete_VerticalLine
+        return _libBornAgainCore.Histogram1D_crop(self, xmin, xmax)
+    __swig_destroy__ = _libBornAgainCore.delete_Histogram1D
 
-# Register VerticalLine in _libBornAgainCore:
-_libBornAgainCore.VerticalLine_swigregister(VerticalLine)
+# Register Histogram1D in _libBornAgainCore:
+_libBornAgainCore.Histogram1D_swigregister(Histogram1D)
 
-class HorizontalLine(IShape2D):
+class Histogram2D(IHistogram):
     r"""
 
 
-    An infinite horizontal line.
+    Two dimensional histogram.
 
-    C++ includes: Line.h
+    C++ includes: Histogram2D.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, y):
+    def __init__(self, *args):
         r"""
-        __init__(HorizontalLine self, double y) -> HorizontalLine
-        HorizontalLine::HorizontalLine(double y)
-
-        Parameters:
-        -----------
+        __init__(Histogram2D self, int nbinsx, double xlow, double xup, int nbinsy, double ylow, double yup) -> Histogram2D
+        __init__(Histogram2D self, int nbinsx, vdouble1d_t xbins, int nbinsy, vdouble1d_t ybins) -> Histogram2D
+        __init__(Histogram2D self, IAxis axis_x, IAxis axis_y) -> Histogram2D
+        __init__(Histogram2D self, IntensityData data) -> Histogram2D
+        __init__(Histogram2D self, vdouble2d_t data) -> Histogram2D
+        Histogram2D::Histogram2D(std::vector< std::vector< double >> data)
 
-        y: 
-        The value at which it crosses y-axes 
+        Constructor for 2D histograms from numpy array (thanks to swig) 
 
         """
-        _libBornAgainCore.HorizontalLine_swiginit(self, _libBornAgainCore.new_HorizontalLine(y))
+        _libBornAgainCore.Histogram2D_swiginit(self, _libBornAgainCore.new_Histogram2D(*args))
 
     def clone(self):
         r"""
-        clone(HorizontalLine self) -> HorizontalLine
-        HorizontalLine* HorizontalLine::clone() const
+        clone(Histogram2D self) -> Histogram2D
+        Histogram2D * Histogram2D::clone() const
+
+        Returns clone of other histogram. 
 
         """
-        return _libBornAgainCore.HorizontalLine_clone(self)
+        return _libBornAgainCore.Histogram2D_clone(self)
 
-    def contains(self, *args):
+    def getRank(self):
         r"""
-        contains(HorizontalLine self, double x, double y) -> bool
-        contains(HorizontalLine self, Bin1D binx, Bin1D biny) -> bool
-        bool HorizontalLine::contains(const Bin1D &binx, const Bin1D &biny) const
+        getRank(Histogram2D self) -> size_t
+        size_t Histogram2D::getRank() const
 
-        Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). 
+        Returns the number of histogram dimensions. 
 
         """
-        return _libBornAgainCore.HorizontalLine_contains(self, *args)
+        return _libBornAgainCore.Histogram2D_getRank(self)
 
-    def getYpos(self):
+    def fill(self, x, y, weight=1.0):
         r"""
-        getYpos(HorizontalLine self) -> double
-        double HorizontalLine::getYpos() const
+        fill(Histogram2D self, double x, double y, double weight=1.0) -> int
+        int Histogram2D::fill(double x, double y, double weight=1.0)
 
-        """
-        return _libBornAgainCore.HorizontalLine_getYpos(self)
-    __swig_destroy__ = _libBornAgainCore.delete_HorizontalLine
+        Increment bin with abscissa x and ordinate y with a weight. 
 
-# Register HorizontalLine in _libBornAgainCore:
-_libBornAgainCore.HorizontalLine_swigregister(HorizontalLine)
+        """
+        return _libBornAgainCore.Histogram2D_fill(self, x, y, weight)
 
-class Material(object):
-    r"""
+    def projectionX(self, *args):
+        r"""
+        projectionX(Histogram2D self) -> Histogram1D
+        projectionX(Histogram2D self, double yvalue) -> Histogram1D
+        projectionX(Histogram2D self, double ylow, double yup) -> Histogram1D
+        Histogram1D * Histogram2D::projectionX(double ylow, double yup)
 
+        Project a 2D histogram into 1D histogram along X. The projection is made from all y-bins corresponding to ordinate between ylow and yup.
 
-    A wrapper for underlying material implementation
+        Parameters:
+        -----------
 
-    C++ includes: Material.h
+        ylow: 
+        lower edje on y-axis
 
-    """
+        yup: 
+        upper edje on y-axis 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.Histogram2D_projectionX(self, *args)
 
-    def __init__(self, *args):
+    def projectionY(self, *args):
         r"""
-        __init__(Material self, Material material) -> Material
-        __init__(Material self, Material material) -> Material
-        Material::Material(std::unique_ptr< BaseMaterialImpl > material_impl)
+        projectionY(Histogram2D self) -> Histogram1D
+        projectionY(Histogram2D self, double xvalue) -> Histogram1D
+        projectionY(Histogram2D self, double xlow, double xup) -> Histogram1D
+        Histogram1D * Histogram2D::projectionY(double xlow, double xup)
 
-        Creates material with particular material implementation. 
+        Project a 2D histogram into 1D histogram along Y. The projection is made from all x-bins corresponding to abscissa between xlow and xup.
+
+        Parameters:
+        -----------
+
+        xlow: 
+        lower edje on x-axis
+
+        xup: 
+        upper edje on x-axis 
 
         """
-        _libBornAgainCore.Material_swiginit(self, _libBornAgainCore.new_Material(*args))
+        return _libBornAgainCore.Histogram2D_projectionY(self, *args)
 
-    def inverted(self):
+    def crop(self, xmin, ymin, xmax, ymax):
         r"""
-        inverted(Material self) -> Material
-        Material Material::inverted() const
+        crop(Histogram2D self, double xmin, double ymin, double xmax, double ymax) -> Histogram2D
+        Histogram2D * Histogram2D::crop(double xmin, double ymin, double xmax, double ymax)
 
-        Constructs a material with inverted magnetization. 
+        Create new histogram by applying rectangular clip. 
 
         """
-        return _libBornAgainCore.Material_inverted(self)
+        return _libBornAgainCore.Histogram2D_crop(self, xmin, ymin, xmax, ymax)
 
-    def refractiveIndex(self, wavelength):
+    def setContent(self, data):
         r"""
-        refractiveIndex(Material self, double wavelength) -> complex_t
-        complex_t Material::refractiveIndex(double wavelength) const
+        setContent(Histogram2D self, vdouble2d_t data)
+        void Histogram2D::setContent(const std::vector< std::vector< double >> &data)
 
-        Returns refractive index. 
+        Sets the values in histograms channels from numpy array,. 
 
         """
-        return _libBornAgainCore.Material_refractiveIndex(self, wavelength)
+        return _libBornAgainCore.Histogram2D_setContent(self, data)
 
-    def refractiveIndex2(self, wavelength):
+    def addContent(self, data):
         r"""
-        refractiveIndex2(Material self, double wavelength) -> complex_t
-        complex_t Material::refractiveIndex2(double wavelength) const
+        addContent(Histogram2D self, vdouble2d_t data)
+        void Histogram2D::addContent(const std::vector< std::vector< double >> &data)
 
-        Returns squared refractive index. 
+        Add to values in histograms channels from numpy array,. 
+
+        """
+        return _libBornAgainCore.Histogram2D_addContent(self, data)
+    __swig_destroy__ = _libBornAgainCore.delete_Histogram2D
+
+# Register Histogram2D in _libBornAgainCore:
+_libBornAgainCore.Histogram2D_swigregister(Histogram2D)
+
+class AxisInfo(object):
+    r"""
+
+
+    Information about an axis in specific units. Can be used for plotting.
+
+    C++ includes: SimulationResult.h
+
+    """
 
-        """
-        return _libBornAgainCore.Material_refractiveIndex2(self, wavelength)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+    m_name = property(_libBornAgainCore.AxisInfo_m_name_get, _libBornAgainCore.AxisInfo_m_name_set, doc=r"""m_name : std::string""")
+    m_min = property(_libBornAgainCore.AxisInfo_m_min_get, _libBornAgainCore.AxisInfo_m_min_set, doc=r"""m_min : double""")
+    m_max = property(_libBornAgainCore.AxisInfo_m_max_get, _libBornAgainCore.AxisInfo_m_max_set, doc=r"""m_max : double""")
 
-    def isScalarMaterial(self):
+    def __init__(self):
         r"""
-        isScalarMaterial(Material self) -> bool
-        bool Material::isScalarMaterial() const
+        __init__(AxisInfo self) -> AxisInfo
 
-        Indicates whether the interaction with the material is scalar. This means that different polarization states will be diffracted equally 
 
-        """
-        return _libBornAgainCore.Material_isScalarMaterial(self)
+        Information about an axis in specific units. Can be used for plotting.
 
-    def isMagneticMaterial(self):
-        r"""
-        isMagneticMaterial(Material self) -> bool
-        bool Material::isMagneticMaterial() const
+        C++ includes: SimulationResult.h
 
         """
-        return _libBornAgainCore.Material_isMagneticMaterial(self)
+        _libBornAgainCore.AxisInfo_swiginit(self, _libBornAgainCore.new_AxisInfo())
+    __swig_destroy__ = _libBornAgainCore.delete_AxisInfo
 
-    def getName(self):
-        r"""
-        getName(Material self) -> std::string
-        std::string Material::getName() const
+# Register AxisInfo in _libBornAgainCore:
+_libBornAgainCore.AxisInfo_swigregister(AxisInfo)
 
-        Returns the name of material. 
+class SimulationResult(object):
+    r"""
 
-        """
-        return _libBornAgainCore.Material_getName(self)
 
-    def magnetization(self):
-        r"""
-        magnetization(Material self) -> kvector_t
-        kvector_t Material::magnetization() const
+    Wrapper around  OutputData<double> that also provides unit conversions.
 
-        Get the magnetization (in A/m) 
+    C++ includes: SimulationResult.h
 
-        """
-        return _libBornAgainCore.Material_magnetization(self)
+    """
 
-    def materialData(self):
-        r"""
-        materialData(Material self) -> complex_t
-        complex_t Material::materialData() const
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-        Returns underlying material data. The units of returned values are the same as the ones passed to material factory functions 
+    def __init__(self, *args):
+        r"""
+        __init__(SimulationResult self) -> SimulationResult
+        __init__(SimulationResult self, IntensityData data, IUnitConverter unit_converter) -> SimulationResult
+        __init__(SimulationResult self, SimulationResult other) -> SimulationResult
+        __init__(SimulationResult self, SimulationResult other) -> SimulationResult
+        SimulationResult::SimulationResult(SimulationResult &&other)
 
         """
-        return _libBornAgainCore.Material_materialData(self)
+        _libBornAgainCore.SimulationResult_swiginit(self, _libBornAgainCore.new_SimulationResult(*args))
 
-    def isEmpty(self):
+    def histogram2d(self, *args):
         r"""
-        isEmpty(Material self) -> bool
-        bool Material::isEmpty() const
-
-        Returns true if material underlying data is nullptr. 
+        histogram2d(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> Histogram2D
+        Histogram2D * SimulationResult::histogram2d(AxesUnits units=AxesUnits::DEFAULT) const
 
         """
-        return _libBornAgainCore.Material_isEmpty(self)
+        return _libBornAgainCore.SimulationResult_histogram2d(self, *args)
 
-    def isDefaultMaterial(self):
+    def axisInfo(self, *args):
         r"""
-        isDefaultMaterial(Material self) -> bool
-        bool Material::isDefaultMaterial() const
+        axisInfo(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> swig_dummy_type_axisinfo_vector
+        std::vector< AxisInfo > SimulationResult::axisInfo(AxesUnits units=AxesUnits::DEFAULT) const
 
-        Returns true if material has refractive index of (1.0, 0.0) and zero magnetization. 
+        Provide  AxisInfo for each axis and the given units. 
 
         """
-        return _libBornAgainCore.Material_isDefaultMaterial(self)
+        return _libBornAgainCore.SimulationResult_axisInfo(self, *args)
 
-    def scalarSubtrSLD(self, wavevectors):
+    def converter(self):
         r"""
-        scalarSubtrSLD(Material self, WavevectorInfo wavevectors) -> complex_t
-        complex_t Material::scalarSubtrSLD(const WavevectorInfo &wavevectors) const
+        converter(SimulationResult self) -> IUnitConverter
+        const IUnitConverter & SimulationResult::converter() const
 
-        Returns (  $ \\pi/\\lambda^2 $ - sld), sld (in  $nm^{-2}$) being the scattering length density 
+        Returns underlying unit converter. 
 
         """
-        return _libBornAgainCore.Material_scalarSubtrSLD(self, wavevectors)
+        return _libBornAgainCore.SimulationResult_converter(self)
 
-    def transformedMaterial(self, transform):
+    def size(self):
         r"""
-        transformedMaterial(Material self, Transform3D const & transform) -> Material
-        Material Material::transformedMaterial(const Transform3D &transform) const
+        size(SimulationResult self) -> size_t
+        size_t SimulationResult::size() const
 
         """
-        return _libBornAgainCore.Material_transformedMaterial(self, transform)
-    __swig_destroy__ = _libBornAgainCore.delete_Material
-
-# Register Material in _libBornAgainCore:
-_libBornAgainCore.Material_swigregister(Material)
-
-
-def HomogeneousMaterial(*args):
-    r"""
-    HomogeneousMaterial() -> Material
-    HomogeneousMaterial(std::string const & name, double delta, double beta, kvector_t magnetization={}) -> Material
-    HomogeneousMaterial(std::string const & name, complex_t refractive_index, kvector_t magnetization={}) -> Material
-    BA_CORE_API_ Material HomogeneousMaterial(const std::string &name, complex_t refractive_index, kvector_t magnetization={})
+        return _libBornAgainCore.SimulationResult_size(self)
 
-    Constructs a material with  name,  refractive_index and  magnetization (in A/m). Alternatively,  $\\delta$ and  $\\beta$ for refractive index  $n = 1 - \\delta + i \\beta$ can be passed directly. With no parameters given, constructs default (vacuum) material with  $n = 1$ and zero magnetization. 
+    def array(self, *args):
+        r"""
+        array(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> PyObject
+        PyObject * SimulationResult::array(AxesUnits units=AxesUnits::DEFAULT) const
 
-    """
-    return _libBornAgainCore.HomogeneousMaterial(*args)
+        returns intensity data as Python numpy array 
 
-def MaterialBySLD(*args):
-    r"""
-    MaterialBySLD() -> Material
-    MaterialBySLD(std::string const & name, double sld_real, double sld_imag, kvector_t magnetization={}) -> Material
-    BA_CORE_API_ Material MaterialBySLD(const std::string &name, double sld_real, double sld_imag, kvector_t magnetization={})
+        """
+        return _libBornAgainCore.SimulationResult_array(self, *args)
 
-    Constructs a wavelength-independent material with a given complex-valued scattering length density (SLD). SLD values for a wide variety of materials can be found on https://sld-calculator.appspot.com/ and https://www.ncnr.nist.gov/resources/activation/ By convention, SLD imaginary part is treated as negative by default, which corresponds to attenuation of the signal. With no parameters given, MaterialBySLD constructs default (vacuum) material with zero sld and zero magnetization.
+    def axis(self, *args):
+        r"""
+        axis(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> vdouble1d_t
+        axis(SimulationResult self, size_t i_axis, AxesUnits units=AxesUnits::DEFAULT) -> vdouble1d_t
+        std::vector< double > SimulationResult::axis(size_t i_axis, AxesUnits units=AxesUnits::DEFAULT) const
 
-    Parameters:
-    -----------
+        Returns axis coordinates as a numpy array. With no parameters given returns coordinates of x-axis in default units. 
 
-    name: 
-    material name
+        """
+        return _libBornAgainCore.SimulationResult_axis(self, *args)
 
-    sld_real: 
-    real part of the scattering length density, inverse square angstroms
+    def __getitem__(self, i):
+        r"""__getitem__(SimulationResult self, unsigned int i) -> double"""
+        return _libBornAgainCore.SimulationResult___getitem__(self, i)
 
-    sld_imag: 
-    imaginary part of the scattering length density, inverse square angstroms
+    def __setitem__(self, i, value):
+        r"""__setitem__(SimulationResult self, unsigned int i, double value) -> double"""
+        return _libBornAgainCore.SimulationResult___setitem__(self, i, value)
+    __swig_destroy__ = _libBornAgainCore.delete_SimulationResult
 
-    magnetization: 
-    magnetization (in A/m) 
+# Register SimulationResult in _libBornAgainCore:
+_libBornAgainCore.SimulationResult_swigregister(SimulationResult)
 
-    """
-    return _libBornAgainCore.MaterialBySLD(*args)
-class MesoCrystal(IParticle):
+class IDetector(ICloneable, INode):
     r"""
 
 
-    A particle with an internal structure of smaller particles.
+    Abstract detector interface.
 
-    C++ includes: MesoCrystal.h
+    C++ includes: IDetector.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
 
-    def __init__(self, particle_structure, form_factor):
+    def clone(self):
         r"""
-        __init__(MesoCrystal self, IClusteredParticles particle_structure, IFormFactor form_factor) -> MesoCrystal
-        MesoCrystal::MesoCrystal(const IClusteredParticles &particle_structure, const IFormFactor &form_factor)
+        clone(IDetector self) -> IDetector
+        IDetector* IDetector::clone() const override=0
 
         """
-        _libBornAgainCore.MesoCrystal_swiginit(self, _libBornAgainCore.new_MesoCrystal(particle_structure, form_factor))
-    __swig_destroy__ = _libBornAgainCore.delete_MesoCrystal
+        return _libBornAgainCore.IDetector_clone(self)
+    __swig_destroy__ = _libBornAgainCore.delete_IDetector
 
-    def clone(self):
+    def init(self, arg2):
         r"""
-        clone(MesoCrystal self) -> MesoCrystal
-        MesoCrystal * MesoCrystal::clone() const override final
+        init(IDetector self, Beam arg2)
+        virtual void IDetector::init(const Beam &)
 
-        Returns a clone of this  ISample object. 
+        Inits detector with the beam settings. 
 
         """
-        return _libBornAgainCore.MesoCrystal_clone(self)
+        return _libBornAgainCore.IDetector_init(self, arg2)
 
-    def accept(self, visitor):
+    def clear(self):
         r"""
-        accept(MesoCrystal self, INodeVisitor visitor)
-        void MesoCrystal::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
+        clear(IDetector self)
+        void IDetector::clear()
 
         """
-        return _libBornAgainCore.MesoCrystal_accept(self, visitor)
+        return _libBornAgainCore.IDetector_clear(self)
 
-    def createSlicedParticle(self, limits):
+    def addAxis(self, axis):
         r"""
-        createSlicedParticle(MesoCrystal self, ZLimits limits) -> SlicedParticle
-        SlicedParticle MesoCrystal::createSlicedParticle(ZLimits limits) const override final
-
-        Create a sliced form factor for this particle. 
+        addAxis(IDetector self, IAxis axis)
+        void IDetector::addAxis(const IAxis &axis)
 
         """
-        return _libBornAgainCore.MesoCrystal_createSlicedParticle(self, limits)
+        return _libBornAgainCore.IDetector_addAxis(self, axis)
 
-    def getChildren(self):
+    def getAxis(self, index):
         r"""
-        getChildren(MesoCrystal self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > MesoCrystal::getChildren() const override final
-
-        Returns a vector of children (const). 
+        getAxis(IDetector self, size_t index) -> IAxis
+        const IAxis & IDetector::getAxis(size_t index) const
 
         """
-        return _libBornAgainCore.MesoCrystal_getChildren(self)
+        return _libBornAgainCore.IDetector_getAxis(self, index)
 
-# Register MesoCrystal in _libBornAgainCore:
-_libBornAgainCore.MesoCrystal_swigregister(MesoCrystal)
+    def dimension(self):
+        r"""
+        dimension(IDetector self) -> size_t
+        size_t IDetector::dimension() const
 
-class MultiLayer(ISample):
-    r"""
+        Returns actual dimensionality of the detector (number of defined axes) 
 
+        """
+        return _libBornAgainCore.IDetector_dimension(self)
 
-    Our sample model: a stack of layers one below the other. Example of system of 4 layers (3 interfaces):
+    def axisBinIndex(self, index, selected_axis):
+        r"""
+        axisBinIndex(IDetector self, size_t index, size_t selected_axis) -> size_t
+        size_t IDetector::axisBinIndex(size_t index, size_t selected_axis) const
 
-    ambience layer #0 ------ interface #0 z=0.0 Fe, 20A layer #1 ------ interface #1 z=-20.0 Cr, 40A layer #2 ------ interface #2 z=-60.0 substrate layer #3
+        Calculate axis index for given global index. 
 
-    C++ includes: MultiLayer.h
+        """
+        return _libBornAgainCore.IDetector_axisBinIndex(self, index, selected_axis)
 
-    """
+    def totalSize(self):
+        r"""
+        totalSize(IDetector self) -> size_t
+        size_t IDetector::totalSize() const
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        Returns total number of pixels. 
 
-    def __init__(self):
+        """
+        return _libBornAgainCore.IDetector_totalSize(self)
+
+    def detectorMask(self):
         r"""
-        __init__(MultiLayer self) -> MultiLayer
-        MultiLayer::MultiLayer()
+        detectorMask(IDetector self) -> DetectorMask
+        virtual const DetectorMask* IDetector::detectorMask() const =0
+
+        Returns detector masks container. 
 
         """
-        _libBornAgainCore.MultiLayer_swiginit(self, _libBornAgainCore.new_MultiLayer())
-    __swig_destroy__ = _libBornAgainCore.delete_MultiLayer
+        return _libBornAgainCore.IDetector_detectorMask(self)
 
-    def clone(self):
+    def setAnalyzerProperties(self, direction, efficiency, total_transmission):
         r"""
-        clone(MultiLayer self) -> MultiLayer
-        MultiLayer * MultiLayer::clone() const final override
+        setAnalyzerProperties(IDetector self, kvector_t direction, double efficiency, double total_transmission)
+        void IDetector::setAnalyzerProperties(const kvector_t direction, double efficiency, double total_transmission)
 
-        Returns a clone of multilayer with clones of all layers and interfaces between layers 
+        Sets the polarization analyzer characteristics of the detector. 
 
         """
-        return _libBornAgainCore.MultiLayer_clone(self)
+        return _libBornAgainCore.IDetector_setAnalyzerProperties(self, direction, efficiency, total_transmission)
 
-    def accept(self, visitor):
+    def setDetectorResolution(self, p_detector_resolution):
         r"""
-        accept(MultiLayer self, INodeVisitor visitor)
-        void MultiLayer::accept(INodeVisitor *visitor) const final override
+        setDetectorResolution(IDetector self, IDetectorResolution p_detector_resolution)
+        void IDetector::setDetectorResolution(const IDetectorResolution &p_detector_resolution)
 
-        Calls the  INodeVisitor's visit method. 
+        Sets the detector resolution. 
 
         """
-        return _libBornAgainCore.MultiLayer_accept(self, visitor)
+        return _libBornAgainCore.IDetector_setDetectorResolution(self, p_detector_resolution)
 
-    def numberOfLayers(self):
+    def setResolutionFunction(self, resFunc):
         r"""
-        numberOfLayers(MultiLayer self) -> size_t
-        size_t MultiLayer::numberOfLayers() const
+        setResolutionFunction(IDetector self, IResolutionFunction2D resFunc)
+        void IDetector::setResolutionFunction(const IResolutionFunction2D &resFunc)
 
         """
-        return _libBornAgainCore.MultiLayer_numberOfLayers(self)
+        return _libBornAgainCore.IDetector_setResolutionFunction(self, resFunc)
 
-    def addLayer(self, layer):
+    def applyDetectorResolution(self, p_intensity_map):
         r"""
-        addLayer(MultiLayer self, Layer layer)
-        void MultiLayer::addLayer(const Layer &layer)
+        applyDetectorResolution(IDetector self, IntensityData p_intensity_map)
+        void IDetector::applyDetectorResolution(OutputData< double > *p_intensity_map) const
 
-        Adds object to multilayer.
+        Applies the detector resolution to the given intensity maps. 
 
-        Adds layer with default (zero) roughness. 
+        """
+        return _libBornAgainCore.IDetector_applyDetectorResolution(self, p_intensity_map)
+
+    def removeDetectorResolution(self):
+        r"""
+        removeDetectorResolution(IDetector self)
+        void IDetector::removeDetectorResolution()
+
+        Removes detector resolution function. 
 
         """
-        return _libBornAgainCore.MultiLayer_addLayer(self, layer)
+        return _libBornAgainCore.IDetector_removeDetectorResolution(self)
 
-    def addLayerWithTopRoughness(self, layer, roughness):
+    def detectorResolution(self):
         r"""
-        addLayerWithTopRoughness(MultiLayer self, Layer layer, LayerRoughness roughness)
-        void MultiLayer::addLayerWithTopRoughness(const Layer &layer, const LayerRoughness &roughness)
+        detectorResolution(IDetector self) -> IDetectorResolution
+        const IDetectorResolution * IDetector::detectorResolution() const
 
-        Adds layer with top roughness. 
+        Returns a pointer to detector resolution object. 
 
         """
-        return _libBornAgainCore.MultiLayer_addLayerWithTopRoughness(self, layer, roughness)
+        return _libBornAgainCore.IDetector_detectorResolution(self)
 
-    def layer(self, i_layer):
+    def regionOfInterest(self):
         r"""
-        layer(MultiLayer self, size_t i_layer) -> Layer
-        const Layer * MultiLayer::layer(size_t i_layer) const
+        regionOfInterest(IDetector self) -> RegionOfInterest const *
+        virtual const RegionOfInterest* IDetector::regionOfInterest() const =0
 
-        Returns layer with given index. 
+        Returns region of interest if exists. 
 
         """
-        return _libBornAgainCore.MultiLayer_layer(self, i_layer)
+        return _libBornAgainCore.IDetector_regionOfInterest(self)
 
-    def layerInterface(self, i_interface):
+    def resetRegionOfInterest(self):
         r"""
-        layerInterface(MultiLayer self, size_t i_interface) -> LayerInterface const *
-        const LayerInterface * MultiLayer::layerInterface(size_t i_interface) const
+        resetRegionOfInterest(IDetector self)
+        virtual void IDetector::resetRegionOfInterest()=0
 
-        Returns interface with given index. 
+        Resets region of interest making whole detector plane available for the simulation. 
 
         """
-        return _libBornAgainCore.MultiLayer_layerInterface(self, i_interface)
+        return _libBornAgainCore.IDetector_resetRegionOfInterest(self)
 
-    def setCrossCorrLength(self, crossCorrLength):
+    def detectionProperties(self):
         r"""
-        setCrossCorrLength(MultiLayer self, double crossCorrLength)
-        void MultiLayer::setCrossCorrLength(double crossCorrLength)
+        detectionProperties(IDetector self) -> DetectionProperties const &
+        const DetectionProperties& IDetector::detectionProperties() const
 
-        Sets cross correlation length of roughnesses between interfaces. 
+        Returns detection properties. 
 
         """
-        return _libBornAgainCore.MultiLayer_setCrossCorrLength(self, crossCorrLength)
+        return _libBornAgainCore.IDetector_detectionProperties(self)
 
-    def crossCorrLength(self):
+    def createDetectorIntensity(self, elements):
         r"""
-        crossCorrLength(MultiLayer self) -> double
-        double MultiLayer::crossCorrLength() const
+        createDetectorIntensity(IDetector self, std::vector< SimulationElement,std::allocator< SimulationElement > > const & elements) -> IntensityData
+        OutputData< double > * IDetector::createDetectorIntensity(const std::vector< SimulationElement > &elements) const
 
-        Returns cross correlation length of roughnesses between interfaces. 
+        Returns new intensity map with detector resolution applied. Map will be cropped to ROI if ROI is present. 
 
         """
-        return _libBornAgainCore.MultiLayer_crossCorrLength(self)
+        return _libBornAgainCore.IDetector_createDetectorIntensity(self, elements)
 
-    def setExternalField(self, ext_field):
+    def defaultAxesUnits(self):
         r"""
-        setExternalField(MultiLayer self, kvector_t ext_field)
-        void MultiLayer::setExternalField(kvector_t ext_field)
+        defaultAxesUnits(IDetector self) -> AxesUnits
+        virtual AxesUnits IDetector::defaultAxesUnits() const
 
-        Sets the external field applied to the multilayer (units: A/m) 
+        Return default axes units. 
 
         """
-        return _libBornAgainCore.MultiLayer_setExternalField(self, ext_field)
+        return _libBornAgainCore.IDetector_defaultAxesUnits(self)
 
-    def externalField(self):
+    def numberOfSimulationElements(self):
         r"""
-        externalField(MultiLayer self) -> kvector_t
-        kvector_t MultiLayer::externalField() const
+        numberOfSimulationElements(IDetector self) -> size_t
+        size_t IDetector::numberOfSimulationElements() const
 
-        Returns the external field applied to the multilayer (units: A/m) 
+        Returns number of simulation elements. 
 
         """
-        return _libBornAgainCore.MultiLayer_externalField(self)
+        return _libBornAgainCore.IDetector_numberOfSimulationElements(self)
 
     def getChildren(self):
         r"""
-        getChildren(MultiLayer self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > MultiLayer::getChildren() const final override
+        getChildren(IDetector self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > IDetector::getChildren() const override
 
         Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.MultiLayer_getChildren(self)
+        return _libBornAgainCore.IDetector_getChildren(self)
 
-    def setRoughnessModel(self, roughnessModel):
+    def iterate(self, func, visit_masks=False):
         r"""
-        setRoughnessModel(MultiLayer self, RoughnessModel roughnessModel)
-        void MultiLayer::setRoughnessModel(RoughnessModel roughnessModel)
+        iterate(IDetector self, std::function< void (IDetector::const_iterator) > func, bool visit_masks=False)
+        void IDetector::iterate(std::function< void(const_iterator)> func, bool visit_masks=false) const
 
         """
-        return _libBornAgainCore.MultiLayer_setRoughnessModel(self, roughnessModel)
+        return _libBornAgainCore.IDetector_iterate(self, func, visit_masks)
 
-    def roughnessModel(self):
+# Register IDetector in _libBornAgainCore:
+_libBornAgainCore.IDetector_swigregister(IDetector)
+
+class IDetector2D(IDetector):
+    r"""
+
+
+    Abstract 2D detector interface.
+
+    C++ includes: IDetector2D.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+
+    def clone(self):
         r"""
-        roughnessModel(MultiLayer self) -> RoughnessModel
-        RoughnessModel MultiLayer::roughnessModel() const
+        clone(IDetector2D self) -> IDetector2D
+        IDetector2D* IDetector2D::clone() const override=0
 
         """
-        return _libBornAgainCore.MultiLayer_roughnessModel(self)
+        return _libBornAgainCore.IDetector2D_clone(self)
+    __swig_destroy__ = _libBornAgainCore.delete_IDetector2D
 
-# Register MultiLayer in _libBornAgainCore:
-_libBornAgainCore.MultiLayer_swigregister(MultiLayer)
+    def setDetectorParameters(self, n_x, x_min, x_max, n_y, y_min, y_max):
+        r"""
+        setDetectorParameters(IDetector2D self, size_t n_x, double x_min, double x_max, size_t n_y, double y_min, double y_max)
+        void IDetector2D::setDetectorParameters(size_t n_x, double x_min, double x_max, size_t n_y, double y_min, double y_max)
 
+        Sets detector parameters using angle ranges. 
 
-def MaterialProfile_cpp(multilayer, n_points, z_min, z_max):
-    r"""
-    MaterialProfile_cpp(MultiLayer multilayer, int n_points, double z_min, double z_max) -> vector_complex_t
-    BA_CORE_API_ std::vector<complex_t> MaterialProfile(const MultiLayer &multilayer, int n_points, double z_min, double z_max)
+        """
+        return _libBornAgainCore.IDetector2D_setDetectorParameters(self, n_x, x_min, x_max, n_y, y_min, y_max)
 
-    Calculate average material profile for given multilayer. 
+    def setDetectorAxes(self, axis0, axis1):
+        r"""
+        setDetectorAxes(IDetector2D self, IAxis axis0, IAxis axis1)
+        void IDetector2D::setDetectorAxes(const IAxis &axis0, const IAxis &axis1)
 
-    """
-    return _libBornAgainCore.MaterialProfile_cpp(multilayer, n_points, z_min, z_max)
+        Sets detector parameters using axes. 
 
-def DefaultMaterialProfileLimits(multilayer):
-    r"""
-    DefaultMaterialProfileLimits(MultiLayer multilayer) -> pair_double_t
-    BA_CORE_API_ std::pair<double, double> DefaultMaterialProfileLimits(const MultiLayer &multilayer)
+        """
+        return _libBornAgainCore.IDetector2D_setDetectorAxes(self, axis0, axis1)
 
-    Get default z limits for generating a material profile. 
+    def removeMasks(self):
+        r"""
+        removeMasks(IDetector2D self)
+        void IDetector2D::removeMasks()
 
-    """
-    return _libBornAgainCore.DefaultMaterialProfileLimits(multilayer)
+        Removes all masks from the detector. 
 
-def GenerateZValues(n_points, z_min, z_max):
-    r"""
-    GenerateZValues(int n_points, double z_min, double z_max) -> vdouble1d_t
-    BA_CORE_API_ std::vector<double> GenerateZValues(int n_points, double z_min, double z_max)
+        """
+        return _libBornAgainCore.IDetector2D_removeMasks(self)
 
-    Generate z values (equidistant) for use in MaterialProfile. 
+    def detectorMask(self):
+        r"""
+        detectorMask(IDetector2D self) -> DetectorMask
+        const DetectorMask * IDetector2D::detectorMask() const override
 
-    """
-    return _libBornAgainCore.GenerateZValues(n_points, z_min, z_max)
-class OffSpecSimulation(Simulation2D):
-    r"""
+        Returns detector masks container. 
 
+        """
+        return _libBornAgainCore.IDetector2D_detectorMask(self)
 
-    Main class to run an off-specular simulation.
+    def addMask(self, shape, mask_value=True):
+        r"""
+        addMask(IDetector2D self, IShape2D shape, bool mask_value=True)
+        void IDetector2D::addMask(const IShape2D &shape, bool mask_value=true)
 
-    C++ includes: OffSpecSimulation.h
+        Adds mask of given shape to the stack of detector masks. The mask value 'true' means that the channel will be excluded from the simulation. The mask which is added last has priority.
 
-    """
+        Parameters:
+        -----------
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        shape: 
+        The shape of mask ( Rectangle,  Polygon,  Line,  Ellipse)
 
-    def __init__(self, *args):
+        mask_value: 
+        The value of mask 
+
+        """
+        return _libBornAgainCore.IDetector2D_addMask(self, shape, mask_value)
+
+    def maskAll(self):
         r"""
-        __init__(OffSpecSimulation self) -> OffSpecSimulation
-        __init__(OffSpecSimulation self, MultiLayer p_sample) -> OffSpecSimulation
-        __init__(OffSpecSimulation self, std::shared_ptr< IMultiLayerBuilder > const p_sample_builder) -> OffSpecSimulation
-        OffSpecSimulation::OffSpecSimulation(const std::shared_ptr< class IMultiLayerBuilder > p_sample_builder)
+        maskAll(IDetector2D self)
+        void IDetector2D::maskAll()
+
+        Put the mask for all detector channels (i.e. exclude whole detector from the analysis) 
+
+        """
+        return _libBornAgainCore.IDetector2D_maskAll(self)
+
+    def regionOfInterest(self):
+        r"""
+        regionOfInterest(IDetector2D self) -> RegionOfInterest const *
+        const RegionOfInterest * IDetector2D::regionOfInterest() const override
+
+        Returns region of interest if exists. 
 
         """
-        _libBornAgainCore.OffSpecSimulation_swiginit(self, _libBornAgainCore.new_OffSpecSimulation(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_OffSpecSimulation
+        return _libBornAgainCore.IDetector2D_regionOfInterest(self)
 
-    def clone(self):
+    def setRegionOfInterest(self, xlow, ylow, xup, yup):
         r"""
-        clone(OffSpecSimulation self) -> OffSpecSimulation
-        OffSpecSimulation* OffSpecSimulation::clone() const override
+        setRegionOfInterest(IDetector2D self, double xlow, double ylow, double xup, double yup)
+        void IDetector2D::setRegionOfInterest(double xlow, double ylow, double xup, double yup)
+
+        Sets rectangular region of interest with lower left and upper right corners defined. 
 
         """
-        return _libBornAgainCore.OffSpecSimulation_clone(self)
+        return _libBornAgainCore.IDetector2D_setRegionOfInterest(self, xlow, ylow, xup, yup)
 
-    def accept(self, visitor):
+    def resetRegionOfInterest(self):
         r"""
-        accept(OffSpecSimulation self, INodeVisitor visitor)
-        void OffSpecSimulation::accept(INodeVisitor *visitor) const final
+        resetRegionOfInterest(IDetector2D self)
+        void IDetector2D::resetRegionOfInterest() override
 
-        Calls the  INodeVisitor's visit method. 
+        Resets region of interest making whole detector plane available for the simulation. 
 
         """
-        return _libBornAgainCore.OffSpecSimulation_accept(self, visitor)
+        return _libBornAgainCore.IDetector2D_resetRegionOfInterest(self)
 
-    def prepareSimulation(self):
+    def active_indices(self):
         r"""
-        prepareSimulation(OffSpecSimulation self)
-        void OffSpecSimulation::prepareSimulation() final
+        active_indices(IDetector2D self) -> std::vector< size_t,std::allocator< size_t > >
+        std::vector< size_t > IDetector2D::active_indices() const
 
-        Put into a clean state for running a simulation. 
+        Returns vector of unmasked detector indices. 
 
         """
-        return _libBornAgainCore.OffSpecSimulation_prepareSimulation(self)
+        return _libBornAgainCore.IDetector2D_active_indices(self)
 
-    def result(self):
+    def createPixel(self, index):
         r"""
-        result(OffSpecSimulation self) -> SimulationResult
-        SimulationResult OffSpecSimulation::result() const override
+        createPixel(IDetector2D self, size_t index) -> IPixel
+        virtual IPixel* IDetector2D::createPixel(size_t index) const =0
 
-        Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays 
+        Create an  IPixel for the given  OutputData object and index. 
 
         """
-        return _libBornAgainCore.OffSpecSimulation_result(self)
+        return _libBornAgainCore.IDetector2D_createPixel(self, index)
 
-    def setBeamParameters(self, wavelength, alpha_axis, phi_i):
+    def getIndexOfSpecular(self, beam):
         r"""
-        setBeamParameters(OffSpecSimulation self, double wavelength, IAxis alpha_axis, double phi_i)
-        void OffSpecSimulation::setBeamParameters(double wavelength, const IAxis &alpha_axis, double phi_i)
+        getIndexOfSpecular(IDetector2D self, Beam beam) -> size_t
+        virtual size_t IDetector2D::getIndexOfSpecular(const Beam &beam) const =0
 
-        Sets beam parameters from here (forwarded to  Instrument) 
+        Returns index of pixel that contains the specular wavevector. If no pixel contains this specular wavevector, the number of pixels is returned. This corresponds to an overflow index. 
 
         """
-        return _libBornAgainCore.OffSpecSimulation_setBeamParameters(self, wavelength, alpha_axis, phi_i)
+        return _libBornAgainCore.IDetector2D_getIndexOfSpecular(self, beam)
 
-    def beamAxis(self):
+# Register IDetector2D in _libBornAgainCore:
+_libBornAgainCore.IDetector2D_swigregister(IDetector2D)
+
+class IDetectorResolution(ICloneable, INode):
+    r"""
+
+
+    Interface for detector resolution algorithms
+
+    C++ includes: IDetectorResolution.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IDetectorResolution
+
+    def applyDetectorResolution(self, p_intensity_map):
         r"""
-        beamAxis(OffSpecSimulation self) -> IAxis
-        const IAxis * OffSpecSimulation::beamAxis() const
+        applyDetectorResolution(IDetectorResolution self, IntensityData p_intensity_map)
+        virtual void IDetectorResolution::applyDetectorResolution(OutputData< double > *p_intensity_map) const =0
 
-        Returns axis of the beam. 
+        Apply the resolution function to the intensity data. 
 
         """
-        return _libBornAgainCore.OffSpecSimulation_beamAxis(self)
+        return _libBornAgainCore.IDetectorResolution_applyDetectorResolution(self, p_intensity_map)
 
-    def intensityMapSize(self):
+    def clone(self):
         r"""
-        intensityMapSize(OffSpecSimulation self) -> size_t
-        size_t OffSpecSimulation::intensityMapSize() const override
-
-        Returns the total number of the intensity values in the simulation result. 
+        clone(IDetectorResolution self) -> IDetectorResolution
+        virtual IDetectorResolution* IDetectorResolution::clone() const =0
 
         """
-        return _libBornAgainCore.OffSpecSimulation_intensityMapSize(self)
+        return _libBornAgainCore.IDetectorResolution_clone(self)
 
-# Register OffSpecSimulation in _libBornAgainCore:
-_libBornAgainCore.OffSpecSimulation_swigregister(OffSpecSimulation)
+# Register IDetectorResolution in _libBornAgainCore:
+_libBornAgainCore.IDetectorResolution_swigregister(IDetectorResolution)
 
-class IntensityData(object):
+class SphericalPixel(IPixel):
     r"""
 
 
-    Template class to store data of any type in multi-dimensional space.
+    A pixel in a  SphericalDetector.
 
-    C++ includes: OutputData.h
+    C++ includes: SphericalDetector.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self):
+    def __init__(self, alpha_bin, phi_bin):
         r"""
-        __init__(IntensityData self) -> IntensityData
-        OutputData< T >::OutputData(const OutputData &)=delete
+        __init__(SphericalPixel self, Bin1D alpha_bin, Bin1D phi_bin) -> SphericalPixel
+        SphericalPixel::SphericalPixel(const Bin1D &alpha_bin, const Bin1D &phi_bin)
 
         """
-        _libBornAgainCore.IntensityData_swiginit(self, _libBornAgainCore.new_IntensityData())
-    __swig_destroy__ = _libBornAgainCore.delete_IntensityData
+        _libBornAgainCore.SphericalPixel_swiginit(self, _libBornAgainCore.new_SphericalPixel(alpha_bin, phi_bin))
 
     def clone(self):
         r"""
-        clone(IntensityData self) -> IntensityData
-        OutputData< T > * OutputData< T >::clone() const
+        clone(SphericalPixel self) -> SphericalPixel
+        SphericalPixel * SphericalPixel::clone() const override
 
         """
-        return _libBornAgainCore.IntensityData_clone(self)
+        return _libBornAgainCore.SphericalPixel_clone(self)
 
-    def copyFrom(self, x):
+    def createZeroSizePixel(self, x, y):
         r"""
-        copyFrom(IntensityData self, IntensityData x)
-        void OutputData< T >::copyFrom(const OutputData< T > &x)
+        createZeroSizePixel(SphericalPixel self, double x, double y) -> SphericalPixel
+        SphericalPixel * SphericalPixel::createZeroSizePixel(double x, double y) const override
 
         """
-        return _libBornAgainCore.IntensityData_copyFrom(self, x)
+        return _libBornAgainCore.SphericalPixel_createZeroSizePixel(self, x, y)
 
-    def meanValues(self):
+    def getK(self, x, y, wavelength):
         r"""
-        meanValues(IntensityData self) -> IntensityData
-        OutputData< double > * OutputData< T >::meanValues() const
+        getK(SphericalPixel self, double x, double y, double wavelength) -> kvector_t
+        kvector_t SphericalPixel::getK(double x, double y, double wavelength) const override
 
         """
-        return _libBornAgainCore.IntensityData_meanValues(self)
+        return _libBornAgainCore.SphericalPixel_getK(self, x, y, wavelength)
 
-    def addAxis(self, *args):
+    def getIntegrationFactor(self, x, y):
         r"""
-        addAxis(IntensityData self, IAxis new_axis)
-        addAxis(IntensityData self, std::string const & name, size_t size, double start, double end)
-        void OutputData< T >::addAxis(const std::string &name, size_t size, double start, double end)
+        getIntegrationFactor(SphericalPixel self, double x, double y) -> double
+        double SphericalPixel::getIntegrationFactor(double x, double y) const override
 
         """
-        return _libBornAgainCore.IntensityData_addAxis(self, *args)
+        return _libBornAgainCore.SphericalPixel_getIntegrationFactor(self, x, y)
 
-    def getAxis(self, *args):
+    def getSolidAngle(self):
         r"""
-        getAxis(IntensityData self, size_t serial_number) -> IAxis
-        getAxis(IntensityData self, std::string const & axis_name) -> IAxis
-        const IAxis & OutputData< T >::getAxis(const std::string &axis_name) const
-
-        returns axis with given name 
+        getSolidAngle(SphericalPixel self) -> double
+        double SphericalPixel::getSolidAngle() const override
 
         """
-        return _libBornAgainCore.IntensityData_getAxis(self, *args)
+        return _libBornAgainCore.SphericalPixel_getSolidAngle(self)
+    __swig_destroy__ = _libBornAgainCore.delete_SphericalPixel
 
-    def getRank(self):
-        r"""
-        getRank(IntensityData self) -> size_t
-        size_t OutputData< T >::getRank() const
+# Register SphericalPixel in _libBornAgainCore:
+_libBornAgainCore.SphericalPixel_swigregister(SphericalPixel)
 
-        Returns number of dimensions. 
+class SphericalDetector(IDetector2D):
+    r"""
 
-        """
-        return _libBornAgainCore.IntensityData_getRank(self)
 
-    def getAllocatedSize(self):
-        r"""
-        getAllocatedSize(IntensityData self) -> size_t
-        size_t OutputData< T >::getAllocatedSize() const
+    A spherical detector with axes and resolution function.
 
-        Returns total size of data buffer (product of bin number in every dimension). 
+    C++ includes: SphericalDetector.h
 
-        """
-        return _libBornAgainCore.IntensityData_getAllocatedSize(self)
+    """
 
-    def getAllSizes(self):
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, *args):
         r"""
-        getAllSizes(IntensityData self) -> std::vector< size_t,std::allocator< size_t > >
-        std::vector< size_t > OutputData< T >::getAllSizes() const
+        __init__(SphericalDetector self) -> SphericalDetector
+        __init__(SphericalDetector self, size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max) -> SphericalDetector
+        __init__(SphericalDetector self, SphericalDetector other) -> SphericalDetector
+        SphericalDetector::SphericalDetector(const SphericalDetector &other)
 
-        Returns all sizes of its axes. 
+        """
+        _libBornAgainCore.SphericalDetector_swiginit(self, _libBornAgainCore.new_SphericalDetector(*args))
+
+    def clone(self):
+        r"""
+        clone(SphericalDetector self) -> SphericalDetector
+        SphericalDetector * SphericalDetector::clone() const override
 
         """
-        return _libBornAgainCore.IntensityData_getAllSizes(self)
+        return _libBornAgainCore.SphericalDetector_clone(self)
 
-    def getRawDataVector(self):
+    def accept(self, visitor):
         r"""
-        getRawDataVector(IntensityData self) -> vdouble1d_t
-        std::vector< T > OutputData< T >::getRawDataVector() const
+        accept(SphericalDetector self, INodeVisitor visitor)
+        void SphericalDetector::accept(INodeVisitor *visitor) const override
 
-        Returns copy of raw data vector. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IntensityData_getRawDataVector(self)
+        return _libBornAgainCore.SphericalDetector_accept(self, visitor)
+    __swig_destroy__ = _libBornAgainCore.delete_SphericalDetector
 
-    def totalSum(self):
+    def defaultAxesUnits(self):
         r"""
-        totalSum(IntensityData self) -> double
-        T OutputData< T >::totalSum() const
+        defaultAxesUnits(SphericalDetector self) -> AxesUnits
+        AxesUnits SphericalDetector::defaultAxesUnits() const override
 
-        Returns sum of all values in the data structure. 
+        return default axes units 
 
         """
-        return _libBornAgainCore.IntensityData_totalSum(self)
+        return _libBornAgainCore.SphericalDetector_defaultAxesUnits(self)
 
-    def begin(self, *args):
+# Register SphericalDetector in _libBornAgainCore:
+_libBornAgainCore.SphericalDetector_swigregister(SphericalDetector)
+
+class IChiSquaredModule(ICloneable):
+    r"""
+
+
+    Interface residual calculations.
+
+    C++ includes: IChiSquaredModule.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IChiSquaredModule
+
+    def clone(self):
         r"""
-        begin(IntensityData self) -> OutputData< double >::iterator
-        begin(IntensityData self) -> OutputData< double >::const_iterator
-        OutputData< T >::const_iterator OutputData< T >::begin() const
+        clone(IChiSquaredModule self) -> IChiSquaredModule
+        virtual IChiSquaredModule* IChiSquaredModule::clone() const =0
 
-        Returns read-only iterator that points to the first element. 
+        clone method 
 
         """
-        return _libBornAgainCore.IntensityData_begin(self, *args)
+        return _libBornAgainCore.IChiSquaredModule_clone(self)
 
-    def end(self, *args):
+    def varianceFunction(self):
         r"""
-        end(IntensityData self) -> OutputData< double >::iterator
-        end(IntensityData self) -> OutputData< double >::const_iterator
-        const_iterator OutputData< T >::end() const
+        varianceFunction(IChiSquaredModule self) -> IVarianceFunction
+        const IVarianceFunction * IChiSquaredModule::varianceFunction() const
 
-        Returns read-only iterator that points to the one past last element. 
+        Returns squared function. 
 
         """
-        return _libBornAgainCore.IntensityData_end(self, *args)
+        return _libBornAgainCore.IChiSquaredModule_varianceFunction(self)
 
-    def getAxesBinIndices(self, global_index):
+    def setVarianceFunction(self, variance_function):
         r"""
-        getAxesBinIndices(IntensityData self, size_t global_index) -> vector_integer_t
-        std::vector< int > OutputData< T >::getAxesBinIndices(size_t global_index) const
+        setVarianceFunction(IChiSquaredModule self, IVarianceFunction variance_function)
+        void IChiSquaredModule::setVarianceFunction(const IVarianceFunction &variance_function)
 
-        Returns vector of axes indices for given global index
+        Sets squared function. 
 
-        Parameters:
-        -----------
+        """
+        return _libBornAgainCore.IChiSquaredModule_setVarianceFunction(self, variance_function)
 
-        global_index: 
-        The global index of this data structure.
+    def getIntensityFunction(self):
+        r"""
+        getIntensityFunction(IChiSquaredModule self) -> IIntensityFunction
+        const IIntensityFunction * IChiSquaredModule::getIntensityFunction() const
 
-        Vector of bin indices for all axes defined 
+        Returns data rescaler. 
 
         """
-        return _libBornAgainCore.IntensityData_getAxesBinIndices(self, global_index)
+        return _libBornAgainCore.IChiSquaredModule_getIntensityFunction(self)
 
-    def getAxisBinIndex(self, *args):
+    def setIntensityFunction(self, intensity_function):
         r"""
-        getAxisBinIndex(IntensityData self, size_t global_index, size_t i_selected_axis) -> size_t
-        getAxisBinIndex(IntensityData self, size_t global_index, std::string const & axis_name) -> size_t
-        size_t OutputData< T >::getAxisBinIndex(size_t global_index, const std::string &axis_name) const
-
-        Returns axis bin index for given global index
-
-        Parameters:
-        -----------
+        setIntensityFunction(IChiSquaredModule self, IIntensityFunction intensity_function)
+        void IChiSquaredModule::setIntensityFunction(const IIntensityFunction &intensity_function)
 
-        global_index: 
-        The global index of this data structure.
+        Sets data rescaler. 
 
-        axis_name: 
-        The name of selected axis.
+        """
+        return _libBornAgainCore.IChiSquaredModule_setIntensityFunction(self, intensity_function)
 
-        Corresponding bin index for selected axis 
+    def residual(self, a, b, weight):
+        r"""
+        residual(IChiSquaredModule self, double a, double b, double weight) -> double
+        virtual double IChiSquaredModule::residual(double a, double b, double weight)=0
 
         """
-        return _libBornAgainCore.IntensityData_getAxisBinIndex(self, *args)
+        return _libBornAgainCore.IChiSquaredModule_residual(self, a, b, weight)
 
-    def toGlobalIndex(self, axes_indices):
-        r"""
-        toGlobalIndex(IntensityData self, std::vector< unsigned int,std::allocator< unsigned int > > const & axes_indices) -> size_t
-        size_t OutputData< T >::toGlobalIndex(const std::vector< unsigned > &axes_indices) const
+# Register IChiSquaredModule in _libBornAgainCore:
+_libBornAgainCore.IChiSquaredModule_swigregister(IChiSquaredModule)
 
-        Returns global index for specified indices of axes
+class IIntensityNormalizer(ICloneable, INode):
+    r"""
 
-        Parameters:
-        -----------
 
-        axes_indices: 
-        Vector of axes indices for all specified axes in this dataset
+    Interface to  OutputData normalizers.
 
-        Corresponding global index 
+    C++ includes: IIntensityNormalizer.h
 
-        """
-        return _libBornAgainCore.IntensityData_toGlobalIndex(self, axes_indices)
+    """
 
-    def findGlobalIndex(self, coordinates):
-        r"""
-        findGlobalIndex(IntensityData self, vdouble1d_t coordinates) -> size_t
-        size_t OutputData< T >::findGlobalIndex(const std::vector< double > &coordinates) const
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
 
-        Returns global index for specified axes values
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IIntensityNormalizer
 
-        Parameters:
-        -----------
+    def clone(self):
+        r"""
+        clone(IIntensityNormalizer self) -> IIntensityNormalizer
+        virtual IIntensityNormalizer* IIntensityNormalizer::clone() const =0
 
-        coordinates: 
-        Vector of axes coordinates for all specified axes in this dataset
+        """
+        return _libBornAgainCore.IIntensityNormalizer_clone(self)
 
-        Closest global index 
+    def createNormalizedData(self, data):
+        r"""
+        createNormalizedData(IIntensityNormalizer self, IntensityData data) -> IntensityData
+        virtual OutputData<double>* IIntensityNormalizer::createNormalizedData(const OutputData< double > &data) const =0
 
         """
-        return _libBornAgainCore.IntensityData_findGlobalIndex(self, coordinates)
+        return _libBornAgainCore.IIntensityNormalizer_createNormalizedData(self, data)
 
-    def getAxisValue(self, *args):
+    def apply(self, data):
         r"""
-        getAxisValue(IntensityData self, size_t global_index, size_t i_selected_axis) -> double
-        getAxisValue(IntensityData self, size_t global_index, std::string const & axis_name) -> double
-        double OutputData< T >::getAxisValue(size_t global_index, const std::string &axis_name) const
+        apply(IIntensityNormalizer self, IntensityData data)
+        virtual void IIntensityNormalizer::apply(OutputData< double > &data) const =0
 
-        Returns the value of selected axis for given global_index.
+        """
+        return _libBornAgainCore.IIntensityNormalizer_apply(self, data)
 
-        Parameters:
-        -----------
+    def setMaximumIntensity(self, arg2):
+        r"""
+        setMaximumIntensity(IIntensityNormalizer self, double arg2)
+        virtual void IIntensityNormalizer::setMaximumIntensity(double)=0
 
-        global_index: 
-        The global index of this data structure.
+        """
+        return _libBornAgainCore.IIntensityNormalizer_setMaximumIntensity(self, arg2)
 
-        axis_name: 
-        The name of selected axis.
+# Register IIntensityNormalizer in _libBornAgainCore:
+_libBornAgainCore.IIntensityNormalizer_swigregister(IIntensityNormalizer)
 
-        corresponding bin center of selected axis 
+class IntensityNormalizer(IIntensityNormalizer):
+    r"""
 
-        """
-        return _libBornAgainCore.IntensityData_getAxisValue(self, *args)
 
-    def getAxesValues(self, global_index):
-        r"""
-        getAxesValues(IntensityData self, size_t global_index) -> vdouble1d_t
-        std::vector< double > OutputData< T >::getAxesValues(size_t global_index) const
+    Standard  OutputData normalizer, with configurable max_intensity.
 
-        Returns values on all defined axes for given globalbin number
+    C++ includes: IIntensityNormalizer.h
 
-        Parameters:
-        -----------
+    """
 
-        global_index: 
-        The global index of this data structure.
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-        Vector of corresponding bin centers 
+    def __init__(self, scale=1.0, shift=0.0):
+        r"""
+        __init__(IntensityNormalizer self, double scale=1.0, double shift=0.0) -> IntensityNormalizer
+        IntensityNormalizer::IntensityNormalizer(double scale=1.0, double shift=0.0)
 
         """
-        return _libBornAgainCore.IntensityData_getAxesValues(self, global_index)
+        _libBornAgainCore.IntensityNormalizer_swiginit(self, _libBornAgainCore.new_IntensityNormalizer(scale, shift))
+    __swig_destroy__ = _libBornAgainCore.delete_IntensityNormalizer
 
-    def getAxisBin(self, *args):
+    def clone(self):
         r"""
-        getAxisBin(IntensityData self, size_t global_index, size_t i_selected_axis) -> Bin1D
-        getAxisBin(IntensityData self, size_t global_index, std::string const & axis_name) -> Bin1D
-        Bin1D OutputData< T >::getAxisBin(size_t global_index, const std::string &axis_name) const
+        clone(IntensityNormalizer self) -> IntensityNormalizer
+        IntensityNormalizer * IntensityNormalizer::clone() const
 
-        Returns bin of selected axis for given global_index.
+        """
+        return _libBornAgainCore.IntensityNormalizer_clone(self)
 
-        Parameters:
-        -----------
+    def accept(self, visitor):
+        r"""
+        accept(IntensityNormalizer self, INodeVisitor visitor)
+        void IntensityNormalizer::accept(INodeVisitor *visitor) const
 
-        global_index: 
-        The global index of this data structure.
+        Calls the  INodeVisitor's visit method. 
 
-        axis_name: 
-        The name of selected axis.
+        """
+        return _libBornAgainCore.IntensityNormalizer_accept(self, visitor)
 
-        Corresponding  Bin1D object 
+    def createNormalizedData(self, data):
+        r"""
+        createNormalizedData(IntensityNormalizer self, IntensityData data) -> IntensityData
+        OutputData< double > * IntensityNormalizer::createNormalizedData(const OutputData< double > &data) const
 
         """
-        return _libBornAgainCore.IntensityData_getAxisBin(self, *args)
+        return _libBornAgainCore.IntensityNormalizer_createNormalizedData(self, data)
 
-    def clear(self):
+    def apply(self, data):
         r"""
-        clear(IntensityData self)
-        void OutputData< T >::clear()
-
-        Sets object into initial state (no dimensions, data) 
+        apply(IntensityNormalizer self, IntensityData data)
+        void IntensityNormalizer::apply(OutputData< double > &data) const final
 
         """
-        return _libBornAgainCore.IntensityData_clear(self)
+        return _libBornAgainCore.IntensityNormalizer_apply(self, data)
 
-    def setAllTo(self, value):
+    def setMaximumIntensity(self, max_intensity):
         r"""
-        setAllTo(IntensityData self, double const & value)
-        void OutputData< T >::setAllTo(const T &value)
-
-        Sets content of output data to specific value. 
+        setMaximumIntensity(IntensityNormalizer self, double max_intensity)
+        virtual void IntensityNormalizer::setMaximumIntensity(double max_intensity)
 
         """
-        return _libBornAgainCore.IntensityData_setAllTo(self, value)
+        return _libBornAgainCore.IntensityNormalizer_setMaximumIntensity(self, max_intensity)
 
-    def scaleAll(self, factor):
-        r"""
-        scaleAll(IntensityData self, double const & factor)
-        void OutputData< T >::scaleAll(const T &factor)
+# Register IntensityNormalizer in _libBornAgainCore:
+_libBornAgainCore.IntensityNormalizer_swigregister(IntensityNormalizer)
 
-        multiply every item of this output data by value 
+class IntensityScaleAndShiftNormalizer(IntensityNormalizer):
+    r"""
 
-        """
-        return _libBornAgainCore.IntensityData_scaleAll(self, factor)
 
-    def setAxisSizes(self, rank, n_dims):
-        r"""
-        setAxisSizes(IntensityData self, size_t rank, int * n_dims)
-        void OutputData< T >::setAxisSizes(size_t rank, int *n_dims)
+    Simplified  OutputData normalizer, with max_intensity=1.
 
-        Adds 'rank' axes with indicated sizes. 
+    C++ includes: IIntensityNormalizer.h
 
-        """
-        return _libBornAgainCore.IntensityData_setAxisSizes(self, rank, n_dims)
+    """
 
-    def setRawDataVector(self, data_vector):
-        r"""
-        setRawDataVector(IntensityData self, vdouble1d_t data_vector)
-        void OutputData< T >::setRawDataVector(const std::vector< T > &data_vector)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-        Sets new values to raw data vector. 
+    def __init__(self, scale=1.0, shift=0.0):
+        r"""
+        __init__(IntensityScaleAndShiftNormalizer self, double scale=1.0, double shift=0.0) -> IntensityScaleAndShiftNormalizer
+        IntensityScaleAndShiftNormalizer::IntensityScaleAndShiftNormalizer(double scale=1.0, double shift=0.0)
 
         """
-        return _libBornAgainCore.IntensityData_setRawDataVector(self, data_vector)
+        _libBornAgainCore.IntensityScaleAndShiftNormalizer_swiginit(self, _libBornAgainCore.new_IntensityScaleAndShiftNormalizer(scale, shift))
+    __swig_destroy__ = _libBornAgainCore.delete_IntensityScaleAndShiftNormalizer
 
-    def setRawDataArray(self, source):
+    def accept(self, visitor):
         r"""
-        setRawDataArray(IntensityData self, double const * source)
-        void OutputData< T >::setRawDataArray(const T *source)
+        accept(IntensityScaleAndShiftNormalizer self, INodeVisitor visitor)
+        void IntensityScaleAndShiftNormalizer::accept(INodeVisitor *visitor) const final
 
-        Sets new values to raw data array. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.IntensityData_setRawDataArray(self, source)
+        return _libBornAgainCore.IntensityScaleAndShiftNormalizer_accept(self, visitor)
 
-    def __iadd__(self, right):
-        r"""__iadd__(IntensityData self, IntensityData right) -> IntensityData"""
-        return _libBornAgainCore.IntensityData___iadd__(self, right)
+    def setMaximumIntensity(self, arg2):
+        r"""
+        setMaximumIntensity(IntensityScaleAndShiftNormalizer self, double arg2)
+        void IntensityScaleAndShiftNormalizer::setMaximumIntensity(double) final
 
-    def __isub__(self, right):
-        r"""__isub__(IntensityData self, IntensityData right) -> IntensityData"""
-        return _libBornAgainCore.IntensityData___isub__(self, right)
+        """
+        return _libBornAgainCore.IntensityScaleAndShiftNormalizer_setMaximumIntensity(self, arg2)
 
-    def __itruediv__(self, *args):
-        return _libBornAgainCore.IntensityData___itruediv__(self, *args)
-    __idiv__ = __itruediv__
+    def clone(self):
+        r"""
+        clone(IntensityScaleAndShiftNormalizer self) -> IntensityScaleAndShiftNormalizer
+        IntensityScaleAndShiftNormalizer* IntensityScaleAndShiftNormalizer::clone() const final
 
+        """
+        return _libBornAgainCore.IntensityScaleAndShiftNormalizer_clone(self)
 
+# Register IntensityScaleAndShiftNormalizer in _libBornAgainCore:
+_libBornAgainCore.IntensityScaleAndShiftNormalizer_swigregister(IntensityScaleAndShiftNormalizer)
 
-    def __imul__(self, right):
-        r"""__imul__(IntensityData self, IntensityData right) -> IntensityData"""
-        return _libBornAgainCore.IntensityData___imul__(self, right)
+class IIntensityFunction(object):
+    r"""
 
-    def getValue(self, index):
-        r"""
-        getValue(IntensityData self, size_t index) -> double
-        double OutputData< T >::getValue(size_t index) const
 
-        Returns value or summed value, depending on T. 
+    Interface for applying arbitrary function to the measured intensity.
 
-        """
-        return _libBornAgainCore.IntensityData_getValue(self, index)
+    C++ includes: IIntensityFunction.h
 
-    def getArray(self):
-        r"""
-        getArray(IntensityData self) -> PyObject *
-        PyObject* OutputData< T >::getArray() const
+    """
 
-        returns data as Python numpy array 
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
 
-        """
-        return _libBornAgainCore.IntensityData_getArray(self)
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IIntensityFunction
 
-    def isInitialized(self):
+    def clone(self):
         r"""
-        isInitialized(IntensityData self) -> bool
-        bool OutputData< T >::isInitialized() const
-
-        returns true if object is correctly initialized 
+        clone(IIntensityFunction self) -> IIntensityFunction
+        virtual IIntensityFunction* IIntensityFunction::clone() const =0
 
         """
-        return _libBornAgainCore.IntensityData_isInitialized(self)
+        return _libBornAgainCore.IIntensityFunction_clone(self)
 
-    def allocate(self):
+    def evaluate(self, value):
         r"""
-        allocate(IntensityData self)
-        void OutputData< T >::allocate()
-
-        memory allocation for current dimensions configuration 
+        evaluate(IIntensityFunction self, double value) -> double
+        virtual double IIntensityFunction::evaluate(double value) const =0
 
         """
-        return _libBornAgainCore.IntensityData_allocate(self)
-
-    def __getitem__(self, i):
-        r"""__getitem__(IntensityData self, unsigned int i) -> double"""
-        return _libBornAgainCore.IntensityData___getitem__(self, i)
-
-    def __setitem__(self, i, value):
-        r"""__setitem__(IntensityData self, unsigned int i, double value) -> double"""
-        return _libBornAgainCore.IntensityData___setitem__(self, i, value)
+        return _libBornAgainCore.IIntensityFunction_evaluate(self, value)
 
-# Register IntensityData in _libBornAgainCore:
-_libBornAgainCore.IntensityData_swigregister(IntensityData)
+# Register IIntensityFunction in _libBornAgainCore:
+_libBornAgainCore.IIntensityFunction_swigregister(IIntensityFunction)
 
-class ParameterDistribution(IParameterized):
+class IntensityFunctionLog(IIntensityFunction):
     r"""
 
 
-    A parametric distribution function, for use with any model parameter.
+    Algorithm for applying log function to the measured intensity.
 
-    C++ includes: ParameterDistribution.h
+    C++ includes: IIntensityFunction.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def clone(self):
         r"""
-        __init__(ParameterDistribution self, std::string const & par_name, IDistribution1D distribution, size_t nbr_samples, double sigma_factor=0.0, RealLimits limits=RealLimits()) -> ParameterDistribution
-        __init__(ParameterDistribution self, std::string const & par_name, IDistribution1D distribution, size_t nbr_samples, double xmin, double xmax) -> ParameterDistribution
-        __init__(ParameterDistribution self, ParameterDistribution other) -> ParameterDistribution
-        ParameterDistribution::ParameterDistribution(const ParameterDistribution &other)
+        clone(IntensityFunctionLog self) -> IntensityFunctionLog
+        IntensityFunctionLog * IntensityFunctionLog::clone() const
 
         """
-        _libBornAgainCore.ParameterDistribution_swiginit(self, _libBornAgainCore.new_ParameterDistribution(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_ParameterDistribution
+        return _libBornAgainCore.IntensityFunctionLog_clone(self)
 
-    def linkParameter(self, par_name):
+    def evaluate(self, value):
         r"""
-        linkParameter(ParameterDistribution self, std::string par_name) -> ParameterDistribution
-        ParameterDistribution & ParameterDistribution::linkParameter(std::string par_name)
+        evaluate(IntensityFunctionLog self, double value) -> double
+        double IntensityFunctionLog::evaluate(double value) const
 
         """
-        return _libBornAgainCore.ParameterDistribution_linkParameter(self, par_name)
+        return _libBornAgainCore.IntensityFunctionLog_evaluate(self, value)
 
-    def getMainParameterName(self):
+    def __init__(self):
         r"""
-        getMainParameterName(ParameterDistribution self) -> std::string
-        std::string ParameterDistribution::getMainParameterName() const
+        __init__(IntensityFunctionLog self) -> IntensityFunctionLog
 
-        get the main parameter's name 
+
+        Algorithm for applying log function to the measured intensity.
+
+        C++ includes: IIntensityFunction.h
 
         """
-        return _libBornAgainCore.ParameterDistribution_getMainParameterName(self)
+        _libBornAgainCore.IntensityFunctionLog_swiginit(self, _libBornAgainCore.new_IntensityFunctionLog())
+    __swig_destroy__ = _libBornAgainCore.delete_IntensityFunctionLog
 
-    def getNbrSamples(self):
-        r"""
-        getNbrSamples(ParameterDistribution self) -> size_t
-        size_t ParameterDistribution::getNbrSamples() const
+# Register IntensityFunctionLog in _libBornAgainCore:
+_libBornAgainCore.IntensityFunctionLog_swigregister(IntensityFunctionLog)
 
-        get number of samples for this distribution 
+class IntensityFunctionSqrt(IIntensityFunction):
+    r"""
 
-        """
-        return _libBornAgainCore.ParameterDistribution_getNbrSamples(self)
 
-    def getSigmaFactor(self):
-        r"""
-        getSigmaFactor(ParameterDistribution self) -> double
-        double ParameterDistribution::getSigmaFactor() const
+    Algorithm for applying sqrt function to the measured intensity.
 
-        get the sigma factor 
+    C++ includes: IIntensityFunction.h
 
-        """
-        return _libBornAgainCore.ParameterDistribution_getSigmaFactor(self)
+    """
 
-    def getDistribution(self, *args):
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def clone(self):
         r"""
-        getDistribution(ParameterDistribution self) -> IDistribution1D
-        getDistribution(ParameterDistribution self) -> IDistribution1D
-        IDistribution1D * ParameterDistribution::getDistribution()
+        clone(IntensityFunctionSqrt self) -> IntensityFunctionSqrt
+        IntensityFunctionSqrt * IntensityFunctionSqrt::clone() const
 
         """
-        return _libBornAgainCore.ParameterDistribution_getDistribution(self, *args)
+        return _libBornAgainCore.IntensityFunctionSqrt_clone(self)
 
-    def generateSamples(self):
+    def evaluate(self, value):
         r"""
-        generateSamples(ParameterDistribution self) -> ParameterSampleVector
-        std::vector< ParameterSample > ParameterDistribution::generateSamples() const
-
-        generate list of sampled values with their weight 
+        evaluate(IntensityFunctionSqrt self, double value) -> double
+        double IntensityFunctionSqrt::evaluate(double value) const
 
         """
-        return _libBornAgainCore.ParameterDistribution_generateSamples(self)
+        return _libBornAgainCore.IntensityFunctionSqrt_evaluate(self, value)
 
-    def getLinkedParameterNames(self):
+    def __init__(self):
         r"""
-        getLinkedParameterNames(ParameterDistribution self) -> vector_string_t
-        std::vector<std::string> ParameterDistribution::getLinkedParameterNames() const
+        __init__(IntensityFunctionSqrt self) -> IntensityFunctionSqrt
 
-        get list of linked parameter names 
 
-        """
-        return _libBornAgainCore.ParameterDistribution_getLinkedParameterNames(self)
+        Algorithm for applying sqrt function to the measured intensity.
 
-    def getLimits(self):
-        r"""
-        getLimits(ParameterDistribution self) -> RealLimits
-        RealLimits ParameterDistribution::getLimits() const
+        C++ includes: IIntensityFunction.h
 
         """
-        return _libBornAgainCore.ParameterDistribution_getLimits(self)
+        _libBornAgainCore.IntensityFunctionSqrt_swiginit(self, _libBornAgainCore.new_IntensityFunctionSqrt())
+    __swig_destroy__ = _libBornAgainCore.delete_IntensityFunctionSqrt
 
-    def getMinValue(self):
+# Register IntensityFunctionSqrt in _libBornAgainCore:
+_libBornAgainCore.IntensityFunctionSqrt_swigregister(IntensityFunctionSqrt)
+
+class IResolutionFunction2D(ICloneable, INode):
+    r"""
+
+
+    Interface providing two-dimensional resolution function.
+
+    C++ includes: IResolutionFunction2D.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IResolutionFunction2D
+
+    def evaluateCDF(self, x, y):
         r"""
-        getMinValue(ParameterDistribution self) -> double
-        double ParameterDistribution::getMinValue() const
+        evaluateCDF(IResolutionFunction2D self, double x, double y) -> double
+        virtual double IResolutionFunction2D::evaluateCDF(double x, double y) const =0
 
         """
-        return _libBornAgainCore.ParameterDistribution_getMinValue(self)
+        return _libBornAgainCore.IResolutionFunction2D_evaluateCDF(self, x, y)
 
-    def getMaxValue(self):
+    def clone(self):
         r"""
-        getMaxValue(ParameterDistribution self) -> double
-        double ParameterDistribution::getMaxValue() const
+        clone(IResolutionFunction2D self) -> IResolutionFunction2D
+        virtual IResolutionFunction2D* IResolutionFunction2D::clone() const =0
 
         """
-        return _libBornAgainCore.ParameterDistribution_getMaxValue(self)
+        return _libBornAgainCore.IResolutionFunction2D_clone(self)
 
-# Register ParameterDistribution in _libBornAgainCore:
-_libBornAgainCore.ParameterDistribution_swigregister(ParameterDistribution)
+# Register IResolutionFunction2D in _libBornAgainCore:
+_libBornAgainCore.IResolutionFunction2D_swigregister(IResolutionFunction2D)
 
-class ParameterPool(ICloneable):
+class ChiSquaredModule(IChiSquaredModule):
     r"""
 
 
-    Container with parameters for  IParameterized object.
+    Calculation of chi2 between two data sets.
 
-    C++ includes: ParameterPool.h
+    C++ includes: ChiSquaredModule.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self):
+    def __init__(self, *args):
         r"""
-        __init__(ParameterPool self) -> ParameterPool
-        ParameterPool::ParameterPool()
-
-        Constructs an empty parameter pool. 
+        __init__(ChiSquaredModule self) -> ChiSquaredModule
+        __init__(ChiSquaredModule self, ChiSquaredModule other) -> ChiSquaredModule
+        ChiSquaredModule::ChiSquaredModule(const ChiSquaredModule &other)
 
         """
-        _libBornAgainCore.ParameterPool_swiginit(self, _libBornAgainCore.new_ParameterPool())
-    __swig_destroy__ = _libBornAgainCore.delete_ParameterPool
+        _libBornAgainCore.ChiSquaredModule_swiginit(self, _libBornAgainCore.new_ChiSquaredModule(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_ChiSquaredModule
 
     def clone(self):
         r"""
-        clone(ParameterPool self) -> ParameterPool
-        ParameterPool * ParameterPool::clone() const
+        clone(ChiSquaredModule self) -> ChiSquaredModule
+        virtual ChiSquaredModule* ChiSquaredModule::clone() const
 
-        Returns a literal clone. 
+        clone method 
 
         """
-        return _libBornAgainCore.ParameterPool_clone(self)
+        return _libBornAgainCore.ChiSquaredModule_clone(self)
 
-    def copyToExternalPool(self, prefix, other_pool):
+    def residual(self, a, b, weight):
         r"""
-        copyToExternalPool(ParameterPool self, std::string const & prefix, ParameterPool other_pool)
-        void ParameterPool::copyToExternalPool(const std::string &prefix, ParameterPool *other_pool) const
-
-        Copies parameters of given pool to  other pool, prepeding  prefix to the parameter names. 
+        residual(ChiSquaredModule self, double a, double b, double weight) -> double
+        double ChiSquaredModule::residual(double a, double b, double weight)
 
         """
-        return _libBornAgainCore.ParameterPool_copyToExternalPool(self, prefix, other_pool)
+        return _libBornAgainCore.ChiSquaredModule_residual(self, a, b, weight)
 
-    def clear(self):
-        r"""
-        clear(ParameterPool self)
-        void ParameterPool::clear()
+# Register ChiSquaredModule in _libBornAgainCore:
+_libBornAgainCore.ChiSquaredModule_swigregister(ChiSquaredModule)
+
+class DetectorMask(object):
+    r"""
+
+
+    Collection of detector masks.
 
-        Clears the parameter map. 
+    C++ includes: DetectorMask.h
 
-        """
-        return _libBornAgainCore.ParameterPool_clear(self)
+    """
 
-    def size(self):
-        r"""
-        size(ParameterPool self) -> size_t
-        size_t ParameterPool::size() const
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-        Returns number of parameters in the pool. 
+    def __init__(self, *args):
+        r"""
+        __init__(DetectorMask self) -> DetectorMask
+        __init__(DetectorMask self, DetectorMask other) -> DetectorMask
+        DetectorMask::DetectorMask(const DetectorMask &other)
 
         """
-        return _libBornAgainCore.ParameterPool_size(self)
+        _libBornAgainCore.DetectorMask_swiginit(self, _libBornAgainCore.new_DetectorMask(*args))
 
-    def addParameter(self, newPar):
+    def addMask(self, shape, mask_value):
         r"""
-        addParameter(ParameterPool self, RealParameter newPar) -> RealParameter
-        RealParameter & ParameterPool::addParameter(RealParameter *newPar)
-
-        Adds parameter to the pool, and returns reference to the input pointer.
+        addMask(DetectorMask self, IShape2D shape, bool mask_value)
+        void DetectorMask::addMask(const IShape2D &shape, bool mask_value)
 
-        Returning the input pointer allows us to concatenate function calls like pool->addParameter( new RealParameter(...) ).setLimits(-1,+1).setFixed().setUnit("nm") 
+        Add mask to the stack of detector masks. The value "true" means that the area will be excluded from the analysis.
 
-        """
-        return _libBornAgainCore.ParameterPool_addParameter(self, newPar)
+        Parameters:
+        -----------
 
-    def parameter(self, *args):
-        r"""
-        parameter(ParameterPool self, std::string const & name) -> RealParameter
-        parameter(ParameterPool self, std::string const & name) -> RealParameter
-        const RealParameter * ParameterPool::parameter(const std::string &name) const
+        shape: 
+        The shape of mask.
 
-        Returns parameter with given  name. 
+        mask_value: 
+        The value of mask 
 
         """
-        return _libBornAgainCore.ParameterPool_parameter(self, *args)
+        return _libBornAgainCore.DetectorMask_addMask(self, shape, mask_value)
 
-    def parameters(self):
+    def initMaskData(self, *args):
         r"""
-        parameters(ParameterPool self) -> std::vector< RealParameter *,std::allocator< RealParameter * > > const
-        const std::vector<RealParameter*> ParameterPool::parameters() const
-
-        Returns full vector of parameters. 
+        initMaskData(DetectorMask self, IDetector2D detector)
+        initMaskData(DetectorMask self, IntensityData data)
+        void DetectorMask::initMaskData(const OutputData< double > &data)
 
         """
-        return _libBornAgainCore.ParameterPool_parameters(self)
+        return _libBornAgainCore.DetectorMask_initMaskData(self, *args)
 
-    def getMatchedParameters(self, pattern):
+    def isMasked(self, index):
         r"""
-        getMatchedParameters(ParameterPool self, std::string const & pattern) -> std::vector< RealParameter *,std::allocator< RealParameter * > >
-        std::vector< RealParameter * > ParameterPool::getMatchedParameters(const std::string &pattern) const
-
-        Returns nonempty vector of parameters that match the  pattern ('*' allowed), or throws. 
+        isMasked(DetectorMask self, size_t index) -> bool
+        bool DetectorMask::isMasked(size_t index) const
 
         """
-        return _libBornAgainCore.ParameterPool_getMatchedParameters(self, pattern)
+        return _libBornAgainCore.DetectorMask_isMasked(self, index)
 
-    def getUniqueMatch(self, pattern):
+    def getMaskData(self):
         r"""
-        getUniqueMatch(ParameterPool self, std::string const & pattern) -> RealParameter
-        RealParameter * ParameterPool::getUniqueMatch(const std::string &pattern) const
-
-        Returns the one parameter that matches the  pattern (wildcards '*' allowed), or throws. 
+        getMaskData(DetectorMask self) -> OutputData< bool > const *
+        const OutputData<bool>* DetectorMask::getMaskData() const
 
         """
-        return _libBornAgainCore.ParameterPool_getUniqueMatch(self, pattern)
+        return _libBornAgainCore.DetectorMask_getMaskData(self)
 
-    def setParameterValue(self, name, value):
+    def createHistogram(self):
         r"""
-        setParameterValue(ParameterPool self, std::string const & name, double value)
-        void ParameterPool::setParameterValue(const std::string &name, double value)
-
-        Sets parameter value. 
+        createHistogram(DetectorMask self) -> Histogram2D
+        Histogram2D * DetectorMask::createHistogram() const
 
         """
-        return _libBornAgainCore.ParameterPool_setParameterValue(self, name, value)
+        return _libBornAgainCore.DetectorMask_createHistogram(self)
 
-    def setMatchedParametersValue(self, wildcards, value):
+    def removeMasks(self):
         r"""
-        setMatchedParametersValue(ParameterPool self, std::string const & wildcards, double value) -> int
-        int ParameterPool::setMatchedParametersValue(const std::string &wildcards, double value)
+        removeMasks(DetectorMask self)
+        void DetectorMask::removeMasks()
 
-        Sets value of the nonzero parameters that match  pattern ('*' allowed), or throws. 
+        remove all masks and return object to initial state 
 
         """
-        return _libBornAgainCore.ParameterPool_setMatchedParametersValue(self, wildcards, value)
+        return _libBornAgainCore.DetectorMask_removeMasks(self)
 
-    def setUniqueMatchValue(self, pattern, value):
+    def hasMasks(self):
         r"""
-        setUniqueMatchValue(ParameterPool self, std::string const & pattern, double value)
-        void ParameterPool::setUniqueMatchValue(const std::string &pattern, double value)
+        hasMasks(DetectorMask self) -> bool
+        bool DetectorMask::hasMasks() const
 
-        Sets value of the one parameter that matches  pattern ('*' allowed), or throws. 
+        returns true if has masks 
 
         """
-        return _libBornAgainCore.ParameterPool_setUniqueMatchValue(self, pattern, value)
+        return _libBornAgainCore.DetectorMask_hasMasks(self)
 
-    def parameterNames(self):
+    def numberOfMaskedChannels(self):
         r"""
-        parameterNames(ParameterPool self) -> vector_string_t
-        std::vector< std::string > ParameterPool::parameterNames() const
+        numberOfMaskedChannels(DetectorMask self) -> int
+        int DetectorMask::numberOfMaskedChannels() const
 
         """
-        return _libBornAgainCore.ParameterPool_parameterNames(self)
+        return _libBornAgainCore.DetectorMask_numberOfMaskedChannels(self)
 
-    def removeParameter(self, name):
+    def numberOfMasks(self):
         r"""
-        removeParameter(ParameterPool self, std::string const & name)
-        void ParameterPool::removeParameter(const std::string &name)
-
-        Removes parameter with given name from the pool. 
+        numberOfMasks(DetectorMask self) -> size_t
+        size_t DetectorMask::numberOfMasks() const
 
         """
-        return _libBornAgainCore.ParameterPool_removeParameter(self, name)
-
-    def __getitem__(self, index):
-        r"""__getitem__(ParameterPool self, size_t index) -> RealParameter"""
-        return _libBornAgainCore.ParameterPool___getitem__(self, index)
+        return _libBornAgainCore.DetectorMask_numberOfMasks(self)
 
-    def __iter__(self):
-        return ParameterPoolIterator(self)
+    def getMaskShape(self, mask_index, mask_value):
+        r"""
+        getMaskShape(DetectorMask self, size_t mask_index, bool & mask_value) -> IShape2D
+        const IShape2D * DetectorMask::getMaskShape(size_t mask_index, bool &mask_value) const
 
+        """
+        return _libBornAgainCore.DetectorMask_getMaskShape(self, mask_index, mask_value)
+    __swig_destroy__ = _libBornAgainCore.delete_DetectorMask
 
-# Register ParameterPool in _libBornAgainCore:
-_libBornAgainCore.ParameterPool_swigregister(ParameterPool)
+# Register DetectorMask in _libBornAgainCore:
+_libBornAgainCore.DetectorMask_swigregister(DetectorMask)
 
-class ParameterSample(object):
+class Instrument(INode):
     r"""
 
 
-    A parameter value with a weight, as obtained when sampling from a distribution.
+    Assembles beam, detector and their relative positions with respect to the sample.
 
-    C++ includes: ParameterSample.h
+    C++ includes: Instrument.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, _value=0., _weight=1.):
+    def __init__(self, *args):
         r"""
-        __init__(ParameterSample self, double _value=0., double _weight=1.) -> ParameterSample
-        ParameterSample::ParameterSample(double _value=0., double _weight=1.)
+        __init__(Instrument self) -> Instrument
+        __init__(Instrument self, Instrument other) -> Instrument
+        Instrument::Instrument(const Instrument &other)
 
         """
-        _libBornAgainCore.ParameterSample_swiginit(self, _libBornAgainCore.new_ParameterSample(_value, _weight))
-    value = property(_libBornAgainCore.ParameterSample_value_get, _libBornAgainCore.ParameterSample_value_set, doc=r"""value : double""")
-    weight = property(_libBornAgainCore.ParameterSample_weight_get, _libBornAgainCore.ParameterSample_weight_set, doc=r"""weight : double""")
-    __swig_destroy__ = _libBornAgainCore.delete_ParameterSample
-
-# Register ParameterSample in _libBornAgainCore:
-_libBornAgainCore.ParameterSample_swigregister(ParameterSample)
-
-class ParameterSampleVector(object):
-    r"""Proxy of C++ std::vector< ParameterSample > class."""
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
-
-    def iterator(self):
-        r"""iterator(ParameterSampleVector self) -> SwigPyIterator"""
-        return _libBornAgainCore.ParameterSampleVector_iterator(self)
-    def __iter__(self):
-        return self.iterator()
-
-    def __nonzero__(self):
-        r"""__nonzero__(ParameterSampleVector self) -> bool"""
-        return _libBornAgainCore.ParameterSampleVector___nonzero__(self)
-
-    def __bool__(self):
-        r"""__bool__(ParameterSampleVector self) -> bool"""
-        return _libBornAgainCore.ParameterSampleVector___bool__(self)
-
-    def __len__(self):
-        r"""__len__(ParameterSampleVector self) -> std::vector< ParameterSample >::size_type"""
-        return _libBornAgainCore.ParameterSampleVector___len__(self)
-
-    def __getslice__(self, i, j):
-        r"""__getslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j) -> ParameterSampleVector"""
-        return _libBornAgainCore.ParameterSampleVector___getslice__(self, i, j)
+        _libBornAgainCore.Instrument_swiginit(self, _libBornAgainCore.new_Instrument(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_Instrument
 
-    def __setslice__(self, *args):
+    def accept(self, visitor):
         r"""
-        __setslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j)
-        __setslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j, ParameterSampleVector v)
-        """
-        return _libBornAgainCore.ParameterSampleVector___setslice__(self, *args)
+        accept(Instrument self, INodeVisitor visitor)
+        void Instrument::accept(INodeVisitor *visitor) const final
 
-    def __delslice__(self, i, j):
-        r"""__delslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j)"""
-        return _libBornAgainCore.ParameterSampleVector___delslice__(self, i, j)
+        Calls the  INodeVisitor's visit method. 
 
-    def __delitem__(self, *args):
-        r"""
-        __delitem__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i)
-        __delitem__(ParameterSampleVector self, PySliceObject * slice)
         """
-        return _libBornAgainCore.ParameterSampleVector___delitem__(self, *args)
+        return _libBornAgainCore.Instrument_accept(self, visitor)
 
-    def __getitem__(self, *args):
+    def getBeam(self, *args):
         r"""
-        __getitem__(ParameterSampleVector self, PySliceObject * slice) -> ParameterSampleVector
-        __getitem__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i) -> ParameterSample
-        """
-        return _libBornAgainCore.ParameterSampleVector___getitem__(self, *args)
+        getBeam(Instrument self) -> Beam
+        getBeam(Instrument self) -> Beam
+        const Beam& Instrument::getBeam() const
 
-    def __setitem__(self, *args):
-        r"""
-        __setitem__(ParameterSampleVector self, PySliceObject * slice, ParameterSampleVector v)
-        __setitem__(ParameterSampleVector self, PySliceObject * slice)
-        __setitem__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, ParameterSample x)
         """
-        return _libBornAgainCore.ParameterSampleVector___setitem__(self, *args)
-
-    def pop(self):
-        r"""pop(ParameterSampleVector self) -> ParameterSample"""
-        return _libBornAgainCore.ParameterSampleVector_pop(self)
-
-    def append(self, x):
-        r"""append(ParameterSampleVector self, ParameterSample x)"""
-        return _libBornAgainCore.ParameterSampleVector_append(self, x)
-
-    def empty(self):
-        r"""empty(ParameterSampleVector self) -> bool"""
-        return _libBornAgainCore.ParameterSampleVector_empty(self)
-
-    def size(self):
-        r"""size(ParameterSampleVector self) -> std::vector< ParameterSample >::size_type"""
-        return _libBornAgainCore.ParameterSampleVector_size(self)
+        return _libBornAgainCore.Instrument_getBeam(self, *args)
 
-    def swap(self, v):
+    def setBeam(self, beam):
         r"""
-        swap(ParameterSampleVector self, ParameterSampleVector v)
-        void swap(OutputDataIterator< TValue, TContainer > &left, OutputDataIterator< TValue, TContainer > &right)
-
-        make Swappable 
+        setBeam(Instrument self, Beam beam)
+        void Instrument::setBeam(const Beam &beam)
 
         """
-        return _libBornAgainCore.ParameterSampleVector_swap(self, v)
-
-    def begin(self):
-        r"""begin(ParameterSampleVector self) -> std::vector< ParameterSample >::iterator"""
-        return _libBornAgainCore.ParameterSampleVector_begin(self)
+        return _libBornAgainCore.Instrument_setBeam(self, beam)
 
-    def end(self):
-        r"""end(ParameterSampleVector self) -> std::vector< ParameterSample >::iterator"""
-        return _libBornAgainCore.ParameterSampleVector_end(self)
+    def setBeamParameters(self, wavelength, alpha_i, phi_i):
+        r"""
+        setBeamParameters(Instrument self, double wavelength, double alpha_i, double phi_i)
+        void Instrument::setBeamParameters(double wavelength, double alpha_i, double phi_i)
 
-    def rbegin(self):
-        r"""rbegin(ParameterSampleVector self) -> std::vector< ParameterSample >::reverse_iterator"""
-        return _libBornAgainCore.ParameterSampleVector_rbegin(self)
+        Sets the beam wavelength and incoming angles. 
 
-    def rend(self):
-        r"""rend(ParameterSampleVector self) -> std::vector< ParameterSample >::reverse_iterator"""
-        return _libBornAgainCore.ParameterSampleVector_rend(self)
+        """
+        return _libBornAgainCore.Instrument_setBeamParameters(self, wavelength, alpha_i, phi_i)
 
-    def clear(self):
-        r"""clear(ParameterSampleVector self)"""
-        return _libBornAgainCore.ParameterSampleVector_clear(self)
+    def setBeamIntensity(self, intensity):
+        r"""
+        setBeamIntensity(Instrument self, double intensity)
+        void Instrument::setBeamIntensity(double intensity)
 
-    def get_allocator(self):
-        r"""get_allocator(ParameterSampleVector self) -> std::vector< ParameterSample >::allocator_type"""
-        return _libBornAgainCore.ParameterSampleVector_get_allocator(self)
+        Sets the beam's intensity. 
 
-    def pop_back(self):
-        r"""pop_back(ParameterSampleVector self)"""
-        return _libBornAgainCore.ParameterSampleVector_pop_back(self)
+        """
+        return _libBornAgainCore.Instrument_setBeamIntensity(self, intensity)
 
-    def erase(self, *args):
+    def setBeamPolarization(self, bloch_vector):
         r"""
-        erase(ParameterSampleVector self, std::vector< ParameterSample >::iterator pos) -> std::vector< ParameterSample >::iterator
-        erase(ParameterSampleVector self, std::vector< ParameterSample >::iterator first, std::vector< ParameterSample >::iterator last) -> std::vector< ParameterSample >::iterator
+        setBeamPolarization(Instrument self, kvector_t bloch_vector)
+        void Instrument::setBeamPolarization(const kvector_t bloch_vector)
+
+        Sets the beam's polarization according to the given Bloch vector. 
+
         """
-        return _libBornAgainCore.ParameterSampleVector_erase(self, *args)
+        return _libBornAgainCore.Instrument_setBeamPolarization(self, bloch_vector)
 
-    def __init__(self, *args):
+    def getBeamIntensity(self):
         r"""
-        __init__(ParameterSampleVector self) -> ParameterSampleVector
-        __init__(ParameterSampleVector self, ParameterSampleVector other) -> ParameterSampleVector
-        __init__(ParameterSampleVector self, std::vector< ParameterSample >::size_type size) -> ParameterSampleVector
-        __init__(ParameterSampleVector self, std::vector< ParameterSample >::size_type size, ParameterSample value) -> ParameterSampleVector
-        """
-        _libBornAgainCore.ParameterSampleVector_swiginit(self, _libBornAgainCore.new_ParameterSampleVector(*args))
+        getBeamIntensity(Instrument self) -> double
+        double Instrument::getBeamIntensity() const
 
-    def push_back(self, x):
-        r"""push_back(ParameterSampleVector self, ParameterSample x)"""
-        return _libBornAgainCore.ParameterSampleVector_push_back(self, x)
+        Returns the beam's intensity. 
 
-    def front(self):
-        r"""front(ParameterSampleVector self) -> ParameterSample"""
-        return _libBornAgainCore.ParameterSampleVector_front(self)
+        """
+        return _libBornAgainCore.Instrument_getBeamIntensity(self)
 
-    def back(self):
-        r"""back(ParameterSampleVector self) -> ParameterSample"""
-        return _libBornAgainCore.ParameterSampleVector_back(self)
+    def getDetector(self, *args):
+        r"""
+        getDetector(Instrument self) -> IDetector
+        getDetector(Instrument self) -> IDetector
+        IDetector * Instrument::getDetector()
 
-    def assign(self, n, x):
-        r"""assign(ParameterSampleVector self, std::vector< ParameterSample >::size_type n, ParameterSample x)"""
-        return _libBornAgainCore.ParameterSampleVector_assign(self, n, x)
+        """
+        return _libBornAgainCore.Instrument_getDetector(self, *args)
 
-    def resize(self, *args):
+    def getDetectorMask(self):
         r"""
-        resize(ParameterSampleVector self, std::vector< ParameterSample >::size_type new_size)
-        resize(ParameterSampleVector self, std::vector< ParameterSample >::size_type new_size, ParameterSample x)
+        getDetectorMask(Instrument self) -> DetectorMask
+        const DetectorMask * Instrument::getDetectorMask() const
+
         """
-        return _libBornAgainCore.ParameterSampleVector_resize(self, *args)
+        return _libBornAgainCore.Instrument_getDetectorMask(self)
 
-    def insert(self, *args):
+    def getDetectorAxis(self, index):
         r"""
-        insert(ParameterSampleVector self, std::vector< ParameterSample >::iterator pos, ParameterSample x) -> std::vector< ParameterSample >::iterator
-        insert(ParameterSampleVector self, std::vector< ParameterSample >::iterator pos, std::vector< ParameterSample >::size_type n, ParameterSample x)
+        getDetectorAxis(Instrument self, size_t index) -> IAxis
+        const IAxis & Instrument::getDetectorAxis(size_t index) const
+
+        Returns a detector axis. 
+
         """
-        return _libBornAgainCore.ParameterSampleVector_insert(self, *args)
+        return _libBornAgainCore.Instrument_getDetectorAxis(self, index)
 
-    def reserve(self, n):
-        r"""reserve(ParameterSampleVector self, std::vector< ParameterSample >::size_type n)"""
-        return _libBornAgainCore.ParameterSampleVector_reserve(self, n)
+    def getDetectorDimension(self):
+        r"""
+        getDetectorDimension(Instrument self) -> size_t
+        size_t Instrument::getDetectorDimension() const
 
-    def capacity(self):
-        r"""capacity(ParameterSampleVector self) -> std::vector< ParameterSample >::size_type"""
-        return _libBornAgainCore.ParameterSampleVector_capacity(self)
-    __swig_destroy__ = _libBornAgainCore.delete_ParameterSampleVector
+        Returns the detector's dimension. 
 
-# Register ParameterSampleVector in _libBornAgainCore:
-_libBornAgainCore.ParameterSampleVector_swigregister(ParameterSampleVector)
+        """
+        return _libBornAgainCore.Instrument_getDetectorDimension(self)
 
-class Particle(IParticle):
-    r"""
+    def setDetector(self, detector):
+        r"""
+        setDetector(Instrument self, IDetector detector)
+        void Instrument::setDetector(const IDetector &detector)
 
+        Sets the detector (axes can be overwritten later) 
 
-    A particle with a form factor and refractive index.
+        """
+        return _libBornAgainCore.Instrument_setDetector(self, detector)
 
-    C++ includes: Particle.h
+    def setDetectorResolutionFunction(self, p_resolution_function):
+        r"""
+        setDetectorResolutionFunction(Instrument self, IResolutionFunction2D p_resolution_function)
+        void Instrument::setDetectorResolutionFunction(const IResolutionFunction2D &p_resolution_function)
 
-    """
+        Sets detector resolution function. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.Instrument_setDetectorResolutionFunction(self, p_resolution_function)
 
-    def __init__(self, *args):
+    def removeDetectorResolution(self):
         r"""
-        __init__(Particle self) -> Particle
-        __init__(Particle self, Material material) -> Particle
-        __init__(Particle self, Material material, IFormFactor form_factor) -> Particle
-        __init__(Particle self, Material material, IFormFactor form_factor, IRotation rotation) -> Particle
-        Particle::Particle(Material material, const IFormFactor &form_factor, const IRotation &rotation)
+        removeDetectorResolution(Instrument self)
+        void Instrument::removeDetectorResolution()
+
+        Removes detector resolution function. 
 
         """
-        _libBornAgainCore.Particle_swiginit(self, _libBornAgainCore.new_Particle(*args))
+        return _libBornAgainCore.Instrument_removeDetectorResolution(self)
 
-    def clone(self):
+    def setAnalyzerProperties(self, direction, efficiency, total_transmission):
         r"""
-        clone(Particle self) -> Particle
-        Particle * Particle::clone() const override final
+        setAnalyzerProperties(Instrument self, kvector_t direction, double efficiency, double total_transmission)
+        void Instrument::setAnalyzerProperties(const kvector_t direction, double efficiency, double total_transmission)
 
-        Returns a clone of this  ISample object. 
+        Sets the polarization analyzer characteristics of the detector. 
 
         """
-        return _libBornAgainCore.Particle_clone(self)
+        return _libBornAgainCore.Instrument_setAnalyzerProperties(self, direction, efficiency, total_transmission)
 
-    def accept(self, visitor):
+    def applyDetectorResolution(self, p_intensity_map):
         r"""
-        accept(Particle self, INodeVisitor visitor)
-        void Particle::accept(INodeVisitor *visitor) const override final
+        applyDetectorResolution(Instrument self, IntensityData p_intensity_map)
+        void Instrument::applyDetectorResolution(OutputData< double > *p_intensity_map) const
 
-        Calls the  INodeVisitor's visit method. 
+        apply the detector resolution to the given intensity map 
 
         """
-        return _libBornAgainCore.Particle_accept(self, visitor)
+        return _libBornAgainCore.Instrument_applyDetectorResolution(self, p_intensity_map)
 
-    def createSlicedParticle(self, limits):
+    def createDetectorIntensity(self, elements):
         r"""
-        createSlicedParticle(Particle self, ZLimits limits) -> SlicedParticle
-        SlicedParticle Particle::createSlicedParticle(ZLimits limits) const override final
+        createDetectorIntensity(Instrument self, std::vector< SimulationElement,std::allocator< SimulationElement > > const & elements) -> IntensityData
+        OutputData< double > * Instrument::createDetectorIntensity(const std::vector< SimulationElement > &elements) const
 
-        Create a sliced form factor for this particle. 
+        Returns new intensity map with detector resolution applied and axes in requested units. 
 
         """
-        return _libBornAgainCore.Particle_createSlicedParticle(self, limits)
+        return _libBornAgainCore.Instrument_createDetectorIntensity(self, elements)
 
-    def setMaterial(self, material):
+    def initDetector(self):
         r"""
-        setMaterial(Particle self, Material material)
-        void Particle::setMaterial(Material material)
+        initDetector(Instrument self)
+        void Instrument::initDetector()
+
+        init detector with beam settings 
 
         """
-        return _libBornAgainCore.Particle_setMaterial(self, material)
+        return _libBornAgainCore.Instrument_initDetector(self)
 
-    def material(self):
+    def getChildren(self):
         r"""
-        material(Particle self) -> Material
-        const Material* Particle::material() const override final
+        getChildren(Instrument self) -> swig_dummy_type_const_inode_vector
+        std::vector< const INode * > Instrument::getChildren() const
 
-        Returns nullptr, unless overwritten to return a specific material. 
+        Returns a vector of children (const). 
 
         """
-        return _libBornAgainCore.Particle_material(self)
+        return _libBornAgainCore.Instrument_getChildren(self)
+
+# Register Instrument in _libBornAgainCore:
+_libBornAgainCore.Instrument_swigregister(Instrument)
+
+
+def RelativeDifference(dat, ref):
+    r"""
+    RelativeDifference(SimulationResult dat, SimulationResult ref) -> double
+    double IntensityDataFunctions::RelativeDifference(const SimulationResult &dat, const SimulationResult &ref)
+
+    Returns sum of relative differences between each pair of elements: (a, b) -> 2*abs(a - b)/(a + b) ( and zero if a-b=0 )
+
+    Returns sum of relative differences between each pair of elements: (a, b) -> 2*abs(a - b)/(|a| + |b|) ( and zero if a=b=0 within epsilon ) 
+
+    """
+    return _libBornAgainCore.RelativeDifference(dat, ref)
+
+def checkRelativeDifference(dat, ref, threshold):
+    r"""
+    checkRelativeDifference(IntensityData dat, IntensityData ref, double const threshold) -> bool
+    bool IntensityDataFunctions::checkRelativeDifference(const OutputData< double > &dat, const OutputData< double > &ref, const double threshold)
+
+    Returns true is relative difference is below threshold; prints informative output. 
+
+    """
+    return _libBornAgainCore.checkRelativeDifference(dat, ref, threshold)
+
+def getRelativeDifference(*args):
+    r"""
+    getRelativeDifference(IntensityData dat, IntensityData ref) -> double
+    getRelativeDifference(IHistogram dat, IHistogram ref) -> double
+    double IntensityDataFunctions::getRelativeDifference(const IHistogram &dat, const IHistogram &ref)
+
+    """
+    return _libBornAgainCore.getRelativeDifference(*args)
+
+def coordinateToBinf(*args):
+    r"""
+    coordinateToBinf(double coordinate, IAxis axis) -> double
+    coordinateToBinf(double & x, double & y, IntensityData data)
+    void IntensityDataFunctions::coordinateToBinf(double &x, double &y, const OutputData< double > &data)
+
+    Transforms x,y coordinate from  OutputData axes coordinates to bin-fraction-coordinates. 
+
+    """
+    return _libBornAgainCore.coordinateToBinf(*args)
+
+def coordinateFromBinf(*args):
+    r"""
+    coordinateFromBinf(double value, IAxis axis) -> double
+    coordinateFromBinf(double & x, double & y, IntensityData data)
+    void IntensityDataFunctions::coordinateFromBinf(double &x, double &y, const OutputData< double > &data)
+
+    Transforms x,y coordinate from bin-fraction-coordinates to  OutputData's axes coordinates. 
+
+    """
+    return _libBornAgainCore.coordinateFromBinf(*args)
+
+def create2DArrayfromOutputData(data):
+    r"""
+    create2DArrayfromOutputData(IntensityData data) -> vdouble2d_t
+    std::vector< std::vector< double > > IntensityDataFunctions::create2DArrayfromOutputData(const OutputData< double > &data)
 
-    def setFormFactor(self, form_factor):
-        r"""
-        setFormFactor(Particle self, IFormFactor form_factor)
-        void Particle::setFormFactor(const IFormFactor &form_factor)
+    Creates a vector of vectors of double (2D Array) from  OutputData. 
 
-        """
-        return _libBornAgainCore.Particle_setFormFactor(self, form_factor)
+    """
+    return _libBornAgainCore.create2DArrayfromOutputData(data)
 
-    def getChildren(self):
-        r"""
-        getChildren(Particle self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > Particle::getChildren() const override final
+def FT2DArray(signal):
+    r"""
+    FT2DArray(vdouble2d_t signal) -> vdouble2d_t
+    std::vector< std::vector< double > > IntensityDataFunctions::FT2DArray(const std::vector< std::vector< double >> &signal)
 
-        Returns a vector of children (const). 
+    Creates a Fourier Transform of a 2D Array (vector of vectors). 
 
-        """
-        return _libBornAgainCore.Particle_getChildren(self)
-    __swig_destroy__ = _libBornAgainCore.delete_Particle
+    """
+    return _libBornAgainCore.FT2DArray(signal)
 
-# Register Particle in _libBornAgainCore:
-_libBornAgainCore.Particle_swigregister(Particle)
+def ConvertData(*args):
+    r"""
+    ConvertData(Simulation simulation, IntensityData data, bool put_masked_areas_to_zero=True) -> SimulationResult
+    ConvertData(Simulation simulation, vdouble2d_t data, bool put_masked_areas_to_zero=True) -> SimulationResult
+    SimulationResult IntensityDataFunctions::ConvertData(const Simulation &simulation, const std::vector< std::vector< double >> &data, bool put_masked_areas_to_zero=true)
 
-class ParticleComposition(IParticle):
+    """
+    return _libBornAgainCore.ConvertData(*args)
+class IsGISAXSDetector(SphericalDetector):
     r"""
 
 
-    A composition of particles at fixed positions
+    A spherical detector used for validation with IsGISAXS results.
 
-    C++ includes: ParticleComposition.h
+    C++ includes: IsGISAXSDetector.h
 
     """
 
@@ -21253,1935 +21002,2005 @@ class ParticleComposition(IParticle):
 
     def __init__(self, *args):
         r"""
-        __init__(ParticleComposition self) -> ParticleComposition
-        __init__(ParticleComposition self, IParticle particle, vector_kvector_t positions) -> ParticleComposition
-        ParticleComposition::ParticleComposition(const IParticle &particle, std::vector< kvector_t > positions)
+        __init__(IsGISAXSDetector self) -> IsGISAXSDetector
+        __init__(IsGISAXSDetector self, size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max) -> IsGISAXSDetector
+        __init__(IsGISAXSDetector self, IsGISAXSDetector other) -> IsGISAXSDetector
+        IsGISAXSDetector::IsGISAXSDetector(const IsGISAXSDetector &other)
 
         """
-        _libBornAgainCore.ParticleComposition_swiginit(self, _libBornAgainCore.new_ParticleComposition(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_ParticleComposition
+        _libBornAgainCore.IsGISAXSDetector_swiginit(self, _libBornAgainCore.new_IsGISAXSDetector(*args))
 
     def clone(self):
         r"""
-        clone(ParticleComposition self) -> ParticleComposition
-        ParticleComposition * ParticleComposition::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        clone(IsGISAXSDetector self) -> IsGISAXSDetector
+        IsGISAXSDetector * IsGISAXSDetector::clone() const override
 
         """
-        return _libBornAgainCore.ParticleComposition_clone(self)
+        return _libBornAgainCore.IsGISAXSDetector_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(ParticleComposition self, INodeVisitor visitor)
-        void ParticleComposition::accept(INodeVisitor *visitor) const override final
+        accept(IsGISAXSDetector self, INodeVisitor visitor)
+        void IsGISAXSDetector::accept(INodeVisitor *visitor) const final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.ParticleComposition_accept(self, visitor)
+        return _libBornAgainCore.IsGISAXSDetector_accept(self, visitor)
+    __swig_destroy__ = _libBornAgainCore.delete_IsGISAXSDetector
 
-    def createFormFactor(self):
-        r"""
-        createFormFactor(ParticleComposition self) -> IFormFactor
-        IFormFactor * ParticleComposition::createFormFactor() const override final
+# Register IsGISAXSDetector in _libBornAgainCore:
+_libBornAgainCore.IsGISAXSDetector_swigregister(IsGISAXSDetector)
 
-        Create a form factor for this particle. 
 
-        """
-        return _libBornAgainCore.ParticleComposition_createFormFactor(self)
+def importArrayToOutputData(*args):
+    r"""
+    importArrayToOutputData(vdouble1d_t vec) -> IntensityData
+    importArrayToOutputData(vdouble2d_t vec) -> IntensityData
+    OutputData< double > * PyArrayImport::importArrayToOutputData(const std::vector< std::vector< double >> &vec)
 
-    def addParticle(self, *args):
+    for importing 2D array of doubles from python into  OutputData
+
+    """
+    return _libBornAgainCore.importArrayToOutputData(*args)
+class RectangularPixel(IPixel):
+    r"""
+
+
+    A pixel in a  RectangularDetector.
+
+    C++ includes: RectangularDetector.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, corner_pos, width, height):
         r"""
-        addParticle(ParticleComposition self, IParticle particle)
-        addParticle(ParticleComposition self, IParticle particle, kvector_t position)
-        void ParticleComposition::addParticle(const IParticle &particle, kvector_t position)
+        __init__(RectangularPixel self, kvector_t corner_pos, kvector_t width, kvector_t height) -> RectangularPixel
+        RectangularPixel::RectangularPixel(kvector_t corner_pos, kvector_t width, kvector_t height)
 
         """
-        return _libBornAgainCore.ParticleComposition_addParticle(self, *args)
+        _libBornAgainCore.RectangularPixel_swiginit(self, _libBornAgainCore.new_RectangularPixel(corner_pos, width, height))
 
-    def addParticles(self, particle, positions):
+    def clone(self):
         r"""
-        addParticles(ParticleComposition self, IParticle particle, vector_kvector_t positions)
-        void ParticleComposition::addParticles(const IParticle &particle, std::vector< kvector_t > positions)
+        clone(RectangularPixel self) -> RectangularPixel
+        RectangularPixel * RectangularPixel::clone() const override
 
         """
-        return _libBornAgainCore.ParticleComposition_addParticles(self, particle, positions)
+        return _libBornAgainCore.RectangularPixel_clone(self)
 
-    def nbrParticles(self):
+    def createZeroSizePixel(self, x, y):
         r"""
-        nbrParticles(ParticleComposition self) -> size_t
-        size_t ParticleComposition::nbrParticles() const
-
-        Returns number of different particles. 
+        createZeroSizePixel(RectangularPixel self, double x, double y) -> RectangularPixel
+        RectangularPixel * RectangularPixel::createZeroSizePixel(double x, double y) const override
 
         """
-        return _libBornAgainCore.ParticleComposition_nbrParticles(self)
+        return _libBornAgainCore.RectangularPixel_createZeroSizePixel(self, x, y)
 
-    def getChildren(self):
+    def getK(self, x, y, wavelength):
         r"""
-        getChildren(ParticleComposition self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > ParticleComposition::getChildren() const override final
-
-        Returns a vector of children (const). 
+        getK(RectangularPixel self, double x, double y, double wavelength) -> kvector_t
+        kvector_t RectangularPixel::getK(double x, double y, double wavelength) const override
 
         """
-        return _libBornAgainCore.ParticleComposition_getChildren(self)
+        return _libBornAgainCore.RectangularPixel_getK(self, x, y, wavelength)
 
-    def decompose(self):
+    def getPosition(self, x, y):
         r"""
-        decompose(ParticleComposition self) -> SafePointerVector< IParticle >
-        SafePointerVector< IParticle > ParticleComposition::decompose() const override final
-
-        Decompose in constituent  IParticle objects. 
+        getPosition(RectangularPixel self, double x, double y) -> kvector_t
+        kvector_t RectangularPixel::getPosition(double x, double y) const
 
         """
-        return _libBornAgainCore.ParticleComposition_decompose(self)
+        return _libBornAgainCore.RectangularPixel_getPosition(self, x, y)
 
-    def bottomTopZ(self):
+    def getIntegrationFactor(self, x, y):
         r"""
-        bottomTopZ(ParticleComposition self) -> ParticleLimits
-        ParticleLimits ParticleComposition::bottomTopZ() const override final
+        getIntegrationFactor(RectangularPixel self, double x, double y) -> double
+        double RectangularPixel::getIntegrationFactor(double x, double y) const override
 
-        Top and bottom z-coordinate. 
+        """
+        return _libBornAgainCore.RectangularPixel_getIntegrationFactor(self, x, y)
+
+    def getSolidAngle(self):
+        r"""
+        getSolidAngle(RectangularPixel self) -> double
+        double RectangularPixel::getSolidAngle() const override
 
         """
-        return _libBornAgainCore.ParticleComposition_bottomTopZ(self)
+        return _libBornAgainCore.RectangularPixel_getSolidAngle(self)
+    __swig_destroy__ = _libBornAgainCore.delete_RectangularPixel
 
-# Register ParticleComposition in _libBornAgainCore:
-_libBornAgainCore.ParticleComposition_swigregister(ParticleComposition)
+# Register RectangularPixel in _libBornAgainCore:
+_libBornAgainCore.RectangularPixel_swigregister(RectangularPixel)
 
-class ParticleCoreShell(IParticle):
+class RectangularDetector(IDetector2D):
     r"""
 
 
-    A particle with a core/shell geometry.
+    A flat rectangular detector with axes and resolution function.
 
-    C++ includes: ParticleCoreShell.h
+    C++ includes: RectangularDetector.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
+    GENERIC = _libBornAgainCore.RectangularDetector_GENERIC
+    
+    PERPENDICULAR_TO_SAMPLE = _libBornAgainCore.RectangularDetector_PERPENDICULAR_TO_SAMPLE
+    
+    PERPENDICULAR_TO_DIRECT_BEAM = _libBornAgainCore.RectangularDetector_PERPENDICULAR_TO_DIRECT_BEAM
+    
+    PERPENDICULAR_TO_REFLECTED_BEAM = _libBornAgainCore.RectangularDetector_PERPENDICULAR_TO_REFLECTED_BEAM
+    
+    PERPENDICULAR_TO_REFLECTED_BEAM_DPOS = _libBornAgainCore.RectangularDetector_PERPENDICULAR_TO_REFLECTED_BEAM_DPOS
+    
 
     def __init__(self, *args):
         r"""
-        __init__(ParticleCoreShell self, Particle shell, Particle core, kvector_t relative_core_position=kvector_t(0.0, 0.0, 0.0)) -> ParticleCoreShell
-        ParticleCoreShell::ParticleCoreShell(const Particle &shell, const Particle &core, kvector_t relative_core_position=kvector_t(0.0, 0.0, 0.0))
+        __init__(RectangularDetector self, size_t nxbins, double width, size_t nybins, double height) -> RectangularDetector
+        __init__(RectangularDetector self, RectangularDetector other) -> RectangularDetector
+        RectangularDetector::RectangularDetector(const RectangularDetector &other)
 
         """
-        _libBornAgainCore.ParticleCoreShell_swiginit(self, _libBornAgainCore.new_ParticleCoreShell(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_ParticleCoreShell
+        _libBornAgainCore.RectangularDetector_swiginit(self, _libBornAgainCore.new_RectangularDetector(*args))
 
     def clone(self):
         r"""
-        clone(ParticleCoreShell self) -> ParticleCoreShell
-        ParticleCoreShell * ParticleCoreShell::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        clone(RectangularDetector self) -> RectangularDetector
+        RectangularDetector * RectangularDetector::clone() const override
 
         """
-        return _libBornAgainCore.ParticleCoreShell_clone(self)
+        return _libBornAgainCore.RectangularDetector_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(ParticleCoreShell self, INodeVisitor visitor)
-        void ParticleCoreShell::accept(INodeVisitor *visitor) const override final
+        accept(RectangularDetector self, INodeVisitor visitor)
+        void RectangularDetector::accept(INodeVisitor *visitor) const final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.ParticleCoreShell_accept(self, visitor)
+        return _libBornAgainCore.RectangularDetector_accept(self, visitor)
+    __swig_destroy__ = _libBornAgainCore.delete_RectangularDetector
 
-    def createSlicedParticle(self, limits):
+    def init(self, beam):
         r"""
-        createSlicedParticle(ParticleCoreShell self, ZLimits limits) -> SlicedParticle
-        SlicedParticle ParticleCoreShell::createSlicedParticle(ZLimits limits) const override final
+        init(RectangularDetector self, Beam beam)
+        void RectangularDetector::init(const Beam &beam) override
 
-        Create a sliced form factor for this particle. 
+        Inits detector with the beam settings. 
 
         """
-        return _libBornAgainCore.ParticleCoreShell_createSlicedParticle(self, limits)
+        return _libBornAgainCore.RectangularDetector_init(self, beam)
 
-    def coreParticle(self):
+    def setPosition(self, *args):
         r"""
-        coreParticle(ParticleCoreShell self) -> Particle
-        const Particle * ParticleCoreShell::coreParticle() const
+        setPosition(RectangularDetector self, kvector_t normal_to_detector, double u0, double v0, kvector_t direction=kvector_t(0.0, -1.0, 0.0))
+        void RectangularDetector::setPosition(const kvector_t normal_to_detector, double u0, double v0, const kvector_t direction=kvector_t(0.0, -1.0, 0.0))
 
         """
-        return _libBornAgainCore.ParticleCoreShell_coreParticle(self)
+        return _libBornAgainCore.RectangularDetector_setPosition(self, *args)
 
-    def shellParticle(self):
+    def setPerpendicularToSampleX(self, distance, u0, v0):
         r"""
-        shellParticle(ParticleCoreShell self) -> Particle
-        const Particle * ParticleCoreShell::shellParticle() const
+        setPerpendicularToSampleX(RectangularDetector self, double distance, double u0, double v0)
+        void RectangularDetector::setPerpendicularToSampleX(double distance, double u0, double v0)
 
         """
-        return _libBornAgainCore.ParticleCoreShell_shellParticle(self)
+        return _libBornAgainCore.RectangularDetector_setPerpendicularToSampleX(self, distance, u0, v0)
 
-    def getChildren(self):
+    def setPerpendicularToDirectBeam(self, distance, u0, v0):
         r"""
-        getChildren(ParticleCoreShell self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > ParticleCoreShell::getChildren() const override final
+        setPerpendicularToDirectBeam(RectangularDetector self, double distance, double u0, double v0)
+        void RectangularDetector::setPerpendicularToDirectBeam(double distance, double u0, double v0)
 
-        Returns a vector of children (const). 
+        """
+        return _libBornAgainCore.RectangularDetector_setPerpendicularToDirectBeam(self, distance, u0, v0)
+
+    def setPerpendicularToReflectedBeam(self, distance, u0=0.0, v0=0.0):
+        r"""
+        setPerpendicularToReflectedBeam(RectangularDetector self, double distance, double u0=0.0, double v0=0.0)
+        void RectangularDetector::setPerpendicularToReflectedBeam(double distance, double u0=0.0, double v0=0.0)
+
+        """
+        return _libBornAgainCore.RectangularDetector_setPerpendicularToReflectedBeam(self, distance, u0, v0)
+
+    def setDirectBeamPosition(self, u0, v0):
+        r"""
+        setDirectBeamPosition(RectangularDetector self, double u0, double v0)
+        void RectangularDetector::setDirectBeamPosition(double u0, double v0)
+
+        """
+        return _libBornAgainCore.RectangularDetector_setDirectBeamPosition(self, u0, v0)
+
+    def getWidth(self):
+        r"""
+        getWidth(RectangularDetector self) -> double
+        double RectangularDetector::getWidth() const
 
         """
-        return _libBornAgainCore.ParticleCoreShell_getChildren(self)
-
-# Register ParticleCoreShell in _libBornAgainCore:
-_libBornAgainCore.ParticleCoreShell_swigregister(ParticleCoreShell)
+        return _libBornAgainCore.RectangularDetector_getWidth(self)
 
-class ParticleDistribution(IAbstractParticle):
-    r"""
+    def getHeight(self):
+        r"""
+        getHeight(RectangularDetector self) -> double
+        double RectangularDetector::getHeight() const
 
+        """
+        return _libBornAgainCore.RectangularDetector_getHeight(self)
 
-    A particle type that is a parametric distribution of  IParticle's.
+    def getNbinsX(self):
+        r"""
+        getNbinsX(RectangularDetector self) -> size_t
+        size_t RectangularDetector::getNbinsX() const
 
-    C++ includes: ParticleDistribution.h
+        """
+        return _libBornAgainCore.RectangularDetector_getNbinsX(self)
 
-    """
+    def getNbinsY(self):
+        r"""
+        getNbinsY(RectangularDetector self) -> size_t
+        size_t RectangularDetector::getNbinsY() const
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.RectangularDetector_getNbinsY(self)
 
-    def __init__(self, prototype, par_distr):
+    def getNormalVector(self):
         r"""
-        __init__(ParticleDistribution self, IParticle prototype, ParameterDistribution par_distr) -> ParticleDistribution
-        ParticleDistribution::ParticleDistribution(const IParticle &prototype, const ParameterDistribution &par_distr)
+        getNormalVector(RectangularDetector self) -> kvector_t
+        kvector_t RectangularDetector::getNormalVector() const
 
         """
-        _libBornAgainCore.ParticleDistribution_swiginit(self, _libBornAgainCore.new_ParticleDistribution(prototype, par_distr))
+        return _libBornAgainCore.RectangularDetector_getNormalVector(self)
 
-    def clone(self):
+    def getU0(self):
         r"""
-        clone(ParticleDistribution self) -> ParticleDistribution
-        ParticleDistribution * ParticleDistribution::clone() const override final
-
-        Returns a clone of this  ISample object. 
+        getU0(RectangularDetector self) -> double
+        double RectangularDetector::getU0() const
 
         """
-        return _libBornAgainCore.ParticleDistribution_clone(self)
+        return _libBornAgainCore.RectangularDetector_getU0(self)
 
-    def accept(self, visitor):
+    def getV0(self):
         r"""
-        accept(ParticleDistribution self, INodeVisitor visitor)
-        void ParticleDistribution::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
+        getV0(RectangularDetector self) -> double
+        double RectangularDetector::getV0() const
 
         """
-        return _libBornAgainCore.ParticleDistribution_accept(self, visitor)
+        return _libBornAgainCore.RectangularDetector_getV0(self)
 
-    def translate(self, translation):
+    def getDirectionVector(self):
         r"""
-        translate(ParticleDistribution self, kvector_t translation)
-        void ParticleDistribution::translate(kvector_t translation) override final
-
-        Translates the particle with the given vector. 
+        getDirectionVector(RectangularDetector self) -> kvector_t
+        kvector_t RectangularDetector::getDirectionVector() const
 
         """
-        return _libBornAgainCore.ParticleDistribution_translate(self, translation)
+        return _libBornAgainCore.RectangularDetector_getDirectionVector(self)
 
-    def rotate(self, rotation):
+    def getDistance(self):
         r"""
-        rotate(ParticleDistribution self, IRotation rotation)
-        void ParticleDistribution::rotate(const IRotation &rotation) override final
-
-        Applies the given rotation to the particle. 
+        getDistance(RectangularDetector self) -> double
+        double RectangularDetector::getDistance() const
 
         """
-        return _libBornAgainCore.ParticleDistribution_rotate(self, rotation)
+        return _libBornAgainCore.RectangularDetector_getDistance(self)
 
-    def generateParticles(self):
+    def getDirectBeamU0(self):
         r"""
-        generateParticles(ParticleDistribution self) -> SafePointerVector< IParticle >
-        SafePointerVector< IParticle > ParticleDistribution::generateParticles() const
+        getDirectBeamU0(RectangularDetector self) -> double
+        double RectangularDetector::getDirectBeamU0() const
 
-        Returns list of new particles generated according to a distribution.
+        """
+        return _libBornAgainCore.RectangularDetector_getDirectBeamU0(self)
 
-        Returns particle clones with parameter values drawn from distribution. 
+    def getDirectBeamV0(self):
+        r"""
+        getDirectBeamV0(RectangularDetector self) -> double
+        double RectangularDetector::getDirectBeamV0() const
 
         """
-        return _libBornAgainCore.ParticleDistribution_generateParticles(self)
+        return _libBornAgainCore.RectangularDetector_getDirectBeamV0(self)
 
-    def prototype(self):
+    def getDetectorArrangment(self):
         r"""
-        prototype(ParticleDistribution self) -> IParticle
-        const IParticle& ParticleDistribution::prototype() const
-
-        Returns the prototype particle, used for generating multiple ones. 
+        getDetectorArrangment(RectangularDetector self) -> RectangularDetector::EDetectorArrangement
+        RectangularDetector::EDetectorArrangement RectangularDetector::getDetectorArrangment() const
 
         """
-        return _libBornAgainCore.ParticleDistribution_prototype(self)
+        return _libBornAgainCore.RectangularDetector_getDetectorArrangment(self)
 
-    def parameterDistribution(self):
+    def defaultAxesUnits(self):
         r"""
-        parameterDistribution(ParticleDistribution self) -> ParameterDistribution
-        ParameterDistribution ParticleDistribution::parameterDistribution() const
+        defaultAxesUnits(RectangularDetector self) -> AxesUnits
+        AxesUnits RectangularDetector::defaultAxesUnits() const override
 
-        Returns the distributed parameter data. 
+        return default axes units 
 
         """
-        return _libBornAgainCore.ParticleDistribution_parameterDistribution(self)
+        return _libBornAgainCore.RectangularDetector_defaultAxesUnits(self)
 
-    def getChildren(self):
+    def regionOfInterestPixel(self):
         r"""
-        getChildren(ParticleDistribution self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > ParticleDistribution::getChildren() const override final
-
-        Returns a vector of children (const). 
+        regionOfInterestPixel(RectangularDetector self) -> RectangularPixel
+        RectangularPixel * RectangularDetector::regionOfInterestPixel() const
 
         """
-        return _libBornAgainCore.ParticleDistribution_getChildren(self)
-    __swig_destroy__ = _libBornAgainCore.delete_ParticleDistribution
+        return _libBornAgainCore.RectangularDetector_regionOfInterestPixel(self)
 
-# Register ParticleDistribution in _libBornAgainCore:
-_libBornAgainCore.ParticleDistribution_swigregister(ParticleDistribution)
+# Register RectangularDetector in _libBornAgainCore:
+_libBornAgainCore.RectangularDetector_swigregister(RectangularDetector)
 
-class ParticleLayout(ILayout):
+class ResolutionFunction2DGaussian(IResolutionFunction2D):
     r"""
 
 
-    Decorator class that adds particles to  ISample objects.
+    Simple gaussian two-dimensional resolution function.
 
-    C++ includes: ParticleLayout.h
+    C++ includes: ResolutionFunction2DGaussian.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self, sigma_x, sigma_y):
         r"""
-        __init__(ParticleLayout self) -> ParticleLayout
-        __init__(ParticleLayout self, IAbstractParticle particle, double abundance=-1.0) -> ParticleLayout
-        ParticleLayout::ParticleLayout(const IAbstractParticle &particle, double abundance=-1.0)
+        __init__(ResolutionFunction2DGaussian self, double sigma_x, double sigma_y) -> ResolutionFunction2DGaussian
+        ResolutionFunction2DGaussian::ResolutionFunction2DGaussian(double sigma_x, double sigma_y)
 
         """
-        _libBornAgainCore.ParticleLayout_swiginit(self, _libBornAgainCore.new_ParticleLayout(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_ParticleLayout
+        _libBornAgainCore.ResolutionFunction2DGaussian_swiginit(self, _libBornAgainCore.new_ResolutionFunction2DGaussian(sigma_x, sigma_y))
 
-    def clone(self):
+    def evaluateCDF(self, x, y):
         r"""
-        clone(ParticleLayout self) -> ParticleLayout
-        ParticleLayout * ParticleLayout::clone() const final override
+        evaluateCDF(ResolutionFunction2DGaussian self, double x, double y) -> double
+        double ResolutionFunction2DGaussian::evaluateCDF(double x, double y) const
 
-        Returns a clone of this  ISample object. 
+        """
+        return _libBornAgainCore.ResolutionFunction2DGaussian_evaluateCDF(self, x, y)
+
+    def clone(self):
+        r"""
+        clone(ResolutionFunction2DGaussian self) -> ResolutionFunction2DGaussian
+        ResolutionFunction2DGaussian* ResolutionFunction2DGaussian::clone() const
 
         """
-        return _libBornAgainCore.ParticleLayout_clone(self)
+        return _libBornAgainCore.ResolutionFunction2DGaussian_clone(self)
 
     def accept(self, visitor):
         r"""
-        accept(ParticleLayout self, INodeVisitor visitor)
-        void ParticleLayout::accept(INodeVisitor *visitor) const final override
+        accept(ResolutionFunction2DGaussian self, INodeVisitor visitor)
+        void ResolutionFunction2DGaussian::accept(INodeVisitor *visitor) const final
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.ParticleLayout_accept(self, visitor)
+        return _libBornAgainCore.ResolutionFunction2DGaussian_accept(self, visitor)
 
-    def addParticle(self, *args):
+    def getSigmaX(self):
         r"""
-        addParticle(ParticleLayout self, IAbstractParticle particle, double abundance=-1.0, kvector_t position={}, IRotation rotation=IdentityRotation())
-        void ParticleLayout::addParticle(const IAbstractParticle &particle, double abundance=-1.0, const kvector_t position={}, const IRotation &rotation=IdentityRotation())
-
-        Adds particle to the layout with abundance, position and the rotation defined.
-
-        Parameters:
-        -----------
+        getSigmaX(ResolutionFunction2DGaussian self) -> double
+        double ResolutionFunction2DGaussian::getSigmaX() const
 
-        particle: 
-        to be added
+        """
+        return _libBornAgainCore.ResolutionFunction2DGaussian_getSigmaX(self)
 
-        abundance: 
-         Particle abundance
+    def getSigmaY(self):
+        r"""
+        getSigmaY(ResolutionFunction2DGaussian self) -> double
+        double ResolutionFunction2DGaussian::getSigmaY() const
 
-        position: 
-         Particle position
+        """
+        return _libBornAgainCore.ResolutionFunction2DGaussian_getSigmaY(self)
+    __swig_destroy__ = _libBornAgainCore.delete_ResolutionFunction2DGaussian
 
-        rotation: 
-         Particle rotation 
+# Register ResolutionFunction2DGaussian in _libBornAgainCore:
+_libBornAgainCore.ResolutionFunction2DGaussian_swigregister(ResolutionFunction2DGaussian)
 
-        """
-        return _libBornAgainCore.ParticleLayout_addParticle(self, *args)
+class IVarianceFunction(object):
+    r"""
 
-    def particles(self):
-        r"""
-        particles(ParticleLayout self) -> SafePointerVector< IParticle >
-        SafePointerVector< IParticle > ParticleLayout::particles() const final override
 
-        Returns information on all particles (type and abundance) and generates new particles if an  IAbstractParticle denotes a collection 
+    Variance function interface.
 
-        """
-        return _libBornAgainCore.ParticleLayout_particles(self)
+    C++ includes: VarianceFunctions.h
 
-    def interferenceFunction(self):
-        r"""
-        interferenceFunction(ParticleLayout self) -> IInterferenceFunction
-        const IInterferenceFunction * ParticleLayout::interferenceFunction() const final override
+    """
 
-        Returns the interference function. 
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
 
-        """
-        return _libBornAgainCore.ParticleLayout_interferenceFunction(self)
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IVarianceFunction
 
-    def getTotalAbundance(self):
+    def clone(self):
         r"""
-        getTotalAbundance(ParticleLayout self) -> double
-        double ParticleLayout::getTotalAbundance() const final override
-
-        Get total abundance of all particles. 
+        clone(IVarianceFunction self) -> IVarianceFunction
+        virtual IVarianceFunction* IVarianceFunction::clone() const =0
 
         """
-        return _libBornAgainCore.ParticleLayout_getTotalAbundance(self)
+        return _libBornAgainCore.IVarianceFunction_clone(self)
 
-    def setInterferenceFunction(self, interference_function):
+    def variance(self, real_value, simulated_value):
         r"""
-        setInterferenceFunction(ParticleLayout self, IInterferenceFunction interference_function)
-        void ParticleLayout::setInterferenceFunction(const IInterferenceFunction &interference_function)
-
-        Adds interference functions. 
+        variance(IVarianceFunction self, double real_value, double simulated_value) -> double
+        virtual double IVarianceFunction::variance(double real_value, double simulated_value) const =0
 
         """
-        return _libBornAgainCore.ParticleLayout_setInterferenceFunction(self, interference_function)
+        return _libBornAgainCore.IVarianceFunction_variance(self, real_value, simulated_value)
 
-    def totalParticleSurfaceDensity(self):
-        r"""
-        totalParticleSurfaceDensity(ParticleLayout self) -> double
-        double ParticleLayout::totalParticleSurfaceDensity() const final override
+# Register IVarianceFunction in _libBornAgainCore:
+_libBornAgainCore.IVarianceFunction_swigregister(IVarianceFunction)
+
+class VarianceConstantFunction(IVarianceFunction):
+    r"""
 
-        Returns surface density of all particles. 
 
-        """
-        return _libBornAgainCore.ParticleLayout_totalParticleSurfaceDensity(self)
+    Returns 1.0 as variance value
 
-    def setTotalParticleSurfaceDensity(self, particle_density):
-        r"""
-        setTotalParticleSurfaceDensity(ParticleLayout self, double particle_density)
-        void ParticleLayout::setTotalParticleSurfaceDensity(double particle_density) final override
+    C++ includes: VarianceFunctions.h
 
-        Sets total particle surface density.
+    """
 
-        Parameters:
-        -----------
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-        particle_density: 
-        number of particles per square nanometer 
+    def clone(self):
+        r"""
+        clone(VarianceConstantFunction self) -> VarianceConstantFunction
+        VarianceConstantFunction * VarianceConstantFunction::clone() const override
 
         """
-        return _libBornAgainCore.ParticleLayout_setTotalParticleSurfaceDensity(self, particle_density)
+        return _libBornAgainCore.VarianceConstantFunction_clone(self)
 
-    def getChildren(self):
+    def variance(self, arg2, arg3):
         r"""
-        getChildren(ParticleLayout self) -> swig_dummy_type_const_inode_vector
-        std::vector< const INode * > ParticleLayout::getChildren() const final override
-
-        Returns a vector of children (const). 
+        variance(VarianceConstantFunction self, double arg2, double arg3) -> double
+        double VarianceConstantFunction::variance(double, double) const override
 
         """
-        return _libBornAgainCore.ParticleLayout_getChildren(self)
+        return _libBornAgainCore.VarianceConstantFunction_variance(self, arg2, arg3)
 
-# Register ParticleLayout in _libBornAgainCore:
-_libBornAgainCore.ParticleLayout_swigregister(ParticleLayout)
+    def __init__(self):
+        r"""
+        __init__(VarianceConstantFunction self) -> VarianceConstantFunction
 
 
-def importArrayToOutputData(*args):
-    r"""
-    importArrayToOutputData(vdouble1d_t vec) -> IntensityData
-    importArrayToOutputData(vdouble2d_t vec) -> IntensityData
-    OutputData< double > * PyArrayImport::importArrayToOutputData(const std::vector< std::vector< double >> &vec)
+        Returns 1.0 as variance value
 
-    for importing 2D array of doubles from python into  OutputData
+        C++ includes: VarianceFunctions.h
 
-    """
-    return _libBornAgainCore.importArrayToOutputData(*args)
-class PoissonNoiseBackground(IBackground):
+        """
+        _libBornAgainCore.VarianceConstantFunction_swiginit(self, _libBornAgainCore.new_VarianceConstantFunction())
+    __swig_destroy__ = _libBornAgainCore.delete_VarianceConstantFunction
+
+# Register VarianceConstantFunction in _libBornAgainCore:
+_libBornAgainCore.VarianceConstantFunction_swigregister(VarianceConstantFunction)
+
+class VarianceSimFunction(IVarianceFunction):
     r"""
 
 
-    Class representing Poisson noise on top of the scattered intensity
+    Returns max(sim, epsilon)
 
-    C++ includes: PoissonNoiseBackground.h
+    C++ includes: VarianceFunctions.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self):
+    def __init__(self, epsilon=1.0):
         r"""
-        __init__(PoissonNoiseBackground self) -> PoissonNoiseBackground
-        PoissonNoiseBackground::PoissonNoiseBackground()
+        __init__(VarianceSimFunction self, double epsilon=1.0) -> VarianceSimFunction
+        VarianceSimFunction::VarianceSimFunction(double epsilon=1.0)
 
         """
-        _libBornAgainCore.PoissonNoiseBackground_swiginit(self, _libBornAgainCore.new_PoissonNoiseBackground())
-    __swig_destroy__ = _libBornAgainCore.delete_PoissonNoiseBackground
+        _libBornAgainCore.VarianceSimFunction_swiginit(self, _libBornAgainCore.new_VarianceSimFunction(epsilon))
 
     def clone(self):
         r"""
-        clone(PoissonNoiseBackground self) -> PoissonNoiseBackground
-        PoissonNoiseBackground * PoissonNoiseBackground::clone() const override final
-
-        """
-        return _libBornAgainCore.PoissonNoiseBackground_clone(self)
-
-    def accept(self, visitor):
-        r"""
-        accept(PoissonNoiseBackground self, INodeVisitor visitor)
-        void PoissonNoiseBackground::accept(INodeVisitor *visitor) const override
-
-        Calls the  INodeVisitor's visit method. 
+        clone(VarianceSimFunction self) -> VarianceSimFunction
+        VarianceSimFunction * VarianceSimFunction::clone() const override
 
         """
-        return _libBornAgainCore.PoissonNoiseBackground_accept(self, visitor)
+        return _libBornAgainCore.VarianceSimFunction_clone(self)
 
-    def addBackGround(self, intensity):
+    def variance(self, exp, sim):
         r"""
-        addBackGround(PoissonNoiseBackground self, double intensity) -> double
-        double PoissonNoiseBackground::addBackGround(double intensity) const override final
+        variance(VarianceSimFunction self, double exp, double sim) -> double
+        double VarianceSimFunction::variance(double exp, double sim) const override
 
         """
-        return _libBornAgainCore.PoissonNoiseBackground_addBackGround(self, intensity)
+        return _libBornAgainCore.VarianceSimFunction_variance(self, exp, sim)
+    __swig_destroy__ = _libBornAgainCore.delete_VarianceSimFunction
 
-# Register PoissonNoiseBackground in _libBornAgainCore:
-_libBornAgainCore.PoissonNoiseBackground_swigregister(PoissonNoiseBackground)
+# Register VarianceSimFunction in _libBornAgainCore:
+_libBornAgainCore.VarianceSimFunction_swigregister(VarianceSimFunction)
 
-class Polygon(IShape2D):
+class IntensityData(object):
     r"""
 
 
-    A polygon in 2D space.  Polygon defined by two arrays with x and y coordinates of points. Sizes of arrays should coincide. If polygon is unclosed (the last point doesn't repeat the first one), it will be closed automatically.
+    Template class to store data of any type in multi-dimensional space.
 
-    C++ includes: Polygon.h
+    C++ includes: OutputData.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self):
         r"""
-        __init__(Polygon self, vdouble1d_t x, vdouble1d_t y) -> Polygon
-        __init__(Polygon self, vdouble2d_t points) -> Polygon
-        __init__(Polygon self, PolygonPrivate const * d) -> Polygon
-        Polygon::Polygon(const PolygonPrivate *d)
+        __init__(IntensityData self) -> IntensityData
+        OutputData< T >::OutputData(const OutputData &)=delete
 
         """
-        _libBornAgainCore.Polygon_swiginit(self, _libBornAgainCore.new_Polygon(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_Polygon
+        _libBornAgainCore.IntensityData_swiginit(self, _libBornAgainCore.new_IntensityData())
+    __swig_destroy__ = _libBornAgainCore.delete_IntensityData
 
     def clone(self):
         r"""
-        clone(Polygon self) -> Polygon
-        virtual Polygon* Polygon::clone() const
+        clone(IntensityData self) -> IntensityData
+        OutputData< T > * OutputData< T >::clone() const
 
         """
-        return _libBornAgainCore.Polygon_clone(self)
+        return _libBornAgainCore.IntensityData_clone(self)
 
-    def contains(self, *args):
+    def copyFrom(self, x):
         r"""
-        contains(Polygon self, double x, double y) -> bool
-        contains(Polygon self, Bin1D binx, Bin1D biny) -> bool
-        bool Polygon::contains(const Bin1D &binx, const Bin1D &biny) const
-
-        Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). 
+        copyFrom(IntensityData self, IntensityData x)
+        void OutputData< T >::copyFrom(const OutputData< T > &x)
 
         """
-        return _libBornAgainCore.Polygon_contains(self, *args)
+        return _libBornAgainCore.IntensityData_copyFrom(self, x)
 
-    def getArea(self):
+    def meanValues(self):
         r"""
-        getArea(Polygon self) -> double
-        double Polygon::getArea() const
+        meanValues(IntensityData self) -> IntensityData
+        OutputData< double > * OutputData< T >::meanValues() const
 
         """
-        return _libBornAgainCore.Polygon_getArea(self)
+        return _libBornAgainCore.IntensityData_meanValues(self)
 
-    def getPoints(self, xpos, ypos):
+    def addAxis(self, *args):
         r"""
-        getPoints(Polygon self, vdouble1d_t xpos, vdouble1d_t ypos)
-        void Polygon::getPoints(std::vector< double > &xpos, std::vector< double > &ypos) const
+        addAxis(IntensityData self, IAxis new_axis)
+        addAxis(IntensityData self, std::string const & name, size_t size, double start, double end)
+        void OutputData< T >::addAxis(const std::string &name, size_t size, double start, double end)
 
         """
-        return _libBornAgainCore.Polygon_getPoints(self, xpos, ypos)
+        return _libBornAgainCore.IntensityData_addAxis(self, *args)
 
-# Register Polygon in _libBornAgainCore:
-_libBornAgainCore.Polygon_swigregister(Polygon)
+    def getAxis(self, *args):
+        r"""
+        getAxis(IntensityData self, size_t serial_number) -> IAxis
+        getAxis(IntensityData self, std::string const & axis_name) -> IAxis
+        const IAxis & OutputData< T >::getAxis(const std::string &axis_name) const
 
-class RangedDistributionGate(object):
-    r"""
+        returns axis with given name 
 
+        """
+        return _libBornAgainCore.IntensityData_getAxis(self, *args)
 
-    Uniform distribution function.
+    def getRank(self):
+        r"""
+        getRank(IntensityData self) -> size_t
+        size_t OutputData< T >::getRank() const
 
-    C++ includes: RangedDistributions.h
+        Returns number of dimensions. 
 
-    """
+        """
+        return _libBornAgainCore.IntensityData_getRank(self)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+    def getAllocatedSize(self):
+        r"""
+        getAllocatedSize(IntensityData self) -> size_t
+        size_t OutputData< T >::getAllocatedSize() const
 
-    def __init__(self, *args):
+        Returns total size of data buffer (product of bin number in every dimension). 
+
+        """
+        return _libBornAgainCore.IntensityData_getAllocatedSize(self)
+
+    def getAllSizes(self):
         r"""
-        __init__(RangedDistributionGate self) -> RangedDistributionGate
-        __init__(RangedDistributionGate self, size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless()) -> RangedDistributionGate
-        __init__(RangedDistributionGate self, size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionGate
-        RangedDistributionGate::RangedDistributionGate(size_t n_samples, double sigma_factor, double min, double max)
+        getAllSizes(IntensityData self) -> std::vector< size_t,std::allocator< size_t > >
+        std::vector< size_t > OutputData< T >::getAllSizes() const
 
-        Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). 
+        Returns all sizes of its axes. 
 
         """
-        _libBornAgainCore.RangedDistributionGate_swiginit(self, _libBornAgainCore.new_RangedDistributionGate(*args))
+        return _libBornAgainCore.IntensityData_getAllSizes(self)
 
-    def clone(self):
+    def getRawDataVector(self):
         r"""
-        clone(RangedDistributionGate self) -> RangedDistributionGate
-        RangedDistributionGate * RangedDistributionGate::clone() const override
+        getRawDataVector(IntensityData self) -> vdouble1d_t
+        std::vector< T > OutputData< T >::getRawDataVector() const
+
+        Returns copy of raw data vector. 
 
         """
-        return _libBornAgainCore.RangedDistributionGate_clone(self)
-    __swig_destroy__ = _libBornAgainCore.delete_RangedDistributionGate
+        return _libBornAgainCore.IntensityData_getRawDataVector(self)
 
-# Register RangedDistributionGate in _libBornAgainCore:
-_libBornAgainCore.RangedDistributionGate_swigregister(RangedDistributionGate)
+    def totalSum(self):
+        r"""
+        totalSum(IntensityData self) -> double
+        T OutputData< T >::totalSum() const
 
-class RangedDistributionLorentz(object):
-    r"""
+        Returns sum of all values in the data structure. 
 
+        """
+        return _libBornAgainCore.IntensityData_totalSum(self)
 
-    Lorentz distribution with median and hwhm.
+    def begin(self, *args):
+        r"""
+        begin(IntensityData self) -> OutputData< double >::iterator
+        begin(IntensityData self) -> OutputData< double >::const_iterator
+        OutputData< T >::const_iterator OutputData< T >::begin() const
 
-    C++ includes: RangedDistributions.h
+        Returns read-only iterator that points to the first element. 
 
-    """
+        """
+        return _libBornAgainCore.IntensityData_begin(self, *args)
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+    def end(self, *args):
+        r"""
+        end(IntensityData self) -> OutputData< double >::iterator
+        end(IntensityData self) -> OutputData< double >::const_iterator
+        const_iterator OutputData< T >::end() const
 
-    def __init__(self, *args):
+        Returns read-only iterator that points to the one past last element. 
+
+        """
+        return _libBornAgainCore.IntensityData_end(self, *args)
+
+    def getAxesBinIndices(self, global_index):
         r"""
-        __init__(RangedDistributionLorentz self) -> RangedDistributionLorentz
-        __init__(RangedDistributionLorentz self, size_t n_samples, double hwhm_factor, RealLimits limits=RealLimits::limitless()) -> RangedDistributionLorentz
-        __init__(RangedDistributionLorentz self, size_t n_samples, double hwhm_factor, double min, double max) -> RangedDistributionLorentz
-        RangedDistributionLorentz::RangedDistributionLorentz(size_t n_samples, double hwhm_factor, double min, double max)
+        getAxesBinIndices(IntensityData self, size_t global_index) -> vector_integer_t
+        std::vector< int > OutputData< T >::getAxesBinIndices(size_t global_index) const
+
+        Returns vector of axes indices for given global index
+
+        Parameters:
+        -----------
+
+        global_index: 
+        The global index of this data structure.
 
-        Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  hwhm_factor = 2.0, while the limits are (-inf, +inf). 
+        Vector of bin indices for all axes defined 
 
         """
-        _libBornAgainCore.RangedDistributionLorentz_swiginit(self, _libBornAgainCore.new_RangedDistributionLorentz(*args))
+        return _libBornAgainCore.IntensityData_getAxesBinIndices(self, global_index)
 
-    def clone(self):
+    def getAxisBinIndex(self, *args):
         r"""
-        clone(RangedDistributionLorentz self) -> RangedDistributionLorentz
-        RangedDistributionLorentz * RangedDistributionLorentz::clone() const override
+        getAxisBinIndex(IntensityData self, size_t global_index, size_t i_selected_axis) -> size_t
+        getAxisBinIndex(IntensityData self, size_t global_index, std::string const & axis_name) -> size_t
+        size_t OutputData< T >::getAxisBinIndex(size_t global_index, const std::string &axis_name) const
 
-        """
-        return _libBornAgainCore.RangedDistributionLorentz_clone(self)
-    __swig_destroy__ = _libBornAgainCore.delete_RangedDistributionLorentz
+        Returns axis bin index for given global index
 
-# Register RangedDistributionLorentz in _libBornAgainCore:
-_libBornAgainCore.RangedDistributionLorentz_swigregister(RangedDistributionLorentz)
+        Parameters:
+        -----------
 
-class RangedDistributionGaussian(object):
-    r"""
+        global_index: 
+        The global index of this data structure.
 
+        axis_name: 
+        The name of selected axis.
 
-    Gaussian distribution with standard deviation std_dev.
+        Corresponding bin index for selected axis 
 
-    C++ includes: RangedDistributions.h
+        """
+        return _libBornAgainCore.IntensityData_getAxisBinIndex(self, *args)
 
-    """
+    def toGlobalIndex(self, axes_indices):
+        r"""
+        toGlobalIndex(IntensityData self, std::vector< unsigned int,std::allocator< unsigned int > > const & axes_indices) -> size_t
+        size_t OutputData< T >::toGlobalIndex(const std::vector< unsigned > &axes_indices) const
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        Returns global index for specified indices of axes
 
-    def __init__(self, *args):
-        r"""
-        __init__(RangedDistributionGaussian self) -> RangedDistributionGaussian
-        __init__(RangedDistributionGaussian self, size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless()) -> RangedDistributionGaussian
-        __init__(RangedDistributionGaussian self, size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionGaussian
-        RangedDistributionGaussian::RangedDistributionGaussian(size_t n_samples, double sigma_factor, double min, double max)
+        Parameters:
+        -----------
 
-        Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). 
+        axes_indices: 
+        Vector of axes indices for all specified axes in this dataset
+
+        Corresponding global index 
 
         """
-        _libBornAgainCore.RangedDistributionGaussian_swiginit(self, _libBornAgainCore.new_RangedDistributionGaussian(*args))
+        return _libBornAgainCore.IntensityData_toGlobalIndex(self, axes_indices)
 
-    def clone(self):
+    def findGlobalIndex(self, coordinates):
         r"""
-        clone(RangedDistributionGaussian self) -> RangedDistributionGaussian
-        RangedDistributionGaussian * RangedDistributionGaussian::clone() const override
+        findGlobalIndex(IntensityData self, vdouble1d_t coordinates) -> size_t
+        size_t OutputData< T >::findGlobalIndex(const std::vector< double > &coordinates) const
 
-        """
-        return _libBornAgainCore.RangedDistributionGaussian_clone(self)
-    __swig_destroy__ = _libBornAgainCore.delete_RangedDistributionGaussian
+        Returns global index for specified axes values
 
-# Register RangedDistributionGaussian in _libBornAgainCore:
-_libBornAgainCore.RangedDistributionGaussian_swigregister(RangedDistributionGaussian)
+        Parameters:
+        -----------
 
-class RangedDistributionLogNormal(object):
-    r"""
+        coordinates: 
+        Vector of axes coordinates for all specified axes in this dataset
 
+        Closest global index 
 
-    Log-normal distribution.
+        """
+        return _libBornAgainCore.IntensityData_findGlobalIndex(self, coordinates)
 
-    C++ includes: RangedDistributions.h
+    def getAxisValue(self, *args):
+        r"""
+        getAxisValue(IntensityData self, size_t global_index, size_t i_selected_axis) -> double
+        getAxisValue(IntensityData self, size_t global_index, std::string const & axis_name) -> double
+        double OutputData< T >::getAxisValue(size_t global_index, const std::string &axis_name) const
 
-    """
+        Returns the value of selected axis for given global_index.
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        Parameters:
+        -----------
 
-    def __init__(self, *args):
-        r"""
-        __init__(RangedDistributionLogNormal self) -> RangedDistributionLogNormal
-        __init__(RangedDistributionLogNormal self, size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless()) -> RangedDistributionLogNormal
-        __init__(RangedDistributionLogNormal self, size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionLogNormal
-        RangedDistributionLogNormal::RangedDistributionLogNormal(size_t n_samples, double sigma_factor, double min, double max)
+        global_index: 
+        The global index of this data structure.
 
-        Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). 
+        axis_name: 
+        The name of selected axis.
+
+        corresponding bin center of selected axis 
 
         """
-        _libBornAgainCore.RangedDistributionLogNormal_swiginit(self, _libBornAgainCore.new_RangedDistributionLogNormal(*args))
+        return _libBornAgainCore.IntensityData_getAxisValue(self, *args)
 
-    def clone(self):
+    def getAxesValues(self, global_index):
         r"""
-        clone(RangedDistributionLogNormal self) -> RangedDistributionLogNormal
-        RangedDistributionLogNormal * RangedDistributionLogNormal::clone() const override
+        getAxesValues(IntensityData self, size_t global_index) -> vdouble1d_t
+        std::vector< double > OutputData< T >::getAxesValues(size_t global_index) const
 
-        """
-        return _libBornAgainCore.RangedDistributionLogNormal_clone(self)
-    __swig_destroy__ = _libBornAgainCore.delete_RangedDistributionLogNormal
+        Returns values on all defined axes for given globalbin number
 
-# Register RangedDistributionLogNormal in _libBornAgainCore:
-_libBornAgainCore.RangedDistributionLogNormal_swigregister(RangedDistributionLogNormal)
+        Parameters:
+        -----------
 
-class RangedDistributionCosine(object):
-    r"""
+        global_index: 
+        The global index of this data structure.
 
+        Vector of corresponding bin centers 
 
-    Cosine distribution.
+        """
+        return _libBornAgainCore.IntensityData_getAxesValues(self, global_index)
 
-    C++ includes: RangedDistributions.h
+    def getAxisBin(self, *args):
+        r"""
+        getAxisBin(IntensityData self, size_t global_index, size_t i_selected_axis) -> Bin1D
+        getAxisBin(IntensityData self, size_t global_index, std::string const & axis_name) -> Bin1D
+        Bin1D OutputData< T >::getAxisBin(size_t global_index, const std::string &axis_name) const
 
-    """
+        Returns bin of selected axis for given global_index.
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        Parameters:
+        -----------
 
-    def __init__(self, *args):
-        r"""
-        __init__(RangedDistributionCosine self) -> RangedDistributionCosine
-        __init__(RangedDistributionCosine self, size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless()) -> RangedDistributionCosine
-        __init__(RangedDistributionCosine self, size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionCosine
-        RangedDistributionCosine::RangedDistributionCosine(size_t n_samples, double sigma_factor, double min, double max)
+        global_index: 
+        The global index of this data structure.
 
-        Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). 
+        axis_name: 
+        The name of selected axis.
+
+        Corresponding  Bin1D object 
 
         """
-        _libBornAgainCore.RangedDistributionCosine_swiginit(self, _libBornAgainCore.new_RangedDistributionCosine(*args))
+        return _libBornAgainCore.IntensityData_getAxisBin(self, *args)
 
-    def clone(self):
+    def clear(self):
         r"""
-        clone(RangedDistributionCosine self) -> RangedDistributionCosine
-        RangedDistributionCosine * RangedDistributionCosine::clone() const override
+        clear(IntensityData self)
+        void OutputData< T >::clear()
 
-        """
-        return _libBornAgainCore.RangedDistributionCosine_clone(self)
-    __swig_destroy__ = _libBornAgainCore.delete_RangedDistributionCosine
+        Sets object into initial state (no dimensions, data) 
 
-# Register RangedDistributionCosine in _libBornAgainCore:
-_libBornAgainCore.RangedDistributionCosine_swigregister(RangedDistributionCosine)
+        """
+        return _libBornAgainCore.IntensityData_clear(self)
 
-class RealParameter(IParameterReal):
-    r"""
+    def setAllTo(self, value):
+        r"""
+        setAllTo(IntensityData self, double const & value)
+        void OutputData< T >::setAllTo(const T &value)
 
+        Sets content of output data to specific value. 
 
-    Wraps a parameter of type double. In addition to name and on-change callback held by the parent class  IParameter, this class holds Limits, Attributes (currently only fixed or not), and a  Unit.
+        """
+        return _libBornAgainCore.IntensityData_setAllTo(self, value)
 
-    C++ includes: RealParameter.h
+    def scaleAll(self, factor):
+        r"""
+        scaleAll(IntensityData self, double const & factor)
+        void OutputData< T >::scaleAll(const T &factor)
 
-    """
+        multiply every item of this output data by value 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.IntensityData_scaleAll(self, factor)
 
-    def __init__(self, *args):
+    def setAxisSizes(self, rank, n_dims):
         r"""
-        __init__(RealParameter self, std::string const & name, double * par, std::string const & parent_name="", std::function< void () > const & onChange=std::function< void () >(), RealLimits limits=RealLimits::limitless(), Attributes attr=Attributes::free()) -> RealParameter
-        RealParameter::RealParameter(const std::string &name, double *par, const std::string &parent_name="", const std::function< void()> &onChange=std::function< void()>(), const RealLimits &limits=RealLimits::limitless(), const Attributes &attr=Attributes::free())
+        setAxisSizes(IntensityData self, size_t rank, int * n_dims)
+        void OutputData< T >::setAxisSizes(size_t rank, int *n_dims)
+
+        Adds 'rank' axes with indicated sizes. 
 
         """
-        _libBornAgainCore.RealParameter_swiginit(self, _libBornAgainCore.new_RealParameter(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_RealParameter
+        return _libBornAgainCore.IntensityData_setAxisSizes(self, rank, n_dims)
 
-    def clone(self, *args):
+    def setRawDataVector(self, data_vector):
         r"""
-        clone(RealParameter self, std::string const & new_name="") -> RealParameter
-        RealParameter * RealParameter::clone(const std::string &new_name="") const
+        setRawDataVector(IntensityData self, vdouble1d_t data_vector)
+        void OutputData< T >::setRawDataVector(const std::vector< T > &data_vector)
+
+        Sets new values to raw data vector. 
 
         """
-        return _libBornAgainCore.RealParameter_clone(self, *args)
+        return _libBornAgainCore.IntensityData_setRawDataVector(self, data_vector)
 
-    def setValue(self, value):
+    def setRawDataArray(self, source):
         r"""
-        setValue(RealParameter self, double value)
-        void RealParameter::setValue(double value)
+        setRawDataArray(IntensityData self, double const * source)
+        void OutputData< T >::setRawDataArray(const T *source)
 
-        Sets value of wrapped parameter and emit signal. 
+        Sets new values to raw data array. 
 
         """
-        return _libBornAgainCore.RealParameter_setValue(self, value)
+        return _libBornAgainCore.IntensityData_setRawDataArray(self, source)
 
-    def value(self):
-        r"""
-        value(RealParameter self) -> double
-        double RealParameter::value() const
+    def __iadd__(self, right):
+        r"""__iadd__(IntensityData self, IntensityData right) -> IntensityData"""
+        return _libBornAgainCore.IntensityData___iadd__(self, right)
 
-        Returns value of wrapped parameter. 
+    def __isub__(self, right):
+        r"""__isub__(IntensityData self, IntensityData right) -> IntensityData"""
+        return _libBornAgainCore.IntensityData___isub__(self, right)
 
-        """
-        return _libBornAgainCore.RealParameter_value(self)
+    def __itruediv__(self, *args):
+        return _libBornAgainCore.IntensityData___itruediv__(self, *args)
+    __idiv__ = __itruediv__
 
-    def setLimits(self, limits):
+
+
+    def __imul__(self, right):
+        r"""__imul__(IntensityData self, IntensityData right) -> IntensityData"""
+        return _libBornAgainCore.IntensityData___imul__(self, right)
+
+    def getValue(self, index):
         r"""
-        setLimits(RealParameter self, RealLimits limits) -> RealParameter
-        RealParameter & RealParameter::setLimits(const RealLimits &limits)
+        getValue(IntensityData self, size_t index) -> double
+        double OutputData< T >::getValue(size_t index) const
+
+        Returns value or summed value, depending on T. 
 
         """
-        return _libBornAgainCore.RealParameter_setLimits(self, limits)
+        return _libBornAgainCore.IntensityData_getValue(self, index)
 
-    def limits(self):
+    def getArray(self):
         r"""
-        limits(RealParameter self) -> RealLimits
-        RealLimits RealParameter::limits() const
+        getArray(IntensityData self) -> PyObject *
+        PyObject* OutputData< T >::getArray() const
+
+        returns data as Python numpy array 
 
         """
-        return _libBornAgainCore.RealParameter_limits(self)
+        return _libBornAgainCore.IntensityData_getArray(self)
 
-    def setLimited(self, lower, upper):
+    def isInitialized(self):
         r"""
-        setLimited(RealParameter self, double lower, double upper) -> RealParameter
-        RealParameter & RealParameter::setLimited(double lower, double upper)
+        isInitialized(IntensityData self) -> bool
+        bool OutputData< T >::isInitialized() const
+
+        returns true if object is correctly initialized 
 
         """
-        return _libBornAgainCore.RealParameter_setLimited(self, lower, upper)
+        return _libBornAgainCore.IntensityData_isInitialized(self)
 
-    def setPositive(self):
+    def allocate(self):
         r"""
-        setPositive(RealParameter self) -> RealParameter
-        RealParameter & RealParameter::setPositive()
+        allocate(IntensityData self)
+        void OutputData< T >::allocate()
+
+        memory allocation for current dimensions configuration 
 
         """
-        return _libBornAgainCore.RealParameter_setPositive(self)
+        return _libBornAgainCore.IntensityData_allocate(self)
 
-    def setNonnegative(self):
+    def __getitem__(self, i):
+        r"""__getitem__(IntensityData self, unsigned int i) -> double"""
+        return _libBornAgainCore.IntensityData___getitem__(self, i)
+
+    def __setitem__(self, i, value):
+        r"""__setitem__(IntensityData self, unsigned int i, double value) -> double"""
+        return _libBornAgainCore.IntensityData___setitem__(self, i, value)
+
+# Register IntensityData in _libBornAgainCore:
+_libBornAgainCore.IntensityData_swigregister(IntensityData)
+
+class ILatticeOrientation(object):
+    r"""Proxy of C++ ILatticeOrientation class."""
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_ILatticeOrientation
+
+    def clone(self):
         r"""
-        setNonnegative(RealParameter self) -> RealParameter
-        RealParameter & RealParameter::setNonnegative()
+        clone(ILatticeOrientation self) -> ILatticeOrientation
+        virtual ILatticeOrientation* ILatticeOrientation::clone() const =0
 
         """
-        return _libBornAgainCore.RealParameter_setNonnegative(self)
+        return _libBornAgainCore.ILatticeOrientation_clone(self)
 
-    def setUnit(self, name):
+    def usePrimitiveLattice(self, lattice):
         r"""
-        setUnit(RealParameter self, std::string const & name) -> RealParameter
-        RealParameter & RealParameter::setUnit(const std::string &name)
+        usePrimitiveLattice(ILatticeOrientation self, Lattice lattice)
+        virtual void ILatticeOrientation::usePrimitiveLattice(const Lattice &lattice)=0
 
         """
-        return _libBornAgainCore.RealParameter_setUnit(self, name)
+        return _libBornAgainCore.ILatticeOrientation_usePrimitiveLattice(self, lattice)
 
-    def unit(self):
+    def transformationMatrix(self):
         r"""
-        unit(RealParameter self) -> std::string
-        std::string RealParameter::unit() const
+        transformationMatrix(ILatticeOrientation self) -> Transform3D
+        virtual Transform3D ILatticeOrientation::transformationMatrix() const =0
 
         """
-        return _libBornAgainCore.RealParameter_unit(self)
+        return _libBornAgainCore.ILatticeOrientation_transformationMatrix(self)
 
-# Register RealParameter in _libBornAgainCore:
-_libBornAgainCore.RealParameter_swigregister(RealParameter)
+# Register ILatticeOrientation in _libBornAgainCore:
+_libBornAgainCore.ILatticeOrientation_swigregister(ILatticeOrientation)
 
-class Rectangle(IShape2D):
+class MillerIndex(object):
     r"""
 
 
-    The rectangle shape having its axis aligned to the (non-rotated) coordinate system.
+    A direction in reciprocal space, specified by double-valued indices hkl.
 
-    C++ includes: Rectangle.h
+    C++ includes: ILatticeOrientation.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, xlow, ylow, xup, yup):
+    def __init__(self, h_, k_, l_):
         r"""
-        __init__(Rectangle self, double xlow, double ylow, double xup, double yup) -> Rectangle
-        Rectangle::Rectangle(double xlow, double ylow, double xup, double yup)
-
-        Parameters:
-        -----------
-
-        xlow: 
-        x-coordinate of lower left corner
-
-        ylow: 
-        y-coordinate of lower left corner
-
-        xup: 
-        x-coordinate of upper right corner
-
-        yup: 
-        y-coordinate of upper right corner 
+        __init__(MillerIndex self, double h_, double k_, double l_) -> MillerIndex
+        MillerIndex::MillerIndex(double h_, double k_, double l_)
 
         """
-        _libBornAgainCore.Rectangle_swiginit(self, _libBornAgainCore.new_Rectangle(xlow, ylow, xup, yup))
+        _libBornAgainCore.MillerIndex_swiginit(self, _libBornAgainCore.new_MillerIndex(h_, k_, l_))
+    h = property(_libBornAgainCore.MillerIndex_h_get, _libBornAgainCore.MillerIndex_h_set, doc=r"""h : double""")
+    k = property(_libBornAgainCore.MillerIndex_k_get, _libBornAgainCore.MillerIndex_k_set, doc=r"""k : double""")
+    l = property(_libBornAgainCore.MillerIndex_l_get, _libBornAgainCore.MillerIndex_l_set, doc=r"""l : double""")
+    __swig_destroy__ = _libBornAgainCore.delete_MillerIndex
 
-    def clone(self):
-        r"""
-        clone(Rectangle self) -> Rectangle
-        Rectangle* Rectangle::clone() const
+# Register MillerIndex in _libBornAgainCore:
+_libBornAgainCore.MillerIndex_swigregister(MillerIndex)
 
-        """
-        return _libBornAgainCore.Rectangle_clone(self)
+class MillerIndexOrientation(ILatticeOrientation):
+    r"""
 
-    def contains(self, *args):
-        r"""
-        contains(Rectangle self, double x, double y) -> bool
-        contains(Rectangle self, Bin1D binx, Bin1D biny) -> bool
-        bool Rectangle::contains(const Bin1D &binx, const Bin1D &biny) const
 
-        Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). 
+    Specifies a rotation of a lattice through the Miller indices of two coordinate axes.
 
-        """
-        return _libBornAgainCore.Rectangle_contains(self, *args)
+    C++ includes: ILatticeOrientation.h
 
-    def getArea(self):
-        r"""
-        getArea(Rectangle self) -> double
-        double Rectangle::getArea() const
+    """
 
-        """
-        return _libBornAgainCore.Rectangle_getArea(self)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+    QX = _libBornAgainCore.MillerIndexOrientation_QX
+    
+    QY = _libBornAgainCore.MillerIndexOrientation_QY
+    
+    QZ = _libBornAgainCore.MillerIndexOrientation_QZ
+    
 
-    def getXlow(self):
+    def __init__(self, q1, index1, q2, index2):
         r"""
-        getXlow(Rectangle self) -> double
-        double Rectangle::getXlow() const
+        __init__(MillerIndexOrientation self, MillerIndexOrientation::QComponent q1, MillerIndex index1, MillerIndexOrientation::QComponent q2, MillerIndex index2) -> MillerIndexOrientation
+        MillerIndexOrientation::MillerIndexOrientation(QComponent q1, MillerIndex index1, QComponent q2, MillerIndex index2)
+
+        This constructor is best explained by an example. Arguments QX, (1,1,0), QY, (0,2,1) mean: Rotate the lattice such that the axis [110] points into x direction, and the axis [021], projected into the yz plane, points into z direction. 
 
         """
-        return _libBornAgainCore.Rectangle_getXlow(self)
+        _libBornAgainCore.MillerIndexOrientation_swiginit(self, _libBornAgainCore.new_MillerIndexOrientation(q1, index1, q2, index2))
+    __swig_destroy__ = _libBornAgainCore.delete_MillerIndexOrientation
 
-    def getYlow(self):
+    def clone(self):
         r"""
-        getYlow(Rectangle self) -> double
-        double Rectangle::getYlow() const
+        clone(MillerIndexOrientation self) -> MillerIndexOrientation
+        MillerIndexOrientation * MillerIndexOrientation::clone() const override
 
         """
-        return _libBornAgainCore.Rectangle_getYlow(self)
+        return _libBornAgainCore.MillerIndexOrientation_clone(self)
 
-    def getXup(self):
+    def usePrimitiveLattice(self, lattice):
         r"""
-        getXup(Rectangle self) -> double
-        double Rectangle::getXup() const
+        usePrimitiveLattice(MillerIndexOrientation self, Lattice lattice)
+        void MillerIndexOrientation::usePrimitiveLattice(const Lattice &lattice) override
 
         """
-        return _libBornAgainCore.Rectangle_getXup(self)
+        return _libBornAgainCore.MillerIndexOrientation_usePrimitiveLattice(self, lattice)
 
-    def getYup(self):
+    def transformationMatrix(self):
         r"""
-        getYup(Rectangle self) -> double
-        double Rectangle::getYup() const
+        transformationMatrix(MillerIndexOrientation self) -> Transform3D
+        Transform3D MillerIndexOrientation::transformationMatrix() const override
 
         """
-        return _libBornAgainCore.Rectangle_getYup(self)
-    __swig_destroy__ = _libBornAgainCore.delete_Rectangle
+        return _libBornAgainCore.MillerIndexOrientation_transformationMatrix(self)
 
-# Register Rectangle in _libBornAgainCore:
-_libBornAgainCore.Rectangle_swigregister(Rectangle)
+# Register MillerIndexOrientation in _libBornAgainCore:
+_libBornAgainCore.MillerIndexOrientation_swigregister(MillerIndexOrientation)
 
-class RectangularPixel(IPixel):
+class ISelectionRule(object):
     r"""
 
 
-    A pixel in a  RectangularDetector.
+    Pure virtual base class for selection rules.
 
-    C++ includes: RectangularDetector.h
+    C++ includes: ISelectionRule.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_ISelectionRule
 
-    def __init__(self, corner_pos, width, height):
+    def clone(self):
         r"""
-        __init__(RectangularPixel self, kvector_t corner_pos, kvector_t width, kvector_t height) -> RectangularPixel
-        RectangularPixel::RectangularPixel(kvector_t corner_pos, kvector_t width, kvector_t height)
+        clone(ISelectionRule self) -> ISelectionRule
+        virtual ISelectionRule* ISelectionRule::clone() const =0
 
         """
-        _libBornAgainCore.RectangularPixel_swiginit(self, _libBornAgainCore.new_RectangularPixel(corner_pos, width, height))
+        return _libBornAgainCore.ISelectionRule_clone(self)
 
-    def clone(self):
+    def coordinateSelected(self, coordinate):
         r"""
-        clone(RectangularPixel self) -> RectangularPixel
-        RectangularPixel * RectangularPixel::clone() const override
+        coordinateSelected(ISelectionRule self, ivector_t const & coordinate) -> bool
+        virtual bool ISelectionRule::coordinateSelected(const ivector_t &coordinate) const =0
 
         """
-        return _libBornAgainCore.RectangularPixel_clone(self)
+        return _libBornAgainCore.ISelectionRule_coordinateSelected(self, coordinate)
 
-    def createZeroSizePixel(self, x, y):
-        r"""
-        createZeroSizePixel(RectangularPixel self, double x, double y) -> RectangularPixel
-        RectangularPixel * RectangularPixel::createZeroSizePixel(double x, double y) const override
+# Register ISelectionRule in _libBornAgainCore:
+_libBornAgainCore.ISelectionRule_swigregister(ISelectionRule)
 
-        """
-        return _libBornAgainCore.RectangularPixel_createZeroSizePixel(self, x, y)
+class SimpleSelectionRule(ISelectionRule):
+    r"""
 
-    def getK(self, x, y, wavelength):
-        r"""
-        getK(RectangularPixel self, double x, double y, double wavelength) -> kvector_t
-        kvector_t RectangularPixel::getK(double x, double y, double wavelength) const override
 
-        """
-        return _libBornAgainCore.RectangularPixel_getK(self, x, y, wavelength)
+    Selection rule (v*q)modulus!=0, defined by vector v(a,b,c) and modulus.
 
-    def getPosition(self, x, y):
+    C++ includes: ISelectionRule.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self, a, b, c, modulus):
         r"""
-        getPosition(RectangularPixel self, double x, double y) -> kvector_t
-        kvector_t RectangularPixel::getPosition(double x, double y) const
+        __init__(SimpleSelectionRule self, int a, int b, int c, int modulus) -> SimpleSelectionRule
+        SimpleSelectionRule::SimpleSelectionRule(int a, int b, int c, int modulus)
 
         """
-        return _libBornAgainCore.RectangularPixel_getPosition(self, x, y)
+        _libBornAgainCore.SimpleSelectionRule_swiginit(self, _libBornAgainCore.new_SimpleSelectionRule(a, b, c, modulus))
+    __swig_destroy__ = _libBornAgainCore.delete_SimpleSelectionRule
 
-    def getIntegrationFactor(self, x, y):
+    def clone(self):
         r"""
-        getIntegrationFactor(RectangularPixel self, double x, double y) -> double
-        double RectangularPixel::getIntegrationFactor(double x, double y) const override
+        clone(SimpleSelectionRule self) -> SimpleSelectionRule
+        SimpleSelectionRule * SimpleSelectionRule::clone() const
 
         """
-        return _libBornAgainCore.RectangularPixel_getIntegrationFactor(self, x, y)
+        return _libBornAgainCore.SimpleSelectionRule_clone(self)
 
-    def getSolidAngle(self):
+    def coordinateSelected(self, coordinate):
         r"""
-        getSolidAngle(RectangularPixel self) -> double
-        double RectangularPixel::getSolidAngle() const override
+        coordinateSelected(SimpleSelectionRule self, ivector_t const & coordinate) -> bool
+        bool SimpleSelectionRule::coordinateSelected(const ivector_t &coordinate) const
 
-        """
-        return _libBornAgainCore.RectangularPixel_getSolidAngle(self)
-    __swig_destroy__ = _libBornAgainCore.delete_RectangularPixel
+        """
+        return _libBornAgainCore.SimpleSelectionRule_coordinateSelected(self, coordinate)
 
-# Register RectangularPixel in _libBornAgainCore:
-_libBornAgainCore.RectangularPixel_swigregister(RectangularPixel)
+# Register SimpleSelectionRule in _libBornAgainCore:
+_libBornAgainCore.SimpleSelectionRule_swigregister(SimpleSelectionRule)
 
-class RectangularDetector(IDetector2D):
+class Lattice(INode):
     r"""
 
 
-    A flat rectangular detector with axes and resolution function.
+    A lattice with three basis vectors.
 
-    C++ includes: RectangularDetector.h
+    C++ includes: Lattice.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
-    GENERIC = _libBornAgainCore.RectangularDetector_GENERIC
-    
-    PERPENDICULAR_TO_SAMPLE = _libBornAgainCore.RectangularDetector_PERPENDICULAR_TO_SAMPLE
-    
-    PERPENDICULAR_TO_DIRECT_BEAM = _libBornAgainCore.RectangularDetector_PERPENDICULAR_TO_DIRECT_BEAM
-    
-    PERPENDICULAR_TO_REFLECTED_BEAM = _libBornAgainCore.RectangularDetector_PERPENDICULAR_TO_REFLECTED_BEAM
-    
-    PERPENDICULAR_TO_REFLECTED_BEAM_DPOS = _libBornAgainCore.RectangularDetector_PERPENDICULAR_TO_REFLECTED_BEAM_DPOS
-    
 
     def __init__(self, *args):
         r"""
-        __init__(RectangularDetector self, size_t nxbins, double width, size_t nybins, double height) -> RectangularDetector
-        __init__(RectangularDetector self, RectangularDetector other) -> RectangularDetector
-        RectangularDetector::RectangularDetector(const RectangularDetector &other)
-
-        """
-        _libBornAgainCore.RectangularDetector_swiginit(self, _libBornAgainCore.new_RectangularDetector(*args))
-
-    def clone(self):
-        r"""
-        clone(RectangularDetector self) -> RectangularDetector
-        RectangularDetector * RectangularDetector::clone() const override
+        __init__(Lattice self) -> Lattice
+        __init__(Lattice self, kvector_t a1, kvector_t a2, kvector_t a3) -> Lattice
+        __init__(Lattice self, Lattice lattice) -> Lattice
+        Lattice::Lattice(const Lattice &lattice)
 
         """
-        return _libBornAgainCore.RectangularDetector_clone(self)
+        _libBornAgainCore.Lattice_swiginit(self, _libBornAgainCore.new_Lattice(*args))
+    __swig_destroy__ = _libBornAgainCore.delete_Lattice
 
     def accept(self, visitor):
         r"""
-        accept(RectangularDetector self, INodeVisitor visitor)
-        void RectangularDetector::accept(INodeVisitor *visitor) const final
+        accept(Lattice self, INodeVisitor visitor)
+        void Lattice::accept(INodeVisitor *visitor) const override
 
         Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.RectangularDetector_accept(self, visitor)
-    __swig_destroy__ = _libBornAgainCore.delete_RectangularDetector
+        return _libBornAgainCore.Lattice_accept(self, visitor)
 
-    def init(self, beam):
+    def createTransformedLattice(self, transform):
         r"""
-        init(RectangularDetector self, Beam beam)
-        void RectangularDetector::init(const Beam &beam) override
+        createTransformedLattice(Lattice self, Transform3D const & transform) -> Lattice
+        Lattice Lattice::createTransformedLattice(const Transform3D &transform) const
 
-        Inits detector with the beam settings. 
+        Create transformed lattice. 
 
         """
-        return _libBornAgainCore.RectangularDetector_init(self, beam)
+        return _libBornAgainCore.Lattice_createTransformedLattice(self, transform)
 
-    def setPosition(self, *args):
+    def initialize(self):
         r"""
-        setPosition(RectangularDetector self, kvector_t normal_to_detector, double u0, double v0, kvector_t direction=kvector_t(0.0, -1.0, 0.0))
-        void RectangularDetector::setPosition(const kvector_t normal_to_detector, double u0, double v0, const kvector_t direction=kvector_t(0.0, -1.0, 0.0))
-
-        """
-        return _libBornAgainCore.RectangularDetector_setPosition(self, *args)
+        initialize(Lattice self)
+        void Lattice::initialize() const
 
-    def setPerpendicularToSampleX(self, distance, u0, v0):
-        r"""
-        setPerpendicularToSampleX(RectangularDetector self, double distance, double u0, double v0)
-        void RectangularDetector::setPerpendicularToSampleX(double distance, double u0, double v0)
+        Initializes cached data. 
 
         """
-        return _libBornAgainCore.RectangularDetector_setPerpendicularToSampleX(self, distance, u0, v0)
+        return _libBornAgainCore.Lattice_initialize(self)
 
-    def setPerpendicularToDirectBeam(self, distance, u0, v0):
+    def getBasisVectorA(self):
         r"""
-        setPerpendicularToDirectBeam(RectangularDetector self, double distance, double u0, double v0)
-        void RectangularDetector::setPerpendicularToDirectBeam(double distance, double u0, double v0)
+        getBasisVectorA(Lattice self) -> kvector_t
+        kvector_t Lattice::getBasisVectorA() const
+
+        Returns basis vector a. 
 
         """
-        return _libBornAgainCore.RectangularDetector_setPerpendicularToDirectBeam(self, distance, u0, v0)
+        return _libBornAgainCore.Lattice_getBasisVectorA(self)
 
-    def setPerpendicularToReflectedBeam(self, distance, u0=0.0, v0=0.0):
+    def getBasisVectorB(self):
         r"""
-        setPerpendicularToReflectedBeam(RectangularDetector self, double distance, double u0=0.0, double v0=0.0)
-        void RectangularDetector::setPerpendicularToReflectedBeam(double distance, double u0=0.0, double v0=0.0)
+        getBasisVectorB(Lattice self) -> kvector_t
+        kvector_t Lattice::getBasisVectorB() const
+
+        Returns basis vector b. 
 
         """
-        return _libBornAgainCore.RectangularDetector_setPerpendicularToReflectedBeam(self, distance, u0, v0)
+        return _libBornAgainCore.Lattice_getBasisVectorB(self)
 
-    def setDirectBeamPosition(self, u0, v0):
+    def getBasisVectorC(self):
         r"""
-        setDirectBeamPosition(RectangularDetector self, double u0, double v0)
-        void RectangularDetector::setDirectBeamPosition(double u0, double v0)
+        getBasisVectorC(Lattice self) -> kvector_t
+        kvector_t Lattice::getBasisVectorC() const
+
+        Returns basis vector c. 
 
         """
-        return _libBornAgainCore.RectangularDetector_setDirectBeamPosition(self, u0, v0)
+        return _libBornAgainCore.Lattice_getBasisVectorC(self)
 
-    def getWidth(self):
+    def resetBasis(self, a1, a2, a3):
         r"""
-        getWidth(RectangularDetector self) -> double
-        double RectangularDetector::getWidth() const
+        resetBasis(Lattice self, kvector_t a1, kvector_t a2, kvector_t a3)
+        void Lattice::resetBasis(const kvector_t a1, const kvector_t a2, const kvector_t a3)
+
+        Resets the basis vectors. 
 
         """
-        return _libBornAgainCore.RectangularDetector_getWidth(self)
+        return _libBornAgainCore.Lattice_resetBasis(self, a1, a2, a3)
 
-    def getHeight(self):
+    def getMillerDirection(self, h, k, l):
         r"""
-        getHeight(RectangularDetector self) -> double
-        double RectangularDetector::getHeight() const
+        getMillerDirection(Lattice self, double h, double k, double l) -> kvector_t
+        kvector_t Lattice::getMillerDirection(double h, double k, double l) const
+
+        Returns normalized direction corresponding to the given Miller indices. 
 
         """
-        return _libBornAgainCore.RectangularDetector_getHeight(self)
+        return _libBornAgainCore.Lattice_getMillerDirection(self, h, k, l)
 
-    def getNbinsX(self):
+    def volume(self):
         r"""
-        getNbinsX(RectangularDetector self) -> size_t
-        size_t RectangularDetector::getNbinsX() const
+        volume(Lattice self) -> double
+        double Lattice::volume() const
+
+        Returns the volume of the unit cell. 
 
         """
-        return _libBornAgainCore.RectangularDetector_getNbinsX(self)
+        return _libBornAgainCore.Lattice_volume(self)
 
-    def getNbinsY(self):
+    def getReciprocalLatticeBasis(self, b1, b2, b3):
         r"""
-        getNbinsY(RectangularDetector self) -> size_t
-        size_t RectangularDetector::getNbinsY() const
+        getReciprocalLatticeBasis(Lattice self, kvector_t b1, kvector_t b2, kvector_t b3)
+        void Lattice::getReciprocalLatticeBasis(kvector_t &b1, kvector_t &b2, kvector_t &b3) const
+
+        Returns the reciprocal basis vectors. 
 
         """
-        return _libBornAgainCore.RectangularDetector_getNbinsY(self)
+        return _libBornAgainCore.Lattice_getReciprocalLatticeBasis(self, b1, b2, b3)
 
-    def getNormalVector(self):
+    def getNearestLatticeVectorCoordinates(self, vector_in):
         r"""
-        getNormalVector(RectangularDetector self) -> kvector_t
-        kvector_t RectangularDetector::getNormalVector() const
+        getNearestLatticeVectorCoordinates(Lattice self, kvector_t vector_in) -> ivector_t
+        ivector_t Lattice::getNearestLatticeVectorCoordinates(const kvector_t vector_in) const
+
+        Returns the nearest lattice point from a given vector. 
 
         """
-        return _libBornAgainCore.RectangularDetector_getNormalVector(self)
+        return _libBornAgainCore.Lattice_getNearestLatticeVectorCoordinates(self, vector_in)
 
-    def getU0(self):
+    def getNearestReciprocalLatticeVectorCoordinates(self, vector_in):
         r"""
-        getU0(RectangularDetector self) -> double
-        double RectangularDetector::getU0() const
+        getNearestReciprocalLatticeVectorCoordinates(Lattice self, kvector_t vector_in) -> ivector_t
+        ivector_t Lattice::getNearestReciprocalLatticeVectorCoordinates(const kvector_t vector_in) const
+
+        Returns the nearest reciprocal lattice point from a given vector. 
 
         """
-        return _libBornAgainCore.RectangularDetector_getU0(self)
+        return _libBornAgainCore.Lattice_getNearestReciprocalLatticeVectorCoordinates(self, vector_in)
 
-    def getV0(self):
+    def reciprocalLatticeVectorsWithinRadius(self, input_vector, radius):
         r"""
-        getV0(RectangularDetector self) -> double
-        double RectangularDetector::getV0() const
+        reciprocalLatticeVectorsWithinRadius(Lattice self, kvector_t input_vector, double radius) -> vector_kvector_t
+        std::vector< kvector_t > Lattice::reciprocalLatticeVectorsWithinRadius(const kvector_t input_vector, double radius) const
+
+        Computes a list of reciprocal lattice vectors within a specified distance of a given vector. 
 
         """
-        return _libBornAgainCore.RectangularDetector_getV0(self)
+        return _libBornAgainCore.Lattice_reciprocalLatticeVectorsWithinRadius(self, input_vector, radius)
 
-    def getDirectionVector(self):
+    def setSelectionRule(self, p_selection_rule):
         r"""
-        getDirectionVector(RectangularDetector self) -> kvector_t
-        kvector_t RectangularDetector::getDirectionVector() const
+        setSelectionRule(Lattice self, ISelectionRule p_selection_rule)
+        void Lattice::setSelectionRule(const ISelectionRule &p_selection_rule)
+
+        Sets a selection rule for the reciprocal vectors. 
 
         """
-        return _libBornAgainCore.RectangularDetector_getDirectionVector(self)
+        return _libBornAgainCore.Lattice_setSelectionRule(self, p_selection_rule)
 
-    def getDistance(self):
-        r"""
-        getDistance(RectangularDetector self) -> double
-        double RectangularDetector::getDistance() const
+    @staticmethod
+    def createCubicLattice(a):
+        r"""createCubicLattice(double a) -> Lattice"""
+        return _libBornAgainCore.Lattice_createCubicLattice(a)
 
-        """
-        return _libBornAgainCore.RectangularDetector_getDistance(self)
+    @staticmethod
+    def createFCCLattice(a):
+        r"""createFCCLattice(double a) -> Lattice"""
+        return _libBornAgainCore.Lattice_createFCCLattice(a)
 
-    def getDirectBeamU0(self):
-        r"""
-        getDirectBeamU0(RectangularDetector self) -> double
-        double RectangularDetector::getDirectBeamU0() const
+    @staticmethod
+    def createHexagonalLattice(a, c):
+        r"""createHexagonalLattice(double a, double c) -> Lattice"""
+        return _libBornAgainCore.Lattice_createHexagonalLattice(a, c)
 
-        """
-        return _libBornAgainCore.RectangularDetector_getDirectBeamU0(self)
+    @staticmethod
+    def createHCPLattice(a, c):
+        r"""createHCPLattice(double a, double c) -> Lattice"""
+        return _libBornAgainCore.Lattice_createHCPLattice(a, c)
 
-    def getDirectBeamV0(self):
-        r"""
-        getDirectBeamV0(RectangularDetector self) -> double
-        double RectangularDetector::getDirectBeamV0() const
+    @staticmethod
+    def createTetragonalLattice(a, c):
+        r"""createTetragonalLattice(double a, double c) -> Lattice"""
+        return _libBornAgainCore.Lattice_createTetragonalLattice(a, c)
 
-        """
-        return _libBornAgainCore.RectangularDetector_getDirectBeamV0(self)
+    @staticmethod
+    def createBCTLattice(a, c):
+        r"""createBCTLattice(double a, double c) -> Lattice"""
+        return _libBornAgainCore.Lattice_createBCTLattice(a, c)
 
-    def getDetectorArrangment(self):
+    def onChange(self):
         r"""
-        getDetectorArrangment(RectangularDetector self) -> RectangularDetector::EDetectorArrangement
-        RectangularDetector::EDetectorArrangement RectangularDetector::getDetectorArrangment() const
+        onChange(Lattice self)
+        void Lattice::onChange() override
+
+        Action to be taken in inherited class when a parameter has changed. 
 
         """
-        return _libBornAgainCore.RectangularDetector_getDetectorArrangment(self)
+        return _libBornAgainCore.Lattice_onChange(self)
 
-    def defaultAxesUnits(self):
-        r"""
-        defaultAxesUnits(RectangularDetector self) -> AxesUnits
-        AxesUnits RectangularDetector::defaultAxesUnits() const override
+# Register Lattice in _libBornAgainCore:
+_libBornAgainCore.Lattice_swigregister(Lattice)
 
-        return default axes units 
+def Lattice_createCubicLattice(a):
+    r"""Lattice_createCubicLattice(double a) -> Lattice"""
+    return _libBornAgainCore.Lattice_createCubicLattice(a)
 
-        """
-        return _libBornAgainCore.RectangularDetector_defaultAxesUnits(self)
+def Lattice_createFCCLattice(a):
+    r"""Lattice_createFCCLattice(double a) -> Lattice"""
+    return _libBornAgainCore.Lattice_createFCCLattice(a)
 
-    def regionOfInterestPixel(self):
-        r"""
-        regionOfInterestPixel(RectangularDetector self) -> RectangularPixel
-        RectangularPixel * RectangularDetector::regionOfInterestPixel() const
+def Lattice_createHexagonalLattice(a, c):
+    r"""Lattice_createHexagonalLattice(double a, double c) -> Lattice"""
+    return _libBornAgainCore.Lattice_createHexagonalLattice(a, c)
 
-        """
-        return _libBornAgainCore.RectangularDetector_regionOfInterestPixel(self)
+def Lattice_createHCPLattice(a, c):
+    r"""Lattice_createHCPLattice(double a, double c) -> Lattice"""
+    return _libBornAgainCore.Lattice_createHCPLattice(a, c)
 
-# Register RectangularDetector in _libBornAgainCore:
-_libBornAgainCore.RectangularDetector_swigregister(RectangularDetector)
+def Lattice_createTetragonalLattice(a, c):
+    r"""Lattice_createTetragonalLattice(double a, double c) -> Lattice"""
+    return _libBornAgainCore.Lattice_createTetragonalLattice(a, c)
 
-class ResolutionFunction2DGaussian(IResolutionFunction2D):
+def Lattice_createBCTLattice(a, c):
+    r"""Lattice_createBCTLattice(double a, double c) -> Lattice"""
+    return _libBornAgainCore.Lattice_createBCTLattice(a, c)
+
+class Lattice1DParameters(object):
     r"""
 
 
-    Simple gaussian two-dimensional resolution function.
+    Basic parameters of a one-dimensional lattice.
 
-    C++ includes: ResolutionFunction2DGaussian.h
+    C++ includes: Lattice1DParameters.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, sigma_x, sigma_y):
-        r"""
-        __init__(ResolutionFunction2DGaussian self, double sigma_x, double sigma_y) -> ResolutionFunction2DGaussian
-        ResolutionFunction2DGaussian::ResolutionFunction2DGaussian(double sigma_x, double sigma_y)
-
-        """
-        _libBornAgainCore.ResolutionFunction2DGaussian_swiginit(self, _libBornAgainCore.new_ResolutionFunction2DGaussian(sigma_x, sigma_y))
-
-    def evaluateCDF(self, x, y):
-        r"""
-        evaluateCDF(ResolutionFunction2DGaussian self, double x, double y) -> double
-        double ResolutionFunction2DGaussian::evaluateCDF(double x, double y) const
-
-        """
-        return _libBornAgainCore.ResolutionFunction2DGaussian_evaluateCDF(self, x, y)
-
-    def clone(self):
-        r"""
-        clone(ResolutionFunction2DGaussian self) -> ResolutionFunction2DGaussian
-        ResolutionFunction2DGaussian* ResolutionFunction2DGaussian::clone() const
-
-        """
-        return _libBornAgainCore.ResolutionFunction2DGaussian_clone(self)
-
-    def accept(self, visitor):
+    def __init__(self, *args):
         r"""
-        accept(ResolutionFunction2DGaussian self, INodeVisitor visitor)
-        void ResolutionFunction2DGaussian::accept(INodeVisitor *visitor) const final
-
-        Calls the  INodeVisitor's visit method. 
-
-        """
-        return _libBornAgainCore.ResolutionFunction2DGaussian_accept(self, visitor)
+        __init__(Lattice1DParameters self) -> Lattice1DParameters
+        __init__(Lattice1DParameters self, double length, double xi) -> Lattice1DParameters
+        Lattice1DParameters::Lattice1DParameters(double length, double xi)
 
-    def getSigmaX(self):
-        r"""
-        getSigmaX(ResolutionFunction2DGaussian self) -> double
-        double ResolutionFunction2DGaussian::getSigmaX() const
+        Parameters:
+        -----------
 
-        """
-        return _libBornAgainCore.ResolutionFunction2DGaussian_getSigmaX(self)
+        length: 
+         Lattice constant.
 
-    def getSigmaY(self):
-        r"""
-        getSigmaY(ResolutionFunction2DGaussian self) -> double
-        double ResolutionFunction2DGaussian::getSigmaY() const
+        xi: 
+         Lattice rotation angle. 
 
         """
-        return _libBornAgainCore.ResolutionFunction2DGaussian_getSigmaY(self)
-    __swig_destroy__ = _libBornAgainCore.delete_ResolutionFunction2DGaussian
+        _libBornAgainCore.Lattice1DParameters_swiginit(self, _libBornAgainCore.new_Lattice1DParameters(*args))
+    m_length = property(_libBornAgainCore.Lattice1DParameters_m_length_get, _libBornAgainCore.Lattice1DParameters_m_length_set, doc=r"""m_length : double""")
+    m_xi = property(_libBornAgainCore.Lattice1DParameters_m_xi_get, _libBornAgainCore.Lattice1DParameters_m_xi_set, doc=r"""m_xi : double""")
+    __swig_destroy__ = _libBornAgainCore.delete_Lattice1DParameters
 
-# Register ResolutionFunction2DGaussian in _libBornAgainCore:
-_libBornAgainCore.ResolutionFunction2DGaussian_swigregister(ResolutionFunction2DGaussian)
+# Register Lattice1DParameters in _libBornAgainCore:
+_libBornAgainCore.Lattice1DParameters_swigregister(Lattice1DParameters)
 
-class RoughnessModel(object):
-    r"""Proxy of C++ RoughnessModelWrap class."""
+class Lattice2D(ICloneable, INode):
+    r"""Proxy of C++ Lattice2D class."""
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
 
     def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined")
-    __repr__ = _swig_repr
-    DEFAULT = _libBornAgainCore.RoughnessModel_DEFAULT
-    
-    TANH = _libBornAgainCore.RoughnessModel_TANH
-    
-    NEVOT_CROCE = _libBornAgainCore.RoughnessModel_NEVOT_CROCE
-    
-    __swig_destroy__ = _libBornAgainCore.delete_RoughnessModel
-
-# Register RoughnessModel in _libBornAgainCore:
-_libBornAgainCore.RoughnessModel_swigregister(RoughnessModel)
-
-class DepthProbeSimulation(Simulation):
-    r"""Proxy of C++ DepthProbeSimulation class."""
-
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
-        r"""
-        __init__(DepthProbeSimulation self) -> DepthProbeSimulation
-        __init__(DepthProbeSimulation self, MultiLayer sample) -> DepthProbeSimulation
-        __init__(DepthProbeSimulation self, std::shared_ptr< IMultiLayerBuilder > const sample_builder) -> DepthProbeSimulation
-        DepthProbeSimulation::DepthProbeSimulation(const std::shared_ptr< IMultiLayerBuilder > sample_builder)
-
-        """
-        _libBornAgainCore.DepthProbeSimulation_swiginit(self, _libBornAgainCore.new_DepthProbeSimulation(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_DepthProbeSimulation
-
     def clone(self):
         r"""
-        clone(DepthProbeSimulation self) -> DepthProbeSimulation
-        DepthProbeSimulation * DepthProbeSimulation::clone() const override
+        clone(Lattice2D self) -> Lattice2D
+        Lattice2D* Lattice2D::clone() const =0
 
         """
-        return _libBornAgainCore.DepthProbeSimulation_clone(self)
+        return _libBornAgainCore.Lattice2D_clone(self)
 
-    def accept(self, visitor):
+    def length1(self):
         r"""
-        accept(DepthProbeSimulation self, INodeVisitor visitor)
-        void DepthProbeSimulation::accept(INodeVisitor *visitor) const override final
-
-        Calls the  INodeVisitor's visit method. 
+        length1(Lattice2D self) -> double
+        virtual double Lattice2D::length1() const =0
 
         """
-        return _libBornAgainCore.DepthProbeSimulation_accept(self, visitor)
+        return _libBornAgainCore.Lattice2D_length1(self)
 
-    def result(self):
+    def length2(self):
         r"""
-        result(DepthProbeSimulation self) -> SimulationResult
-        SimulationResult DepthProbeSimulation::result() const override
-
-        Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays 
+        length2(Lattice2D self) -> double
+        virtual double Lattice2D::length2() const =0
 
         """
-        return _libBornAgainCore.DepthProbeSimulation_result(self)
+        return _libBornAgainCore.Lattice2D_length2(self)
 
-    def setBeamParameters(self, _lambda, nbins, alpha_i_min, alpha_i_max, beam_shape=None):
+    def latticeAngle(self):
         r"""
-        setBeamParameters(DepthProbeSimulation self, double _lambda, int nbins, double alpha_i_min, double alpha_i_max, IFootprintFactor beam_shape=None)
-        void DepthProbeSimulation::setBeamParameters(double lambda, int nbins, double alpha_i_min, double alpha_i_max, const IFootprintFactor *beam_shape=nullptr)
-
-        Sets beam parameters with alpha_i of the beam defined in the range. 
+        latticeAngle(Lattice2D self) -> double
+        virtual double Lattice2D::latticeAngle() const =0
 
         """
-        return _libBornAgainCore.DepthProbeSimulation_setBeamParameters(self, _lambda, nbins, alpha_i_min, alpha_i_max, beam_shape)
+        return _libBornAgainCore.Lattice2D_latticeAngle(self)
 
-    def setZSpan(self, n_bins, z_min, z_max):
+    def unitCellArea(self):
         r"""
-        setZSpan(DepthProbeSimulation self, size_t n_bins, double z_min, double z_max)
-        void DepthProbeSimulation::setZSpan(size_t n_bins, double z_min, double z_max)
-
-        Set z positions for intensity calculations. Negative z's correspond to the area under sample surface. The more negative z is, the deeper layer corresponds to it. 
+        unitCellArea(Lattice2D self) -> double
+        virtual double Lattice2D::unitCellArea() const =0
 
         """
-        return _libBornAgainCore.DepthProbeSimulation_setZSpan(self, n_bins, z_min, z_max)
+        return _libBornAgainCore.Lattice2D_unitCellArea(self)
 
-    def getAlphaAxis(self):
+    def rotationAngle(self):
         r"""
-        getAlphaAxis(DepthProbeSimulation self) -> IAxis
-        const IAxis * DepthProbeSimulation::getAlphaAxis() const
-
-        Returns a pointer to incident angle axis. 
+        rotationAngle(Lattice2D self) -> double
+        double Lattice2D::rotationAngle() const
 
         """
-        return _libBornAgainCore.DepthProbeSimulation_getAlphaAxis(self)
+        return _libBornAgainCore.Lattice2D_rotationAngle(self)
 
-    def getZAxis(self):
+    def reciprocalBases(self):
         r"""
-        getZAxis(DepthProbeSimulation self) -> IAxis
-        const IAxis * DepthProbeSimulation::getZAxis() const
-
-        Returns a pointer to z-position axis. 
+        reciprocalBases(Lattice2D self) -> Lattice2D::ReciprocalBases
+        Lattice2D::ReciprocalBases Lattice2D::reciprocalBases() const
 
         """
-        return _libBornAgainCore.DepthProbeSimulation_getZAxis(self)
+        return _libBornAgainCore.Lattice2D_reciprocalBases(self)
 
-    def intensityMapSize(self):
+    def setRotationEnabled(self, enabled):
         r"""
-        intensityMapSize(DepthProbeSimulation self) -> size_t
-        size_t DepthProbeSimulation::intensityMapSize() const override
-
-        Returns the total number of the intensity values in the simulation result. 
+        setRotationEnabled(Lattice2D self, bool enabled)
+        void Lattice2D::setRotationEnabled(bool enabled)
 
         """
-        return _libBornAgainCore.DepthProbeSimulation_intensityMapSize(self)
-
-# Register DepthProbeSimulation in _libBornAgainCore:
-_libBornAgainCore.DepthProbeSimulation_swigregister(DepthProbeSimulation)
-
-class SpecularSimulation(Simulation):
-    r"""
-
-
-    Main class to run a specular simulation.
+        return _libBornAgainCore.Lattice2D_setRotationEnabled(self, enabled)
+    __swig_destroy__ = _libBornAgainCore.delete_Lattice2D
 
-    C++ includes: SpecularSimulation.h
+# Register Lattice2D in _libBornAgainCore:
+_libBornAgainCore.Lattice2D_swigregister(Lattice2D)
 
-    """
+class BasicLattice(Lattice2D):
+    r"""Proxy of C++ BasicLattice class."""
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self, *args):
+    def __init__(self, length1, length2, angle, rotation_angle=0.0):
         r"""
-        __init__(SpecularSimulation self) -> SpecularSimulation
-        __init__(SpecularSimulation self, MultiLayer sample) -> SpecularSimulation
-        __init__(SpecularSimulation self, std::shared_ptr< IMultiLayerBuilder > const sample_builder) -> SpecularSimulation
-        SpecularSimulation::SpecularSimulation(const std::shared_ptr< IMultiLayerBuilder > sample_builder)
+        __init__(BasicLattice self, double length1, double length2, double angle, double rotation_angle=0.0) -> BasicLattice
+        BasicLattice::BasicLattice(double length1, double length2, double angle, double rotation_angle=0.0)
 
         """
-        _libBornAgainCore.SpecularSimulation_swiginit(self, _libBornAgainCore.new_SpecularSimulation(*args))
-    __swig_destroy__ = _libBornAgainCore.delete_SpecularSimulation
+        _libBornAgainCore.BasicLattice_swiginit(self, _libBornAgainCore.new_BasicLattice(length1, length2, angle, rotation_angle))
 
     def clone(self):
         r"""
-        clone(SpecularSimulation self) -> SpecularSimulation
-        SpecularSimulation * SpecularSimulation::clone() const override
+        clone(BasicLattice self) -> BasicLattice
+        BasicLattice * BasicLattice::clone() const
 
         """
-        return _libBornAgainCore.SpecularSimulation_clone(self)
+        return _libBornAgainCore.BasicLattice_clone(self)
 
-    def prepareSimulation(self):
+    def accept(self, visitor):
         r"""
-        prepareSimulation(SpecularSimulation self)
-        void SpecularSimulation::prepareSimulation() override
+        accept(BasicLattice self, INodeVisitor visitor)
+        void BasicLattice::accept(INodeVisitor *visitor) const final
 
-        Put into a clean state for running a simulation. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.SpecularSimulation_prepareSimulation(self)
+        return _libBornAgainCore.BasicLattice_accept(self, visitor)
 
-    def accept(self, visitor):
+    def length1(self):
         r"""
-        accept(SpecularSimulation self, INodeVisitor visitor)
-        void SpecularSimulation::accept(INodeVisitor *visitor) const override final
+        length1(BasicLattice self) -> double
+        virtual double BasicLattice::length1() const
 
-        Calls the  INodeVisitor's visit method. 
+        """
+        return _libBornAgainCore.BasicLattice_length1(self)
+
+    def length2(self):
+        r"""
+        length2(BasicLattice self) -> double
+        virtual double BasicLattice::length2() const
+
+        """
+        return _libBornAgainCore.BasicLattice_length2(self)
+
+    def latticeAngle(self):
+        r"""
+        latticeAngle(BasicLattice self) -> double
+        virtual double BasicLattice::latticeAngle() const
 
         """
-        return _libBornAgainCore.SpecularSimulation_accept(self, visitor)
+        return _libBornAgainCore.BasicLattice_latticeAngle(self)
 
-    def result(self):
+    def unitCellArea(self):
         r"""
-        result(SpecularSimulation self) -> SimulationResult
-        SimulationResult SpecularSimulation::result() const override
-
-        Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays. If simulation was not run, returns an array of proper size filled with zeros. 
+        unitCellArea(BasicLattice self) -> double
+        double BasicLattice::unitCellArea() const
 
         """
-        return _libBornAgainCore.SpecularSimulation_result(self)
+        return _libBornAgainCore.BasicLattice_unitCellArea(self)
+    __swig_destroy__ = _libBornAgainCore.delete_BasicLattice
 
-    def setScan(self, scan):
-        r"""
-        setScan(SpecularSimulation self, ISpecularScan const & scan)
-        void SpecularSimulation::setScan(const ISpecularScan &scan)
+# Register BasicLattice in _libBornAgainCore:
+_libBornAgainCore.BasicLattice_swigregister(BasicLattice)
 
-        Sets chosen specular scan to the simulation. 
+class SquareLattice(Lattice2D):
+    r"""Proxy of C++ SquareLattice class."""
 
-        """
-        return _libBornAgainCore.SpecularSimulation_setScan(self, scan)
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-    def coordinateAxis(self):
+    def __init__(self, length, rotation_angle=0.0):
         r"""
-        coordinateAxis(SpecularSimulation self) -> IAxis
-        const IAxis * SpecularSimulation::coordinateAxis() const
-
-        Returns a pointer to coordinate axis. 
+        __init__(SquareLattice self, double length, double rotation_angle=0.0) -> SquareLattice
+        SquareLattice::SquareLattice(double length, double rotation_angle=0.0)
 
         """
-        return _libBornAgainCore.SpecularSimulation_coordinateAxis(self)
+        _libBornAgainCore.SquareLattice_swiginit(self, _libBornAgainCore.new_SquareLattice(length, rotation_angle))
 
-    def footprintFactor(self):
+    def clone(self):
         r"""
-        footprintFactor(SpecularSimulation self) -> IFootprintFactor
-        const IFootprintFactor * SpecularSimulation::footprintFactor() const
-
-        Returns a pointer to footprint factor holder. 
+        clone(SquareLattice self) -> SquareLattice
+        SquareLattice * SquareLattice::clone() const
 
         """
-        return _libBornAgainCore.SpecularSimulation_footprintFactor(self)
+        return _libBornAgainCore.SquareLattice_clone(self)
 
-    def intensityMapSize(self):
+    def accept(self, visitor):
         r"""
-        intensityMapSize(SpecularSimulation self) -> size_t
-        size_t SpecularSimulation::intensityMapSize() const override
+        accept(SquareLattice self, INodeVisitor visitor)
+        void SquareLattice::accept(INodeVisitor *visitor) const final
 
-        Returns the total number of the intensity values in the simulation result. 
+        Calls the  INodeVisitor's visit method. 
 
         """
-        return _libBornAgainCore.SpecularSimulation_intensityMapSize(self)
-
-    def setSampleBuilder(self, ptr):
-        self.samplebuilder = ptr
-        self.setSampleBuilderCpp(ptr)
-
-
-# Register SpecularSimulation in _libBornAgainCore:
-_libBornAgainCore.SpecularSimulation_swigregister(SpecularSimulation)
+        return _libBornAgainCore.SquareLattice_accept(self, visitor)
 
-class ThreadInfo(object):
-    r"""
+    def length1(self):
+        r"""
+        length1(SquareLattice self) -> double
+        virtual double SquareLattice::length1() const
 
+        """
+        return _libBornAgainCore.SquareLattice_length1(self)
 
-    Information to run simulation with dedicated number of threads.
+    def length2(self):
+        r"""
+        length2(SquareLattice self) -> double
+        virtual double SquareLattice::length2() const
 
-    C++ includes: ThreadInfo.h
+        """
+        return _libBornAgainCore.SquareLattice_length2(self)
 
-    """
+    def latticeAngle(self):
+        r"""
+        latticeAngle(SquareLattice self) -> double
+        double SquareLattice::latticeAngle() const
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.SquareLattice_latticeAngle(self)
 
-    def __init__(self):
+    def unitCellArea(self):
         r"""
-        __init__(ThreadInfo self) -> ThreadInfo
-        ThreadInfo::ThreadInfo()
+        unitCellArea(SquareLattice self) -> double
+        double SquareLattice::unitCellArea() const
 
         """
-        _libBornAgainCore.ThreadInfo_swiginit(self, _libBornAgainCore.new_ThreadInfo())
-    n_threads = property(_libBornAgainCore.ThreadInfo_n_threads_get, _libBornAgainCore.ThreadInfo_n_threads_set, doc=r"""n_threads : unsigned int""")
-    n_batches = property(_libBornAgainCore.ThreadInfo_n_batches_get, _libBornAgainCore.ThreadInfo_n_batches_set, doc=r"""n_batches : unsigned int""")
-    current_batch = property(_libBornAgainCore.ThreadInfo_current_batch_get, _libBornAgainCore.ThreadInfo_current_batch_set, doc=r"""current_batch : unsigned int""")
-    __swig_destroy__ = _libBornAgainCore.delete_ThreadInfo
+        return _libBornAgainCore.SquareLattice_unitCellArea(self)
+    __swig_destroy__ = _libBornAgainCore.delete_SquareLattice
 
-# Register ThreadInfo in _libBornAgainCore:
-_libBornAgainCore.ThreadInfo_swigregister(ThreadInfo)
+# Register SquareLattice in _libBornAgainCore:
+_libBornAgainCore.SquareLattice_swigregister(SquareLattice)
 
-class SampleBuilderFactoryTemp(object):
-    r"""Proxy of C++ IFactory< std::string,IMultiLayerBuilder > class."""
+class HexagonalLattice(Lattice2D):
+    r"""Proxy of C++ HexagonalLattice class."""
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def createItem(self, item_key):
-        r"""createItem(SampleBuilderFactoryTemp self, std::string const & item_key) -> IMultiLayerBuilder"""
-        return _libBornAgainCore.SampleBuilderFactoryTemp_createItem(self, item_key)
-
-    def registerItem(self, item_key, CreateFn):
-        r"""registerItem(SampleBuilderFactoryTemp self, std::string const & item_key, IFactory< std::string,IMultiLayerBuilder >::CreateItemCallback CreateFn) -> bool"""
-        return _libBornAgainCore.SampleBuilderFactoryTemp_registerItem(self, item_key, CreateFn)
-
-    def contains(self, item_key):
-        r"""contains(SampleBuilderFactoryTemp self, std::string const & item_key) -> bool"""
-        return _libBornAgainCore.SampleBuilderFactoryTemp_contains(self, item_key)
-
-    def size(self):
-        r"""size(SampleBuilderFactoryTemp self) -> size_t"""
-        return _libBornAgainCore.SampleBuilderFactoryTemp_size(self)
+    def __init__(self, length, rotation_angle=0.0):
+        r"""
+        __init__(HexagonalLattice self, double length, double rotation_angle=0.0) -> HexagonalLattice
+        HexagonalLattice::HexagonalLattice(double length, double rotation_angle=0.0)
 
-    def __init__(self):
-        r"""__init__(SampleBuilderFactoryTemp self) -> SampleBuilderFactoryTemp"""
-        _libBornAgainCore.SampleBuilderFactoryTemp_swiginit(self, _libBornAgainCore.new_SampleBuilderFactoryTemp())
-    __swig_destroy__ = _libBornAgainCore.delete_SampleBuilderFactoryTemp
+        """
+        _libBornAgainCore.HexagonalLattice_swiginit(self, _libBornAgainCore.new_HexagonalLattice(length, rotation_angle))
 
-# Register SampleBuilderFactoryTemp in _libBornAgainCore:
-_libBornAgainCore.SampleBuilderFactoryTemp_swigregister(SampleBuilderFactoryTemp)
+    def clone(self):
+        r"""
+        clone(HexagonalLattice self) -> HexagonalLattice
+        HexagonalLattice * HexagonalLattice::clone() const
 
-class SampleBuilderFactory(SampleBuilderFactoryTemp):
-    r"""
+        """
+        return _libBornAgainCore.HexagonalLattice_clone(self)
 
+    def accept(self, visitor):
+        r"""
+        accept(HexagonalLattice self, INodeVisitor visitor)
+        void HexagonalLattice::accept(INodeVisitor *visitor) const final
 
-    Factory to create standard pre-defined samples
+        Calls the  INodeVisitor's visit method. 
 
-    C++ includes: SampleBuilderFactory.h
+        """
+        return _libBornAgainCore.HexagonalLattice_accept(self, visitor)
 
-    """
+    def length1(self):
+        r"""
+        length1(HexagonalLattice self) -> double
+        virtual double HexagonalLattice::length1() const
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+        """
+        return _libBornAgainCore.HexagonalLattice_length1(self)
 
-    def __init__(self):
+    def length2(self):
         r"""
-        __init__(SampleBuilderFactory self) -> SampleBuilderFactory
-        SampleBuilderFactory::SampleBuilderFactory()
+        length2(HexagonalLattice self) -> double
+        virtual double HexagonalLattice::length2() const
 
         """
-        _libBornAgainCore.SampleBuilderFactory_swiginit(self, _libBornAgainCore.new_SampleBuilderFactory())
+        return _libBornAgainCore.HexagonalLattice_length2(self)
 
-    def createSample(self, name):
+    def latticeAngle(self):
         r"""
-        createSample(SampleBuilderFactory self, std::string const & name) -> MultiLayer
-        MultiLayer * SampleBuilderFactory::createSample(const std::string &name)
-
-        Retrieves a SampleBuilder from the registry, does the build, and returns the result. 
+        latticeAngle(HexagonalLattice self) -> double
+        double HexagonalLattice::latticeAngle() const
 
         """
-        return _libBornAgainCore.SampleBuilderFactory_createSample(self, name)
-    __swig_destroy__ = _libBornAgainCore.delete_SampleBuilderFactory
+        return _libBornAgainCore.HexagonalLattice_latticeAngle(self)
 
-# Register SampleBuilderFactory in _libBornAgainCore:
-_libBornAgainCore.SampleBuilderFactory_swigregister(SampleBuilderFactory)
+    def unitCellArea(self):
+        r"""
+        unitCellArea(HexagonalLattice self) -> double
+        double HexagonalLattice::unitCellArea() const
 
-class SimulationFactoryTemp(object):
-    r"""Proxy of C++ IFactory< std::string,Simulation > class."""
+        """
+        return _libBornAgainCore.HexagonalLattice_unitCellArea(self)
+    __swig_destroy__ = _libBornAgainCore.delete_HexagonalLattice
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-    __repr__ = _swig_repr
+# Register HexagonalLattice in _libBornAgainCore:
+_libBornAgainCore.HexagonalLattice_swigregister(HexagonalLattice)
 
-    def createItem(self, item_key):
-        r"""createItem(SimulationFactoryTemp self, std::string const & item_key) -> Simulation"""
-        return _libBornAgainCore.SimulationFactoryTemp_createItem(self, item_key)
 
-    def registerItem(self, item_key, CreateFn):
-        r"""registerItem(SimulationFactoryTemp self, std::string const & item_key, IFactory< std::string,Simulation >::CreateItemCallback CreateFn) -> bool"""
-        return _libBornAgainCore.SimulationFactoryTemp_registerItem(self, item_key, CreateFn)
+def CreateFCCLattice(lattice_constant, orientation):
+    r"""
+    CreateFCCLattice(double lattice_constant, ILatticeOrientation orientation) -> Lattice
+    Lattice LatticeUtils::CreateFCCLattice(double lattice_constant, const ILatticeOrientation &orientation)
 
-    def contains(self, item_key):
-        r"""contains(SimulationFactoryTemp self, std::string const & item_key) -> bool"""
-        return _libBornAgainCore.SimulationFactoryTemp_contains(self, item_key)
+    """
+    return _libBornAgainCore.CreateFCCLattice(lattice_constant, orientation)
 
-    def size(self):
-        r"""size(SimulationFactoryTemp self) -> size_t"""
-        return _libBornAgainCore.SimulationFactoryTemp_size(self)
+def CreateHCPLattice(a, c, orientation):
+    r"""
+    CreateHCPLattice(double a, double c, ILatticeOrientation orientation) -> Lattice
+    Lattice LatticeUtils::CreateHCPLattice(double a, double c, const ILatticeOrientation &orientation)
 
-    def __init__(self):
-        r"""__init__(SimulationFactoryTemp self) -> SimulationFactoryTemp"""
-        _libBornAgainCore.SimulationFactoryTemp_swiginit(self, _libBornAgainCore.new_SimulationFactoryTemp())
-    __swig_destroy__ = _libBornAgainCore.delete_SimulationFactoryTemp
+    """
+    return _libBornAgainCore.CreateHCPLattice(a, c, orientation)
 
-# Register SimulationFactoryTemp in _libBornAgainCore:
-_libBornAgainCore.SimulationFactoryTemp_swigregister(SimulationFactoryTemp)
+def CreateBCTLattice(a, c, orientation):
+    r"""
+    CreateBCTLattice(double a, double c, ILatticeOrientation orientation) -> Lattice
+    Lattice LatticeUtils::CreateBCTLattice(double a, double c, const ILatticeOrientation &orientation)
 
-class SimulationFactory(SimulationFactoryTemp):
+    """
+    return _libBornAgainCore.CreateBCTLattice(a, c, orientation)
+class Material(object):
     r"""
 
 
-    Registry to create standard pre-defined simulations. Used in functional tests, performance measurements, etc.
+    A wrapper for underlying material implementation
 
-    C++ includes: SimulationFactory.h
+    C++ includes: Material.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
-    def __init__(self):
+    def __init__(self, *args):
         r"""
-        __init__(SimulationFactory self) -> SimulationFactory
-        SimulationFactory::SimulationFactory()
-
-        """
-        _libBornAgainCore.SimulationFactory_swiginit(self, _libBornAgainCore.new_SimulationFactory())
-    __swig_destroy__ = _libBornAgainCore.delete_SimulationFactory
-
-# Register SimulationFactory in _libBornAgainCore:
-_libBornAgainCore.SimulationFactory_swigregister(SimulationFactory)
-
-class AxesUnits(object):
-    r"""
+        __init__(Material self, Material material) -> Material
+        __init__(Material self, Material material) -> Material
+        Material::Material(std::unique_ptr< BaseMaterialImpl > material_impl)
 
+        Creates material with particular material implementation. 
 
-    Wrapper for detector axes units, required for a better representation of detector axes units in python
+        """
+        _libBornAgainCore.Material_swiginit(self, _libBornAgainCore.new_Material(*args))
 
-    C++ includes: IUnitConverter.h
+    def inverted(self):
+        r"""
+        inverted(Material self) -> Material
+        Material Material::inverted() const
 
-    """
+        Constructs a material with inverted magnetization. 
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+        """
+        return _libBornAgainCore.Material_inverted(self)
 
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined")
-    __repr__ = _swig_repr
-    DEFAULT = _libBornAgainCore.AxesUnits_DEFAULT
-    
-    NBINS = _libBornAgainCore.AxesUnits_NBINS
-    
-    RADIANS = _libBornAgainCore.AxesUnits_RADIANS
-    
-    DEGREES = _libBornAgainCore.AxesUnits_DEGREES
-    
-    MM = _libBornAgainCore.AxesUnits_MM
-    
-    QSPACE = _libBornAgainCore.AxesUnits_QSPACE
-    
-    QXQY = _libBornAgainCore.AxesUnits_QXQY
-    
-    RQ4 = _libBornAgainCore.AxesUnits_RQ4
-    
-    __swig_destroy__ = _libBornAgainCore.delete_AxesUnits
+    def refractiveIndex(self, wavelength):
+        r"""
+        refractiveIndex(Material self, double wavelength) -> complex_t
+        complex_t Material::refractiveIndex(double wavelength) const
 
-# Register AxesUnits in _libBornAgainCore:
-_libBornAgainCore.AxesUnits_swigregister(AxesUnits)
+        Returns refractive index. 
 
-class IUnitConverter(ICloneable):
-    r"""
+        """
+        return _libBornAgainCore.Material_refractiveIndex(self, wavelength)
 
+    def refractiveIndex2(self, wavelength):
+        r"""
+        refractiveIndex2(Material self, double wavelength) -> complex_t
+        complex_t Material::refractiveIndex2(double wavelength) const
 
-    Interface to provide axis translations to different units for simulation output
+        Returns squared refractive index. 
 
-    C++ includes: IUnitConverter.h
+        """
+        return _libBornAgainCore.Material_refractiveIndex2(self, wavelength)
 
-    """
+    def isScalarMaterial(self):
+        r"""
+        isScalarMaterial(Material self) -> bool
+        bool Material::isScalarMaterial() const
 
-    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+        Indicates whether the interaction with the material is scalar. This means that different polarization states will be diffracted equally 
 
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
-    __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_IUnitConverter
+        """
+        return _libBornAgainCore.Material_isScalarMaterial(self)
 
-    def clone(self):
+    def isMagneticMaterial(self):
         r"""
-        clone(IUnitConverter self) -> IUnitConverter
-        virtual IUnitConverter* IUnitConverter::clone() const =0
+        isMagneticMaterial(Material self) -> bool
+        bool Material::isMagneticMaterial() const
 
         """
-        return _libBornAgainCore.IUnitConverter_clone(self)
+        return _libBornAgainCore.Material_isMagneticMaterial(self)
 
-    def dimension(self):
+    def getName(self):
         r"""
-        dimension(IUnitConverter self) -> size_t
-        virtual size_t IUnitConverter::dimension() const =0
+        getName(Material self) -> std::string
+        std::string Material::getName() const
+
+        Returns the name of material. 
 
         """
-        return _libBornAgainCore.IUnitConverter_dimension(self)
+        return _libBornAgainCore.Material_getName(self)
 
-    def calculateMin(self, i_axis, units_type):
+    def magnetization(self):
         r"""
-        calculateMin(IUnitConverter self, size_t i_axis, AxesUnits units_type) -> double
-        virtual double IUnitConverter::calculateMin(size_t i_axis, AxesUnits units_type) const =0
+        magnetization(Material self) -> kvector_t
+        kvector_t Material::magnetization() const
+
+        Get the magnetization (in A/m) 
 
         """
-        return _libBornAgainCore.IUnitConverter_calculateMin(self, i_axis, units_type)
+        return _libBornAgainCore.Material_magnetization(self)
 
-    def calculateMax(self, i_axis, units_type):
+    def materialData(self):
         r"""
-        calculateMax(IUnitConverter self, size_t i_axis, AxesUnits units_type) -> double
-        virtual double IUnitConverter::calculateMax(size_t i_axis, AxesUnits units_type) const =0
+        materialData(Material self) -> complex_t
+        complex_t Material::materialData() const
+
+        Returns underlying material data. The units of returned values are the same as the ones passed to material factory functions 
 
         """
-        return _libBornAgainCore.IUnitConverter_calculateMax(self, i_axis, units_type)
+        return _libBornAgainCore.Material_materialData(self)
 
-    def axisSize(self, i_axis):
+    def isEmpty(self):
         r"""
-        axisSize(IUnitConverter self, size_t i_axis) -> size_t
-        virtual size_t IUnitConverter::axisSize(size_t i_axis) const =0
+        isEmpty(Material self) -> bool
+        bool Material::isEmpty() const
+
+        Returns true if material underlying data is nullptr. 
 
         """
-        return _libBornAgainCore.IUnitConverter_axisSize(self, i_axis)
+        return _libBornAgainCore.Material_isEmpty(self)
 
-    def axisName(self, *args):
+    def isDefaultMaterial(self):
         r"""
-        axisName(IUnitConverter self, size_t i_axis, AxesUnits units_type=AxesUnits::DEFAULT) -> std::string
-        std::string IUnitConverter::axisName(size_t i_axis, AxesUnits units_type=AxesUnits::DEFAULT) const
+        isDefaultMaterial(Material self) -> bool
+        bool Material::isDefaultMaterial() const
+
+        Returns true if material has refractive index of (1.0, 0.0) and zero magnetization. 
 
         """
-        return _libBornAgainCore.IUnitConverter_axisName(self, *args)
+        return _libBornAgainCore.Material_isDefaultMaterial(self)
 
-    def availableUnits(self):
+    def scalarSubtrSLD(self, wavevectors):
         r"""
-        availableUnits(IUnitConverter self) -> std::vector< AxesUnits,std::allocator< AxesUnits > >
-        virtual std::vector<AxesUnits> IUnitConverter::availableUnits() const =0
+        scalarSubtrSLD(Material self, WavevectorInfo wavevectors) -> complex_t
+        complex_t Material::scalarSubtrSLD(const WavevectorInfo &wavevectors) const
+
+        Returns (  $ \\pi/\\lambda^2 $ - sld), sld (in  $nm^{-2}$) being the scattering length density 
 
         """
-        return _libBornAgainCore.IUnitConverter_availableUnits(self)
+        return _libBornAgainCore.Material_scalarSubtrSLD(self, wavevectors)
 
-    def defaultUnits(self):
+    def transformedMaterial(self, transform):
         r"""
-        defaultUnits(IUnitConverter self) -> AxesUnits
-        virtual AxesUnits IUnitConverter::defaultUnits() const =0
+        transformedMaterial(Material self, Transform3D const & transform) -> Material
+        Material Material::transformedMaterial(const Transform3D &transform) const
 
         """
-        return _libBornAgainCore.IUnitConverter_defaultUnits(self)
+        return _libBornAgainCore.Material_transformedMaterial(self, transform)
+    __swig_destroy__ = _libBornAgainCore.delete_Material
 
-# Register IUnitConverter in _libBornAgainCore:
-_libBornAgainCore.IUnitConverter_swigregister(IUnitConverter)
+# Register Material in _libBornAgainCore:
+_libBornAgainCore.Material_swigregister(Material)
 
-class IterationInfo(object):
+
+def HomogeneousMaterial(*args):
     r"""
+    HomogeneousMaterial() -> Material
+    HomogeneousMaterial(std::string const & name, double delta, double beta, kvector_t magnetization={}) -> Material
+    HomogeneousMaterial(std::string const & name, complex_t refractive_index, kvector_t magnetization={}) -> Material
+    BA_CORE_API_ Material HomogeneousMaterial(const std::string &name, complex_t refractive_index, kvector_t magnetization={})
 
+    Constructs a material with  name,  refractive_index and  magnetization (in A/m). Alternatively,  $\\delta$ and  $\\beta$ for refractive index  $n = 1 - \\delta + i \\beta$ can be passed directly. With no parameters given, constructs default (vacuum) material with  $n = 1$ and zero magnetization. 
 
-    Stores fit iteration info to track fit flow from various observers. Used in context of  FitObjective.
+    """
+    return _libBornAgainCore.HomogeneousMaterial(*args)
 
-    C++ includes: IterationInfo.h
+def MaterialBySLD(*args):
+    r"""
+    MaterialBySLD() -> Material
+    MaterialBySLD(std::string const & name, double sld_real, double sld_imag, kvector_t magnetization={}) -> Material
+    BA_CORE_API_ Material MaterialBySLD(const std::string &name, double sld_real, double sld_imag, kvector_t magnetization={})
+
+    Constructs a wavelength-independent material with a given complex-valued scattering length density (SLD). SLD values for a wide variety of materials can be found on https://sld-calculator.appspot.com/ and https://www.ncnr.nist.gov/resources/activation/ By convention, SLD imaginary part is treated as negative by default, which corresponds to attenuation of the signal. With no parameters given, MaterialBySLD constructs default (vacuum) material with zero sld and zero magnetization.
+
+    Parameters:
+    -----------
+
+    name: 
+    material name
+
+    sld_real: 
+    real part of the scattering length density, inverse square angstroms
+
+    sld_imag: 
+    imaginary part of the scattering length density, inverse square angstroms
+
+    magnetization: 
+    magnetization (in A/m) 
 
     """
+    return _libBornAgainCore.MaterialBySLD(*args)
+class SampleBuilderFactoryTemp(object):
+    r"""Proxy of C++ IFactory< std::string,IMultiLayerBuilder > class."""
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
     __repr__ = _swig_repr
 
+    def createItem(self, item_key):
+        r"""createItem(SampleBuilderFactoryTemp self, std::string const & item_key) -> IMultiLayerBuilder"""
+        return _libBornAgainCore.SampleBuilderFactoryTemp_createItem(self, item_key)
+
+    def registerItem(self, item_key, CreateFn):
+        r"""registerItem(SampleBuilderFactoryTemp self, std::string const & item_key, IFactory< std::string,IMultiLayerBuilder >::CreateItemCallback CreateFn) -> bool"""
+        return _libBornAgainCore.SampleBuilderFactoryTemp_registerItem(self, item_key, CreateFn)
+
+    def contains(self, item_key):
+        r"""contains(SampleBuilderFactoryTemp self, std::string const & item_key) -> bool"""
+        return _libBornAgainCore.SampleBuilderFactoryTemp_contains(self, item_key)
+
+    def size(self):
+        r"""size(SampleBuilderFactoryTemp self) -> size_t"""
+        return _libBornAgainCore.SampleBuilderFactoryTemp_size(self)
+
     def __init__(self):
-        r"""
-        __init__(IterationInfo self) -> IterationInfo
-        IterationInfo::IterationInfo()
+        r"""__init__(SampleBuilderFactoryTemp self) -> SampleBuilderFactoryTemp"""
+        _libBornAgainCore.SampleBuilderFactoryTemp_swiginit(self, _libBornAgainCore.new_SampleBuilderFactoryTemp())
+    __swig_destroy__ = _libBornAgainCore.delete_SampleBuilderFactoryTemp
 
-        """
-        _libBornAgainCore.IterationInfo_swiginit(self, _libBornAgainCore.new_IterationInfo())
+# Register SampleBuilderFactoryTemp in _libBornAgainCore:
+_libBornAgainCore.SampleBuilderFactoryTemp_swigregister(SampleBuilderFactoryTemp)
 
-    def update(self, params, chi2):
-        r"""
-        update(IterationInfo self, Parameters params, double chi2)
-        void IterationInfo::update(const Fit::Parameters &params, double chi2)
+class SampleBuilderFactory(SampleBuilderFactoryTemp):
+    r"""
 
-        """
-        return _libBornAgainCore.IterationInfo_update(self, params, chi2)
 
-    def iterationCount(self):
-        r"""
-        iterationCount(IterationInfo self) -> unsigned int
-        unsigned IterationInfo::iterationCount() const
+    Factory to create standard pre-defined samples
 
-        Returns current number of minimizer iterations. 
+    C++ includes: SampleBuilderFactory.h
 
-        """
-        return _libBornAgainCore.IterationInfo_iterationCount(self)
+    """
 
-    def chi2(self):
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
+
+    def __init__(self):
         r"""
-        chi2(IterationInfo self) -> double
-        double IterationInfo::chi2() const
+        __init__(SampleBuilderFactory self) -> SampleBuilderFactory
+        SampleBuilderFactory::SampleBuilderFactory()
 
         """
-        return _libBornAgainCore.IterationInfo_chi2(self)
+        _libBornAgainCore.SampleBuilderFactory_swiginit(self, _libBornAgainCore.new_SampleBuilderFactory())
 
-    def parameters(self):
+    def createSample(self, name):
         r"""
-        parameters(IterationInfo self) -> Parameters
-        Fit::Parameters IterationInfo::parameters() const
+        createSample(SampleBuilderFactory self, std::string const & name) -> MultiLayer
+        MultiLayer * SampleBuilderFactory::createSample(const std::string &name)
+
+        Retrieves a SampleBuilder from the registry, does the build, and returns the result. 
+
+        """
+        return _libBornAgainCore.SampleBuilderFactory_createSample(self, name)
+    __swig_destroy__ = _libBornAgainCore.delete_SampleBuilderFactory
+
+# Register SampleBuilderFactory in _libBornAgainCore:
+_libBornAgainCore.SampleBuilderFactory_swigregister(SampleBuilderFactory)
 
-        """
-        return _libBornAgainCore.IterationInfo_parameters(self)
+class SimulationFactoryTemp(object):
+    r"""Proxy of C++ IFactory< std::string,Simulation > class."""
 
-    def parameterMap(self):
-        r"""
-        parameterMap(IterationInfo self) -> map_string_double_t
-        std::map< std::string, double > IterationInfo::parameterMap() const
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+    __repr__ = _swig_repr
 
-        Returns map of fit parameter names and its current values. 
+    def createItem(self, item_key):
+        r"""createItem(SimulationFactoryTemp self, std::string const & item_key) -> Simulation"""
+        return _libBornAgainCore.SimulationFactoryTemp_createItem(self, item_key)
 
-        """
-        return _libBornAgainCore.IterationInfo_parameterMap(self)
-    __swig_destroy__ = _libBornAgainCore.delete_IterationInfo
+    def registerItem(self, item_key, CreateFn):
+        r"""registerItem(SimulationFactoryTemp self, std::string const & item_key, IFactory< std::string,Simulation >::CreateItemCallback CreateFn) -> bool"""
+        return _libBornAgainCore.SimulationFactoryTemp_registerItem(self, item_key, CreateFn)
 
-# Register IterationInfo in _libBornAgainCore:
-_libBornAgainCore.IterationInfo_swigregister(IterationInfo)
+    def contains(self, item_key):
+        r"""contains(SimulationFactoryTemp self, std::string const & item_key) -> bool"""
+        return _libBornAgainCore.SimulationFactoryTemp_contains(self, item_key)
 
+    def size(self):
+        r"""size(SimulationFactoryTemp self) -> size_t"""
+        return _libBornAgainCore.SimulationFactoryTemp_size(self)
 
-def FindPeaks(*args):
-    r"""
-    FindPeaks(Histogram2D hist, double sigma=2, std::string const & option={}, double threshold=0.05) -> vector_pair_double_t
-    std::vector< std::pair< double, double > > SpectrumUtils::FindPeaks(const Histogram2D &hist, double sigma=2, const std::string &option={}, double threshold=0.05)
+    def __init__(self):
+        r"""__init__(SimulationFactoryTemp self) -> SimulationFactoryTemp"""
+        _libBornAgainCore.SimulationFactoryTemp_swiginit(self, _libBornAgainCore.new_SimulationFactoryTemp())
+    __swig_destroy__ = _libBornAgainCore.delete_SimulationFactoryTemp
 
-    """
-    return _libBornAgainCore.FindPeaks(*args)
-class ScanResolution(ICloneable):
+# Register SimulationFactoryTemp in _libBornAgainCore:
+_libBornAgainCore.SimulationFactoryTemp_swigregister(SimulationFactoryTemp)
+
+class SimulationFactory(SimulationFactoryTemp):
     r"""
 
 
-    Container for reflectivity resolution data.
+    Registry to create standard pre-defined simulations. Used in functional tests, performance measurements, etc.
 
-    C++ includes: ScanResolution.h
+    C++ includes: SimulationFactory.h
 
     """
 
     thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
-
-    def __init__(self, *args, **kwargs):
-        raise AttributeError("No constructor defined - class is abstract")
     __repr__ = _swig_repr
-    __swig_destroy__ = _libBornAgainCore.delete_ScanResolution
 
-    @staticmethod
-    def scanRelativeResolution(*args):
+    def __init__(self):
         r"""
-        scanRelativeResolution(RangedDistribution const & distr, double stddev) -> ScanResolution
-        scanRelativeResolution(RangedDistribution const & distr, vdouble1d_t stddevs) -> ScanResolution
-        """
-        return _libBornAgainCore.ScanResolution_scanRelativeResolution(*args)
+        __init__(SimulationFactory self) -> SimulationFactory
+        SimulationFactory::SimulationFactory()
 
-    @staticmethod
-    def scanAbsoluteResolution(*args):
-        r"""
-        scanAbsoluteResolution(RangedDistribution const & distr, double stddev) -> ScanResolution
-        scanAbsoluteResolution(RangedDistribution const & distr, vdouble1d_t stddevs) -> ScanResolution
         """
-        return _libBornAgainCore.ScanResolution_scanAbsoluteResolution(*args)
-
-# Register ScanResolution in _libBornAgainCore:
-_libBornAgainCore.ScanResolution_swigregister(ScanResolution)
-
-def ScanResolution_scanRelativeResolution(*args):
-    r"""
-    ScanResolution_scanRelativeResolution(RangedDistribution const & distr, double stddev) -> ScanResolution
-    ScanResolution_scanRelativeResolution(RangedDistribution const & distr, vdouble1d_t stddevs) -> ScanResolution
-    """
-    return _libBornAgainCore.ScanResolution_scanRelativeResolution(*args)
+        _libBornAgainCore.SimulationFactory_swiginit(self, _libBornAgainCore.new_SimulationFactory())
+    __swig_destroy__ = _libBornAgainCore.delete_SimulationFactory
 
-def ScanResolution_scanAbsoluteResolution(*args):
-    r"""
-    ScanResolution_scanAbsoluteResolution(RangedDistribution const & distr, double stddev) -> ScanResolution
-    ScanResolution_scanAbsoluteResolution(RangedDistribution const & distr, vdouble1d_t stddevs) -> ScanResolution
-    """
-    return _libBornAgainCore.ScanResolution_scanAbsoluteResolution(*args)
+# Register SimulationFactory in _libBornAgainCore:
+_libBornAgainCore.SimulationFactory_swigregister(SimulationFactory)
 
 class AngularSpecScan(object):
     r"""
@@ -23294,6 +23113,126 @@ class AngularSpecScan(object):
 # Register AngularSpecScan in _libBornAgainCore:
 _libBornAgainCore.AngularSpecScan_swigregister(AngularSpecScan)
 
+class AxesUnits(object):
+    r"""
+
+
+    Wrapper for detector axes units, required for a better representation of detector axes units in python
+
+    C++ includes: IUnitConverter.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined")
+    __repr__ = _swig_repr
+    DEFAULT = _libBornAgainCore.AxesUnits_DEFAULT
+    
+    NBINS = _libBornAgainCore.AxesUnits_NBINS
+    
+    RADIANS = _libBornAgainCore.AxesUnits_RADIANS
+    
+    DEGREES = _libBornAgainCore.AxesUnits_DEGREES
+    
+    MM = _libBornAgainCore.AxesUnits_MM
+    
+    QSPACE = _libBornAgainCore.AxesUnits_QSPACE
+    
+    QXQY = _libBornAgainCore.AxesUnits_QXQY
+    
+    RQ4 = _libBornAgainCore.AxesUnits_RQ4
+    
+    __swig_destroy__ = _libBornAgainCore.delete_AxesUnits
+
+# Register AxesUnits in _libBornAgainCore:
+_libBornAgainCore.AxesUnits_swigregister(AxesUnits)
+
+class IUnitConverter(ICloneable):
+    r"""
+
+
+    Interface to provide axis translations to different units for simulation output
+
+    C++ includes: IUnitConverter.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_IUnitConverter
+
+    def clone(self):
+        r"""
+        clone(IUnitConverter self) -> IUnitConverter
+        virtual IUnitConverter* IUnitConverter::clone() const =0
+
+        """
+        return _libBornAgainCore.IUnitConverter_clone(self)
+
+    def dimension(self):
+        r"""
+        dimension(IUnitConverter self) -> size_t
+        virtual size_t IUnitConverter::dimension() const =0
+
+        """
+        return _libBornAgainCore.IUnitConverter_dimension(self)
+
+    def calculateMin(self, i_axis, units_type):
+        r"""
+        calculateMin(IUnitConverter self, size_t i_axis, AxesUnits units_type) -> double
+        virtual double IUnitConverter::calculateMin(size_t i_axis, AxesUnits units_type) const =0
+
+        """
+        return _libBornAgainCore.IUnitConverter_calculateMin(self, i_axis, units_type)
+
+    def calculateMax(self, i_axis, units_type):
+        r"""
+        calculateMax(IUnitConverter self, size_t i_axis, AxesUnits units_type) -> double
+        virtual double IUnitConverter::calculateMax(size_t i_axis, AxesUnits units_type) const =0
+
+        """
+        return _libBornAgainCore.IUnitConverter_calculateMax(self, i_axis, units_type)
+
+    def axisSize(self, i_axis):
+        r"""
+        axisSize(IUnitConverter self, size_t i_axis) -> size_t
+        virtual size_t IUnitConverter::axisSize(size_t i_axis) const =0
+
+        """
+        return _libBornAgainCore.IUnitConverter_axisSize(self, i_axis)
+
+    def axisName(self, *args):
+        r"""
+        axisName(IUnitConverter self, size_t i_axis, AxesUnits units_type=AxesUnits::DEFAULT) -> std::string
+        std::string IUnitConverter::axisName(size_t i_axis, AxesUnits units_type=AxesUnits::DEFAULT) const
+
+        """
+        return _libBornAgainCore.IUnitConverter_axisName(self, *args)
+
+    def availableUnits(self):
+        r"""
+        availableUnits(IUnitConverter self) -> std::vector< AxesUnits,std::allocator< AxesUnits > >
+        virtual std::vector<AxesUnits> IUnitConverter::availableUnits() const =0
+
+        """
+        return _libBornAgainCore.IUnitConverter_availableUnits(self)
+
+    def defaultUnits(self):
+        r"""
+        defaultUnits(IUnitConverter self) -> AxesUnits
+        virtual AxesUnits IUnitConverter::defaultUnits() const =0
+
+        """
+        return _libBornAgainCore.IUnitConverter_defaultUnits(self)
+
+# Register IUnitConverter in _libBornAgainCore:
+_libBornAgainCore.IUnitConverter_swigregister(IUnitConverter)
+
 class QSpecScan(object):
     r"""
 
@@ -23363,6 +23302,56 @@ class QSpecScan(object):
 # Register QSpecScan in _libBornAgainCore:
 _libBornAgainCore.QSpecScan_swigregister(QSpecScan)
 
+class ScanResolution(ICloneable):
+    r"""
+
+
+    Container for reflectivity resolution data.
+
+    C++ includes: ScanResolution.h
+
+    """
+
+    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
+
+    def __init__(self, *args, **kwargs):
+        raise AttributeError("No constructor defined - class is abstract")
+    __repr__ = _swig_repr
+    __swig_destroy__ = _libBornAgainCore.delete_ScanResolution
+
+    @staticmethod
+    def scanRelativeResolution(*args):
+        r"""
+        scanRelativeResolution(RangedDistribution const & distr, double stddev) -> ScanResolution
+        scanRelativeResolution(RangedDistribution const & distr, vdouble1d_t stddevs) -> ScanResolution
+        """
+        return _libBornAgainCore.ScanResolution_scanRelativeResolution(*args)
+
+    @staticmethod
+    def scanAbsoluteResolution(*args):
+        r"""
+        scanAbsoluteResolution(RangedDistribution const & distr, double stddev) -> ScanResolution
+        scanAbsoluteResolution(RangedDistribution const & distr, vdouble1d_t stddevs) -> ScanResolution
+        """
+        return _libBornAgainCore.ScanResolution_scanAbsoluteResolution(*args)
+
+# Register ScanResolution in _libBornAgainCore:
+_libBornAgainCore.ScanResolution_swigregister(ScanResolution)
+
+def ScanResolution_scanRelativeResolution(*args):
+    r"""
+    ScanResolution_scanRelativeResolution(RangedDistribution const & distr, double stddev) -> ScanResolution
+    ScanResolution_scanRelativeResolution(RangedDistribution const & distr, vdouble1d_t stddevs) -> ScanResolution
+    """
+    return _libBornAgainCore.ScanResolution_scanRelativeResolution(*args)
+
+def ScanResolution_scanAbsoluteResolution(*args):
+    r"""
+    ScanResolution_scanAbsoluteResolution(RangedDistribution const & distr, double stddev) -> ScanResolution
+    ScanResolution_scanAbsoluteResolution(RangedDistribution const & distr, vdouble1d_t stddevs) -> ScanResolution
+    """
+    return _libBornAgainCore.ScanResolution_scanAbsoluteResolution(*args)
+
 
 def ScanRelativeResolution(distribution, rel_dev):
     """
diff --git a/auto/Wrap/libBornAgainCore_wrap.cpp b/auto/Wrap/libBornAgainCore_wrap.cpp
index 0956cf9cdfd..9fa063592a4 100644
--- a/auto/Wrap/libBornAgainCore_wrap.cpp
+++ b/auto/Wrap/libBornAgainCore_wrap.cpp
@@ -3146,26 +3146,26 @@ namespace Swig {
 #define SWIGTYPE_p_FormFactorFullSpheroid swig_types[78]
 #define SWIGTYPE_p_FormFactorGauss swig_types[79]
 #define SWIGTYPE_p_FormFactorHemiEllipsoid swig_types[80]
-#define SWIGTYPE_p_FormFactorIcosahedron swig_types[81]
-#define SWIGTYPE_p_FormFactorLongBoxGauss swig_types[82]
-#define SWIGTYPE_p_FormFactorLongBoxLorentz swig_types[83]
-#define SWIGTYPE_p_FormFactorLorentz swig_types[84]
-#define SWIGTYPE_p_FormFactorOrnsteinZernike swig_types[85]
-#define SWIGTYPE_p_FormFactorPolygonalPrism swig_types[86]
-#define SWIGTYPE_p_FormFactorPolygonalSurface swig_types[87]
-#define SWIGTYPE_p_FormFactorPolyhedron swig_types[88]
-#define SWIGTYPE_p_FormFactorPrism3 swig_types[89]
-#define SWIGTYPE_p_FormFactorPrism6 swig_types[90]
-#define SWIGTYPE_p_FormFactorPyramid swig_types[91]
-#define SWIGTYPE_p_FormFactorRipple1Box swig_types[92]
-#define SWIGTYPE_p_FormFactorRipple1Gauss swig_types[93]
-#define SWIGTYPE_p_FormFactorRipple1Lorentz swig_types[94]
-#define SWIGTYPE_p_FormFactorRipple2Box swig_types[95]
-#define SWIGTYPE_p_FormFactorRipple2Gauss swig_types[96]
-#define SWIGTYPE_p_FormFactorRipple2Lorentz swig_types[97]
-#define SWIGTYPE_p_FormFactorSphereGaussianRadius swig_types[98]
-#define SWIGTYPE_p_FormFactorSphereLogNormalRadius swig_types[99]
-#define SWIGTYPE_p_FormFactorSphereUniformRadius swig_types[100]
+#define SWIGTYPE_p_FormFactorHollowSphere swig_types[81]
+#define SWIGTYPE_p_FormFactorIcosahedron swig_types[82]
+#define SWIGTYPE_p_FormFactorLongBoxGauss swig_types[83]
+#define SWIGTYPE_p_FormFactorLongBoxLorentz swig_types[84]
+#define SWIGTYPE_p_FormFactorLorentz swig_types[85]
+#define SWIGTYPE_p_FormFactorOrnsteinZernike swig_types[86]
+#define SWIGTYPE_p_FormFactorPolygonalPrism swig_types[87]
+#define SWIGTYPE_p_FormFactorPolygonalSurface swig_types[88]
+#define SWIGTYPE_p_FormFactorPolyhedron swig_types[89]
+#define SWIGTYPE_p_FormFactorPrism3 swig_types[90]
+#define SWIGTYPE_p_FormFactorPrism6 swig_types[91]
+#define SWIGTYPE_p_FormFactorPyramid swig_types[92]
+#define SWIGTYPE_p_FormFactorRipple1Box swig_types[93]
+#define SWIGTYPE_p_FormFactorRipple1Gauss swig_types[94]
+#define SWIGTYPE_p_FormFactorRipple1Lorentz swig_types[95]
+#define SWIGTYPE_p_FormFactorRipple2Box swig_types[96]
+#define SWIGTYPE_p_FormFactorRipple2Gauss swig_types[97]
+#define SWIGTYPE_p_FormFactorRipple2Lorentz swig_types[98]
+#define SWIGTYPE_p_FormFactorSphereGaussianRadius swig_types[99]
+#define SWIGTYPE_p_FormFactorSphereLogNormalRadius swig_types[100]
 #define SWIGTYPE_p_FormFactorTetrahedron swig_types[101]
 #define SWIGTYPE_p_FormFactorTruncatedCube swig_types[102]
 #define SWIGTYPE_p_FormFactorTruncatedSphere swig_types[103]
@@ -6893,52 +6893,62 @@ SWIGINTERN void std_vector_Sl_std_pair_Sl_double_Sc_double_Sg__Sg__insert__SWIG_
 #include <numpy/arrayobject.h>
 
 
-#include "Core/Instrument/AngularSpecScan.h"
 #include "BAVersion.h"
-#include "Core/Vector/BasicVector3D.h"
-#include "Core/Beam/Beam.h"
-#include "Core/Binning/Bin.h"
-#include "Core/Instrument/ChiSquaredModule.h"
-#include "Core/Basics/Complex.h"
-#include "Core/Computation/ConstantBackground.h"
-#include "Core/Binning/ConstKBinAxis.h"
-#include "Core/Particle/Crystal.h"
-#include "Core/Binning/CustomBinAxis.h"
-#include "Core/Simulation/DepthProbeSimulation.h"
-#include "Core/Instrument/DetectorMask.h"
-#include "Core/Parametrization/Distributions.h"
-#include "Core/Mask/Ellipse.h"
 #include "Core/Aggregate/FTDecayFunctions.h"
 #include "Core/Aggregate/FTDistributions1D.h"
 #include "Core/Aggregate/FTDistributions2D.h"
-#include "Fit/Kernel/FitOptions.h"
-#include "Core/Fitting/PyFittingCallbacks.h"
-#include "Core/Fitting/FitObjective.h"
-#include "Core/Binning/FixedBinAxis.h"
+#include "Core/Aggregate/IInterferenceFunction.h"
+#include "Core/Aggregate/ILayout.h"
+#include "Core/Aggregate/IPeakShape.h"
+#include "Core/Aggregate/InterferenceFunction1DLattice.h"
+#include "Core/Aggregate/InterferenceFunction2DLattice.h"
+#include "Core/Aggregate/InterferenceFunction2DParaCrystal.h"
+#include "Core/Aggregate/InterferenceFunction2DSuperLattice.h"
+#include "Core/Aggregate/InterferenceFunction3DLattice.h"
+#include "Core/Aggregate/InterferenceFunctionFinite2DLattice.h"
+#include "Core/Aggregate/InterferenceFunctionFinite3DLattice.h"
+#include "Core/Aggregate/InterferenceFunctionHardDisk.h"
+#include "Core/Aggregate/InterferenceFunctionNone.h"
+#include "Core/Aggregate/InterferenceFunctionRadialParaCrystal.h"
+#include "Core/Aggregate/InterferenceFunctionTwin.h"
+#include "Core/Aggregate/ParticleLayout.h"
+#include "Core/Basics/Complex.h"
+#include "Core/Basics/ICloneable.h"
+#include "Core/Basics/ISingleton.h"
+#include "Core/Beam/Beam.h"
 #include "Core/Beam/FootprintGauss.h"
 #include "Core/Beam/FootprintSquare.h"
+#include "Core/Binning/Bin.h"
+#include "Core/Binning/ConstKBinAxis.h"
+#include "Core/Binning/CustomBinAxis.h"
+#include "Core/Binning/FixedBinAxis.h"
+#include "Core/Binning/VariableBinAxis.h"
+#include "Core/Computation/ConstantBackground.h"
+#include "Core/Computation/IBackground.h"
+#include "Core/Computation/PoissonNoiseBackground.h"
+#include "Core/DecoratedFormFactor/IFormFactorDecorator.h"
+#include "Core/Fitting/FitObjective.h"
+#include "Core/Fitting/IObserver.h"
+#include "Core/Fitting/IterationInfo.h"
+#include "Core/Fitting/PyFittingCallbacks.h"
 #include "Core/HardParticle/FormFactorAnisoPyramid.h"
 #include "Core/HardParticle/FormFactorBar.h"
 #include "Core/HardParticle/FormFactorBox.h"
 #include "Core/HardParticle/FormFactorCantellatedCube.h"
 #include "Core/HardParticle/FormFactorCone.h"
 #include "Core/HardParticle/FormFactorCone6.h"
-#include "Core/Particle/FormFactorCrystal.h"
 #include "Core/HardParticle/FormFactorCuboctahedron.h"
 #include "Core/HardParticle/FormFactorCylinder.h"
-#include "Core/SoftParticle/FormFactorDebyeBueche.h"
 #include "Core/HardParticle/FormFactorDodecahedron.h"
 #include "Core/HardParticle/FormFactorDot.h"
 #include "Core/HardParticle/FormFactorEllipsoidalCylinder.h"
 #include "Core/HardParticle/FormFactorFullSphere.h"
 #include "Core/HardParticle/FormFactorFullSpheroid.h"
-#include "Core/SoftParticle/FormFactorGauss.h"
 #include "Core/HardParticle/FormFactorHemiEllipsoid.h"
+#include "Core/HardParticle/FormFactorHollowSphere.h"
 #include "Core/HardParticle/FormFactorIcosahedron.h"
 #include "Core/HardParticle/FormFactorLongBoxGauss.h"
 #include "Core/HardParticle/FormFactorLongBoxLorentz.h"
-#include "Core/SoftParticle/FormFactorLorentz.h"
-#include "Core/SoftParticle/FormFactorOrnsteinZernike.h"
 #include "Core/HardParticle/FormFactorPolyhedron.h"
 #include "Core/HardParticle/FormFactorPolyhedron.h"
 #include "Core/HardParticle/FormFactorPrism3.h"
@@ -6946,111 +6956,101 @@ SWIGINTERN void std_vector_Sl_std_pair_Sl_double_Sc_double_Sg__Sg__insert__SWIG_
 #include "Core/HardParticle/FormFactorPyramid.h"
 #include "Core/HardParticle/FormFactorRipple1.h"
 #include "Core/HardParticle/FormFactorRipple2.h"
-#include "Core/SoftParticle/FormFactorSphereGaussianRadius.h"
-#include "Core/SoftParticle/FormFactorSphereLogNormalRadius.h"
-#include "Core/SoftParticle/FormFactorSphereUniformRadius.h"
 #include "Core/HardParticle/FormFactorTetrahedron.h"
 #include "Core/HardParticle/FormFactorTruncatedCube.h"
 #include "Core/HardParticle/FormFactorTruncatedSphere.h"
 #include "Core/HardParticle/FormFactorTruncatedSpheroid.h"
-#include "Core/Particle/FormFactorWeighted.h"
-#include "Core/Simulation/GISASSimulation.h"
+#include "Core/HardParticle/Ripples.h"
+#include "Core/InputOutput/IntensityDataIOFactory.h"
+#include "Core/Instrument/AngularSpecScan.h"
+#include "Core/Instrument/ChiSquaredModule.h"
+#include "Core/Instrument/DetectorMask.h"
 #include "Core/Instrument/Histogram1D.h"
 #include "Core/Instrument/Histogram2D.h"
-#include "Core/Particle/IAbstractParticle.h"
-#include "Core/Computation/IBackground.h"
-#include "Core/Basics/ICloneable.h"
-#include "Core/Particle/IClusteredParticles.h"
+#include "Core/Instrument/IChiSquaredModule.h"
 #include "Core/Instrument/IDetector2D.h"
 #include "Core/Instrument/IDetectorResolution.h"
-#include "Core/DecoratedFormFactor/IFormFactorDecorator.h"
 #include "Core/Instrument/IHistogram.h"
 #include "Core/Instrument/IIntensityFunction.h"
-#include "Core/Aggregate/IInterferenceFunction.h"
-#include "Core/Aggregate/ILayout.h"
-#include "Core/Parametrization/INode.h"
-#include "Core/Fitting/IObserver.h"
-#include "Core/Parametrization/IParameterized.h"
-#include "Core/Particle/IParticle.h"
-#include "Core/Aggregate/IPeakShape.h"
+#include "Core/Instrument/IIntensityFunction.h"
+#include "Core/Instrument/IIntensityNormalizer.h"
 #include "Core/Instrument/IResolutionFunction2D.h"
-#include "Core/Scattering/ISample.h"
-#include "Core/Multilayer/IMultiLayerBuilder.h"
-#include "Core/Parametrization/INodeVisitor.h"
-#include "Core/Lattice/ISelectionRule.h"
-#include "Core/Mask/IShape2D.h"
-#include "Core/Basics/ISingleton.h"
 #include "Core/Instrument/Instrument.h"
 #include "Core/Instrument/IntensityDataFunctions.h"
-#include "Core/InputOutput/IntensityDataIOFactory.h"
-#include "Core/Aggregate/InterferenceFunction1DLattice.h"
-#include "Core/Aggregate/InterferenceFunction2DLattice.h"
-#include "Core/Aggregate/InterferenceFunction2DParaCrystal.h"
-#include "Core/Aggregate/InterferenceFunction2DSuperLattice.h"
-#include "Core/Aggregate/InterferenceFunction3DLattice.h"
-#include "Core/Aggregate/InterferenceFunctionFinite2DLattice.h"
-#include "Core/Aggregate/InterferenceFunctionFinite3DLattice.h"
-#include "Core/Aggregate/InterferenceFunctionHardDisk.h"
-#include "Core/Aggregate/InterferenceFunctionNone.h"
-#include "Core/Aggregate/InterferenceFunctionRadialParaCrystal.h"
-#include "Core/Aggregate/InterferenceFunctionTwin.h"
 #include "Core/Instrument/IsGISAXSDetector.h"
+#include "Core/Instrument/OutputData.h"
+#include "Core/Instrument/PyArrayImportUtils.h"
+#include "Core/Instrument/QSpecScan.h"
+#include "Core/Instrument/RectangularDetector.h"
+#include "Core/Instrument/ResolutionFunction2DGaussian.h"
+#include "Core/Instrument/ScanResolution.h"
+#include "Core/Instrument/SimulationResult.h"
+#include "Core/Instrument/SphericalDetector.h"
+#include "Core/Instrument/VarianceFunctions.h"
 #include "Core/Lattice/ILatticeOrientation.h"
+#include "Core/Lattice/ISelectionRule.h"
 #include "Core/Lattice/Lattice.h"
-#include "Core/Lattice/LatticeUtils.h"
 #include "Core/Lattice/Lattice1DParameters.h"
 #include "Core/Lattice/Lattice2D.h"
+#include "Core/Lattice/LatticeUtils.h"
+#include "Core/Mask/Ellipse.h"
+#include "Core/Mask/IShape2D.h"
+#include "Core/Mask/Line.h"
+#include "Core/Mask/Polygon.h"
+#include "Core/Mask/Rectangle.h"
+#include "Core/Material/MaterialFactoryFuncs.h"
+#include "Core/Multilayer/IMultiLayerBuilder.h"
 #include "Core/Multilayer/Layer.h"
 #include "Core/Multilayer/LayerInterface.h"
 #include "Core/Multilayer/LayerRoughness.h"
-#include "Core/Mask/Line.h"
-#include "Core/Material/MaterialFactoryFuncs.h"
-#include "Core/Tools/MathFunctions.h"
-#include "Core/Particle/MesoCrystal.h"
 #include "Core/Multilayer/MultiLayer.h"
 #include "Core/Multilayer/MultiLayerFuncs.h"
-#include "Core/Simulation/OffSpecSimulation.h"
-#include "Core/Instrument/OutputData.h"
+#include "Core/Parametrization/Distributions.h"
+#include "Core/Parametrization/INode.h"
+#include "Core/Parametrization/INodeVisitor.h"
+#include "Core/Parametrization/IParameterized.h"
 #include "Core/Parametrization/ParameterDistribution.h"
 #include "Core/Parametrization/ParameterPool.h"
 #include "Core/Parametrization/ParameterSample.h"
+#include "Core/Parametrization/RangedDistributions.h"
+#include "Core/Parametrization/RealParameter.h"
+#include "Core/Parametrization/SimulationOptions.h"
+#include "Core/Parametrization/ThreadInfo.h"
+#include "Core/Parametrization/Units.h"
+#include "Core/Particle/Crystal.h"
+#include "Core/Particle/FormFactorCrystal.h"
+#include "Core/Particle/FormFactorWeighted.h"
+#include "Core/Particle/IAbstractParticle.h"
+#include "Core/Particle/IClusteredParticles.h"
+#include "Core/Particle/IParticle.h"
+#include "Core/Particle/MesoCrystal.h"
 #include "Core/Particle/Particle.h"
 #include "Core/Particle/ParticleComposition.h"
 #include "Core/Particle/ParticleCoreShell.h"
 #include "Core/Particle/ParticleDistribution.h"
-#include "Core/Aggregate/ParticleLayout.h"
-#include "Core/Computation/PoissonNoiseBackground.h"
-#include "Core/Mask/Polygon.h"
-#include "Core/Instrument/PyArrayImportUtils.h"
-#include "Core/Instrument/QSpecScan.h"
-#include "Core/Parametrization/RangedDistributions.h"
-#include "Core/Parametrization/RealParameter.h"
-#include "Core/Mask/Rectangle.h"
-#include "Core/Instrument/RectangularDetector.h"
-#include "Core/Instrument/ResolutionFunction2DGaussian.h"
-#include "Core/HardParticle/Ripples.h"
+#include "Core/Particle/SlicedParticle.h"
+#include "Core/Scattering/ISample.h"
 #include "Core/Scattering/Rotations.h"
-#include "Core/StandardSamples/SampleBuilderFactory.h"
-#include "Core/Instrument/ScanResolution.h"
+#include "Core/Simulation/DepthProbeSimulation.h"
+#include "Core/Simulation/GISASSimulation.h"
+#include "Core/Simulation/OffSpecSimulation.h"
 #include "Core/Simulation/Simulation.h"
 #include "Core/Simulation/Simulation2D.h"
-#include "Core/StandardSamples/SimulationFactory.h"
-#include "Core/Parametrization/SimulationOptions.h"
-#include "Core/Instrument/SimulationResult.h"
-#include "Core/Particle/SlicedParticle.h"
 #include "Core/Simulation/SpecularSimulation.h"
-#include "Core/Instrument/SphericalDetector.h"
-#include "Core/Parametrization/ThreadInfo.h"
-#include "Core/Parametrization/Units.h"
-#include "Core/Binning/VariableBinAxis.h"
+#include "Core/SoftParticle/FormFactorDebyeBueche.h"
+#include "Core/SoftParticle/FormFactorGauss.h"
+#include "Core/SoftParticle/FormFactorLorentz.h"
+#include "Core/SoftParticle/FormFactorOrnsteinZernike.h"
+#include "Core/SoftParticle/FormFactorSphereGaussianRadius.h"
+#include "Core/SoftParticle/FormFactorSphereLogNormalRadius.h"
+#include "Core/StandardSamples/SampleBuilderFactory.h"
+#include "Core/StandardSamples/SimulationFactory.h"
+#include "Core/Tools/MathFunctions.h"
+#include "Core/Tools/SpectrumUtils.h"
+#include "Core/Vector/BasicVector3D.h"
 #include "Core/Vector/Vectors3D.h"
 #include "Core/Vector/WavevectorInfo.h"
-#include "Core/Instrument/IChiSquaredModule.h"
-#include "Core/Instrument/IIntensityFunction.h"
-#include "Core/Instrument/IIntensityNormalizer.h"
-#include "Core/Instrument/VarianceFunctions.h"
-#include "Core/Fitting/IterationInfo.h"
-#include "Core/Tools/SpectrumUtils.h"
+#include "Fit/Kernel/FitOptions.h"
 
 
   namespace swig {
@@ -7614,42 +7614,7 @@ SWIG_AsVal_unsigned_SS_int (PyObject * obj, unsigned int *val)
 }
 
 SWIGINTERN double VariableBinAxis___getitem__(VariableBinAxis *self,unsigned int i){ return (*(self))[i]; }
-
-SWIGINTERNINLINE PyObject*
-  SWIG_From_unsigned_SS_int  (unsigned int value)
-{
-  return PyInt_FromSize_t((size_t) value);
-}
-
-
-struct SWIG_null_deleter {
-  void operator() (void const *) const {
-  }
-};
-#define SWIG_NO_NULL_DELETER_0 , SWIG_null_deleter()
-#define SWIG_NO_NULL_DELETER_1
-#define SWIG_NO_NULL_DELETER_SWIG_POINTER_NEW
-#define SWIG_NO_NULL_DELETER_SWIG_POINTER_OWN
-
-
-#define SWIG_NO_NULL_DELETER_SWIG_BUILTIN_INIT
-
-SWIGINTERN RealParameter *IMultiLayerBuilder_registerParameter(IMultiLayerBuilder *self,std::string const &name,int64_t parpointer){
-        return &((self)->IParameterized::registerParameter(name, (double*)parpointer)); }
-SWIGINTERN void IMultiLayerBuilder_setParameterValue(IMultiLayerBuilder *self,std::string const &name,double value){
-        (self)->IParameterized::setParameterValue(name, value); }
-SWIGINTERN std::string IMultiLayerBuilder_parametersToString(IMultiLayerBuilder const *self){
-        return (self)->IParameterized::parametersToString();
-        }
-SWIGINTERN ParameterPool *IMultiLayerBuilder_createParameterTree(IMultiLayerBuilder const *self){
-        return (self)->IParameterized::createParameterTree();
-        }
-SWIGINTERN ParameterPool *IMultiLayerBuilder_parameterPool(IMultiLayerBuilder const *self){
-        return (self)->IParameterized::parameterPool();
-    }
-SWIGINTERN void IMultiLayerBuilder_onChange(IMultiLayerBuilder *self){
-        return (self)->IParameterized::onChange();
-    }
+SWIGINTERN double FixedBinAxis___getitem__(FixedBinAxis *self,unsigned int i){ return (*(self))[i]; }
 
 SWIGINTERN int
 SWIG_AsVal_bool (PyObject *obj, bool *val)
@@ -7664,7 +7629,6 @@ SWIG_AsVal_bool (PyObject *obj, bool *val)
   return SWIG_OK;
 }
 
-SWIGINTERN double FixedBinAxis___getitem__(FixedBinAxis *self,unsigned int i){ return (*(self))[i]; }
 
   namespace swig {
     template <>  struct traits< IFormFactor > {
@@ -7774,18 +7738,41 @@ SWIGINTERN std::vector< IFormFactor * >::iterator std_vector_Sl_IFormFactor_Sm__
 SWIGINTERN std::vector< IFormFactor * >::iterator std_vector_Sl_IFormFactor_Sm__Sg__erase__SWIG_1(std::vector< IFormFactor * > *self,std::vector< IFormFactor * >::iterator first,std::vector< IFormFactor * >::iterator last){ return self->erase(first, last); }
 SWIGINTERN std::vector< IFormFactor * >::iterator std_vector_Sl_IFormFactor_Sm__Sg__insert__SWIG_0(std::vector< IFormFactor * > *self,std::vector< IFormFactor * >::iterator pos,std::vector< IFormFactor * >::value_type x){ return self->insert(pos, x); }
 SWIGINTERN void std_vector_Sl_IFormFactor_Sm__Sg__insert__SWIG_1(std::vector< IFormFactor * > *self,std::vector< IFormFactor * >::iterator pos,std::vector< IFormFactor * >::size_type n,std::vector< IFormFactor * >::value_type x){ self->insert(pos, n, x); }
-SWIGINTERN double SimulationResult___getitem__(SimulationResult *self,unsigned int i){ return (*(self))[i]; }
-SWIGINTERN double SimulationResult___setitem__(SimulationResult *self,unsigned int i,double value){
-        (*(self))[i] = value;
-        return (*(self))[i];
-    }
-SWIGINTERN double OutputData_Sl_double_Sg____getitem__(OutputData< double > *self,unsigned int i){ return (*(self))[i]; }
-SWIGINTERN double OutputData_Sl_double_Sg____setitem__(OutputData< double > *self,unsigned int i,double value){
-        (*(self))[i] = value;
-        return (*(self))[i];
+
+SWIGINTERNINLINE PyObject*
+  SWIG_From_unsigned_SS_int  (unsigned int value)
+{
+  return PyInt_FromSize_t((size_t) value);
+}
+
+
+struct SWIG_null_deleter {
+  void operator() (void const *) const {
+  }
+};
+#define SWIG_NO_NULL_DELETER_0 , SWIG_null_deleter()
+#define SWIG_NO_NULL_DELETER_1
+#define SWIG_NO_NULL_DELETER_SWIG_POINTER_NEW
+#define SWIG_NO_NULL_DELETER_SWIG_POINTER_OWN
+
+
+#define SWIG_NO_NULL_DELETER_SWIG_BUILTIN_INIT
+
+SWIGINTERN RealParameter *IMultiLayerBuilder_registerParameter(IMultiLayerBuilder *self,std::string const &name,int64_t parpointer){
+        return &((self)->IParameterized::registerParameter(name, (double*)parpointer)); }
+SWIGINTERN void IMultiLayerBuilder_setParameterValue(IMultiLayerBuilder *self,std::string const &name,double value){
+        (self)->IParameterized::setParameterValue(name, value); }
+SWIGINTERN std::string IMultiLayerBuilder_parametersToString(IMultiLayerBuilder const *self){
+        return (self)->IParameterized::parametersToString();
+        }
+SWIGINTERN ParameterPool *IMultiLayerBuilder_createParameterTree(IMultiLayerBuilder const *self){
+        return (self)->IParameterized::createParameterTree();
+        }
+SWIGINTERN ParameterPool *IMultiLayerBuilder_parameterPool(IMultiLayerBuilder const *self){
+        return (self)->IParameterized::parameterPool();
     }
-SWIGINTERN RealParameter const *ParameterPool___getitem__(ParameterPool const *self,size_t index){
-        return (*(self))[index];
+SWIGINTERN void IMultiLayerBuilder_onChange(IMultiLayerBuilder *self){
+        return (self)->IParameterized::onChange();
     }
 
   namespace swig {
@@ -7896,6 +7883,19 @@ SWIGINTERN std::vector< ParameterSample >::iterator std_vector_Sl_ParameterSampl
 SWIGINTERN std::vector< ParameterSample >::iterator std_vector_Sl_ParameterSample_Sg__erase__SWIG_1(std::vector< ParameterSample > *self,std::vector< ParameterSample >::iterator first,std::vector< ParameterSample >::iterator last){ return self->erase(first, last); }
 SWIGINTERN std::vector< ParameterSample >::iterator std_vector_Sl_ParameterSample_Sg__insert__SWIG_0(std::vector< ParameterSample > *self,std::vector< ParameterSample >::iterator pos,std::vector< ParameterSample >::value_type const &x){ return self->insert(pos, x); }
 SWIGINTERN void std_vector_Sl_ParameterSample_Sg__insert__SWIG_1(std::vector< ParameterSample > *self,std::vector< ParameterSample >::iterator pos,std::vector< ParameterSample >::size_type n,std::vector< ParameterSample >::value_type const &x){ self->insert(pos, n, x); }
+SWIGINTERN RealParameter const *ParameterPool___getitem__(ParameterPool const *self,size_t index){
+        return (*(self))[index];
+    }
+SWIGINTERN double SimulationResult___getitem__(SimulationResult *self,unsigned int i){ return (*(self))[i]; }
+SWIGINTERN double SimulationResult___setitem__(SimulationResult *self,unsigned int i,double value){
+        (*(self))[i] = value;
+        return (*(self))[i];
+    }
+SWIGINTERN double OutputData_Sl_double_Sg____getitem__(OutputData< double > *self,unsigned int i){ return (*(self))[i]; }
+SWIGINTERN double OutputData_Sl_double_Sg____setitem__(OutputData< double > *self,unsigned int i,double value){
+        (*(self))[i] = value;
+        return (*(self))[i];
+    }
 
 
 /* ---------------------------------------------------
@@ -8550,387 +8550,6 @@ Material const *SwigDirector_ISample::material() const {
 }
 
 
-SwigDirector_PyBuilderCallback::SwigDirector_PyBuilderCallback(PyObject *self): PyBuilderCallback(), Swig::Director(self) {
-  SWIG_DIRECTOR_RGTR((PyBuilderCallback *)this, this); 
-}
-
-
-
-
-SwigDirector_PyBuilderCallback::~SwigDirector_PyBuilderCallback() {
-}
-
-Simulation *SwigDirector_PyBuilderCallback::build_simulation(Fit::Parameters arg0) {
-  Simulation *c_result = 0 ;
-  void *swig_argp ;
-  int swig_res ;
-  swig_owntype own ;
-  
-  swig::SwigVar_PyObject obj0;
-  obj0 = SWIG_NewPointerObj(SWIG_as_voidptr(new Fit::Parameters((const Fit::Parameters &)arg0)), SWIGTYPE_p_Fit__Parameters, SWIG_POINTER_OWN |  0 );
-  if (!swig_get_self()) {
-    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call PyBuilderCallback.__init__.");
-  }
-#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
-  const size_t swig_method_index = 0;
-  const char *const swig_method_name = "build_simulation";
-  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
-  swig::SwigVar_PyObject result = PyObject_CallFunctionObjArgs(method ,(PyObject *)obj0, NULL);
-#else
-  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("build_simulation");
-  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name ,(PyObject *)obj0, NULL);
-#endif
-  if (!result) {
-    PyObject *error = PyErr_Occurred();
-    {
-      if( error != NULL ) {
-        PyObject *ptype, *pvalue, *ptraceback;
-        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
-        PyErr_Restore( ptype, pvalue, ptraceback );
-        PyErr_Print();
-        Py_Exit(1);
-      }
-    }
-  }
-  swig_res = SWIG_ConvertPtrAndOwn(result, &swig_argp, SWIGTYPE_p_Simulation,  0  | SWIG_POINTER_DISOWN, &own);
-  if (!SWIG_IsOK(swig_res)) {
-    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError(swig_res)), "in output value of type '""Simulation *""'");
-  }
-  c_result = reinterpret_cast< Simulation * >(swig_argp);
-  swig_acquire_ownership_obj(SWIG_as_voidptr(c_result), own /* & TODO: SWIG_POINTER_OWN */);
-  return (Simulation *) c_result;
-}
-
-
-SwigDirector_PyObserverCallback::SwigDirector_PyObserverCallback(PyObject *self): PyObserverCallback(), Swig::Director(self) {
-  SWIG_DIRECTOR_RGTR((PyObserverCallback *)this, this); 
-}
-
-
-
-
-SwigDirector_PyObserverCallback::~SwigDirector_PyObserverCallback() {
-}
-
-void SwigDirector_PyObserverCallback::update(FitObjective const &arg0) {
-  swig::SwigVar_PyObject obj0;
-  obj0 = SWIG_NewPointerObj(SWIG_as_voidptr(&arg0), SWIGTYPE_p_FitObjective,  0 );
-  if (!swig_get_self()) {
-    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call PyObserverCallback.__init__.");
-  }
-#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
-  const size_t swig_method_index = 0;
-  const char *const swig_method_name = "update";
-  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
-  swig::SwigVar_PyObject result = PyObject_CallFunctionObjArgs(method ,(PyObject *)obj0, NULL);
-#else
-  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("update");
-  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name ,(PyObject *)obj0, NULL);
-#endif
-  if (!result) {
-    PyObject *error = PyErr_Occurred();
-    {
-      if( error != NULL ) {
-        PyObject *ptype, *pvalue, *ptraceback;
-        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
-        PyErr_Restore( ptype, pvalue, ptraceback );
-        PyErr_Print();
-        Py_Exit(1);
-      }
-    }
-  }
-}
-
-
-SwigDirector_FitObjective::SwigDirector_FitObjective(PyObject *self): FitObjective(), Swig::Director(self) {
-  SWIG_DIRECTOR_RGTR((FitObjective *)this, this); 
-}
-
-
-
-
-SwigDirector_FitObjective::~SwigDirector_FitObjective() {
-}
-
-double SwigDirector_FitObjective::evaluate(Fit::Parameters const &params) {
-  double c_result = SwigValueInit< double >() ;
-  
-  swig::SwigVar_PyObject obj0;
-  obj0 = SWIG_NewPointerObj(SWIG_as_voidptr(&params), SWIGTYPE_p_Fit__Parameters,  0 );
-  if (!swig_get_self()) {
-    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call FitObjective.__init__.");
-  }
-#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
-  const size_t swig_method_index = 0;
-  const char *const swig_method_name = "evaluate_cpp";
-  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
-  swig::SwigVar_PyObject result = PyObject_CallFunctionObjArgs(method ,(PyObject *)obj0, NULL);
-#else
-  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("evaluate_cpp");
-  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name ,(PyObject *)obj0, NULL);
-#endif
-  if (!result) {
-    PyObject *error = PyErr_Occurred();
-    {
-      if( error != NULL ) {
-        PyObject *ptype, *pvalue, *ptraceback;
-        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
-        PyErr_Restore( ptype, pvalue, ptraceback );
-        PyErr_Print();
-        Py_Exit(1);
-      }
-    }
-  }
-  double swig_val;
-  int swig_res = SWIG_AsVal_double(result, &swig_val);
-  if (!SWIG_IsOK(swig_res)) {
-    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError(swig_res)), "in output value of type '""double""'");
-  }
-  c_result = static_cast< double >(swig_val);
-  return (double) c_result;
-}
-
-
-std::vector< double, std::allocator< double > > SwigDirector_FitObjective::evaluate_residuals(Fit::Parameters const &params) {
-  std::vector< double,std::allocator< double > > c_result;
-  swig::SwigVar_PyObject obj0;
-  obj0 = SWIG_NewPointerObj(SWIG_as_voidptr(&params), SWIGTYPE_p_Fit__Parameters,  0 );
-  if (!swig_get_self()) {
-    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call FitObjective.__init__.");
-  }
-#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
-  const size_t swig_method_index = 1;
-  const char *const swig_method_name = "evaluate_residuals_cpp";
-  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
-  swig::SwigVar_PyObject result = PyObject_CallFunctionObjArgs(method ,(PyObject *)obj0, NULL);
-#else
-  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("evaluate_residuals_cpp");
-  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name ,(PyObject *)obj0, NULL);
-#endif
-  if (!result) {
-    PyObject *error = PyErr_Occurred();
-    {
-      if( error != NULL ) {
-        PyObject *ptype, *pvalue, *ptraceback;
-        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
-        PyErr_Restore( ptype, pvalue, ptraceback );
-        PyErr_Print();
-        Py_Exit(1);
-      }
-    }
-  }
-  std::vector< double,std::allocator< double > > *swig_optr = 0;
-  int swig_ores = swig::asptr(result, &swig_optr);
-  if (!SWIG_IsOK(swig_ores) || !swig_optr) {
-    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError((swig_optr ? swig_ores : SWIG_TypeError))), "in output value of type '""std::vector< double,std::allocator< double > >""'");
-  }
-  c_result = *swig_optr;
-  if (SWIG_IsNewObj(swig_ores)) delete swig_optr;
-  return (std::vector< double,std::allocator< double > >) c_result;
-}
-
-
-SwigDirector_IMultiLayerBuilder::SwigDirector_IMultiLayerBuilder(PyObject *self): IMultiLayerBuilder(), Swig::Director(self) {
-  SWIG_DIRECTOR_RGTR((IMultiLayerBuilder *)this, this); 
-}
-
-
-
-
-SwigDirector_IMultiLayerBuilder::~SwigDirector_IMultiLayerBuilder() {
-}
-
-ParameterPool *SwigDirector_IMultiLayerBuilder::createParameterTree() const {
-  ParameterPool *c_result = 0 ;
-  void *swig_argp ;
-  int swig_res ;
-  swig_owntype own ;
-  
-  if (!swig_get_self()) {
-    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call IMultiLayerBuilder.__init__.");
-  }
-#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
-  const size_t swig_method_index = 0;
-  const char *const swig_method_name = "createParameterTree";
-  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
-  swig::SwigVar_PyObject args = PyTuple_New(0);
-  swig::SwigVar_PyObject result = PyObject_Call(method, (PyObject *) args, NULL);
-#else
-  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("createParameterTree");
-  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name, NULL);
-#endif
-  if (!result) {
-    PyObject *error = PyErr_Occurred();
-    {
-      if( error != NULL ) {
-        PyObject *ptype, *pvalue, *ptraceback;
-        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
-        PyErr_Restore( ptype, pvalue, ptraceback );
-        PyErr_Print();
-        Py_Exit(1);
-      }
-    }
-  }
-  swig_res = SWIG_ConvertPtrAndOwn(result, &swig_argp, SWIGTYPE_p_ParameterPool,  0  | SWIG_POINTER_DISOWN, &own);
-  if (!SWIG_IsOK(swig_res)) {
-    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError(swig_res)), "in output value of type '""ParameterPool *""'");
-  }
-  c_result = reinterpret_cast< ParameterPool * >(swig_argp);
-  swig_acquire_ownership_obj(SWIG_as_voidptr(c_result), own /* & TODO: SWIG_POINTER_OWN */);
-  return (ParameterPool *) c_result;
-}
-
-
-void SwigDirector_IMultiLayerBuilder::onChange() {
-  if (!swig_get_self()) {
-    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call IMultiLayerBuilder.__init__.");
-  }
-#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
-  const size_t swig_method_index = 1;
-  const char *const swig_method_name = "onChange";
-  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
-  swig::SwigVar_PyObject args = PyTuple_New(0);
-  swig::SwigVar_PyObject result = PyObject_Call(method, (PyObject *) args, NULL);
-#else
-  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("onChange");
-  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name, NULL);
-#endif
-  if (!result) {
-    PyObject *error = PyErr_Occurred();
-    {
-      if( error != NULL ) {
-        PyObject *ptype, *pvalue, *ptraceback;
-        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
-        PyErr_Restore( ptype, pvalue, ptraceback );
-        PyErr_Print();
-        Py_Exit(1);
-      }
-    }
-  }
-}
-
-
-MultiLayer *SwigDirector_IMultiLayerBuilder::buildSample() const {
-  MultiLayer *c_result = 0 ;
-  void *swig_argp ;
-  int swig_res ;
-  swig_owntype own ;
-  
-  if (!swig_get_self()) {
-    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call IMultiLayerBuilder.__init__.");
-  }
-#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
-  const size_t swig_method_index = 2;
-  const char *const swig_method_name = "buildSample";
-  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
-  swig::SwigVar_PyObject args = PyTuple_New(0);
-  swig::SwigVar_PyObject result = PyObject_Call(method, (PyObject *) args, NULL);
-#else
-  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("buildSample");
-  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name, NULL);
-#endif
-  if (!result) {
-    PyObject *error = PyErr_Occurred();
-    {
-      if( error != NULL ) {
-        PyObject *ptype, *pvalue, *ptraceback;
-        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
-        PyErr_Restore( ptype, pvalue, ptraceback );
-        PyErr_Print();
-        Py_Exit(1);
-      }
-    }
-  }
-  swig_res = SWIG_ConvertPtrAndOwn(result, &swig_argp, SWIGTYPE_p_MultiLayer,  0  | SWIG_POINTER_DISOWN, &own);
-  if (!SWIG_IsOK(swig_res)) {
-    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError(swig_res)), "in output value of type '""MultiLayer *""'");
-  }
-  c_result = reinterpret_cast< MultiLayer * >(swig_argp);
-  swig_acquire_ownership_obj(SWIG_as_voidptr(c_result), own /* & TODO: SWIG_POINTER_OWN */);
-  return (MultiLayer *) c_result;
-}
-
-
-MultiLayer *SwigDirector_IMultiLayerBuilder::createSample(size_t index) {
-  MultiLayer *c_result = 0 ;
-  void *swig_argp ;
-  int swig_res ;
-  swig_owntype own ;
-  
-  swig::SwigVar_PyObject obj0;
-  obj0 = SWIG_From_size_t(static_cast< size_t >(index));
-  if (!swig_get_self()) {
-    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call IMultiLayerBuilder.__init__.");
-  }
-#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
-  const size_t swig_method_index = 3;
-  const char *const swig_method_name = "createSample";
-  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
-  swig::SwigVar_PyObject result = PyObject_CallFunctionObjArgs(method ,(PyObject *)obj0, NULL);
-#else
-  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("createSample");
-  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name ,(PyObject *)obj0, NULL);
-#endif
-  if (!result) {
-    PyObject *error = PyErr_Occurred();
-    {
-      if( error != NULL ) {
-        PyObject *ptype, *pvalue, *ptraceback;
-        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
-        PyErr_Restore( ptype, pvalue, ptraceback );
-        PyErr_Print();
-        Py_Exit(1);
-      }
-    }
-  }
-  swig_res = SWIG_ConvertPtrAndOwn(result, &swig_argp, SWIGTYPE_p_MultiLayer,  0  | SWIG_POINTER_DISOWN, &own);
-  if (!SWIG_IsOK(swig_res)) {
-    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError(swig_res)), "in output value of type '""MultiLayer *""'");
-  }
-  c_result = reinterpret_cast< MultiLayer * >(swig_argp);
-  swig_acquire_ownership_obj(SWIG_as_voidptr(c_result), own /* & TODO: SWIG_POINTER_OWN */);
-  return (MultiLayer *) c_result;
-}
-
-
-size_t SwigDirector_IMultiLayerBuilder::size() {
-  size_t c_result = SwigValueInit< size_t >() ;
-  
-  if (!swig_get_self()) {
-    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call IMultiLayerBuilder.__init__.");
-  }
-#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
-  const size_t swig_method_index = 5;
-  const char *const swig_method_name = "size";
-  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
-  swig::SwigVar_PyObject args = PyTuple_New(0);
-  swig::SwigVar_PyObject result = PyObject_Call(method, (PyObject *) args, NULL);
-#else
-  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("size");
-  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name, NULL);
-#endif
-  if (!result) {
-    PyObject *error = PyErr_Occurred();
-    {
-      if( error != NULL ) {
-        PyObject *ptype, *pvalue, *ptraceback;
-        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
-        PyErr_Restore( ptype, pvalue, ptraceback );
-        PyErr_Print();
-        Py_Exit(1);
-      }
-    }
-  }
-  size_t swig_val;
-  int swig_res = SWIG_AsVal_size_t(result, &swig_val);
-  if (!SWIG_IsOK(swig_res)) {
-    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError(swig_res)), "in output value of type '""size_t""'");
-  }
-  c_result = static_cast< size_t >(swig_val);
-  return (size_t) c_result;
-}
-
-
 SwigDirector_IFormFactor::SwigDirector_IFormFactor(PyObject *self): IFormFactor(), Swig::Director(self) {
   SWIG_DIRECTOR_RGTR((IFormFactor *)this, this); 
 }
@@ -10259,6 +9878,186 @@ complex_t SwigDirector_IFormFactorBorn::evaluate_for_q(cvector_t q) const {
 }
 
 
+SwigDirector_PyBuilderCallback::SwigDirector_PyBuilderCallback(PyObject *self): PyBuilderCallback(), Swig::Director(self) {
+  SWIG_DIRECTOR_RGTR((PyBuilderCallback *)this, this); 
+}
+
+
+
+
+SwigDirector_PyBuilderCallback::~SwigDirector_PyBuilderCallback() {
+}
+
+Simulation *SwigDirector_PyBuilderCallback::build_simulation(Fit::Parameters arg0) {
+  Simulation *c_result = 0 ;
+  void *swig_argp ;
+  int swig_res ;
+  swig_owntype own ;
+  
+  swig::SwigVar_PyObject obj0;
+  obj0 = SWIG_NewPointerObj(SWIG_as_voidptr(new Fit::Parameters((const Fit::Parameters &)arg0)), SWIGTYPE_p_Fit__Parameters, SWIG_POINTER_OWN |  0 );
+  if (!swig_get_self()) {
+    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call PyBuilderCallback.__init__.");
+  }
+#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
+  const size_t swig_method_index = 0;
+  const char *const swig_method_name = "build_simulation";
+  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
+  swig::SwigVar_PyObject result = PyObject_CallFunctionObjArgs(method ,(PyObject *)obj0, NULL);
+#else
+  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("build_simulation");
+  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name ,(PyObject *)obj0, NULL);
+#endif
+  if (!result) {
+    PyObject *error = PyErr_Occurred();
+    {
+      if( error != NULL ) {
+        PyObject *ptype, *pvalue, *ptraceback;
+        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
+        PyErr_Restore( ptype, pvalue, ptraceback );
+        PyErr_Print();
+        Py_Exit(1);
+      }
+    }
+  }
+  swig_res = SWIG_ConvertPtrAndOwn(result, &swig_argp, SWIGTYPE_p_Simulation,  0  | SWIG_POINTER_DISOWN, &own);
+  if (!SWIG_IsOK(swig_res)) {
+    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError(swig_res)), "in output value of type '""Simulation *""'");
+  }
+  c_result = reinterpret_cast< Simulation * >(swig_argp);
+  swig_acquire_ownership_obj(SWIG_as_voidptr(c_result), own /* & TODO: SWIG_POINTER_OWN */);
+  return (Simulation *) c_result;
+}
+
+
+SwigDirector_PyObserverCallback::SwigDirector_PyObserverCallback(PyObject *self): PyObserverCallback(), Swig::Director(self) {
+  SWIG_DIRECTOR_RGTR((PyObserverCallback *)this, this); 
+}
+
+
+
+
+SwigDirector_PyObserverCallback::~SwigDirector_PyObserverCallback() {
+}
+
+void SwigDirector_PyObserverCallback::update(FitObjective const &arg0) {
+  swig::SwigVar_PyObject obj0;
+  obj0 = SWIG_NewPointerObj(SWIG_as_voidptr(&arg0), SWIGTYPE_p_FitObjective,  0 );
+  if (!swig_get_self()) {
+    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call PyObserverCallback.__init__.");
+  }
+#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
+  const size_t swig_method_index = 0;
+  const char *const swig_method_name = "update";
+  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
+  swig::SwigVar_PyObject result = PyObject_CallFunctionObjArgs(method ,(PyObject *)obj0, NULL);
+#else
+  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("update");
+  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name ,(PyObject *)obj0, NULL);
+#endif
+  if (!result) {
+    PyObject *error = PyErr_Occurred();
+    {
+      if( error != NULL ) {
+        PyObject *ptype, *pvalue, *ptraceback;
+        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
+        PyErr_Restore( ptype, pvalue, ptraceback );
+        PyErr_Print();
+        Py_Exit(1);
+      }
+    }
+  }
+}
+
+
+SwigDirector_FitObjective::SwigDirector_FitObjective(PyObject *self): FitObjective(), Swig::Director(self) {
+  SWIG_DIRECTOR_RGTR((FitObjective *)this, this); 
+}
+
+
+
+
+SwigDirector_FitObjective::~SwigDirector_FitObjective() {
+}
+
+double SwigDirector_FitObjective::evaluate(Fit::Parameters const &params) {
+  double c_result = SwigValueInit< double >() ;
+  
+  swig::SwigVar_PyObject obj0;
+  obj0 = SWIG_NewPointerObj(SWIG_as_voidptr(&params), SWIGTYPE_p_Fit__Parameters,  0 );
+  if (!swig_get_self()) {
+    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call FitObjective.__init__.");
+  }
+#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
+  const size_t swig_method_index = 0;
+  const char *const swig_method_name = "evaluate_cpp";
+  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
+  swig::SwigVar_PyObject result = PyObject_CallFunctionObjArgs(method ,(PyObject *)obj0, NULL);
+#else
+  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("evaluate_cpp");
+  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name ,(PyObject *)obj0, NULL);
+#endif
+  if (!result) {
+    PyObject *error = PyErr_Occurred();
+    {
+      if( error != NULL ) {
+        PyObject *ptype, *pvalue, *ptraceback;
+        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
+        PyErr_Restore( ptype, pvalue, ptraceback );
+        PyErr_Print();
+        Py_Exit(1);
+      }
+    }
+  }
+  double swig_val;
+  int swig_res = SWIG_AsVal_double(result, &swig_val);
+  if (!SWIG_IsOK(swig_res)) {
+    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError(swig_res)), "in output value of type '""double""'");
+  }
+  c_result = static_cast< double >(swig_val);
+  return (double) c_result;
+}
+
+
+std::vector< double, std::allocator< double > > SwigDirector_FitObjective::evaluate_residuals(Fit::Parameters const &params) {
+  std::vector< double,std::allocator< double > > c_result;
+  swig::SwigVar_PyObject obj0;
+  obj0 = SWIG_NewPointerObj(SWIG_as_voidptr(&params), SWIGTYPE_p_Fit__Parameters,  0 );
+  if (!swig_get_self()) {
+    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call FitObjective.__init__.");
+  }
+#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
+  const size_t swig_method_index = 1;
+  const char *const swig_method_name = "evaluate_residuals_cpp";
+  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
+  swig::SwigVar_PyObject result = PyObject_CallFunctionObjArgs(method ,(PyObject *)obj0, NULL);
+#else
+  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("evaluate_residuals_cpp");
+  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name ,(PyObject *)obj0, NULL);
+#endif
+  if (!result) {
+    PyObject *error = PyErr_Occurred();
+    {
+      if( error != NULL ) {
+        PyObject *ptype, *pvalue, *ptraceback;
+        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
+        PyErr_Restore( ptype, pvalue, ptraceback );
+        PyErr_Print();
+        Py_Exit(1);
+      }
+    }
+  }
+  std::vector< double,std::allocator< double > > *swig_optr = 0;
+  int swig_ores = swig::asptr(result, &swig_optr);
+  if (!SWIG_IsOK(swig_ores) || !swig_optr) {
+    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError((swig_optr ? swig_ores : SWIG_TypeError))), "in output value of type '""std::vector< double,std::allocator< double > >""'");
+  }
+  c_result = *swig_optr;
+  if (SWIG_IsNewObj(swig_ores)) delete swig_optr;
+  return (std::vector< double,std::allocator< double > >) c_result;
+}
+
+
 SwigDirector_IInterferenceFunction::SwigDirector_IInterferenceFunction(PyObject *self): IInterferenceFunction(), Swig::Director(self) {
   SWIG_DIRECTOR_RGTR((IInterferenceFunction *)this, this); 
 }
@@ -10751,6 +10550,207 @@ double SwigDirector_IInterferenceFunction::iff_without_dw(kvector_t const q) con
 }
 
 
+SwigDirector_IMultiLayerBuilder::SwigDirector_IMultiLayerBuilder(PyObject *self): IMultiLayerBuilder(), Swig::Director(self) {
+  SWIG_DIRECTOR_RGTR((IMultiLayerBuilder *)this, this); 
+}
+
+
+
+
+SwigDirector_IMultiLayerBuilder::~SwigDirector_IMultiLayerBuilder() {
+}
+
+ParameterPool *SwigDirector_IMultiLayerBuilder::createParameterTree() const {
+  ParameterPool *c_result = 0 ;
+  void *swig_argp ;
+  int swig_res ;
+  swig_owntype own ;
+  
+  if (!swig_get_self()) {
+    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call IMultiLayerBuilder.__init__.");
+  }
+#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
+  const size_t swig_method_index = 0;
+  const char *const swig_method_name = "createParameterTree";
+  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
+  swig::SwigVar_PyObject args = PyTuple_New(0);
+  swig::SwigVar_PyObject result = PyObject_Call(method, (PyObject *) args, NULL);
+#else
+  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("createParameterTree");
+  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name, NULL);
+#endif
+  if (!result) {
+    PyObject *error = PyErr_Occurred();
+    {
+      if( error != NULL ) {
+        PyObject *ptype, *pvalue, *ptraceback;
+        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
+        PyErr_Restore( ptype, pvalue, ptraceback );
+        PyErr_Print();
+        Py_Exit(1);
+      }
+    }
+  }
+  swig_res = SWIG_ConvertPtrAndOwn(result, &swig_argp, SWIGTYPE_p_ParameterPool,  0  | SWIG_POINTER_DISOWN, &own);
+  if (!SWIG_IsOK(swig_res)) {
+    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError(swig_res)), "in output value of type '""ParameterPool *""'");
+  }
+  c_result = reinterpret_cast< ParameterPool * >(swig_argp);
+  swig_acquire_ownership_obj(SWIG_as_voidptr(c_result), own /* & TODO: SWIG_POINTER_OWN */);
+  return (ParameterPool *) c_result;
+}
+
+
+void SwigDirector_IMultiLayerBuilder::onChange() {
+  if (!swig_get_self()) {
+    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call IMultiLayerBuilder.__init__.");
+  }
+#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
+  const size_t swig_method_index = 1;
+  const char *const swig_method_name = "onChange";
+  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
+  swig::SwigVar_PyObject args = PyTuple_New(0);
+  swig::SwigVar_PyObject result = PyObject_Call(method, (PyObject *) args, NULL);
+#else
+  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("onChange");
+  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name, NULL);
+#endif
+  if (!result) {
+    PyObject *error = PyErr_Occurred();
+    {
+      if( error != NULL ) {
+        PyObject *ptype, *pvalue, *ptraceback;
+        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
+        PyErr_Restore( ptype, pvalue, ptraceback );
+        PyErr_Print();
+        Py_Exit(1);
+      }
+    }
+  }
+}
+
+
+MultiLayer *SwigDirector_IMultiLayerBuilder::buildSample() const {
+  MultiLayer *c_result = 0 ;
+  void *swig_argp ;
+  int swig_res ;
+  swig_owntype own ;
+  
+  if (!swig_get_self()) {
+    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call IMultiLayerBuilder.__init__.");
+  }
+#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
+  const size_t swig_method_index = 2;
+  const char *const swig_method_name = "buildSample";
+  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
+  swig::SwigVar_PyObject args = PyTuple_New(0);
+  swig::SwigVar_PyObject result = PyObject_Call(method, (PyObject *) args, NULL);
+#else
+  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("buildSample");
+  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name, NULL);
+#endif
+  if (!result) {
+    PyObject *error = PyErr_Occurred();
+    {
+      if( error != NULL ) {
+        PyObject *ptype, *pvalue, *ptraceback;
+        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
+        PyErr_Restore( ptype, pvalue, ptraceback );
+        PyErr_Print();
+        Py_Exit(1);
+      }
+    }
+  }
+  swig_res = SWIG_ConvertPtrAndOwn(result, &swig_argp, SWIGTYPE_p_MultiLayer,  0  | SWIG_POINTER_DISOWN, &own);
+  if (!SWIG_IsOK(swig_res)) {
+    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError(swig_res)), "in output value of type '""MultiLayer *""'");
+  }
+  c_result = reinterpret_cast< MultiLayer * >(swig_argp);
+  swig_acquire_ownership_obj(SWIG_as_voidptr(c_result), own /* & TODO: SWIG_POINTER_OWN */);
+  return (MultiLayer *) c_result;
+}
+
+
+MultiLayer *SwigDirector_IMultiLayerBuilder::createSample(size_t index) {
+  MultiLayer *c_result = 0 ;
+  void *swig_argp ;
+  int swig_res ;
+  swig_owntype own ;
+  
+  swig::SwigVar_PyObject obj0;
+  obj0 = SWIG_From_size_t(static_cast< size_t >(index));
+  if (!swig_get_self()) {
+    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call IMultiLayerBuilder.__init__.");
+  }
+#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
+  const size_t swig_method_index = 3;
+  const char *const swig_method_name = "createSample";
+  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
+  swig::SwigVar_PyObject result = PyObject_CallFunctionObjArgs(method ,(PyObject *)obj0, NULL);
+#else
+  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("createSample");
+  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name ,(PyObject *)obj0, NULL);
+#endif
+  if (!result) {
+    PyObject *error = PyErr_Occurred();
+    {
+      if( error != NULL ) {
+        PyObject *ptype, *pvalue, *ptraceback;
+        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
+        PyErr_Restore( ptype, pvalue, ptraceback );
+        PyErr_Print();
+        Py_Exit(1);
+      }
+    }
+  }
+  swig_res = SWIG_ConvertPtrAndOwn(result, &swig_argp, SWIGTYPE_p_MultiLayer,  0  | SWIG_POINTER_DISOWN, &own);
+  if (!SWIG_IsOK(swig_res)) {
+    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError(swig_res)), "in output value of type '""MultiLayer *""'");
+  }
+  c_result = reinterpret_cast< MultiLayer * >(swig_argp);
+  swig_acquire_ownership_obj(SWIG_as_voidptr(c_result), own /* & TODO: SWIG_POINTER_OWN */);
+  return (MultiLayer *) c_result;
+}
+
+
+size_t SwigDirector_IMultiLayerBuilder::size() {
+  size_t c_result = SwigValueInit< size_t >() ;
+  
+  if (!swig_get_self()) {
+    Swig::DirectorException::raise("'self' uninitialized, maybe you forgot to call IMultiLayerBuilder.__init__.");
+  }
+#if defined(SWIG_PYTHON_DIRECTOR_VTABLE)
+  const size_t swig_method_index = 5;
+  const char *const swig_method_name = "size";
+  PyObject *method = swig_get_method(swig_method_index, swig_method_name);
+  swig::SwigVar_PyObject args = PyTuple_New(0);
+  swig::SwigVar_PyObject result = PyObject_Call(method, (PyObject *) args, NULL);
+#else
+  swig::SwigVar_PyObject swig_method_name = SWIG_Python_str_FromChar("size");
+  swig::SwigVar_PyObject result = PyObject_CallMethodObjArgs(swig_get_self(), (PyObject *) swig_method_name, NULL);
+#endif
+  if (!result) {
+    PyObject *error = PyErr_Occurred();
+    {
+      if( error != NULL ) {
+        PyObject *ptype, *pvalue, *ptraceback;
+        PyErr_Fetch( &ptype, &pvalue, &ptraceback );
+        PyErr_Restore( ptype, pvalue, ptraceback );
+        PyErr_Print();
+        Py_Exit(1);
+      }
+    }
+  }
+  size_t swig_val;
+  int swig_res = SWIG_AsVal_size_t(result, &swig_val);
+  if (!SWIG_IsOK(swig_res)) {
+    Swig::DirectorTypeMismatchException::raise(SWIG_ErrorType(SWIG_ArgError(swig_res)), "in output value of type '""size_t""'");
+  }
+  c_result = static_cast< size_t >(swig_val);
+  return (size_t) c_result;
+}
+
+
 #ifdef __cplusplus
 extern "C" {
 #endif
@@ -39927,190 +39927,363 @@ fail:
 }
 
 
-SWIGINTERN int Swig_var_nanometer_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable nanometer is read-only.");
-  return 1;
-}
-
-
-SWIGINTERN PyObject *Swig_var_nanometer_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_StandardNormal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::nanometer));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_angstrom_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable angstrom is read-only.");
-  return 1;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "StandardNormal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (double)MathFunctions::StandardNormal(arg1);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *Swig_var_angstrom_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_Gaussian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::angstrom));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_micrometer_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable micrometer is read-only.");
-  return 1;
+  if (!SWIG_Python_UnpackTuple(args, "Gaussian", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Gaussian" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Gaussian" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Gaussian" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)MathFunctions::Gaussian(arg1,arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *Swig_var_micrometer_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_IntegratedGaussian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::micrometer));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_millimeter_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable millimeter is read-only.");
-  return 1;
+  if (!SWIG_Python_UnpackTuple(args, "IntegratedGaussian", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "IntegratedGaussian" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntegratedGaussian" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IntegratedGaussian" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)MathFunctions::IntegratedGaussian(arg1,arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *Swig_var_millimeter_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_cot(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::millimeter));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_meter_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable meter is read-only.");
-  return 1;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "cot" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (double)MathFunctions::cot(arg1);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *Swig_var_meter_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_Si(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::meter));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_nm_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable nm is read-only.");
-  return 1;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Si" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (double)MathFunctions::Si(arg1);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *Swig_var_nm_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_sinc__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double result;
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::nm));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_nm2_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable nm2 is read-only.");
-  return 1;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "sinc" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (double)MathFunctions::sinc(arg1);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *Swig_var_nm2_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_sinc__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  complex_t arg1 ;
+  std::complex< double > val1 ;
+  int ecode1 = 0 ;
+  complex_t result;
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::nm2));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_barn_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable barn is read-only.");
-  return 1;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "sinc" "', argument " "1"" of type '" "complex_t""'");
+  } 
+  arg1 = static_cast< complex_t >(val1);
+  result = MathFunctions::sinc(arg1);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *Swig_var_barn_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_sinc(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::barn));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_radian_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable radian is read-only.");
-  return 1;
-}
-
-
-SWIGINTERN PyObject *Swig_var_radian_get(void) {
-  PyObject *pyobj = 0;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "sinc", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_sinc__SWIG_0(self, argc, argv);
+    }
+  }
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_std_complex_Sl_double_Sg_(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_sinc__SWIG_1(self, argc, argv);
+    }
+  }
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::radian));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_milliradian_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable milliradian is read-only.");
-  return 1;
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'sinc'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    MathFunctions::sinc(double)\n"
+    "    MathFunctions::sinc(complex_t const)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *Swig_var_milliradian_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_tanhc(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  complex_t arg1 ;
+  std::complex< double > val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  complex_t result;
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::milliradian));
-  return pyobj;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "tanhc" "', argument " "1"" of type '" "complex_t""'");
+  } 
+  arg1 = static_cast< complex_t >(val1);
+  result = MathFunctions::tanhc(arg1);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN int Swig_var_degree_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable degree is read-only.");
-  return 1;
+SWIGINTERN PyObject *_wrap_Laue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  size_t arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "Laue", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Laue" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Laue" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (double)MathFunctions::Laue(arg1,arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *Swig_var_degree_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_erf(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::degree));
-  return pyobj;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "erf" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (double)MathFunctions::erf(arg1);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN int Swig_var_steradian_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable steradian is read-only.");
-  return 1;
+SWIGINTERN PyObject *_wrap_Bessel_J0__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double result;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_J0" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (double)MathFunctions::Bessel_J0(arg1);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *Swig_var_steradian_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_Bessel_J1__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double result;
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::steradian));
-  return pyobj;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_J1" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (double)MathFunctions::Bessel_J1(arg1);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_rad2deg(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Bessel_J1c__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double val1 ;
   int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "rad2deg" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_J1c" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  result = (double)Units::rad2deg(arg1);
+  result = (double)MathFunctions::Bessel_J1c(arg1);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -40118,7 +40291,7 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_deg2rad(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Bessel_I0(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double val1 ;
@@ -40130,10 +40303,10 @@ SWIGINTERN PyObject *_wrap_deg2rad(PyObject *SWIGUNUSEDPARM(self), PyObject *arg
   swig_obj[0] = args;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "deg2rad" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_I0" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  result = (double)Units::deg2rad(arg1);
+  result = (double)MathFunctions::Bessel_I0(arg1);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -40141,381 +40314,417 @@ fail:
 }
 
 
-SWIGINTERN int Swig_var_rad_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable rad is read-only.");
-  return 1;
-}
-
-
-SWIGINTERN PyObject *Swig_var_rad_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_Bessel_J0__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  complex_t arg1 ;
+  std::complex< double > val1 ;
+  int ecode1 = 0 ;
+  complex_t result;
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::rad));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_mrad_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable mrad is read-only.");
-  return 1;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_J0" "', argument " "1"" of type '" "complex_t""'");
+  } 
+  arg1 = static_cast< complex_t >(val1);
+  result = MathFunctions::Bessel_J0(arg1);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *Swig_var_mrad_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_Bessel_J0(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::mrad));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_sr_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable sr is read-only.");
-  return 1;
-}
-
-
-SWIGINTERN PyObject *Swig_var_sr_get(void) {
-  PyObject *pyobj = 0;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Bessel_J0", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_Bessel_J0__SWIG_0(self, argc, argv);
+    }
+  }
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_std_complex_Sl_double_Sg_(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_Bessel_J0__SWIG_1(self, argc, argv);
+    }
+  }
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::sr));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_deg_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable deg is read-only.");
-  return 1;
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Bessel_J0'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    MathFunctions::Bessel_J0(double)\n"
+    "    MathFunctions::Bessel_J0(complex_t const)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *Swig_var_deg_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_Bessel_J1__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  complex_t arg1 ;
+  std::complex< double > val1 ;
+  int ecode1 = 0 ;
+  complex_t result;
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::deg));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_tesla_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable tesla is read-only.");
-  return 1;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_J1" "', argument " "1"" of type '" "complex_t""'");
+  } 
+  arg1 = static_cast< complex_t >(val1);
+  result = MathFunctions::Bessel_J1(arg1);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *Swig_var_tesla_get(void) {
-  PyObject *pyobj = 0;
+SWIGINTERN PyObject *_wrap_Bessel_J1(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::tesla));
-  return pyobj;
-}
-
-
-SWIGINTERN int Swig_var_gauss_set(PyObject *) {
-  SWIG_Error(SWIG_AttributeError,"Variable gauss is read-only.");
-  return 1;
-}
-
-
-SWIGINTERN PyObject *Swig_var_gauss_get(void) {
-  PyObject *pyobj = 0;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Bessel_J1", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_Bessel_J1__SWIG_0(self, argc, argv);
+    }
+  }
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_std_complex_Sl_double_Sg_(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_Bessel_J1__SWIG_1(self, argc, argv);
+    }
+  }
   
-  pyobj = SWIG_From_double(static_cast< double >(Units::gauss));
-  return pyobj;
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Bessel_J1'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    MathFunctions::Bessel_J1(double)\n"
+    "    MathFunctions::Bessel_J1(complex_t const)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_WavevectorInfo_GetZeroQ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Bessel_J1c__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SwigValueWrapper< WavevectorInfo > result;
+  complex_t arg1 ;
+  std::complex< double > val1 ;
+  int ecode1 = 0 ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "WavevectorInfo_GetZeroQ", 0, 0, 0)) SWIG_fail;
-  result = WavevectorInfo::GetZeroQ();
-  resultobj = SWIG_NewPointerObj((new WavevectorInfo(static_cast< const WavevectorInfo& >(result))), SWIGTYPE_p_WavevectorInfo, SWIG_POINTER_OWN |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_J1c" "', argument " "1"" of type '" "complex_t""'");
+  } 
+  arg1 = static_cast< complex_t >(val1);
+  result = MathFunctions::Bessel_J1c(arg1);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_WavevectorInfo__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Bessel_J1c(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Bessel_J1c", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_Bessel_J1c__SWIG_0(self, argc, argv);
+    }
+  }
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_std_complex_Sl_double_Sg_(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_Bessel_J1c__SWIG_1(self, argc, argv);
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Bessel_J1c'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    MathFunctions::Bessel_J1c(double)\n"
+    "    MathFunctions::Bessel_J1c(complex_t const)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_FastFourierTransform__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  cvector_t arg1 ;
-  cvector_t arg2 ;
-  double arg3 ;
-  void *argp1 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  WavevectorInfo *result = 0 ;
+  std::vector< complex_t,std::allocator< complex_t > > *arg1 = 0 ;
+  MathFunctions::EFFTDirection arg2 ;
+  int res1 = SWIG_OLDOBJ ;
+  int val2 ;
+  int ecode2 = 0 ;
+  std::vector< complex_t,std::allocator< complex_t > > result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   {
-    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    std::vector< std::complex< double >,std::allocator< std::complex< double > > > *ptr = (std::vector< std::complex< double >,std::allocator< std::complex< double > > > *)0;
+    res1 = swig::asptr(swig_obj[0], &ptr);
     if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_WavevectorInfo" "', argument " "1"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp1) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_WavevectorInfo" "', argument " "1"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp1);
-      arg1 = *temp;
-      if (SWIG_IsNewObj(res1)) delete temp;
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FastFourierTransform" "', argument " "1"" of type '" "std::vector< complex_t,std::allocator< complex_t > > const &""'"); 
     }
-  }
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_WavevectorInfo" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_WavevectorInfo" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FastFourierTransform" "', argument " "1"" of type '" "std::vector< complex_t,std::allocator< complex_t > > const &""'"); 
     }
+    arg1 = ptr;
   }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_WavevectorInfo" "', argument " "3"" of type '" "double""'");
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FastFourierTransform" "', argument " "2"" of type '" "MathFunctions::EFFTDirection""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (WavevectorInfo *)new WavevectorInfo(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_WavevectorInfo, SWIG_POINTER_NEW |  0 );
+  arg2 = static_cast< MathFunctions::EFFTDirection >(val2);
+  result = MathFunctions::FastFourierTransform((std::vector< std::complex< double >,std::allocator< std::complex< double > > > const &)*arg1,arg2);
+  resultobj = swig::from(static_cast< std::vector< std::complex< double >,std::allocator< std::complex< double > > > >(result));
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_WavevectorInfo__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FastFourierTransform__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  kvector_t arg1 ;
-  kvector_t arg2 ;
-  double arg3 ;
-  void *argp1 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  WavevectorInfo *result = 0 ;
+  std::vector< double,std::allocator< double > > *arg1 = 0 ;
+  MathFunctions::EFFTDirection arg2 ;
+  int res1 = SWIG_OLDOBJ ;
+  int val2 ;
+  int ecode2 = 0 ;
+  std::vector< complex_t,std::allocator< complex_t > > result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   {
-    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res1 = swig::asptr(swig_obj[0], &ptr);
     if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_WavevectorInfo" "', argument " "1"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp1) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_WavevectorInfo" "', argument " "1"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp1);
-      arg1 = *temp;
-      if (SWIG_IsNewObj(res1)) delete temp;
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FastFourierTransform" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
     }
-  }
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_WavevectorInfo" "', argument " "2"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_WavevectorInfo" "', argument " "2"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FastFourierTransform" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
     }
+    arg1 = ptr;
   }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_WavevectorInfo" "', argument " "3"" of type '" "double""'");
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FastFourierTransform" "', argument " "2"" of type '" "MathFunctions::EFFTDirection""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (WavevectorInfo *)new WavevectorInfo(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_WavevectorInfo, SWIG_POINTER_NEW |  0 );
+  arg2 = static_cast< MathFunctions::EFFTDirection >(val2);
+  result = MathFunctions::FastFourierTransform((std::vector< double,std::allocator< double > > const &)*arg1,arg2);
+  resultobj = swig::from(static_cast< std::vector< std::complex< double >,std::allocator< std::complex< double > > > >(result));
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_WavevectorInfo(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_FastFourierTransform(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_WavevectorInfo", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "FastFourierTransform", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t, SWIG_POINTER_NO_NULL | 0);
+    int res = swig::asptr(argv[0], (std::vector< std::complex< double >,std::allocator< std::complex< double > > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
+      {
+        int res = SWIG_AsVal_int(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_WavevectorInfo__SWIG_0(self, argc, argv);
-        }
+        return _wrap_FastFourierTransform__SWIG_0(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+    int res = swig::asptr(argv[0], (std::vector< double,std::allocator< double > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
+      {
+        int res = SWIG_AsVal_int(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_WavevectorInfo__SWIG_1(self, argc, argv);
-        }
+        return _wrap_FastFourierTransform__SWIG_1(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_WavevectorInfo'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FastFourierTransform'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    WavevectorInfo::WavevectorInfo(cvector_t,cvector_t,double)\n"
-    "    WavevectorInfo::WavevectorInfo(kvector_t,kvector_t,double)\n");
+    "    MathFunctions::FastFourierTransform(std::vector< complex_t,std::allocator< complex_t > > const &,MathFunctions::EFFTDirection)\n"
+    "    MathFunctions::FastFourierTransform(std::vector< double,std::allocator< double > > const &,MathFunctions::EFFTDirection)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_WavevectorInfo_transformed(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ConvolveFFT(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  WavevectorInfo *arg1 = (WavevectorInfo *) 0 ;
-  Transform3D *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  std::vector< double,std::allocator< double > > *arg1 = 0 ;
+  std::vector< double,std::allocator< double > > *arg2 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  int res2 = SWIG_OLDOBJ ;
   PyObject *swig_obj[2] ;
-  SwigValueWrapper< WavevectorInfo > result;
+  std::vector< complex_t,std::allocator< complex_t > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "WavevectorInfo_transformed", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_WavevectorInfo, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "WavevectorInfo_transformed" "', argument " "1"" of type '" "WavevectorInfo const *""'"); 
-  }
-  arg1 = reinterpret_cast< WavevectorInfo * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Transform3D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "WavevectorInfo_transformed" "', argument " "2"" of type '" "Transform3D const &""'"); 
+  if (!SWIG_Python_UnpackTuple(args, "ConvolveFFT", 2, 2, swig_obj)) SWIG_fail;
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res1 = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConvolveFFT" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvolveFFT" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg1 = ptr;
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "WavevectorInfo_transformed" "', argument " "2"" of type '" "Transform3D const &""'"); 
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res2 = swig::asptr(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ConvolveFFT" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvolveFFT" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg2 = ptr;
   }
-  arg2 = reinterpret_cast< Transform3D * >(argp2);
-  result = ((WavevectorInfo const *)arg1)->transformed((Transform3D const &)*arg2);
-  resultobj = SWIG_NewPointerObj((new WavevectorInfo(static_cast< const WavevectorInfo& >(result))), SWIGTYPE_p_WavevectorInfo, SWIG_POINTER_OWN |  0 );
+  result = MathFunctions::ConvolveFFT((std::vector< double,std::allocator< double > > const &)*arg1,(std::vector< double,std::allocator< double > > const &)*arg2);
+  resultobj = swig::from(static_cast< std::vector< std::complex< double >,std::allocator< std::complex< double > > > >(result));
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_WavevectorInfo_getKi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GenerateUniformRandom(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  WavevectorInfo *arg1 = (WavevectorInfo *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  cvector_t result;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_WavevectorInfo, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "WavevectorInfo_getKi" "', argument " "1"" of type '" "WavevectorInfo const *""'"); 
-  }
-  arg1 = reinterpret_cast< WavevectorInfo * >(argp1);
-  result = ((WavevectorInfo const *)arg1)->getKi();
-  resultobj = SWIG_NewPointerObj((new cvector_t(static_cast< const cvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t, SWIG_POINTER_OWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "GenerateUniformRandom", 0, 0, 0)) SWIG_fail;
+  result = (double)MathFunctions::GenerateUniformRandom();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_WavevectorInfo_getKf(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GenerateStandardNormalRandom(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  WavevectorInfo *arg1 = (WavevectorInfo *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  cvector_t result;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_WavevectorInfo, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "WavevectorInfo_getKf" "', argument " "1"" of type '" "WavevectorInfo const *""'"); 
-  }
-  arg1 = reinterpret_cast< WavevectorInfo * >(argp1);
-  result = ((WavevectorInfo const *)arg1)->getKf();
-  resultobj = SWIG_NewPointerObj((new cvector_t(static_cast< const cvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t, SWIG_POINTER_OWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "GenerateStandardNormalRandom", 0, 0, 0)) SWIG_fail;
+  result = (double)MathFunctions::GenerateStandardNormalRandom();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_WavevectorInfo_getQ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GenerateNormalRandom(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  WavevectorInfo *arg1 = (WavevectorInfo *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  cvector_t result;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_WavevectorInfo, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "WavevectorInfo_getQ" "', argument " "1"" of type '" "WavevectorInfo const *""'"); 
-  }
-  arg1 = reinterpret_cast< WavevectorInfo * >(argp1);
-  result = ((WavevectorInfo const *)arg1)->getQ();
-  resultobj = SWIG_NewPointerObj((new cvector_t(static_cast< const cvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t, SWIG_POINTER_OWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "GenerateNormalRandom", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "GenerateNormalRandom" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "GenerateNormalRandom" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)MathFunctions::GenerateNormalRandom(arg1,arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_WavevectorInfo_getWavelength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GeneratePoissonRandom(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  WavevectorInfo *arg1 = (WavevectorInfo *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
   PyObject *swig_obj[1] ;
   double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_WavevectorInfo, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "WavevectorInfo_getWavelength" "', argument " "1"" of type '" "WavevectorInfo const *""'"); 
-  }
-  arg1 = reinterpret_cast< WavevectorInfo * >(argp1);
-  result = (double)((WavevectorInfo const *)arg1)->getWavelength();
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "GeneratePoissonRandom" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (double)MathFunctions::GeneratePoissonRandom(arg1);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -40523,440 +40732,526 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_WavevectorInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FindPeaks__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  WavevectorInfo *arg1 = (WavevectorInfo *) 0 ;
+  Histogram2D *arg1 = 0 ;
+  double arg2 ;
+  std::string *arg3 = 0 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
+  double val4 ;
+  int ecode4 = 0 ;
+  std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_WavevectorInfo, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Histogram2D,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_WavevectorInfo" "', argument " "1"" of type '" "WavevectorInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
   }
-  arg1 = reinterpret_cast< WavevectorInfo * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
+  }
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FindPeaks" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  {
+    std::string *ptr = (std::string *)0;
+    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FindPeaks" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FindPeaks" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "FindPeaks" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = SpectrumUtils::FindPeaks((Histogram2D const &)*arg1,arg2,(std::string const &)*arg3,arg4);
+  resultobj = swig::from(static_cast< std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > >(result));
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *WavevectorInfo_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_WavevectorInfo, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_FindPeaks__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  Histogram2D *arg1 = 0 ;
+  double arg2 ;
+  std::string *arg3 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
+  std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > result;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Histogram2D,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
+  }
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FindPeaks" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  {
+    std::string *ptr = (std::string *)0;
+    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FindPeaks" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FindPeaks" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  result = SpectrumUtils::FindPeaks((Histogram2D const &)*arg1,arg2,(std::string const &)*arg3);
+  resultobj = swig::from(static_cast< std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > >(result));
+  if (SWIG_IsNewObj(res3)) delete arg3;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
+  return NULL;
 }
 
-SWIGINTERN PyObject *WavevectorInfo_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
 
-SWIGINTERN PyObject *_wrap_new_Beam__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_FindPeaks__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Beam *result = 0 ;
+  Histogram2D *arg1 = 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > result;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (Beam *)new Beam();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Beam, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Histogram2D,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
+  }
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FindPeaks" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = SpectrumUtils::FindPeaks((Histogram2D const &)*arg1,arg2);
+  resultobj = swig::from(static_cast< std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Beam__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FindPeaks__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Beam *arg1 = 0 ;
+  Histogram2D *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Beam *result = 0 ;
+  std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > result;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Beam,  0  | 0);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Histogram2D,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Beam" "', argument " "1"" of type '" "Beam const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
   }
   if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Beam" "', argument " "1"" of type '" "Beam const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
   }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  result = (Beam *)new Beam((Beam const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Beam, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  result = SpectrumUtils::FindPeaks((Histogram2D const &)*arg1);
+  resultobj = swig::from(static_cast< std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Beam(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_FindPeaks(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[2] = {
+  PyObject *argv[5] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Beam", 0, 1, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "FindPeaks", 0, 4, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_Beam__SWIG_0(self, argc, argv);
-  }
   if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Beam, SWIG_POINTER_NO_NULL | 0);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Histogram2D, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_Beam__SWIG_1(self, argc, argv);
+      return _wrap_FindPeaks__SWIG_3(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Histogram2D, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_FindPeaks__SWIG_2(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Histogram2D, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_FindPeaks__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Histogram2D, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_FindPeaks__SWIG_0(self, argc, argv);
+          }
+        }
+      }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Beam'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FindPeaks'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    Beam::Beam()\n"
-    "    Beam::Beam(Beam const &)\n");
+    "    SpectrumUtils::FindPeaks(Histogram2D const &,double,std::string const &,double)\n"
+    "    SpectrumUtils::FindPeaks(Histogram2D const &,double,std::string const &)\n"
+    "    SpectrumUtils::FindPeaks(Histogram2D const &,double)\n"
+    "    SpectrumUtils::FindPeaks(Histogram2D const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Beam(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Beam" "', argument " "1"" of type '" "Beam *""'"); 
-  }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Beam_getCentralK(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_WavevectorInfo_GetZeroQ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  kvector_t result;
+  SwigValueWrapper< WavevectorInfo > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getCentralK" "', argument " "1"" of type '" "Beam const *""'"); 
-  }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  result = ((Beam const *)arg1)->getCentralK();
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "WavevectorInfo_GetZeroQ", 0, 0, 0)) SWIG_fail;
+  result = WavevectorInfo::GetZeroQ();
+  resultobj = SWIG_NewPointerObj((new WavevectorInfo(static_cast< const WavevectorInfo& >(result))), SWIGTYPE_p_WavevectorInfo, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Beam_setCentralK(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_WavevectorInfo__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
-  double arg2 ;
+  cvector_t arg1 ;
+  cvector_t arg2 ;
   double arg3 ;
-  double arg4 ;
-  void *argp1 = 0 ;
+  void *argp1 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
+  WavevectorInfo *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Beam_setCentralK", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_setCentralK" "', argument " "1"" of type '" "Beam *""'"); 
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  {
+    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_WavevectorInfo" "', argument " "1"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp1) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_WavevectorInfo" "', argument " "1"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp1);
+      arg1 = *temp;
+      if (SWIG_IsNewObj(res1)) delete temp;
+    }
+  }
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_WavevectorInfo" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_WavevectorInfo" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Beam_setCentralK" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Beam_setCentralK" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_WavevectorInfo" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Beam_setCentralK" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->setCentralK(arg2,arg3,arg4);
-  resultobj = SWIG_Py_Void();
+  result = (WavevectorInfo *)new WavevectorInfo(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_WavevectorInfo, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Beam_getIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_WavevectorInfo__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
-  void *argp1 = 0 ;
+  kvector_t arg1 ;
+  kvector_t arg2 ;
+  double arg3 ;
+  void *argp1 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 ;
+  int res2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  WavevectorInfo *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getIntensity" "', argument " "1"" of type '" "Beam const *""'"); 
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  {
+    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_WavevectorInfo" "', argument " "1"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp1) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_WavevectorInfo" "', argument " "1"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp1);
+      arg1 = *temp;
+      if (SWIG_IsNewObj(res1)) delete temp;
+    }
   }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  result = (double)((Beam const *)arg1)->getIntensity();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Beam_setIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Beam_setIntensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_setIntensity" "', argument " "1"" of type '" "Beam *""'"); 
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_WavevectorInfo" "', argument " "2"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_WavevectorInfo" "', argument " "2"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Beam_setIntensity" "', argument " "2"" of type '" "double""'");
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_WavevectorInfo" "', argument " "3"" of type '" "double""'");
   } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setIntensity(arg2);
-  resultobj = SWIG_Py_Void();
+  arg3 = static_cast< double >(val3);
+  result = (WavevectorInfo *)new WavevectorInfo(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_WavevectorInfo, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Beam_footprintFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IFootprintFactor *result = 0 ;
+SWIGINTERN PyObject *_wrap_new_WavevectorInfo(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_footprintFactor" "', argument " "1"" of type '" "Beam const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_WavevectorInfo", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_new_WavevectorInfo__SWIG_0(self, argc, argv);
+        }
+      }
+    }
   }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  result = (IFootprintFactor *)((Beam const *)arg1)->footprintFactor();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFootprintFactor, 0 |  0 );
-  return resultobj;
+  if (argc == 3) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_new_WavevectorInfo__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_WavevectorInfo'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    WavevectorInfo::WavevectorInfo(cvector_t,cvector_t,double)\n"
+    "    WavevectorInfo::WavevectorInfo(kvector_t,kvector_t,double)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Beam_setFootprintFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_WavevectorInfo_transformed(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
-  IFootprintFactor *arg2 = 0 ;
+  WavevectorInfo *arg1 = (WavevectorInfo *) 0 ;
+  Transform3D *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  SwigValueWrapper< WavevectorInfo > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "Beam_setFootprintFactor", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "WavevectorInfo_transformed", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_WavevectorInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_setFootprintFactor" "', argument " "1"" of type '" "Beam *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "WavevectorInfo_transformed" "', argument " "1"" of type '" "WavevectorInfo const *""'"); 
   }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFootprintFactor,  0  | 0);
+  arg1 = reinterpret_cast< WavevectorInfo * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Transform3D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Beam_setFootprintFactor" "', argument " "2"" of type '" "IFootprintFactor const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "WavevectorInfo_transformed" "', argument " "2"" of type '" "Transform3D const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Beam_setFootprintFactor" "', argument " "2"" of type '" "IFootprintFactor const &""'"); 
-  }
-  arg2 = reinterpret_cast< IFootprintFactor * >(argp2);
-  (arg1)->setFootprintFactor((IFootprintFactor const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Beam_setWidthRatio(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Beam_setWidthRatio", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_setWidthRatio" "', argument " "1"" of type '" "Beam *""'"); 
-  }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Beam_setWidthRatio" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setWidthRatio(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Beam_setPolarization(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
-  kvector_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Beam_setPolarization", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_setPolarization" "', argument " "1"" of type '" "Beam *""'"); 
-  }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Beam_setPolarization" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Beam_setPolarization" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "WavevectorInfo_transformed" "', argument " "2"" of type '" "Transform3D const &""'"); 
   }
-  (arg1)->setPolarization(arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = reinterpret_cast< Transform3D * >(argp2);
+  result = ((WavevectorInfo const *)arg1)->transformed((Transform3D const &)*arg2);
+  resultobj = SWIG_NewPointerObj((new WavevectorInfo(static_cast< const WavevectorInfo& >(result))), SWIGTYPE_p_WavevectorInfo, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Beam_getBlochVector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_WavevectorInfo_getKi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
+  WavevectorInfo *arg1 = (WavevectorInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  kvector_t result;
+  cvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_WavevectorInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getBlochVector" "', argument " "1"" of type '" "Beam const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "WavevectorInfo_getKi" "', argument " "1"" of type '" "WavevectorInfo const *""'"); 
   }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  result = ((Beam const *)arg1)->getBlochVector();
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< WavevectorInfo * >(argp1);
+  result = ((WavevectorInfo const *)arg1)->getKi();
+  resultobj = SWIG_NewPointerObj((new cvector_t(static_cast< const cvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Beam_getWavelength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_WavevectorInfo_getKf(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
+  WavevectorInfo *arg1 = (WavevectorInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  cvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_WavevectorInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getWavelength" "', argument " "1"" of type '" "Beam const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "WavevectorInfo_getKf" "', argument " "1"" of type '" "WavevectorInfo const *""'"); 
   }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  result = (double)((Beam const *)arg1)->getWavelength();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< WavevectorInfo * >(argp1);
+  result = ((WavevectorInfo const *)arg1)->getKf();
+  resultobj = SWIG_NewPointerObj((new cvector_t(static_cast< const cvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Beam_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_WavevectorInfo_getQ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
+  WavevectorInfo *arg1 = (WavevectorInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  cvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_WavevectorInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getAlpha" "', argument " "1"" of type '" "Beam const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "WavevectorInfo_getQ" "', argument " "1"" of type '" "WavevectorInfo const *""'"); 
   }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  result = (double)((Beam const *)arg1)->getAlpha();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< WavevectorInfo * >(argp1);
+  result = ((WavevectorInfo const *)arg1)->getQ();
+  resultobj = SWIG_NewPointerObj((new cvector_t(static_cast< const cvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Beam_getPhi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_WavevectorInfo_getWavelength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
+  WavevectorInfo *arg1 = (WavevectorInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -40964,12 +41259,12 @@ SWIGINTERN PyObject *_wrap_Beam_getPhi(PyObject *SWIGUNUSEDPARM(self), PyObject
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_WavevectorInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getPhi" "', argument " "1"" of type '" "Beam const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "WavevectorInfo_getWavelength" "', argument " "1"" of type '" "WavevectorInfo const *""'"); 
   }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  result = (double)((Beam const *)arg1)->getPhi();
+  arg1 = reinterpret_cast< WavevectorInfo * >(argp1);
+  result = (double)((WavevectorInfo const *)arg1)->getWavelength();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -40977,66 +41272,36 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Beam_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Beam_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_accept" "', argument " "1"" of type '" "Beam const *""'"); 
-  }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Beam_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
-  }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((Beam const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Beam_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_WavevectorInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Beam *arg1 = (Beam *) 0 ;
+  WavevectorInfo *arg1 = (WavevectorInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_WavevectorInfo, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getChildren" "', argument " "1"" of type '" "Beam const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_WavevectorInfo" "', argument " "1"" of type '" "WavevectorInfo *""'"); 
   }
-  arg1 = reinterpret_cast< Beam * >(argp1);
-  result = ((Beam const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< WavevectorInfo * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *Beam_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *WavevectorInfo_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Beam, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_WavevectorInfo, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *Beam_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *WavevectorInfo_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
@@ -43220,636 +43485,403 @@ SWIGINTERN PyObject *CustomBinAxis_swiginit(PyObject *SWIGUNUSEDPARM(self), PyOb
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_IShape2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IShape2D *arg1 = (IShape2D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IShape2D *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IShape2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IShape2D_clone" "', argument " "1"" of type '" "IShape2D const *""'"); 
-  }
-  arg1 = reinterpret_cast< IShape2D * >(argp1);
-  result = (IShape2D *)((IShape2D const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IShape2D, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IShape2D_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FixedBinAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IShape2D *arg1 = (IShape2D *) 0 ;
-  double arg2 ;
+  std::string *arg1 = 0 ;
+  size_t arg2 ;
   double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
+  double arg4 ;
+  int res1 = SWIG_OLDOBJ ;
+  size_t val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  bool result;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  FixedBinAxis *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IShape2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IShape2D_contains" "', argument " "1"" of type '" "IShape2D const *""'"); 
+  if (!SWIG_Python_UnpackTuple(args, "new_FixedBinAxis", 4, 4, swig_obj)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_FixedBinAxis" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FixedBinAxis" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IShape2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IShape2D_contains" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FixedBinAxis" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< double >(val2);
+  arg2 = static_cast< size_t >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IShape2D_contains" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FixedBinAxis" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (bool)((IShape2D const *)arg1)->contains(arg2,arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FixedBinAxis" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (FixedBinAxis *)new FixedBinAxis((std::string const &)*arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FixedBinAxis, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IShape2D_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_FixedBinAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IShape2D *arg1 = (IShape2D *) 0 ;
-  Bin1D *arg2 = 0 ;
-  Bin1D *arg3 = 0 ;
+  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  bool result;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IShape2D, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IShape2D_contains" "', argument " "1"" of type '" "IShape2D const *""'"); 
-  }
-  arg1 = reinterpret_cast< IShape2D * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IShape2D_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IShape2D_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
-  }
-  arg2 = reinterpret_cast< Bin1D * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IShape2D_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IShape2D_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FixedBinAxis" "', argument " "1"" of type '" "FixedBinAxis *""'"); 
   }
-  arg3 = reinterpret_cast< Bin1D * >(argp3);
-  result = (bool)((IShape2D const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IShape2D_contains(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IShape2D_contains", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IShape2D, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_IShape2D_contains__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IShape2D, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IShape2D_contains__SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IShape2D_contains'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IShape2D::contains(double,double) const\n"
-    "    IShape2D::contains(Bin1D const &,Bin1D const &) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_IShape2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FixedBinAxis_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IShape2D *arg1 = (IShape2D *) 0 ;
+  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  FixedBinAxis *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IShape2D, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IShape2D" "', argument " "1"" of type '" "IShape2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_clone" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
   }
-  arg1 = reinterpret_cast< IShape2D * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  result = (FixedBinAxis *)((FixedBinAxis const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FixedBinAxis, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IShape2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IShape2D, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_new_ISample__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FixedBinAxis_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PyObject *arg1 = (PyObject *) 0 ;
-  ISample *result = 0 ;
+  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  size_t result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  arg1 = swig_obj[0];
-  if ( arg1 != Py_None ) {
-    /* subclassed */
-    result = (ISample *)new SwigDirector_ISample(arg1); 
-  } else {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
-    SWIG_fail;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_size" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
   }
-  
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ISample, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  result = ((FixedBinAxis const *)arg1)->size();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ISample__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FixedBinAxis_getBin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PyObject *arg1 = (PyObject *) 0 ;
-  INode *arg2 = (INode *) 0 ;
-  SwigValueWrapper< std::vector< char const *,std::allocator< char const * > > > arg3 ;
-  SwigValueWrapper< std::vector< char const *,std::allocator< char const * > > > arg4 ;
-  std::vector< double,std::allocator< double > > arg5 ;
-  std::vector< double,std::allocator< double > > arg6 ;
-  std::vector< double,std::allocator< double > > arg7 ;
-  std::vector< double,std::allocator< double > > arg8 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  void *argp4 ;
-  int res4 = 0 ;
-  ISample *result = 0 ;
+  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  size_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Bin1D result;
   
-  if ((nobjs < 8) || (nobjs > 8)) SWIG_fail;
-  arg1 = swig_obj[0];
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INode, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ISample" "', argument " "2"" of type '" "INode const *""'"); 
-  }
-  arg2 = reinterpret_cast< INode * >(argp2);
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_ISample" "', argument " "3"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ISample" "', argument " "3"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'");
-    } else {
-      std::vector< char const *,std::allocator< char const * > > * temp = reinterpret_cast< std::vector< char const *,std::allocator< char const * > > * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
-  }
-  {
-    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t,  0  | 0);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_ISample" "', argument " "4"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'"); 
-    }  
-    if (!argp4) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ISample" "', argument " "4"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'");
-    } else {
-      std::vector< char const *,std::allocator< char const * > > * temp = reinterpret_cast< std::vector< char const *,std::allocator< char const * > > * >(argp4);
-      arg4 = *temp;
-      if (SWIG_IsNewObj(res4)) delete temp;
-    }
-  }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[4], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_ISample" "', argument " "5"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
-    }
-    arg5 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
-  }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[5], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_ISample" "', argument " "6"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
-    }
-    arg6 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
-  }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[6], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_ISample" "', argument " "7"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
-    }
-    arg7 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
-  }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[7], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_ISample" "', argument " "8"" of type '" "std::vector< double,std::allocator< double > >""'"); 
-    }
-    arg8 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
-  }
-  if ( arg1 != Py_None ) {
-    /* subclassed */
-    result = (ISample *)new SwigDirector_ISample(arg1,(INode const *)arg2,arg3,arg4,arg5,arg6,arg7,arg8); 
-  } else {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
-    SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "FixedBinAxis_getBin", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_getBin" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
   }
-  
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ISample, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FixedBinAxis_getBin" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = ((FixedBinAxis const *)arg1)->getBin(arg2);
+  resultobj = SWIG_NewPointerObj((new Bin1D(static_cast< const Bin1D& >(result))), SWIGTYPE_p_Bin1D, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ISample(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[9] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ISample", 0, 8, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    _v = (argv[0] != 0);
-    if (_v) {
-      return _wrap_new_ISample__SWIG_0(self, argc, argv);
-    }
-  }
-  if (argc == 8) {
-    int _v;
-    _v = (argv[0] != 0);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_INode, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            int res = swig::asptr(argv[4], (std::vector< double,std::allocator< double > >**)(0));
-            _v = SWIG_CheckState(res);
-            if (_v) {
-              int res = swig::asptr(argv[5], (std::vector< double,std::allocator< double > >**)(0));
-              _v = SWIG_CheckState(res);
-              if (_v) {
-                int res = swig::asptr(argv[6], (std::vector< double,std::allocator< double > >**)(0));
-                _v = SWIG_CheckState(res);
-                if (_v) {
-                  int res = swig::asptr(argv[7], (std::vector< double,std::allocator< double > >**)(0));
-                  _v = SWIG_CheckState(res);
-                  if (_v) {
-                    return _wrap_new_ISample__SWIG_1(self, argc, argv);
-                  }
-                }
-              }
-            }
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ISample'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    ISample::ISample()\n"
-    "    ISample::ISample(PyObject *,INode const *,std::vector< char const *,std::allocator< char const * > > const,std::vector< char const *,std::allocator< char const * > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > >)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_ISample_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FixedBinAxis_getMin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ISample *arg1 = (ISample *) 0 ;
+  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  ISample *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISample, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ISample_clone" "', argument " "1"" of type '" "ISample const *""'"); 
-  }
-  arg1 = reinterpret_cast< ISample * >(argp1);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      Swig::DirectorPureVirtualException::raise("ISample::clone");
-    } else {
-      result = (ISample *)((ISample const *)arg1)->clone();
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ISample, 0 |  0 );
-  }
-  if (director) {
-    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_getMin" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
   }
+  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  result = (double)((FixedBinAxis const *)arg1)->getMin();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ISample_material(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FixedBinAxis_getMax(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ISample *arg1 = (ISample *) 0 ;
+  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  Material *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISample, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ISample_material" "', argument " "1"" of type '" "ISample const *""'"); 
-  }
-  arg1 = reinterpret_cast< ISample * >(argp1);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = (Material *)((ISample const *)arg1)->ISample::material();
-    } else {
-      result = (Material *)((ISample const *)arg1)->material();
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Material, 0 |  0 );
-  if (director) {
-    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_getMax" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
   }
+  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  result = (double)((FixedBinAxis const *)arg1)->getMax();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ISample_containedMaterials(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FixedBinAxis_getBinCenter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ISample *arg1 = (ISample *) 0 ;
+  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SwigValueWrapper< std::vector< Material const *,std::allocator< Material const * > > > result;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISample, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FixedBinAxis_getBinCenter", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ISample_containedMaterials" "', argument " "1"" of type '" "ISample const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_getBinCenter" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
   }
-  arg1 = reinterpret_cast< ISample * >(argp1);
-  result = ((ISample const *)arg1)->containedMaterials();
-  resultobj = SWIG_NewPointerObj((new std::vector< Material const *,std::allocator< Material const * > >(static_cast< const std::vector< Material const *,std::allocator< Material const * > >& >(result))), SWIGTYPE_p_std__vectorT_Material_const_p_std__allocatorT_Material_const_p_t_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FixedBinAxis_getBinCenter" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (double)((FixedBinAxis const *)arg1)->getBinCenter(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ISample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FixedBinAxis_findClosestIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ISample *arg1 = (ISample *) 0 ;
+  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  size_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISample, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FixedBinAxis_findClosestIndex", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ISample" "', argument " "1"" of type '" "ISample *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_findClosestIndex" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
   }
-  arg1 = reinterpret_cast< ISample * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FixedBinAxis_findClosestIndex" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = ((FixedBinAxis const *)arg1)->findClosestIndex(arg2);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_disown_ISample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FixedBinAxis_getBinCenters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ISample *arg1 = (ISample *) 0 ;
+  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::vector< double,std::allocator< double > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISample, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_ISample" "', argument " "1"" of type '" "ISample *""'"); 
-  }
-  arg1 = reinterpret_cast< ISample * >(argp1);
-  {
-    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
-    if (director) director->swig_disown();
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_getBinCenters" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
   }
-  
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  result = ((FixedBinAxis const *)arg1)->getBinCenters();
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *ISample_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ISample, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *ISample_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_delete_IChiSquaredModule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FixedBinAxis_getBinBoundaries(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
+  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::vector< double,std::allocator< double > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IChiSquaredModule" "', argument " "1"" of type '" "IChiSquaredModule *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_getBinBoundaries" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
   }
-  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  result = ((FixedBinAxis const *)arg1)->getBinBoundaries();
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IChiSquaredModule_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FixedBinAxis_createClippedAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
+  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IChiSquaredModule *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  FixedBinAxis *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FixedBinAxis_createClippedAxis", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IChiSquaredModule_clone" "', argument " "1"" of type '" "IChiSquaredModule const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_createClippedAxis" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
   }
-  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
-  result = (IChiSquaredModule *)((IChiSquaredModule const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
+  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FixedBinAxis_createClippedAxis" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FixedBinAxis_createClippedAxis" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FixedBinAxis *)((FixedBinAxis const *)arg1)->createClippedAxis(arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FixedBinAxis, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IChiSquaredModule_varianceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FixedBinAxis___getitem__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
+  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  unsigned int arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IVarianceFunction *result = 0 ;
+  unsigned int val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FixedBinAxis___getitem__", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IChiSquaredModule_varianceFunction" "', argument " "1"" of type '" "IChiSquaredModule const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis___getitem__" "', argument " "1"" of type '" "FixedBinAxis *""'"); 
   }
-  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
-  result = (IVarianceFunction *)((IChiSquaredModule const *)arg1)->varianceFunction();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IVarianceFunction, 0 |  0 );
+  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FixedBinAxis___getitem__" "', argument " "2"" of type '" "unsigned int""'");
+  } 
+  arg2 = static_cast< unsigned int >(val2);
+  result = (double)FixedBinAxis___getitem__(arg1,arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IChiSquaredModule_setVarianceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FixedBinAxis_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FixedBinAxis, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FixedBinAxis_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_delete_IPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
-  IVarianceFunction *arg2 = 0 ;
+  IPixel *arg1 = (IPixel *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IChiSquaredModule_setVarianceFunction", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPixel, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IChiSquaredModule_setVarianceFunction" "', argument " "1"" of type '" "IChiSquaredModule *""'"); 
-  }
-  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IVarianceFunction,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IChiSquaredModule_setVarianceFunction" "', argument " "2"" of type '" "IVarianceFunction const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IChiSquaredModule_setVarianceFunction" "', argument " "2"" of type '" "IVarianceFunction const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IPixel" "', argument " "1"" of type '" "IPixel *""'"); 
   }
-  arg2 = reinterpret_cast< IVarianceFunction * >(argp2);
-  (arg1)->setVarianceFunction((IVarianceFunction const &)*arg2);
+  arg1 = reinterpret_cast< IPixel * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -43857,64 +43889,70 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IChiSquaredModule_getIntensityFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IPixel_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
+  IPixel *arg1 = (IPixel *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IIntensityFunction *result = 0 ;
+  IPixel *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IChiSquaredModule_getIntensityFunction" "', argument " "1"" of type '" "IChiSquaredModule const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPixel_clone" "', argument " "1"" of type '" "IPixel const *""'"); 
   }
-  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
-  result = (IIntensityFunction *)((IChiSquaredModule const *)arg1)->getIntensityFunction();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IIntensityFunction, 0 |  0 );
+  arg1 = reinterpret_cast< IPixel * >(argp1);
+  result = (IPixel *)((IPixel const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IPixel, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IChiSquaredModule_setIntensityFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IPixel_createZeroSizePixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
-  IIntensityFunction *arg2 = 0 ;
+  IPixel *arg1 = (IPixel *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  IPixel *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IChiSquaredModule_setIntensityFunction", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IPixel_createZeroSizePixel", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IChiSquaredModule_setIntensityFunction" "', argument " "1"" of type '" "IChiSquaredModule *""'"); 
-  }
-  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IIntensityFunction,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IChiSquaredModule_setIntensityFunction" "', argument " "2"" of type '" "IIntensityFunction const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IChiSquaredModule_setIntensityFunction" "', argument " "2"" of type '" "IIntensityFunction const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPixel_createZeroSizePixel" "', argument " "1"" of type '" "IPixel const *""'"); 
   }
-  arg2 = reinterpret_cast< IIntensityFunction * >(argp2);
-  (arg1)->setIntensityFunction((IIntensityFunction const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IPixel * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IPixel_createZeroSizePixel" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IPixel_createZeroSizePixel" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (IPixel *)((IPixel const *)arg1)->createZeroSizePixel(arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IPixel, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IChiSquaredModule_residual(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IPixel_getK(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
+  IPixel *arg1 = (IPixel *) 0 ;
   double arg2 ;
   double arg3 ;
   double arg4 ;
@@ -43927,221 +43965,278 @@ SWIGINTERN PyObject *_wrap_IChiSquaredModule_residual(PyObject *SWIGUNUSEDPARM(s
   double val4 ;
   int ecode4 = 0 ;
   PyObject *swig_obj[4] ;
-  double result;
+  kvector_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IChiSquaredModule_residual", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IPixel_getK", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IChiSquaredModule_residual" "', argument " "1"" of type '" "IChiSquaredModule *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPixel_getK" "', argument " "1"" of type '" "IPixel const *""'"); 
   }
-  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
+  arg1 = reinterpret_cast< IPixel * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IChiSquaredModule_residual" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IPixel_getK" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IChiSquaredModule_residual" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IPixel_getK" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
   ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IChiSquaredModule_residual" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IPixel_getK" "', argument " "4"" of type '" "double""'");
   } 
   arg4 = static_cast< double >(val4);
-  result = (double)(arg1)->residual(arg2,arg3,arg4);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = ((IPixel const *)arg1)->getK(arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IChiSquaredModule_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IChiSquaredModule, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_delete_IObserver(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IPixel_getIntegrationFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IObserver *arg1 = (IObserver *) 0 ;
+  IPixel *arg1 = (IPixel *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IObserver, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IPixel_getIntegrationFactor", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IObserver" "', argument " "1"" of type '" "IObserver *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPixel_getIntegrationFactor" "', argument " "1"" of type '" "IPixel const *""'"); 
   }
-  arg1 = reinterpret_cast< IObserver * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IPixel * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IPixel_getIntegrationFactor" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IPixel_getIntegrationFactor" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)((IPixel const *)arg1)->getIntegrationFactor(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IObserver_notify(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IPixel_getSolidAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IObserver *arg1 = (IObserver *) 0 ;
-  IObservable *arg2 = (IObservable *) 0 ;
+  IPixel *arg1 = (IPixel *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IObserver_notify", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IObserver, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IObserver_notify" "', argument " "1"" of type '" "IObserver *""'"); 
-  }
-  arg1 = reinterpret_cast< IObserver * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IObservable, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IObserver_notify" "', argument " "2"" of type '" "IObservable *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPixel_getSolidAngle" "', argument " "1"" of type '" "IPixel const *""'"); 
   }
-  arg2 = reinterpret_cast< IObservable * >(argp2);
-  (arg1)->notify(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IPixel * >(argp1);
+  result = (double)((IPixel const *)arg1)->getSolidAngle();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IObserver_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IPixel_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IObserver, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_IPixel, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *_wrap_delete_IObservable(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IShape2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IObservable *arg1 = (IObservable *) 0 ;
+  IShape2D *arg1 = (IShape2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  IShape2D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IObservable, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IShape2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IObservable" "', argument " "1"" of type '" "IObservable *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IShape2D_clone" "', argument " "1"" of type '" "IShape2D const *""'"); 
   }
-  arg1 = reinterpret_cast< IObservable * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IShape2D * >(argp1);
+  result = (IShape2D *)((IShape2D const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IShape2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IObservable_attachObserver(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IShape2D_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IObservable *arg1 = (IObservable *) 0 ;
-  SwigValueWrapper< std::shared_ptr< IObserver > > arg2 ;
+  IShape2D *arg1 = (IShape2D *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IObservable_attachObserver", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IObservable, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IShape2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IObservable_attachObserver" "', argument " "1"" of type '" "IObservable *""'"); 
-  }
-  arg1 = reinterpret_cast< IObservable * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__shared_ptrT_IObserver_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IObservable_attachObserver" "', argument " "2"" of type '" "IObservable::observer_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IObservable_attachObserver" "', argument " "2"" of type '" "IObservable::observer_t""'");
-    } else {
-      IObservable::observer_t * temp = reinterpret_cast< IObservable::observer_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IShape2D_contains" "', argument " "1"" of type '" "IShape2D const *""'"); 
   }
-  (arg1)->attachObserver(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IShape2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IShape2D_contains" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IShape2D_contains" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (bool)((IShape2D const *)arg1)->contains(arg2,arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IObservable_notifyObservers(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IShape2D_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IObservable *arg1 = (IObservable *) 0 ;
+  IShape2D *arg1 = (IShape2D *) 0 ;
+  Bin1D *arg2 = 0 ;
+  Bin1D *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  bool result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IObservable, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IShape2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IObservable_notifyObservers" "', argument " "1"" of type '" "IObservable *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IShape2D_contains" "', argument " "1"" of type '" "IShape2D const *""'"); 
   }
-  arg1 = reinterpret_cast< IObservable * >(argp1);
-  (arg1)->notifyObservers();
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IShape2D * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IShape2D_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IShape2D_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  }
+  arg2 = reinterpret_cast< Bin1D * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IShape2D_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IShape2D_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  arg3 = reinterpret_cast< Bin1D * >(argp3);
+  result = (bool)((IShape2D const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IObservable(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IObservable *result = 0 ;
+SWIGINTERN PyObject *_wrap_IShape2D_contains(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IShape2D_contains", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IShape2D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_IShape2D_contains__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IShape2D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_IShape2D_contains__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
   
-  if (!SWIG_Python_UnpackTuple(args, "new_IObservable", 0, 0, 0)) SWIG_fail;
-  result = (IObservable *)new IObservable();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IObservable, SWIG_POINTER_NEW |  0 );
-  return resultobj;
 fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *IObservable_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IObservable, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IShape2D_contains'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IShape2D::contains(double,double) const\n"
+    "    IShape2D::contains(Bin1D const &,Bin1D const &) const\n");
+  return 0;
 }
 
-SWIGINTERN PyObject *IObservable_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
 
-SWIGINTERN PyObject *_wrap_delete_IIntensityFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IShape2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IIntensityFunction *arg1 = (IIntensityFunction *) 0 ;
+  IShape2D *arg1 = (IShape2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityFunction, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IShape2D, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IIntensityFunction" "', argument " "1"" of type '" "IIntensityFunction *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IShape2D" "', argument " "1"" of type '" "IShape2D *""'"); 
   }
-  arg1 = reinterpret_cast< IIntensityFunction * >(argp1);
+  arg1 = reinterpret_cast< IShape2D * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -44150,396 +44245,480 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IIntensityFunction_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IIntensityFunction *arg1 = (IIntensityFunction *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IIntensityFunction *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityFunction, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IIntensityFunction_clone" "', argument " "1"" of type '" "IIntensityFunction const *""'"); 
-  }
-  arg1 = reinterpret_cast< IIntensityFunction * >(argp1);
-  result = (IIntensityFunction *)((IIntensityFunction const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IIntensityFunction, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *IShape2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IShape2D, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
-
-SWIGINTERN PyObject *_wrap_IIntensityFunction_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Ellipse__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IIntensityFunction *arg1 = (IIntensityFunction *) 0 ;
+  double arg1 ;
   double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg3 ;
+  double arg4 ;
+  double arg5 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
+  Ellipse *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IIntensityFunction_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityFunction, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IIntensityFunction_evaluate" "', argument " "1"" of type '" "IIntensityFunction const *""'"); 
-  }
-  arg1 = reinterpret_cast< IIntensityFunction * >(argp1);
+  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Ellipse" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IIntensityFunction_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Ellipse" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((IIntensityFunction const *)arg1)->evaluate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *IIntensityFunction_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IIntensityFunction, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_IntensityFunctionLog_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IntensityFunctionLog *arg1 = (IntensityFunctionLog *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IntensityFunctionLog *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityFunctionLog, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityFunctionLog_clone" "', argument " "1"" of type '" "IntensityFunctionLog const *""'"); 
-  }
-  arg1 = reinterpret_cast< IntensityFunctionLog * >(argp1);
-  result = (IntensityFunctionLog *)((IntensityFunctionLog const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityFunctionLog, 0 |  0 );
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Ellipse" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_Ellipse" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_Ellipse" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  result = (Ellipse *)new Ellipse(arg1,arg2,arg3,arg4,arg5);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Ellipse, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityFunctionLog_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Ellipse__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IntensityFunctionLog *arg1 = (IntensityFunctionLog *) 0 ;
+  double arg1 ;
   double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg3 ;
+  double arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  Ellipse *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityFunctionLog_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityFunctionLog, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityFunctionLog_evaluate" "', argument " "1"" of type '" "IntensityFunctionLog const *""'"); 
-  }
-  arg1 = reinterpret_cast< IntensityFunctionLog * >(argp1);
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Ellipse" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityFunctionLog_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Ellipse" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((IntensityFunctionLog const *)arg1)->evaluate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Ellipse" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_Ellipse" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (Ellipse *)new Ellipse(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Ellipse, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IntensityFunctionLog(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IntensityFunctionLog *result = 0 ;
+SWIGINTERN PyObject *_wrap_new_Ellipse(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[6] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Ellipse", 0, 5, argv))) SWIG_fail;
+  --argc;
+  if (argc == 4) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_Ellipse__SWIG_1(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  if (argc == 5) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              return _wrap_new_Ellipse__SWIG_0(self, argc, argv);
+            }
+          }
+        }
+      }
+    }
+  }
   
-  if (!SWIG_Python_UnpackTuple(args, "new_IntensityFunctionLog", 0, 0, 0)) SWIG_fail;
-  result = (IntensityFunctionLog *)new IntensityFunctionLog();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityFunctionLog, SWIG_POINTER_NEW |  0 );
-  return resultobj;
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Ellipse'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Ellipse::Ellipse(double,double,double,double,double)\n"
+    "    Ellipse::Ellipse(double,double,double,double)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IntensityFunctionLog(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Ellipse_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IntensityFunctionLog *arg1 = (IntensityFunctionLog *) 0 ;
+  Ellipse *arg1 = (Ellipse *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  Ellipse *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityFunctionLog, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IntensityFunctionLog" "', argument " "1"" of type '" "IntensityFunctionLog *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_clone" "', argument " "1"" of type '" "Ellipse const *""'"); 
   }
-  arg1 = reinterpret_cast< IntensityFunctionLog * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Ellipse * >(argp1);
+  result = (Ellipse *)((Ellipse const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Ellipse, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IntensityFunctionLog_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IntensityFunctionLog, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *IntensityFunctionLog_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_IntensityFunctionSqrt_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Ellipse_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IntensityFunctionSqrt *arg1 = (IntensityFunctionSqrt *) 0 ;
+  Ellipse *arg1 = (Ellipse *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IntensityFunctionSqrt *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  bool result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityFunctionSqrt, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityFunctionSqrt_clone" "', argument " "1"" of type '" "IntensityFunctionSqrt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_contains" "', argument " "1"" of type '" "Ellipse const *""'"); 
   }
-  arg1 = reinterpret_cast< IntensityFunctionSqrt * >(argp1);
-  result = (IntensityFunctionSqrt *)((IntensityFunctionSqrt const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityFunctionSqrt, 0 |  0 );
+  arg1 = reinterpret_cast< Ellipse * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Ellipse_contains" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Ellipse_contains" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (bool)((Ellipse const *)arg1)->contains(arg2,arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityFunctionSqrt_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Ellipse_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IntensityFunctionSqrt *arg1 = (IntensityFunctionSqrt *) 0 ;
-  double arg2 ;
+  Ellipse *arg1 = (Ellipse *) 0 ;
+  Bin1D *arg2 = 0 ;
+  Bin1D *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityFunctionSqrt_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityFunctionSqrt, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityFunctionSqrt_evaluate" "', argument " "1"" of type '" "IntensityFunctionSqrt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_contains" "', argument " "1"" of type '" "Ellipse const *""'"); 
   }
-  arg1 = reinterpret_cast< IntensityFunctionSqrt * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityFunctionSqrt_evaluate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((IntensityFunctionSqrt const *)arg1)->evaluate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Ellipse * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Ellipse_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Ellipse_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  }
+  arg2 = reinterpret_cast< Bin1D * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Ellipse_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Ellipse_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  arg3 = reinterpret_cast< Bin1D * >(argp3);
+  result = (bool)((Ellipse const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IntensityFunctionSqrt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IntensityFunctionSqrt *result = 0 ;
+SWIGINTERN PyObject *_wrap_Ellipse_contains(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Ellipse_contains", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Ellipse, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_Ellipse_contains__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Ellipse, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_Ellipse_contains__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
   
-  if (!SWIG_Python_UnpackTuple(args, "new_IntensityFunctionSqrt", 0, 0, 0)) SWIG_fail;
-  result = (IntensityFunctionSqrt *)new IntensityFunctionSqrt();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityFunctionSqrt, SWIG_POINTER_NEW |  0 );
-  return resultobj;
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Ellipse_contains'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Ellipse::contains(double,double) const\n"
+    "    Ellipse::contains(Bin1D const &,Bin1D const &) const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IntensityFunctionSqrt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Ellipse_getCenterX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IntensityFunctionSqrt *arg1 = (IntensityFunctionSqrt *) 0 ;
+  Ellipse *arg1 = (Ellipse *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityFunctionSqrt, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IntensityFunctionSqrt" "', argument " "1"" of type '" "IntensityFunctionSqrt *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_getCenterX" "', argument " "1"" of type '" "Ellipse const *""'"); 
   }
-  arg1 = reinterpret_cast< IntensityFunctionSqrt * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Ellipse * >(argp1);
+  result = (double)((Ellipse const *)arg1)->getCenterX();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IntensityFunctionSqrt_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IntensityFunctionSqrt, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *IntensityFunctionSqrt_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_delete_IIntensityNormalizer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Ellipse_getCenterY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IIntensityNormalizer *arg1 = (IIntensityNormalizer *) 0 ;
+  Ellipse *arg1 = (Ellipse *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityNormalizer, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IIntensityNormalizer" "', argument " "1"" of type '" "IIntensityNormalizer *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_getCenterY" "', argument " "1"" of type '" "Ellipse const *""'"); 
   }
-  arg1 = reinterpret_cast< IIntensityNormalizer * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Ellipse * >(argp1);
+  result = (double)((Ellipse const *)arg1)->getCenterY();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IIntensityNormalizer_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Ellipse_getRadiusX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IIntensityNormalizer *arg1 = (IIntensityNormalizer *) 0 ;
+  Ellipse *arg1 = (Ellipse *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IIntensityNormalizer *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityNormalizer, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IIntensityNormalizer_clone" "', argument " "1"" of type '" "IIntensityNormalizer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_getRadiusX" "', argument " "1"" of type '" "Ellipse const *""'"); 
   }
-  arg1 = reinterpret_cast< IIntensityNormalizer * >(argp1);
-  result = (IIntensityNormalizer *)((IIntensityNormalizer const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IIntensityNormalizer, 0 |  0 );
+  arg1 = reinterpret_cast< Ellipse * >(argp1);
+  result = (double)((Ellipse const *)arg1)->getRadiusX();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IIntensityNormalizer_createNormalizedData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Ellipse_getRadiusY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IIntensityNormalizer *arg1 = (IIntensityNormalizer *) 0 ;
-  OutputData< double > *arg2 = 0 ;
+  Ellipse *arg1 = (Ellipse *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  OutputData< double > *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IIntensityNormalizer_createNormalizedData", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityNormalizer, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IIntensityNormalizer_createNormalizedData" "', argument " "1"" of type '" "IIntensityNormalizer const *""'"); 
-  }
-  arg1 = reinterpret_cast< IIntensityNormalizer * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IIntensityNormalizer_createNormalizedData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IIntensityNormalizer_createNormalizedData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_getRadiusY" "', argument " "1"" of type '" "Ellipse const *""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  result = (OutputData< double > *)((IIntensityNormalizer const *)arg1)->createNormalizedData((OutputData< double > const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  arg1 = reinterpret_cast< Ellipse * >(argp1);
+  result = (double)((Ellipse const *)arg1)->getRadiusY();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IIntensityNormalizer_apply(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Ellipse_getTheta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IIntensityNormalizer *arg1 = (IIntensityNormalizer *) 0 ;
-  OutputData< double > *arg2 = 0 ;
+  Ellipse *arg1 = (Ellipse *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IIntensityNormalizer_apply", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityNormalizer, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IIntensityNormalizer_apply" "', argument " "1"" of type '" "IIntensityNormalizer const *""'"); 
-  }
-  arg1 = reinterpret_cast< IIntensityNormalizer * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IIntensityNormalizer_apply" "', argument " "2"" of type '" "OutputData< double > &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IIntensityNormalizer_apply" "', argument " "2"" of type '" "OutputData< double > &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_getTheta" "', argument " "1"" of type '" "Ellipse const *""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  ((IIntensityNormalizer const *)arg1)->apply(*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Ellipse * >(argp1);
+  result = (double)((Ellipse const *)arg1)->getTheta();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IIntensityNormalizer_setMaximumIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_Ellipse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IIntensityNormalizer *arg1 = (IIntensityNormalizer *) 0 ;
-  double arg2 ;
+  Ellipse *arg1 = (Ellipse *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IIntensityNormalizer_setMaximumIntensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityNormalizer, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IIntensityNormalizer_setMaximumIntensity" "', argument " "1"" of type '" "IIntensityNormalizer *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Ellipse" "', argument " "1"" of type '" "Ellipse *""'"); 
   }
-  arg1 = reinterpret_cast< IIntensityNormalizer * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IIntensityNormalizer_setMaximumIntensity" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setMaximumIntensity(arg2);
+  arg1 = reinterpret_cast< Ellipse * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -44547,138 +44726,236 @@ fail:
 }
 
 
-SWIGINTERN PyObject *IIntensityNormalizer_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Ellipse_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IIntensityNormalizer, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_Ellipse, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *_wrap_new_IntensityNormalizer__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *Ellipse_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_Line(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
+  double arg3 ;
+  double arg4 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  IntensityNormalizer *result = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  Line *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_Line", 4, 4, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IntensityNormalizer" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Line" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_IntensityNormalizer" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Line" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (IntensityNormalizer *)new IntensityNormalizer(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityNormalizer, SWIG_POINTER_NEW |  0 );
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Line" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_Line" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (Line *)new Line(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Line, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IntensityNormalizer__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Line_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  IntensityNormalizer *result = 0 ;
+  Line *arg1 = (Line *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  Line *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IntensityNormalizer" "', argument " "1"" of type '" "double""'");
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Line, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Line_clone" "', argument " "1"" of type '" "Line const *""'"); 
+  }
+  arg1 = reinterpret_cast< Line * >(argp1);
+  result = (Line *)((Line const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Line, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Line_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  Line *arg1 = (Line *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  bool result;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Line, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Line_contains" "', argument " "1"" of type '" "Line const *""'"); 
+  }
+  arg1 = reinterpret_cast< Line * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Line_contains" "', argument " "2"" of type '" "double""'");
   } 
-  arg1 = static_cast< double >(val1);
-  result = (IntensityNormalizer *)new IntensityNormalizer(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityNormalizer, SWIG_POINTER_NEW |  0 );
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Line_contains" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (bool)((Line const *)arg1)->contains(arg2,arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IntensityNormalizer__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_Line_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IntensityNormalizer *result = 0 ;
+  Line *arg1 = (Line *) 0 ;
+  Bin1D *arg2 = 0 ;
+  Bin1D *arg3 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  bool result;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (IntensityNormalizer *)new IntensityNormalizer();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityNormalizer, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Line, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Line_contains" "', argument " "1"" of type '" "Line const *""'"); 
+  }
+  arg1 = reinterpret_cast< Line * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Line_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Line_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  }
+  arg2 = reinterpret_cast< Bin1D * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Line_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Line_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  arg3 = reinterpret_cast< Bin1D * >(argp3);
+  result = (bool)((Line const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IntensityNormalizer(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_Line_contains(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_IntensityNormalizer", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Line_contains", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_IntensityNormalizer__SWIG_2(self, argc, argv);
-  }
-  if (argc == 1) {
+  if (argc == 3) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Line, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_IntensityNormalizer__SWIG_1(self, argc, argv);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_Line_contains__SWIG_1(self, argc, argv);
+        }
+      }
     }
   }
-  if (argc == 2) {
+  if (argc == 3) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Line, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
       {
         int res = SWIG_AsVal_double(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_new_IntensityNormalizer__SWIG_0(self, argc, argv);
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_Line_contains__SWIG_0(self, argc, argv);
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_IntensityNormalizer'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Line_contains'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    IntensityNormalizer::IntensityNormalizer(double,double)\n"
-    "    IntensityNormalizer::IntensityNormalizer(double)\n"
-    "    IntensityNormalizer::IntensityNormalizer()\n");
+    "    Line::contains(double,double) const\n"
+    "    Line::contains(Bin1D const &,Bin1D const &) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IntensityNormalizer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_Line(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IntensityNormalizer *arg1 = (IntensityNormalizer *) 0 ;
+  Line *arg1 = (Line *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityNormalizer, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Line, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IntensityNormalizer" "', argument " "1"" of type '" "IntensityNormalizer *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Line" "', argument " "1"" of type '" "Line *""'"); 
   }
-  arg1 = reinterpret_cast< IntensityNormalizer * >(argp1);
+  arg1 = reinterpret_cast< Line * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -44687,145 +44964,237 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityNormalizer_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Line_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_Line, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *Line_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_VerticalLine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IntensityNormalizer *arg1 = (IntensityNormalizer *) 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  VerticalLine *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_VerticalLine" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (VerticalLine *)new VerticalLine(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VerticalLine, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_VerticalLine_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  VerticalLine *arg1 = (VerticalLine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IntensityNormalizer *result = 0 ;
+  VerticalLine *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VerticalLine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityNormalizer_clone" "', argument " "1"" of type '" "IntensityNormalizer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VerticalLine_clone" "', argument " "1"" of type '" "VerticalLine const *""'"); 
   }
-  arg1 = reinterpret_cast< IntensityNormalizer * >(argp1);
-  result = (IntensityNormalizer *)((IntensityNormalizer const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
+  arg1 = reinterpret_cast< VerticalLine * >(argp1);
+  result = (VerticalLine *)((VerticalLine const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VerticalLine, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityNormalizer_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VerticalLine_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IntensityNormalizer *arg1 = (IntensityNormalizer *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  VerticalLine *arg1 = (VerticalLine *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityNormalizer_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VerticalLine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityNormalizer_accept" "', argument " "1"" of type '" "IntensityNormalizer const *""'"); 
-  }
-  arg1 = reinterpret_cast< IntensityNormalizer * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityNormalizer_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VerticalLine_contains" "', argument " "1"" of type '" "VerticalLine const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((IntensityNormalizer const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< VerticalLine * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "VerticalLine_contains" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "VerticalLine_contains" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (bool)((VerticalLine const *)arg1)->contains(arg2,arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityNormalizer_createNormalizedData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VerticalLine_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IntensityNormalizer *arg1 = (IntensityNormalizer *) 0 ;
-  OutputData< double > *arg2 = 0 ;
+  VerticalLine *arg1 = (VerticalLine *) 0 ;
+  Bin1D *arg2 = 0 ;
+  Bin1D *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  OutputData< double > *result = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityNormalizer_createNormalizedData", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VerticalLine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityNormalizer_createNormalizedData" "', argument " "1"" of type '" "IntensityNormalizer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VerticalLine_contains" "', argument " "1"" of type '" "VerticalLine const *""'"); 
   }
-  arg1 = reinterpret_cast< IntensityNormalizer * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  arg1 = reinterpret_cast< VerticalLine * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityNormalizer_createNormalizedData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VerticalLine_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityNormalizer_createNormalizedData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VerticalLine_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  result = (OutputData< double > *)((IntensityNormalizer const *)arg1)->createNormalizedData((OutputData< double > const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  arg2 = reinterpret_cast< Bin1D * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "VerticalLine_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VerticalLine_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  arg3 = reinterpret_cast< Bin1D * >(argp3);
+  result = (bool)((VerticalLine const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityNormalizer_apply(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VerticalLine_contains(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "VerticalLine_contains", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_VerticalLine, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_VerticalLine_contains__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_VerticalLine, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_VerticalLine_contains__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'VerticalLine_contains'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    VerticalLine::contains(double,double) const\n"
+    "    VerticalLine::contains(Bin1D const &,Bin1D const &) const\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_VerticalLine_getXpos(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IntensityNormalizer *arg1 = (IntensityNormalizer *) 0 ;
-  OutputData< double > *arg2 = 0 ;
+  VerticalLine *arg1 = (VerticalLine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityNormalizer_apply", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VerticalLine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityNormalizer_apply" "', argument " "1"" of type '" "IntensityNormalizer const *""'"); 
-  }
-  arg1 = reinterpret_cast< IntensityNormalizer * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityNormalizer_apply" "', argument " "2"" of type '" "OutputData< double > &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityNormalizer_apply" "', argument " "2"" of type '" "OutputData< double > &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VerticalLine_getXpos" "', argument " "1"" of type '" "VerticalLine const *""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  ((IntensityNormalizer const *)arg1)->apply(*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< VerticalLine * >(argp1);
+  result = (double)((VerticalLine const *)arg1)->getXpos();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityNormalizer_setMaximumIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_VerticalLine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IntensityNormalizer *arg1 = (IntensityNormalizer *) 0 ;
-  double arg2 ;
+  VerticalLine *arg1 = (VerticalLine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityNormalizer_setMaximumIntensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VerticalLine, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityNormalizer_setMaximumIntensity" "', argument " "1"" of type '" "IntensityNormalizer *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_VerticalLine" "', argument " "1"" of type '" "VerticalLine *""'"); 
   }
-  arg1 = reinterpret_cast< IntensityNormalizer * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityNormalizer_setMaximumIntensity" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setMaximumIntensity(arg2);
+  arg1 = reinterpret_cast< VerticalLine * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -44833,172 +45202,237 @@ fail:
 }
 
 
-SWIGINTERN PyObject *IntensityNormalizer_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *VerticalLine_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IntensityNormalizer, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_VerticalLine, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *IntensityNormalizer_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *VerticalLine_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_IntensityScaleAndShiftNormalizer__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_HorizontalLine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
-  double arg2 ;
   double val1 ;
   int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  IntensityScaleAndShiftNormalizer *result = 0 ;
+  PyObject *swig_obj[1] ;
+  HorizontalLine *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IntensityScaleAndShiftNormalizer" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_HorizontalLine" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_IntensityScaleAndShiftNormalizer" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (IntensityScaleAndShiftNormalizer *)new IntensityScaleAndShiftNormalizer(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityScaleAndShiftNormalizer, SWIG_POINTER_NEW |  0 );
+  result = (HorizontalLine *)new HorizontalLine(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_HorizontalLine, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IntensityScaleAndShiftNormalizer__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_HorizontalLine_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  IntensityScaleAndShiftNormalizer *result = 0 ;
+  HorizontalLine *arg1 = (HorizontalLine *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  HorizontalLine *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IntensityScaleAndShiftNormalizer" "', argument " "1"" of type '" "double""'");
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HorizontalLine, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HorizontalLine_clone" "', argument " "1"" of type '" "HorizontalLine const *""'"); 
+  }
+  arg1 = reinterpret_cast< HorizontalLine * >(argp1);
+  result = (HorizontalLine *)((HorizontalLine const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_HorizontalLine, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_HorizontalLine_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  HorizontalLine *arg1 = (HorizontalLine *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  bool result;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HorizontalLine, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HorizontalLine_contains" "', argument " "1"" of type '" "HorizontalLine const *""'"); 
+  }
+  arg1 = reinterpret_cast< HorizontalLine * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "HorizontalLine_contains" "', argument " "2"" of type '" "double""'");
   } 
-  arg1 = static_cast< double >(val1);
-  result = (IntensityScaleAndShiftNormalizer *)new IntensityScaleAndShiftNormalizer(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityScaleAndShiftNormalizer, SWIG_POINTER_NEW |  0 );
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "HorizontalLine_contains" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (bool)((HorizontalLine const *)arg1)->contains(arg2,arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IntensityScaleAndShiftNormalizer__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_HorizontalLine_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IntensityScaleAndShiftNormalizer *result = 0 ;
+  HorizontalLine *arg1 = (HorizontalLine *) 0 ;
+  Bin1D *arg2 = 0 ;
+  Bin1D *arg3 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  bool result;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (IntensityScaleAndShiftNormalizer *)new IntensityScaleAndShiftNormalizer();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityScaleAndShiftNormalizer, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HorizontalLine, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HorizontalLine_contains" "', argument " "1"" of type '" "HorizontalLine const *""'"); 
+  }
+  arg1 = reinterpret_cast< HorizontalLine * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "HorizontalLine_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HorizontalLine_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  }
+  arg2 = reinterpret_cast< Bin1D * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "HorizontalLine_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HorizontalLine_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  arg3 = reinterpret_cast< Bin1D * >(argp3);
+  result = (bool)((HorizontalLine const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IntensityScaleAndShiftNormalizer(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_HorizontalLine_contains(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_IntensityScaleAndShiftNormalizer", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "HorizontalLine_contains", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_IntensityScaleAndShiftNormalizer__SWIG_2(self, argc, argv);
-  }
-  if (argc == 1) {
+  if (argc == 3) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_HorizontalLine, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_IntensityScaleAndShiftNormalizer__SWIG_1(self, argc, argv);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_HorizontalLine_contains__SWIG_1(self, argc, argv);
+        }
+      }
     }
   }
-  if (argc == 2) {
+  if (argc == 3) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_HorizontalLine, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
       {
         int res = SWIG_AsVal_double(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_new_IntensityScaleAndShiftNormalizer__SWIG_0(self, argc, argv);
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_HorizontalLine_contains__SWIG_0(self, argc, argv);
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_IntensityScaleAndShiftNormalizer'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'HorizontalLine_contains'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    IntensityScaleAndShiftNormalizer::IntensityScaleAndShiftNormalizer(double,double)\n"
-    "    IntensityScaleAndShiftNormalizer::IntensityScaleAndShiftNormalizer(double)\n"
-    "    IntensityScaleAndShiftNormalizer::IntensityScaleAndShiftNormalizer()\n");
+    "    HorizontalLine::contains(double,double) const\n"
+    "    HorizontalLine::contains(Bin1D const &,Bin1D const &) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IntensityScaleAndShiftNormalizer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_HorizontalLine_getYpos(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IntensityScaleAndShiftNormalizer *arg1 = (IntensityScaleAndShiftNormalizer *) 0 ;
+  HorizontalLine *arg1 = (HorizontalLine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityScaleAndShiftNormalizer, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HorizontalLine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IntensityScaleAndShiftNormalizer" "', argument " "1"" of type '" "IntensityScaleAndShiftNormalizer *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HorizontalLine_getYpos" "', argument " "1"" of type '" "HorizontalLine const *""'"); 
   }
-  arg1 = reinterpret_cast< IntensityScaleAndShiftNormalizer * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< HorizontalLine * >(argp1);
+  result = (double)((HorizontalLine const *)arg1)->getYpos();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityScaleAndShiftNormalizer_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_HorizontalLine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IntensityScaleAndShiftNormalizer *arg1 = (IntensityScaleAndShiftNormalizer *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  HorizontalLine *arg1 = (HorizontalLine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityScaleAndShiftNormalizer_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityScaleAndShiftNormalizer, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HorizontalLine, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityScaleAndShiftNormalizer_accept" "', argument " "1"" of type '" "IntensityScaleAndShiftNormalizer const *""'"); 
-  }
-  arg1 = reinterpret_cast< IntensityScaleAndShiftNormalizer * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityScaleAndShiftNormalizer_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_HorizontalLine" "', argument " "1"" of type '" "HorizontalLine *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((IntensityScaleAndShiftNormalizer const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< HorizontalLine * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -45006,83 +45440,156 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityScaleAndShiftNormalizer_setMaximumIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *HorizontalLine_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_HorizontalLine, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *HorizontalLine_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_Polygon__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IntensityScaleAndShiftNormalizer *arg1 = (IntensityScaleAndShiftNormalizer *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  std::vector< double,std::allocator< double > > arg1 ;
+  std::vector< double,std::allocator< double > > arg2 ;
+  Polygon *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityScaleAndShiftNormalizer_setMaximumIntensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityScaleAndShiftNormalizer, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityScaleAndShiftNormalizer_setMaximumIntensity" "', argument " "1"" of type '" "IntensityScaleAndShiftNormalizer *""'"); 
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_Polygon" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+    }
+    arg1 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
   }
-  arg1 = reinterpret_cast< IntensityScaleAndShiftNormalizer * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityScaleAndShiftNormalizer_setMaximumIntensity" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setMaximumIntensity(arg2);
-  resultobj = SWIG_Py_Void();
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_Polygon" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+    }
+    arg2 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  result = (Polygon *)new Polygon(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Polygon, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityScaleAndShiftNormalizer_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Polygon__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IntensityScaleAndShiftNormalizer *arg1 = (IntensityScaleAndShiftNormalizer *) 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > arg1 ;
+  Polygon *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    int res = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_Polygon" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const""'"); 
+    }
+    arg1 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  result = (Polygon *)new Polygon(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Polygon, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_Polygon__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  PolygonPrivate *arg1 = (PolygonPrivate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IntensityScaleAndShiftNormalizer *result = 0 ;
+  Polygon *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityScaleAndShiftNormalizer, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolygonPrivate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityScaleAndShiftNormalizer_clone" "', argument " "1"" of type '" "IntensityScaleAndShiftNormalizer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Polygon" "', argument " "1"" of type '" "PolygonPrivate const *""'"); 
   }
-  arg1 = reinterpret_cast< IntensityScaleAndShiftNormalizer * >(argp1);
-  result = (IntensityScaleAndShiftNormalizer *)((IntensityScaleAndShiftNormalizer const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityScaleAndShiftNormalizer, 0 |  0 );
+  arg1 = reinterpret_cast< PolygonPrivate * >(argp1);
+  result = (Polygon *)new Polygon((PolygonPrivate const *)arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Polygon, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IntensityScaleAndShiftNormalizer_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IntensityScaleAndShiftNormalizer, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_new_Polygon(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Polygon", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_PolygonPrivate, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_Polygon__SWIG_2(self, argc, argv);
+    }
+  }
+  if (argc == 1) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_Polygon__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< double,std::allocator< double > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = swig::asptr(argv[1], (std::vector< double,std::allocator< double > >**)(0));
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_new_Polygon__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Polygon'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Polygon::Polygon(std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const)\n"
+    "    Polygon::Polygon(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const)\n"
+    "    Polygon::Polygon(PolygonPrivate const *)\n");
+  return 0;
 }
 
-SWIGINTERN PyObject *IntensityScaleAndShiftNormalizer_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
 
-SWIGINTERN PyObject *_wrap_delete_IVarianceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_Polygon(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IVarianceFunction *arg1 = (IVarianceFunction *) 0 ;
+  Polygon *arg1 = (Polygon *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IVarianceFunction, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Polygon, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IVarianceFunction" "', argument " "1"" of type '" "IVarianceFunction *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Polygon" "', argument " "1"" of type '" "Polygon *""'"); 
   }
-  arg1 = reinterpret_cast< IVarianceFunction * >(argp1);
+  arg1 = reinterpret_cast< Polygon * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -45091,32 +45598,32 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IVarianceFunction_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Polygon_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IVarianceFunction *arg1 = (IVarianceFunction *) 0 ;
+  Polygon *arg1 = (Polygon *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IVarianceFunction *result = 0 ;
+  Polygon *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IVarianceFunction, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Polygon, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IVarianceFunction_clone" "', argument " "1"" of type '" "IVarianceFunction const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Polygon_clone" "', argument " "1"" of type '" "Polygon const *""'"); 
   }
-  arg1 = reinterpret_cast< IVarianceFunction * >(argp1);
-  result = (IVarianceFunction *)((IVarianceFunction const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IVarianceFunction, 0 |  0 );
+  arg1 = reinterpret_cast< Polygon * >(argp1);
+  result = (Polygon *)((Polygon const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Polygon, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IVarianceFunction_variance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Polygon_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IVarianceFunction *arg1 = (IVarianceFunction *) 0 ;
+  Polygon *arg1 = (Polygon *) 0 ;
   double arg2 ;
   double arg3 ;
   void *argp1 = 0 ;
@@ -45125,129 +45632,190 @@ SWIGINTERN PyObject *_wrap_IVarianceFunction_variance(PyObject *SWIGUNUSEDPARM(s
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IVarianceFunction_variance", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IVarianceFunction, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Polygon, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IVarianceFunction_variance" "', argument " "1"" of type '" "IVarianceFunction const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Polygon_contains" "', argument " "1"" of type '" "Polygon const *""'"); 
   }
-  arg1 = reinterpret_cast< IVarianceFunction * >(argp1);
+  arg1 = reinterpret_cast< Polygon * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IVarianceFunction_variance" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Polygon_contains" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IVarianceFunction_variance" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Polygon_contains" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (double)((IVarianceFunction const *)arg1)->variance(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = (bool)((Polygon const *)arg1)->contains(arg2,arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IVarianceFunction_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IVarianceFunction, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_VarianceConstantFunction_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Polygon_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  VarianceConstantFunction *arg1 = (VarianceConstantFunction *) 0 ;
+  Polygon *arg1 = (Polygon *) 0 ;
+  Bin1D *arg2 = 0 ;
+  Bin1D *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  VarianceConstantFunction *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  bool result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VarianceConstantFunction, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Polygon, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VarianceConstantFunction_clone" "', argument " "1"" of type '" "VarianceConstantFunction const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Polygon_contains" "', argument " "1"" of type '" "Polygon const *""'"); 
   }
-  arg1 = reinterpret_cast< VarianceConstantFunction * >(argp1);
-  result = (VarianceConstantFunction *)((VarianceConstantFunction const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VarianceConstantFunction, 0 |  0 );
+  arg1 = reinterpret_cast< Polygon * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Polygon_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Polygon_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  }
+  arg2 = reinterpret_cast< Bin1D * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Polygon_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Polygon_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  arg3 = reinterpret_cast< Bin1D * >(argp3);
+  result = (bool)((Polygon const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_VarianceConstantFunction_variance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  VarianceConstantFunction *arg1 = (VarianceConstantFunction *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+SWIGINTERN PyObject *_wrap_Polygon_contains(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
   
-  if (!SWIG_Python_UnpackTuple(args, "VarianceConstantFunction_variance", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VarianceConstantFunction, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VarianceConstantFunction_variance" "', argument " "1"" of type '" "VarianceConstantFunction const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Polygon_contains", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Polygon, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_Polygon_contains__SWIG_1(self, argc, argv);
+        }
+      }
+    }
   }
-  arg1 = reinterpret_cast< VarianceConstantFunction * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "VarianceConstantFunction_variance" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "VarianceConstantFunction_variance" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((VarianceConstantFunction const *)arg1)->variance(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Polygon, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_Polygon_contains__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Polygon_contains'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Polygon::contains(double,double) const\n"
+    "    Polygon::contains(Bin1D const &,Bin1D const &) const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_VarianceConstantFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Polygon_getArea(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VarianceConstantFunction *result = 0 ;
+  Polygon *arg1 = (Polygon *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_VarianceConstantFunction", 0, 0, 0)) SWIG_fail;
-  result = (VarianceConstantFunction *)new VarianceConstantFunction();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VarianceConstantFunction, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Polygon, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Polygon_getArea" "', argument " "1"" of type '" "Polygon const *""'"); 
+  }
+  arg1 = reinterpret_cast< Polygon * >(argp1);
+  result = (double)((Polygon const *)arg1)->getArea();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_VarianceConstantFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Polygon_getPoints(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VarianceConstantFunction *arg1 = (VarianceConstantFunction *) 0 ;
+  Polygon *arg1 = (Polygon *) 0 ;
+  std::vector< double,std::allocator< double > > *arg2 = 0 ;
+  std::vector< double,std::allocator< double > > *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VarianceConstantFunction, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Polygon_getPoints", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Polygon, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_VarianceConstantFunction" "', argument " "1"" of type '" "VarianceConstantFunction *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Polygon_getPoints" "', argument " "1"" of type '" "Polygon const *""'"); 
   }
-  arg1 = reinterpret_cast< VarianceConstantFunction * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< Polygon * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__vectorT_double_std__allocatorT_double_t_t,  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Polygon_getPoints" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Polygon_getPoints" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > &""'"); 
+  }
+  arg2 = reinterpret_cast< std::vector< double,std::allocator< double > > * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_std__vectorT_double_std__allocatorT_double_t_t,  0 );
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Polygon_getPoints" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Polygon_getPoints" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > &""'"); 
+  }
+  arg3 = reinterpret_cast< std::vector< double,std::allocator< double > > * >(argp3);
+  ((Polygon const *)arg1)->getPoints(*arg2,*arg3);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -45255,108 +45823,89 @@ fail:
 }
 
 
-SWIGINTERN PyObject *VarianceConstantFunction_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Polygon_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_VarianceConstantFunction, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_Polygon, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *VarianceConstantFunction_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Polygon_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_VarianceSimFunction__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_Rectangle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
   double val1 ;
   int ecode1 = 0 ;
-  VarianceSimFunction *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  Rectangle *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_Rectangle", 4, 4, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_VarianceSimFunction" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Rectangle" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  result = (VarianceSimFunction *)new VarianceSimFunction(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VarianceSimFunction, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_VarianceSimFunction__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  VarianceSimFunction *result = 0 ;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (VarianceSimFunction *)new VarianceSimFunction();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VarianceSimFunction, SWIG_POINTER_NEW |  0 );
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Rectangle" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Rectangle" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_Rectangle" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (Rectangle *)new Rectangle(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Rectangle, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_VarianceSimFunction(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_VarianceSimFunction", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_VarianceSimFunction__SWIG_1(self, argc, argv);
-  }
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_new_VarianceSimFunction__SWIG_0(self, argc, argv);
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_VarianceSimFunction'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    VarianceSimFunction::VarianceSimFunction(double)\n"
-    "    VarianceSimFunction::VarianceSimFunction()\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_VarianceSimFunction_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Rectangle_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VarianceSimFunction *arg1 = (VarianceSimFunction *) 0 ;
+  Rectangle *arg1 = (Rectangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  VarianceSimFunction *result = 0 ;
+  Rectangle *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VarianceSimFunction, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VarianceSimFunction_clone" "', argument " "1"" of type '" "VarianceSimFunction const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_clone" "', argument " "1"" of type '" "Rectangle const *""'"); 
   }
-  arg1 = reinterpret_cast< VarianceSimFunction * >(argp1);
-  result = (VarianceSimFunction *)((VarianceSimFunction const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VarianceSimFunction, 0 |  0 );
+  arg1 = reinterpret_cast< Rectangle * >(argp1);
+  result = (Rectangle *)((Rectangle const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Rectangle, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_VarianceSimFunction_variance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Rectangle_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  VarianceSimFunction *arg1 = (VarianceSimFunction *) 0 ;
+  Rectangle *arg1 = (Rectangle *) 0 ;
   double arg2 ;
   double arg3 ;
   void *argp1 = 0 ;
@@ -45365,216 +45914,193 @@ SWIGINTERN PyObject *_wrap_VarianceSimFunction_variance(PyObject *SWIGUNUSEDPARM
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "VarianceSimFunction_variance", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VarianceSimFunction, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VarianceSimFunction_variance" "', argument " "1"" of type '" "VarianceSimFunction const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_contains" "', argument " "1"" of type '" "Rectangle const *""'"); 
   }
-  arg1 = reinterpret_cast< VarianceSimFunction * >(argp1);
+  arg1 = reinterpret_cast< Rectangle * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "VarianceSimFunction_variance" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Rectangle_contains" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "VarianceSimFunction_variance" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Rectangle_contains" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (double)((VarianceSimFunction const *)arg1)->variance(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = (bool)((Rectangle const *)arg1)->contains(arg2,arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_VarianceSimFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Rectangle_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  VarianceSimFunction *arg1 = (VarianceSimFunction *) 0 ;
+  Rectangle *arg1 = (Rectangle *) 0 ;
+  Bin1D *arg2 = 0 ;
+  Bin1D *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  bool result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VarianceSimFunction, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_VarianceSimFunction" "', argument " "1"" of type '" "VarianceSimFunction *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_contains" "', argument " "1"" of type '" "Rectangle const *""'"); 
   }
-  arg1 = reinterpret_cast< VarianceSimFunction * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *VarianceSimFunction_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_VarianceSimFunction, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *VarianceSimFunction_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_ChiSquaredModule__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  ChiSquaredModule *result = 0 ;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (ChiSquaredModule *)new ChiSquaredModule();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ChiSquaredModule, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_ChiSquaredModule__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  ChiSquaredModule *arg1 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  ChiSquaredModule *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_ChiSquaredModule,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ChiSquaredModule" "', argument " "1"" of type '" "ChiSquaredModule const &""'"); 
+  arg1 = reinterpret_cast< Rectangle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Rectangle_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
   }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ChiSquaredModule" "', argument " "1"" of type '" "ChiSquaredModule const &""'"); 
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Rectangle_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
   }
-  arg1 = reinterpret_cast< ChiSquaredModule * >(argp1);
-  result = (ChiSquaredModule *)new ChiSquaredModule((ChiSquaredModule const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ChiSquaredModule, SWIG_POINTER_NEW |  0 );
+  arg2 = reinterpret_cast< Bin1D * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Rectangle_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Rectangle_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  }
+  arg3 = reinterpret_cast< Bin1D * >(argp3);
+  result = (bool)((Rectangle const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ChiSquaredModule(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_Rectangle_contains(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[2] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ChiSquaredModule", 0, 1, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Rectangle_contains", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_ChiSquaredModule__SWIG_0(self, argc, argv);
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Rectangle, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_Rectangle_contains__SWIG_1(self, argc, argv);
+        }
+      }
+    }
   }
-  if (argc == 1) {
+  if (argc == 3) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_ChiSquaredModule, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Rectangle, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_ChiSquaredModule__SWIG_1(self, argc, argv);
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_Rectangle_contains__SWIG_0(self, argc, argv);
+        }
+      }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ChiSquaredModule'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Rectangle_contains'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    ChiSquaredModule::ChiSquaredModule()\n"
-    "    ChiSquaredModule::ChiSquaredModule(ChiSquaredModule const &)\n");
+    "    Rectangle::contains(double,double) const\n"
+    "    Rectangle::contains(Bin1D const &,Bin1D const &) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ChiSquaredModule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Rectangle_getArea(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ChiSquaredModule *arg1 = (ChiSquaredModule *) 0 ;
+  Rectangle *arg1 = (Rectangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ChiSquaredModule, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ChiSquaredModule" "', argument " "1"" of type '" "ChiSquaredModule *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_getArea" "', argument " "1"" of type '" "Rectangle const *""'"); 
   }
-  arg1 = reinterpret_cast< ChiSquaredModule * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Rectangle * >(argp1);
+  result = (double)((Rectangle const *)arg1)->getArea();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ChiSquaredModule_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Rectangle_getXlow(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ChiSquaredModule *arg1 = (ChiSquaredModule *) 0 ;
+  Rectangle *arg1 = (Rectangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  ChiSquaredModule *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ChiSquaredModule, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ChiSquaredModule_clone" "', argument " "1"" of type '" "ChiSquaredModule const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_getXlow" "', argument " "1"" of type '" "Rectangle const *""'"); 
   }
-  arg1 = reinterpret_cast< ChiSquaredModule * >(argp1);
-  result = (ChiSquaredModule *)((ChiSquaredModule const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ChiSquaredModule, 0 |  0 );
+  arg1 = reinterpret_cast< Rectangle * >(argp1);
+  result = (double)((Rectangle const *)arg1)->getXlow();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ChiSquaredModule_residual(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Rectangle_getYlow(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ChiSquaredModule *arg1 = (ChiSquaredModule *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
+  Rectangle *arg1 = (Rectangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
+  PyObject *swig_obj[1] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ChiSquaredModule_residual", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ChiSquaredModule, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ChiSquaredModule_residual" "', argument " "1"" of type '" "ChiSquaredModule *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_getYlow" "', argument " "1"" of type '" "Rectangle const *""'"); 
   }
-  arg1 = reinterpret_cast< ChiSquaredModule * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ChiSquaredModule_residual" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ChiSquaredModule_residual" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "ChiSquaredModule_residual" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (double)(arg1)->residual(arg2,arg3,arg4);
+  arg1 = reinterpret_cast< Rectangle * >(argp1);
+  result = (double)((Rectangle const *)arg1)->getYlow();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -45582,33 +46108,32 @@ fail:
 }
 
 
-SWIGINTERN PyObject *ChiSquaredModule_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ChiSquaredModule, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *ChiSquaredModule_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FitOptions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Rectangle_getXup(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitOptions *result = 0 ;
+  Rectangle *arg1 = (Rectangle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FitOptions", 0, 0, 0)) SWIG_fail;
-  result = (FitOptions *)new FitOptions();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FitOptions, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_getXup" "', argument " "1"" of type '" "Rectangle const *""'"); 
+  }
+  arg1 = reinterpret_cast< Rectangle * >(argp1);
+  result = (double)((Rectangle const *)arg1)->getXup();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitOptions_derivEpsilon(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Rectangle_getYup(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitOptions *arg1 = (FitOptions *) 0 ;
+  Rectangle *arg1 = (Rectangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -45616,12 +46141,12 @@ SWIGINTERN PyObject *_wrap_FitOptions_derivEpsilon(PyObject *SWIGUNUSEDPARM(self
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitOptions, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitOptions_derivEpsilon" "', argument " "1"" of type '" "FitOptions const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_getYup" "', argument " "1"" of type '" "Rectangle const *""'"); 
   }
-  arg1 = reinterpret_cast< FitOptions * >(argp1);
-  result = (double)((FitOptions const *)arg1)->derivEpsilon();
+  arg1 = reinterpret_cast< Rectangle * >(argp1);
+  result = (double)((Rectangle const *)arg1)->getYup();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -45629,28 +46154,21 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FitOptions_setDerivEpsilon(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_Rectangle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitOptions *arg1 = (FitOptions *) 0 ;
-  double arg2 ;
+  Rectangle *arg1 = (Rectangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FitOptions_setDerivEpsilon", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitOptions, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitOptions_setDerivEpsilon" "', argument " "1"" of type '" "FitOptions *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Rectangle" "', argument " "1"" of type '" "Rectangle *""'"); 
   }
-  arg1 = reinterpret_cast< FitOptions * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitOptions_setDerivEpsilon" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setDerivEpsilon(arg2);
+  arg1 = reinterpret_cast< Rectangle * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -45658,203 +46176,343 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FitOptions_stepFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Rectangle_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_Rectangle, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *Rectangle_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_ISample__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FitOptions *arg1 = (FitOptions *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  PyObject *arg1 = (PyObject *) 0 ;
+  ISample *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitOptions_stepFactor" "', argument " "1"" of type '" "FitOptions const *""'"); 
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  arg1 = swig_obj[0];
+  if ( arg1 != Py_None ) {
+    /* subclassed */
+    result = (ISample *)new SwigDirector_ISample(arg1); 
+  } else {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
+    SWIG_fail;
   }
-  arg1 = reinterpret_cast< FitOptions * >(argp1);
-  result = (double)((FitOptions const *)arg1)->stepFactor();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ISample, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitOptions_setStepFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ISample__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FitOptions *arg1 = (FitOptions *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *arg1 = (PyObject *) 0 ;
+  INode *arg2 = (INode *) 0 ;
+  SwigValueWrapper< std::vector< char const *,std::allocator< char const * > > > arg3 ;
+  SwigValueWrapper< std::vector< char const *,std::allocator< char const * > > > arg4 ;
+  std::vector< double,std::allocator< double > > arg5 ;
+  std::vector< double,std::allocator< double > > arg6 ;
+  std::vector< double,std::allocator< double > > arg7 ;
+  std::vector< double,std::allocator< double > > arg8 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  void *argp4 ;
+  int res4 = 0 ;
+  ISample *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FitOptions_setStepFactor", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitOptions_setStepFactor" "', argument " "1"" of type '" "FitOptions *""'"); 
+  if ((nobjs < 8) || (nobjs > 8)) SWIG_fail;
+  arg1 = swig_obj[0];
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INode, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ISample" "', argument " "2"" of type '" "INode const *""'"); 
   }
-  arg1 = reinterpret_cast< FitOptions * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitOptions_setStepFactor" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setStepFactor(arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = reinterpret_cast< INode * >(argp2);
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_ISample" "', argument " "3"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ISample" "', argument " "3"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'");
+    } else {
+      std::vector< char const *,std::allocator< char const * > > * temp = reinterpret_cast< std::vector< char const *,std::allocator< char const * > > * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  {
+    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t,  0  | 0);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_ISample" "', argument " "4"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'"); 
+    }  
+    if (!argp4) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ISample" "', argument " "4"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'");
+    } else {
+      std::vector< char const *,std::allocator< char const * > > * temp = reinterpret_cast< std::vector< char const *,std::allocator< char const * > > * >(argp4);
+      arg4 = *temp;
+      if (SWIG_IsNewObj(res4)) delete temp;
+    }
+  }
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[4], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_ISample" "', argument " "5"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+    }
+    arg5 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[5], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_ISample" "', argument " "6"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+    }
+    arg6 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[6], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_ISample" "', argument " "7"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+    }
+    arg7 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[7], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_ISample" "', argument " "8"" of type '" "std::vector< double,std::allocator< double > >""'"); 
+    }
+    arg8 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  if ( arg1 != Py_None ) {
+    /* subclassed */
+    result = (ISample *)new SwigDirector_ISample(arg1,(INode const *)arg2,arg3,arg4,arg5,arg6,arg7,arg8); 
+  } else {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
+    SWIG_fail;
+  }
+  
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ISample, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FitOptions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ISample(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[9] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ISample", 0, 8, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    _v = (argv[0] != 0);
+    if (_v) {
+      return _wrap_new_ISample__SWIG_0(self, argc, argv);
+    }
+  }
+  if (argc == 8) {
+    int _v;
+    _v = (argv[0] != 0);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_INode, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            int res = swig::asptr(argv[4], (std::vector< double,std::allocator< double > >**)(0));
+            _v = SWIG_CheckState(res);
+            if (_v) {
+              int res = swig::asptr(argv[5], (std::vector< double,std::allocator< double > >**)(0));
+              _v = SWIG_CheckState(res);
+              if (_v) {
+                int res = swig::asptr(argv[6], (std::vector< double,std::allocator< double > >**)(0));
+                _v = SWIG_CheckState(res);
+                if (_v) {
+                  int res = swig::asptr(argv[7], (std::vector< double,std::allocator< double > >**)(0));
+                  _v = SWIG_CheckState(res);
+                  if (_v) {
+                    return _wrap_new_ISample__SWIG_1(self, argc, argv);
+                  }
+                }
+              }
+            }
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ISample'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    ISample::ISample()\n"
+    "    ISample::ISample(PyObject *,INode const *,std::vector< char const *,std::allocator< char const * > > const,std::vector< char const *,std::allocator< char const * > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > >)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_ISample_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitOptions *arg1 = (FitOptions *) 0 ;
+  ISample *arg1 = (ISample *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  ISample *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitOptions, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISample, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FitOptions" "', argument " "1"" of type '" "FitOptions *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ISample_clone" "', argument " "1"" of type '" "ISample const *""'"); 
+  }
+  arg1 = reinterpret_cast< ISample * >(argp1);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      Swig::DirectorPureVirtualException::raise("ISample::clone");
+    } else {
+      result = (ISample *)((ISample const *)arg1)->clone();
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ISample, 0 |  0 );
+  }
+  if (director) {
+    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
   }
-  arg1 = reinterpret_cast< FitOptions * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FitOptions_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FitOptions, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FitOptions_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_PyBuilderCallback(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ISample_material(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PyObject *arg1 = (PyObject *) 0 ;
+  ISample *arg1 = (ISample *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  PyBuilderCallback *result = 0 ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  Material *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  arg1 = swig_obj[0];
-  if ( arg1 != Py_None ) {
-    /* subclassed */
-    result = (PyBuilderCallback *)new SwigDirector_PyBuilderCallback(arg1); 
-  } else {
-    result = (PyBuilderCallback *)new PyBuilderCallback(); 
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISample, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ISample_material" "', argument " "1"" of type '" "ISample const *""'"); 
+  }
+  arg1 = reinterpret_cast< ISample * >(argp1);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (Material *)((ISample const *)arg1)->ISample::material();
+    } else {
+      result = (Material *)((ISample const *)arg1)->material();
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Material, 0 |  0 );
+  if (director) {
+    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
   }
-  
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_PyBuilderCallback(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ISample_containedMaterials(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PyBuilderCallback *arg1 = (PyBuilderCallback *) 0 ;
+  ISample *arg1 = (ISample *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  SwigValueWrapper< std::vector< Material const *,std::allocator< Material const * > > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISample, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PyBuilderCallback" "', argument " "1"" of type '" "PyBuilderCallback *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ISample_containedMaterials" "', argument " "1"" of type '" "ISample const *""'"); 
   }
-  arg1 = reinterpret_cast< PyBuilderCallback * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ISample * >(argp1);
+  result = ((ISample const *)arg1)->containedMaterials();
+  resultobj = SWIG_NewPointerObj((new std::vector< Material const *,std::allocator< Material const * > >(static_cast< const std::vector< Material const *,std::allocator< Material const * > >& >(result))), SWIGTYPE_p_std__vectorT_Material_const_p_std__allocatorT_Material_const_p_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PyBuilderCallback_build_simulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_ISample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PyBuilderCallback *arg1 = (PyBuilderCallback *) 0 ;
-  Fit::Parameters arg2 ;
+  ISample *arg1 = (ISample *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  Simulation *result = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "PyBuilderCallback_build_simulation", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PyBuilderCallback, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISample, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PyBuilderCallback_build_simulation" "', argument " "1"" of type '" "PyBuilderCallback *""'"); 
-  }
-  arg1 = reinterpret_cast< PyBuilderCallback * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Fit__Parameters,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PyBuilderCallback_build_simulation" "', argument " "2"" of type '" "Fit::Parameters""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PyBuilderCallback_build_simulation" "', argument " "2"" of type '" "Fit::Parameters""'");
-    } else {
-      Fit::Parameters * temp = reinterpret_cast< Fit::Parameters * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = (Simulation *)(arg1)->PyBuilderCallback::build_simulation(arg2);
-    } else {
-      result = (Simulation *)(arg1)->build_simulation(arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Simulation, 0 |  0 );
-  if (director) {
-    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ISample" "', argument " "1"" of type '" "ISample *""'"); 
   }
+  arg1 = reinterpret_cast< ISample * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_disown_PyBuilderCallback(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_disown_ISample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PyBuilderCallback *arg1 = (PyBuilderCallback *) 0 ;
+  ISample *arg1 = (ISample *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PyBuilderCallback, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISample, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_PyBuilderCallback" "', argument " "1"" of type '" "PyBuilderCallback *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_ISample" "', argument " "1"" of type '" "ISample *""'"); 
   }
-  arg1 = reinterpret_cast< PyBuilderCallback * >(argp1);
+  arg1 = reinterpret_cast< ISample * >(argp1);
   {
     Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
     if (director) director->swig_disown();
@@ -45867,54 +46525,216 @@ fail:
 }
 
 
-SWIGINTERN PyObject *PyBuilderCallback_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ISample_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_PyBuilderCallback, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_ISample, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *PyBuilderCallback_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ISample_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_PyObserverCallback(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IFormFactor__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   PyObject *arg1 = (PyObject *) 0 ;
-  PyObject *swig_obj[1] ;
-  PyObserverCallback *result = 0 ;
+  IFormFactor *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
   arg1 = swig_obj[0];
   if ( arg1 != Py_None ) {
     /* subclassed */
-    result = (PyObserverCallback *)new SwigDirector_PyObserverCallback(arg1); 
+    result = (IFormFactor *)new SwigDirector_IFormFactor(arg1); 
   } else {
-    result = (PyObserverCallback *)new PyObserverCallback(); 
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
+    SWIG_fail;
   }
   
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PyObserverCallback, SWIG_POINTER_NEW |  0 );
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_PyObserverCallback(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IFormFactor__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  PyObserverCallback *arg1 = (PyObserverCallback *) 0 ;
+  PyObject *arg1 = (PyObject *) 0 ;
+  INode *arg2 = (INode *) 0 ;
+  SwigValueWrapper< std::vector< char const *,std::allocator< char const * > > > arg3 ;
+  SwigValueWrapper< std::vector< char const *,std::allocator< char const * > > > arg4 ;
+  std::vector< double,std::allocator< double > > arg5 ;
+  std::vector< double,std::allocator< double > > arg6 ;
+  std::vector< double,std::allocator< double > > arg7 ;
+  std::vector< double,std::allocator< double > > arg8 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  void *argp4 ;
+  int res4 = 0 ;
+  IFormFactor *result = 0 ;
+  
+  if ((nobjs < 8) || (nobjs > 8)) SWIG_fail;
+  arg1 = swig_obj[0];
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INode, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_IFormFactor" "', argument " "2"" of type '" "INode const *""'"); 
+  }
+  arg2 = reinterpret_cast< INode * >(argp2);
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_IFormFactor" "', argument " "3"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_IFormFactor" "', argument " "3"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'");
+    } else {
+      std::vector< char const *,std::allocator< char const * > > * temp = reinterpret_cast< std::vector< char const *,std::allocator< char const * > > * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  {
+    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t,  0  | 0);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_IFormFactor" "', argument " "4"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'"); 
+    }  
+    if (!argp4) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_IFormFactor" "', argument " "4"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'");
+    } else {
+      std::vector< char const *,std::allocator< char const * > > * temp = reinterpret_cast< std::vector< char const *,std::allocator< char const * > > * >(argp4);
+      arg4 = *temp;
+      if (SWIG_IsNewObj(res4)) delete temp;
+    }
+  }
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[4], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactor" "', argument " "5"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+    }
+    arg5 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[5], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactor" "', argument " "6"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+    }
+    arg6 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[6], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactor" "', argument " "7"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+    }
+    arg7 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[7], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactor" "', argument " "8"" of type '" "std::vector< double,std::allocator< double > >""'"); 
+    }
+    arg8 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  if ( arg1 != Py_None ) {
+    /* subclassed */
+    result = (IFormFactor *)new SwigDirector_IFormFactor(arg1,(INode const *)arg2,arg3,arg4,arg5,arg6,arg7,arg8); 
+  } else {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
+    SWIG_fail;
+  }
+  
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_IFormFactor(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[9] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_IFormFactor", 0, 8, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    _v = (argv[0] != 0);
+    if (_v) {
+      return _wrap_new_IFormFactor__SWIG_0(self, argc, argv);
+    }
+  }
+  if (argc == 8) {
+    int _v;
+    _v = (argv[0] != 0);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_INode, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            int res = swig::asptr(argv[4], (std::vector< double,std::allocator< double > >**)(0));
+            _v = SWIG_CheckState(res);
+            if (_v) {
+              int res = swig::asptr(argv[5], (std::vector< double,std::allocator< double > >**)(0));
+              _v = SWIG_CheckState(res);
+              if (_v) {
+                int res = swig::asptr(argv[6], (std::vector< double,std::allocator< double > >**)(0));
+                _v = SWIG_CheckState(res);
+                if (_v) {
+                  int res = swig::asptr(argv[7], (std::vector< double,std::allocator< double > >**)(0));
+                  _v = SWIG_CheckState(res);
+                  if (_v) {
+                    return _wrap_new_IFormFactor__SWIG_1(self, argc, argv);
+                  }
+                }
+              }
+            }
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_IFormFactor'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IFormFactor::IFormFactor()\n"
+    "    IFormFactor::IFormFactor(PyObject *,INode const *,std::vector< char const *,std::allocator< char const * > > const,std::vector< char const *,std::allocator< char const * > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > >)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_IFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IFormFactor *arg1 = (IFormFactor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PyObserverCallback, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PyObserverCallback" "', argument " "1"" of type '" "PyObserverCallback *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFormFactor" "', argument " "1"" of type '" "IFormFactor *""'"); 
   }
-  arg1 = reinterpret_cast< PyObserverCallback * >(argp1);
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -45923,69 +46743,164 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_PyObserverCallback_update(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactor_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PyObserverCallback *arg1 = (PyObserverCallback *) 0 ;
-  FitObjective *arg2 = 0 ;
+  IFormFactor *arg1 = (IFormFactor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   Swig::Director *director = 0;
   bool upcall = false;
+  IFormFactor *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "PyObserverCallback_update", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PyObserverCallback, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PyObserverCallback_update" "', argument " "1"" of type '" "PyObserverCallback *""'"); 
-  }
-  arg1 = reinterpret_cast< PyObserverCallback * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_FitObjective,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PyObserverCallback_update" "', argument " "2"" of type '" "FitObjective const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PyObserverCallback_update" "', argument " "2"" of type '" "FitObjective const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_clone" "', argument " "1"" of type '" "IFormFactor const *""'"); 
   }
-  arg2 = reinterpret_cast< FitObjective * >(argp2);
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
   director = SWIG_DIRECTOR_CAST(arg1);
   upcall = (director && (director->swig_get_self()==swig_obj[0]));
   try {
     if (upcall) {
-      (arg1)->PyObserverCallback::update((FitObjective const &)*arg2);
+      Swig::DirectorPureVirtualException::raise("IFormFactor::clone");
     } else {
-      (arg1)->update((FitObjective const &)*arg2);
+      result = (IFormFactor *)((IFormFactor const *)arg1)->clone();
     }
   } catch (Swig::DirectorException&) {
     SWIG_fail;
   }
-  resultobj = SWIG_Py_Void();
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  }
+  if (director) {
+    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
+  }
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_disown_PyObserverCallback(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactor_createSlicedFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PyObserverCallback *arg1 = (PyObserverCallback *) 0 ;
+  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  ZLimits arg2 ;
+  IRotation *arg3 = 0 ;
+  kvector_t arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  void *argp4 ;
+  int res4 = 0 ;
+  PyObject *swig_obj[4] ;
+  Swig::Director *director = 0;
+  IFormFactor *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PyObserverCallback, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_createSlicedFormFactor", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_PyObserverCallback" "', argument " "1"" of type '" "PyObserverCallback *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "1"" of type '" "IFormFactor const *""'"); 
   }
-  arg1 = reinterpret_cast< PyObserverCallback * >(argp1);
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
   {
-    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
-    if (director) director->swig_disown();
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "2"" of type '" "ZLimits""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "2"" of type '" "ZLimits""'");
+    } else {
+      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "3"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "3"" of type '" "IRotation const &""'"); 
+  }
+  arg3 = reinterpret_cast< IRotation * >(argp3);
+  {
+    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "4"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp4) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "4"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
+      arg4 = *temp;
+      if (SWIG_IsNewObj(res4)) delete temp;
+    }
+  }
+  result = (IFormFactor *)((IFormFactor const *)arg1)->createSlicedFormFactor(arg2,(IRotation const &)*arg3,arg4);
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
   }
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IFormFactor_setAmbientMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  SwigValueWrapper< Material > arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
   
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_setAmbientMaterial", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_setAmbientMaterial" "', argument " "1"" of type '" "IFormFactor *""'"); 
+  }
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_setAmbientMaterial" "', argument " "2"" of type '" "Material""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_setAmbientMaterial" "', argument " "2"" of type '" "Material""'");
+    } else {
+      Material * temp = reinterpret_cast< Material * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      Swig::DirectorPureVirtualException::raise("IFormFactor::setAmbientMaterial");
+    } else {
+      (arg1)->setAmbientMaterial(arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -45993,66 +46908,125 @@ fail:
 }
 
 
-SWIGINTERN PyObject *PyObserverCallback_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_PyObserverCallback, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_IFormFactor_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  WavevectorInfo *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  complex_t result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_evaluate" "', argument " "1"" of type '" "IFormFactor const *""'"); 
+  }
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_WavevectorInfo,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+  }
+  arg2 = reinterpret_cast< WavevectorInfo * >(argp2);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      Swig::DirectorPureVirtualException::raise("IFormFactor::evaluate");
+    } else {
+      result = ((IFormFactor const *)arg1)->evaluate((WavevectorInfo const &)*arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *PyObserverCallback_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
 
-SWIGINTERN PyObject *_wrap_new_FitObjective(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactor_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PyObject *arg1 = (PyObject *) 0 ;
+  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FitObjective *result = 0 ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  arg1 = swig_obj[0];
-  if ( arg1 != Py_None ) {
-    /* subclassed */
-    result = (FitObjective *)new SwigDirector_FitObjective(arg1); 
-  } else {
-    result = (FitObjective *)new FitObjective(); 
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_volume" "', argument " "1"" of type '" "IFormFactor const *""'"); 
   }
-  
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FitObjective, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (double)((IFormFactor const *)arg1)->IFormFactor::volume();
+    } else {
+      result = (double)((IFormFactor const *)arg1)->volume();
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FitObjective(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactor_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  IFormFactor *arg1 = (IFormFactor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FitObjective" "', argument " "1"" of type '" "FitObjective *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_radialExtension" "', argument " "1"" of type '" "IFormFactor const *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      Swig::DirectorPureVirtualException::raise("IFormFactor::radialExtension");
+    } else {
+      result = (double)((IFormFactor const *)arg1)->radialExtension();
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_evaluate_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactor_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  Fit::Parameters *arg2 = 0 ;
+  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
@@ -46062,27 +47036,27 @@ SWIGINTERN PyObject *_wrap_FitObjective_evaluate_cpp(PyObject *SWIGUNUSEDPARM(se
   bool upcall = false;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FitObjective_evaluate_cpp", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_bottomZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_evaluate_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_bottomZ" "', argument " "1"" of type '" "IFormFactor const *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Fit__Parameters,  0  | 0);
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_evaluate_cpp" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_evaluate_cpp" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  arg2 = reinterpret_cast< Fit::Parameters * >(argp2);
+  arg2 = reinterpret_cast< IRotation * >(argp2);
   director = SWIG_DIRECTOR_CAST(arg1);
   upcall = (director && (director->swig_get_self()==swig_obj[0]));
   try {
     if (upcall) {
-      result = (double)(arg1)->FitObjective::evaluate((Fit::Parameters const &)*arg2);
+      Swig::DirectorPureVirtualException::raise("IFormFactor::bottomZ");
     } else {
-      result = (double)(arg1)->evaluate((Fit::Parameters const &)*arg2);
+      result = (double)((IFormFactor const *)arg1)->bottomZ((IRotation const &)*arg2);
     }
   } catch (Swig::DirectorException&) {
     SWIG_fail;
@@ -46094,10 +47068,10 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_evaluate_residuals_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactor_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  Fit::Parameters *arg2 = 0 ;
+  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
@@ -46105,637 +47079,827 @@ SWIGINTERN PyObject *_wrap_FitObjective_evaluate_residuals_cpp(PyObject *SWIGUNU
   PyObject *swig_obj[2] ;
   Swig::Director *director = 0;
   bool upcall = false;
-  std::vector< double,std::allocator< double > > result;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FitObjective_evaluate_residuals_cpp", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_topZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_evaluate_residuals_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_topZ" "', argument " "1"" of type '" "IFormFactor const *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Fit__Parameters,  0  | 0);
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_evaluate_residuals_cpp" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_evaluate_residuals_cpp" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  arg2 = reinterpret_cast< Fit::Parameters * >(argp2);
+  arg2 = reinterpret_cast< IRotation * >(argp2);
   director = SWIG_DIRECTOR_CAST(arg1);
   upcall = (director && (director->swig_get_self()==swig_obj[0]));
   try {
     if (upcall) {
-      result = (arg1)->FitObjective::evaluate_residuals((Fit::Parameters const &)*arg2);
+      Swig::DirectorPureVirtualException::raise("IFormFactor::topZ");
     } else {
-      result = (arg1)->evaluate_residuals((Fit::Parameters const &)*arg2);
+      result = (double)((IFormFactor const *)arg1)->topZ((IRotation const &)*arg2);
     }
   } catch (Swig::DirectorException&) {
     SWIG_fail;
   }
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_numberOfFitElements(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactor_canSliceAnalytically(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  SwigDirector_IFormFactor *darg = 0;
+  bool result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_canSliceAnalytically", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_numberOfFitElements" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_canSliceAnalytically" "', argument " "1"" of type '" "IFormFactor const *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = ((FitObjective const *)arg1)->numberOfFitElements();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_canSliceAnalytically" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_canSliceAnalytically" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  if (!director || !(director->swig_get_inner("canSliceAnalytically"))) {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing protected member canSliceAnalytically");
+    SWIG_fail;
+  }
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    darg = dynamic_cast<SwigDirector_IFormFactor *>(arg1);
+    if (upcall) {
+      result = (bool)((SwigDirector_IFormFactor const *)darg)->canSliceAnalyticallySwigPublic((IRotation const &)*arg2);
+    } else {
+      result = (bool)((SwigDirector_IFormFactor const *)darg)->canSliceAnalytically((IRotation const &)*arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_simulationResult__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IFormFactor_sliceFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  size_t arg2 ;
+  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  ZLimits arg2 ;
+  IRotation *arg3 = 0 ;
+  kvector_t arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  SimulationResult result;
+  void *argp2 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  void *argp4 ;
+  int res4 = 0 ;
+  PyObject *swig_obj[4] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  SwigDirector_IFormFactor *darg = 0;
+  IFormFactor *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_sliceFormFactor", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_simulationResult" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_sliceFormFactor" "', argument " "1"" of type '" "IFormFactor const *""'"); 
+  }
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_sliceFormFactor" "', argument " "2"" of type '" "ZLimits""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_sliceFormFactor" "', argument " "2"" of type '" "ZLimits""'");
+    } else {
+      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IFormFactor_sliceFormFactor" "', argument " "3"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_sliceFormFactor" "', argument " "3"" of type '" "IRotation const &""'"); 
+  }
+  arg3 = reinterpret_cast< IRotation * >(argp3);
+  {
+    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "IFormFactor_sliceFormFactor" "', argument " "4"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp4) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_sliceFormFactor" "', argument " "4"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
+      arg4 = *temp;
+      if (SWIG_IsNewObj(res4)) delete temp;
+    }
+  }
+  director = SWIG_DIRECTOR_CAST(arg1);
+  if (!director || !(director->swig_get_inner("sliceFormFactor"))) {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing protected member sliceFormFactor");
+    SWIG_fail;
+  }
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    darg = dynamic_cast<SwigDirector_IFormFactor *>(arg1);
+    if (upcall) {
+      result = (IFormFactor *)((SwigDirector_IFormFactor const *)darg)->sliceFormFactorSwigPublic(arg2,(IRotation const &)*arg3,arg4);
+    } else {
+      result = (IFormFactor *)((SwigDirector_IFormFactor const *)darg)->sliceFormFactor(arg2,(IRotation const &)*arg3,arg4);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  }
+  if (director) {
+    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_simulationResult" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((FitObjective const *)arg1)->simulationResult(arg2);
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_simulationResult__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_disown_IFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  IFormFactor *arg1 = (IFormFactor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  SimulationResult result;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_simulationResult" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_IFormFactor" "', argument " "1"" of type '" "IFormFactor *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = ((FitObjective const *)arg1)->simulationResult();
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
+  {
+    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
+    if (director) director->swig_disown();
+  }
+  
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_simulationResult(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_simulationResult", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_FitObjective_simulationResult__SWIG_1(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_FitObjective_simulationResult__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_simulationResult'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    FitObjective::simulationResult(size_t) const\n"
-    "    FitObjective::simulationResult() const\n");
-  return 0;
+SWIGINTERN PyObject *IFormFactor_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IFormFactor, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *IFormFactor_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_FitObjective_experimentalData__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_CreateTransformedFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  size_t arg2 ;
+  IFormFactor *arg1 = 0 ;
+  IRotation *arg2 = 0 ;
+  kvector_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  SimulationResult result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
+  IFormFactor *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "CreateTransformedFormFactor", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IFormFactor,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_experimentalData" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "CreateTransformedFormFactor" "', argument " "1"" of type '" "IFormFactor const &""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_experimentalData" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((FitObjective const *)arg1)->experimentalData(arg2);
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "CreateTransformedFormFactor" "', argument " "1"" of type '" "IFormFactor const &""'"); 
+  }
+  arg1 = reinterpret_cast< IFormFactor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "CreateTransformedFormFactor" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "CreateTransformedFormFactor" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "CreateTransformedFormFactor" "', argument " "3"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "CreateTransformedFormFactor" "', argument " "3"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = (IFormFactor *)CreateTransformedFormFactor((IFormFactor const &)*arg1,(IRotation const &)*arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_experimentalData__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_IFormFactorBorn__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  SimulationResult result;
+  PyObject *arg1 = (PyObject *) 0 ;
+  IFormFactorBorn *result = 0 ;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_experimentalData" "', argument " "1"" of type '" "FitObjective const *""'"); 
+  arg1 = swig_obj[0];
+  if ( arg1 != Py_None ) {
+    /* subclassed */
+    result = (IFormFactorBorn *)new SwigDirector_IFormFactorBorn(arg1); 
+  } else {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
+    SWIG_fail;
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = ((FitObjective const *)arg1)->experimentalData();
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
+  
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactorBorn, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_experimentalData(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_new_IFormFactorBorn__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  PyObject *arg1 = (PyObject *) 0 ;
+  INode *arg2 = (INode *) 0 ;
+  SwigValueWrapper< std::vector< char const *,std::allocator< char const * > > > arg3 ;
+  SwigValueWrapper< std::vector< char const *,std::allocator< char const * > > > arg4 ;
+  std::vector< double,std::allocator< double > > arg5 ;
+  std::vector< double,std::allocator< double > > arg6 ;
+  std::vector< double,std::allocator< double > > arg7 ;
+  std::vector< double,std::allocator< double > > arg8 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  void *argp4 ;
+  int res4 = 0 ;
+  IFormFactorBorn *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_experimentalData", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_FitObjective_experimentalData__SWIG_1(self, argc, argv);
+  if ((nobjs < 8) || (nobjs > 8)) SWIG_fail;
+  arg1 = swig_obj[0];
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INode, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_IFormFactorBorn" "', argument " "2"" of type '" "INode const *""'"); 
+  }
+  arg2 = reinterpret_cast< INode * >(argp2);
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_IFormFactorBorn" "', argument " "3"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_IFormFactorBorn" "', argument " "3"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'");
+    } else {
+      std::vector< char const *,std::allocator< char const * > > * temp = reinterpret_cast< std::vector< char const *,std::allocator< char const * > > * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_FitObjective_experimentalData__SWIG_0(self, argc, argv);
-      }
+  {
+    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t,  0  | 0);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_IFormFactorBorn" "', argument " "4"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'"); 
+    }  
+    if (!argp4) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_IFormFactorBorn" "', argument " "4"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'");
+    } else {
+      std::vector< char const *,std::allocator< char const * > > * temp = reinterpret_cast< std::vector< char const *,std::allocator< char const * > > * >(argp4);
+      arg4 = *temp;
+      if (SWIG_IsNewObj(res4)) delete temp;
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_experimentalData'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    FitObjective::experimentalData(size_t) const\n"
-    "    FitObjective::experimentalData() const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_FitObjective_uncertaintyData_cpp__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  SimulationResult result;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_uncertaintyData_cpp" "', argument " "1"" of type '" "FitObjective const *""'"); 
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[4], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactorBorn" "', argument " "5"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+    }
+    arg5 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_uncertaintyData_cpp" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((FitObjective const *)arg1)->uncertaintyData(arg2);
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FitObjective_uncertaintyData_cpp__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  SimulationResult result;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_uncertaintyData_cpp" "', argument " "1"" of type '" "FitObjective const *""'"); 
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[5], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactorBorn" "', argument " "6"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+    }
+    arg6 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = ((FitObjective const *)arg1)->uncertaintyData();
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[6], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactorBorn" "', argument " "7"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+    }
+    arg7 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    int res = swig::asptr(swig_obj[7], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactorBorn" "', argument " "8"" of type '" "std::vector< double,std::allocator< double > >""'"); 
+    }
+    arg8 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  if ( arg1 != Py_None ) {
+    /* subclassed */
+    result = (IFormFactorBorn *)new SwigDirector_IFormFactorBorn(arg1,(INode const *)arg2,arg3,arg4,arg5,arg6,arg7,arg8); 
+  } else {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
+    SWIG_fail;
+  }
+  
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactorBorn, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_uncertaintyData_cpp(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IFormFactorBorn(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[9] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_uncertaintyData_cpp", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_IFormFactorBorn", 0, 8, argv))) SWIG_fail;
   --argc;
   if (argc == 1) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
+    _v = (argv[0] != 0);
     if (_v) {
-      return _wrap_FitObjective_uncertaintyData_cpp__SWIG_1(self, argc, argv);
+      return _wrap_new_IFormFactorBorn__SWIG_0(self, argc, argv);
     }
   }
-  if (argc == 2) {
+  if (argc == 8) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
+    _v = (argv[0] != 0);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_INode, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_FitObjective_uncertaintyData_cpp__SWIG_0(self, argc, argv);
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            int res = swig::asptr(argv[4], (std::vector< double,std::allocator< double > >**)(0));
+            _v = SWIG_CheckState(res);
+            if (_v) {
+              int res = swig::asptr(argv[5], (std::vector< double,std::allocator< double > >**)(0));
+              _v = SWIG_CheckState(res);
+              if (_v) {
+                int res = swig::asptr(argv[6], (std::vector< double,std::allocator< double > >**)(0));
+                _v = SWIG_CheckState(res);
+                if (_v) {
+                  int res = swig::asptr(argv[7], (std::vector< double,std::allocator< double > >**)(0));
+                  _v = SWIG_CheckState(res);
+                  if (_v) {
+                    return _wrap_new_IFormFactorBorn__SWIG_1(self, argc, argv);
+                  }
+                }
+              }
+            }
+          }
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_uncertaintyData_cpp'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_IFormFactorBorn'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    FitObjective::uncertaintyData(size_t) const\n"
-    "    FitObjective::uncertaintyData() const\n");
+    "    IFormFactorBorn::IFormFactorBorn()\n"
+    "    IFormFactorBorn::IFormFactorBorn(PyObject *,INode const *,std::vector< char const *,std::allocator< char const * > > const,std::vector< char const *,std::allocator< char const * > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > >)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_relativeDifference__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IFormFactorBorn_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  size_t arg2 ;
+  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  SimulationResult result;
+  PyObject *swig_obj[1] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  IFormFactorBorn *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_relativeDifference" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_clone" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
+  }
+  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      Swig::DirectorPureVirtualException::raise("IFormFactorBorn::clone");
+    } else {
+      result = (IFormFactorBorn *)((IFormFactorBorn const *)arg1)->clone();
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
+  }
+  if (director) {
+    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_relativeDifference" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((FitObjective const *)arg1)->relativeDifference(arg2);
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_relativeDifference__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IFormFactorBorn_setAmbientMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
+  SwigValueWrapper< Material > arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  SimulationResult result;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_setAmbientMaterial", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_relativeDifference" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_setAmbientMaterial" "', argument " "1"" of type '" "IFormFactorBorn *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = ((FitObjective const *)arg1)->relativeDifference();
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FitObjective_relativeDifference(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_relativeDifference", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_FitObjective_relativeDifference__SWIG_1(self, argc, argv);
+  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_setAmbientMaterial" "', argument " "2"" of type '" "Material""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_setAmbientMaterial" "', argument " "2"" of type '" "Material""'");
+    } else {
+      Material * temp = reinterpret_cast< Material * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_FitObjective_relativeDifference__SWIG_0(self, argc, argv);
-      }
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      (arg1)->IFormFactorBorn::setAmbientMaterial(arg2);
+    } else {
+      (arg1)->setAmbientMaterial(arg2);
     }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
   }
-  
+  resultobj = SWIG_Py_Void();
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_relativeDifference'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    FitObjective::relativeDifference(size_t) const\n"
-    "    FitObjective::relativeDifference() const\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_absoluteDifference__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IFormFactorBorn_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  size_t arg2 ;
+  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
+  WavevectorInfo *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  SimulationResult result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  complex_t result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_absoluteDifference" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_evaluate" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_absoluteDifference" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((FitObjective const *)arg1)->absoluteDifference(arg2);
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_WavevectorInfo,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+  }
+  arg2 = reinterpret_cast< WavevectorInfo * >(argp2);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = ((IFormFactorBorn const *)arg1)->IFormFactorBorn::evaluate((WavevectorInfo const &)*arg2);
+    } else {
+      result = ((IFormFactorBorn const *)arg1)->evaluate((WavevectorInfo const &)*arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_absoluteDifference__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IFormFactorBorn_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  SimulationResult result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_bottomZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_absoluteDifference" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_bottomZ" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = ((FitObjective const *)arg1)->absoluteDifference();
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FitObjective_absoluteDifference(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_absoluteDifference", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_FitObjective_absoluteDifference__SWIG_1(self, argc, argv);
-    }
+  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_FitObjective_absoluteDifference__SWIG_0(self, argc, argv);
-      }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (double)((IFormFactorBorn const *)arg1)->IFormFactorBorn::bottomZ((IRotation const &)*arg2);
+    } else {
+      result = (double)((IFormFactorBorn const *)arg1)->bottomZ((IRotation const &)*arg2);
     }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
   }
-  
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_absoluteDifference'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    FitObjective::absoluteDifference(size_t) const\n"
-    "    FitObjective::absoluteDifference() const\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_experimental_array(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactorBorn_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< double,std::allocator< double > > result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_topZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_experimental_array" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_topZ" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = ((FitObjective const *)arg1)->experimental_array();
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (double)((IFormFactorBorn const *)arg1)->IFormFactorBorn::topZ((IRotation const &)*arg2);
+    } else {
+      result = (double)((IFormFactorBorn const *)arg1)->topZ((IRotation const &)*arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_simulation_array(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactorBorn_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< double,std::allocator< double > > result;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  complex_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_simulation_array" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_evaluate_for_q" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = ((FitObjective const *)arg1)->simulation_array();
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      Swig::DirectorPureVirtualException::raise("IFormFactorBorn::evaluate_for_q");
+    } else {
+      result = ((IFormFactorBorn const *)arg1)->evaluate_for_q(arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_uncertainties_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactorBorn_canSliceAnalytically(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< double,std::allocator< double > > result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  SwigDirector_IFormFactorBorn *darg = 0;
+  bool result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_canSliceAnalytically", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_uncertainties_cpp" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_canSliceAnalytically" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = ((FitObjective const *)arg1)->uncertainties();
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_canSliceAnalytically" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_canSliceAnalytically" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  if (!director || !(director->swig_get_inner("canSliceAnalytically"))) {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing protected member canSliceAnalytically");
+    SWIG_fail;
+  }
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    darg = dynamic_cast<SwigDirector_IFormFactorBorn *>(arg1);
+    if (upcall) {
+      result = (bool)((SwigDirector_IFormFactorBorn const *)darg)->canSliceAnalyticallySwigPublic((IRotation const &)*arg2);
+    } else {
+      result = (bool)((SwigDirector_IFormFactorBorn const *)darg)->canSliceAnalytically((IRotation const &)*arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_weights_array(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IFormFactorBorn(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< double,std::allocator< double > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_weights_array" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFormFactorBorn" "', argument " "1"" of type '" "IFormFactorBorn *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = ((FitObjective const *)arg1)->weights_array();
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_initPrint(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_disown_IFormFactorBorn(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  int arg2 ;
+  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FitObjective_initPrint", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_initPrint" "', argument " "1"" of type '" "FitObjective *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_IFormFactorBorn" "', argument " "1"" of type '" "IFormFactorBorn *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_initPrint" "', argument " "2"" of type '" "int""'");
-  } 
-  arg2 = static_cast< int >(val2);
-  (arg1)->initPrint(arg2);
+  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
+  {
+    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
+    if (director) director->swig_disown();
+  }
+  
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -46743,117 +47907,183 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_initPlot_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactorBorn_sliceFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  int arg2 ;
-  PyObserverCallback *arg3 = 0 ;
+  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
+  ZLimits arg2 ;
+  IRotation *arg3 = 0 ;
+  kvector_t arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
   void *argp3 = 0 ;
   int res3 = 0 ;
-  PyObject *swig_obj[3] ;
+  void *argp4 ;
+  int res4 = 0 ;
+  PyObject *swig_obj[4] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  SwigDirector_IFormFactorBorn *darg = 0;
+  IFormFactor *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FitObjective_initPlot_cpp", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_sliceFormFactor", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_initPlot_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_initPlot_cpp" "', argument " "2"" of type '" "int""'");
-  } 
-  arg2 = static_cast< int >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_PyObserverCallback,  0 );
+  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "2"" of type '" "ZLimits""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "2"" of type '" "ZLimits""'");
+    } else {
+      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IRotation,  0  | 0);
   if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_initPlot_cpp" "', argument " "3"" of type '" "PyObserverCallback &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "3"" of type '" "IRotation const &""'"); 
   }
   if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_initPlot_cpp" "', argument " "3"" of type '" "PyObserverCallback &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "3"" of type '" "IRotation const &""'"); 
+  }
+  arg3 = reinterpret_cast< IRotation * >(argp3);
+  {
+    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "4"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp4) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "4"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
+      arg4 = *temp;
+      if (SWIG_IsNewObj(res4)) delete temp;
+    }
+  }
+  director = SWIG_DIRECTOR_CAST(arg1);
+  if (!director || !(director->swig_get_inner("sliceFormFactor"))) {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing protected member sliceFormFactor");
+    SWIG_fail;
+  }
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    darg = dynamic_cast<SwigDirector_IFormFactorBorn *>(arg1);
+    if (upcall) {
+      result = (IFormFactor *)((SwigDirector_IFormFactorBorn const *)darg)->sliceFormFactorSwigPublic(arg2,(IRotation const &)*arg3,arg4);
+    } else {
+      result = (IFormFactor *)((SwigDirector_IFormFactorBorn const *)darg)->sliceFormFactor(arg2,(IRotation const &)*arg3,arg4);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  }
+  if (director) {
+    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
   }
-  arg3 = reinterpret_cast< PyObserverCallback * >(argp3);
-  (arg1)->initPlot(arg2,*arg3);
-  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_iterationInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IFormFactorBorn_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IFormFactorBorn, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *IFormFactorBorn_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_SlicingEffects_position_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
+  kvector_t *arg2 = (kvector_t *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IterationInfo result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SlicingEffects_position_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_iterationInfo" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SlicingEffects_position_set" "', argument " "1"" of type '" "SlicingEffects *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = ((FitObjective const *)arg1)->iterationInfo();
-  resultobj = SWIG_NewPointerObj((new IterationInfo(static_cast< const IterationInfo& >(result))), SWIGTYPE_p_IterationInfo, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_BasicVector3DT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SlicingEffects_position_set" "', argument " "2"" of type '" "kvector_t *""'"); 
+  }
+  arg2 = reinterpret_cast< kvector_t * >(argp2);
+  if (arg1) (arg1)->position = *arg2;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_minimizerResult(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SlicingEffects_position_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Fit::MinimizerResult result;
+  kvector_t *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_minimizerResult" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SlicingEffects_position_get" "', argument " "1"" of type '" "SlicingEffects *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = ((FitObjective const *)arg1)->minimizerResult();
-  resultobj = SWIG_NewPointerObj((new Fit::MinimizerResult(static_cast< const Fit::MinimizerResult& >(result))), SWIGTYPE_p_Fit__MinimizerResult, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
+  result = (kvector_t *)& ((arg1)->position);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_BasicVector3DT_double_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_finalize_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SlicingEffects_dz_bottom_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  Fit::MinimizerResult *arg2 = 0 ;
+  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FitObjective_finalize_cpp", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SlicingEffects_dz_bottom_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_finalize_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
-  }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Fit__MinimizerResult,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_finalize_cpp" "', argument " "2"" of type '" "Fit::MinimizerResult const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_finalize_cpp" "', argument " "2"" of type '" "Fit::MinimizerResult const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SlicingEffects_dz_bottom_set" "', argument " "1"" of type '" "SlicingEffects *""'"); 
   }
-  arg2 = reinterpret_cast< Fit::MinimizerResult * >(argp2);
-  (arg1)->finalize((Fit::MinimizerResult const &)*arg2);
+  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SlicingEffects_dz_bottom_set" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  if (arg1) (arg1)->dz_bottom = arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -46861,54 +48091,51 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_fitObjectCount(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SlicingEffects_dz_bottom_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  unsigned int result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_fitObjectCount" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SlicingEffects_dz_bottom_get" "', argument " "1"" of type '" "SlicingEffects *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = (unsigned int)((FitObjective const *)arg1)->fitObjectCount();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
+  result = (double) ((arg1)->dz_bottom);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_run_simulations(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SlicingEffects_dz_top_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  Fit::Parameters *arg2 = 0 ;
+  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FitObjective_run_simulations", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SlicingEffects_dz_top_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_run_simulations" "', argument " "1"" of type '" "FitObjective *""'"); 
-  }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Fit__Parameters,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_run_simulations" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_run_simulations" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SlicingEffects_dz_top_set" "', argument " "1"" of type '" "SlicingEffects *""'"); 
   }
-  arg2 = reinterpret_cast< Fit::Parameters * >(argp2);
-  (arg1)->run_simulations((Fit::Parameters const &)*arg2);
+  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SlicingEffects_dz_top_set" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  if (arg1) (arg1)->dz_top = arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -46916,194 +48143,116 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_setChiSquaredModule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SlicingEffects_dz_top_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  IChiSquaredModule *arg2 = 0 ;
+  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FitObjective_setChiSquaredModule", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_setChiSquaredModule" "', argument " "1"" of type '" "FitObjective *""'"); 
-  }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IChiSquaredModule,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_setChiSquaredModule" "', argument " "2"" of type '" "IChiSquaredModule const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_setChiSquaredModule" "', argument " "2"" of type '" "IChiSquaredModule const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SlicingEffects_dz_top_get" "', argument " "1"" of type '" "SlicingEffects *""'"); 
   }
-  arg2 = reinterpret_cast< IChiSquaredModule * >(argp2);
-  (arg1)->setChiSquaredModule((IChiSquaredModule const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
+  result = (double) ((arg1)->dz_top);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_setObjectiveMetric__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_SlicingEffects(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  std::string *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
+  SlicingEffects *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_setObjectiveMetric" "', argument " "1"" of type '" "FitObjective *""'"); 
-  }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_setObjectiveMetric" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_setObjectiveMetric" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
-  }
-  (arg1)->setObjectiveMetric((std::string const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  if (!SWIG_Python_UnpackTuple(args, "new_SlicingEffects", 0, 0, 0)) SWIG_fail;
+  result = (SlicingEffects *)new SlicingEffects();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SlicingEffects, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_setObjectiveMetric__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_SlicingEffects(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  std::string *arg2 = 0 ;
-  std::string *arg3 = 0 ;
+  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  int res3 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_setObjectiveMetric" "', argument " "1"" of type '" "FitObjective *""'"); 
-  }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_setObjectiveMetric" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_setObjectiveMetric" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
-  }
-  {
-    std::string *ptr = (std::string *)0;
-    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_setObjectiveMetric" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_setObjectiveMetric" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    arg3 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SlicingEffects" "', argument " "1"" of type '" "SlicingEffects *""'"); 
   }
-  (arg1)->setObjectiveMetric((std::string const &)*arg2,(std::string const &)*arg3);
+  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_setObjectiveMetric(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
+SWIGINTERN PyObject *SlicingEffects_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_SlicingEffects, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *SlicingEffects_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_iterator(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  PyObject **arg2 = (PyObject **) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  swig::SwigPyIterator *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_setObjectiveMetric", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_FitObjective_setObjectiveMetric__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_FitObjective_setObjectiveMetric__SWIG_1(self, argc, argv);
-        }
-      }
-    }
+  arg2 = &swig_obj[0];
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_iterator" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = (swig::SwigPyIterator *)std_vector_Sl_IFormFactor_Sm__Sg__iterator(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_swig__SwigPyIterator, SWIG_POINTER_OWN |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_setObjectiveMetric'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    FitObjective::setObjectiveMetric(std::string const &)\n"
-    "    FitObjective::setObjectiveMetric(std::string const &,std::string const &)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_containsUncertainties_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___nonzero__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  size_t arg2 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FitObjective_containsUncertainties_cpp", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_containsUncertainties_cpp" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___nonzero__" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_containsUncertainties_cpp" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = (bool)((FitObjective const *)arg1)->containsUncertainties(arg2);
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = (bool)std_vector_Sl_IFormFactor_Sm__Sg____nonzero__((std::vector< IFormFactor * > const *)arg1);
   resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
@@ -47111,9 +48260,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_allPairsHaveUncertainties_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___bool__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -47121,12 +48270,12 @@ SWIGINTERN PyObject *_wrap_FitObjective_allPairsHaveUncertainties_cpp(PyObject *
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_allPairsHaveUncertainties_cpp" "', argument " "1"" of type '" "FitObjective const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___bool__" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  result = (bool)((FitObjective const *)arg1)->allPairsHaveUncertainties();
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = (bool)std_vector_Sl_IFormFactor_Sm__Sg____bool__((std::vector< IFormFactor * > const *)arg1);
   resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
@@ -47134,340 +48283,384 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_availableMetricOptions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___len__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::string result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< IFormFactor * >::size_type result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FitObjective_availableMetricOptions", 0, 0, 0)) SWIG_fail;
-  result = FitObjective::availableMetricOptions();
-  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___len__" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = std_vector_Sl_IFormFactor_Sm__Sg____len__((std::vector< IFormFactor * > const *)arg1);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___getslice__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  PyBuilderCallback *arg2 = 0 ;
-  std::vector< double,std::allocator< double > > *arg3 = 0 ;
-  double arg4 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::difference_type arg2 ;
+  std::vector< IFormFactor * >::difference_type arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  double val4 ;
-  int ecode4 = 0 ;
+  ptrdiff_t val2 ;
+  int ecode2 = 0 ;
+  ptrdiff_t val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  std::vector< IFormFactor *,std::allocator< IFormFactor * > > *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t___getslice__", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
-  }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
-  }
-  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res3 = swig::asptr(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg3 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___getslice__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "double""'");
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___getslice__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
   } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< double > >(*arg2,(std::vector< double,std::allocator< double > > const &)*arg3,arg4);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res3)) delete arg3;
+  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
+  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "vector_IFormFactorPtr_t___getslice__" "', argument " "3"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+  } 
+  arg3 = static_cast< std::vector< IFormFactor * >::difference_type >(val3);
+  try {
+    result = (std::vector< IFormFactor *,std::allocator< IFormFactor * > > *)std_vector_Sl_IFormFactor_Sm__Sg____getslice__(arg1,arg2,arg3);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  }
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_5(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setslice____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  PyBuilderCallback *arg2 = 0 ;
-  std::vector< double,std::allocator< double > > *arg3 = 0 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::difference_type arg2 ;
+  std::vector< IFormFactor * >::difference_type arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
+  ptrdiff_t val2 ;
+  int ecode2 = 0 ;
+  ptrdiff_t val3 ;
+  int ecode3 = 0 ;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
-  }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res3 = swig::asptr(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg3 = ptr;
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+  } 
+  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
+  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "3"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+  } 
+  arg3 = static_cast< std::vector< IFormFactor * >::difference_type >(val3);
+  try {
+    std_vector_Sl_IFormFactor_Sm__Sg____setslice____SWIG_0(arg1,arg2,arg3);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
   }
-  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< double > >(*arg2,(std::vector< double,std::allocator< double > > const &)*arg3);
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_6(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setslice____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  PyBuilderCallback *arg2 = 0 ;
-  std::vector< double,std::allocator< double > > *arg3 = 0 ;
-  std::vector< double,std::allocator< double > > *arg4 = 0 ;
-  double arg5 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::difference_type arg2 ;
+  std::vector< IFormFactor * >::difference_type arg3 ;
+  std::vector< IFormFactor *,std::allocator< IFormFactor * > > *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
+  ptrdiff_t val2 ;
+  int ecode2 = 0 ;
+  ptrdiff_t val3 ;
+  int ecode3 = 0 ;
   int res4 = SWIG_OLDOBJ ;
-  double val5 ;
-  int ecode5 = 0 ;
   
-  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
-  }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
-  }
-  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res3 = swig::asptr(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg3 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+  } 
+  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
+  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "3"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+  } 
+  arg3 = static_cast< std::vector< IFormFactor * >::difference_type >(val3);
   {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    std::vector< IFormFactor*,std::allocator< IFormFactor * > > *ptr = (std::vector< IFormFactor*,std::allocator< IFormFactor * > > *)0;
     res4 = swig::asptr(swig_obj[3], &ptr);
     if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "4"" of type '" "std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &""'"); 
     }
     if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "4"" of type '" "std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &""'"); 
     }
     arg4 = ptr;
   }
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< double > >(*arg2,(std::vector< double,std::allocator< double > > const &)*arg3,(std::vector< double,std::allocator< double > > const &)*arg4,arg5);
+  try {
+    std_vector_Sl_IFormFactor_Sm__Sg____setslice____SWIG_1(arg1,arg2,arg3,(std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &)*arg4);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  }
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res3)) delete arg3;
   if (SWIG_IsNewObj(res4)) delete arg4;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
   if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_7(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setslice__(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t___setslice__", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_ptrdiff_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_vector_IFormFactorPtr_t___setslice____SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_ptrdiff_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = swig::asptr(argv[3], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_vector_IFormFactorPtr_t___setslice____SWIG_1(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t___setslice__'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    std::vector< IFormFactor * >::__setslice__(std::vector< IFormFactor * >::difference_type,std::vector< IFormFactor * >::difference_type)\n"
+    "    std::vector< IFormFactor * >::__setslice__(std::vector< IFormFactor * >::difference_type,std::vector< IFormFactor * >::difference_type,std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___delslice__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  PyBuilderCallback *arg2 = 0 ;
-  std::vector< double,std::allocator< double > > *arg3 = 0 ;
-  std::vector< double,std::allocator< double > > *arg4 = 0 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::difference_type arg2 ;
+  std::vector< IFormFactor * >::difference_type arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  int res4 = SWIG_OLDOBJ ;
+  ptrdiff_t val2 ;
+  int ecode2 = 0 ;
+  ptrdiff_t val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t___delslice__", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
-  }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
-  }
-  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res3 = swig::asptr(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg3 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___delslice__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res4 = swig::asptr(swig_obj[3], &ptr);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg4 = ptr;
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___delslice__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+  } 
+  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
+  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "vector_IFormFactorPtr_t___delslice__" "', argument " "3"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+  } 
+  arg3 = static_cast< std::vector< IFormFactor * >::difference_type >(val3);
+  try {
+    std_vector_Sl_IFormFactor_Sm__Sg____delslice__(arg1,arg2,arg3);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
   }
-  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< double > >(*arg2,(std::vector< double,std::allocator< double > > const &)*arg3,(std::vector< double,std::allocator< double > > const &)*arg4);
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res3)) delete arg3;
-  if (SWIG_IsNewObj(res4)) delete arg4;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
-  if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_8(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___delitem____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  PyBuilderCallback *arg2 = 0 ;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg3 = 0 ;
-  double arg4 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::difference_type arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  double val4 ;
-  int ecode4 = 0 ;
+  ptrdiff_t val2 ;
+  int ecode2 = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___delitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___delitem__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+  } 
+  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
+  try {
+    std_vector_Sl_IFormFactor_Sm__Sg____delitem____SWIG_0(arg1,arg2);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___getitem____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  PySliceObject *arg2 = (PySliceObject *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  std::vector< IFormFactor *,std::allocator< IFormFactor * > > *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___getitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
   {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    res3 = swig::asptr(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    if (!PySlice_Check(swig_obj[1])) {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t___getitem__" "', argument " "2"" of type '" "PySliceObject *""'");
     }
-    arg3 = ptr;
+    arg2 = (PySliceObject *) swig_obj[1];
   }
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< std::vector< double > > >(*arg2,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg3,arg4);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res3)) delete arg3;
+  try {
+    result = (std::vector< IFormFactor *,std::allocator< IFormFactor * > > *)std_vector_Sl_IFormFactor_Sm__Sg____getitem____SWIG_0(arg1,arg2);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  }
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_9(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setitem____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  PyBuilderCallback *arg2 = 0 ;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg3 = 0 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  PySliceObject *arg2 = (PySliceObject *) 0 ;
+  std::vector< IFormFactor *,std::allocator< IFormFactor * > > *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
   int res3 = SWIG_OLDOBJ ;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
-  }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  {
+    if (!PySlice_Check(swig_obj[1])) {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "2"" of type '" "PySliceObject *""'");
+    }
+    arg2 = (PySliceObject *) swig_obj[1];
   }
-  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
   {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    std::vector< IFormFactor*,std::allocator< IFormFactor * > > *ptr = (std::vector< IFormFactor*,std::allocator< IFormFactor * > > *)0;
     res3 = swig::asptr(swig_obj[2], &ptr);
     if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "3"" of type '" "std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &""'"); 
     }
     if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "3"" of type '" "std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &""'"); 
     }
     arg3 = ptr;
   }
-  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< std::vector< double > > >(*arg2,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg3);
+  try {
+    std_vector_Sl_IFormFactor_Sm__Sg____setitem____SWIG_0(arg1,arg2,(std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &)*arg3);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  }
   resultobj = SWIG_Py_Void();
   if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
@@ -47477,1240 +48670,1330 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_10(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setitem____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  PyBuilderCallback *arg2 = 0 ;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg3 = 0 ;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg4 = 0 ;
-  double arg5 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  PySliceObject *arg2 = (PySliceObject *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  int res4 = SWIG_OLDOBJ ;
-  double val5 ;
-  int ecode5 = 0 ;
   
-  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
-  }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
   {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    res3 = swig::asptr(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    if (!PySlice_Check(swig_obj[1])) {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "2"" of type '" "PySliceObject *""'");
     }
-    arg3 = ptr;
+    arg2 = (PySliceObject *) swig_obj[1];
   }
-  {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    res4 = swig::asptr(swig_obj[3], &ptr);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    arg4 = ptr;
+  try {
+    std_vector_Sl_IFormFactor_Sm__Sg____setitem____SWIG_1(arg1,arg2);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
   }
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< std::vector< double > > >(*arg2,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg3,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg4,arg5);
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res3)) delete arg3;
-  if (SWIG_IsNewObj(res4)) delete arg4;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
-  if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_11(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___delitem____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
-  PyBuilderCallback *arg2 = 0 ;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg3 = 0 ;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg4 = 0 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  PySliceObject *arg2 = (PySliceObject *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  int res4 = SWIG_OLDOBJ ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
-  }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___delitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
   {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    res3 = swig::asptr(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    if (!PySlice_Check(swig_obj[1])) {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t___delitem__" "', argument " "2"" of type '" "PySliceObject *""'");
     }
-    arg3 = ptr;
+    arg2 = (PySliceObject *) swig_obj[1];
   }
-  {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    res4 = swig::asptr(swig_obj[3], &ptr);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    arg4 = ptr;
+  try {
+    std_vector_Sl_IFormFactor_Sm__Sg____delitem____SWIG_1(arg1,arg2);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
   }
-  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< std::vector< double > > >(*arg2,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg3,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg4);
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res3)) delete arg3;
-  if (SWIG_IsNewObj(res4)) delete arg4;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
-  if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___delitem__(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[6] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_addSimulationAndData_cpp", 0, 5, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t___delitem__", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
-      _v = SWIG_CheckState(res);
+      {
+        _v = PySlice_Check(argv[1]);
+      }
       if (_v) {
-        int res = swig::asptr(argv[2], (std::vector< double,std::allocator< double > >**)(0));
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_5(self, argc, argv);
-        }
+        return _wrap_vector_IFormFactorPtr_t___delitem____SWIG_1(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = swig::asptr(argv[2], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+      {
+        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_9(self, argc, argv);
-        }
       }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
-      _v = SWIG_CheckState(res);
       if (_v) {
-        int res = swig::asptr(argv[2], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_8(self, argc, argv);
-          }
-        }
+        return _wrap_vector_IFormFactorPtr_t___delitem____SWIG_0(self, argc, argv);
       }
     }
   }
-  if (argc == 4) {
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t___delitem__'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    std::vector< IFormFactor * >::__delitem__(std::vector< IFormFactor * >::difference_type)\n"
+    "    std::vector< IFormFactor * >::__delitem__(PySliceObject *)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___getitem____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::difference_type arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  ptrdiff_t val2 ;
+  int ecode2 = 0 ;
+  std::vector< IFormFactor * >::value_type result;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___getitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___getitem__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+  } 
+  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
+  try {
+    result = (std::vector< IFormFactor * >::value_type)std_vector_Sl_IFormFactor_Sm__Sg____getitem____SWIG_1(arg1,arg2);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  }
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___getitem__(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t___getitem__", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
-      _v = SWIG_CheckState(res);
+      {
+        _v = PySlice_Check(argv[1]);
+      }
       if (_v) {
-        int res = swig::asptr(argv[2], (std::vector< double,std::allocator< double > >**)(0));
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_4(self, argc, argv);
-          }
-        }
+        return _wrap_vector_IFormFactorPtr_t___getitem____SWIG_0(self, argc, argv);
       }
     }
   }
-  if (argc == 4) {
+  if (argc == 2) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = swig::asptr(argv[2], (std::vector< double,std::allocator< double > >**)(0));
+      {
+        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
-        if (_v) {
-          int res = swig::asptr(argv[3], (std::vector< double,std::allocator< double > >**)(0));
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_7(self, argc, argv);
-          }
-        }
+      }
+      if (_v) {
+        return _wrap_vector_IFormFactorPtr_t___getitem____SWIG_1(self, argc, argv);
       }
     }
   }
-  if (argc == 4) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = swig::asptr(argv[2], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          int res = swig::asptr(argv[3], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_11(self, argc, argv);
-          }
-        }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t___getitem__'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    std::vector< IFormFactor * >::__getitem__(PySliceObject *)\n"
+    "    std::vector< IFormFactor * >::__getitem__(std::vector< IFormFactor * >::difference_type)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setitem____SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::difference_type arg2 ;
+  std::vector< IFormFactor * >::value_type arg3 = (std::vector< IFormFactor * >::value_type) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  ptrdiff_t val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+  } 
+  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "3"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+  }
+  arg3 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp3);
+  try {
+    std_vector_Sl_IFormFactor_Sm__Sg____setitem____SWIG_2(arg1,arg2,arg3);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  }
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setitem__(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t___setitem__", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        _v = PySlice_Check(argv[1]);
+      }
+      if (_v) {
+        return _wrap_vector_IFormFactorPtr_t___setitem____SWIG_1(self, argc, argv);
       }
     }
   }
-  if (argc == 5) {
+  if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
-      _v = SWIG_CheckState(res);
+      {
+        _v = PySlice_Check(argv[1]);
+      }
       if (_v) {
-        int res = swig::asptr(argv[2], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+        int res = swig::asptr(argv[2], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
         _v = SWIG_CheckState(res);
         if (_v) {
-          int res = swig::asptr(argv[3], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_10(self, argc, argv);
-            }
-          }
+          return _wrap_vector_IFormFactorPtr_t___setitem____SWIG_0(self, argc, argv);
         }
       }
     }
   }
-  if (argc == 5) {
+  if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
-      _v = SWIG_CheckState(res);
+      {
+        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
-        int res = swig::asptr(argv[2], (std::vector< double,std::allocator< double > >**)(0));
+        void *vptr = 0;
+        int res = SWIG_ConvertPtr(argv[2], &vptr, SWIGTYPE_p_IFormFactor, 0);
         _v = SWIG_CheckState(res);
         if (_v) {
-          int res = swig::asptr(argv[3], (std::vector< double,std::allocator< double > >**)(0));
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_6(self, argc, argv);
-            }
-          }
+          return _wrap_vector_IFormFactorPtr_t___setitem____SWIG_2(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_addSimulationAndData_cpp'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t___setitem__'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    FitObjective::addSimulationAndData< std::vector< double > >(PyBuilderCallback &,std::vector< double,std::allocator< double > > const &,double)\n"
-    "    FitObjective::addSimulationAndData< std::vector< double > >(PyBuilderCallback &,std::vector< double,std::allocator< double > > const &)\n"
-    "    FitObjective::addSimulationAndData< std::vector< double > >(PyBuilderCallback &,std::vector< double,std::allocator< double > > const &,std::vector< double,std::allocator< double > > const &,double)\n"
-    "    FitObjective::addSimulationAndData< std::vector< double > >(PyBuilderCallback &,std::vector< double,std::allocator< double > > const &,std::vector< double,std::allocator< double > > const &)\n"
-    "    FitObjective::addSimulationAndData< std::vector< std::vector< double > > >(PyBuilderCallback &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &,double)\n"
-    "    FitObjective::addSimulationAndData< std::vector< std::vector< double > > >(PyBuilderCallback &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)\n"
-    "    FitObjective::addSimulationAndData< std::vector< std::vector< double > > >(PyBuilderCallback &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &,double)\n"
-    "    FitObjective::addSimulationAndData< std::vector< std::vector< double > > >(PyBuilderCallback &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)\n");
+    "    std::vector< IFormFactor * >::__setitem__(PySliceObject *,std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &)\n"
+    "    std::vector< IFormFactor * >::__setitem__(PySliceObject *)\n"
+    "    std::vector< IFormFactor * >::__setitem__(std::vector< IFormFactor * >::difference_type,std::vector< IFormFactor * >::value_type)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_disown_FitObjective(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_pop(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FitObjective *arg1 = (FitObjective *) 0 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::vector< IFormFactor * >::value_type result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_FitObjective" "', argument " "1"" of type '" "FitObjective *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_pop" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  arg1 = reinterpret_cast< FitObjective * >(argp1);
-  {
-    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
-    if (director) director->swig_disown();
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  try {
+    result = (std::vector< IFormFactor * >::value_type)std_vector_Sl_IFormFactor_Sm__Sg__pop(arg1);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
   }
-  
-  resultobj = SWIG_Py_Void();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FitObjective_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FitObjective, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FitObjective_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_StandardNormal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_append(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::value_type arg2 = (std::vector< IFormFactor * >::value_type) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "StandardNormal" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (double)MathFunctions::StandardNormal(arg1);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_append", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_append" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "vector_IFormFactorPtr_t_append" "', argument " "2"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+  }
+  arg2 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp2);
+  std_vector_Sl_IFormFactor_Sm__Sg__append(arg1,arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Gaussian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_vector_IFormFactorPtr_t__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  std::vector< IFormFactor * > *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Gaussian", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Gaussian" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Gaussian" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Gaussian" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)MathFunctions::Gaussian(arg1,arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (std::vector< IFormFactor * > *)new std::vector< IFormFactor * >();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntegratedGaussian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_vector_IFormFactorPtr_t__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  std::vector< IFormFactor * > *arg1 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  std::vector< IFormFactor * > *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntegratedGaussian", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "IntegratedGaussian" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntegratedGaussian" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IntegratedGaussian" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)MathFunctions::IntegratedGaussian(arg1,arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    std::vector< IFormFactor*,std::allocator< IFormFactor * > > *ptr = (std::vector< IFormFactor*,std::allocator< IFormFactor * > > *)0;
+    res1 = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_vector_IFormFactorPtr_t" "', argument " "1"" of type '" "std::vector< IFormFactor * > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_vector_IFormFactorPtr_t" "', argument " "1"" of type '" "std::vector< IFormFactor * > const &""'"); 
+    }
+    arg1 = ptr;
+  }
+  result = (std::vector< IFormFactor * > *)new std::vector< IFormFactor * >((std::vector< IFormFactor * > const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_cot(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_empty(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "cot" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (double)MathFunctions::cot(arg1);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_empty" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = (bool)((std::vector< IFormFactor * > const *)arg1)->empty();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Si(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  std::vector< IFormFactor * >::size_type result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Si" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (double)MathFunctions::Si(arg1);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_size" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = ((std::vector< IFormFactor * > const *)arg1)->size();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_sinc__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_swap(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * > *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "sinc" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (double)MathFunctions::sinc(arg1);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_swap", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_swap" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t,  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "vector_IFormFactorPtr_t_swap" "', argument " "2"" of type '" "std::vector< IFormFactor * > &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "vector_IFormFactorPtr_t_swap" "', argument " "2"" of type '" "std::vector< IFormFactor * > &""'"); 
+  }
+  arg2 = reinterpret_cast< std::vector< IFormFactor * > * >(argp2);
+  (arg1)->swap(*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_sinc__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_begin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  complex_t arg1 ;
-  std::complex< double > val1 ;
-  int ecode1 = 0 ;
-  complex_t result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< IFormFactor * >::iterator result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "sinc" "', argument " "1"" of type '" "complex_t""'");
-  } 
-  arg1 = static_cast< complex_t >(val1);
-  result = MathFunctions::sinc(arg1);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_begin" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = (arg1)->begin();
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_sinc(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_end(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< IFormFactor * >::iterator result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "sinc", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_sinc__SWIG_0(self, argc, argv);
-    }
-  }
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_std_complex_Sl_double_Sg_(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_sinc__SWIG_1(self, argc, argv);
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_end" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = (arg1)->end();
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_rbegin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< IFormFactor * >::reverse_iterator result;
   
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_rbegin" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = (arg1)->rbegin();
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::reverse_iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'sinc'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    MathFunctions::sinc(double)\n"
-    "    MathFunctions::sinc(complex_t const)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_tanhc(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_rend(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  complex_t arg1 ;
-  std::complex< double > val1 ;
-  int ecode1 = 0 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  complex_t result;
+  std::vector< IFormFactor * >::reverse_iterator result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "tanhc" "', argument " "1"" of type '" "complex_t""'");
-  } 
-  arg1 = static_cast< complex_t >(val1);
-  result = MathFunctions::tanhc(arg1);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_rend" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = (arg1)->rend();
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::reverse_iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Laue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_clear(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  size_t arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Laue", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Laue" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Laue" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = (double)MathFunctions::Laue(arg1,arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_clear" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  (arg1)->clear();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_erf(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_get_allocator(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  SwigValueWrapper< std::allocator< IFormFactor * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "erf" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (double)MathFunctions::erf(arg1);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_get_allocator" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = ((std::vector< IFormFactor * > const *)arg1)->get_allocator();
+  resultobj = SWIG_NewPointerObj((new std::vector< IFormFactor * >::allocator_type(static_cast< const std::vector< IFormFactor * >::allocator_type& >(result))), SWIGTYPE_p_std__allocatorT_IFormFactor_p_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Bessel_J0__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_vector_IFormFactorPtr_t__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
+  std::vector< IFormFactor * >::size_type arg1 ;
+  size_t val1 ;
   int ecode1 = 0 ;
-  double result;
+  std::vector< IFormFactor * > *result = 0 ;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_J0" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_vector_IFormFactorPtr_t" "', argument " "1"" of type '" "std::vector< IFormFactor * >::size_type""'");
   } 
-  arg1 = static_cast< double >(val1);
-  result = (double)MathFunctions::Bessel_J0(arg1);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = static_cast< std::vector< IFormFactor * >::size_type >(val1);
+  result = (std::vector< IFormFactor * > *)new std::vector< IFormFactor * >(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Bessel_J1__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_pop_back(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_J1" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (double)MathFunctions::Bessel_J1(arg1);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_pop_back" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  (arg1)->pop_back();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Bessel_J1c__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_resize__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::size_type arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_J1c" "', argument " "1"" of type '" "double""'");
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_resize" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t_resize" "', argument " "2"" of type '" "std::vector< IFormFactor * >::size_type""'");
   } 
-  arg1 = static_cast< double >(val1);
-  result = (double)MathFunctions::Bessel_J1c(arg1);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = static_cast< std::vector< IFormFactor * >::size_type >(val2);
+  (arg1)->resize(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Bessel_I0(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_erase__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::iterator arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  swig::SwigPyIterator *iter2 = 0 ;
+  int res2 ;
+  std::vector< IFormFactor * >::iterator result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_I0" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (double)MathFunctions::Bessel_I0(arg1);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
+  if (!SWIG_IsOK(res2) || !iter2) {
+    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
+  } else {
+    swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter2);
+    if (iter_t) {
+      arg2 = iter_t->get_current();
+    } else {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
+    }
+  }
+  result = std_vector_Sl_IFormFactor_Sm__Sg__erase__SWIG_0(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Bessel_J0__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_erase__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  complex_t arg1 ;
-  std::complex< double > val1 ;
-  int ecode1 = 0 ;
-  complex_t result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::iterator arg2 ;
+  std::vector< IFormFactor * >::iterator arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  swig::SwigPyIterator *iter2 = 0 ;
+  int res2 ;
+  swig::SwigPyIterator *iter3 = 0 ;
+  int res3 ;
+  std::vector< IFormFactor * >::iterator result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_J0" "', argument " "1"" of type '" "complex_t""'");
-  } 
-  arg1 = static_cast< complex_t >(val1);
-  result = MathFunctions::Bessel_J0(arg1);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
+  if (!SWIG_IsOK(res2) || !iter2) {
+    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
+  } else {
+    swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter2);
+    if (iter_t) {
+      arg2 = iter_t->get_current();
+    } else {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
+    }
+  }
+  res3 = SWIG_ConvertPtr(swig_obj[2], SWIG_as_voidptrptr(&iter3), swig::SwigPyIterator::descriptor(), 0);
+  if (!SWIG_IsOK(res3) || !iter3) {
+    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "3"" of type '" "std::vector< IFormFactor * >::iterator""'");
+  } else {
+    swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter3);
+    if (iter_t) {
+      arg3 = iter_t->get_current();
+    } else {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "3"" of type '" "std::vector< IFormFactor * >::iterator""'");
+    }
+  }
+  result = std_vector_Sl_IFormFactor_Sm__Sg__erase__SWIG_1(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Bessel_J0(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_erase(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[2] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Bessel_J0", 0, 1, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_erase", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+    _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_Bessel_J0__SWIG_0(self, argc, argv);
+      swig::SwigPyIterator *iter = 0;
+      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
+      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter) != 0));
+      if (_v) {
+        return _wrap_vector_IFormFactorPtr_t_erase__SWIG_0(self, argc, argv);
+      }
     }
   }
-  if (argc == 1) {
+  if (argc == 3) {
     int _v;
-    {
-      int res = SWIG_AsVal_std_complex_Sl_double_Sg_(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+    _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_Bessel_J0__SWIG_1(self, argc, argv);
+      swig::SwigPyIterator *iter = 0;
+      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
+      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter) != 0));
+      if (_v) {
+        swig::SwigPyIterator *iter = 0;
+        int res = SWIG_ConvertPtr(argv[2], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
+        _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter) != 0));
+        if (_v) {
+          return _wrap_vector_IFormFactorPtr_t_erase__SWIG_1(self, argc, argv);
+        }
+      }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Bessel_J0'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t_erase'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    MathFunctions::Bessel_J0(double)\n"
-    "    MathFunctions::Bessel_J0(complex_t const)\n");
+    "    std::vector< IFormFactor * >::erase(std::vector< IFormFactor * >::iterator)\n"
+    "    std::vector< IFormFactor * >::erase(std::vector< IFormFactor * >::iterator,std::vector< IFormFactor * >::iterator)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Bessel_J1__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_vector_IFormFactorPtr_t__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  complex_t arg1 ;
-  std::complex< double > val1 ;
+  std::vector< IFormFactor * >::size_type arg1 ;
+  std::vector< IFormFactor * >::value_type arg2 = (std::vector< IFormFactor * >::value_type) 0 ;
+  size_t val1 ;
   int ecode1 = 0 ;
-  complex_t result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  std::vector< IFormFactor * > *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_J1" "', argument " "1"" of type '" "complex_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_vector_IFormFactorPtr_t" "', argument " "1"" of type '" "std::vector< IFormFactor * >::size_type""'");
   } 
-  arg1 = static_cast< complex_t >(val1);
-  result = MathFunctions::Bessel_J1(arg1);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg1 = static_cast< std::vector< IFormFactor * >::size_type >(val1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_vector_IFormFactorPtr_t" "', argument " "2"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+  }
+  arg2 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp2);
+  result = (std::vector< IFormFactor * > *)new std::vector< IFormFactor * >(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Bessel_J1(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_vector_IFormFactorPtr_t(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[2] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Bessel_J1", 0, 1, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_vector_IFormFactorPtr_t", 0, 2, argv))) SWIG_fail;
   --argc;
+  if (argc == 0) {
+    return _wrap_new_vector_IFormFactorPtr_t__SWIG_0(self, argc, argv);
+  }
   if (argc == 1) {
     int _v;
     {
-      int res = SWIG_AsVal_double(argv[0], NULL);
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
       _v = SWIG_CheckState(res);
     }
     if (_v) {
-      return _wrap_Bessel_J1__SWIG_0(self, argc, argv);
+      return _wrap_new_vector_IFormFactorPtr_t__SWIG_2(self, argc, argv);
     }
   }
   if (argc == 1) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_vector_IFormFactorPtr_t__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
     int _v;
     {
-      int res = SWIG_AsVal_std_complex_Sl_double_Sg_(argv[0], NULL);
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
       _v = SWIG_CheckState(res);
     }
     if (_v) {
-      return _wrap_Bessel_J1__SWIG_1(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IFormFactor, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_new_vector_IFormFactorPtr_t__SWIG_3(self, argc, argv);
+      }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Bessel_J1'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_vector_IFormFactorPtr_t'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    MathFunctions::Bessel_J1(double)\n"
-    "    MathFunctions::Bessel_J1(complex_t const)\n");
+    "    std::vector< IFormFactor * >::vector()\n"
+    "    std::vector< IFormFactor * >::vector(std::vector< IFormFactor * > const &)\n"
+    "    std::vector< IFormFactor * >::vector(std::vector< IFormFactor * >::size_type)\n"
+    "    std::vector< IFormFactor * >::vector(std::vector< IFormFactor * >::size_type,std::vector< IFormFactor * >::value_type)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Bessel_J1c__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_push_back(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  complex_t arg1 ;
-  std::complex< double > val1 ;
-  int ecode1 = 0 ;
-  complex_t result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::value_type arg2 = (std::vector< IFormFactor * >::value_type) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Bessel_J1c" "', argument " "1"" of type '" "complex_t""'");
-  } 
-  arg1 = static_cast< complex_t >(val1);
-  result = MathFunctions::Bessel_J1c(arg1);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_push_back", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_push_back" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "vector_IFormFactorPtr_t_push_back" "', argument " "2"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+  }
+  arg2 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp2);
+  (arg1)->push_back(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Bessel_J1c(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_front(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< IFormFactor * >::value_type result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Bessel_J1c", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_Bessel_J1c__SWIG_0(self, argc, argv);
-    }
-  }
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_std_complex_Sl_double_Sg_(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_Bessel_J1c__SWIG_1(self, argc, argv);
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_front" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = (std::vector< IFormFactor * >::value_type)((std::vector< IFormFactor * > const *)arg1)->front();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Bessel_J1c'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    MathFunctions::Bessel_J1c(double)\n"
-    "    MathFunctions::Bessel_J1c(complex_t const)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FastFourierTransform__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_back(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< complex_t,std::allocator< complex_t > > *arg1 = 0 ;
-  MathFunctions::EFFTDirection arg2 ;
-  int res1 = SWIG_OLDOBJ ;
-  int val2 ;
-  int ecode2 = 0 ;
-  std::vector< complex_t,std::allocator< complex_t > > result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< IFormFactor * >::value_type result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  {
-    std::vector< std::complex< double >,std::allocator< std::complex< double > > > *ptr = (std::vector< std::complex< double >,std::allocator< std::complex< double > > > *)0;
-    res1 = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FastFourierTransform" "', argument " "1"" of type '" "std::vector< complex_t,std::allocator< complex_t > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FastFourierTransform" "', argument " "1"" of type '" "std::vector< complex_t,std::allocator< complex_t > > const &""'"); 
-    }
-    arg1 = ptr;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_back" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
   }
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FastFourierTransform" "', argument " "2"" of type '" "MathFunctions::EFFTDirection""'");
-  } 
-  arg2 = static_cast< MathFunctions::EFFTDirection >(val2);
-  result = MathFunctions::FastFourierTransform((std::vector< std::complex< double >,std::allocator< std::complex< double > > > const &)*arg1,arg2);
-  resultobj = swig::from(static_cast< std::vector< std::complex< double >,std::allocator< std::complex< double > > > >(result));
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = (std::vector< IFormFactor * >::value_type)((std::vector< IFormFactor * > const *)arg1)->back();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FastFourierTransform__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_assign(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< double,std::allocator< double > > *arg1 = 0 ;
-  MathFunctions::EFFTDirection arg2 ;
-  int res1 = SWIG_OLDOBJ ;
-  int val2 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::size_type arg2 ;
+  std::vector< IFormFactor * >::value_type arg3 = (std::vector< IFormFactor * >::value_type) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
   int ecode2 = 0 ;
-  std::vector< complex_t,std::allocator< complex_t > > result;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res1 = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FastFourierTransform" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FastFourierTransform" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg1 = ptr;
+  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_assign", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_assign" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FastFourierTransform" "', argument " "2"" of type '" "MathFunctions::EFFTDirection""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t_assign" "', argument " "2"" of type '" "std::vector< IFormFactor * >::size_type""'");
   } 
-  arg2 = static_cast< MathFunctions::EFFTDirection >(val2);
-  result = MathFunctions::FastFourierTransform((std::vector< double,std::allocator< double > > const &)*arg1,arg2);
-  resultobj = swig::from(static_cast< std::vector< std::complex< double >,std::allocator< std::complex< double > > > >(result));
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  arg2 = static_cast< std::vector< IFormFactor * >::size_type >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "vector_IFormFactorPtr_t_assign" "', argument " "3"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+  }
+  arg3 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp3);
+  (arg1)->assign(arg2,arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FastFourierTransform(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_resize__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::size_type arg2 ;
+  std::vector< IFormFactor * >::value_type arg3 = (std::vector< IFormFactor * >::value_type) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "FastFourierTransform", 0, 2, argv))) SWIG_fail;
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_resize" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t_resize" "', argument " "2"" of type '" "std::vector< IFormFactor * >::size_type""'");
+  } 
+  arg2 = static_cast< std::vector< IFormFactor * >::size_type >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "vector_IFormFactorPtr_t_resize" "', argument " "3"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+  }
+  arg3 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp3);
+  (arg1)->resize(arg2,arg3);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_resize(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_resize", 0, 3, argv))) SWIG_fail;
   --argc;
   if (argc == 2) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< std::complex< double >,std::allocator< std::complex< double > > >**)(0));
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_int(argv[1], NULL);
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_FastFourierTransform__SWIG_0(self, argc, argv);
+        return _wrap_vector_IFormFactorPtr_t_resize__SWIG_0(self, argc, argv);
       }
     }
   }
-  if (argc == 2) {
+  if (argc == 3) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< double,std::allocator< double > >**)(0));
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_int(argv[1], NULL);
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_FastFourierTransform__SWIG_1(self, argc, argv);
+        void *vptr = 0;
+        int res = SWIG_ConvertPtr(argv[2], &vptr, SWIGTYPE_p_IFormFactor, 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_vector_IFormFactorPtr_t_resize__SWIG_1(self, argc, argv);
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FastFourierTransform'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t_resize'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    MathFunctions::FastFourierTransform(std::vector< complex_t,std::allocator< complex_t > > const &,MathFunctions::EFFTDirection)\n"
-    "    MathFunctions::FastFourierTransform(std::vector< double,std::allocator< double > > const &,MathFunctions::EFFTDirection)\n");
+    "    std::vector< IFormFactor * >::resize(std::vector< IFormFactor * >::size_type)\n"
+    "    std::vector< IFormFactor * >::resize(std::vector< IFormFactor * >::size_type,std::vector< IFormFactor * >::value_type)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_ConvolveFFT(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_insert__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< double,std::allocator< double > > *arg1 = 0 ;
-  std::vector< double,std::allocator< double > > *arg2 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  int res2 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[2] ;
-  std::vector< complex_t,std::allocator< complex_t > > result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::iterator arg2 ;
+  std::vector< IFormFactor * >::value_type arg3 = (std::vector< IFormFactor * >::value_type) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  swig::SwigPyIterator *iter2 = 0 ;
+  int res2 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  std::vector< IFormFactor * >::iterator result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ConvolveFFT", 2, 2, swig_obj)) SWIG_fail;
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res1 = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConvolveFFT" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvolveFFT" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg1 = ptr;
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res2 = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ConvolveFFT" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvolveFFT" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
+  if (!SWIG_IsOK(res2) || !iter2) {
+    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
+  } else {
+    swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter2);
+    if (iter_t) {
+      arg2 = iter_t->get_current();
+    } else {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
     }
-    arg2 = ptr;
   }
-  result = MathFunctions::ConvolveFFT((std::vector< double,std::allocator< double > > const &)*arg1,(std::vector< double,std::allocator< double > > const &)*arg2);
-  resultobj = swig::from(static_cast< std::vector< std::complex< double >,std::allocator< std::complex< double > > > >(result));
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "3"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+  }
+  arg3 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp3);
+  result = std_vector_Sl_IFormFactor_Sm__Sg__insert__SWIG_0(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_GenerateUniformRandom(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_insert__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double result;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::iterator arg2 ;
+  std::vector< IFormFactor * >::size_type arg3 ;
+  std::vector< IFormFactor * >::value_type arg4 = (std::vector< IFormFactor * >::value_type) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  swig::SwigPyIterator *iter2 = 0 ;
+  int res2 ;
+  size_t val3 ;
+  int ecode3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "GenerateUniformRandom", 0, 0, 0)) SWIG_fail;
-  result = (double)MathFunctions::GenerateUniformRandom();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
+  if (!SWIG_IsOK(res2) || !iter2) {
+    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
+  } else {
+    swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter2);
+    if (iter_t) {
+      arg2 = iter_t->get_current();
+    } else {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
+    }
+  }
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "3"" of type '" "std::vector< IFormFactor * >::size_type""'");
+  } 
+  arg3 = static_cast< std::vector< IFormFactor * >::size_type >(val3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "4"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+  }
+  arg4 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp4);
+  std_vector_Sl_IFormFactor_Sm__Sg__insert__SWIG_1(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_GenerateStandardNormalRandom(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double result;
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_insert(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_insert", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      swig::SwigPyIterator *iter = 0;
+      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
+      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter) != 0));
+      if (_v) {
+        void *vptr = 0;
+        int res = SWIG_ConvertPtr(argv[2], &vptr, SWIGTYPE_p_IFormFactor, 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_vector_IFormFactorPtr_t_insert__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      swig::SwigPyIterator *iter = 0;
+      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
+      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter) != 0));
+      if (_v) {
+        {
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          void *vptr = 0;
+          int res = SWIG_ConvertPtr(argv[3], &vptr, SWIGTYPE_p_IFormFactor, 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_vector_IFormFactorPtr_t_insert__SWIG_1(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
   
-  if (!SWIG_Python_UnpackTuple(args, "GenerateStandardNormalRandom", 0, 0, 0)) SWIG_fail;
-  result = (double)MathFunctions::GenerateStandardNormalRandom();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t_insert'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    std::vector< IFormFactor * >::insert(std::vector< IFormFactor * >::iterator,std::vector< IFormFactor * >::value_type)\n"
+    "    std::vector< IFormFactor * >::insert(std::vector< IFormFactor * >::iterator,std::vector< IFormFactor * >::size_type,std::vector< IFormFactor * >::value_type)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_GenerateNormalRandom(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_reserve(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  std::vector< IFormFactor * >::size_type arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "GenerateNormalRandom", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "GenerateNormalRandom" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_reserve", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_reserve" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "GenerateNormalRandom" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)MathFunctions::GenerateNormalRandom(arg1,arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_GeneratePoissonRandom(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "GeneratePoissonRandom" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t_reserve" "', argument " "2"" of type '" "std::vector< IFormFactor * >::size_type""'");
   } 
-  arg1 = static_cast< double >(val1);
-  result = (double)MathFunctions::GeneratePoissonRandom(arg1);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = static_cast< std::vector< IFormFactor * >::size_type >(val2);
+  (arg1)->reserve(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IMultiLayerBuilder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_capacity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PyObject *arg1 = (PyObject *) 0 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IMultiLayerBuilder *result = 0 ;
+  std::vector< IFormFactor * >::size_type result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  arg1 = swig_obj[0];
-  if ( arg1 != Py_None ) {
-    /* subclassed */
-    result = (IMultiLayerBuilder *)new SwigDirector_IMultiLayerBuilder(arg1); 
-  } else {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
-    SWIG_fail;
-  }
-  
-  {
-    std::shared_ptr<  IMultiLayerBuilder > *smartresult = result ? new std::shared_ptr<  IMultiLayerBuilder >(result SWIG_NO_NULL_DELETER_SWIG_POINTER_NEW) : 0;
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(smartresult), SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, SWIG_POINTER_NEW | SWIG_POINTER_OWN);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_capacity" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
   }
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  result = ((std::vector< IFormFactor * > const *)arg1)->capacity();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IMultiLayerBuilder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_vector_IFormFactorPtr_t(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
+  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
-  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IMultiLayerBuilder" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
-    }
-    if (newmem & SWIG_CAST_NEW_MEMORY) {
-      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
-    } else {
-      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
-    }
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_vector_IFormFactorPtr_t" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
   }
-  (void)arg1; delete smartarg1;
+  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -48718,604 +50001,349 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_buildSample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *vector_IFormFactorPtr_t_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *vector_IFormFactorPtr_t_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_IRotation_createRotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
+  Transform3D *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::shared_ptr< IMultiLayerBuilder const > tempshared1 ;
-  std::shared_ptr< IMultiLayerBuilder const > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  MultiLayer *result = 0 ;
+  IRotation *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_buildSample" "', argument " "1"" of type '" "IMultiLayerBuilder const *""'");
-    }
-    if (newmem & SWIG_CAST_NEW_MEMORY) {
-      tempshared1 = *reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
-      delete reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
-    } else {
-      smartarg1 = reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
-    }
-  }
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      Swig::DirectorPureVirtualException::raise("IMultiLayerBuilder::buildSample");
-    } else {
-      result = (MultiLayer *)((IMultiLayerBuilder const *)arg1)->buildSample();
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Transform3D,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IRotation_createRotation" "', argument " "1"" of type '" "Transform3D const &""'"); 
   }
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, 0 |  0 );
-  if (director) {
-    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IRotation_createRotation" "', argument " "1"" of type '" "Transform3D const &""'"); 
   }
+  arg1 = reinterpret_cast< Transform3D * >(argp1);
+  result = (IRotation *)IRotation::createRotation((Transform3D const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_createSample__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IRotation_createIdentity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
-  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  MultiLayer *result = 0 ;
+  IRotation *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_createSample" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
-    }
-    if (newmem & SWIG_CAST_NEW_MEMORY) {
-      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
-    } else {
-      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
-    }
-  }
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IMultiLayerBuilder_createSample" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = (MultiLayer *)(arg1)->IMultiLayerBuilder::createSample(arg2);
-    } else {
-      result = (MultiLayer *)(arg1)->createSample(arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, 0 |  0 );
-  if (director) {
-    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
-  }
+  if (!SWIG_Python_UnpackTuple(args, "IRotation_createIdentity", 0, 0, 0)) SWIG_fail;
+  result = (IRotation *)IRotation::createIdentity();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_createSample__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_IRotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
+  IRotation *arg1 = (IRotation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
-  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  MultiLayer *result = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_createSample" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
-    }
-    if (newmem & SWIG_CAST_NEW_MEMORY) {
-      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
-    } else {
-      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
-    }
-  }
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = (MultiLayer *)(arg1)->IMultiLayerBuilder::createSample();
-    } else {
-      result = (MultiLayer *)(arg1)->createSample();
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, 0 |  0 );
-  if (director) {
-    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IRotation, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IRotation" "', argument " "1"" of type '" "IRotation *""'"); 
   }
+  arg1 = reinterpret_cast< IRotation * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_createSample(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IMultiLayerBuilder_createSample", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_IMultiLayerBuilder_createSample__SWIG_1(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_IMultiLayerBuilder_createSample__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IMultiLayerBuilder_createSample'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IMultiLayerBuilder::createSample(size_t)\n"
-    "    IMultiLayerBuilder::createSample()\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IRotation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
+  IRotation *arg1 = (IRotation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
-  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  size_t result;
+  IRotation *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_size" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
-    }
-    if (newmem & SWIG_CAST_NEW_MEMORY) {
-      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
-    } else {
-      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
-    }
-  }
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = (arg1)->IMultiLayerBuilder::size();
-    } else {
-      result = (arg1)->size();
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IRotation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IRotation_clone" "', argument " "1"" of type '" "IRotation const *""'"); 
   }
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< IRotation * >(argp1);
+  result = (IRotation *)((IRotation const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_registerParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IRotation_createInverse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
-  std::string *arg2 = 0 ;
-  int64_t arg3 ;
+  IRotation *arg1 = (IRotation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
-  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  long long val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  RealParameter *result = 0 ;
+  PyObject *swig_obj[1] ;
+  IRotation *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IMultiLayerBuilder_registerParameter", 3, 3, swig_obj)) SWIG_fail;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_registerParameter" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
-    }
-    if (newmem & SWIG_CAST_NEW_MEMORY) {
-      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
-    } else {
-      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
-    }
-  }
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IMultiLayerBuilder_registerParameter" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IMultiLayerBuilder_registerParameter" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IRotation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IRotation_createInverse" "', argument " "1"" of type '" "IRotation const *""'"); 
   }
-  ecode3 = SWIG_AsVal_long_SS_long(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IMultiLayerBuilder_registerParameter" "', argument " "3"" of type '" "int64_t""'");
-  } 
-  arg3 = static_cast< int64_t >(val3);
-  result = (RealParameter *)IMultiLayerBuilder_registerParameter(arg1,(std::string const &)*arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< IRotation * >(argp1);
+  result = (IRotation *)((IRotation const *)arg1)->createInverse();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_setParameterValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IRotation_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
-  std::string *arg2 = 0 ;
-  double arg3 ;
+  IRotation *arg1 = (IRotation *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
-  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IMultiLayerBuilder_setParameterValue", 3, 3, swig_obj)) SWIG_fail;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_setParameterValue" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
-    }
-    if (newmem & SWIG_CAST_NEW_MEMORY) {
-      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
-    } else {
-      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
-    }
+  if (!SWIG_Python_UnpackTuple(args, "IRotation_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IRotation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IRotation_accept" "', argument " "1"" of type '" "IRotation const *""'"); 
   }
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IMultiLayerBuilder_setParameterValue" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IMultiLayerBuilder_setParameterValue" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+  arg1 = reinterpret_cast< IRotation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IRotation_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IMultiLayerBuilder_setParameterValue" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  IMultiLayerBuilder_setParameterValue(arg1,(std::string const &)*arg2,arg3);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((IRotation const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_parametersToString(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IRotation_getTransform3D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
+  IRotation *arg1 = (IRotation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::shared_ptr< IMultiLayerBuilder const > tempshared1 ;
-  std::shared_ptr< IMultiLayerBuilder const > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::string result;
+  Transform3D result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_parametersToString" "', argument " "1"" of type '" "IMultiLayerBuilder const *""'");
-    }
-    if (newmem & SWIG_CAST_NEW_MEMORY) {
-      tempshared1 = *reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
-      delete reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
-    } else {
-      smartarg1 = reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
-    }
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IRotation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IRotation_getTransform3D" "', argument " "1"" of type '" "IRotation const *""'"); 
   }
-  result = IMultiLayerBuilder_parametersToString((IMultiLayerBuilder const *)arg1);
-  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
+  arg1 = reinterpret_cast< IRotation * >(argp1);
+  result = ((IRotation const *)arg1)->getTransform3D();
+  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_createParameterTree(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IRotation_isIdentity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
+  IRotation *arg1 = (IRotation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::shared_ptr< IMultiLayerBuilder const > tempshared1 ;
-  std::shared_ptr< IMultiLayerBuilder const > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
-  ParameterPool *result = 0 ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_createParameterTree" "', argument " "1"" of type '" "IMultiLayerBuilder const *""'");
-    }
-    if (newmem & SWIG_CAST_NEW_MEMORY) {
-      tempshared1 = *reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
-      delete reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
-    } else {
-      smartarg1 = reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
-    }
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IRotation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IRotation_isIdentity" "', argument " "1"" of type '" "IRotation const *""'"); 
   }
-  result = (ParameterPool *)IMultiLayerBuilder_createParameterTree((IMultiLayerBuilder const *)arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterPool, 0 |  0 );
+  arg1 = reinterpret_cast< IRotation * >(argp1);
+  result = (bool)((IRotation const *)arg1)->isIdentity();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_parameterPool(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IRotation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IRotation, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_createProduct(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
+  IRotation *arg1 = 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::shared_ptr< IMultiLayerBuilder const > tempshared1 ;
-  std::shared_ptr< IMultiLayerBuilder const > *smartarg1 = 0 ;
-  PyObject *swig_obj[1] ;
-  ParameterPool *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  IRotation *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_parameterPool" "', argument " "1"" of type '" "IMultiLayerBuilder const *""'");
-    }
-    if (newmem & SWIG_CAST_NEW_MEMORY) {
-      tempshared1 = *reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
-      delete reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
-    } else {
-      smartarg1 = reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
-    }
+  if (!SWIG_Python_UnpackTuple(args, "createProduct", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "createProduct" "', argument " "1"" of type '" "IRotation const &""'"); 
   }
-  result = (ParameterPool *)IMultiLayerBuilder_parameterPool((IMultiLayerBuilder const *)arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "createProduct" "', argument " "1"" of type '" "IRotation const &""'"); 
+  }
+  arg1 = reinterpret_cast< IRotation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "createProduct" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "createProduct" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (IRotation *)createProduct((IRotation const &)*arg1,(IRotation const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_onChange(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IsZRotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
+  IRotation *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
-  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_onChange" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
-    }
-    if (newmem & SWIG_CAST_NEW_MEMORY) {
-      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
-    } else {
-      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
-    }
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsZRotation" "', argument " "1"" of type '" "IRotation const &""'"); 
   }
-  IMultiLayerBuilder_onChange(arg1);
-  resultobj = SWIG_Py_Void();
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IsZRotation" "', argument " "1"" of type '" "IRotation const &""'"); 
+  }
+  arg1 = reinterpret_cast< IRotation * >(argp1);
+  result = (bool)IsZRotation((IRotation const &)*arg1);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_disown_IMultiLayerBuilder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IdentityRotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
-  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_IMultiLayerBuilder" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
-    }
-    if (newmem & SWIG_CAST_NEW_MEMORY) {
-      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
-    } else {
-      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
-      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
-    }
-  }
-  {
-    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
-    if (director) director->swig_disown();
-  }
+  IdentityRotation *result = 0 ;
   
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "new_IdentityRotation", 0, 0, 0)) SWIG_fail;
+  result = (IdentityRotation *)new IdentityRotation();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IdentityRotation, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IMultiLayerBuilder_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *IMultiLayerBuilder_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_INodeVisitor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IdentityRotation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *result = 0 ;
+  IdentityRotation *arg1 = (IdentityRotation *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IdentityRotation *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_INodeVisitor", 0, 0, 0)) SWIG_fail;
-  result = (INodeVisitor *)new INodeVisitor();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_INodeVisitor, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IdentityRotation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IdentityRotation_clone" "', argument " "1"" of type '" "IdentityRotation const *""'"); 
+  }
+  arg1 = reinterpret_cast< IdentityRotation * >(argp1);
+  result = (IdentityRotation *)((IdentityRotation const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IdentityRotation, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_INodeVisitor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IdentityRotation_createInverse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IdentityRotation *arg1 = (IdentityRotation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  IdentityRotation *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IdentityRotation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_INodeVisitor" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IdentityRotation_createInverse" "', argument " "1"" of type '" "IdentityRotation const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IdentityRotation * >(argp1);
+  result = (IdentityRotation *)((IdentityRotation const *)arg1)->createInverse();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IdentityRotation, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IdentityRotation_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  BasicLattice *arg2 = (BasicLattice *) 0 ;
+  IdentityRotation *arg1 = (IdentityRotation *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IdentityRotation_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IdentityRotation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IdentityRotation_accept" "', argument " "1"" of type '" "IdentityRotation const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_BasicLattice, 0 |  0 );
+  arg1 = reinterpret_cast< IdentityRotation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "BasicLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IdentityRotation_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< BasicLattice * >(argp2);
-  (arg1)->visit((BasicLattice const *)arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((IdentityRotation const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -49323,83 +50351,67 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IdentityRotation_getTransform3D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  Beam *arg2 = (Beam *) 0 ;
+  IdentityRotation *arg1 = (IdentityRotation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  Transform3D result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IdentityRotation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_Beam, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "Beam const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IdentityRotation_getTransform3D" "', argument " "1"" of type '" "IdentityRotation const *""'"); 
   }
-  arg2 = reinterpret_cast< Beam * >(argp2);
-  (arg1)->visit((Beam const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IdentityRotation * >(argp1);
+  result = ((IdentityRotation const *)arg1)->getTransform3D();
+  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IdentityRotation_isIdentity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  ConstantBackground *arg2 = (ConstantBackground *) 0 ;
+  IdentityRotation *arg1 = (IdentityRotation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IdentityRotation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ConstantBackground, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ConstantBackground const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IdentityRotation_isIdentity" "', argument " "1"" of type '" "IdentityRotation const *""'"); 
   }
-  arg2 = reinterpret_cast< ConstantBackground * >(argp2);
-  (arg1)->visit((ConstantBackground const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IdentityRotation * >(argp1);
+  result = (bool)((IdentityRotation const *)arg1)->isIdentity();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_IdentityRotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  ConvolutionDetectorResolution *arg2 = (ConvolutionDetectorResolution *) 0 ;
+  IdentityRotation *arg1 = (IdentityRotation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IdentityRotation, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ConvolutionDetectorResolution, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ConvolutionDetectorResolution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IdentityRotation" "', argument " "1"" of type '" "IdentityRotation *""'"); 
   }
-  arg2 = reinterpret_cast< ConvolutionDetectorResolution * >(argp2);
-  (arg1)->visit((ConvolutionDetectorResolution const *)arg2);
+  arg1 = reinterpret_cast< IdentityRotation * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -49407,111 +50419,108 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *IdentityRotation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IdentityRotation, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *IdentityRotation_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_RotationX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  Crystal *arg2 = (Crystal *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  RotationX *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_Crystal, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "Crystal const *""'"); 
-  }
-  arg2 = reinterpret_cast< Crystal * >(argp2);
-  (arg1)->visit((Crystal const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RotationX" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (RotationX *)new RotationX(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationX, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_5(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationX_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  DistributionCosine *arg2 = (DistributionCosine *) 0 ;
+  RotationX *arg1 = (RotationX *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  RotationX *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationX, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_DistributionCosine, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "DistributionCosine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationX_clone" "', argument " "1"" of type '" "RotationX const *""'"); 
   }
-  arg2 = reinterpret_cast< DistributionCosine * >(argp2);
-  (arg1)->visit((DistributionCosine const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationX * >(argp1);
+  result = (RotationX *)((RotationX const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationX, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_6(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationX_createInverse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  DistributionGate *arg2 = (DistributionGate *) 0 ;
+  RotationX *arg1 = (RotationX *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  RotationX *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationX, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_DistributionGate, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "DistributionGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationX_createInverse" "', argument " "1"" of type '" "RotationX const *""'"); 
   }
-  arg2 = reinterpret_cast< DistributionGate * >(argp2);
-  (arg1)->visit((DistributionGate const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationX * >(argp1);
+  result = (RotationX *)((RotationX const *)arg1)->createInverse();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationX, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_7(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationX_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  DistributionGaussian *arg2 = (DistributionGaussian *) 0 ;
+  RotationX *arg1 = (RotationX *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RotationX_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationX, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationX_accept" "', argument " "1"" of type '" "RotationX const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
+  arg1 = reinterpret_cast< RotationX * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "DistributionGaussian const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RotationX_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< DistributionGaussian * >(argp2);
-  (arg1)->visit((DistributionGaussian const *)arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((RotationX const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -49519,83 +50528,67 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_8(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationX_getAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  DistributionLogNormal *arg2 = (DistributionLogNormal *) 0 ;
+  RotationX *arg1 = (RotationX *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationX, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "DistributionLogNormal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationX_getAngle" "', argument " "1"" of type '" "RotationX const *""'"); 
   }
-  arg2 = reinterpret_cast< DistributionLogNormal * >(argp2);
-  (arg1)->visit((DistributionLogNormal const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationX * >(argp1);
+  result = (double)((RotationX const *)arg1)->getAngle();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_9(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationX_getTransform3D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  DistributionLorentz *arg2 = (DistributionLorentz *) 0 ;
+  RotationX *arg1 = (RotationX *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  Transform3D result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationX, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "DistributionLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationX_getTransform3D" "', argument " "1"" of type '" "RotationX const *""'"); 
   }
-  arg2 = reinterpret_cast< DistributionLorentz * >(argp2);
-  (arg1)->visit((DistributionLorentz const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationX * >(argp1);
+  result = ((RotationX const *)arg1)->getTransform3D();
+  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_10(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_RotationX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  DistributionTrapezoid *arg2 = (DistributionTrapezoid *) 0 ;
+  RotationX *arg1 = (RotationX *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationX, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "DistributionTrapezoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RotationX" "', argument " "1"" of type '" "RotationX *""'"); 
   }
-  arg2 = reinterpret_cast< DistributionTrapezoid * >(argp2);
-  (arg1)->visit((DistributionTrapezoid const *)arg2);
+  arg1 = reinterpret_cast< RotationX * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -49603,111 +50596,108 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_11(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *RotationX_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_RotationX, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *RotationX_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_RotationY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FootprintGauss *arg2 = (FootprintGauss *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  RotationY *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FootprintGauss, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FootprintGauss const *""'"); 
-  }
-  arg2 = reinterpret_cast< FootprintGauss * >(argp2);
-  (arg1)->visit((FootprintGauss const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RotationY" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (RotationY *)new RotationY(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationY, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_12(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationY_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FootprintSquare *arg2 = (FootprintSquare *) 0 ;
+  RotationY *arg1 = (RotationY *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  RotationY *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationY, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FootprintSquare, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FootprintSquare const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationY_clone" "', argument " "1"" of type '" "RotationY const *""'"); 
   }
-  arg2 = reinterpret_cast< FootprintSquare * >(argp2);
-  (arg1)->visit((FootprintSquare const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationY * >(argp1);
+  result = (RotationY *)((RotationY const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationY, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_13(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationY_createInverse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorAnisoPyramid *arg2 = (FormFactorAnisoPyramid *) 0 ;
+  RotationY *arg1 = (RotationY *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  RotationY *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationY, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorAnisoPyramid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationY_createInverse" "', argument " "1"" of type '" "RotationY const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorAnisoPyramid * >(argp2);
-  (arg1)->visit((FormFactorAnisoPyramid const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationY * >(argp1);
+  result = (RotationY *)((RotationY const *)arg1)->createInverse();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationY, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_14(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationY_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorBarGauss *arg2 = (FormFactorBarGauss *) 0 ;
+  RotationY *arg1 = (RotationY *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RotationY_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationY, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationY_accept" "', argument " "1"" of type '" "RotationY const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorBarGauss, 0 |  0 );
+  arg1 = reinterpret_cast< RotationY * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorBarGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RotationY_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorBarGauss * >(argp2);
-  (arg1)->visit((FormFactorBarGauss const *)arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((RotationY const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -49715,83 +50705,67 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_15(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationY_getAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorBarLorentz *arg2 = (FormFactorBarLorentz *) 0 ;
+  RotationY *arg1 = (RotationY *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationY, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorBarLorentz, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorBarLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationY_getAngle" "', argument " "1"" of type '" "RotationY const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorBarLorentz * >(argp2);
-  (arg1)->visit((FormFactorBarLorentz const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationY * >(argp1);
+  result = (double)((RotationY const *)arg1)->getAngle();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_16(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationY_getTransform3D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorBox *arg2 = (FormFactorBox *) 0 ;
+  RotationY *arg1 = (RotationY *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  Transform3D result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationY, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorBox, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorBox const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationY_getTransform3D" "', argument " "1"" of type '" "RotationY const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorBox * >(argp2);
-  (arg1)->visit((FormFactorBox const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationY * >(argp1);
+  result = ((RotationY const *)arg1)->getTransform3D();
+  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_17(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_RotationY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorCantellatedCube *arg2 = (FormFactorCantellatedCube *) 0 ;
+  RotationY *arg1 = (RotationY *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationY, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCantellatedCube, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCantellatedCube const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RotationY" "', argument " "1"" of type '" "RotationY *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorCantellatedCube * >(argp2);
-  (arg1)->visit((FormFactorCantellatedCube const *)arg2);
+  arg1 = reinterpret_cast< RotationY * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -49799,167 +50773,150 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_18(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *RotationY_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_RotationY, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *RotationY_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_RotationZ__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorCone *arg2 = (FormFactorCone *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  RotationZ *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCone, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCone const *""'"); 
-  }
-  arg2 = reinterpret_cast< FormFactorCone * >(argp2);
-  (arg1)->visit((FormFactorCone const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RotationZ" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (RotationZ *)new RotationZ(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationZ, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_19(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_RotationZ__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorCone6 *arg2 = (FormFactorCone6 *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  RotationZ *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCone6, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCone6 const *""'"); 
-  }
-  arg2 = reinterpret_cast< FormFactorCone6 * >(argp2);
-  (arg1)->visit((FormFactorCone6 const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (RotationZ *)new RotationZ();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationZ, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_20(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorCoreShell *arg2 = (FormFactorCoreShell *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+SWIGINTERN PyObject *_wrap_new_RotationZ(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RotationZ", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_RotationZ__SWIG_1(self, argc, argv);
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCoreShell, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCoreShell const *""'"); 
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_new_RotationZ__SWIG_0(self, argc, argv);
+    }
   }
-  arg2 = reinterpret_cast< FormFactorCoreShell * >(argp2);
-  (arg1)->visit((FormFactorCoreShell const *)arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RotationZ'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    RotationZ::RotationZ(double)\n"
+    "    RotationZ::RotationZ()\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_21(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationZ_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorCrystal *arg2 = (FormFactorCrystal *) 0 ;
+  RotationZ *arg1 = (RotationZ *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  RotationZ *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationZ, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationZ_clone" "', argument " "1"" of type '" "RotationZ const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorCrystal * >(argp2);
-  (arg1)->visit((FormFactorCrystal const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationZ * >(argp1);
+  result = (RotationZ *)((RotationZ const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationZ, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_22(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationZ_createInverse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorCuboctahedron *arg2 = (FormFactorCuboctahedron *) 0 ;
+  RotationZ *arg1 = (RotationZ *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  RotationZ *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationZ, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCuboctahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationZ_createInverse" "', argument " "1"" of type '" "RotationZ const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorCuboctahedron * >(argp2);
-  (arg1)->visit((FormFactorCuboctahedron const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationZ * >(argp1);
+  result = (RotationZ *)((RotationZ const *)arg1)->createInverse();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationZ, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_23(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationZ_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorCylinder *arg2 = (FormFactorCylinder *) 0 ;
+  RotationZ *arg1 = (RotationZ *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RotationZ_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationZ, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationZ_accept" "', argument " "1"" of type '" "RotationZ const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
+  arg1 = reinterpret_cast< RotationZ * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCylinder const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RotationZ_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorCylinder * >(argp2);
-  (arg1)->visit((FormFactorCylinder const *)arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((RotationZ const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -49967,83 +50924,67 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_24(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationZ_getAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorDWBA *arg2 = (FormFactorDWBA *) 0 ;
+  RotationZ *arg1 = (RotationZ *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationZ, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDWBA, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDWBA const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationZ_getAngle" "', argument " "1"" of type '" "RotationZ const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorDWBA * >(argp2);
-  (arg1)->visit((FormFactorDWBA const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationZ * >(argp1);
+  result = (double)((RotationZ const *)arg1)->getAngle();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_25(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationZ_getTransform3D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorDWBAPol *arg2 = (FormFactorDWBAPol *) 0 ;
+  RotationZ *arg1 = (RotationZ *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  Transform3D result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationZ, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDWBAPol, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDWBAPol const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationZ_getTransform3D" "', argument " "1"" of type '" "RotationZ const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorDWBAPol * >(argp2);
-  (arg1)->visit((FormFactorDWBAPol const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationZ * >(argp1);
+  result = ((RotationZ const *)arg1)->getTransform3D();
+  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_26(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_RotationZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorDecoratorMaterial *arg2 = (FormFactorDecoratorMaterial *) 0 ;
+  RotationZ *arg1 = (RotationZ *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationZ, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDecoratorMaterial, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDecoratorMaterial const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RotationZ" "', argument " "1"" of type '" "RotationZ *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorDecoratorMaterial * >(argp2);
-  (arg1)->visit((FormFactorDecoratorMaterial const *)arg2);
+  arg1 = reinterpret_cast< RotationZ * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50051,111 +50992,123 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_27(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *RotationZ_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_RotationZ, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *RotationZ_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_RotationEuler(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorDecoratorPositionFactor *arg2 = (FormFactorDecoratorPositionFactor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  RotationEuler *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDecoratorPositionFactor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDecoratorPositionFactor const *""'"); 
-  }
-  arg2 = reinterpret_cast< FormFactorDecoratorPositionFactor * >(argp2);
-  (arg1)->visit((FormFactorDecoratorPositionFactor const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "new_RotationEuler", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RotationEuler" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RotationEuler" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RotationEuler" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (RotationEuler *)new RotationEuler(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationEuler, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_28(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationEuler_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorDecoratorRotation *arg2 = (FormFactorDecoratorRotation *) 0 ;
+  RotationEuler *arg1 = (RotationEuler *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  RotationEuler *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDecoratorRotation, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDecoratorRotation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_clone" "', argument " "1"" of type '" "RotationEuler const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorDecoratorRotation * >(argp2);
-  (arg1)->visit((FormFactorDecoratorRotation const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationEuler * >(argp1);
+  result = (RotationEuler *)((RotationEuler const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationEuler, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_29(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationEuler_createInverse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorDodecahedron *arg2 = (FormFactorDodecahedron *) 0 ;
+  RotationEuler *arg1 = (RotationEuler *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  IRotation *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDodecahedron, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDodecahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_createInverse" "', argument " "1"" of type '" "RotationEuler const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorDodecahedron * >(argp2);
-  (arg1)->visit((FormFactorDodecahedron const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationEuler * >(argp1);
+  result = (IRotation *)((RotationEuler const *)arg1)->createInverse();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_30(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationEuler_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorDot *arg2 = (FormFactorDot *) 0 ;
+  RotationEuler *arg1 = (RotationEuler *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RotationEuler_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_accept" "', argument " "1"" of type '" "RotationEuler const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDot, 0 |  0 );
+  arg1 = reinterpret_cast< RotationEuler * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDot const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RotationEuler_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorDot * >(argp2);
-  (arg1)->visit((FormFactorDot const *)arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((RotationEuler const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50163,139 +51116,113 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_31(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationEuler_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorEllipsoidalCylinder *arg2 = (FormFactorEllipsoidalCylinder *) 0 ;
+  RotationEuler *arg1 = (RotationEuler *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_getAlpha" "', argument " "1"" of type '" "RotationEuler const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp2);
-  (arg1)->visit((FormFactorEllipsoidalCylinder const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationEuler * >(argp1);
+  result = (double)((RotationEuler const *)arg1)->getAlpha();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_32(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationEuler_getBeta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorFullSphere *arg2 = (FormFactorFullSphere *) 0 ;
+  RotationEuler *arg1 = (RotationEuler *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorFullSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_getBeta" "', argument " "1"" of type '" "RotationEuler const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorFullSphere * >(argp2);
-  (arg1)->visit((FormFactorFullSphere const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationEuler * >(argp1);
+  result = (double)((RotationEuler const *)arg1)->getBeta();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_33(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationEuler_getGamma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorFullSpheroid *arg2 = (FormFactorFullSpheroid *) 0 ;
+  RotationEuler *arg1 = (RotationEuler *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorFullSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_getGamma" "', argument " "1"" of type '" "RotationEuler const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorFullSpheroid * >(argp2);
-  (arg1)->visit((FormFactorFullSpheroid const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationEuler * >(argp1);
+  result = (double)((RotationEuler const *)arg1)->getGamma();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_34(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RotationEuler_getTransform3D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorGauss *arg2 = (FormFactorGauss *) 0 ;
+  RotationEuler *arg1 = (RotationEuler *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  Transform3D result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_getTransform3D" "', argument " "1"" of type '" "RotationEuler const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorGauss * >(argp2);
-  (arg1)->visit((FormFactorGauss const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RotationEuler * >(argp1);
+  result = ((RotationEuler const *)arg1)->getTransform3D();
+  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_35(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_RotationEuler(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorHemiEllipsoid *arg2 = (FormFactorHemiEllipsoid *) 0 ;
+  RotationEuler *arg1 = (RotationEuler *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorHemiEllipsoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RotationEuler" "', argument " "1"" of type '" "RotationEuler *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp2);
-  (arg1)->visit((FormFactorHemiEllipsoid const *)arg2);
+  arg1 = reinterpret_cast< RotationEuler * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50303,83 +51230,75 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_36(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *RotationEuler_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_RotationEuler, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *RotationEuler_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FitOptions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorIcosahedron *arg2 = (FormFactorIcosahedron *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  FitOptions *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorIcosahedron, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorIcosahedron const *""'"); 
-  }
-  arg2 = reinterpret_cast< FormFactorIcosahedron * >(argp2);
-  (arg1)->visit((FormFactorIcosahedron const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "new_FitOptions", 0, 0, 0)) SWIG_fail;
+  result = (FitOptions *)new FitOptions();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FitOptions, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_37(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitOptions_derivEpsilon(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorLongBoxGauss *arg2 = (FormFactorLongBoxGauss *) 0 ;
+  FitOptions *arg1 = (FitOptions *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorLongBoxGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitOptions_derivEpsilon" "', argument " "1"" of type '" "FitOptions const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorLongBoxGauss * >(argp2);
-  (arg1)->visit((FormFactorLongBoxGauss const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitOptions * >(argp1);
+  result = (double)((FitOptions const *)arg1)->derivEpsilon();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_38(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitOptions_setDerivEpsilon(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorLongBoxLorentz *arg2 = (FormFactorLongBoxLorentz *) 0 ;
+  FitOptions *arg1 = (FitOptions *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FitOptions_setDerivEpsilon", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorLongBoxLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitOptions_setDerivEpsilon" "', argument " "1"" of type '" "FitOptions *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp2);
-  (arg1)->visit((FormFactorLongBoxLorentz const *)arg2);
+  arg1 = reinterpret_cast< FitOptions * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitOptions_setDerivEpsilon" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setDerivEpsilon(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50387,55 +51306,51 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_39(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitOptions_stepFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorLorentz *arg2 = (FormFactorLorentz *) 0 ;
+  FitOptions *arg1 = (FitOptions *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitOptions_stepFactor" "', argument " "1"" of type '" "FitOptions const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorLorentz * >(argp2);
-  (arg1)->visit((FormFactorLorentz const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitOptions * >(argp1);
+  result = (double)((FitOptions const *)arg1)->stepFactor();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_40(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitOptions_setStepFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorPrism3 *arg2 = (FormFactorPrism3 *) 0 ;
+  FitOptions *arg1 = (FitOptions *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FitOptions_setStepFactor", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorPrism3, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorPrism3 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitOptions_setStepFactor" "', argument " "1"" of type '" "FitOptions *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorPrism3 * >(argp2);
-  (arg1)->visit((FormFactorPrism3 const *)arg2);
+  arg1 = reinterpret_cast< FitOptions * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitOptions_setStepFactor" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setStepFactor(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50443,27 +51358,21 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_41(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_FitOptions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorPrism6 *arg2 = (FormFactorPrism6 *) 0 ;
+  FitOptions *arg1 = (FitOptions *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitOptions, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorPrism6, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorPrism6 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FitOptions" "', argument " "1"" of type '" "FitOptions *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorPrism6 * >(argp2);
-  (arg1)->visit((FormFactorPrism6 const *)arg2);
+  arg1 = reinterpret_cast< FitOptions * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50471,55 +51380,32 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_42(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorPyramid *arg2 = (FormFactorPyramid *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorPyramid const *""'"); 
-  }
-  arg2 = reinterpret_cast< FormFactorPyramid * >(argp2);
-  (arg1)->visit((FormFactorPyramid const *)arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *FitOptions_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FitOptions, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *FitOptions_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_43(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_IObserver(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorRipple1Box *arg2 = (FormFactorRipple1Box *) 0 ;
+  IObserver *arg1 = (IObserver *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IObserver, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorRipple1Box, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorRipple1Box const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IObserver" "', argument " "1"" of type '" "IObserver *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorRipple1Box * >(argp2);
-  (arg1)->visit((FormFactorRipple1Box const *)arg2);
+  arg1 = reinterpret_cast< IObserver * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50527,27 +51413,28 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_44(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IObserver_notify(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorRipple1Gauss *arg2 = (FormFactorRipple1Gauss *) 0 ;
+  IObserver *arg1 = (IObserver *) 0 ;
+  IObservable *arg2 = (IObservable *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IObserver_notify", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IObserver, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IObserver_notify" "', argument " "1"" of type '" "IObserver *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorRipple1Gauss, 0 |  0 );
+  arg1 = reinterpret_cast< IObserver * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IObservable, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorRipple1Gauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IObserver_notify" "', argument " "2"" of type '" "IObservable *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorRipple1Gauss * >(argp2);
-  (arg1)->visit((FormFactorRipple1Gauss const *)arg2);
+  arg2 = reinterpret_cast< IObservable * >(argp2);
+  (arg1)->notify(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50555,27 +51442,28 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_45(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *IObserver_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IObserver, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_delete_IObservable(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorRipple1Lorentz *arg2 = (FormFactorRipple1Lorentz *) 0 ;
+  IObservable *arg1 = (IObservable *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IObservable, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorRipple1Lorentz, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorRipple1Lorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IObservable" "', argument " "1"" of type '" "IObservable *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorRipple1Lorentz * >(argp2);
-  (arg1)->visit((FormFactorRipple1Lorentz const *)arg2);
+  arg1 = reinterpret_cast< IObservable * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50583,27 +51471,36 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_46(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IObservable_attachObserver(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorRipple2Box *arg2 = (FormFactorRipple2Box *) 0 ;
+  IObservable *arg1 = (IObservable *) 0 ;
+  SwigValueWrapper< std::shared_ptr< IObserver > > arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IObservable_attachObserver", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IObservable, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IObservable_attachObserver" "', argument " "1"" of type '" "IObservable *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorRipple2Box, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorRipple2Box const *""'"); 
+  arg1 = reinterpret_cast< IObservable * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__shared_ptrT_IObserver_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IObservable_attachObserver" "', argument " "2"" of type '" "IObservable::observer_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IObservable_attachObserver" "', argument " "2"" of type '" "IObservable::observer_t""'");
+    } else {
+      IObservable::observer_t * temp = reinterpret_cast< IObservable::observer_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< FormFactorRipple2Box * >(argp2);
-  (arg1)->visit((FormFactorRipple2Box const *)arg2);
+  (arg1)->attachObserver(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50611,27 +51508,21 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_47(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IObservable_notifyObservers(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorRipple2Gauss *arg2 = (FormFactorRipple2Gauss *) 0 ;
+  IObservable *arg1 = (IObservable *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IObservable, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorRipple2Gauss, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorRipple2Gauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IObservable_notifyObservers" "', argument " "1"" of type '" "IObservable *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorRipple2Gauss * >(argp2);
-  (arg1)->visit((FormFactorRipple2Gauss const *)arg2);
+  arg1 = reinterpret_cast< IObservable * >(argp1);
+  (arg1)->notifyObservers();
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50639,83 +51530,76 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_48(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_IObservable(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorRipple2Lorentz *arg2 = (FormFactorRipple2Lorentz *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  IObservable *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorRipple2Lorentz, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorRipple2Lorentz const *""'"); 
-  }
-  arg2 = reinterpret_cast< FormFactorRipple2Lorentz * >(argp2);
-  (arg1)->visit((FormFactorRipple2Lorentz const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "new_IObservable", 0, 0, 0)) SWIG_fail;
+  result = (IObservable *)new IObservable();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IObservable, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_49(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *IObservable_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IObservable, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *IObservable_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_IterationInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorSphereGaussianRadius *arg2 = (FormFactorSphereGaussianRadius *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  IterationInfo *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorSphereGaussianRadius, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorSphereGaussianRadius const *""'"); 
-  }
-  arg2 = reinterpret_cast< FormFactorSphereGaussianRadius * >(argp2);
-  (arg1)->visit((FormFactorSphereGaussianRadius const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "new_IterationInfo", 0, 0, 0)) SWIG_fail;
+  result = (IterationInfo *)new IterationInfo();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IterationInfo, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_50(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IterationInfo_update(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorSphereLogNormalRadius *arg2 = (FormFactorSphereLogNormalRadius *) 0 ;
+  IterationInfo *arg1 = (IterationInfo *) 0 ;
+  Fit::Parameters *arg2 = 0 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IterationInfo_update", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IterationInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IterationInfo_update" "', argument " "1"" of type '" "IterationInfo *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0 |  0 );
+  arg1 = reinterpret_cast< IterationInfo * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Fit__Parameters,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorSphereLogNormalRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IterationInfo_update" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorSphereLogNormalRadius * >(argp2);
-  (arg1)->visit((FormFactorSphereLogNormalRadius const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IterationInfo_update" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
+  }
+  arg2 = reinterpret_cast< Fit::Parameters * >(argp2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IterationInfo_update" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  (arg1)->update((Fit::Parameters const &)*arg2,arg3);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50723,139 +51607,113 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_51(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IterationInfo_iterationCount(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorTetrahedron *arg2 = (FormFactorTetrahedron *) 0 ;
+  IterationInfo *arg1 = (IterationInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  unsigned int result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IterationInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorTetrahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IterationInfo_iterationCount" "', argument " "1"" of type '" "IterationInfo const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorTetrahedron * >(argp2);
-  (arg1)->visit((FormFactorTetrahedron const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IterationInfo * >(argp1);
+  result = (unsigned int)((IterationInfo const *)arg1)->iterationCount();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_52(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IterationInfo_chi2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorTruncatedCube *arg2 = (FormFactorTruncatedCube *) 0 ;
+  IterationInfo *arg1 = (IterationInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IterationInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorTruncatedCube, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorTruncatedCube const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IterationInfo_chi2" "', argument " "1"" of type '" "IterationInfo const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorTruncatedCube * >(argp2);
-  (arg1)->visit((FormFactorTruncatedCube const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IterationInfo * >(argp1);
+  result = (double)((IterationInfo const *)arg1)->chi2();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_53(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IterationInfo_parameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorTruncatedSphere *arg2 = (FormFactorTruncatedSphere *) 0 ;
+  IterationInfo *arg1 = (IterationInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  Fit::Parameters result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IterationInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorTruncatedSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IterationInfo_parameters" "', argument " "1"" of type '" "IterationInfo const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorTruncatedSphere * >(argp2);
-  (arg1)->visit((FormFactorTruncatedSphere const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IterationInfo * >(argp1);
+  result = ((IterationInfo const *)arg1)->parameters();
+  resultobj = SWIG_NewPointerObj((new Fit::Parameters(static_cast< const Fit::Parameters& >(result))), SWIGTYPE_p_Fit__Parameters, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_54(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IterationInfo_parameterMap(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorTruncatedSpheroid *arg2 = (FormFactorTruncatedSpheroid *) 0 ;
+  IterationInfo *arg1 = (IterationInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::map< std::string,double,std::less< std::string >,std::allocator< std::pair< std::string const,double > > > result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IterationInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IterationInfo_parameterMap" "', argument " "1"" of type '" "IterationInfo const *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp2);
-  (arg1)->visit((FormFactorTruncatedSpheroid const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IterationInfo * >(argp1);
+  result = ((IterationInfo const *)arg1)->parameterMap();
+  resultobj = swig::from(static_cast< std::map< std::string,double,std::less< std::string >,std::allocator< std::pair< std::string const,double > > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_55(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_IterationInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FormFactorWeighted *arg2 = (FormFactorWeighted *) 0 ;
+  IterationInfo *arg1 = (IterationInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IterationInfo, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorWeighted const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IterationInfo" "', argument " "1"" of type '" "IterationInfo *""'"); 
   }
-  arg2 = reinterpret_cast< FormFactorWeighted * >(argp2);
-  (arg1)->visit((FormFactorWeighted const *)arg2);
+  arg1 = reinterpret_cast< IterationInfo * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50863,55 +51721,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_56(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *IterationInfo_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IterationInfo, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *IterationInfo_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_PyBuilderCallback(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDecayFunction1DCauchy *arg2 = (FTDecayFunction1DCauchy *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *arg1 = (PyObject *) 0 ;
+  PyObject *swig_obj[1] ;
+  PyBuilderCallback *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction1DCauchy, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction1DCauchy const *""'"); 
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  arg1 = swig_obj[0];
+  if ( arg1 != Py_None ) {
+    /* subclassed */
+    result = (PyBuilderCallback *)new SwigDirector_PyBuilderCallback(arg1); 
+  } else {
+    result = (PyBuilderCallback *)new PyBuilderCallback(); 
   }
-  arg2 = reinterpret_cast< FTDecayFunction1DCauchy * >(argp2);
-  (arg1)->visit((FTDecayFunction1DCauchy const *)arg2);
-  resultobj = SWIG_Py_Void();
+  
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_57(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_PyBuilderCallback(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDecayFunction1DGauss *arg2 = (FTDecayFunction1DGauss *) 0 ;
+  PyBuilderCallback *arg1 = (PyBuilderCallback *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction1DGauss, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction1DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PyBuilderCallback" "', argument " "1"" of type '" "PyBuilderCallback *""'"); 
   }
-  arg2 = reinterpret_cast< FTDecayFunction1DGauss * >(argp2);
-  (arg1)->visit((FTDecayFunction1DGauss const *)arg2);
+  arg1 = reinterpret_cast< PyBuilderCallback * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50919,55 +51777,78 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_58(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_PyBuilderCallback_build_simulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDecayFunction1DTriangle *arg2 = (FTDecayFunction1DTriangle *) 0 ;
+  PyBuilderCallback *arg1 = (PyBuilderCallback *) 0 ;
+  Fit::Parameters arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  Simulation *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PyBuilderCallback_build_simulation", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PyBuilderCallback, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PyBuilderCallback_build_simulation" "', argument " "1"" of type '" "PyBuilderCallback *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction1DTriangle, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction1DTriangle const *""'"); 
+  arg1 = reinterpret_cast< PyBuilderCallback * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Fit__Parameters,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PyBuilderCallback_build_simulation" "', argument " "2"" of type '" "Fit::Parameters""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PyBuilderCallback_build_simulation" "', argument " "2"" of type '" "Fit::Parameters""'");
+    } else {
+      Fit::Parameters * temp = reinterpret_cast< Fit::Parameters * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (Simulation *)(arg1)->PyBuilderCallback::build_simulation(arg2);
+    } else {
+      result = (Simulation *)(arg1)->build_simulation(arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Simulation, 0 |  0 );
+  if (director) {
+    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
   }
-  arg2 = reinterpret_cast< FTDecayFunction1DTriangle * >(argp2);
-  (arg1)->visit((FTDecayFunction1DTriangle const *)arg2);
-  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_59(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_disown_PyBuilderCallback(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDecayFunction1DVoigt *arg2 = (FTDecayFunction1DVoigt *) 0 ;
+  PyBuilderCallback *arg1 = (PyBuilderCallback *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PyBuilderCallback, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_PyBuilderCallback" "', argument " "1"" of type '" "PyBuilderCallback *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction1DVoigt, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction1DVoigt const *""'"); 
+  arg1 = reinterpret_cast< PyBuilderCallback * >(argp1);
+  {
+    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
+    if (director) director->swig_disown();
   }
-  arg2 = reinterpret_cast< FTDecayFunction1DVoigt * >(argp2);
-  (arg1)->visit((FTDecayFunction1DVoigt const *)arg2);
+  
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -50975,55 +51856,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_60(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *PyBuilderCallback_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_PyBuilderCallback, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *PyBuilderCallback_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_PyObserverCallback(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDecayFunction2DCauchy *arg2 = (FTDecayFunction2DCauchy *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *arg1 = (PyObject *) 0 ;
+  PyObject *swig_obj[1] ;
+  PyObserverCallback *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction2DCauchy, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction2DCauchy const *""'"); 
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  arg1 = swig_obj[0];
+  if ( arg1 != Py_None ) {
+    /* subclassed */
+    result = (PyObserverCallback *)new SwigDirector_PyObserverCallback(arg1); 
+  } else {
+    result = (PyObserverCallback *)new PyObserverCallback(); 
   }
-  arg2 = reinterpret_cast< FTDecayFunction2DCauchy * >(argp2);
-  (arg1)->visit((FTDecayFunction2DCauchy const *)arg2);
-  resultobj = SWIG_Py_Void();
+  
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PyObserverCallback, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_61(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_PyObserverCallback(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDecayFunction2DGauss *arg2 = (FTDecayFunction2DGauss *) 0 ;
+  PyObserverCallback *arg1 = (PyObserverCallback *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PyObserverCallback, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction2DGauss, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction2DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PyObserverCallback" "', argument " "1"" of type '" "PyObserverCallback *""'"); 
   }
-  arg2 = reinterpret_cast< FTDecayFunction2DGauss * >(argp2);
-  (arg1)->visit((FTDecayFunction2DGauss const *)arg2);
+  arg1 = reinterpret_cast< PyObserverCallback * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -51031,27 +51912,43 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_62(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_PyObserverCallback_update(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDecayFunction2DVoigt *arg2 = (FTDecayFunction2DVoigt *) 0 ;
+  PyObserverCallback *arg1 = (PyObserverCallback *) 0 ;
+  FitObjective *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PyObserverCallback_update", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PyObserverCallback, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PyObserverCallback_update" "', argument " "1"" of type '" "PyObserverCallback *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction2DVoigt, 0 |  0 );
+  arg1 = reinterpret_cast< PyObserverCallback * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_FitObjective,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction2DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PyObserverCallback_update" "', argument " "2"" of type '" "FitObjective const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PyObserverCallback_update" "', argument " "2"" of type '" "FitObjective const &""'"); 
+  }
+  arg2 = reinterpret_cast< FitObjective * >(argp2);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      (arg1)->PyObserverCallback::update((FitObjective const &)*arg2);
+    } else {
+      (arg1)->update((FitObjective const &)*arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
   }
-  arg2 = reinterpret_cast< FTDecayFunction2DVoigt * >(argp2);
-  (arg1)->visit((FTDecayFunction2DVoigt const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -51059,27 +51956,25 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_63(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_disown_PyObserverCallback(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDistribution1DCauchy *arg2 = (FTDistribution1DCauchy *) 0 ;
+  PyObserverCallback *arg1 = (PyObserverCallback *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PyObserverCallback, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_PyObserverCallback" "', argument " "1"" of type '" "PyObserverCallback *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution1DCauchy, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution1DCauchy const *""'"); 
+  arg1 = reinterpret_cast< PyObserverCallback * >(argp1);
+  {
+    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
+    if (director) director->swig_disown();
   }
-  arg2 = reinterpret_cast< FTDistribution1DCauchy * >(argp2);
-  (arg1)->visit((FTDistribution1DCauchy const *)arg2);
+  
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -51087,55 +51982,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_64(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *PyObserverCallback_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_PyObserverCallback, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *PyObserverCallback_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FitObjective(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDistribution1DCosine *arg2 = (FTDistribution1DCosine *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *arg1 = (PyObject *) 0 ;
+  PyObject *swig_obj[1] ;
+  FitObjective *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution1DCosine, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution1DCosine const *""'"); 
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  arg1 = swig_obj[0];
+  if ( arg1 != Py_None ) {
+    /* subclassed */
+    result = (FitObjective *)new SwigDirector_FitObjective(arg1); 
+  } else {
+    result = (FitObjective *)new FitObjective(); 
   }
-  arg2 = reinterpret_cast< FTDistribution1DCosine * >(argp2);
-  (arg1)->visit((FTDistribution1DCosine const *)arg2);
-  resultobj = SWIG_Py_Void();
+  
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FitObjective, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_65(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_FitObjective(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDistribution1DGate *arg2 = (FTDistribution1DGate *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution1DGate, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution1DGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FitObjective" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg2 = reinterpret_cast< FTDistribution1DGate * >(argp2);
-  (arg1)->visit((FTDistribution1DGate const *)arg2);
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -51143,643 +52038,693 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_66(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_evaluate_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDistribution1DGauss *arg2 = (FTDistribution1DGauss *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  Fit::Parameters *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FitObjective_evaluate_cpp", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_evaluate_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution1DGauss, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Fit__Parameters,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution1DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_evaluate_cpp" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
   }
-  arg2 = reinterpret_cast< FTDistribution1DGauss * >(argp2);
-  (arg1)->visit((FTDistribution1DGauss const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_evaluate_cpp" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
+  }
+  arg2 = reinterpret_cast< Fit::Parameters * >(argp2);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (double)(arg1)->FitObjective::evaluate((Fit::Parameters const &)*arg2);
+    } else {
+      result = (double)(arg1)->evaluate((Fit::Parameters const &)*arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_67(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_evaluate_residuals_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDistribution1DTriangle *arg2 = (FTDistribution1DTriangle *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  Fit::Parameters *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  std::vector< double,std::allocator< double > > result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FitObjective_evaluate_residuals_cpp", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_evaluate_residuals_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution1DTriangle, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Fit__Parameters,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution1DTriangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_evaluate_residuals_cpp" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
   }
-  arg2 = reinterpret_cast< FTDistribution1DTriangle * >(argp2);
-  (arg1)->visit((FTDistribution1DTriangle const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_evaluate_residuals_cpp" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
+  }
+  arg2 = reinterpret_cast< Fit::Parameters * >(argp2);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (arg1)->FitObjective::evaluate_residuals((Fit::Parameters const &)*arg2);
+    } else {
+      result = (arg1)->evaluate_residuals((Fit::Parameters const &)*arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_68(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_numberOfFitElements(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDistribution1DVoigt *arg2 = (FTDistribution1DVoigt *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  size_t result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution1DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_numberOfFitElements" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< FTDistribution1DVoigt * >(argp2);
-  (arg1)->visit((FTDistribution1DVoigt const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = ((FitObjective const *)arg1)->numberOfFitElements();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_69(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_simulationResult__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDistribution2DCauchy *arg2 = (FTDistribution2DCauchy *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  SimulationResult result;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution2DCauchy, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution2DCauchy const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_simulationResult" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< FTDistribution2DCauchy * >(argp2);
-  (arg1)->visit((FTDistribution2DCauchy const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_simulationResult" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = ((FitObjective const *)arg1)->simulationResult(arg2);
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_70(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_simulationResult__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDistribution2DCone *arg2 = (FTDistribution2DCone *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  SimulationResult result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution2DCone, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution2DCone const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_simulationResult" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< FTDistribution2DCone * >(argp2);
-  (arg1)->visit((FTDistribution2DCone const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = ((FitObjective const *)arg1)->simulationResult();
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_71(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDistribution2DGate *arg2 = (FTDistribution2DGate *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+SWIGINTERN PyObject *_wrap_FitObjective_simulationResult(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_simulationResult", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_FitObjective_simulationResult__SWIG_1(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution2DGate, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution2DGate const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_FitObjective_simulationResult__SWIG_0(self, argc, argv);
+      }
+    }
   }
-  arg2 = reinterpret_cast< FTDistribution2DGate * >(argp2);
-  (arg1)->visit((FTDistribution2DGate const *)arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_simulationResult'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FitObjective::simulationResult(size_t) const\n"
+    "    FitObjective::simulationResult() const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_72(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_experimentalData__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDistribution2DGauss *arg2 = (FTDistribution2DGauss *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  SimulationResult result;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution2DGauss, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution2DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_experimentalData" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< FTDistribution2DGauss * >(argp2);
-  (arg1)->visit((FTDistribution2DGauss const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_experimentalData" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = ((FitObjective const *)arg1)->experimentalData(arg2);
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_73(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_experimentalData__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  FTDistribution2DVoigt *arg2 = (FTDistribution2DVoigt *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  SimulationResult result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution2DVoigt, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution2DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_experimentalData" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< FTDistribution2DVoigt * >(argp2);
-  (arg1)->visit((FTDistribution2DVoigt const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = ((FitObjective const *)arg1)->experimentalData();
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_74(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  GISASSimulation *arg2 = (GISASSimulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+SWIGINTERN PyObject *_wrap_FitObjective_experimentalData(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_experimentalData", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_FitObjective_experimentalData__SWIG_1(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_GISASSimulation, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "GISASSimulation const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_FitObjective_experimentalData__SWIG_0(self, argc, argv);
+      }
+    }
   }
-  arg2 = reinterpret_cast< GISASSimulation * >(argp2);
-  (arg1)->visit((GISASSimulation const *)arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_experimentalData'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FitObjective::experimentalData(size_t) const\n"
+    "    FitObjective::experimentalData() const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_75(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_uncertaintyData_cpp__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  HexagonalLattice *arg2 = (HexagonalLattice *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  SimulationResult result;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "HexagonalLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_uncertaintyData_cpp" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< HexagonalLattice * >(argp2);
-  (arg1)->visit((HexagonalLattice const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_uncertaintyData_cpp" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = ((FitObjective const *)arg1)->uncertaintyData(arg2);
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_76(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_uncertaintyData_cpp__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IAbstractParticle *arg2 = (IAbstractParticle *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  SimulationResult result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IAbstractParticle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_uncertaintyData_cpp" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< IAbstractParticle * >(argp2);
-  (arg1)->visit((IAbstractParticle const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = ((FitObjective const *)arg1)->uncertaintyData();
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_77(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IClusteredParticles *arg2 = (IClusteredParticles *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+SWIGINTERN PyObject *_wrap_FitObjective_uncertaintyData_cpp(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_uncertaintyData_cpp", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_FitObjective_uncertaintyData_cpp__SWIG_1(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IClusteredParticles, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IClusteredParticles const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_FitObjective_uncertaintyData_cpp__SWIG_0(self, argc, argv);
+      }
+    }
   }
-  arg2 = reinterpret_cast< IClusteredParticles * >(argp2);
-  (arg1)->visit((IClusteredParticles const *)arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_uncertaintyData_cpp'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FitObjective::uncertaintyData(size_t) const\n"
+    "    FitObjective::uncertaintyData() const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_78(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_relativeDifference__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IdentityRotation *arg2 = (IdentityRotation *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  SimulationResult result;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IdentityRotation, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IdentityRotation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_relativeDifference" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< IdentityRotation * >(argp2);
-  (arg1)->visit((IdentityRotation const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_relativeDifference" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = ((FitObjective const *)arg1)->relativeDifference(arg2);
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_79(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_relativeDifference__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IFormFactor *arg2 = (IFormFactor *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  SimulationResult result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IFormFactor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IFormFactor const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_relativeDifference" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< IFormFactor * >(argp2);
-  (arg1)->visit((IFormFactor const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = ((FitObjective const *)arg1)->relativeDifference();
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_80(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IFormFactorBorn *arg2 = (IFormFactorBorn *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+SWIGINTERN PyObject *_wrap_FitObjective_relativeDifference(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_relativeDifference", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_FitObjective_relativeDifference__SWIG_1(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IFormFactorBorn const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_FitObjective_relativeDifference__SWIG_0(self, argc, argv);
+      }
+    }
   }
-  arg2 = reinterpret_cast< IFormFactorBorn * >(argp2);
-  (arg1)->visit((IFormFactorBorn const *)arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_relativeDifference'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FitObjective::relativeDifference(size_t) const\n"
+    "    FitObjective::relativeDifference() const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_81(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_absoluteDifference__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IFormFactorDecorator *arg2 = (IFormFactorDecorator *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  SimulationResult result;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IFormFactorDecorator const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_absoluteDifference" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< IFormFactorDecorator * >(argp2);
-  (arg1)->visit((IFormFactorDecorator const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_absoluteDifference" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = ((FitObjective const *)arg1)->absoluteDifference(arg2);
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_82(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_absoluteDifference__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IInterferenceFunction *arg2 = (IInterferenceFunction *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  SimulationResult result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IInterferenceFunction const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_absoluteDifference" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< IInterferenceFunction * >(argp2);
-  (arg1)->visit((IInterferenceFunction const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = ((FitObjective const *)arg1)->absoluteDifference();
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_83(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  ILayout *arg2 = (ILayout *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+SWIGINTERN PyObject *_wrap_FitObjective_absoluteDifference(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_absoluteDifference", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_FitObjective_absoluteDifference__SWIG_1(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ILayout, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ILayout const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_FitObjective_absoluteDifference__SWIG_0(self, argc, argv);
+      }
+    }
   }
-  arg2 = reinterpret_cast< ILayout * >(argp2);
-  (arg1)->visit((ILayout const *)arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_absoluteDifference'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FitObjective::absoluteDifference(size_t) const\n"
+    "    FitObjective::absoluteDifference() const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_84(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_experimental_array(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  INode *arg2 = (INode *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< double,std::allocator< double > > result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INode, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "INode const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_experimental_array" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< INode * >(argp2);
-  (arg1)->visit((INode const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = ((FitObjective const *)arg1)->experimental_array();
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_85(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_simulation_array(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  Instrument *arg2 = (Instrument *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< double,std::allocator< double > > result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_Instrument, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "Instrument const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_simulation_array" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< Instrument * >(argp2);
-  (arg1)->visit((Instrument const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = ((FitObjective const *)arg1)->simulation_array();
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_86(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_uncertainties_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IntensityNormalizer *arg2 = (IntensityNormalizer *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< double,std::allocator< double > > result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IntensityNormalizer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_uncertainties_cpp" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< IntensityNormalizer * >(argp2);
-  (arg1)->visit((IntensityNormalizer const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = ((FitObjective const *)arg1)->uncertainties();
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_87(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_weights_array(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IntensityScaleAndShiftNormalizer *arg2 = (IntensityScaleAndShiftNormalizer *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< double,std::allocator< double > > result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IntensityScaleAndShiftNormalizer, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IntensityScaleAndShiftNormalizer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_weights_array" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< IntensityScaleAndShiftNormalizer * >(argp2);
-  (arg1)->visit((IntensityScaleAndShiftNormalizer const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = ((FitObjective const *)arg1)->weights_array();
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_88(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_initPrint(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  InterferenceFunction1DLattice *arg2 = (InterferenceFunction1DLattice *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  int arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  int val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FitObjective_initPrint", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunction1DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_initPrint" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg2 = reinterpret_cast< InterferenceFunction1DLattice * >(argp2);
-  (arg1)->visit((InterferenceFunction1DLattice const *)arg2);
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_initPrint" "', argument " "2"" of type '" "int""'");
+  } 
+  arg2 = static_cast< int >(val2);
+  (arg1)->initPrint(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -51787,27 +52732,39 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_89(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_initPlot_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  InterferenceFunction2DLattice *arg2 = (InterferenceFunction2DLattice *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  int arg2 ;
+  PyObserverCallback *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  int val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FitObjective_initPlot_cpp", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_initPlot_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunction2DLattice const *""'"); 
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_initPlot_cpp" "', argument " "2"" of type '" "int""'");
+  } 
+  arg2 = static_cast< int >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_PyObserverCallback,  0 );
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_initPlot_cpp" "', argument " "3"" of type '" "PyObserverCallback &""'"); 
   }
-  arg2 = reinterpret_cast< InterferenceFunction2DLattice * >(argp2);
-  (arg1)->visit((InterferenceFunction2DLattice const *)arg2);
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_initPlot_cpp" "', argument " "3"" of type '" "PyObserverCallback &""'"); 
+  }
+  arg3 = reinterpret_cast< PyObserverCallback * >(argp3);
+  (arg1)->initPlot(arg2,*arg3);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -51815,83 +52772,77 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_90(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_iterationInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  InterferenceFunction2DParaCrystal *arg2 = (InterferenceFunction2DParaCrystal *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  IterationInfo result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_iterationInfo" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp2);
-  (arg1)->visit((InterferenceFunction2DParaCrystal const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = ((FitObjective const *)arg1)->iterationInfo();
+  resultobj = SWIG_NewPointerObj((new IterationInfo(static_cast< const IterationInfo& >(result))), SWIGTYPE_p_IterationInfo, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_91(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_minimizerResult(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  InterferenceFunction2DSuperLattice *arg2 = (InterferenceFunction2DSuperLattice *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  Fit::MinimizerResult result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_minimizerResult" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp2);
-  (arg1)->visit((InterferenceFunction2DSuperLattice const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = ((FitObjective const *)arg1)->minimizerResult();
+  resultobj = SWIG_NewPointerObj((new Fit::MinimizerResult(static_cast< const Fit::MinimizerResult& >(result))), SWIGTYPE_p_Fit__MinimizerResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_92(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_finalize_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  InterferenceFunction3DLattice *arg2 = (InterferenceFunction3DLattice *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  Fit::MinimizerResult *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FitObjective_finalize_cpp", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_finalize_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Fit__MinimizerResult,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunction3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_finalize_cpp" "', argument " "2"" of type '" "Fit::MinimizerResult const &""'"); 
   }
-  arg2 = reinterpret_cast< InterferenceFunction3DLattice * >(argp2);
-  (arg1)->visit((InterferenceFunction3DLattice const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_finalize_cpp" "', argument " "2"" of type '" "Fit::MinimizerResult const &""'"); 
+  }
+  arg2 = reinterpret_cast< Fit::MinimizerResult * >(argp2);
+  (arg1)->finalize((Fit::MinimizerResult const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -51899,55 +52850,54 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_93(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_fitObjectCount(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  InterferenceFunctionFinite2DLattice *arg2 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  unsigned int result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_fitObjectCount" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp2);
-  (arg1)->visit((InterferenceFunctionFinite2DLattice const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = (unsigned int)((FitObjective const *)arg1)->fitObjectCount();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_94(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_run_simulations(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  InterferenceFunctionFinite3DLattice *arg2 = (InterferenceFunctionFinite3DLattice *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  Fit::Parameters *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FitObjective_run_simulations", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_run_simulations" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Fit__Parameters,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_run_simulations" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
   }
-  arg2 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp2);
-  (arg1)->visit((InterferenceFunctionFinite3DLattice const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_run_simulations" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
+  }
+  arg2 = reinterpret_cast< Fit::Parameters * >(argp2);
+  (arg1)->run_simulations((Fit::Parameters const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -51955,27 +52905,31 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_95(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_setChiSquaredModule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  InterferenceFunctionHardDisk *arg2 = (InterferenceFunctionHardDisk *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  IChiSquaredModule *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FitObjective_setChiSquaredModule", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_setChiSquaredModule" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IChiSquaredModule,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunctionHardDisk const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_setChiSquaredModule" "', argument " "2"" of type '" "IChiSquaredModule const &""'"); 
   }
-  arg2 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp2);
-  (arg1)->visit((InterferenceFunctionHardDisk const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_setChiSquaredModule" "', argument " "2"" of type '" "IChiSquaredModule const &""'"); 
+  }
+  arg2 = reinterpret_cast< IChiSquaredModule * >(argp2);
+  (arg1)->setChiSquaredModule((IChiSquaredModule const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -51983,447 +52937,892 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_96(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_setObjectiveMetric__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  InterferenceFunctionRadialParaCrystal *arg2 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_setObjectiveMetric" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_setObjectiveMetric" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_setObjectiveMetric" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
   }
-  arg2 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp2);
-  (arg1)->visit((InterferenceFunctionRadialParaCrystal const *)arg2);
+  (arg1)->setObjectiveMetric((std::string const &)*arg2);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_97(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_setObjectiveMetric__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  InterferenceFunctionTwin *arg2 = (InterferenceFunctionTwin *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  std::string *arg2 = 0 ;
+  std::string *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  int res3 = SWIG_OLDOBJ ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_setObjectiveMetric" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunctionTwin const *""'"); 
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_setObjectiveMetric" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_setObjectiveMetric" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
   }
-  arg2 = reinterpret_cast< InterferenceFunctionTwin * >(argp2);
-  (arg1)->visit((InterferenceFunctionTwin const *)arg2);
+  {
+    std::string *ptr = (std::string *)0;
+    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_setObjectiveMetric" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_setObjectiveMetric" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  (arg1)->setObjectiveMetric((std::string const &)*arg2,(std::string const &)*arg3);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_98(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  InterferenceFunctionNone *arg2 = (InterferenceFunctionNone *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+SWIGINTERN PyObject *_wrap_FitObjective_setObjectiveMetric(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_setObjectiveMetric", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_FitObjective_setObjectiveMetric__SWIG_0(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunctionNone, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunctionNone const *""'"); 
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_FitObjective_setObjectiveMetric__SWIG_1(self, argc, argv);
+        }
+      }
+    }
   }
-  arg2 = reinterpret_cast< InterferenceFunctionNone * >(argp2);
-  (arg1)->visit((InterferenceFunctionNone const *)arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_setObjectiveMetric'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FitObjective::setObjectiveMetric(std::string const &)\n"
+    "    FitObjective::setObjectiveMetric(std::string const &,std::string const &)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_99(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_containsUncertainties_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IParticle *arg2 = (IParticle *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  bool result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FitObjective_containsUncertainties_cpp", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IParticle, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IParticle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_containsUncertainties_cpp" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< IParticle * >(argp2);
-  (arg1)->visit((IParticle const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FitObjective_containsUncertainties_cpp" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (bool)((FitObjective const *)arg1)->containsUncertainties(arg2);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_100(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_allPairsHaveUncertainties_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IPeakShape *arg2 = (IPeakShape *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  PyObject *swig_obj[1] ;
+  bool result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IPeakShape, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_allPairsHaveUncertainties_cpp" "', argument " "1"" of type '" "FitObjective const *""'"); 
   }
-  arg2 = reinterpret_cast< IPeakShape * >(argp2);
-  (arg1)->visit((IPeakShape const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  result = (bool)((FitObjective const *)arg1)->allPairsHaveUncertainties();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_101(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_availableMetricOptions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IRotation *arg2 = (IRotation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  std::string result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IRotation, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IRotation const *""'"); 
-  }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  (arg1)->visit((IRotation const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "FitObjective_availableMetricOptions", 0, 0, 0)) SWIG_fail;
+  result = FitObjective::availableMetricOptions();
+  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_102(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  ISample *arg2 = (ISample *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  PyBuilderCallback *arg2 = 0 ;
+  std::vector< double,std::allocator< double > > *arg3 = 0 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
+  double val4 ;
+  int ecode4 = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ISample, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ISample const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
   }
-  arg2 = reinterpret_cast< ISample * >(argp2);
-  (arg1)->visit((ISample const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+  }
+  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res3 = swig::asptr(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< double > >(*arg2,(std::vector< double,std::allocator< double > > const &)*arg3,arg4);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_103(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_5(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  IsGISAXSDetector *arg2 = (IsGISAXSDetector *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  PyBuilderCallback *arg2 = 0 ;
+  std::vector< double,std::allocator< double > > *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IsGISAXSDetector, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IsGISAXSDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
   }
-  arg2 = reinterpret_cast< IsGISAXSDetector * >(argp2);
-  (arg1)->visit((IsGISAXSDetector const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+  }
+  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res3 = swig::asptr(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< double > >(*arg2,(std::vector< double,std::allocator< double > > const &)*arg3);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_104(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_6(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  Layer *arg2 = (Layer *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  PyBuilderCallback *arg2 = 0 ;
+  std::vector< double,std::allocator< double > > *arg3 = 0 ;
+  std::vector< double,std::allocator< double > > *arg4 = 0 ;
+  double arg5 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
+  int res4 = SWIG_OLDOBJ ;
+  double val5 ;
+  int ecode5 = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_Layer, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "Layer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
   }
-  arg2 = reinterpret_cast< Layer * >(argp2);
-  (arg1)->visit((Layer const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+  }
+  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res3 = swig::asptr(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res4 = swig::asptr(swig_obj[3], &ptr);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg4 = ptr;
+  }
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< double > >(*arg2,(std::vector< double,std::allocator< double > > const &)*arg3,(std::vector< double,std::allocator< double > > const &)*arg4,arg5);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res3)) delete arg3;
+  if (SWIG_IsNewObj(res4)) delete arg4;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
+  if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_105(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_7(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  LayerInterface *arg2 = (LayerInterface *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  PyBuilderCallback *arg2 = 0 ;
+  std::vector< double,std::allocator< double > > *arg3 = 0 ;
+  std::vector< double,std::allocator< double > > *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
+  int res4 = SWIG_OLDOBJ ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_LayerInterface, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "LayerInterface const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
   }
-  arg2 = reinterpret_cast< LayerInterface * >(argp2);
-  (arg1)->visit((LayerInterface const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+  }
+  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res3 = swig::asptr(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res4 = swig::asptr(swig_obj[3], &ptr);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg4 = ptr;
+  }
+  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< double > >(*arg2,(std::vector< double,std::allocator< double > > const &)*arg3,(std::vector< double,std::allocator< double > > const &)*arg4);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res3)) delete arg3;
+  if (SWIG_IsNewObj(res4)) delete arg4;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
+  if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_106(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_8(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  LayerRoughness *arg2 = (LayerRoughness *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  PyBuilderCallback *arg2 = 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg3 = 0 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
+  double val4 ;
+  int ecode4 = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_LayerRoughness, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "LayerRoughness const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
   }
-  arg2 = reinterpret_cast< LayerRoughness * >(argp2);
-  (arg1)->visit((LayerRoughness const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+  }
+  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res3 = swig::asptr(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< std::vector< double > > >(*arg2,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg3,arg4);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_107(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_9(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  MesoCrystal *arg2 = (MesoCrystal *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  PyBuilderCallback *arg2 = 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_MesoCrystal, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "MesoCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
   }
-  arg2 = reinterpret_cast< MesoCrystal * >(argp2);
-  (arg1)->visit((MesoCrystal const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+  }
+  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res3 = swig::asptr(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< std::vector< double > > >(*arg2,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg3);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_108(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_10(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  MultiLayer *arg2 = (MultiLayer *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  PyBuilderCallback *arg2 = 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg3 = 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg4 = 0 ;
+  double arg5 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
+  int res4 = SWIG_OLDOBJ ;
+  double val5 ;
+  int ecode5 = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_MultiLayer, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "MultiLayer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
   }
-  arg2 = reinterpret_cast< MultiLayer * >(argp2);
-  (arg1)->visit((MultiLayer const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+  }
+  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res3 = swig::asptr(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res4 = swig::asptr(swig_obj[3], &ptr);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    arg4 = ptr;
+  }
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< std::vector< double > > >(*arg2,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg3,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg4,arg5);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res3)) delete arg3;
+  if (SWIG_IsNewObj(res4)) delete arg4;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
+  if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_109(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp__SWIG_11(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  OffSpecSimulation *arg2 = (OffSpecSimulation *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
+  PyBuilderCallback *arg2 = 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg3 = 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
+  int res4 = SWIG_OLDOBJ ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PyBuilderCallback,  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "OffSpecSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
   }
-  arg2 = reinterpret_cast< OffSpecSimulation * >(argp2);
-  (arg1)->visit((OffSpecSimulation const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "2"" of type '" "PyBuilderCallback &""'"); 
+  }
+  arg2 = reinterpret_cast< PyBuilderCallback * >(argp2);
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res3 = swig::asptr(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "3"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res4 = swig::asptr(swig_obj[3], &ptr);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FitObjective_addSimulationAndData_cpp" "', argument " "4"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    arg4 = ptr;
+  }
+  (arg1)->SWIGTEMPLATEDISAMBIGUATOR addSimulationAndData< std::vector< std::vector< double > > >(*arg2,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg3,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg4);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res3)) delete arg3;
+  if (SWIG_IsNewObj(res4)) delete arg4;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
+  if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_110(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  Particle *arg2 = (Particle *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+SWIGINTERN PyObject *_wrap_FitObjective_addSimulationAndData_cpp(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[6] = {
+    0
+  };
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "FitObjective_addSimulationAndData_cpp", 0, 5, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = swig::asptr(argv[2], (std::vector< double,std::allocator< double > >**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_5(self, argc, argv);
+        }
+      }
+    }
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_Particle, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "Particle const *""'"); 
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = swig::asptr(argv[2], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_9(self, argc, argv);
+        }
+      }
+    }
   }
-  arg2 = reinterpret_cast< Particle * >(argp2);
-  (arg1)->visit((Particle const *)arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = swig::asptr(argv[2], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_8(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = swig::asptr(argv[2], (std::vector< double,std::allocator< double > >**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_4(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = swig::asptr(argv[2], (std::vector< double,std::allocator< double > >**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          int res = swig::asptr(argv[3], (std::vector< double,std::allocator< double > >**)(0));
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_7(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = swig::asptr(argv[2], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          int res = swig::asptr(argv[3], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_11(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  if (argc == 5) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = swig::asptr(argv[2], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          int res = swig::asptr(argv[3], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_10(self, argc, argv);
+            }
+          }
+        }
+      }
+    }
+  }
+  if (argc == 5) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FitObjective, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PyBuilderCallback, SWIG_POINTER_NO_NULL);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = swig::asptr(argv[2], (std::vector< double,std::allocator< double > >**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          int res = swig::asptr(argv[3], (std::vector< double,std::allocator< double > >**)(0));
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              return _wrap_FitObjective_addSimulationAndData_cpp__SWIG_6(self, argc, argv);
+            }
+          }
+        }
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FitObjective_addSimulationAndData_cpp'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FitObjective::addSimulationAndData< std::vector< double > >(PyBuilderCallback &,std::vector< double,std::allocator< double > > const &,double)\n"
+    "    FitObjective::addSimulationAndData< std::vector< double > >(PyBuilderCallback &,std::vector< double,std::allocator< double > > const &)\n"
+    "    FitObjective::addSimulationAndData< std::vector< double > >(PyBuilderCallback &,std::vector< double,std::allocator< double > > const &,std::vector< double,std::allocator< double > > const &,double)\n"
+    "    FitObjective::addSimulationAndData< std::vector< double > >(PyBuilderCallback &,std::vector< double,std::allocator< double > > const &,std::vector< double,std::allocator< double > > const &)\n"
+    "    FitObjective::addSimulationAndData< std::vector< std::vector< double > > >(PyBuilderCallback &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &,double)\n"
+    "    FitObjective::addSimulationAndData< std::vector< std::vector< double > > >(PyBuilderCallback &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)\n"
+    "    FitObjective::addSimulationAndData< std::vector< std::vector< double > > >(PyBuilderCallback &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &,double)\n"
+    "    FitObjective::addSimulationAndData< std::vector< std::vector< double > > >(PyBuilderCallback &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_111(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_disown_FitObjective(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  ParticleComposition *arg2 = (ParticleComposition *) 0 ;
+  FitObjective *arg1 = (FitObjective *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FitObjective, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_FitObjective" "', argument " "1"" of type '" "FitObjective *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ParticleComposition, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ParticleComposition const *""'"); 
+  arg1 = reinterpret_cast< FitObjective * >(argp1);
+  {
+    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
+    if (director) director->swig_disown();
   }
-  arg2 = reinterpret_cast< ParticleComposition * >(argp2);
-  (arg1)->visit((ParticleComposition const *)arg2);
+  
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -52431,111 +53830,188 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_112(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *FitObjective_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FitObjective, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FitObjective_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorCrystal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  ParticleCoreShell *arg2 = (ParticleCoreShell *) 0 ;
+  Lattice *arg1 = 0 ;
+  IFormFactor *arg2 = 0 ;
+  IFormFactor *arg3 = 0 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  FormFactorCrystal *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_FormFactorCrystal" "', argument " "1"" of type '" "Lattice const &""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FormFactorCrystal" "', argument " "1"" of type '" "Lattice const &""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ParticleCoreShell const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_FormFactorCrystal" "', argument " "2"" of type '" "IFormFactor const &""'"); 
   }
-  arg2 = reinterpret_cast< ParticleCoreShell * >(argp2);
-  (arg1)->visit((ParticleCoreShell const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FormFactorCrystal" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+  }
+  arg2 = reinterpret_cast< IFormFactor * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IFormFactor,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_FormFactorCrystal" "', argument " "3"" of type '" "IFormFactor const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FormFactorCrystal" "', argument " "3"" of type '" "IFormFactor const &""'"); 
+  }
+  arg3 = reinterpret_cast< IFormFactor * >(argp3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorCrystal" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (FormFactorCrystal *)new FormFactorCrystal((Lattice const &)*arg1,(IFormFactor const &)*arg2,(IFormFactor const &)*arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCrystal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_113(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FormFactorCrystal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  ParticleDistribution *arg2 = (ParticleDistribution *) 0 ;
+  Lattice *arg1 = 0 ;
+  IFormFactor *arg2 = 0 ;
+  IFormFactor *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  FormFactorCrystal *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_FormFactorCrystal" "', argument " "1"" of type '" "Lattice const &""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FormFactorCrystal" "', argument " "1"" of type '" "Lattice const &""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ParticleDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_FormFactorCrystal" "', argument " "2"" of type '" "IFormFactor const &""'"); 
   }
-  arg2 = reinterpret_cast< ParticleDistribution * >(argp2);
-  (arg1)->visit((ParticleDistribution const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FormFactorCrystal" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+  }
+  arg2 = reinterpret_cast< IFormFactor * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IFormFactor,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_FormFactorCrystal" "', argument " "3"" of type '" "IFormFactor const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FormFactorCrystal" "', argument " "3"" of type '" "IFormFactor const &""'"); 
+  }
+  arg3 = reinterpret_cast< IFormFactor * >(argp3);
+  result = (FormFactorCrystal *)new FormFactorCrystal((Lattice const &)*arg1,(IFormFactor const &)*arg2,(IFormFactor const &)*arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCrystal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_114(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  ParticleLayout *arg2 = (ParticleLayout *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+SWIGINTERN PyObject *_wrap_new_FormFactorCrystal(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FormFactorCrystal", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_new_FormFactorCrystal__SWIG_1(self, argc, argv);
+        }
+      }
+    }
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ParticleLayout, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ParticleLayout const *""'"); 
+  if (argc == 4) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_FormFactorCrystal__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
   }
-  arg2 = reinterpret_cast< ParticleLayout * >(argp2);
-  (arg1)->visit((ParticleLayout const *)arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FormFactorCrystal'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FormFactorCrystal::FormFactorCrystal(Lattice const &,IFormFactor const &,IFormFactor const &,double)\n"
+    "    FormFactorCrystal::FormFactorCrystal(Lattice const &,IFormFactor const &,IFormFactor const &)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_115(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorCrystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  PoissonNoiseBackground *arg2 = (PoissonNoiseBackground *) 0 ;
+  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_PoissonNoiseBackground, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "PoissonNoiseBackground const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorCrystal" "', argument " "1"" of type '" "FormFactorCrystal *""'"); 
   }
-  arg2 = reinterpret_cast< PoissonNoiseBackground * >(argp2);
-  (arg1)->visit((PoissonNoiseBackground const *)arg2);
+  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -52543,55 +54019,51 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_116(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorCrystal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  RectangularDetector *arg2 = (RectangularDetector *) 0 ;
+  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorCrystal *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_RectangularDetector, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_clone" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
   }
-  arg2 = reinterpret_cast< RectangularDetector * >(argp2);
-  (arg1)->visit((RectangularDetector const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
+  result = (FormFactorCrystal *)((FormFactorCrystal const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_117(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorCrystal_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  ResolutionFunction2DGaussian *arg2 = (ResolutionFunction2DGaussian *) 0 ;
+  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorCrystal_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_accept" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ResolutionFunction2DGaussian const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCrystal_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp2);
-  (arg1)->visit((ResolutionFunction2DGaussian const *)arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorCrystal const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -52599,27 +54071,36 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_118(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorCrystal_setAmbientMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  RotationEuler *arg2 = (RotationEuler *) 0 ;
+  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
+  SwigValueWrapper< Material > arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorCrystal_setAmbientMaterial", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_setAmbientMaterial" "', argument " "1"" of type '" "FormFactorCrystal *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_RotationEuler, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "RotationEuler const *""'"); 
+  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCrystal_setAmbientMaterial" "', argument " "2"" of type '" "Material""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorCrystal_setAmbientMaterial" "', argument " "2"" of type '" "Material""'");
+    } else {
+      Material * temp = reinterpret_cast< Material * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< RotationEuler * >(argp2);
-  (arg1)->visit((RotationEuler const *)arg2);
+  (arg1)->setAmbientMaterial(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -52627,111 +54108,190 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_119(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorCrystal_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  RotationX *arg2 = (RotationX *) 0 ;
+  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
-  }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_RotationX, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "RotationX const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_volume" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
   }
-  arg2 = reinterpret_cast< RotationX * >(argp2);
-  (arg1)->visit((RotationX const *)arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
+  result = (double)((FormFactorCrystal const *)arg1)->volume();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_120(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorCrystal_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  RotationY *arg2 = (RotationY *) 0 ;
+  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_radialExtension" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_RotationY, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
+  result = (double)((FormFactorCrystal const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorCrystal_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
+  IRotation *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorCrystal_bottomZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_bottomZ" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "RotationY const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCrystal_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  arg2 = reinterpret_cast< RotationY * >(argp2);
-  (arg1)->visit((RotationY const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorCrystal_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((FormFactorCrystal const *)arg1)->bottomZ((IRotation const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_121(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorCrystal_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  RotationZ *arg2 = (RotationZ *) 0 ;
+  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorCrystal_topZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_topZ" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_RotationZ, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "RotationZ const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCrystal_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  arg2 = reinterpret_cast< RotationZ * >(argp2);
-  (arg1)->visit((RotationZ const *)arg2);
-  resultobj = SWIG_Py_Void();
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorCrystal_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((FormFactorCrystal const *)arg1)->topZ((IRotation const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_122(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorCrystal_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  SpecularDetector1D *arg2 = (SpecularDetector1D *) 0 ;
+  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
+  WavevectorInfo *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorCrystal_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_evaluate" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_SpecularDetector1D, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_WavevectorInfo,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "SpecularDetector1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCrystal_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
   }
-  arg2 = reinterpret_cast< SpecularDetector1D * >(argp2);
-  (arg1)->visit((SpecularDetector1D const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorCrystal_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+  }
+  arg2 = reinterpret_cast< WavevectorInfo * >(argp2);
+  result = ((FormFactorCrystal const *)arg1)->evaluate((WavevectorInfo const &)*arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *FormFactorCrystal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorCrystal, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorCrystal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorWeighted(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorWeighted *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorWeighted", 0, 0, 0)) SWIG_fail;
+  result = (FormFactorWeighted *)new FormFactorWeighted();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorWeighted, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_FormFactorWeighted(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorWeighted" "', argument " "1"" of type '" "FormFactorWeighted *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -52739,27 +54299,51 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_123(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorWeighted_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  SpecularSimulation *arg2 = (SpecularSimulation *) 0 ;
+  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorWeighted *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_clone" "', argument " "1"" of type '" "FormFactorWeighted const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
+  result = (FormFactorWeighted *)((FormFactorWeighted const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorWeighted_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorWeighted_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_accept" "', argument " "1"" of type '" "FormFactorWeighted const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "SpecularSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< SpecularSimulation * >(argp2);
-  (arg1)->visit((SpecularSimulation const *)arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorWeighted const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -52767,27 +54351,127 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_124(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorWeighted_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  SphericalDetector *arg2 = (SphericalDetector *) 0 ;
+  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_radialExtension" "', argument " "1"" of type '" "FormFactorWeighted const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
+  result = (double)((FormFactorWeighted const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorWeighted_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorWeighted_bottomZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_bottomZ" "', argument " "1"" of type '" "FormFactorWeighted const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_SphericalDetector, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "SphericalDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  arg2 = reinterpret_cast< SphericalDetector * >(argp2);
-  (arg1)->visit((SphericalDetector const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorWeighted_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((FormFactorWeighted const *)arg1)->bottomZ((IRotation const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorWeighted_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  IRotation *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorWeighted_topZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_topZ" "', argument " "1"" of type '" "FormFactorWeighted const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorWeighted_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((FormFactorWeighted const *)arg1)->topZ((IRotation const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorWeighted_addFormFactor__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  IFormFactor *arg2 = 0 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_addFormFactor" "', argument " "1"" of type '" "FormFactorWeighted *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_addFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorWeighted_addFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+  }
+  arg2 = reinterpret_cast< IFormFactor * >(argp2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FormFactorWeighted_addFormFactor" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  (arg1)->addFormFactor((IFormFactor const &)*arg2,arg3);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -52795,27 +54479,30 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_125(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorWeighted_addFormFactor__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  SquareLattice *arg2 = (SquareLattice *) 0 ;
+  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  IFormFactor *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_addFormFactor" "', argument " "1"" of type '" "FormFactorWeighted *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_SquareLattice, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "SquareLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_addFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
   }
-  arg2 = reinterpret_cast< SquareLattice * >(argp2);
-  (arg1)->visit((SquareLattice const *)arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorWeighted_addFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+  }
+  arg2 = reinterpret_cast< IFormFactor * >(argp2);
+  (arg1)->addFormFactor((IFormFactor const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -52823,1957 +54510,2046 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_visit(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorWeighted_addFormFactor(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "INodeVisitor_visit", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "FormFactorWeighted_addFormFactor", 0, 3, argv))) SWIG_fail;
   --argc;
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FormFactorWeighted, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_BasicLattice, 0);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_0(self, argc, argv);
+        return _wrap_FormFactorWeighted_addFormFactor__SWIG_1(self, argc, argv);
       }
     }
   }
-  if (argc == 2) {
+  if (argc == 3) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FormFactorWeighted, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_Beam, 0);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_1(self, argc, argv);
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_FormFactorWeighted_addFormFactor__SWIG_0(self, argc, argv);
+        }
       }
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ConstantBackground, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_2(self, argc, argv);
-      }
-    }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FormFactorWeighted_addFormFactor'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FormFactorWeighted::addFormFactor(IFormFactor const &,double)\n"
+    "    FormFactorWeighted::addFormFactor(IFormFactor const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorWeighted_setAmbientMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  SwigValueWrapper< Material > arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorWeighted_setAmbientMaterial", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_setAmbientMaterial" "', argument " "1"" of type '" "FormFactorWeighted *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ConvolutionDetectorResolution, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_3(self, argc, argv);
-      }
+  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_setAmbientMaterial" "', argument " "2"" of type '" "Material""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorWeighted_setAmbientMaterial" "', argument " "2"" of type '" "Material""'");
+    } else {
+      Material * temp = reinterpret_cast< Material * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_Crystal, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_4(self, argc, argv);
-      }
-    }
+  (arg1)->setAmbientMaterial(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorWeighted_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  WavevectorInfo *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorWeighted_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_evaluate" "', argument " "1"" of type '" "FormFactorWeighted const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_DistributionCosine, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_5(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_WavevectorInfo,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_DistributionGate, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_6(self, argc, argv);
-      }
-    }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorWeighted_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_DistributionGaussian, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_7(self, argc, argv);
-      }
-    }
+  arg2 = reinterpret_cast< WavevectorInfo * >(argp2);
+  result = ((FormFactorWeighted const *)arg1)->evaluate((WavevectorInfo const &)*arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *FormFactorWeighted_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorWeighted, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorWeighted_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_delete_IAbstractParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IAbstractParticle" "', argument " "1"" of type '" "IAbstractParticle *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_DistributionLogNormal, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_8(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IAbstractParticle_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IAbstractParticle *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IAbstractParticle_clone" "', argument " "1"" of type '" "IAbstractParticle const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_DistributionLorentz, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_9(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
+  result = (IAbstractParticle *)((IAbstractParticle const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAbstractParticle, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IAbstractParticle_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IAbstractParticle_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IAbstractParticle_accept" "', argument " "1"" of type '" "IAbstractParticle const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_DistributionTrapezoid, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_10(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IAbstractParticle_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FootprintGauss, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_11(self, argc, argv);
-      }
-    }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((IAbstractParticle const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IAbstractParticle_abundance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IAbstractParticle_abundance" "', argument " "1"" of type '" "IAbstractParticle const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FootprintSquare, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_12(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
+  result = (double)((IAbstractParticle const *)arg1)->abundance();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IAbstractParticle_setAbundance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IAbstractParticle_setAbundance", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IAbstractParticle_setAbundance" "', argument " "1"" of type '" "IAbstractParticle *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorAnisoPyramid, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_13(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IAbstractParticle_setAbundance" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setAbundance(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IAbstractParticle_translate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
+  kvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IAbstractParticle_translate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IAbstractParticle_translate" "', argument " "1"" of type '" "IAbstractParticle *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorBarGauss, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_14(self, argc, argv);
-      }
+  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IAbstractParticle_translate" "', argument " "2"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IAbstractParticle_translate" "', argument " "2"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorBarLorentz, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_15(self, argc, argv);
-      }
-    }
+  (arg1)->translate(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IAbstractParticle_rotate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
+  IRotation *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IAbstractParticle_rotate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IAbstractParticle_rotate" "', argument " "1"" of type '" "IAbstractParticle *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorBox, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_16(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IAbstractParticle_rotate" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCantellatedCube, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_17(self, argc, argv);
-      }
-    }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IAbstractParticle_rotate" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCone, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_18(self, argc, argv);
-      }
-    }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  (arg1)->rotate((IRotation const &)*arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *IAbstractParticle_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IAbstractParticle, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_IClusteredParticles_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IClusteredParticles *arg1 = (IClusteredParticles *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IClusteredParticles *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IClusteredParticles, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IClusteredParticles_clone" "', argument " "1"" of type '" "IClusteredParticles const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCone6, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_19(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IClusteredParticles * >(argp1);
+  result = (IClusteredParticles *)((IClusteredParticles const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IClusteredParticles, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IClusteredParticles_createTotalFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IClusteredParticles *arg1 = (IClusteredParticles *) 0 ;
+  IFormFactor *arg2 = 0 ;
+  IRotation *arg3 = (IRotation *) 0 ;
+  kvector_t *arg4 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  PyObject *swig_obj[4] ;
+  Swig::Director *director = 0;
+  IFormFactor *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IClusteredParticles_createTotalFormFactor", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IClusteredParticles, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IClusteredParticles_createTotalFormFactor" "', argument " "1"" of type '" "IClusteredParticles const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCoreShell, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_20(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IClusteredParticles * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IClusteredParticles_createTotalFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCrystal, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_21(self, argc, argv);
-      }
-    }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IClusteredParticles_createTotalFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCuboctahedron, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_22(self, argc, argv);
-      }
-    }
+  arg2 = reinterpret_cast< IFormFactor * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_IRotation, 0 |  0 );
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IClusteredParticles_createTotalFormFactor" "', argument " "3"" of type '" "IRotation const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCylinder, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_23(self, argc, argv);
-      }
-    }
+  arg3 = reinterpret_cast< IRotation * >(argp3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "IClusteredParticles_createTotalFormFactor" "', argument " "4"" of type '" "kvector_t const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDWBA, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_24(self, argc, argv);
-      }
-    }
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IClusteredParticles_createTotalFormFactor" "', argument " "4"" of type '" "kvector_t const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDWBAPol, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_25(self, argc, argv);
-      }
-    }
+  arg4 = reinterpret_cast< kvector_t * >(argp4);
+  result = (IFormFactor *)((IClusteredParticles const *)arg1)->createTotalFormFactor((IFormFactor const &)*arg2,(IRotation const *)arg3,(kvector_t const &)*arg4);
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDecoratorMaterial, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_26(self, argc, argv);
-      }
-    }
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IClusteredParticles_homogeneousRegions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IClusteredParticles *arg1 = (IClusteredParticles *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  SwigValueWrapper< std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > > > result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IClusteredParticles, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IClusteredParticles_homogeneousRegions" "', argument " "1"" of type '" "IClusteredParticles const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDecoratorPositionFactor, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_27(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IClusteredParticles * >(argp1);
+  result = ((IClusteredParticles const *)arg1)->homogeneousRegions();
+  resultobj = SWIG_NewPointerObj((new std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >(static_cast< const std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >& >(result))), SWIGTYPE_p_std__vectorT_HomogeneousRegion_std__allocatorT_HomogeneousRegion_t_t, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_IClusteredParticles(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IClusteredParticles *arg1 = (IClusteredParticles *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IClusteredParticles, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IClusteredParticles" "', argument " "1"" of type '" "IClusteredParticles *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDecoratorRotation, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_28(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IClusteredParticles * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *IClusteredParticles_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IClusteredParticles, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_new_Crystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = 0 ;
+  Lattice *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  Crystal *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_Crystal", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IParticle,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Crystal" "', argument " "1"" of type '" "IParticle const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDodecahedron, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_29(self, argc, argv);
-      }
-    }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Crystal" "', argument " "1"" of type '" "IParticle const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDot, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_30(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Lattice,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Crystal" "', argument " "2"" of type '" "Lattice const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_31(self, argc, argv);
-      }
-    }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Crystal" "', argument " "2"" of type '" "Lattice const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorFullSphere, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_32(self, argc, argv);
-      }
-    }
+  arg2 = reinterpret_cast< Lattice * >(argp2);
+  result = (Crystal *)new Crystal((IParticle const &)*arg1,(Lattice const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Crystal, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_Crystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Crystal *arg1 = (Crystal *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Crystal" "', argument " "1"" of type '" "Crystal *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorFullSpheroid, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_33(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< Crystal * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Crystal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Crystal *arg1 = (Crystal *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  Crystal *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_clone" "', argument " "1"" of type '" "Crystal const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorGauss, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_34(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< Crystal * >(argp1);
+  result = (Crystal *)((Crystal const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Crystal, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Crystal_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Crystal *arg1 = (Crystal *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "Crystal_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_accept" "', argument " "1"" of type '" "Crystal const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorHemiEllipsoid, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_35(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< Crystal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Crystal_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorIcosahedron, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_36(self, argc, argv);
-      }
-    }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((Crystal const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Crystal_createTotalFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Crystal *arg1 = (Crystal *) 0 ;
+  IFormFactor *arg2 = 0 ;
+  IRotation *arg3 = (IRotation *) 0 ;
+  kvector_t *arg4 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  PyObject *swig_obj[4] ;
+  Swig::Director *director = 0;
+  IFormFactor *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "Crystal_createTotalFormFactor", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_createTotalFormFactor" "', argument " "1"" of type '" "Crystal const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorLongBoxGauss, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_37(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< Crystal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Crystal_createTotalFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorLongBoxLorentz, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_38(self, argc, argv);
-      }
-    }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Crystal_createTotalFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorLorentz, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_39(self, argc, argv);
-      }
-    }
+  arg2 = reinterpret_cast< IFormFactor * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_IRotation, 0 |  0 );
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Crystal_createTotalFormFactor" "', argument " "3"" of type '" "IRotation const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorPrism3, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_40(self, argc, argv);
-      }
-    }
+  arg3 = reinterpret_cast< IRotation * >(argp3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "Crystal_createTotalFormFactor" "', argument " "4"" of type '" "kvector_t const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorPrism6, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_41(self, argc, argv);
-      }
-    }
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Crystal_createTotalFormFactor" "', argument " "4"" of type '" "kvector_t const &""'"); 
   }
-  if (argc == 2) {
+  arg4 = reinterpret_cast< kvector_t * >(argp4);
+  result = (IFormFactor *)((Crystal const *)arg1)->createTotalFormFactor((IFormFactor const &)*arg2,(IRotation const *)arg3,(kvector_t const &)*arg4);
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  }
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Crystal_homogeneousRegions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Crystal *arg1 = (Crystal *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  SwigValueWrapper< std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > > > result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_homogeneousRegions" "', argument " "1"" of type '" "Crystal const *""'"); 
+  }
+  arg1 = reinterpret_cast< Crystal * >(argp1);
+  result = ((Crystal const *)arg1)->homogeneousRegions();
+  resultobj = SWIG_NewPointerObj((new std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >(static_cast< const std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >& >(result))), SWIGTYPE_p_std__vectorT_HomogeneousRegion_std__allocatorT_HomogeneousRegion_t_t, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Crystal_transformedLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  Crystal *arg1 = (Crystal *) 0 ;
+  IRotation *arg2 = (IRotation *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  SwigValueWrapper< Lattice > result;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_transformedLattice" "', argument " "1"" of type '" "Crystal const *""'"); 
+  }
+  arg1 = reinterpret_cast< Crystal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IRotation, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Crystal_transformedLattice" "', argument " "2"" of type '" "IRotation const *""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = ((Crystal const *)arg1)->transformedLattice((IRotation const *)arg2);
+  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Crystal_transformedLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  Crystal *arg1 = (Crystal *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  SwigValueWrapper< Lattice > result;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_transformedLattice" "', argument " "1"" of type '" "Crystal const *""'"); 
+  }
+  arg1 = reinterpret_cast< Crystal * >(argp1);
+  result = ((Crystal const *)arg1)->transformedLattice();
+  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Crystal_transformedLattice(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Crystal_transformedLattice", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Crystal, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorPyramid, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_42(self, argc, argv);
-      }
+      return _wrap_Crystal_transformedLattice__SWIG_1(self, argc, argv);
     }
   }
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Crystal, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
       void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorRipple1Box, 0);
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IRotation, 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_43(self, argc, argv);
+        return _wrap_Crystal_transformedLattice__SWIG_0(self, argc, argv);
       }
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorRipple1Gauss, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_44(self, argc, argv);
-      }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Crystal_transformedLattice'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Crystal::transformedLattice(IRotation const *) const\n"
+    "    Crystal::transformedLattice() const\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_Crystal_setPositionVariance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Crystal *arg1 = (Crystal *) 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "Crystal_setPositionVariance", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_setPositionVariance" "', argument " "1"" of type '" "Crystal *""'"); 
+  }
+  arg1 = reinterpret_cast< Crystal * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Crystal_setPositionVariance" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setPositionVariance(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Crystal_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Crystal *arg1 = (Crystal *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_getChildren" "', argument " "1"" of type '" "Crystal const *""'"); 
+  }
+  arg1 = reinterpret_cast< Crystal * >(argp1);
+  result = ((Crystal const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *Crystal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_Crystal, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *Crystal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_ParticleLimits_m_bottom_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParticleLimits *arg1 = (ParticleLimits *) 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "ParticleLimits_m_bottom_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLimits, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLimits_m_bottom_set" "', argument " "1"" of type '" "ParticleLimits *""'"); 
+  }
+  arg1 = reinterpret_cast< ParticleLimits * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParticleLimits_m_bottom_set" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  if (arg1) (arg1)->m_bottom = arg2;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParticleLimits_m_bottom_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParticleLimits *arg1 = (ParticleLimits *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLimits, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLimits_m_bottom_get" "', argument " "1"" of type '" "ParticleLimits *""'"); 
+  }
+  arg1 = reinterpret_cast< ParticleLimits * >(argp1);
+  result = (double) ((arg1)->m_bottom);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParticleLimits_m_top_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParticleLimits *arg1 = (ParticleLimits *) 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "ParticleLimits_m_top_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLimits, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLimits_m_top_set" "', argument " "1"" of type '" "ParticleLimits *""'"); 
+  }
+  arg1 = reinterpret_cast< ParticleLimits * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParticleLimits_m_top_set" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  if (arg1) (arg1)->m_top = arg2;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParticleLimits_m_top_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParticleLimits *arg1 = (ParticleLimits *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLimits, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLimits_m_top_get" "', argument " "1"" of type '" "ParticleLimits *""'"); 
+  }
+  arg1 = reinterpret_cast< ParticleLimits * >(argp1);
+  result = (double) ((arg1)->m_top);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_ParticleLimits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParticleLimits *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_ParticleLimits", 0, 0, 0)) SWIG_fail;
+  result = (ParticleLimits *)new ParticleLimits();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleLimits, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_ParticleLimits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParticleLimits *arg1 = (ParticleLimits *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLimits, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParticleLimits" "', argument " "1"" of type '" "ParticleLimits *""'"); 
+  }
+  arg1 = reinterpret_cast< ParticleLimits * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *ParticleLimits_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_ParticleLimits, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *ParticleLimits_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_delete_IParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IParticle" "', argument " "1"" of type '" "IParticle *""'"); 
+  }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IParticle *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_clone" "', argument " "1"" of type '" "IParticle const *""'"); 
+  }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  result = (IParticle *)((IParticle const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IParticle, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_createFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  Swig::Director *director = 0;
+  IFormFactor *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_createFormFactor" "', argument " "1"" of type '" "IParticle const *""'"); 
+  }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  result = (IFormFactor *)((IParticle const *)arg1)->createFormFactor();
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  }
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_createSlicedParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  ZLimits arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  SlicedParticle result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IParticle_createSlicedParticle", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_createSlicedParticle" "', argument " "1"" of type '" "IParticle const *""'"); 
+  }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParticle_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParticle_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'");
+    } else {
+      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorRipple1Lorentz, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_45(self, argc, argv);
-      }
+  result = ((IParticle const *)arg1)->createSlicedParticle(arg2);
+  
+  resultobj = SWIG_NewPointerObj(new SlicedParticle(std::move(result)), SWIGTYPE_p_SlicedParticle, SWIG_POINTER_OWN);
+  
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_position(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  kvector_t result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_position" "', argument " "1"" of type '" "IParticle const *""'"); 
+  }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  result = ((IParticle const *)arg1)->position();
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_setPosition__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  kvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_setPosition" "', argument " "1"" of type '" "IParticle *""'"); 
+  }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParticle_setPosition" "', argument " "2"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParticle_setPosition" "', argument " "2"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
+  (arg1)->setPosition(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_setPosition__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_setPosition" "', argument " "1"" of type '" "IParticle *""'"); 
+  }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IParticle_setPosition" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IParticle_setPosition" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IParticle_setPosition" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setPosition(arg2,arg3,arg4);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_setPosition(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IParticle_setPosition", 0, 4, argv))) SWIG_fail;
+  --argc;
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParticle, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorRipple2Box, 0);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_46(self, argc, argv);
+        return _wrap_IParticle_setPosition__SWIG_0(self, argc, argv);
       }
     }
   }
-  if (argc == 2) {
+  if (argc == 4) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParticle, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorRipple2Gauss, 0);
-      _v = SWIG_CheckState(res);
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_47(self, argc, argv);
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_IParticle_setPosition__SWIG_1(self, argc, argv);
+          }
+        }
       }
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorRipple2Lorentz, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_48(self, argc, argv);
-      }
-    }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IParticle_setPosition'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IParticle::setPosition(kvector_t)\n"
+    "    IParticle::setPosition(double,double,double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_translate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  kvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IParticle_translate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_translate" "', argument " "1"" of type '" "IParticle *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorSphereGaussianRadius, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_49(self, argc, argv);
-      }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParticle_translate" "', argument " "2"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParticle_translate" "', argument " "2"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_50(self, argc, argv);
-      }
-    }
+  (arg1)->translate(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_rotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IRotation *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_rotation" "', argument " "1"" of type '" "IParticle const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorTetrahedron, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_51(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  result = (IRotation *)((IParticle const *)arg1)->rotation();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_setRotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  IRotation *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IParticle_setRotation", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_setRotation" "', argument " "1"" of type '" "IParticle *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorTruncatedCube, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_52(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParticle_setRotation" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorTruncatedSphere, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_53(self, argc, argv);
-      }
-    }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParticle_setRotation" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorTruncatedSpheroid, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_54(self, argc, argv);
-      }
-    }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  (arg1)->setRotation((IRotation const &)*arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_rotate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  IRotation *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IParticle_rotate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_rotate" "', argument " "1"" of type '" "IParticle *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorWeighted, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_55(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParticle_rotate" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction1DCauchy, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_56(self, argc, argv);
-      }
-    }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParticle_rotate" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction1DGauss, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_57(self, argc, argv);
-      }
-    }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  (arg1)->rotate((IRotation const &)*arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_getChildren" "', argument " "1"" of type '" "IParticle const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction1DTriangle, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_58(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  result = ((IParticle const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_registerAbundance__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  bool arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  bool val2 ;
+  int ecode2 = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_registerAbundance" "', argument " "1"" of type '" "IParticle *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction1DVoigt, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_59(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IParticle_registerAbundance" "', argument " "2"" of type '" "bool""'");
+  } 
+  arg2 = static_cast< bool >(val2);
+  (arg1)->registerAbundance(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_registerAbundance__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_registerAbundance" "', argument " "1"" of type '" "IParticle *""'"); 
   }
-  if (argc == 2) {
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  (arg1)->registerAbundance();
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_registerAbundance(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IParticle_registerAbundance", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParticle, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction2DCauchy, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_60(self, argc, argv);
-      }
+      return _wrap_IParticle_registerAbundance__SWIG_1(self, argc, argv);
     }
   }
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParticle, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction2DGauss, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_61(self, argc, argv);
+      {
+        int res = SWIG_AsVal_bool(argv[1], NULL);
+        _v = SWIG_CheckState(res);
       }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction2DVoigt, 0);
-      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_62(self, argc, argv);
+        return _wrap_IParticle_registerAbundance__SWIG_0(self, argc, argv);
       }
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution1DCauchy, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_63(self, argc, argv);
-      }
-    }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IParticle_registerAbundance'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IParticle::registerAbundance(bool)\n"
+    "    IParticle::registerAbundance()\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_registerPosition__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  bool arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  bool val2 ;
+  int ecode2 = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_registerPosition" "', argument " "1"" of type '" "IParticle *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution1DCosine, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_64(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IParticle_registerPosition" "', argument " "2"" of type '" "bool""'");
+  } 
+  arg2 = static_cast< bool >(val2);
+  (arg1)->registerPosition(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_registerPosition__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_registerPosition" "', argument " "1"" of type '" "IParticle *""'"); 
   }
-  if (argc == 2) {
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  (arg1)->registerPosition();
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_registerPosition(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IParticle_registerPosition", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParticle, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution1DGate, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_65(self, argc, argv);
-      }
+      return _wrap_IParticle_registerPosition__SWIG_1(self, argc, argv);
     }
   }
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParticle, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution1DGauss, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_66(self, argc, argv);
+      {
+        int res = SWIG_AsVal_bool(argv[1], NULL);
+        _v = SWIG_CheckState(res);
       }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution1DTriangle, 0);
-      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_67(self, argc, argv);
+        return _wrap_IParticle_registerPosition__SWIG_0(self, argc, argv);
       }
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution1DVoigt, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_68(self, argc, argv);
-      }
-    }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IParticle_registerPosition'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IParticle::registerPosition(bool)\n"
+    "    IParticle::registerPosition()\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_decompose(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  SwigValueWrapper< SafePointerVector< IParticle > > result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_decompose" "', argument " "1"" of type '" "IParticle const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution2DCauchy, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_69(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  result = ((IParticle const *)arg1)->decompose();
+  resultobj = SWIG_NewPointerObj((new SafePointerVector< IParticle >(static_cast< const SafePointerVector< IParticle >& >(result))), SWIGTYPE_p_SafePointerVectorT_IParticle_t, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParticle_bottomTopZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = (IParticle *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  ParticleLimits result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_bottomTopZ" "', argument " "1"" of type '" "IParticle const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution2DCone, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_70(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  result = ((IParticle const *)arg1)->bottomTopZ();
+  resultobj = SWIG_NewPointerObj((new ParticleLimits(static_cast< const ParticleLimits& >(result))), SWIGTYPE_p_ParticleLimits, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *IParticle_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IParticle, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_new_MesoCrystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IClusteredParticles *arg1 = 0 ;
+  IFormFactor *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  MesoCrystal *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_MesoCrystal", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IClusteredParticles,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_MesoCrystal" "', argument " "1"" of type '" "IClusteredParticles const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution2DGate, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_71(self, argc, argv);
-      }
-    }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_MesoCrystal" "', argument " "1"" of type '" "IClusteredParticles const &""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution2DGauss, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_72(self, argc, argv);
-      }
+  arg1 = reinterpret_cast< IClusteredParticles * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_MesoCrystal" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_MesoCrystal" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+  }
+  arg2 = reinterpret_cast< IFormFactor * >(argp2);
+  result = (MesoCrystal *)new MesoCrystal((IClusteredParticles const &)*arg1,(IFormFactor const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MesoCrystal, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_MesoCrystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  MesoCrystal *arg1 = (MesoCrystal *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MesoCrystal, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_MesoCrystal" "', argument " "1"" of type '" "MesoCrystal *""'"); 
+  }
+  arg1 = reinterpret_cast< MesoCrystal * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_MesoCrystal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  MesoCrystal *arg1 = (MesoCrystal *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  MesoCrystal *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MesoCrystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MesoCrystal_clone" "', argument " "1"" of type '" "MesoCrystal const *""'"); 
+  }
+  arg1 = reinterpret_cast< MesoCrystal * >(argp1);
+  result = (MesoCrystal *)((MesoCrystal const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MesoCrystal, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_MesoCrystal_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  MesoCrystal *arg1 = (MesoCrystal *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "MesoCrystal_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MesoCrystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MesoCrystal_accept" "', argument " "1"" of type '" "MesoCrystal const *""'"); 
+  }
+  arg1 = reinterpret_cast< MesoCrystal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MesoCrystal_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((MesoCrystal const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_MesoCrystal_createSlicedParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  MesoCrystal *arg1 = (MesoCrystal *) 0 ;
+  ZLimits arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  SlicedParticle result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "MesoCrystal_createSlicedParticle", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MesoCrystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MesoCrystal_createSlicedParticle" "', argument " "1"" of type '" "MesoCrystal const *""'"); 
+  }
+  arg1 = reinterpret_cast< MesoCrystal * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MesoCrystal_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MesoCrystal_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'");
+    } else {
+      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution2DVoigt, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_73(self, argc, argv);
-      }
+  result = ((MesoCrystal const *)arg1)->createSlicedParticle(arg2);
+  
+  resultobj = SWIG_NewPointerObj(new SlicedParticle(std::move(result)), SWIGTYPE_p_SlicedParticle, SWIG_POINTER_OWN);
+  
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_MesoCrystal_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  MesoCrystal *arg1 = (MesoCrystal *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MesoCrystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MesoCrystal_getChildren" "', argument " "1"" of type '" "MesoCrystal const *""'"); 
+  }
+  arg1 = reinterpret_cast< MesoCrystal * >(argp1);
+  result = ((MesoCrystal const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *MesoCrystal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_MesoCrystal, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *MesoCrystal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_Particle__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+  PyObject *resultobj = 0;
+  Particle *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (Particle *)new Particle();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_Particle__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  SwigValueWrapper< Material > arg1 ;
+  void *argp1 ;
+  int res1 = 0 ;
+  Particle *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0  | 0);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Particle" "', argument " "1"" of type '" "Material""'"); 
+    }  
+    if (!argp1) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Particle" "', argument " "1"" of type '" "Material""'");
+    } else {
+      Material * temp = reinterpret_cast< Material * >(argp1);
+      arg1 = *temp;
+      if (SWIG_IsNewObj(res1)) delete temp;
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_GISASSimulation, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_74(self, argc, argv);
-      }
+  result = (Particle *)new Particle(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_Particle__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  SwigValueWrapper< Material > arg1 ;
+  IFormFactor *arg2 = 0 ;
+  void *argp1 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  Particle *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  {
+    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0  | 0);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Particle" "', argument " "1"" of type '" "Material""'"); 
+    }  
+    if (!argp1) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Particle" "', argument " "1"" of type '" "Material""'");
+    } else {
+      Material * temp = reinterpret_cast< Material * >(argp1);
+      arg1 = *temp;
+      if (SWIG_IsNewObj(res1)) delete temp;
     }
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_HexagonalLattice, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_75(self, argc, argv);
-      }
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Particle" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Particle" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+  }
+  arg2 = reinterpret_cast< IFormFactor * >(argp2);
+  result = (Particle *)new Particle(arg1,(IFormFactor const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_Particle__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  SwigValueWrapper< Material > arg1 ;
+  IFormFactor *arg2 = 0 ;
+  IRotation *arg3 = 0 ;
+  void *argp1 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  Particle *result = 0 ;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  {
+    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0  | 0);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Particle" "', argument " "1"" of type '" "Material""'"); 
+    }  
+    if (!argp1) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Particle" "', argument " "1"" of type '" "Material""'");
+    } else {
+      Material * temp = reinterpret_cast< Material * >(argp1);
+      arg1 = *temp;
+      if (SWIG_IsNewObj(res1)) delete temp;
     }
   }
-  if (argc == 2) {
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Particle" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Particle" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+  }
+  arg2 = reinterpret_cast< IFormFactor * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_Particle" "', argument " "3"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Particle" "', argument " "3"" of type '" "IRotation const &""'"); 
+  }
+  arg3 = reinterpret_cast< IRotation * >(argp3);
+  result = (Particle *)new Particle(arg1,(IFormFactor const &)*arg2,(IRotation const &)*arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_Particle(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Particle", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_Particle__SWIG_0(self, argc, argv);
+  }
+  if (argc == 1) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_MesoCrystal, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_107(self, argc, argv);
-      }
+      return _wrap_new_Particle__SWIG_1(self, argc, argv);
     }
   }
   if (argc == 2) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IClusteredParticles, 0);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_77(self, argc, argv);
+        return _wrap_new_Particle__SWIG_2(self, argc, argv);
       }
     }
   }
-  if (argc == 2) {
+  if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IdentityRotation, 0);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_78(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IFormFactorBorn, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_80(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IFormFactorDecorator, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_81(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IFormFactor, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_79(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunction1DLattice, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_88(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ParticleLayout, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_114(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_Instrument, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_85(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IntensityScaleAndShiftNormalizer, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_87(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IntensityNormalizer, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_86(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunction2DLattice, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_89(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_90(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_91(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunction3DLattice, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_92(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_93(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_94(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunctionHardDisk, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_95(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_96(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunctionTwin, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_97(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunctionNone, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_98(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IInterferenceFunction, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_82(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_Particle, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_110(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IPeakShape, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_100(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_RotationEuler, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_118(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_Layer, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_104(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IsGISAXSDetector, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_103(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_LayerRoughness, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_106(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ParticleComposition, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_111(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_LayerInterface, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_105(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_MultiLayer, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_108(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ParticleCoreShell, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_112(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_OffSpecSimulation, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_109(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IParticle, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_99(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ParticleDistribution, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_113(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IAbstractParticle, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_76(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ILayout, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_83(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_RotationX, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_119(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PoissonNoiseBackground, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_115(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_RectangularDetector, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_116(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ResolutionFunction2DGaussian, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_117(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_RotationY, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_120(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_RotationZ, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_121(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IRotation, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_101(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ISample, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_102(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_SpecularSimulation, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_123(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_SpecularDetector1D, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_122(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_SphericalDetector, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_124(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_SquareLattice, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_125(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_INode, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_INodeVisitor_visit__SWIG_84(self, argc, argv);
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_IRotation, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_new_Particle__SWIG_3(self, argc, argv);
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'INodeVisitor_visit'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Particle'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    INodeVisitor::visit(BasicLattice const *)\n"
-    "    INodeVisitor::visit(Beam const *)\n"
-    "    INodeVisitor::visit(ConstantBackground const *)\n"
-    "    INodeVisitor::visit(ConvolutionDetectorResolution const *)\n"
-    "    INodeVisitor::visit(Crystal const *)\n"
-    "    INodeVisitor::visit(DistributionCosine const *)\n"
-    "    INodeVisitor::visit(DistributionGate const *)\n"
-    "    INodeVisitor::visit(DistributionGaussian const *)\n"
-    "    INodeVisitor::visit(DistributionLogNormal const *)\n"
-    "    INodeVisitor::visit(DistributionLorentz const *)\n"
-    "    INodeVisitor::visit(DistributionTrapezoid const *)\n"
-    "    INodeVisitor::visit(FootprintGauss const *)\n"
-    "    INodeVisitor::visit(FootprintSquare const *)\n"
-    "    INodeVisitor::visit(FormFactorAnisoPyramid const *)\n"
-    "    INodeVisitor::visit(FormFactorBarGauss const *)\n"
-    "    INodeVisitor::visit(FormFactorBarLorentz const *)\n"
-    "    INodeVisitor::visit(FormFactorBox const *)\n"
-    "    INodeVisitor::visit(FormFactorCantellatedCube const *)\n"
-    "    INodeVisitor::visit(FormFactorCone const *)\n"
-    "    INodeVisitor::visit(FormFactorCone6 const *)\n"
-    "    INodeVisitor::visit(FormFactorCoreShell const *)\n"
-    "    INodeVisitor::visit(FormFactorCrystal const *)\n"
-    "    INodeVisitor::visit(FormFactorCuboctahedron const *)\n"
-    "    INodeVisitor::visit(FormFactorCylinder const *)\n"
-    "    INodeVisitor::visit(FormFactorDWBA const *)\n"
-    "    INodeVisitor::visit(FormFactorDWBAPol const *)\n"
-    "    INodeVisitor::visit(FormFactorDecoratorMaterial const *)\n"
-    "    INodeVisitor::visit(FormFactorDecoratorPositionFactor const *)\n"
-    "    INodeVisitor::visit(FormFactorDecoratorRotation const *)\n"
-    "    INodeVisitor::visit(FormFactorDodecahedron const *)\n"
-    "    INodeVisitor::visit(FormFactorDot const *)\n"
-    "    INodeVisitor::visit(FormFactorEllipsoidalCylinder const *)\n"
-    "    INodeVisitor::visit(FormFactorFullSphere const *)\n"
-    "    INodeVisitor::visit(FormFactorFullSpheroid const *)\n"
-    "    INodeVisitor::visit(FormFactorGauss const *)\n"
-    "    INodeVisitor::visit(FormFactorHemiEllipsoid const *)\n"
-    "    INodeVisitor::visit(FormFactorIcosahedron const *)\n"
-    "    INodeVisitor::visit(FormFactorLongBoxGauss const *)\n"
-    "    INodeVisitor::visit(FormFactorLongBoxLorentz const *)\n"
-    "    INodeVisitor::visit(FormFactorLorentz const *)\n"
-    "    INodeVisitor::visit(FormFactorPrism3 const *)\n"
-    "    INodeVisitor::visit(FormFactorPrism6 const *)\n"
-    "    INodeVisitor::visit(FormFactorPyramid const *)\n"
-    "    INodeVisitor::visit(FormFactorRipple1Box const *)\n"
-    "    INodeVisitor::visit(FormFactorRipple1Gauss const *)\n"
-    "    INodeVisitor::visit(FormFactorRipple1Lorentz const *)\n"
-    "    INodeVisitor::visit(FormFactorRipple2Box const *)\n"
-    "    INodeVisitor::visit(FormFactorRipple2Gauss const *)\n"
-    "    INodeVisitor::visit(FormFactorRipple2Lorentz const *)\n"
-    "    INodeVisitor::visit(FormFactorSphereGaussianRadius const *)\n"
-    "    INodeVisitor::visit(FormFactorSphereLogNormalRadius const *)\n"
-    "    INodeVisitor::visit(FormFactorTetrahedron const *)\n"
-    "    INodeVisitor::visit(FormFactorTruncatedCube const *)\n"
-    "    INodeVisitor::visit(FormFactorTruncatedSphere const *)\n"
-    "    INodeVisitor::visit(FormFactorTruncatedSpheroid const *)\n"
-    "    INodeVisitor::visit(FormFactorWeighted const *)\n"
-    "    INodeVisitor::visit(FTDecayFunction1DCauchy const *)\n"
-    "    INodeVisitor::visit(FTDecayFunction1DGauss const *)\n"
-    "    INodeVisitor::visit(FTDecayFunction1DTriangle const *)\n"
-    "    INodeVisitor::visit(FTDecayFunction1DVoigt const *)\n"
-    "    INodeVisitor::visit(FTDecayFunction2DCauchy const *)\n"
-    "    INodeVisitor::visit(FTDecayFunction2DGauss const *)\n"
-    "    INodeVisitor::visit(FTDecayFunction2DVoigt const *)\n"
-    "    INodeVisitor::visit(FTDistribution1DCauchy const *)\n"
-    "    INodeVisitor::visit(FTDistribution1DCosine const *)\n"
-    "    INodeVisitor::visit(FTDistribution1DGate const *)\n"
-    "    INodeVisitor::visit(FTDistribution1DGauss const *)\n"
-    "    INodeVisitor::visit(FTDistribution1DTriangle const *)\n"
-    "    INodeVisitor::visit(FTDistribution1DVoigt const *)\n"
-    "    INodeVisitor::visit(FTDistribution2DCauchy const *)\n"
-    "    INodeVisitor::visit(FTDistribution2DCone const *)\n"
-    "    INodeVisitor::visit(FTDistribution2DGate const *)\n"
-    "    INodeVisitor::visit(FTDistribution2DGauss const *)\n"
-    "    INodeVisitor::visit(FTDistribution2DVoigt const *)\n"
-    "    INodeVisitor::visit(GISASSimulation const *)\n"
-    "    INodeVisitor::visit(HexagonalLattice const *)\n"
-    "    INodeVisitor::visit(IAbstractParticle const *)\n"
-    "    INodeVisitor::visit(IClusteredParticles const *)\n"
-    "    INodeVisitor::visit(IdentityRotation const *)\n"
-    "    INodeVisitor::visit(IFormFactor const *)\n"
-    "    INodeVisitor::visit(IFormFactorBorn const *)\n"
-    "    INodeVisitor::visit(IFormFactorDecorator const *)\n"
-    "    INodeVisitor::visit(IInterferenceFunction const *)\n"
-    "    INodeVisitor::visit(ILayout const *)\n"
-    "    INodeVisitor::visit(INode const *)\n"
-    "    INodeVisitor::visit(Instrument const *)\n"
-    "    INodeVisitor::visit(IntensityNormalizer const *)\n"
-    "    INodeVisitor::visit(IntensityScaleAndShiftNormalizer const *)\n"
-    "    INodeVisitor::visit(InterferenceFunction1DLattice const *)\n"
-    "    INodeVisitor::visit(InterferenceFunction2DLattice const *)\n"
-    "    INodeVisitor::visit(InterferenceFunction2DParaCrystal const *)\n"
-    "    INodeVisitor::visit(InterferenceFunction2DSuperLattice const *)\n"
-    "    INodeVisitor::visit(InterferenceFunction3DLattice const *)\n"
-    "    INodeVisitor::visit(InterferenceFunctionFinite2DLattice const *)\n"
-    "    INodeVisitor::visit(InterferenceFunctionFinite3DLattice const *)\n"
-    "    INodeVisitor::visit(InterferenceFunctionHardDisk const *)\n"
-    "    INodeVisitor::visit(InterferenceFunctionRadialParaCrystal const *)\n"
-    "    INodeVisitor::visit(InterferenceFunctionTwin const *)\n"
-    "    INodeVisitor::visit(InterferenceFunctionNone const *)\n"
-    "    INodeVisitor::visit(IParticle const *)\n"
-    "    INodeVisitor::visit(IPeakShape const *)\n"
-    "    INodeVisitor::visit(IRotation const *)\n"
-    "    INodeVisitor::visit(ISample const *)\n"
-    "    INodeVisitor::visit(IsGISAXSDetector const *)\n"
-    "    INodeVisitor::visit(Layer const *)\n"
-    "    INodeVisitor::visit(LayerInterface const *)\n"
-    "    INodeVisitor::visit(LayerRoughness const *)\n"
-    "    INodeVisitor::visit(MesoCrystal const *)\n"
-    "    INodeVisitor::visit(MultiLayer const *)\n"
-    "    INodeVisitor::visit(OffSpecSimulation const *)\n"
-    "    INodeVisitor::visit(Particle const *)\n"
-    "    INodeVisitor::visit(ParticleComposition const *)\n"
-    "    INodeVisitor::visit(ParticleCoreShell const *)\n"
-    "    INodeVisitor::visit(ParticleDistribution const *)\n"
-    "    INodeVisitor::visit(ParticleLayout const *)\n"
-    "    INodeVisitor::visit(PoissonNoiseBackground const *)\n"
-    "    INodeVisitor::visit(RectangularDetector const *)\n"
-    "    INodeVisitor::visit(ResolutionFunction2DGaussian const *)\n"
-    "    INodeVisitor::visit(RotationEuler const *)\n"
-    "    INodeVisitor::visit(RotationX const *)\n"
-    "    INodeVisitor::visit(RotationY const *)\n"
-    "    INodeVisitor::visit(RotationZ const *)\n"
-    "    INodeVisitor::visit(SpecularDetector1D const *)\n"
-    "    INodeVisitor::visit(SpecularSimulation const *)\n"
-    "    INodeVisitor::visit(SphericalDetector const *)\n"
-    "    INodeVisitor::visit(SquareLattice const *)\n");
+    "    Particle::Particle()\n"
+    "    Particle::Particle(Material)\n"
+    "    Particle::Particle(Material,IFormFactor const &)\n"
+    "    Particle::Particle(Material,IFormFactor const &,IRotation const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_depth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Particle_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  Particle *arg1 = (Particle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  int result;
+  Particle *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_depth" "', argument " "1"" of type '" "INodeVisitor const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_clone" "', argument " "1"" of type '" "Particle const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  result = (int)((INodeVisitor const *)arg1)->depth();
-  resultobj = SWIG_From_int(static_cast< int >(result));
+  arg1 = reinterpret_cast< Particle * >(argp1);
+  result = (Particle *)((Particle const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_INodeVisitor_setDepth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Particle_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
-  int arg2 ;
+  Particle *arg1 = (Particle *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "INodeVisitor_setDepth", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Particle_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_setDepth" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_accept" "', argument " "1"" of type '" "Particle const *""'"); 
   }
-  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "INodeVisitor_setDepth" "', argument " "2"" of type '" "int""'");
-  } 
-  arg2 = static_cast< int >(val2);
-  (arg1)->setDepth(arg2);
+  arg1 = reinterpret_cast< Particle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Particle_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((Particle const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -54781,80 +56557,76 @@ fail:
 }
 
 
-SWIGINTERN PyObject *INodeVisitor_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_INodeVisitor, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *INodeVisitor_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_VisitNodesPreorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Particle_createSlicedParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INode *arg1 = 0 ;
-  INodeVisitor *arg2 = 0 ;
+  Particle *arg1 = (Particle *) 0 ;
+  ZLimits arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  SlicedParticle result;
   
-  if (!SWIG_Python_UnpackTuple(args, "VisitNodesPreorder", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_INode,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "Particle_createSlicedParticle", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VisitNodesPreorder" "', argument " "1"" of type '" "INode const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VisitNodesPreorder" "', argument " "1"" of type '" "INode const &""'"); 
-  }
-  arg1 = reinterpret_cast< INode * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_INodeVisitor,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VisitNodesPreorder" "', argument " "2"" of type '" "INodeVisitor &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_createSlicedParticle" "', argument " "1"" of type '" "Particle const *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VisitNodesPreorder" "', argument " "2"" of type '" "INodeVisitor &""'"); 
+  arg1 = reinterpret_cast< Particle * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Particle_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Particle_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'");
+    } else {
+      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  VisitNodesPreorder((INode const &)*arg1,*arg2);
-  resultobj = SWIG_Py_Void();
+  result = ((Particle const *)arg1)->createSlicedParticle(arg2);
+  
+  resultobj = SWIG_NewPointerObj(new SlicedParticle(std::move(result)), SWIGTYPE_p_SlicedParticle, SWIG_POINTER_OWN);
+  
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_VisitNodesPostorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Particle_setMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  INode *arg1 = 0 ;
-  INodeVisitor *arg2 = 0 ;
+  Particle *arg1 = (Particle *) 0 ;
+  SwigValueWrapper< Material > arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "VisitNodesPostorder", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_INode,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "Particle_setMaterial", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VisitNodesPostorder" "', argument " "1"" of type '" "INode const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VisitNodesPostorder" "', argument " "1"" of type '" "INode const &""'"); 
-  }
-  arg1 = reinterpret_cast< INode * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_INodeVisitor,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VisitNodesPostorder" "', argument " "2"" of type '" "INodeVisitor &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_setMaterial" "', argument " "1"" of type '" "Particle *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VisitNodesPostorder" "', argument " "2"" of type '" "INodeVisitor &""'"); 
+  arg1 = reinterpret_cast< Particle * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Particle_setMaterial" "', argument " "2"" of type '" "Material""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Particle_setMaterial" "', argument " "2"" of type '" "Material""'");
+    } else {
+      Material * temp = reinterpret_cast< Material * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  VisitNodesPostorder((INode const &)*arg1,*arg2);
+  (arg1)->setMaterial(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -54862,118 +56634,98 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IClusteredParticles_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Particle_material(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IClusteredParticles *arg1 = (IClusteredParticles *) 0 ;
+  Particle *arg1 = (Particle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IClusteredParticles *result = 0 ;
+  Material *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IClusteredParticles, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IClusteredParticles_clone" "', argument " "1"" of type '" "IClusteredParticles const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_material" "', argument " "1"" of type '" "Particle const *""'"); 
   }
-  arg1 = reinterpret_cast< IClusteredParticles * >(argp1);
-  result = (IClusteredParticles *)((IClusteredParticles const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IClusteredParticles, 0 |  0 );
+  arg1 = reinterpret_cast< Particle * >(argp1);
+  result = (Material *)((Particle const *)arg1)->material();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Material, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IClusteredParticles_createTotalFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Particle_setFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IClusteredParticles *arg1 = (IClusteredParticles *) 0 ;
+  Particle *arg1 = (Particle *) 0 ;
   IFormFactor *arg2 = 0 ;
-  IRotation *arg3 = (IRotation *) 0 ;
-  kvector_t *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  PyObject *swig_obj[4] ;
-  IFormFactor *result = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IClusteredParticles_createTotalFormFactor", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IClusteredParticles, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Particle_setFormFactor", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IClusteredParticles_createTotalFormFactor" "', argument " "1"" of type '" "IClusteredParticles const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_setFormFactor" "', argument " "1"" of type '" "Particle *""'"); 
   }
-  arg1 = reinterpret_cast< IClusteredParticles * >(argp1);
+  arg1 = reinterpret_cast< Particle * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IClusteredParticles_createTotalFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Particle_setFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IClusteredParticles_createTotalFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Particle_setFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
   }
   arg2 = reinterpret_cast< IFormFactor * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_IRotation, 0 |  0 );
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IClusteredParticles_createTotalFormFactor" "', argument " "3"" of type '" "IRotation const *""'"); 
-  }
-  arg3 = reinterpret_cast< IRotation * >(argp3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "IClusteredParticles_createTotalFormFactor" "', argument " "4"" of type '" "kvector_t const &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IClusteredParticles_createTotalFormFactor" "', argument " "4"" of type '" "kvector_t const &""'"); 
-  }
-  arg4 = reinterpret_cast< kvector_t * >(argp4);
-  result = (IFormFactor *)((IClusteredParticles const *)arg1)->createTotalFormFactor((IFormFactor const &)*arg2,(IRotation const *)arg3,(kvector_t const &)*arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  (arg1)->setFormFactor((IFormFactor const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IClusteredParticles_homogeneousRegions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Particle_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IClusteredParticles *arg1 = (IClusteredParticles *) 0 ;
+  Particle *arg1 = (Particle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SwigValueWrapper< std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > > > result;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IClusteredParticles, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IClusteredParticles_homogeneousRegions" "', argument " "1"" of type '" "IClusteredParticles const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_getChildren" "', argument " "1"" of type '" "Particle const *""'"); 
   }
-  arg1 = reinterpret_cast< IClusteredParticles * >(argp1);
-  result = ((IClusteredParticles const *)arg1)->homogeneousRegions();
-  resultobj = SWIG_NewPointerObj((new std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >(static_cast< const std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >& >(result))), SWIGTYPE_p_std__vectorT_HomogeneousRegion_std__allocatorT_HomogeneousRegion_t_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< Particle * >(argp1);
+  result = ((Particle const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IClusteredParticles(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_Particle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IClusteredParticles *arg1 = (IClusteredParticles *) 0 ;
+  Particle *arg1 = (Particle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IClusteredParticles, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IClusteredParticles" "', argument " "1"" of type '" "IClusteredParticles *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Particle" "', argument " "1"" of type '" "Particle *""'"); 
   }
-  arg1 = reinterpret_cast< IClusteredParticles * >(argp1);
+  arg1 = reinterpret_cast< Particle * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -54982,63 +56734,111 @@ fail:
 }
 
 
-SWIGINTERN PyObject *IClusteredParticles_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Particle_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IClusteredParticles, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_Particle, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *_wrap_new_Crystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Particle_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_ParticleComposition__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = 0 ;
-  Lattice *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Crystal *result = 0 ;
+  ParticleComposition *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_Crystal", 2, 2, swig_obj)) SWIG_fail;
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (ParticleComposition *)new ParticleComposition();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleComposition, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_ParticleComposition__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IParticle *arg1 = 0 ;
+  std::vector< kvector_t,std::allocator< kvector_t > > arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  ParticleComposition *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IParticle,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Crystal" "', argument " "1"" of type '" "IParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParticleComposition" "', argument " "1"" of type '" "IParticle const &""'"); 
   }
   if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Crystal" "', argument " "1"" of type '" "IParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleComposition" "', argument " "1"" of type '" "IParticle const &""'"); 
   }
   arg1 = reinterpret_cast< IParticle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Lattice,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Crystal" "', argument " "2"" of type '" "Lattice const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Crystal" "', argument " "2"" of type '" "Lattice const &""'"); 
+  {
+    std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *ptr = (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *)0;
+    int res = swig::asptr(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_ParticleComposition" "', argument " "2"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > >""'"); 
+    }
+    arg2 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
   }
-  arg2 = reinterpret_cast< Lattice * >(argp2);
-  result = (Crystal *)new Crystal((IParticle const &)*arg1,(Lattice const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Crystal, SWIG_POINTER_NEW |  0 );
+  result = (ParticleComposition *)new ParticleComposition((IParticle const &)*arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleComposition, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Crystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParticleComposition(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ParticleComposition", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_ParticleComposition__SWIG_0(self, argc, argv);
+  }
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IParticle, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = swig::asptr(argv[1], (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > >**)(0));
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_new_ParticleComposition__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ParticleComposition'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    ParticleComposition::ParticleComposition()\n"
+    "    ParticleComposition::ParticleComposition(IParticle const &,std::vector< kvector_t,std::allocator< kvector_t > >)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_ParticleComposition(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Crystal *arg1 = (Crystal *) 0 ;
+  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Crystal" "', argument " "1"" of type '" "Crystal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParticleComposition" "', argument " "1"" of type '" "ParticleComposition *""'"); 
   }
-  arg1 = reinterpret_cast< Crystal * >(argp1);
+  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -55047,32 +56847,32 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Crystal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleComposition_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Crystal *arg1 = (Crystal *) 0 ;
+  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Crystal *result = 0 ;
+  ParticleComposition *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_clone" "', argument " "1"" of type '" "Crystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_clone" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
   }
-  arg1 = reinterpret_cast< Crystal * >(argp1);
-  result = (Crystal *)((Crystal const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Crystal, 0 |  0 );
+  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
+  result = (ParticleComposition *)((ParticleComposition const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleComposition, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Crystal_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleComposition_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Crystal *arg1 = (Crystal *) 0 ;
+  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -55080,18 +56880,18 @@ SWIGINTERN PyObject *_wrap_Crystal_accept(PyObject *SWIGUNUSEDPARM(self), PyObje
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Crystal_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParticleComposition_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_accept" "', argument " "1"" of type '" "Crystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_accept" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
   }
-  arg1 = reinterpret_cast< Crystal * >(argp1);
+  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Crystal_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleComposition_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((Crystal const *)arg1)->accept(arg2);
+  ((ParticleComposition const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -55099,194 +56899,197 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Crystal_createTotalFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Crystal *arg1 = (Crystal *) 0 ;
-  IFormFactor *arg2 = 0 ;
-  IRotation *arg3 = (IRotation *) 0 ;
-  kvector_t *arg4 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  PyObject *swig_obj[4] ;
-  IFormFactor *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Crystal_createTotalFormFactor", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_createTotalFormFactor" "', argument " "1"" of type '" "Crystal const *""'"); 
-  }
-  arg1 = reinterpret_cast< Crystal * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Crystal_createTotalFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Crystal_createTotalFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  arg2 = reinterpret_cast< IFormFactor * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_IRotation, 0 |  0 );
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Crystal_createTotalFormFactor" "', argument " "3"" of type '" "IRotation const *""'"); 
-  }
-  arg3 = reinterpret_cast< IRotation * >(argp3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "Crystal_createTotalFormFactor" "', argument " "4"" of type '" "kvector_t const &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Crystal_createTotalFormFactor" "', argument " "4"" of type '" "kvector_t const &""'"); 
-  }
-  arg4 = reinterpret_cast< kvector_t * >(argp4);
-  result = (IFormFactor *)((Crystal const *)arg1)->createTotalFormFactor((IFormFactor const &)*arg2,(IRotation const *)arg3,(kvector_t const &)*arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Crystal_homogeneousRegions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleComposition_createFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Crystal *arg1 = (Crystal *) 0 ;
+  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SwigValueWrapper< std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > > > result;
+  Swig::Director *director = 0;
+  IFormFactor *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_homogeneousRegions" "', argument " "1"" of type '" "Crystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_createFormFactor" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
+  }
+  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
+  result = (IFormFactor *)((ParticleComposition const *)arg1)->createFormFactor();
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
   }
-  arg1 = reinterpret_cast< Crystal * >(argp1);
-  result = ((Crystal const *)arg1)->homogeneousRegions();
-  resultobj = SWIG_NewPointerObj((new std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >(static_cast< const std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >& >(result))), SWIGTYPE_p_std__vectorT_HomogeneousRegion_std__allocatorT_HomogeneousRegion_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Crystal_transformedLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParticleComposition_addParticle__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Crystal *arg1 = (Crystal *) 0 ;
-  IRotation *arg2 = (IRotation *) 0 ;
+  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
+  IParticle *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  SwigValueWrapper< Lattice > result;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_transformedLattice" "', argument " "1"" of type '" "Crystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_addParticle" "', argument " "1"" of type '" "ParticleComposition *""'"); 
   }
-  arg1 = reinterpret_cast< Crystal * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IRotation, 0 |  0 );
+  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IParticle,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Crystal_transformedLattice" "', argument " "2"" of type '" "IRotation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleComposition_addParticle" "', argument " "2"" of type '" "IParticle const &""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = ((Crystal const *)arg1)->transformedLattice((IRotation const *)arg2);
-  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleComposition_addParticle" "', argument " "2"" of type '" "IParticle const &""'"); 
+  }
+  arg2 = reinterpret_cast< IParticle * >(argp2);
+  (arg1)->addParticle((IParticle const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Crystal_transformedLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParticleComposition_addParticle__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Crystal *arg1 = (Crystal *) 0 ;
+  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
+  IParticle *arg2 = 0 ;
+  kvector_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  SwigValueWrapper< Lattice > result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_transformedLattice" "', argument " "1"" of type '" "Crystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_addParticle" "', argument " "1"" of type '" "ParticleComposition *""'"); 
   }
-  arg1 = reinterpret_cast< Crystal * >(argp1);
-  result = ((Crystal const *)arg1)->transformedLattice();
-  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IParticle,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleComposition_addParticle" "', argument " "2"" of type '" "IParticle const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleComposition_addParticle" "', argument " "2"" of type '" "IParticle const &""'"); 
+  }
+  arg2 = reinterpret_cast< IParticle * >(argp2);
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParticleComposition_addParticle" "', argument " "3"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleComposition_addParticle" "', argument " "3"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  (arg1)->addParticle((IParticle const &)*arg2,arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Crystal_transformedLattice(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleComposition_addParticle(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Crystal_transformedLattice", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ParticleComposition_addParticle", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Crystal, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParticleComposition, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_Crystal_transformedLattice__SWIG_1(self, argc, argv);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IParticle, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_ParticleComposition_addParticle__SWIG_0(self, argc, argv);
+      }
     }
   }
-  if (argc == 2) {
+  if (argc == 3) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Crystal, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParticleComposition, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IRotation, 0);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IParticle, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_Crystal_transformedLattice__SWIG_0(self, argc, argv);
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_ParticleComposition_addParticle__SWIG_1(self, argc, argv);
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Crystal_transformedLattice'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParticleComposition_addParticle'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    Crystal::transformedLattice(IRotation const *) const\n"
-    "    Crystal::transformedLattice() const\n");
+    "    ParticleComposition::addParticle(IParticle const &)\n"
+    "    ParticleComposition::addParticle(IParticle const &,kvector_t)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Crystal_setPositionVariance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleComposition_addParticles(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Crystal *arg1 = (Crystal *) 0 ;
-  double arg2 ;
+  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
+  IParticle *arg2 = 0 ;
+  std::vector< kvector_t,std::allocator< kvector_t > > arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Crystal_setPositionVariance", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParticleComposition_addParticles", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_setPositionVariance" "', argument " "1"" of type '" "Crystal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_addParticles" "', argument " "1"" of type '" "ParticleComposition *""'"); 
   }
-  arg1 = reinterpret_cast< Crystal * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Crystal_setPositionVariance" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setPositionVariance(arg2);
+  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IParticle,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleComposition_addParticles" "', argument " "2"" of type '" "IParticle const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleComposition_addParticles" "', argument " "2"" of type '" "IParticle const &""'"); 
+  }
+  arg2 = reinterpret_cast< IParticle * >(argp2);
+  {
+    std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *ptr = (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *)0;
+    int res = swig::asptr(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "ParticleComposition_addParticles" "', argument " "3"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > >""'"); 
+    }
+    arg3 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  (arg1)->addParticles((IParticle const &)*arg2,arg3);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -55294,733 +57097,585 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Crystal_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleComposition_nbrParticles(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Crystal *arg1 = (Crystal *) 0 ;
+  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Crystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Crystal_getChildren" "', argument " "1"" of type '" "Crystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_nbrParticles" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
   }
-  arg1 = reinterpret_cast< Crystal * >(argp1);
-  result = ((Crystal const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
+  result = ((ParticleComposition const *)arg1)->nbrParticles();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *Crystal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Crystal, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *Crystal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_delete_IDistribution1D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleComposition_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IDistribution1D" "', argument " "1"" of type '" "IDistribution1D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_getChildren" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
   }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
+  result = ((ParticleComposition const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleComposition_decompose(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IDistribution1D *result = 0 ;
+  SwigValueWrapper< SafePointerVector< IParticle > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_clone" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
-  }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  result = (IDistribution1D *)((IDistribution1D const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDistribution1D, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IDistribution1D_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IDistribution1D_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_probabilityDensity" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_decompose" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
   }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_probabilityDensity" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((IDistribution1D const *)arg1)->probabilityDensity(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
+  result = ((ParticleComposition const *)arg1)->decompose();
+  resultobj = SWIG_NewPointerObj((new SafePointerVector< IParticle >(static_cast< const SafePointerVector< IParticle >& >(result))), SWIGTYPE_p_SafePointerVectorT_IParticle_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleComposition_bottomTopZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  ParticleLimits result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_getMean" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_bottomTopZ" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
   }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  result = (double)((IDistribution1D const *)arg1)->getMean();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
+  result = ((ParticleComposition const *)arg1)->bottomTopZ();
+  resultobj = SWIG_NewPointerObj((new ParticleLimits(static_cast< const ParticleLimits& >(result))), SWIGTYPE_p_ParticleLimits, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantSamples__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  RealLimits *arg4 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  std::vector< ParameterSample,std::allocator< ParameterSample > > result;
-  
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantSamples" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
-  }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantSamples" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDistribution1D_equidistantSamples" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "IDistribution1D_equidistantSamples" "', argument " "4"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDistribution1D_equidistantSamples" "', argument " "4"" of type '" "RealLimits const &""'"); 
-  }
-  arg4 = reinterpret_cast< RealLimits * >(argp4);
-  result = ((IDistribution1D const *)arg1)->equidistantSamples(arg2,arg3,(RealLimits const &)*arg4);
-  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample,std::allocator< ParameterSample > >(static_cast< const std::vector< ParameterSample,std::allocator< ParameterSample > >& >(result))), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *ParticleComposition_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_ParticleComposition, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *ParticleComposition_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantSamples__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_ParticleCoreShell__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
+  Particle *arg1 = 0 ;
+  Particle *arg2 = 0 ;
+  kvector_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  std::vector< ParameterSample,std::allocator< ParameterSample > > result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  ParticleCoreShell *result = 0 ;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Particle,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantSamples" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParticleCoreShell" "', argument " "1"" of type '" "Particle const &""'"); 
   }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantSamples" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDistribution1D_equidistantSamples" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = ((IDistribution1D const *)arg1)->equidistantSamples(arg2,arg3);
-  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample,std::allocator< ParameterSample > >(static_cast< const std::vector< ParameterSample,std::allocator< ParameterSample > >& >(result))), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleCoreShell" "', argument " "1"" of type '" "Particle const &""'"); 
+  }
+  arg1 = reinterpret_cast< Particle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Particle,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParticleCoreShell" "', argument " "2"" of type '" "Particle const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleCoreShell" "', argument " "2"" of type '" "Particle const &""'"); 
+  }
+  arg2 = reinterpret_cast< Particle * >(argp2);
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_ParticleCoreShell" "', argument " "3"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleCoreShell" "', argument " "3"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = (ParticleCoreShell *)new ParticleCoreShell((Particle const &)*arg1,(Particle const &)*arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleCoreShell, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantSamples__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_ParticleCoreShell__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
-  size_t arg2 ;
+  Particle *arg1 = 0 ;
+  Particle *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  std::vector< ParameterSample,std::allocator< ParameterSample > > result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  ParticleCoreShell *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Particle,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantSamples" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParticleCoreShell" "', argument " "1"" of type '" "Particle const &""'"); 
   }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantSamples" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((IDistribution1D const *)arg1)->equidistantSamples(arg2);
-  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample,std::allocator< ParameterSample > >(static_cast< const std::vector< ParameterSample,std::allocator< ParameterSample > >& >(result))), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleCoreShell" "', argument " "1"" of type '" "Particle const &""'"); 
+  }
+  arg1 = reinterpret_cast< Particle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Particle,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParticleCoreShell" "', argument " "2"" of type '" "Particle const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleCoreShell" "', argument " "2"" of type '" "Particle const &""'"); 
+  }
+  arg2 = reinterpret_cast< Particle * >(argp2);
+  result = (ParticleCoreShell *)new ParticleCoreShell((Particle const &)*arg1,(Particle const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleCoreShell, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantSamples(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParticleCoreShell(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IDistribution1D_equidistantSamples", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ParticleCoreShell", 0, 3, argv))) SWIG_fail;
   --argc;
   if (argc == 2) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDistribution1D, 0);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Particle, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Particle, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_IDistribution1D_equidistantSamples__SWIG_2(self, argc, argv);
+        return _wrap_new_ParticleCoreShell__SWIG_1(self, argc, argv);
       }
     }
   }
   if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDistribution1D, 0);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Particle, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Particle, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IDistribution1D_equidistantSamples__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDistribution1D, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
         _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
         if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_IDistribution1D_equidistantSamples__SWIG_0(self, argc, argv);
-          }
+          return _wrap_new_ParticleCoreShell__SWIG_0(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IDistribution1D_equidistantSamples'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ParticleCoreShell'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    IDistribution1D::equidistantSamples(size_t,double,RealLimits const &) const\n"
-    "    IDistribution1D::equidistantSamples(size_t,double) const\n"
-    "    IDistribution1D::equidistantSamples(size_t) const\n");
+    "    ParticleCoreShell::ParticleCoreShell(Particle const &,Particle const &,kvector_t)\n"
+    "    ParticleCoreShell::ParticleCoreShell(Particle const &,Particle const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantSamplesInRange(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_ParticleCoreShell(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  double arg4 ;
+  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  std::vector< ParameterSample,std::allocator< ParameterSample > > result;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDistribution1D_equidistantSamplesInRange", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantSamplesInRange" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParticleCoreShell" "', argument " "1"" of type '" "ParticleCoreShell *""'"); 
   }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantSamplesInRange" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDistribution1D_equidistantSamplesInRange" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IDistribution1D_equidistantSamplesInRange" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = ((IDistribution1D const *)arg1)->equidistantSamplesInRange(arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample,std::allocator< ParameterSample > >(static_cast< const std::vector< ParameterSample,std::allocator< ParameterSample > >& >(result))), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParticleCoreShell_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  RealLimits *arg4 = 0 ;
+  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  PyObject *swig_obj[1] ;
+  ParticleCoreShell *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantPoints" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
-  }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDistribution1D_equidistantPoints" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "IDistribution1D_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDistribution1D_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleCoreShell_clone" "', argument " "1"" of type '" "ParticleCoreShell const *""'"); 
   }
-  arg4 = reinterpret_cast< RealLimits * >(argp4);
-  result = ((IDistribution1D const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
+  result = (ParticleCoreShell *)((ParticleCoreShell const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParticleCoreShell_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
+  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParticleCoreShell_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantPoints" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleCoreShell_accept" "', argument " "1"" of type '" "ParticleCoreShell const *""'"); 
   }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDistribution1D_equidistantPoints" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = ((IDistribution1D const *)arg1)->equidistantPoints(arg2,arg3);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleCoreShell_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((ParticleCoreShell const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantPoints(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_ParticleCoreShell_createSlicedParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
+  ZLimits arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  SlicedParticle result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IDistribution1D_equidistantPoints", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDistribution1D, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IDistribution1D_equidistantPoints__SWIG_1(self, argc, argv);
-        }
-      }
-    }
+  if (!SWIG_Python_UnpackTuple(args, "ParticleCoreShell_createSlicedParticle", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleCoreShell_createSlicedParticle" "', argument " "1"" of type '" "ParticleCoreShell const *""'"); 
   }
-  if (argc == 4) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDistribution1D, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_IDistribution1D_equidistantPoints__SWIG_0(self, argc, argv);
-          }
-        }
-      }
+  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleCoreShell_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleCoreShell_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'");
+    } else {
+      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
+  result = ((ParticleCoreShell const *)arg1)->createSlicedParticle(arg2);
+  
+  resultobj = SWIG_NewPointerObj(new SlicedParticle(std::move(result)), SWIGTYPE_p_SlicedParticle, SWIG_POINTER_OWN);
   
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IDistribution1D_equidistantPoints'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IDistribution1D::equidistantPoints(size_t,double,RealLimits const &) const\n"
-    "    IDistribution1D::equidistantPoints(size_t,double) const\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantPointsInRange(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleCoreShell_coreParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  double arg4 ;
+  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  std::vector< double,std::allocator< double > > result;
+  PyObject *swig_obj[1] ;
+  Particle *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDistribution1D_equidistantPointsInRange", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantPointsInRange" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleCoreShell_coreParticle" "', argument " "1"" of type '" "ParticleCoreShell const *""'"); 
   }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantPointsInRange" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDistribution1D_equidistantPointsInRange" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IDistribution1D_equidistantPointsInRange" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = ((IDistribution1D const *)arg1)->equidistantPointsInRange(arg2,arg3,arg4);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
+  result = (Particle *)((ParticleCoreShell const *)arg1)->coreParticle();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleCoreShell_shellParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  Particle *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_isDelta" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleCoreShell_shellParticle" "', argument " "1"" of type '" "ParticleCoreShell const *""'"); 
   }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  result = (bool)((IDistribution1D const *)arg1)->isDelta();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
+  result = (Particle *)((ParticleCoreShell const *)arg1)->shellParticle();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDistribution1D_setUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleCoreShell_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
-  std::string *arg2 = 0 ;
+  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDistribution1D_setUnits", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_setUnits" "', argument " "1"" of type '" "IDistribution1D *""'"); 
-  }
-  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDistribution1D_setUnits" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDistribution1D_setUnits" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleCoreShell_getChildren" "', argument " "1"" of type '" "ParticleCoreShell const *""'"); 
   }
-  (arg1)->setUnits((std::string const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
+  result = ((ParticleCoreShell const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IDistribution1D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ParticleCoreShell_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IDistribution1D, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_ParticleCoreShell, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *_wrap_new_DistributionGate__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *ParticleCoreShell_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_ParticleDistribution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGate *result = 0 ;
+  IParticle *arg1 = 0 ;
+  ParameterDistribution *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  ParticleDistribution *result = 0 ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (DistributionGate *)new DistributionGate();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionGate, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "new_ParticleDistribution", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IParticle,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParticleDistribution" "', argument " "1"" of type '" "IParticle const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleDistribution" "', argument " "1"" of type '" "IParticle const &""'"); 
+  }
+  arg1 = reinterpret_cast< IParticle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ParameterDistribution,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParticleDistribution" "', argument " "2"" of type '" "ParameterDistribution const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleDistribution" "', argument " "2"" of type '" "ParameterDistribution const &""'"); 
+  }
+  arg2 = reinterpret_cast< ParameterDistribution * >(argp2);
+  result = (ParticleDistribution *)new ParticleDistribution((IParticle const &)*arg1,(ParameterDistribution const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleDistribution, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_DistributionGate__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParticleDistribution_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  DistributionGate *result = 0 ;
+  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  ParticleDistribution *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionGate" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_DistributionGate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (DistributionGate *)new DistributionGate(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionGate, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_clone" "', argument " "1"" of type '" "ParticleDistribution const *""'"); 
+  }
+  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
+  result = (ParticleDistribution *)((ParticleDistribution const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleDistribution, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_DistributionGate(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_ParticleDistribution_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DistributionGate", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_DistributionGate__SWIG_0(self, argc, argv);
+  if (!SWIG_Python_UnpackTuple(args, "ParticleDistribution_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_accept" "', argument " "1"" of type '" "ParticleDistribution const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_DistributionGate__SWIG_1(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleDistribution_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((ParticleDistribution const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParticleDistribution_translate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
+  kvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
+  if (!SWIG_Python_UnpackTuple(args, "ParticleDistribution_translate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_translate" "', argument " "1"" of type '" "ParticleDistribution *""'"); 
+  }
+  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleDistribution_translate" "', argument " "2"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleDistribution_translate" "', argument " "2"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  (arg1)->translate(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DistributionGate'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    DistributionGate::DistributionGate()\n"
-    "    DistributionGate::DistributionGate(double,double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_DistributionGate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleDistribution_rotate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGate *arg1 = (DistributionGate *) 0 ;
+  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParticleDistribution_rotate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DistributionGate" "', argument " "1"" of type '" "DistributionGate *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_rotate" "', argument " "1"" of type '" "ParticleDistribution *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGate * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleDistribution_rotate" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleDistribution_rotate" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  (arg1)->rotate((IRotation const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -56028,322 +57683,222 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGate_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleDistribution_generateParticles(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGate *arg1 = (DistributionGate *) 0 ;
+  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  DistributionGate *result = 0 ;
+  SwigValueWrapper< SafePointerVector< IParticle > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_clone" "', argument " "1"" of type '" "DistributionGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_generateParticles" "', argument " "1"" of type '" "ParticleDistribution const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGate * >(argp1);
-  result = (DistributionGate *)((DistributionGate const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionGate, 0 |  0 );
+  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
+  result = ((ParticleDistribution const *)arg1)->generateParticles();
+  resultobj = SWIG_NewPointerObj((new SafePointerVector< IParticle >(static_cast< const SafePointerVector< IParticle >& >(result))), SWIGTYPE_p_SafePointerVectorT_IParticle_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGate_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleDistribution_prototype(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGate *arg1 = (DistributionGate *) 0 ;
-  double arg2 ;
+  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  PyObject *swig_obj[1] ;
+  IParticle *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionGate_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_probabilityDensity" "', argument " "1"" of type '" "DistributionGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_prototype" "', argument " "1"" of type '" "ParticleDistribution const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGate * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionGate_probabilityDensity" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((DistributionGate const *)arg1)->probabilityDensity(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
+  result = (IParticle *) &((ParticleDistribution const *)arg1)->prototype();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IParticle, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGate_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleDistribution_parameterDistribution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGate *arg1 = (DistributionGate *) 0 ;
+  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  SwigValueWrapper< ParameterDistribution > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_getMean" "', argument " "1"" of type '" "DistributionGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_parameterDistribution" "', argument " "1"" of type '" "ParticleDistribution const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGate * >(argp1);
-  result = (double)((DistributionGate const *)arg1)->getMean();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
+  result = ((ParticleDistribution const *)arg1)->parameterDistribution();
+  resultobj = SWIG_NewPointerObj((new ParameterDistribution(static_cast< const ParameterDistribution& >(result))), SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGate_getMin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleDistribution_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGate *arg1 = (DistributionGate *) 0 ;
+  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_getMin" "', argument " "1"" of type '" "DistributionGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_getChildren" "', argument " "1"" of type '" "ParticleDistribution const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGate * >(argp1);
-  result = (double)((DistributionGate const *)arg1)->getMin();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
+  result = ((ParticleDistribution const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGate_getMax(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_ParticleDistribution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGate *arg1 = (DistributionGate *) 0 ;
+  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_getMax" "', argument " "1"" of type '" "DistributionGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParticleDistribution" "', argument " "1"" of type '" "ParticleDistribution *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGate * >(argp1);
-  result = (double)((DistributionGate const *)arg1)->getMax();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGate_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *ParticleDistribution_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_ParticleDistribution, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *ParticleDistribution_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_IFTDecayFunction1D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGate *arg1 = (DistributionGate *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  RealLimits *arg4 = 0 ;
+  IFTDecayFunction1D *arg1 = (IFTDecayFunction1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  PyObject *swig_obj[1] ;
+  IFTDecayFunction1D *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_equidistantPoints" "', argument " "1"" of type '" "DistributionGate const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionGate * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionGate_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionGate_equidistantPoints" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "DistributionGate_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionGate_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction1D_clone" "', argument " "1"" of type '" "IFTDecayFunction1D const *""'"); 
   }
-  arg4 = reinterpret_cast< RealLimits * >(argp4);
-  result = ((DistributionGate const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< IFTDecayFunction1D * >(argp1);
+  result = (IFTDecayFunction1D *)((IFTDecayFunction1D const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFTDecayFunction1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGate_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IFTDecayFunction1D_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGate *arg1 = (DistributionGate *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
+  IFTDecayFunction1D *arg1 = (IFTDecayFunction1D *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
+  double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFTDecayFunction1D_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_equidistantPoints" "', argument " "1"" of type '" "DistributionGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction1D_evaluate" "', argument " "1"" of type '" "IFTDecayFunction1D const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGate * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< IFTDecayFunction1D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionGate_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionGate_equidistantPoints" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDecayFunction1D_evaluate" "', argument " "2"" of type '" "double""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = ((DistributionGate const *)arg1)->equidistantPoints(arg2,arg3);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg2 = static_cast< double >(val2);
+  result = (double)((IFTDecayFunction1D const *)arg1)->evaluate(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGate_equidistantPoints(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "DistributionGate_equidistantPoints", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionGate, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_DistributionGate_equidistantPoints__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionGate, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_DistributionGate_equidistantPoints__SWIG_0(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DistributionGate_equidistantPoints'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    DistributionGate::equidistantPoints(size_t,double,RealLimits const &) const\n"
-    "    DistributionGate::equidistantPoints(size_t,double) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_DistributionGate_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDecayFunction1D_decayLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGate *arg1 = (DistributionGate *) 0 ;
+  IFTDecayFunction1D *arg1 = (IFTDecayFunction1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_isDelta" "', argument " "1"" of type '" "DistributionGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction1D_decayLength" "', argument " "1"" of type '" "IFTDecayFunction1D const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGate * >(argp1);
-  result = (bool)((DistributionGate const *)arg1)->isDelta();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< IFTDecayFunction1D * >(argp1);
+  result = (double)((IFTDecayFunction1D const *)arg1)->decayLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGate_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IFTDecayFunction1D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGate *arg1 = (DistributionGate *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  IFTDecayFunction1D *arg1 = (IFTDecayFunction1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionGate_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction1D, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_accept" "', argument " "1"" of type '" "DistributionGate const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionGate * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionGate_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFTDecayFunction1D" "', argument " "1"" of type '" "IFTDecayFunction1D *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((DistributionGate const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< IFTDecayFunction1D * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -56351,144 +57906,91 @@ fail:
 }
 
 
-SWIGINTERN PyObject *DistributionGate_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IFTDecayFunction1D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_DistributionGate, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_IFTDecayFunction1D, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *DistributionGate_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_DistributionLorentz__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  DistributionLorentz *result = 0 ;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (DistributionLorentz *)new DistributionLorentz();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionLorentz, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_DistributionLorentz__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction1DCauchy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
-  double arg2 ;
   double val1 ;
   int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  DistributionLorentz *result = 0 ;
+  PyObject *swig_obj[1] ;
+  FTDecayFunction1DCauchy *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionLorentz" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction1DCauchy" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_DistributionLorentz" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (DistributionLorentz *)new DistributionLorentz(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionLorentz, SWIG_POINTER_NEW |  0 );
+  result = (FTDecayFunction1DCauchy *)new FTDecayFunction1DCauchy(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DCauchy, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_DistributionLorentz(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DistributionLorentz", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_DistributionLorentz__SWIG_0(self, argc, argv);
-  }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_DistributionLorentz__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DistributionLorentz'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    DistributionLorentz::DistributionLorentz()\n"
-    "    DistributionLorentz::DistributionLorentz(double,double)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_DistributionLorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DCauchy_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
+  FTDecayFunction1DCauchy *arg1 = (FTDecayFunction1DCauchy *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  FTDecayFunction1DCauchy *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DistributionLorentz" "', argument " "1"" of type '" "DistributionLorentz *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DCauchy_clone" "', argument " "1"" of type '" "FTDecayFunction1DCauchy const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FTDecayFunction1DCauchy * >(argp1);
+  result = (FTDecayFunction1DCauchy *)((FTDecayFunction1DCauchy const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DCauchy, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLorentz_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DCauchy_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
+  FTDecayFunction1DCauchy *arg1 = (FTDecayFunction1DCauchy *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  DistributionLorentz *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DCauchy_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_clone" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DCauchy_accept" "', argument " "1"" of type '" "FTDecayFunction1DCauchy const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
-  result = (DistributionLorentz *)((DistributionLorentz const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionLorentz, 0 |  0 );
+  arg1 = reinterpret_cast< FTDecayFunction1DCauchy * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction1DCauchy_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FTDecayFunction1DCauchy const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLorentz_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DCauchy_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
+  FTDecayFunction1DCauchy *arg1 = (FTDecayFunction1DCauchy *) 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -56497,18 +57999,18 @@ SWIGINTERN PyObject *_wrap_DistributionLorentz_probabilityDensity(PyObject *SWIG
   PyObject *swig_obj[2] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionLorentz_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DCauchy_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_probabilityDensity" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DCauchy_evaluate" "', argument " "1"" of type '" "FTDecayFunction1DCauchy const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
+  arg1 = reinterpret_cast< FTDecayFunction1DCauchy * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionLorentz_probabilityDensity" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction1DCauchy_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((DistributionLorentz const *)arg1)->probabilityDensity(arg2);
+  result = (double)((FTDecayFunction1DCauchy const *)arg1)->evaluate(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -56516,246 +58018,159 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLorentz_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDecayFunction1DCauchy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
+  FTDecayFunction1DCauchy *arg1 = (FTDecayFunction1DCauchy *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DCauchy, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_getMean" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction1DCauchy" "', argument " "1"" of type '" "FTDecayFunction1DCauchy *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
-  result = (double)((DistributionLorentz const *)arg1)->getMean();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FTDecayFunction1DCauchy * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLorentz_getHWHM(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDecayFunction1DCauchy_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction1DCauchy, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FTDecayFunction1DCauchy_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction1DGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  FTDecayFunction1DGauss *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_getHWHM" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
-  result = (double)((DistributionLorentz const *)arg1)->getHWHM();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction1DGauss" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (FTDecayFunction1DGauss *)new FTDecayFunction1DGauss(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DGauss, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLorentz_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  RealLimits *arg4 = 0 ;
+  FTDecayFunction1DGauss *arg1 = (FTDecayFunction1DGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  PyObject *swig_obj[1] ;
+  FTDecayFunction1DGauss *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionLorentz_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DGauss_clone" "', argument " "1"" of type '" "FTDecayFunction1DGauss const *""'"); 
   }
-  arg4 = reinterpret_cast< RealLimits * >(argp4);
-  result = ((DistributionLorentz const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< FTDecayFunction1DGauss * >(argp1);
+  result = (FTDecayFunction1DGauss *)((FTDecayFunction1DGauss const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DGauss, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLorentz_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
+  FTDecayFunction1DGauss *arg1 = (FTDecayFunction1DGauss *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DGauss_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DGauss_accept" "', argument " "1"" of type '" "FTDecayFunction1DGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = ((DistributionLorentz const *)arg1)->equidistantPoints(arg2,arg3);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< FTDecayFunction1DGauss * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction1DGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FTDecayFunction1DGauss const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLorentz_equidistantPoints(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "DistributionLorentz_equidistantPoints", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionLorentz, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_DistributionLorentz_equidistantPoints__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionLorentz, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_DistributionLorentz_equidistantPoints__SWIG_0(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DistributionLorentz_equidistantPoints'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    DistributionLorentz::equidistantPoints(size_t,double,RealLimits const &) const\n"
-    "    DistributionLorentz::equidistantPoints(size_t,double) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_DistributionLorentz_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DGauss_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
+  FTDecayFunction1DGauss *arg1 = (FTDecayFunction1DGauss *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  bool result;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DGauss_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_isDelta" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DGauss_evaluate" "', argument " "1"" of type '" "FTDecayFunction1DGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
-  result = (bool)((DistributionLorentz const *)arg1)->isDelta();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FTDecayFunction1DGauss * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction1DGauss_evaluate" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((FTDecayFunction1DGauss const *)arg1)->evaluate(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLorentz_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDecayFunction1DGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  FTDecayFunction1DGauss *arg1 = (FTDecayFunction1DGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionLorentz_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DGauss, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_accept" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionLorentz_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction1DGauss" "', argument " "1"" of type '" "FTDecayFunction1DGauss *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((DistributionLorentz const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< FTDecayFunction1DGauss * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -56763,144 +58178,95 @@ fail:
 }
 
 
-SWIGINTERN PyObject *DistributionLorentz_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDecayFunction1DGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_DistributionLorentz, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction1DGauss, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *DistributionLorentz_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDecayFunction1DGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_DistributionGaussian__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  DistributionGaussian *result = 0 ;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (DistributionGaussian *)new DistributionGaussian();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionGaussian, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_DistributionGaussian__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction1DTriangle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
-  double arg2 ;
   double val1 ;
   int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  DistributionGaussian *result = 0 ;
+  PyObject *swig_obj[1] ;
+  FTDecayFunction1DTriangle *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionGaussian" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction1DTriangle" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_DistributionGaussian" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (DistributionGaussian *)new DistributionGaussian(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionGaussian, SWIG_POINTER_NEW |  0 );
+  result = (FTDecayFunction1DTriangle *)new FTDecayFunction1DTriangle(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DTriangle, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_DistributionGaussian(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DistributionGaussian", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_DistributionGaussian__SWIG_0(self, argc, argv);
-  }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_DistributionGaussian__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DistributionGaussian'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    DistributionGaussian::DistributionGaussian()\n"
-    "    DistributionGaussian::DistributionGaussian(double,double)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_DistributionGaussian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DTriangle_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
+  FTDecayFunction1DTriangle *arg1 = (FTDecayFunction1DTriangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  FTDecayFunction1DTriangle *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DTriangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DistributionGaussian" "', argument " "1"" of type '" "DistributionGaussian *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DTriangle_clone" "', argument " "1"" of type '" "FTDecayFunction1DTriangle const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FTDecayFunction1DTriangle * >(argp1);
+  result = (FTDecayFunction1DTriangle *)((FTDecayFunction1DTriangle const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DTriangle, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGaussian_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DTriangle_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
+  FTDecayFunction1DTriangle *arg1 = (FTDecayFunction1DTriangle *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  DistributionGaussian *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DTriangle_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DTriangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_clone" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DTriangle_accept" "', argument " "1"" of type '" "FTDecayFunction1DTriangle const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
-  result = (DistributionGaussian *)((DistributionGaussian const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionGaussian, 0 |  0 );
+  arg1 = reinterpret_cast< FTDecayFunction1DTriangle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction1DTriangle_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FTDecayFunction1DTriangle const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGaussian_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DTriangle_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
+  FTDecayFunction1DTriangle *arg1 = (FTDecayFunction1DTriangle *) 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -56909,18 +58275,18 @@ SWIGINTERN PyObject *_wrap_DistributionGaussian_probabilityDensity(PyObject *SWI
   PyObject *swig_obj[2] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionGaussian_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DTriangle_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DTriangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_probabilityDensity" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DTriangle_evaluate" "', argument " "1"" of type '" "FTDecayFunction1DTriangle const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
+  arg1 = reinterpret_cast< FTDecayFunction1DTriangle * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionGaussian_probabilityDensity" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction1DTriangle_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((DistributionGaussian const *)arg1)->probabilityDensity(arg2);
+  result = (double)((FTDecayFunction1DTriangle const *)arg1)->evaluate(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -56928,227 +58294,95 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGaussian_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDecayFunction1DTriangle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
+  FTDecayFunction1DTriangle *arg1 = (FTDecayFunction1DTriangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DTriangle, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_getMean" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction1DTriangle" "', argument " "1"" of type '" "FTDecayFunction1DTriangle *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
-  result = (double)((DistributionGaussian const *)arg1)->getMean();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FTDecayFunction1DTriangle * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGaussian_getStdDev(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_getStdDev" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
-  result = (double)((DistributionGaussian const *)arg1)->getStdDev();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *FTDecayFunction1DTriangle_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction1DTriangle, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *FTDecayFunction1DTriangle_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_DistributionGaussian_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction1DVoigt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  RealLimits *arg4 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  PyObject *swig_obj[2] ;
+  FTDecayFunction1DVoigt *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  if (!SWIG_Python_UnpackTuple(args, "new_FTDecayFunction1DVoigt", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction1DVoigt" "', argument " "1"" of type '" "double""'");
   } 
-  arg3 = static_cast< double >(val3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionGaussian_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
-  }
-  arg4 = reinterpret_cast< RealLimits * >(argp4);
-  result = ((DistributionGaussian const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_DistributionGaussian_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  std::vector< double,std::allocator< double > > result;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction1DVoigt" "', argument " "2"" of type '" "double""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = ((DistributionGaussian const *)arg1)->equidistantPoints(arg2,arg3);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg2 = static_cast< double >(val2);
+  result = (FTDecayFunction1DVoigt *)new FTDecayFunction1DVoigt(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DVoigt, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGaussian_equidistantPoints(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "DistributionGaussian_equidistantPoints", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionGaussian, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_DistributionGaussian_equidistantPoints__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionGaussian, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_DistributionGaussian_equidistantPoints__SWIG_0(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DistributionGaussian_equidistantPoints'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    DistributionGaussian::equidistantPoints(size_t,double,RealLimits const &) const\n"
-    "    DistributionGaussian::equidistantPoints(size_t,double) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_DistributionGaussian_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DVoigt_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
+  FTDecayFunction1DVoigt *arg1 = (FTDecayFunction1DVoigt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  FTDecayFunction1DVoigt *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_isDelta" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DVoigt_clone" "', argument " "1"" of type '" "FTDecayFunction1DVoigt const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
-  result = (bool)((DistributionGaussian const *)arg1)->isDelta();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FTDecayFunction1DVoigt * >(argp1);
+  result = (FTDecayFunction1DVoigt *)((FTDecayFunction1DVoigt const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DVoigt, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionGaussian_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DVoigt_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
+  FTDecayFunction1DVoigt *arg1 = (FTDecayFunction1DVoigt *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -57156,18 +58390,18 @@ SWIGINTERN PyObject *_wrap_DistributionGaussian_accept(PyObject *SWIGUNUSEDPARM(
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionGaussian_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DVoigt_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_accept" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DVoigt_accept" "', argument " "1"" of type '" "FTDecayFunction1DVoigt const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
+  arg1 = reinterpret_cast< FTDecayFunction1DVoigt * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionGaussian_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction1DVoigt_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((DistributionGaussian const *)arg1)->accept(arg2);
+  ((FTDecayFunction1DVoigt const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -57175,125 +58409,73 @@ fail:
 }
 
 
-SWIGINTERN PyObject *DistributionGaussian_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_DistributionGaussian, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *DistributionGaussian_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_DistributionLogNormal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  DistributionLogNormal *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionLogNormal" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (DistributionLogNormal *)new DistributionLogNormal(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionLogNormal, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_DistributionLogNormal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DVoigt_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
+  FTDecayFunction1DVoigt *arg1 = (FTDecayFunction1DVoigt *) 0 ;
   double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  DistributionLogNormal *result = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionLogNormal" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DVoigt_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DVoigt, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DVoigt_evaluate" "', argument " "1"" of type '" "FTDecayFunction1DVoigt const *""'"); 
+  }
+  arg1 = reinterpret_cast< FTDecayFunction1DVoigt * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_DistributionLogNormal" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction1DVoigt_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (DistributionLogNormal *)new DistributionLogNormal(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionLogNormal, SWIG_POINTER_NEW |  0 );
+  result = (double)((FTDecayFunction1DVoigt const *)arg1)->evaluate(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_DistributionLogNormal(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_FTDecayFunction1DVoigt_eEta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FTDecayFunction1DVoigt *arg1 = (FTDecayFunction1DVoigt *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DistributionLogNormal", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_new_DistributionLogNormal__SWIG_0(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_DistributionLogNormal__SWIG_1(self, argc, argv);
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DVoigt, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DVoigt_eEta" "', argument " "1"" of type '" "FTDecayFunction1DVoigt const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< FTDecayFunction1DVoigt * >(argp1);
+  result = (double)((FTDecayFunction1DVoigt const *)arg1)->eEta();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DistributionLogNormal'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    DistributionLogNormal::DistributionLogNormal(double)\n"
-    "    DistributionLogNormal::DistributionLogNormal(double,double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_DistributionLogNormal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDecayFunction1DVoigt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  FTDecayFunction1DVoigt *arg1 = (FTDecayFunction1DVoigt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DVoigt, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DistributionLogNormal" "', argument " "1"" of type '" "DistributionLogNormal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction1DVoigt" "', argument " "1"" of type '" "FTDecayFunction1DVoigt *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  arg1 = reinterpret_cast< FTDecayFunction1DVoigt * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -57302,62 +58484,72 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLogNormal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDecayFunction1DVoigt_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction1DVoigt, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FTDecayFunction1DVoigt_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  DistributionLogNormal *result = 0 ;
+  IFTDecayFunction2D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_clone" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_clone" "', argument " "1"" of type '" "IFTDecayFunction2D const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
-  result = (DistributionLogNormal *)((DistributionLogNormal const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
+  result = (IFTDecayFunction2D *)((IFTDecayFunction2D const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLogNormal_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_setGamma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionLogNormal_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFTDecayFunction2D_setGamma", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_probabilityDensity" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_setGamma" "', argument " "1"" of type '" "IFTDecayFunction2D *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionLogNormal_probabilityDensity" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDecayFunction2D_setGamma" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((DistributionLogNormal const *)arg1)->probabilityDensity(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  (arg1)->setGamma(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLogNormal_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_gamma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -57365,12 +58557,12 @@ SWIGINTERN PyObject *_wrap_DistributionLogNormal_getMean(PyObject *SWIGUNUSEDPAR
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_getMean" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_gamma" "', argument " "1"" of type '" "IFTDecayFunction2D const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
-  result = (double)((DistributionLogNormal const *)arg1)->getMean();
+  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
+  result = (double)((IFTDecayFunction2D const *)arg1)->gamma();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -57378,9 +58570,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLogNormal_getMedian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_decayLengthX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -57388,12 +58580,12 @@ SWIGINTERN PyObject *_wrap_DistributionLogNormal_getMedian(PyObject *SWIGUNUSEDP
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_getMedian" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_decayLengthX" "', argument " "1"" of type '" "IFTDecayFunction2D const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
-  result = (double)((DistributionLogNormal const *)arg1)->getMedian();
+  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
+  result = (double)((IFTDecayFunction2D const *)arg1)->decayLengthX();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -57401,9 +58593,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLogNormal_getScalePar(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_decayLengthY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -57411,12 +58603,12 @@ SWIGINTERN PyObject *_wrap_DistributionLogNormal_getScalePar(PyObject *SWIGUNUSE
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_getScalePar" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_decayLengthY" "', argument " "1"" of type '" "IFTDecayFunction2D const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
-  result = (double)((DistributionLogNormal const *)arg1)->getScalePar();
+  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
+  result = (double)((IFTDecayFunction2D const *)arg1)->decayLengthY();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -57424,128 +58616,234 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLogNormal_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
-  size_t arg2 ;
+  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
+  double arg2 ;
   double arg3 ;
-  RealLimits *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
+  double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  PyObject *swig_obj[3] ;
+  double result;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFTDecayFunction2D_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_evaluate" "', argument " "1"" of type '" "IFTDecayFunction2D const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDecayFunction2D_evaluate" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< size_t >(val2);
+  arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IFTDecayFunction2D_evaluate" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
-  }
-  arg4 = reinterpret_cast< RealLimits * >(argp4);
-  result = ((DistributionLogNormal const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  result = (double)((IFTDecayFunction2D const *)arg1)->evaluate(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLogNormal_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_boundingReciprocalLatticeCoordinates(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
-  size_t arg2 ;
+  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
+  double arg2 ;
   double arg3 ;
+  double arg4 ;
+  double arg5 ;
+  double arg6 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
+  double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  double val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
+  double val6 ;
+  int ecode6 = 0 ;
+  PyObject *swig_obj[6] ;
+  std::pair< double,double > result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates", 6, 6, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates" "', argument " "1"" of type '" "IFTDecayFunction2D const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< size_t >(val2);
+  arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = ((DistributionLogNormal const *)arg1)->equidistantPoints(arg2,arg3);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  ecode6 = SWIG_AsVal_double(swig_obj[5], &val6);
+  if (!SWIG_IsOK(ecode6)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates" "', argument " "6"" of type '" "double""'");
+  } 
+  arg6 = static_cast< double >(val6);
+  result = ((IFTDecayFunction2D const *)arg1)->boundingReciprocalLatticeCoordinates(arg2,arg3,arg4,arg5,arg6);
+  resultobj = swig::from(static_cast< std::pair< double,double > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLogNormal_equidistantPoints(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IFTDecayFunction2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFTDecayFunction2D" "', argument " "1"" of type '" "IFTDecayFunction2D *""'"); 
+  }
+  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *IFTDecayFunction2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IFTDecayFunction2D, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DCauchy__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  FTDecayFunction2DCauchy *result = 0 ;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction2DCauchy" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction2DCauchy" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDecayFunction2DCauchy" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FTDecayFunction2DCauchy *)new FTDecayFunction2DCauchy(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DCauchy, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DCauchy__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  FTDecayFunction2DCauchy *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction2DCauchy" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction2DCauchy" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (FTDecayFunction2DCauchy *)new FTDecayFunction2DCauchy(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DCauchy, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DCauchy(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "DistributionLogNormal_equidistantPoints", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDecayFunction2DCauchy", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionLogNormal, 0);
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
       {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        int res = SWIG_AsVal_double(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_DistributionLogNormal_equidistantPoints__SWIG_1(self, argc, argv);
-        }
+        return _wrap_new_FTDecayFunction2DCauchy__SWIG_1(self, argc, argv);
       }
     }
   }
-  if (argc == 4) {
+  if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionLogNormal, 0);
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
       {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        int res = SWIG_AsVal_double(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
@@ -57554,51 +58852,47 @@ SWIGINTERN PyObject *_wrap_DistributionLogNormal_equidistantPoints(PyObject *sel
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_DistributionLogNormal_equidistantPoints__SWIG_0(self, argc, argv);
-          }
+          return _wrap_new_FTDecayFunction2DCauchy__SWIG_0(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DistributionLogNormal_equidistantPoints'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDecayFunction2DCauchy'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    DistributionLogNormal::equidistantPoints(size_t,double,RealLimits const &) const\n"
-    "    DistributionLogNormal::equidistantPoints(size_t,double) const\n");
+    "    FTDecayFunction2DCauchy::FTDecayFunction2DCauchy(double,double,double)\n"
+    "    FTDecayFunction2DCauchy::FTDecayFunction2DCauchy(double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLogNormal_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction2DCauchy_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  FTDecayFunction2DCauchy *arg1 = (FTDecayFunction2DCauchy *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  FTDecayFunction2DCauchy *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_isDelta" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DCauchy_clone" "', argument " "1"" of type '" "FTDecayFunction2DCauchy const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
-  result = (bool)((DistributionLogNormal const *)arg1)->isDelta();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FTDecayFunction2DCauchy * >(argp1);
+  result = (FTDecayFunction2DCauchy *)((FTDecayFunction2DCauchy const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DCauchy, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLogNormal_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction2DCauchy_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  FTDecayFunction2DCauchy *arg1 = (FTDecayFunction2DCauchy *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -57606,18 +58900,18 @@ SWIGINTERN PyObject *_wrap_DistributionLogNormal_accept(PyObject *SWIGUNUSEDPARM
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionLogNormal_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction2DCauchy_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_accept" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DCauchy_accept" "', argument " "1"" of type '" "FTDecayFunction2DCauchy const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  arg1 = reinterpret_cast< FTDecayFunction2DCauchy * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionLogNormal_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction2DCauchy_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((DistributionLogNormal const *)arg1)->accept(arg2);
+  ((FTDecayFunction2DCauchy const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -57625,67 +58919,115 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionLogNormal_setUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction2DCauchy_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
-  std::string *arg2 = 0 ;
+  FTDecayFunction2DCauchy *arg1 = (FTDecayFunction2DCauchy *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[2] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionLogNormal_setUnits", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction2DCauchy_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_setUnits" "', argument " "1"" of type '" "DistributionLogNormal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DCauchy_evaluate" "', argument " "1"" of type '" "FTDecayFunction2DCauchy const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionLogNormal_setUnits" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionLogNormal_setUnits" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+  arg1 = reinterpret_cast< FTDecayFunction2DCauchy * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction2DCauchy_evaluate" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDecayFunction2DCauchy_evaluate" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)((FTDecayFunction2DCauchy const *)arg1)->evaluate(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_FTDecayFunction2DCauchy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FTDecayFunction2DCauchy *arg1 = (FTDecayFunction2DCauchy *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DCauchy, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction2DCauchy" "', argument " "1"" of type '" "FTDecayFunction2DCauchy *""'"); 
   }
-  (arg1)->setUnits((std::string const &)*arg2);
+  arg1 = reinterpret_cast< FTDecayFunction2DCauchy * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *DistributionLogNormal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDecayFunction2DCauchy_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_DistributionLogNormal, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction2DCauchy, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *DistributionLogNormal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDecayFunction2DCauchy_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_DistributionCosine__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DGauss__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  DistributionCosine *result = 0 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  FTDecayFunction2DGauss *result = 0 ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (DistributionCosine *)new DistributionCosine();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionCosine, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction2DGauss" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction2DGauss" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDecayFunction2DGauss" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FTDecayFunction2DGauss *)new FTDecayFunction2DGauss(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DGauss, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_DistributionCosine__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DGauss__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -57693,38 +59035,35 @@ SWIGINTERN PyObject *_wrap_new_DistributionCosine__SWIG_1(PyObject *SWIGUNUSEDPA
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  DistributionCosine *result = 0 ;
+  FTDecayFunction2DGauss *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionCosine" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction2DGauss" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_DistributionCosine" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction2DGauss" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (DistributionCosine *)new DistributionCosine(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionCosine, SWIG_POINTER_NEW |  0 );
+  result = (FTDecayFunction2DGauss *)new FTDecayFunction2DGauss(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DGauss, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_DistributionCosine(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DGauss(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DistributionCosine", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDecayFunction2DGauss", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_DistributionCosine__SWIG_0(self, argc, argv);
-  }
   if (argc == 2) {
     int _v;
     {
@@ -57737,88 +59076,125 @@ SWIGINTERN PyObject *_wrap_new_DistributionCosine(PyObject *self, PyObject *args
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_new_DistributionCosine__SWIG_1(self, argc, argv);
+        return _wrap_new_FTDecayFunction2DGauss__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_new_FTDecayFunction2DGauss__SWIG_0(self, argc, argv);
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DistributionCosine'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDecayFunction2DGauss'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    DistributionCosine::DistributionCosine()\n"
-    "    DistributionCosine::DistributionCosine(double,double)\n");
+    "    FTDecayFunction2DGauss::FTDecayFunction2DGauss(double,double,double)\n"
+    "    FTDecayFunction2DGauss::FTDecayFunction2DGauss(double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_DistributionCosine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction2DGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
+  FTDecayFunction2DGauss *arg1 = (FTDecayFunction2DGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  FTDecayFunction2DGauss *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DistributionCosine" "', argument " "1"" of type '" "DistributionCosine *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DGauss_clone" "', argument " "1"" of type '" "FTDecayFunction2DGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FTDecayFunction2DGauss * >(argp1);
+  result = (FTDecayFunction2DGauss *)((FTDecayFunction2DGauss const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DGauss, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionCosine_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction2DGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
+  FTDecayFunction2DGauss *arg1 = (FTDecayFunction2DGauss *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  DistributionCosine *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction2DGauss_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_clone" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DGauss_accept" "', argument " "1"" of type '" "FTDecayFunction2DGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
-  result = (DistributionCosine *)((DistributionCosine const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionCosine, 0 |  0 );
+  arg1 = reinterpret_cast< FTDecayFunction2DGauss * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction2DGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FTDecayFunction2DGauss const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionCosine_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction2DGauss_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
+  FTDecayFunction2DGauss *arg1 = (FTDecayFunction2DGauss *) 0 ;
   double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionCosine_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction2DGauss_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_probabilityDensity" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DGauss_evaluate" "', argument " "1"" of type '" "FTDecayFunction2DGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
+  arg1 = reinterpret_cast< FTDecayFunction2DGauss * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionCosine_probabilityDensity" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction2DGauss_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((DistributionCosine const *)arg1)->probabilityDensity(arg2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDecayFunction2DGauss_evaluate" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)((FTDecayFunction2DGauss const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -57826,153 +59202,138 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionCosine_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDecayFunction2DGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
+  FTDecayFunction2DGauss *arg1 = (FTDecayFunction2DGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DGauss, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_getMean" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction2DGauss" "', argument " "1"" of type '" "FTDecayFunction2DGauss *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
-  result = (double)((DistributionCosine const *)arg1)->getMean();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FTDecayFunction2DGauss * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionCosine_getSigma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_getSigma" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
-  result = (double)((DistributionCosine const *)arg1)->getSigma();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *FTDecayFunction2DGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction2DGauss, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *FTDecayFunction2DGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_DistributionCosine_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DVoigt__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
-  size_t arg2 ;
+  double arg1 ;
+  double arg2 ;
   double arg3 ;
-  RealLimits *arg4 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
+  double arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  double val4 ;
+  int ecode4 = 0 ;
+  FTDecayFunction2DVoigt *result = 0 ;
   
   if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_equidistantPoints" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionCosine_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< size_t >(val2);
+  arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionCosine_equidistantPoints" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "DistributionCosine_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionCosine_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
-  }
-  arg4 = reinterpret_cast< RealLimits * >(argp4);
-  result = ((DistributionCosine const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (FTDecayFunction2DVoigt *)new FTDecayFunction2DVoigt(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DVoigt, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionCosine_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DVoigt__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
-  size_t arg2 ;
+  double arg1 ;
+  double arg2 ;
   double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  FTDecayFunction2DVoigt *result = 0 ;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_equidistantPoints" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionCosine_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< size_t >(val2);
+  arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionCosine_equidistantPoints" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = ((DistributionCosine const *)arg1)->equidistantPoints(arg2,arg3);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  result = (FTDecayFunction2DVoigt *)new FTDecayFunction2DVoigt(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DVoigt, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionCosine_equidistantPoints(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DVoigt(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[5] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "DistributionCosine_equidistantPoints", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDecayFunction2DVoigt", 0, 4, argv))) SWIG_fail;
   --argc;
   if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionCosine, 0);
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
       {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        int res = SWIG_AsVal_double(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
@@ -57981,19 +59342,20 @@ SWIGINTERN PyObject *_wrap_DistributionCosine_equidistantPoints(PyObject *self,
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_DistributionCosine_equidistantPoints__SWIG_1(self, argc, argv);
+          return _wrap_new_FTDecayFunction2DVoigt__SWIG_1(self, argc, argv);
         }
       }
     }
   }
   if (argc == 4) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionCosine, 0);
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
       {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        int res = SWIG_AsVal_double(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
@@ -58002,10 +59364,12 @@ SWIGINTERN PyObject *_wrap_DistributionCosine_equidistantPoints(PyObject *self,
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
           if (_v) {
-            return _wrap_DistributionCosine_equidistantPoints__SWIG_0(self, argc, argv);
+            return _wrap_new_FTDecayFunction2DVoigt__SWIG_0(self, argc, argv);
           }
         }
       }
@@ -58013,40 +59377,40 @@ SWIGINTERN PyObject *_wrap_DistributionCosine_equidistantPoints(PyObject *self,
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DistributionCosine_equidistantPoints'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDecayFunction2DVoigt'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    DistributionCosine::equidistantPoints(size_t,double,RealLimits const &) const\n"
-    "    DistributionCosine::equidistantPoints(size_t,double) const\n");
+    "    FTDecayFunction2DVoigt::FTDecayFunction2DVoigt(double,double,double,double)\n"
+    "    FTDecayFunction2DVoigt::FTDecayFunction2DVoigt(double,double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionCosine_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction2DVoigt_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
+  FTDecayFunction2DVoigt *arg1 = (FTDecayFunction2DVoigt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  FTDecayFunction2DVoigt *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_isDelta" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DVoigt_clone" "', argument " "1"" of type '" "FTDecayFunction2DVoigt const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
-  result = (bool)((DistributionCosine const *)arg1)->isDelta();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FTDecayFunction2DVoigt * >(argp1);
+  result = (FTDecayFunction2DVoigt *)((FTDecayFunction2DVoigt const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DVoigt, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionCosine_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction2DVoigt_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
+  FTDecayFunction2DVoigt *arg1 = (FTDecayFunction2DVoigt *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -58054,18 +59418,18 @@ SWIGINTERN PyObject *_wrap_DistributionCosine_accept(PyObject *SWIGUNUSEDPARM(se
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionCosine_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction2DVoigt_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_accept" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DVoigt_accept" "', argument " "1"" of type '" "FTDecayFunction2DVoigt const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
+  arg1 = reinterpret_cast< FTDecayFunction2DVoigt * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionCosine_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction2DVoigt_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((DistributionCosine const *)arg1)->accept(arg2);
+  ((FTDecayFunction2DVoigt const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -58073,138 +59437,114 @@ fail:
 }
 
 
-SWIGINTERN PyObject *DistributionCosine_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_DistributionCosine, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *DistributionCosine_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_DistributionTrapezoid__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  DistributionTrapezoid *result = 0 ;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (DistributionTrapezoid *)new DistributionTrapezoid();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionTrapezoid, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_DistributionTrapezoid__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FTDecayFunction2DVoigt_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
+  FTDecayFunction2DVoigt *arg1 = (FTDecayFunction2DVoigt *) 0 ;
   double arg2 ;
   double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  DistributionTrapezoid *result = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionTrapezoid" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
+  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction2DVoigt_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DVoigt, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DVoigt_evaluate" "', argument " "1"" of type '" "FTDecayFunction2DVoigt const *""'"); 
+  }
+  arg1 = reinterpret_cast< FTDecayFunction2DVoigt * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_DistributionTrapezoid" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction2DVoigt_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_DistributionTrapezoid" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDecayFunction2DVoigt_evaluate" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_DistributionTrapezoid" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (DistributionTrapezoid *)new DistributionTrapezoid(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionTrapezoid, SWIG_POINTER_NEW |  0 );
+  result = (double)((FTDecayFunction2DVoigt const *)arg1)->evaluate(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_DistributionTrapezoid(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_FTDecayFunction2DVoigt_eta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FTDecayFunction2DVoigt *arg1 = (FTDecayFunction2DVoigt *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DistributionTrapezoid", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_DistributionTrapezoid__SWIG_0(self, argc, argv);
-  }
-  if (argc == 4) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_DistributionTrapezoid__SWIG_1(self, argc, argv);
-          }
-        }
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DVoigt, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DVoigt_eta" "', argument " "1"" of type '" "FTDecayFunction2DVoigt const *""'"); 
   }
+  arg1 = reinterpret_cast< FTDecayFunction2DVoigt * >(argp1);
+  result = (double)((FTDecayFunction2DVoigt const *)arg1)->eta();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_FTDecayFunction2DVoigt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FTDecayFunction2DVoigt *arg1 = (FTDecayFunction2DVoigt *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DVoigt, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction2DVoigt" "', argument " "1"" of type '" "FTDecayFunction2DVoigt *""'"); 
+  }
+  arg1 = reinterpret_cast< FTDecayFunction2DVoigt * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DistributionTrapezoid'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    DistributionTrapezoid::DistributionTrapezoid()\n"
-    "    DistributionTrapezoid::DistributionTrapezoid(double,double,double,double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_DistributionTrapezoid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDecayFunction2DVoigt_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction2DVoigt, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FTDecayFunction2DVoigt_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_delete_IFTDistribution1D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
+  IFTDistribution1D *arg1 = (IFTDistribution1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution1D, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DistributionTrapezoid" "', argument " "1"" of type '" "DistributionTrapezoid *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFTDistribution1D" "', argument " "1"" of type '" "IFTDistribution1D *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
+  arg1 = reinterpret_cast< IFTDistribution1D * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -58213,32 +59553,32 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionTrapezoid_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDistribution1D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
+  IFTDistribution1D *arg1 = (IFTDistribution1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  DistributionTrapezoid *result = 0 ;
+  IFTDistribution1D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_clone" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution1D_clone" "', argument " "1"" of type '" "IFTDistribution1D const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
-  result = (DistributionTrapezoid *)((DistributionTrapezoid const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  arg1 = reinterpret_cast< IFTDistribution1D * >(argp1);
+  result = (IFTDistribution1D *)((IFTDistribution1D const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFTDistribution1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionTrapezoid_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDistribution1D_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
+  IFTDistribution1D *arg1 = (IFTDistribution1D *) 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -58247,18 +59587,18 @@ SWIGINTERN PyObject *_wrap_DistributionTrapezoid_probabilityDensity(PyObject *SW
   PyObject *swig_obj[2] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionTrapezoid_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFTDistribution1D_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_probabilityDensity" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution1D_evaluate" "', argument " "1"" of type '" "IFTDistribution1D const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
+  arg1 = reinterpret_cast< IFTDistribution1D * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionTrapezoid_probabilityDensity" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDistribution1D_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((DistributionTrapezoid const *)arg1)->probabilityDensity(arg2);
+  result = (double)((IFTDistribution1D const *)arg1)->evaluate(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -58266,32 +59606,38 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionTrapezoid_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDistribution1D_setOmega(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
+  IFTDistribution1D *arg1 = (IFTDistribution1D *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFTDistribution1D_setOmega", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_getMean" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution1D_setOmega" "', argument " "1"" of type '" "IFTDistribution1D *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
-  result = (double)((DistributionTrapezoid const *)arg1)->getMean();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IFTDistribution1D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDistribution1D_setOmega" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setOmega(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionTrapezoid_getLeftWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDistribution1D_omega(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
+  IFTDistribution1D *arg1 = (IFTDistribution1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -58299,12 +59645,12 @@ SWIGINTERN PyObject *_wrap_DistributionTrapezoid_getLeftWidth(PyObject *SWIGUNUS
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_getLeftWidth" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution1D_omega" "', argument " "1"" of type '" "IFTDistribution1D const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
-  result = (double)((DistributionTrapezoid const *)arg1)->getLeftWidth();
+  arg1 = reinterpret_cast< IFTDistribution1D * >(argp1);
+  result = (double)((IFTDistribution1D const *)arg1)->omega();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -58312,9 +59658,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionTrapezoid_getMiddleWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDistribution1D_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
+  IFTDistribution1D *arg1 = (IFTDistribution1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -58322,12 +59668,12 @@ SWIGINTERN PyObject *_wrap_DistributionTrapezoid_getMiddleWidth(PyObject *SWIGUN
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_getMiddleWidth" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution1D_qSecondDerivative" "', argument " "1"" of type '" "IFTDistribution1D const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
-  result = (double)((DistributionTrapezoid const *)arg1)->getMiddleWidth();
+  arg1 = reinterpret_cast< IFTDistribution1D * >(argp1);
+  result = (double)((IFTDistribution1D const *)arg1)->qSecondDerivative();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -58335,223 +59681,156 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionTrapezoid_getRightWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IFTDistribution1D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IFTDistribution1D, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_new_FTDistribution1DCauchy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  FTDistribution1DCauchy *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution1DCauchy" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (FTDistribution1DCauchy *)new FTDistribution1DCauchy(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DCauchy, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FTDistribution1DCauchy_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FTDistribution1DCauchy *arg1 = (FTDistribution1DCauchy *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  FTDistribution1DCauchy *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_getRightWidth" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCauchy_clone" "', argument " "1"" of type '" "FTDistribution1DCauchy const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
-  result = (double)((DistributionTrapezoid const *)arg1)->getRightWidth();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FTDistribution1DCauchy * >(argp1);
+  result = (FTDistribution1DCauchy *)((FTDistribution1DCauchy const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DCauchy, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionTrapezoid_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DCauchy_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  RealLimits *arg4 = 0 ;
+  FTDistribution1DCauchy *arg1 = (FTDistribution1DCauchy *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DCauchy_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCauchy_accept" "', argument " "1"" of type '" "FTDistribution1DCauchy const *""'"); 
   }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+  arg1 = reinterpret_cast< FTDistribution1DCauchy * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution1DCauchy_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg4 = reinterpret_cast< RealLimits * >(argp4);
-  result = ((DistributionTrapezoid const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FTDistribution1DCauchy const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionTrapezoid_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DCauchy_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
+  FTDistribution1DCauchy *arg1 = (FTDistribution1DCauchy *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
+  double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DCauchy_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCauchy_evaluate" "', argument " "1"" of type '" "FTDistribution1DCauchy const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< FTDistribution1DCauchy * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution1DCauchy_evaluate" "', argument " "2"" of type '" "double""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = ((DistributionTrapezoid const *)arg1)->equidistantPoints(arg2,arg3);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg2 = static_cast< double >(val2);
+  result = (double)((FTDistribution1DCauchy const *)arg1)->evaluate(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionTrapezoid_equidistantPoints(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "DistributionTrapezoid_equidistantPoints", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionTrapezoid, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_DistributionTrapezoid_equidistantPoints__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionTrapezoid, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_DistributionTrapezoid_equidistantPoints__SWIG_0(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DistributionTrapezoid_equidistantPoints'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    DistributionTrapezoid::equidistantPoints(size_t,double,RealLimits const &) const\n"
-    "    DistributionTrapezoid::equidistantPoints(size_t,double) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_DistributionTrapezoid_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DCauchy_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
+  FTDistribution1DCauchy *arg1 = (FTDistribution1DCauchy *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_isDelta" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCauchy_qSecondDerivative" "', argument " "1"" of type '" "FTDistribution1DCauchy const *""'"); 
   }
-  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
-  result = (bool)((DistributionTrapezoid const *)arg1)->isDelta();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FTDistribution1DCauchy * >(argp1);
+  result = (double)((FTDistribution1DCauchy const *)arg1)->qSecondDerivative();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DistributionTrapezoid_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDistribution1DCauchy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  FTDistribution1DCauchy *arg1 = (FTDistribution1DCauchy *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "DistributionTrapezoid_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCauchy, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_accept" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
-  }
-  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionTrapezoid_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution1DCauchy" "', argument " "1"" of type '" "FTDistribution1DCauchy *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((DistributionTrapezoid const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< FTDistribution1DCauchy * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -58559,178 +59838,85 @@ fail:
 }
 
 
-SWIGINTERN PyObject *DistributionTrapezoid_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution1DCauchy_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_DistributionTrapezoid, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution1DCauchy, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *DistributionTrapezoid_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution1DCauchy_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_DetectorMask__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  DetectorMask *result = 0 ;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (DetectorMask *)new DetectorMask();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DetectorMask, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_DetectorMask__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  DetectorMask *arg1 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  DetectorMask *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_DetectorMask,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_DetectorMask" "', argument " "1"" of type '" "DetectorMask const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_DetectorMask" "', argument " "1"" of type '" "DetectorMask const &""'"); 
-  }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
-  result = (DetectorMask *)new DetectorMask((DetectorMask const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DetectorMask, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_DetectorMask(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DetectorMask", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_DetectorMask__SWIG_0(self, argc, argv);
-  }
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_DetectorMask, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_DetectorMask__SWIG_1(self, argc, argv);
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DetectorMask'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    DetectorMask::DetectorMask()\n"
-    "    DetectorMask::DetectorMask(DetectorMask const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_DetectorMask_addMask(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution1DGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DetectorMask *arg1 = (DetectorMask *) 0 ;
-  IShape2D *arg2 = 0 ;
-  bool arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  bool val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  FTDistribution1DGauss *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "DetectorMask_addMask", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_addMask" "', argument " "1"" of type '" "DetectorMask *""'"); 
-  }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IShape2D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DetectorMask_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DetectorMask_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
-  }
-  arg2 = reinterpret_cast< IShape2D * >(argp2);
-  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DetectorMask_addMask" "', argument " "3"" of type '" "bool""'");
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution1DGauss" "', argument " "1"" of type '" "double""'");
   } 
-  arg3 = static_cast< bool >(val3);
-  (arg1)->addMask((IShape2D const &)*arg2,arg3);
-  resultobj = SWIG_Py_Void();
+  arg1 = static_cast< double >(val1);
+  result = (FTDistribution1DGauss *)new FTDistribution1DGauss(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DGauss, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DetectorMask_initMaskData__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DetectorMask *arg1 = (DetectorMask *) 0 ;
-  IDetector2D *arg2 = 0 ;
+  FTDistribution1DGauss *arg1 = (FTDistribution1DGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  FTDistribution1DGauss *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_initMaskData" "', argument " "1"" of type '" "DetectorMask *""'"); 
-  }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDetector2D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DetectorMask_initMaskData" "', argument " "2"" of type '" "IDetector2D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DetectorMask_initMaskData" "', argument " "2"" of type '" "IDetector2D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGauss_clone" "', argument " "1"" of type '" "FTDistribution1DGauss const *""'"); 
   }
-  arg2 = reinterpret_cast< IDetector2D * >(argp2);
-  (arg1)->initMaskData((IDetector2D const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FTDistribution1DGauss * >(argp1);
+  result = (FTDistribution1DGauss *)((FTDistribution1DGauss const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DGauss, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DetectorMask_initMaskData__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DetectorMask *arg1 = (DetectorMask *) 0 ;
-  OutputData< double > *arg2 = 0 ;
+  FTDistribution1DGauss *arg1 = (FTDistribution1DGauss *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DGauss_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_initMaskData" "', argument " "1"" of type '" "DetectorMask *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGauss_accept" "', argument " "1"" of type '" "FTDistribution1DGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  arg1 = reinterpret_cast< FTDistribution1DGauss * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DetectorMask_initMaskData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DetectorMask_initMaskData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution1DGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  (arg1)->initMaskData((OutputData< double > const &)*arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FTDistribution1DGauss const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -58738,272 +59924,234 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DetectorMask_initMaskData(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "DetectorMask_initMaskData", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DetectorMask, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IDetector2D, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_DetectorMask_initMaskData__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DetectorMask, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_DetectorMask_initMaskData__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DetectorMask_initMaskData'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    DetectorMask::initMaskData(IDetector2D const &)\n"
-    "    DetectorMask::initMaskData(OutputData< double > const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_DetectorMask_isMasked(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DGauss_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DetectorMask *arg1 = (DetectorMask *) 0 ;
-  size_t arg2 ;
+  FTDistribution1DGauss *arg1 = (FTDistribution1DGauss *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
+  double val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  bool result;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "DetectorMask_isMasked", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DGauss_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_isMasked" "', argument " "1"" of type '" "DetectorMask const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGauss_evaluate" "', argument " "1"" of type '" "FTDistribution1DGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< FTDistribution1DGauss * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DetectorMask_isMasked" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution1DGauss_evaluate" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< size_t >(val2);
-  result = (bool)((DetectorMask const *)arg1)->isMasked(arg2);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg2 = static_cast< double >(val2);
+  result = (double)((FTDistribution1DGauss const *)arg1)->evaluate(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DetectorMask_getMaskData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DGauss_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  FTDistribution1DGauss *arg1 = (FTDistribution1DGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  OutputData< bool > *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_getMaskData" "', argument " "1"" of type '" "DetectorMask const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGauss_qSecondDerivative" "', argument " "1"" of type '" "FTDistribution1DGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
-  result = (OutputData< bool > *)((DetectorMask const *)arg1)->getMaskData();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_bool_t, 0 |  0 );
+  arg1 = reinterpret_cast< FTDistribution1DGauss * >(argp1);
+  result = (double)((FTDistribution1DGauss const *)arg1)->qSecondDerivative();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DetectorMask_createHistogram(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDistribution1DGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  FTDistribution1DGauss *arg1 = (FTDistribution1DGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Histogram2D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGauss, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_createHistogram" "', argument " "1"" of type '" "DetectorMask const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution1DGauss" "', argument " "1"" of type '" "FTDistribution1DGauss *""'"); 
   }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
-  result = (Histogram2D *)((DetectorMask const *)arg1)->createHistogram();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< FTDistribution1DGauss * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DetectorMask_removeMasks(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution1DGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution1DGauss, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FTDistribution1DGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FTDistribution1DGate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DetectorMask *arg1 = (DetectorMask *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
   PyObject *swig_obj[1] ;
+  FTDistribution1DGate *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_removeMasks" "', argument " "1"" of type '" "DetectorMask *""'"); 
-  }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
-  (arg1)->removeMasks();
-  resultobj = SWIG_Py_Void();
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution1DGate" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (FTDistribution1DGate *)new FTDistribution1DGate(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DGate, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DetectorMask_hasMasks(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DGate_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  FTDistribution1DGate *arg1 = (FTDistribution1DGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  FTDistribution1DGate *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_hasMasks" "', argument " "1"" of type '" "DetectorMask const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGate_clone" "', argument " "1"" of type '" "FTDistribution1DGate const *""'"); 
   }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
-  result = (bool)((DetectorMask const *)arg1)->hasMasks();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FTDistribution1DGate * >(argp1);
+  result = (FTDistribution1DGate *)((FTDistribution1DGate const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DGate, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DetectorMask_numberOfMaskedChannels(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DGate_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  FTDistribution1DGate *arg1 = (FTDistribution1DGate *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  int result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DGate_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_numberOfMaskedChannels" "', argument " "1"" of type '" "DetectorMask const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGate_accept" "', argument " "1"" of type '" "FTDistribution1DGate const *""'"); 
   }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
-  result = (int)((DetectorMask const *)arg1)->numberOfMaskedChannels();
-  resultobj = SWIG_From_int(static_cast< int >(result));
+  arg1 = reinterpret_cast< FTDistribution1DGate * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution1DGate_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FTDistribution1DGate const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DetectorMask_numberOfMasks(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DGate_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  FTDistribution1DGate *arg1 = (FTDistribution1DGate *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DGate_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_numberOfMasks" "', argument " "1"" of type '" "DetectorMask const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGate_evaluate" "', argument " "1"" of type '" "FTDistribution1DGate const *""'"); 
   }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
-  result = ((DetectorMask const *)arg1)->numberOfMasks();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< FTDistribution1DGate * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution1DGate_evaluate" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((FTDistribution1DGate const *)arg1)->evaluate(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DetectorMask_getMaskShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DGate_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DetectorMask *arg1 = (DetectorMask *) 0 ;
-  size_t arg2 ;
-  bool *arg3 = 0 ;
+  FTDistribution1DGate *arg1 = (FTDistribution1DGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  IShape2D *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "DetectorMask_getMaskShape", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_getMaskShape" "', argument " "1"" of type '" "DetectorMask const *""'"); 
-  }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DetectorMask_getMaskShape" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_bool,  0 );
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "DetectorMask_getMaskShape" "', argument " "3"" of type '" "bool &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DetectorMask_getMaskShape" "', argument " "3"" of type '" "bool &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGate_qSecondDerivative" "', argument " "1"" of type '" "FTDistribution1DGate const *""'"); 
   }
-  arg3 = reinterpret_cast< bool * >(argp3);
-  result = (IShape2D *)((DetectorMask const *)arg1)->getMaskShape(arg2,*arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IShape2D, 0 |  0 );
+  arg1 = reinterpret_cast< FTDistribution1DGate * >(argp1);
+  result = (double)((FTDistribution1DGate const *)arg1)->qSecondDerivative();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_DetectorMask(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDistribution1DGate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  FTDistribution1DGate *arg1 = (FTDistribution1DGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGate, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DetectorMask" "', argument " "1"" of type '" "DetectorMask *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution1DGate" "', argument " "1"" of type '" "FTDistribution1DGate *""'"); 
   }
-  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution1DGate * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -59012,370 +60160,115 @@ fail:
 }
 
 
-SWIGINTERN PyObject *DetectorMask_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution1DGate_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_DetectorMask, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution1DGate, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *DetectorMask_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution1DGate_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_Ellipse__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution1DTriangle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double arg5 ;
   double val1 ;
   int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  Ellipse *result = 0 ;
+  PyObject *swig_obj[1] ;
+  FTDistribution1DTriangle *result = 0 ;
   
-  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Ellipse" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution1DTriangle" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Ellipse" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Ellipse" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_Ellipse" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_Ellipse" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  result = (Ellipse *)new Ellipse(arg1,arg2,arg3,arg4,arg5);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Ellipse, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_Ellipse__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  Ellipse *result = 0 ;
-  
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Ellipse" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Ellipse" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Ellipse" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_Ellipse" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (Ellipse *)new Ellipse(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Ellipse, SWIG_POINTER_NEW |  0 );
+  result = (FTDistribution1DTriangle *)new FTDistribution1DTriangle(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DTriangle, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Ellipse(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[6] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Ellipse", 0, 5, argv))) SWIG_fail;
-  --argc;
-  if (argc == 4) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_Ellipse__SWIG_1(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  if (argc == 5) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              return _wrap_new_Ellipse__SWIG_0(self, argc, argv);
-            }
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Ellipse'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Ellipse::Ellipse(double,double,double,double,double)\n"
-    "    Ellipse::Ellipse(double,double,double,double)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_Ellipse_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DTriangle_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Ellipse *arg1 = (Ellipse *) 0 ;
+  FTDistribution1DTriangle *arg1 = (FTDistribution1DTriangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Ellipse *result = 0 ;
+  FTDistribution1DTriangle *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_clone" "', argument " "1"" of type '" "Ellipse const *""'"); 
-  }
-  arg1 = reinterpret_cast< Ellipse * >(argp1);
-  result = (Ellipse *)((Ellipse const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Ellipse, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Ellipse_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Ellipse *arg1 = (Ellipse *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  bool result;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DTriangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_contains" "', argument " "1"" of type '" "Ellipse const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DTriangle_clone" "', argument " "1"" of type '" "FTDistribution1DTriangle const *""'"); 
   }
-  arg1 = reinterpret_cast< Ellipse * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Ellipse_contains" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Ellipse_contains" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (bool)((Ellipse const *)arg1)->contains(arg2,arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FTDistribution1DTriangle * >(argp1);
+  result = (FTDistribution1DTriangle *)((FTDistribution1DTriangle const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DTriangle, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Ellipse_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DTriangle_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Ellipse *arg1 = (Ellipse *) 0 ;
-  Bin1D *arg2 = 0 ;
-  Bin1D *arg3 = 0 ;
+  FTDistribution1DTriangle *arg1 = (FTDistribution1DTriangle *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  bool result;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DTriangle_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DTriangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_contains" "', argument " "1"" of type '" "Ellipse const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DTriangle_accept" "', argument " "1"" of type '" "FTDistribution1DTriangle const *""'"); 
   }
-  arg1 = reinterpret_cast< Ellipse * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
+  arg1 = reinterpret_cast< FTDistribution1DTriangle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Ellipse_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Ellipse_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
-  }
-  arg2 = reinterpret_cast< Bin1D * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Ellipse_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Ellipse_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution1DTriangle_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg3 = reinterpret_cast< Bin1D * >(argp3);
-  result = (bool)((Ellipse const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FTDistribution1DTriangle const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Ellipse_contains(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Ellipse_contains", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Ellipse, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_Ellipse_contains__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Ellipse, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_Ellipse_contains__SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Ellipse_contains'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Ellipse::contains(double,double) const\n"
-    "    Ellipse::contains(Bin1D const &,Bin1D const &) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_Ellipse_getCenterX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DTriangle_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Ellipse *arg1 = (Ellipse *) 0 ;
+  FTDistribution1DTriangle *arg1 = (FTDistribution1DTriangle *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DTriangle_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DTriangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_getCenterX" "', argument " "1"" of type '" "Ellipse const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DTriangle_evaluate" "', argument " "1"" of type '" "FTDistribution1DTriangle const *""'"); 
   }
-  arg1 = reinterpret_cast< Ellipse * >(argp1);
-  result = (double)((Ellipse const *)arg1)->getCenterX();
+  arg1 = reinterpret_cast< FTDistribution1DTriangle * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution1DTriangle_evaluate" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((FTDistribution1DTriangle const *)arg1)->evaluate(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -59383,9 +60276,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Ellipse_getCenterY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DTriangle_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Ellipse *arg1 = (Ellipse *) 0 ;
+  FTDistribution1DTriangle *arg1 = (FTDistribution1DTriangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -59393,12 +60286,12 @@ SWIGINTERN PyObject *_wrap_Ellipse_getCenterY(PyObject *SWIGUNUSEDPARM(self), Py
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DTriangle, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_getCenterY" "', argument " "1"" of type '" "Ellipse const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DTriangle_qSecondDerivative" "', argument " "1"" of type '" "FTDistribution1DTriangle const *""'"); 
   }
-  arg1 = reinterpret_cast< Ellipse * >(argp1);
-  result = (double)((Ellipse const *)arg1)->getCenterY();
+  arg1 = reinterpret_cast< FTDistribution1DTriangle * >(argp1);
+  result = (double)((FTDistribution1DTriangle const *)arg1)->qSecondDerivative();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -59406,134 +60299,117 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Ellipse_getRadiusX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDistribution1DTriangle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Ellipse *arg1 = (Ellipse *) 0 ;
+  FTDistribution1DTriangle *arg1 = (FTDistribution1DTriangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DTriangle, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_getRadiusX" "', argument " "1"" of type '" "Ellipse const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution1DTriangle" "', argument " "1"" of type '" "FTDistribution1DTriangle *""'"); 
   }
-  arg1 = reinterpret_cast< Ellipse * >(argp1);
-  result = (double)((Ellipse const *)arg1)->getRadiusX();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FTDistribution1DTriangle * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Ellipse_getRadiusY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Ellipse *arg1 = (Ellipse *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_getRadiusY" "', argument " "1"" of type '" "Ellipse const *""'"); 
-  }
-  arg1 = reinterpret_cast< Ellipse * >(argp1);
-  result = (double)((Ellipse const *)arg1)->getRadiusY();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *FTDistribution1DTriangle_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution1DTriangle, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *FTDistribution1DTriangle_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_Ellipse_getTheta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution1DCosine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Ellipse *arg1 = (Ellipse *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  FTDistribution1DCosine *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Ellipse_getTheta" "', argument " "1"" of type '" "Ellipse const *""'"); 
-  }
-  arg1 = reinterpret_cast< Ellipse * >(argp1);
-  result = (double)((Ellipse const *)arg1)->getTheta();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution1DCosine" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (FTDistribution1DCosine *)new FTDistribution1DCosine(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DCosine, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Ellipse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DCosine_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Ellipse *arg1 = (Ellipse *) 0 ;
+  FTDistribution1DCosine *arg1 = (FTDistribution1DCosine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  FTDistribution1DCosine *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Ellipse, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCosine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Ellipse" "', argument " "1"" of type '" "Ellipse *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCosine_clone" "', argument " "1"" of type '" "FTDistribution1DCosine const *""'"); 
   }
-  arg1 = reinterpret_cast< Ellipse * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FTDistribution1DCosine * >(argp1);
+  result = (FTDistribution1DCosine *)((FTDistribution1DCosine const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DCosine, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *Ellipse_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Ellipse, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *Ellipse_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_IFTDecayFunction1D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DCosine_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDecayFunction1D *arg1 = (IFTDecayFunction1D *) 0 ;
+  FTDistribution1DCosine *arg1 = (FTDistribution1DCosine *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IFTDecayFunction1D *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction1D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DCosine_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCosine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction1D_clone" "', argument " "1"" of type '" "IFTDecayFunction1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCosine_accept" "', argument " "1"" of type '" "FTDistribution1DCosine const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDecayFunction1D * >(argp1);
-  result = (IFTDecayFunction1D *)((IFTDecayFunction1D const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFTDecayFunction1D, 0 |  0 );
+  arg1 = reinterpret_cast< FTDistribution1DCosine * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution1DCosine_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FTDistribution1DCosine const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDecayFunction1D_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DCosine_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDecayFunction1D *arg1 = (IFTDecayFunction1D *) 0 ;
+  FTDistribution1DCosine *arg1 = (FTDistribution1DCosine *) 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -59542,18 +60418,18 @@ SWIGINTERN PyObject *_wrap_IFTDecayFunction1D_evaluate(PyObject *SWIGUNUSEDPARM(
   PyObject *swig_obj[2] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFTDecayFunction1D_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction1D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DCosine_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCosine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction1D_evaluate" "', argument " "1"" of type '" "IFTDecayFunction1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCosine_evaluate" "', argument " "1"" of type '" "FTDistribution1DCosine const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDecayFunction1D * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution1DCosine * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDecayFunction1D_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution1DCosine_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((IFTDecayFunction1D const *)arg1)->evaluate(arg2);
+  result = (double)((FTDistribution1DCosine const *)arg1)->evaluate(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -59561,9 +60437,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDecayFunction1D_decayLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DCosine_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDecayFunction1D *arg1 = (IFTDecayFunction1D *) 0 ;
+  FTDistribution1DCosine *arg1 = (FTDistribution1DCosine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -59571,12 +60447,12 @@ SWIGINTERN PyObject *_wrap_IFTDecayFunction1D_decayLength(PyObject *SWIGUNUSEDPA
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction1D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCosine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction1D_decayLength" "', argument " "1"" of type '" "IFTDecayFunction1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCosine_qSecondDerivative" "', argument " "1"" of type '" "FTDistribution1DCosine const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDecayFunction1D * >(argp1);
-  result = (double)((IFTDecayFunction1D const *)arg1)->decayLength();
+  arg1 = reinterpret_cast< FTDistribution1DCosine * >(argp1);
+  result = (double)((FTDistribution1DCosine const *)arg1)->qSecondDerivative();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -59584,20 +60460,20 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IFTDecayFunction1D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDistribution1DCosine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDecayFunction1D *arg1 = (IFTDecayFunction1D *) 0 ;
+  FTDistribution1DCosine *arg1 = (FTDistribution1DCosine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction1D, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCosine, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFTDecayFunction1D" "', argument " "1"" of type '" "IFTDecayFunction1D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution1DCosine" "', argument " "1"" of type '" "FTDistribution1DCosine *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDecayFunction1D * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution1DCosine * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -59606,62 +60482,73 @@ fail:
 }
 
 
-SWIGINTERN PyObject *IFTDecayFunction1D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution1DCosine_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IFTDecayFunction1D, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution1DCosine, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction1DCauchy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution1DCosine_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FTDistribution1DVoigt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
+  double arg2 ;
   double val1 ;
   int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FTDecayFunction1DCauchy *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  FTDistribution1DVoigt *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
+  if (!SWIG_Python_UnpackTuple(args, "new_FTDistribution1DVoigt", 2, 2, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction1DCauchy" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution1DVoigt" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  result = (FTDecayFunction1DCauchy *)new FTDecayFunction1DCauchy(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DCauchy, SWIG_POINTER_NEW |  0 );
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution1DVoigt" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (FTDistribution1DVoigt *)new FTDistribution1DVoigt(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DVoigt, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DCauchy_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DVoigt_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DCauchy *arg1 = (FTDecayFunction1DCauchy *) 0 ;
+  FTDistribution1DVoigt *arg1 = (FTDistribution1DVoigt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDecayFunction1DCauchy *result = 0 ;
+  FTDistribution1DVoigt *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DCauchy, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DCauchy_clone" "', argument " "1"" of type '" "FTDecayFunction1DCauchy const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DVoigt_clone" "', argument " "1"" of type '" "FTDistribution1DVoigt const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DCauchy * >(argp1);
-  result = (FTDecayFunction1DCauchy *)((FTDecayFunction1DCauchy const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DCauchy, 0 |  0 );
+  arg1 = reinterpret_cast< FTDistribution1DVoigt * >(argp1);
+  result = (FTDistribution1DVoigt *)((FTDistribution1DVoigt const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DCauchy_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DVoigt_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DCauchy *arg1 = (FTDecayFunction1DCauchy *) 0 ;
+  FTDistribution1DVoigt *arg1 = (FTDistribution1DVoigt *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -59669,18 +60556,18 @@ SWIGINTERN PyObject *_wrap_FTDecayFunction1DCauchy_accept(PyObject *SWIGUNUSEDPA
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DCauchy_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DCauchy, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DVoigt_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DCauchy_accept" "', argument " "1"" of type '" "FTDecayFunction1DCauchy const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DVoigt_accept" "', argument " "1"" of type '" "FTDistribution1DVoigt const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DCauchy * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution1DVoigt * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction1DCauchy_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution1DVoigt_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDecayFunction1DCauchy const *)arg1)->accept(arg2);
+  ((FTDistribution1DVoigt const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -59688,9 +60575,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DCauchy_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DVoigt_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DCauchy *arg1 = (FTDecayFunction1DCauchy *) 0 ;
+  FTDistribution1DVoigt *arg1 = (FTDistribution1DVoigt *) 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -59699,18 +60586,18 @@ SWIGINTERN PyObject *_wrap_FTDecayFunction1DCauchy_evaluate(PyObject *SWIGUNUSED
   PyObject *swig_obj[2] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DCauchy_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DCauchy, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DVoigt_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DCauchy_evaluate" "', argument " "1"" of type '" "FTDecayFunction1DCauchy const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DVoigt_evaluate" "', argument " "1"" of type '" "FTDistribution1DVoigt const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DCauchy * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution1DVoigt * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction1DCauchy_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution1DVoigt_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((FTDecayFunction1DCauchy const *)arg1)->evaluate(arg2);
+  result = (double)((FTDistribution1DVoigt const *)arg1)->evaluate(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -59718,275 +60605,260 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDecayFunction1DCauchy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DVoigt_eta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DCauchy *arg1 = (FTDecayFunction1DCauchy *) 0 ;
+  FTDistribution1DVoigt *arg1 = (FTDistribution1DVoigt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DCauchy, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction1DCauchy" "', argument " "1"" of type '" "FTDecayFunction1DCauchy *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DVoigt_eta" "', argument " "1"" of type '" "FTDistribution1DVoigt const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DCauchy * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FTDistribution1DVoigt * >(argp1);
+  result = (double)((FTDistribution1DVoigt const *)arg1)->eta();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FTDecayFunction1DCauchy_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction1DCauchy, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FTDecayFunction1DCauchy_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction1DGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution1DVoigt_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  FTDistribution1DVoigt *arg1 = (FTDistribution1DVoigt *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDecayFunction1DGauss *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction1DGauss" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (FTDecayFunction1DGauss *)new FTDecayFunction1DGauss(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DGauss, SWIG_POINTER_NEW |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DVoigt_qSecondDerivative" "', argument " "1"" of type '" "FTDistribution1DVoigt const *""'"); 
+  }
+  arg1 = reinterpret_cast< FTDistribution1DVoigt * >(argp1);
+  result = (double)((FTDistribution1DVoigt const *)arg1)->qSecondDerivative();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDistribution1DVoigt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DGauss *arg1 = (FTDecayFunction1DGauss *) 0 ;
+  FTDistribution1DVoigt *arg1 = (FTDistribution1DVoigt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDecayFunction1DGauss *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DVoigt, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DGauss_clone" "', argument " "1"" of type '" "FTDecayFunction1DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution1DVoigt" "', argument " "1"" of type '" "FTDistribution1DVoigt *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DGauss * >(argp1);
-  result = (FTDecayFunction1DGauss *)((FTDecayFunction1DGauss const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DGauss, 0 |  0 );
+  arg1 = reinterpret_cast< FTDistribution1DVoigt * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution1DVoigt_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution1DVoigt, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FTDistribution1DVoigt_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_IFTDistribution2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DGauss *arg1 = (FTDecayFunction1DGauss *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  IFTDistribution2D *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DGauss_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DGauss, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DGauss_accept" "', argument " "1"" of type '" "FTDecayFunction1DGauss const *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDecayFunction1DGauss * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction1DGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_clone" "', argument " "1"" of type '" "IFTDistribution2D const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDecayFunction1DGauss const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
+  result = (IFTDistribution2D *)((IFTDistribution2D const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DGauss_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDistribution2D_setGamma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DGauss *arg1 = (FTDecayFunction1DGauss *) 0 ;
+  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DGauss_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DGauss, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFTDistribution2D_setGamma", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DGauss_evaluate" "', argument " "1"" of type '" "FTDecayFunction1DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_setGamma" "', argument " "1"" of type '" "IFTDistribution2D *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DGauss * >(argp1);
+  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction1DGauss_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDistribution2D_setGamma" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((FTDecayFunction1DGauss const *)arg1)->evaluate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  (arg1)->setGamma(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDecayFunction1DGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDistribution2D_gamma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DGauss *arg1 = (FTDecayFunction1DGauss *) 0 ;
+  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DGauss, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction1DGauss" "', argument " "1"" of type '" "FTDecayFunction1DGauss *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_gamma" "', argument " "1"" of type '" "IFTDistribution2D const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DGauss * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
+  result = (double)((IFTDistribution2D const *)arg1)->gamma();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FTDecayFunction1DGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction1DGauss, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FTDecayFunction1DGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction1DTriangle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDistribution2D_delta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDecayFunction1DTriangle *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction1DTriangle" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (FTDecayFunction1DTriangle *)new FTDecayFunction1DTriangle(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DTriangle, SWIG_POINTER_NEW |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_delta" "', argument " "1"" of type '" "IFTDistribution2D const *""'"); 
+  }
+  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
+  result = (double)((IFTDistribution2D const *)arg1)->delta();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DTriangle_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDistribution2D_omegaX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DTriangle *arg1 = (FTDecayFunction1DTriangle *) 0 ;
+  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDecayFunction1DTriangle *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DTriangle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DTriangle_clone" "', argument " "1"" of type '" "FTDecayFunction1DTriangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_omegaX" "', argument " "1"" of type '" "IFTDistribution2D const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DTriangle * >(argp1);
-  result = (FTDecayFunction1DTriangle *)((FTDecayFunction1DTriangle const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DTriangle, 0 |  0 );
+  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
+  result = (double)((IFTDistribution2D const *)arg1)->omegaX();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DTriangle_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDistribution2D_omegaY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DTriangle *arg1 = (FTDecayFunction1DTriangle *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DTriangle_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DTriangle, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DTriangle_accept" "', argument " "1"" of type '" "FTDecayFunction1DTriangle const *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDecayFunction1DTriangle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction1DTriangle_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_omegaY" "', argument " "1"" of type '" "IFTDistribution2D const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDecayFunction1DTriangle const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
+  result = (double)((IFTDistribution2D const *)arg1)->omegaY();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DTriangle_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFTDistribution2D_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DTriangle *arg1 = (FTDecayFunction1DTriangle *) 0 ;
+  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
   double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DTriangle_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DTriangle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFTDistribution2D_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DTriangle_evaluate" "', argument " "1"" of type '" "FTDecayFunction1DTriangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_evaluate" "', argument " "1"" of type '" "IFTDistribution2D const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DTriangle * >(argp1);
+  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction1DTriangle_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDistribution2D_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((FTDecayFunction1DTriangle const *)arg1)->evaluate(arg2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IFTDistribution2D_evaluate" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)((IFTDistribution2D const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -59994,20 +60866,20 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDecayFunction1DTriangle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IFTDistribution2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DTriangle *arg1 = (FTDecayFunction1DTriangle *) 0 ;
+  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DTriangle, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction1DTriangle" "', argument " "1"" of type '" "FTDecayFunction1DTriangle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFTDistribution2D" "', argument " "1"" of type '" "IFTDistribution2D *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DTriangle * >(argp1);
+  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -60016,18 +60888,51 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FTDecayFunction1DTriangle_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IFTDistribution2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction1DTriangle, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_IFTDistribution2D, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FTDecayFunction1DTriangle_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DCauchy__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  FTDistribution2DCauchy *result = 0 ;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DCauchy" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DCauchy" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDistribution2DCauchy" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FTDistribution2DCauchy *)new FTDistribution2DCauchy(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DCauchy, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction1DVoigt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DCauchy__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -60035,54 +60940,109 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction1DVoigt(PyObject *SWIGUNUSEDPARM(s
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  FTDecayFunction1DVoigt *result = 0 ;
+  FTDistribution2DCauchy *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FTDecayFunction1DVoigt", 2, 2, swig_obj)) SWIG_fail;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction1DVoigt" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DCauchy" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction1DVoigt" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DCauchy" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (FTDecayFunction1DVoigt *)new FTDecayFunction1DVoigt(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DVoigt, SWIG_POINTER_NEW |  0 );
+  result = (FTDistribution2DCauchy *)new FTDistribution2DCauchy(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DCauchy, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DVoigt_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DCauchy(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDistribution2DCauchy", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_FTDistribution2DCauchy__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_new_FTDistribution2DCauchy__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDistribution2DCauchy'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FTDistribution2DCauchy::FTDistribution2DCauchy(double,double,double)\n"
+    "    FTDistribution2DCauchy::FTDistribution2DCauchy(double,double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_FTDistribution2DCauchy_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DVoigt *arg1 = (FTDecayFunction1DVoigt *) 0 ;
+  FTDistribution2DCauchy *arg1 = (FTDistribution2DCauchy *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDecayFunction1DVoigt *result = 0 ;
+  FTDistribution2DCauchy *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DVoigt, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DVoigt_clone" "', argument " "1"" of type '" "FTDecayFunction1DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DCauchy_clone" "', argument " "1"" of type '" "FTDistribution2DCauchy const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DVoigt * >(argp1);
-  result = (FTDecayFunction1DVoigt *)((FTDecayFunction1DVoigt const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction1DVoigt, 0 |  0 );
+  arg1 = reinterpret_cast< FTDistribution2DCauchy * >(argp1);
+  result = (FTDistribution2DCauchy *)((FTDistribution2DCauchy const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DCauchy, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DVoigt_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DCauchy_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DVoigt *arg1 = (FTDecayFunction1DVoigt *) 0 ;
+  FTDistribution2DCauchy *arg1 = (FTDistribution2DCauchy *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -60090,18 +61050,18 @@ SWIGINTERN PyObject *_wrap_FTDecayFunction1DVoigt_accept(PyObject *SWIGUNUSEDPAR
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DVoigt_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DVoigt, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DCauchy_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DVoigt_accept" "', argument " "1"" of type '" "FTDecayFunction1DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DCauchy_accept" "', argument " "1"" of type '" "FTDistribution2DCauchy const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DVoigt * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DCauchy * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction1DVoigt_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution2DCauchy_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDecayFunction1DVoigt const *)arg1)->accept(arg2);
+  ((FTDistribution2DCauchy const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -60109,52 +61069,37 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DVoigt_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DCauchy_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DVoigt *arg1 = (FTDecayFunction1DVoigt *) 0 ;
+  FTDistribution2DCauchy *arg1 = (FTDistribution2DCauchy *) 0 ;
   double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction1DVoigt_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DVoigt, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DCauchy_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCauchy, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DVoigt_evaluate" "', argument " "1"" of type '" "FTDecayFunction1DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DCauchy_evaluate" "', argument " "1"" of type '" "FTDistribution2DCauchy const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DVoigt * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DCauchy * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction1DVoigt_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution2DCauchy_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((FTDecayFunction1DVoigt const *)arg1)->evaluate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FTDecayFunction1DVoigt_eEta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FTDecayFunction1DVoigt *arg1 = (FTDecayFunction1DVoigt *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DVoigt, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction1DVoigt_eEta" "', argument " "1"" of type '" "FTDecayFunction1DVoigt const *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDecayFunction1DVoigt * >(argp1);
-  result = (double)((FTDecayFunction1DVoigt const *)arg1)->eEta();
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDistribution2DCauchy_evaluate" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)((FTDistribution2DCauchy const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -60162,20 +61107,20 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDecayFunction1DVoigt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDistribution2DCauchy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction1DVoigt *arg1 = (FTDecayFunction1DVoigt *) 0 ;
+  FTDistribution2DCauchy *arg1 = (FTDistribution2DCauchy *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction1DVoigt, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCauchy, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction1DVoigt" "', argument " "1"" of type '" "FTDecayFunction1DVoigt *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution2DCauchy" "', argument " "1"" of type '" "FTDistribution2DCauchy *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction1DVoigt * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DCauchy * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -60184,141 +61129,194 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FTDecayFunction1DVoigt_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution2DCauchy_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction1DVoigt, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution2DCauchy, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FTDecayFunction1DVoigt_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution2DCauchy_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DGauss__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IFTDecayFunction2D *result = 0 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  FTDistribution2DGauss *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_clone" "', argument " "1"" of type '" "IFTDecayFunction2D const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
-  result = (IFTDecayFunction2D *)((IFTDecayFunction2D const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DGauss" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DGauss" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDistribution2DGauss" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FTDistribution2DGauss *)new FTDistribution2DGauss(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DGauss, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_setGamma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DGauss__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
+  double arg1 ;
   double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  FTDistribution2DGauss *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFTDecayFunction2D_setGamma", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_setGamma" "', argument " "1"" of type '" "IFTDecayFunction2D *""'"); 
-  }
-  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DGauss" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDecayFunction2D_setGamma" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DGauss" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  (arg1)->setGamma(arg2);
-  resultobj = SWIG_Py_Void();
+  result = (FTDistribution2DGauss *)new FTDistribution2DGauss(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DGauss, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_gamma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DGauss(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_gamma" "', argument " "1"" of type '" "IFTDecayFunction2D const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDistribution2DGauss", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_FTDistribution2DGauss__SWIG_1(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
-  result = (double)((IFTDecayFunction2D const *)arg1)->gamma();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
+  if (argc == 3) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_new_FTDistribution2DGauss__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDistribution2DGauss'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FTDistribution2DGauss::FTDistribution2DGauss(double,double,double)\n"
+    "    FTDistribution2DGauss::FTDistribution2DGauss(double,double)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_decayLengthX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
+  FTDistribution2DGauss *arg1 = (FTDistribution2DGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  FTDistribution2DGauss *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_decayLengthX" "', argument " "1"" of type '" "IFTDecayFunction2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DGauss_clone" "', argument " "1"" of type '" "FTDistribution2DGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
-  result = (double)((IFTDecayFunction2D const *)arg1)->decayLengthX();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FTDistribution2DGauss * >(argp1);
+  result = (FTDistribution2DGauss *)((FTDistribution2DGauss const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DGauss, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_decayLengthY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
+  FTDistribution2DGauss *arg1 = (FTDistribution2DGauss *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DGauss_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_decayLengthY" "', argument " "1"" of type '" "IFTDecayFunction2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DGauss_accept" "', argument " "1"" of type '" "FTDistribution2DGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
-  result = (double)((IFTDecayFunction2D const *)arg1)->decayLengthY();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FTDistribution2DGauss * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution2DGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FTDistribution2DGauss const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DGauss_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
+  FTDistribution2DGauss *arg1 = (FTDistribution2DGauss *) 0 ;
   double arg2 ;
   double arg3 ;
   void *argp1 = 0 ;
@@ -60330,23 +61328,23 @@ SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_evaluate(PyObject *SWIGUNUSEDPARM(
   PyObject *swig_obj[3] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFTDecayFunction2D_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DGauss_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_evaluate" "', argument " "1"" of type '" "IFTDecayFunction2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DGauss_evaluate" "', argument " "1"" of type '" "FTDistribution2DGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DGauss * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDecayFunction2D_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution2DGauss_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IFTDecayFunction2D_evaluate" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDistribution2DGauss_evaluate" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (double)((IFTDecayFunction2D const *)arg1)->evaluate(arg2,arg3);
+  result = (double)((FTDistribution2DGauss const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -60354,82 +61352,20 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDecayFunction2D_boundingReciprocalLatticeCoordinates(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double arg5 ;
-  double arg6 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  double val6 ;
-  int ecode6 = 0 ;
-  PyObject *swig_obj[6] ;
-  std::pair< double,double > result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates", 6, 6, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates" "', argument " "1"" of type '" "IFTDecayFunction2D const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  ecode6 = SWIG_AsVal_double(swig_obj[5], &val6);
-  if (!SWIG_IsOK(ecode6)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates" "', argument " "6"" of type '" "double""'");
-  } 
-  arg6 = static_cast< double >(val6);
-  result = ((IFTDecayFunction2D const *)arg1)->boundingReciprocalLatticeCoordinates(arg2,arg3,arg4,arg5,arg6);
-  resultobj = swig::from(static_cast< std::pair< double,double > >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_IFTDecayFunction2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDistribution2DGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDecayFunction2D *arg1 = (IFTDecayFunction2D *) 0 ;
+  FTDistribution2DGauss *arg1 = (FTDistribution2DGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDecayFunction2D, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGauss, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFTDecayFunction2D" "', argument " "1"" of type '" "IFTDecayFunction2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution2DGauss" "', argument " "1"" of type '" "FTDistribution2DGauss *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDecayFunction2D * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DGauss * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -60438,14 +61374,18 @@ fail:
 }
 
 
-SWIGINTERN PyObject *IFTDecayFunction2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution2DGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IFTDecayFunction2D, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution2DGauss, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DCauchy__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *FTDistribution2DGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DGate__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -60456,33 +61396,33 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DCauchy__SWIG_0(PyObject *SWIGUNU
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  FTDecayFunction2DCauchy *result = 0 ;
+  FTDistribution2DGate *result = 0 ;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction2DCauchy" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DGate" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction2DCauchy" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DGate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDecayFunction2DCauchy" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDistribution2DGate" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (FTDecayFunction2DCauchy *)new FTDecayFunction2DCauchy(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DCauchy, SWIG_POINTER_NEW |  0 );
+  result = (FTDistribution2DGate *)new FTDistribution2DGate(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DGate, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DCauchy__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DGate__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -60490,34 +61430,34 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DCauchy__SWIG_1(PyObject *SWIGUNU
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  FTDecayFunction2DCauchy *result = 0 ;
+  FTDistribution2DGate *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction2DCauchy" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DGate" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction2DCauchy" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DGate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (FTDecayFunction2DCauchy *)new FTDecayFunction2DCauchy(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DCauchy, SWIG_POINTER_NEW |  0 );
+  result = (FTDistribution2DGate *)new FTDistribution2DGate(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DGate, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DCauchy(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DGate(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDecayFunction2DCauchy", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDistribution2DGate", 0, 3, argv))) SWIG_fail;
   --argc;
   if (argc == 2) {
     int _v;
@@ -60531,7 +61471,7 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DCauchy(PyObject *self, PyObject
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_new_FTDecayFunction2DCauchy__SWIG_1(self, argc, argv);
+        return _wrap_new_FTDistribution2DGate__SWIG_1(self, argc, argv);
       }
     }
   }
@@ -60552,47 +61492,47 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DCauchy(PyObject *self, PyObject
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_new_FTDecayFunction2DCauchy__SWIG_0(self, argc, argv);
+          return _wrap_new_FTDistribution2DGate__SWIG_0(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDecayFunction2DCauchy'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDistribution2DGate'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    FTDecayFunction2DCauchy::FTDecayFunction2DCauchy(double,double,double)\n"
-    "    FTDecayFunction2DCauchy::FTDecayFunction2DCauchy(double,double)\n");
+    "    FTDistribution2DGate::FTDistribution2DGate(double,double,double)\n"
+    "    FTDistribution2DGate::FTDistribution2DGate(double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction2DCauchy_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DGate_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DCauchy *arg1 = (FTDecayFunction2DCauchy *) 0 ;
+  FTDistribution2DGate *arg1 = (FTDistribution2DGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDecayFunction2DCauchy *result = 0 ;
+  FTDistribution2DGate *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DCauchy, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DCauchy_clone" "', argument " "1"" of type '" "FTDecayFunction2DCauchy const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DGate_clone" "', argument " "1"" of type '" "FTDistribution2DGate const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DCauchy * >(argp1);
-  result = (FTDecayFunction2DCauchy *)((FTDecayFunction2DCauchy const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DCauchy, 0 |  0 );
+  arg1 = reinterpret_cast< FTDistribution2DGate * >(argp1);
+  result = (FTDistribution2DGate *)((FTDistribution2DGate const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DGate, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction2DCauchy_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DGate_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DCauchy *arg1 = (FTDecayFunction2DCauchy *) 0 ;
+  FTDistribution2DGate *arg1 = (FTDistribution2DGate *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -60600,18 +61540,18 @@ SWIGINTERN PyObject *_wrap_FTDecayFunction2DCauchy_accept(PyObject *SWIGUNUSEDPA
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction2DCauchy_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DCauchy, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DGate_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DCauchy_accept" "', argument " "1"" of type '" "FTDecayFunction2DCauchy const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DGate_accept" "', argument " "1"" of type '" "FTDistribution2DGate const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DCauchy * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DGate * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction2DCauchy_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution2DGate_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDecayFunction2DCauchy const *)arg1)->accept(arg2);
+  ((FTDistribution2DGate const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -60619,9 +61559,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction2DCauchy_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DGate_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DCauchy *arg1 = (FTDecayFunction2DCauchy *) 0 ;
+  FTDistribution2DGate *arg1 = (FTDistribution2DGate *) 0 ;
   double arg2 ;
   double arg3 ;
   void *argp1 = 0 ;
@@ -60633,23 +61573,23 @@ SWIGINTERN PyObject *_wrap_FTDecayFunction2DCauchy_evaluate(PyObject *SWIGUNUSED
   PyObject *swig_obj[3] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction2DCauchy_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DCauchy, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DGate_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DCauchy_evaluate" "', argument " "1"" of type '" "FTDecayFunction2DCauchy const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DGate_evaluate" "', argument " "1"" of type '" "FTDistribution2DGate const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DCauchy * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DGate * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction2DCauchy_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution2DGate_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDecayFunction2DCauchy_evaluate" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDistribution2DGate_evaluate" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (double)((FTDecayFunction2DCauchy const *)arg1)->evaluate(arg2,arg3);
+  result = (double)((FTDistribution2DGate const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -60657,20 +61597,20 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDecayFunction2DCauchy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDistribution2DGate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DCauchy *arg1 = (FTDecayFunction2DCauchy *) 0 ;
+  FTDistribution2DGate *arg1 = (FTDistribution2DGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DCauchy, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGate, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction2DCauchy" "', argument " "1"" of type '" "FTDecayFunction2DCauchy *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution2DGate" "', argument " "1"" of type '" "FTDistribution2DGate *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DCauchy * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DGate * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -60679,18 +61619,18 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FTDecayFunction2DCauchy_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution2DGate_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction2DCauchy, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution2DGate, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FTDecayFunction2DCauchy_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution2DGate_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DGauss__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DCone__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -60701,33 +61641,33 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DGauss__SWIG_0(PyObject *SWIGUNUS
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  FTDecayFunction2DGauss *result = 0 ;
+  FTDistribution2DCone *result = 0 ;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction2DGauss" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DCone" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction2DGauss" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DCone" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDecayFunction2DGauss" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDistribution2DCone" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (FTDecayFunction2DGauss *)new FTDecayFunction2DGauss(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DGauss, SWIG_POINTER_NEW |  0 );
+  result = (FTDistribution2DCone *)new FTDistribution2DCone(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DCone, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DGauss__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DCone__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -60735,34 +61675,34 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DGauss__SWIG_1(PyObject *SWIGUNUS
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  FTDecayFunction2DGauss *result = 0 ;
+  FTDistribution2DCone *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction2DGauss" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DCone" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction2DGauss" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DCone" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (FTDecayFunction2DGauss *)new FTDecayFunction2DGauss(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DGauss, SWIG_POINTER_NEW |  0 );
+  result = (FTDistribution2DCone *)new FTDistribution2DCone(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DCone, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DGauss(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DCone(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDecayFunction2DGauss", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDistribution2DCone", 0, 3, argv))) SWIG_fail;
   --argc;
   if (argc == 2) {
     int _v;
@@ -60776,7 +61716,7 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DGauss(PyObject *self, PyObject *
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_new_FTDecayFunction2DGauss__SWIG_1(self, argc, argv);
+        return _wrap_new_FTDistribution2DCone__SWIG_1(self, argc, argv);
       }
     }
   }
@@ -60797,47 +61737,47 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DGauss(PyObject *self, PyObject *
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_new_FTDecayFunction2DGauss__SWIG_0(self, argc, argv);
+          return _wrap_new_FTDistribution2DCone__SWIG_0(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDecayFunction2DGauss'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDistribution2DCone'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    FTDecayFunction2DGauss::FTDecayFunction2DGauss(double,double,double)\n"
-    "    FTDecayFunction2DGauss::FTDecayFunction2DGauss(double,double)\n");
+    "    FTDistribution2DCone::FTDistribution2DCone(double,double,double)\n"
+    "    FTDistribution2DCone::FTDistribution2DCone(double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction2DGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DCone_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DGauss *arg1 = (FTDecayFunction2DGauss *) 0 ;
+  FTDistribution2DCone *arg1 = (FTDistribution2DCone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDecayFunction2DGauss *result = 0 ;
+  FTDistribution2DCone *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCone, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DGauss_clone" "', argument " "1"" of type '" "FTDecayFunction2DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DCone_clone" "', argument " "1"" of type '" "FTDistribution2DCone const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DGauss * >(argp1);
-  result = (FTDecayFunction2DGauss *)((FTDecayFunction2DGauss const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DGauss, 0 |  0 );
+  arg1 = reinterpret_cast< FTDistribution2DCone * >(argp1);
+  result = (FTDistribution2DCone *)((FTDistribution2DCone const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DCone, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction2DGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DCone_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DGauss *arg1 = (FTDecayFunction2DGauss *) 0 ;
+  FTDistribution2DCone *arg1 = (FTDistribution2DCone *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -60845,18 +61785,18 @@ SWIGINTERN PyObject *_wrap_FTDecayFunction2DGauss_accept(PyObject *SWIGUNUSEDPAR
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction2DGauss_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DGauss, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DCone_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCone, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DGauss_accept" "', argument " "1"" of type '" "FTDecayFunction2DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DCone_accept" "', argument " "1"" of type '" "FTDistribution2DCone const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DGauss * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DCone * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction2DGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution2DCone_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDecayFunction2DGauss const *)arg1)->accept(arg2);
+  ((FTDistribution2DCone const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -60864,9 +61804,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction2DGauss_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DCone_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DGauss *arg1 = (FTDecayFunction2DGauss *) 0 ;
+  FTDistribution2DCone *arg1 = (FTDistribution2DCone *) 0 ;
   double arg2 ;
   double arg3 ;
   void *argp1 = 0 ;
@@ -60878,23 +61818,23 @@ SWIGINTERN PyObject *_wrap_FTDecayFunction2DGauss_evaluate(PyObject *SWIGUNUSEDP
   PyObject *swig_obj[3] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction2DGauss_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DGauss, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DCone_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCone, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DGauss_evaluate" "', argument " "1"" of type '" "FTDecayFunction2DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DCone_evaluate" "', argument " "1"" of type '" "FTDistribution2DCone const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DGauss * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DCone * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction2DGauss_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution2DCone_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDecayFunction2DGauss_evaluate" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDistribution2DCone_evaluate" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (double)((FTDecayFunction2DGauss const *)arg1)->evaluate(arg2,arg3);
+  result = (double)((FTDistribution2DCone const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -60902,20 +61842,20 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDecayFunction2DGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDistribution2DCone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DGauss *arg1 = (FTDecayFunction2DGauss *) 0 ;
+  FTDistribution2DCone *arg1 = (FTDistribution2DCone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DGauss, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCone, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction2DGauss" "', argument " "1"" of type '" "FTDecayFunction2DGauss *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution2DCone" "', argument " "1"" of type '" "FTDistribution2DCone *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DGauss * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DCone * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -60924,18 +61864,18 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FTDecayFunction2DGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution2DCone_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction2DGauss, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution2DCone, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FTDecayFunction2DGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution2DCone_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DVoigt__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DVoigt__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -60949,38 +61889,38 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DVoigt__SWIG_0(PyObject *SWIGUNUS
   int ecode3 = 0 ;
   double val4 ;
   int ecode4 = 0 ;
-  FTDecayFunction2DVoigt *result = 0 ;
+  FTDistribution2DVoigt *result = 0 ;
   
   if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DVoigt" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DVoigt" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDistribution2DVoigt" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
   ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FTDistribution2DVoigt" "', argument " "4"" of type '" "double""'");
   } 
   arg4 = static_cast< double >(val4);
-  result = (FTDecayFunction2DVoigt *)new FTDecayFunction2DVoigt(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DVoigt, SWIG_POINTER_NEW |  0 );
+  result = (FTDistribution2DVoigt *)new FTDistribution2DVoigt(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DVoigt, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DVoigt__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DVoigt__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -60991,39 +61931,39 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DVoigt__SWIG_1(PyObject *SWIGUNUS
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  FTDecayFunction2DVoigt *result = 0 ;
+  FTDistribution2DVoigt *result = 0 ;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DVoigt" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DVoigt" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDecayFunction2DVoigt" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDistribution2DVoigt" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (FTDecayFunction2DVoigt *)new FTDecayFunction2DVoigt(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DVoigt, SWIG_POINTER_NEW |  0 );
+  result = (FTDistribution2DVoigt *)new FTDistribution2DVoigt(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DVoigt, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DVoigt(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FTDistribution2DVoigt(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[5] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDecayFunction2DVoigt", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDistribution2DVoigt", 0, 4, argv))) SWIG_fail;
   --argc;
   if (argc == 3) {
     int _v;
@@ -61042,7 +61982,7 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DVoigt(PyObject *self, PyObject *
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_new_FTDecayFunction2DVoigt__SWIG_1(self, argc, argv);
+          return _wrap_new_FTDistribution2DVoigt__SWIG_1(self, argc, argv);
         }
       }
     }
@@ -61069,7 +62009,7 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DVoigt(PyObject *self, PyObject *
             _v = SWIG_CheckState(res);
           }
           if (_v) {
-            return _wrap_new_FTDecayFunction2DVoigt__SWIG_0(self, argc, argv);
+            return _wrap_new_FTDistribution2DVoigt__SWIG_0(self, argc, argv);
           }
         }
       }
@@ -61077,40 +62017,40 @@ SWIGINTERN PyObject *_wrap_new_FTDecayFunction2DVoigt(PyObject *self, PyObject *
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDecayFunction2DVoigt'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDistribution2DVoigt'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    FTDecayFunction2DVoigt::FTDecayFunction2DVoigt(double,double,double,double)\n"
-    "    FTDecayFunction2DVoigt::FTDecayFunction2DVoigt(double,double,double)\n");
+    "    FTDistribution2DVoigt::FTDistribution2DVoigt(double,double,double,double)\n"
+    "    FTDistribution2DVoigt::FTDistribution2DVoigt(double,double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction2DVoigt_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DVoigt_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DVoigt *arg1 = (FTDecayFunction2DVoigt *) 0 ;
+  FTDistribution2DVoigt *arg1 = (FTDistribution2DVoigt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDecayFunction2DVoigt *result = 0 ;
+  FTDistribution2DVoigt *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DVoigt, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DVoigt_clone" "', argument " "1"" of type '" "FTDecayFunction2DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DVoigt_clone" "', argument " "1"" of type '" "FTDistribution2DVoigt const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DVoigt * >(argp1);
-  result = (FTDecayFunction2DVoigt *)((FTDecayFunction2DVoigt const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDecayFunction2DVoigt, 0 |  0 );
+  arg1 = reinterpret_cast< FTDistribution2DVoigt * >(argp1);
+  result = (FTDistribution2DVoigt *)((FTDistribution2DVoigt const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DVoigt, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction2DVoigt_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DVoigt_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DVoigt *arg1 = (FTDecayFunction2DVoigt *) 0 ;
+  FTDistribution2DVoigt *arg1 = (FTDistribution2DVoigt *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -61118,18 +62058,18 @@ SWIGINTERN PyObject *_wrap_FTDecayFunction2DVoigt_accept(PyObject *SWIGUNUSEDPAR
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction2DVoigt_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DVoigt, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DVoigt_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DVoigt_accept" "', argument " "1"" of type '" "FTDecayFunction2DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DVoigt_accept" "', argument " "1"" of type '" "FTDistribution2DVoigt const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DVoigt * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DVoigt * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDecayFunction2DVoigt_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution2DVoigt_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDecayFunction2DVoigt const *)arg1)->accept(arg2);
+  ((FTDistribution2DVoigt const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -61137,9 +62077,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction2DVoigt_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DVoigt_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DVoigt *arg1 = (FTDecayFunction2DVoigt *) 0 ;
+  FTDistribution2DVoigt *arg1 = (FTDistribution2DVoigt *) 0 ;
   double arg2 ;
   double arg3 ;
   void *argp1 = 0 ;
@@ -61151,23 +62091,23 @@ SWIGINTERN PyObject *_wrap_FTDecayFunction2DVoigt_evaluate(PyObject *SWIGUNUSEDP
   PyObject *swig_obj[3] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDecayFunction2DVoigt_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DVoigt, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DVoigt_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DVoigt_evaluate" "', argument " "1"" of type '" "FTDecayFunction2DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DVoigt_evaluate" "', argument " "1"" of type '" "FTDistribution2DVoigt const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DVoigt * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DVoigt * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDecayFunction2DVoigt_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution2DVoigt_evaluate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDecayFunction2DVoigt_evaluate" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDistribution2DVoigt_evaluate" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (double)((FTDecayFunction2DVoigt const *)arg1)->evaluate(arg2,arg3);
+  result = (double)((FTDistribution2DVoigt const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -61175,9 +62115,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDecayFunction2DVoigt_eta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FTDistribution2DVoigt_eta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DVoigt *arg1 = (FTDecayFunction2DVoigt *) 0 ;
+  FTDistribution2DVoigt *arg1 = (FTDistribution2DVoigt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -61185,12 +62125,12 @@ SWIGINTERN PyObject *_wrap_FTDecayFunction2DVoigt_eta(PyObject *SWIGUNUSEDPARM(s
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DVoigt, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDecayFunction2DVoigt_eta" "', argument " "1"" of type '" "FTDecayFunction2DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DVoigt_eta" "', argument " "1"" of type '" "FTDistribution2DVoigt const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DVoigt * >(argp1);
-  result = (double)((FTDecayFunction2DVoigt const *)arg1)->eta();
+  arg1 = reinterpret_cast< FTDistribution2DVoigt * >(argp1);
+  result = (double)((FTDistribution2DVoigt const *)arg1)->eta();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -61198,20 +62138,20 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDecayFunction2DVoigt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FTDistribution2DVoigt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDecayFunction2DVoigt *arg1 = (FTDecayFunction2DVoigt *) 0 ;
+  FTDistribution2DVoigt *arg1 = (FTDistribution2DVoigt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDecayFunction2DVoigt, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DVoigt, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDecayFunction2DVoigt" "', argument " "1"" of type '" "FTDecayFunction2DVoigt *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution2DVoigt" "', argument " "1"" of type '" "FTDistribution2DVoigt *""'"); 
   }
-  arg1 = reinterpret_cast< FTDecayFunction2DVoigt * >(argp1);
+  arg1 = reinterpret_cast< FTDistribution2DVoigt * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -61220,31 +62160,122 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FTDecayFunction2DVoigt_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution2DVoigt_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDecayFunction2DVoigt, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution2DVoigt, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FTDecayFunction2DVoigt_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FTDistribution2DVoigt_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_delete_IFTDistribution1D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IInterferenceFunction__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IFTDistribution1D *arg1 = (IFTDistribution1D *) 0 ;
+  PyObject *arg1 = (PyObject *) 0 ;
+  IInterferenceFunction *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  arg1 = swig_obj[0];
+  if ( arg1 != Py_None ) {
+    /* subclassed */
+    result = (IInterferenceFunction *)new SwigDirector_IInterferenceFunction(arg1); 
+  } else {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
+    SWIG_fail;
+  }
+  
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IInterferenceFunction, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_IInterferenceFunction__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  PyObject *arg1 = (PyObject *) 0 ;
+  IInterferenceFunction *arg2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  IInterferenceFunction *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  arg1 = swig_obj[0];
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IInterferenceFunction,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_IInterferenceFunction" "', argument " "2"" of type '" "IInterferenceFunction const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_IInterferenceFunction" "', argument " "2"" of type '" "IInterferenceFunction const &""'"); 
+  }
+  arg2 = reinterpret_cast< IInterferenceFunction * >(argp2);
+  if ( arg1 != Py_None ) {
+    /* subclassed */
+    result = (IInterferenceFunction *)new SwigDirector_IInterferenceFunction(arg1,(IInterferenceFunction const &)*arg2); 
+  } else {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
+    SWIG_fail;
+  }
+  
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IInterferenceFunction, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_IInterferenceFunction(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_IInterferenceFunction", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    _v = (argv[0] != 0);
+    if (_v) {
+      return _wrap_new_IInterferenceFunction__SWIG_0(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    _v = (argv[0] != 0);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IInterferenceFunction, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_new_IInterferenceFunction__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_IInterferenceFunction'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IInterferenceFunction::IInterferenceFunction()\n"
+    "    IInterferenceFunction::IInterferenceFunction(PyObject *,IInterferenceFunction const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_IInterferenceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution1D, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFTDistribution1D" "', argument " "1"" of type '" "IFTDistribution1D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IInterferenceFunction" "', argument " "1"" of type '" "IInterferenceFunction *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDistribution1D * >(argp1);
+  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -61253,52 +62284,100 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDistribution1D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IInterferenceFunction_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDistribution1D *arg1 = (IFTDistribution1D *) 0 ;
+  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IFTDistribution1D *result = 0 ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  IInterferenceFunction *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution1D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution1D_clone" "', argument " "1"" of type '" "IFTDistribution1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_clone" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
+  }
+  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      Swig::DirectorPureVirtualException::raise("IInterferenceFunction::clone");
+    } else {
+      result = (IInterferenceFunction *)((IInterferenceFunction const *)arg1)->clone();
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
+  }
+  if (director) {
+    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
   }
-  arg1 = reinterpret_cast< IFTDistribution1D * >(argp1);
-  result = (IFTDistribution1D *)((IFTDistribution1D const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFTDistribution1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDistribution1D_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IInterferenceFunction_evaluate__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IFTDistribution1D *arg1 = (IFTDistribution1D *) 0 ;
-  double arg2 ;
+  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
+  kvector_t arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  void *argp2 ;
+  int res2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  Swig::Director *director = 0;
+  bool upcall = false;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFTDistribution1D_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution1D, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution1D_evaluate" "', argument " "1"" of type '" "IFTDistribution1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_evaluate" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDistribution1D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDistribution1D_evaluate" "', argument " "2"" of type '" "double""'");
+  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IInterferenceFunction_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IInterferenceFunction_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IInterferenceFunction_evaluate" "', argument " "3"" of type '" "double""'");
   } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((IFTDistribution1D const *)arg1)->evaluate(arg2);
+  arg3 = static_cast< double >(val3);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (double)((IInterferenceFunction const *)arg1)->IInterferenceFunction::evaluate(arg2,arg3);
+    } else {
+      result = (double)((IInterferenceFunction const *)arg1)->evaluate(arg2,arg3);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -61306,9 +62385,108 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDistribution1D_setOmega(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IInterferenceFunction_evaluate__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IFTDistribution1D *arg1 = (IFTDistribution1D *) 0 ;
+  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
+  kvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  double result;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_evaluate" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
+  }
+  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IInterferenceFunction_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IInterferenceFunction_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (double)((IInterferenceFunction const *)arg1)->IInterferenceFunction::evaluate(arg2);
+    } else {
+      result = (double)((IInterferenceFunction const *)arg1)->evaluate(arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IInterferenceFunction_evaluate(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IInterferenceFunction_evaluate", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IInterferenceFunction, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_IInterferenceFunction_evaluate__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IInterferenceFunction, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_IInterferenceFunction_evaluate__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IInterferenceFunction_evaluate'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IInterferenceFunction::evaluate(kvector_t const,double) const\n"
+    "    IInterferenceFunction::evaluate(kvector_t const) const\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_IInterferenceFunction_setPositionVariance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -61316,18 +62494,18 @@ SWIGINTERN PyObject *_wrap_IFTDistribution1D_setOmega(PyObject *SWIGUNUSEDPARM(s
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFTDistribution1D_setOmega", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution1D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IInterferenceFunction_setPositionVariance", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution1D_setOmega" "', argument " "1"" of type '" "IFTDistribution1D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_setPositionVariance" "', argument " "1"" of type '" "IInterferenceFunction *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDistribution1D * >(argp1);
+  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDistribution1D_setOmega" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IInterferenceFunction_setPositionVariance" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  (arg1)->setOmega(arg2);
+  (arg1)->setPositionVariance(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -61335,9 +62513,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDistribution1D_omega(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IInterferenceFunction_positionVariance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDistribution1D *arg1 = (IFTDistribution1D *) 0 ;
+  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -61345,12 +62523,12 @@ SWIGINTERN PyObject *_wrap_IFTDistribution1D_omega(PyObject *SWIGUNUSEDPARM(self
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution1D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution1D_omega" "', argument " "1"" of type '" "IFTDistribution1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_positionVariance" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDistribution1D * >(argp1);
-  result = (double)((IFTDistribution1D const *)arg1)->omega();
+  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
+  result = (double)((IInterferenceFunction const *)arg1)->positionVariance();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -61358,22 +62536,34 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDistribution1D_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IInterferenceFunction_getParticleDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDistribution1D *arg1 = (IFTDistribution1D *) 0 ;
+  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
   double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution1D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution1D_qSecondDerivative" "', argument " "1"" of type '" "IFTDistribution1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_getParticleDensity" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
+  }
+  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (double)((IInterferenceFunction const *)arg1)->IInterferenceFunction::getParticleDensity();
+    } else {
+      result = (double)((IInterferenceFunction const *)arg1)->getParticleDensity();
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
   }
-  arg1 = reinterpret_cast< IFTDistribution1D * >(argp1);
-  result = (double)((IFTDistribution1D const *)arg1)->qSecondDerivative();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -61381,134 +62571,128 @@ fail:
 }
 
 
-SWIGINTERN PyObject *IFTDistribution1D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IFTDistribution1D, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_new_FTDistribution1DCauchy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IInterferenceFunction_supportsMultilayer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDistribution1DCauchy *result = 0 ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution1DCauchy" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (FTDistribution1DCauchy *)new FTDistribution1DCauchy(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DCauchy, SWIG_POINTER_NEW |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_supportsMultilayer" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
+  }
+  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (bool)((IInterferenceFunction const *)arg1)->IInterferenceFunction::supportsMultilayer();
+    } else {
+      result = (bool)((IInterferenceFunction const *)arg1)->supportsMultilayer();
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DCauchy_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IInterferenceFunction_DWfactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DCauchy *arg1 = (FTDistribution1DCauchy *) 0 ;
+  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
+  kvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FTDistribution1DCauchy *result = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCauchy, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IInterferenceFunction_DWfactor", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCauchy_clone" "', argument " "1"" of type '" "FTDistribution1DCauchy const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_DWfactor" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DCauchy * >(argp1);
-  result = (FTDistribution1DCauchy *)((FTDistribution1DCauchy const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DCauchy, 0 |  0 );
+  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IInterferenceFunction_DWfactor" "', argument " "2"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IInterferenceFunction_DWfactor" "', argument " "2"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = (double)((IInterferenceFunction const *)arg1)->DWfactor(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DCauchy_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IInterferenceFunction_iff_without_dw(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DCauchy *arg1 = (FTDistribution1DCauchy *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
+  kvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  SwigDirector_IInterferenceFunction *darg = 0;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DCauchy_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCauchy, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IInterferenceFunction_iff_without_dw", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCauchy_accept" "', argument " "1"" of type '" "FTDistribution1DCauchy const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_iff_without_dw" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DCauchy * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution1DCauchy_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IInterferenceFunction_iff_without_dw" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IInterferenceFunction_iff_without_dw" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDistribution1DCauchy const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FTDistribution1DCauchy_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FTDistribution1DCauchy *arg1 = (FTDistribution1DCauchy *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DCauchy_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCauchy, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCauchy_evaluate" "', argument " "1"" of type '" "FTDistribution1DCauchy const *""'"); 
+  director = SWIG_DIRECTOR_CAST(arg1);
+  if (!director || !(director->swig_get_inner("iff_without_dw"))) {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing protected member iff_without_dw");
+    SWIG_fail;
   }
-  arg1 = reinterpret_cast< FTDistribution1DCauchy * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution1DCauchy_evaluate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((FTDistribution1DCauchy const *)arg1)->evaluate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FTDistribution1DCauchy_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FTDistribution1DCauchy *arg1 = (FTDistribution1DCauchy *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCauchy, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCauchy_qSecondDerivative" "', argument " "1"" of type '" "FTDistribution1DCauchy const *""'"); 
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    darg = dynamic_cast<SwigDirector_IInterferenceFunction *>(arg1);
+    if (upcall) {
+      Swig::DirectorPureVirtualException::raise("IInterferenceFunction::iff_without_dw");
+    } else {
+      result = (double)((SwigDirector_IInterferenceFunction const *)darg)->iff_without_dw(arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
   }
-  arg1 = reinterpret_cast< FTDistribution1DCauchy * >(argp1);
-  result = (double)((FTDistribution1DCauchy const *)arg1)->qSecondDerivative();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -61516,21 +62700,25 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDistribution1DCauchy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_disown_IInterferenceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DCauchy *arg1 = (FTDistribution1DCauchy *) 0 ;
+  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCauchy, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution1DCauchy" "', argument " "1"" of type '" "FTDistribution1DCauchy *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_IInterferenceFunction" "', argument " "1"" of type '" "IInterferenceFunction *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DCauchy * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
+  {
+    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
+    if (director) director->swig_disown();
+  }
+  
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -61538,66 +62726,65 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FTDistribution1DCauchy_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IInterferenceFunction_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution1DCauchy, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_IInterferenceFunction, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FTDistribution1DCauchy_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IInterferenceFunction_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution1DGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_ILayout(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  ILayout *arg1 = (ILayout *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDistribution1DGauss *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution1DGauss" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (FTDistribution1DGauss *)new FTDistribution1DGauss(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DGauss, SWIG_POINTER_NEW |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ILayout" "', argument " "1"" of type '" "ILayout *""'"); 
+  }
+  arg1 = reinterpret_cast< ILayout * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ILayout_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DGauss *arg1 = (FTDistribution1DGauss *) 0 ;
+  ILayout *arg1 = (ILayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDistribution1DGauss *result = 0 ;
+  ILayout *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGauss_clone" "', argument " "1"" of type '" "FTDistribution1DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_clone" "', argument " "1"" of type '" "ILayout const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DGauss * >(argp1);
-  result = (FTDistribution1DGauss *)((FTDistribution1DGauss const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DGauss, 0 |  0 );
+  arg1 = reinterpret_cast< ILayout * >(argp1);
+  result = (ILayout *)((ILayout const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ILayout, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ILayout_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DGauss *arg1 = (FTDistribution1DGauss *) 0 ;
+  ILayout *arg1 = (ILayout *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -61605,18 +62792,18 @@ SWIGINTERN PyObject *_wrap_FTDistribution1DGauss_accept(PyObject *SWIGUNUSEDPARM
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DGauss_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGauss, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ILayout_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGauss_accept" "', argument " "1"" of type '" "FTDistribution1DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_accept" "', argument " "1"" of type '" "ILayout const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DGauss * >(argp1);
+  arg1 = reinterpret_cast< ILayout * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution1DGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ILayout_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDistribution1DGauss const *)arg1)->accept(arg2);
+  ((ILayout const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -61624,200 +62811,137 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DGauss_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FTDistribution1DGauss *arg1 = (FTDistribution1DGauss *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DGauss_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGauss, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGauss_evaluate" "', argument " "1"" of type '" "FTDistribution1DGauss const *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDistribution1DGauss * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution1DGauss_evaluate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((FTDistribution1DGauss const *)arg1)->evaluate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FTDistribution1DGauss_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ILayout_particles(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DGauss *arg1 = (FTDistribution1DGauss *) 0 ;
+  ILayout *arg1 = (ILayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  SwigValueWrapper< SafePointerVector< IParticle > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGauss_qSecondDerivative" "', argument " "1"" of type '" "FTDistribution1DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_particles" "', argument " "1"" of type '" "ILayout const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DGauss * >(argp1);
-  result = (double)((FTDistribution1DGauss const *)arg1)->qSecondDerivative();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< ILayout * >(argp1);
+  result = ((ILayout const *)arg1)->particles();
+  resultobj = SWIG_NewPointerObj((new SafePointerVector< IParticle >(static_cast< const SafePointerVector< IParticle >& >(result))), SWIGTYPE_p_SafePointerVectorT_IParticle_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDistribution1DGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ILayout_interferenceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DGauss *arg1 = (FTDistribution1DGauss *) 0 ;
+  ILayout *arg1 = (ILayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  Swig::Director *director = 0;
+  IInterferenceFunction *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGauss, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution1DGauss" "', argument " "1"" of type '" "FTDistribution1DGauss *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_interferenceFunction" "', argument " "1"" of type '" "ILayout const *""'"); 
+  }
+  arg1 = reinterpret_cast< ILayout * >(argp1);
+  result = (IInterferenceFunction *)((ILayout const *)arg1)->interferenceFunction();
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
   }
-  arg1 = reinterpret_cast< FTDistribution1DGauss * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *FTDistribution1DGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution1DGauss, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FTDistribution1DGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FTDistribution1DGate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FTDistribution1DGate *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution1DGate" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (FTDistribution1DGate *)new FTDistribution1DGate(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DGate, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DGate_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ILayout_getTotalAbundance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DGate *arg1 = (FTDistribution1DGate *) 0 ;
+  ILayout *arg1 = (ILayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDistribution1DGate *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGate, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGate_clone" "', argument " "1"" of type '" "FTDistribution1DGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_getTotalAbundance" "', argument " "1"" of type '" "ILayout const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DGate * >(argp1);
-  result = (FTDistribution1DGate *)((FTDistribution1DGate const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DGate, 0 |  0 );
+  arg1 = reinterpret_cast< ILayout * >(argp1);
+  result = (double)((ILayout const *)arg1)->getTotalAbundance();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DGate_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ILayout_totalParticleSurfaceDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DGate *arg1 = (FTDistribution1DGate *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  ILayout *arg1 = (ILayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DGate_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGate, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGate_accept" "', argument " "1"" of type '" "FTDistribution1DGate const *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDistribution1DGate * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution1DGate_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_totalParticleSurfaceDensity" "', argument " "1"" of type '" "ILayout const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDistribution1DGate const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ILayout * >(argp1);
+  result = (double)((ILayout const *)arg1)->totalParticleSurfaceDensity();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DGate_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ILayout_setTotalParticleSurfaceDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DGate *arg1 = (FTDistribution1DGate *) 0 ;
+  ILayout *arg1 = (ILayout *) 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DGate_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGate, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ILayout_setTotalParticleSurfaceDensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGate_evaluate" "', argument " "1"" of type '" "FTDistribution1DGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_setTotalParticleSurfaceDensity" "', argument " "1"" of type '" "ILayout *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DGate * >(argp1);
+  arg1 = reinterpret_cast< ILayout * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution1DGate_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ILayout_setTotalParticleSurfaceDensity" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (double)((FTDistribution1DGate const *)arg1)->evaluate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  (arg1)->setTotalParticleSurfaceDensity(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DGate_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ILayout_weight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DGate *arg1 = (FTDistribution1DGate *) 0 ;
+  ILayout *arg1 = (ILayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -61825,12 +62949,12 @@ SWIGINTERN PyObject *_wrap_FTDistribution1DGate_qSecondDerivative(PyObject *SWIG
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGate, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DGate_qSecondDerivative" "', argument " "1"" of type '" "FTDistribution1DGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_weight" "', argument " "1"" of type '" "ILayout const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DGate * >(argp1);
-  result = (double)((FTDistribution1DGate const *)arg1)->qSecondDerivative();
+  arg1 = reinterpret_cast< ILayout * >(argp1);
+  result = (double)((ILayout const *)arg1)->weight();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -61838,21 +62962,28 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDistribution1DGate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ILayout_setWeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DGate *arg1 = (FTDistribution1DGate *) 0 ;
+  ILayout *arg1 = (ILayout *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DGate, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ILayout_setWeight", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution1DGate" "', argument " "1"" of type '" "FTDistribution1DGate *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_setWeight" "', argument " "1"" of type '" "ILayout *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DGate * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< ILayout * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ILayout_setWeight" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setWeight(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -61860,85 +62991,28 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FTDistribution1DGate_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ILayout_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution1DGate, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_ILayout, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FTDistribution1DGate_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FTDistribution1DTriangle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FTDistribution1DTriangle *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution1DTriangle" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (FTDistribution1DTriangle *)new FTDistribution1DTriangle(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DTriangle, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FTDistribution1DTriangle_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DTriangle *arg1 = (FTDistribution1DTriangle *) 0 ;
+  IPeakShape *arg1 = (IPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDistribution1DTriangle *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DTriangle, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DTriangle_clone" "', argument " "1"" of type '" "FTDistribution1DTriangle const *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDistribution1DTriangle * >(argp1);
-  result = (FTDistribution1DTriangle *)((FTDistribution1DTriangle const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DTriangle, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FTDistribution1DTriangle_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FTDistribution1DTriangle *arg1 = (FTDistribution1DTriangle *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DTriangle_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DTriangle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPeakShape, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DTriangle_accept" "', argument " "1"" of type '" "FTDistribution1DTriangle const *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDistribution1DTriangle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution1DTriangle_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IPeakShape" "', argument " "1"" of type '" "IPeakShape *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDistribution1DTriangle const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< IPeakShape * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -61946,52 +63020,76 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DTriangle_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DTriangle *arg1 = (FTDistribution1DTriangle *) 0 ;
-  double arg2 ;
+  IPeakShape *arg1 = (IPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  PyObject *swig_obj[1] ;
+  IPeakShape *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DTriangle_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DTriangle, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DTriangle_evaluate" "', argument " "1"" of type '" "FTDistribution1DTriangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPeakShape_clone" "', argument " "1"" of type '" "IPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DTriangle * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution1DTriangle_evaluate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((FTDistribution1DTriangle const *)arg1)->evaluate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IPeakShape * >(argp1);
+  result = (IPeakShape *)((IPeakShape const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IPeakShape, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DTriangle_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DTriangle *arg1 = (FTDistribution1DTriangle *) 0 ;
+  IPeakShape *arg1 = (IPeakShape *) 0 ;
+  kvector_t arg2 ;
+  kvector_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DTriangle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DTriangle_qSecondDerivative" "', argument " "1"" of type '" "FTDistribution1DTriangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPeakShape_evaluate" "', argument " "1"" of type '" "IPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DTriangle * >(argp1);
-  result = (double)((FTDistribution1DTriangle const *)arg1)->qSecondDerivative();
+  arg1 = reinterpret_cast< IPeakShape * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = (double)((IPeakShape const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -61999,201 +63097,206 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDistribution1DTriangle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IPeakShape_angularDisorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DTriangle *arg1 = (FTDistribution1DTriangle *) 0 ;
+  IPeakShape *arg1 = (IPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DTriangle, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution1DTriangle" "', argument " "1"" of type '" "FTDistribution1DTriangle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPeakShape_angularDisorder" "', argument " "1"" of type '" "IPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DTriangle * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IPeakShape * >(argp1);
+  result = (bool)((IPeakShape const *)arg1)->angularDisorder();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FTDistribution1DTriangle_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution1DTriangle, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_IPeakShape, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FTDistribution1DTriangle_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FTDistribution1DCosine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IsotropicGaussPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
+  double arg2 ;
   double val1 ;
   int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FTDistribution1DCosine *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  IsotropicGaussPeakShape *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
+  if (!SWIG_Python_UnpackTuple(args, "new_IsotropicGaussPeakShape", 2, 2, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution1DCosine" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IsotropicGaussPeakShape" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  result = (FTDistribution1DCosine *)new FTDistribution1DCosine(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DCosine, SWIG_POINTER_NEW |  0 );
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_IsotropicGaussPeakShape" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (IsotropicGaussPeakShape *)new IsotropicGaussPeakShape(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsotropicGaussPeakShape, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DCosine_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IsotropicGaussPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DCosine *arg1 = (FTDistribution1DCosine *) 0 ;
+  IsotropicGaussPeakShape *arg1 = (IsotropicGaussPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDistribution1DCosine *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCosine, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicGaussPeakShape, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCosine_clone" "', argument " "1"" of type '" "FTDistribution1DCosine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IsotropicGaussPeakShape" "', argument " "1"" of type '" "IsotropicGaussPeakShape *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DCosine * >(argp1);
-  result = (FTDistribution1DCosine *)((FTDistribution1DCosine const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DCosine, 0 |  0 );
+  arg1 = reinterpret_cast< IsotropicGaussPeakShape * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DCosine_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IsotropicGaussPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DCosine *arg1 = (FTDistribution1DCosine *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  IsotropicGaussPeakShape *arg1 = (IsotropicGaussPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  IsotropicGaussPeakShape *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DCosine_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCosine, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicGaussPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCosine_accept" "', argument " "1"" of type '" "FTDistribution1DCosine const *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDistribution1DCosine * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution1DCosine_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsotropicGaussPeakShape_clone" "', argument " "1"" of type '" "IsotropicGaussPeakShape const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDistribution1DCosine const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IsotropicGaussPeakShape * >(argp1);
+  result = (IsotropicGaussPeakShape *)((IsotropicGaussPeakShape const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsotropicGaussPeakShape, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DCosine_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IsotropicGaussPeakShape_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DCosine *arg1 = (FTDistribution1DCosine *) 0 ;
-  double arg2 ;
+  IsotropicGaussPeakShape *arg1 = (IsotropicGaussPeakShape *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DCosine_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCosine, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IsotropicGaussPeakShape_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicGaussPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCosine_evaluate" "', argument " "1"" of type '" "FTDistribution1DCosine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsotropicGaussPeakShape_accept" "', argument " "1"" of type '" "IsotropicGaussPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DCosine * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution1DCosine_evaluate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((FTDistribution1DCosine const *)arg1)->evaluate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IsotropicGaussPeakShape * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IsotropicGaussPeakShape_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((IsotropicGaussPeakShape const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DCosine_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IsotropicGaussPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DCosine *arg1 = (FTDistribution1DCosine *) 0 ;
+  IsotropicGaussPeakShape *arg1 = (IsotropicGaussPeakShape *) 0 ;
+  kvector_t arg2 ;
+  kvector_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCosine, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IsotropicGaussPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicGaussPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DCosine_qSecondDerivative" "', argument " "1"" of type '" "FTDistribution1DCosine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsotropicGaussPeakShape_evaluate" "', argument " "1"" of type '" "IsotropicGaussPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DCosine * >(argp1);
-  result = (double)((FTDistribution1DCosine const *)arg1)->qSecondDerivative();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_FTDistribution1DCosine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FTDistribution1DCosine *arg1 = (FTDistribution1DCosine *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DCosine, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution1DCosine" "', argument " "1"" of type '" "FTDistribution1DCosine *""'"); 
+  arg1 = reinterpret_cast< IsotropicGaussPeakShape * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IsotropicGaussPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IsotropicGaussPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg1 = reinterpret_cast< FTDistribution1DCosine * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IsotropicGaussPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IsotropicGaussPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = (double)((IsotropicGaussPeakShape const *)arg1)->evaluate(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FTDistribution1DCosine_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IsotropicGaussPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution1DCosine, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_IsotropicGaussPeakShape, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FTDistribution1DCosine_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IsotropicGaussPeakShape_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution1DVoigt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IsotropicLorentzPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -62202,125 +63305,148 @@ SWIGINTERN PyObject *_wrap_new_FTDistribution1DVoigt(PyObject *SWIGUNUSEDPARM(se
   double val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  FTDistribution1DVoigt *result = 0 ;
+  IsotropicLorentzPeakShape *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FTDistribution1DVoigt", 2, 2, swig_obj)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_IsotropicLorentzPeakShape", 2, 2, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution1DVoigt" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IsotropicLorentzPeakShape" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution1DVoigt" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_IsotropicLorentzPeakShape" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (FTDistribution1DVoigt *)new FTDistribution1DVoigt(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DVoigt, SWIG_POINTER_NEW |  0 );
+  result = (IsotropicLorentzPeakShape *)new IsotropicLorentzPeakShape(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsotropicLorentzPeakShape, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DVoigt_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IsotropicLorentzPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DVoigt *arg1 = (FTDistribution1DVoigt *) 0 ;
+  IsotropicLorentzPeakShape *arg1 = (IsotropicLorentzPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDistribution1DVoigt *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicLorentzPeakShape, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DVoigt_clone" "', argument " "1"" of type '" "FTDistribution1DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IsotropicLorentzPeakShape" "', argument " "1"" of type '" "IsotropicLorentzPeakShape *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DVoigt * >(argp1);
-  result = (FTDistribution1DVoigt *)((FTDistribution1DVoigt const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
+  arg1 = reinterpret_cast< IsotropicLorentzPeakShape * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DVoigt_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IsotropicLorentzPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DVoigt *arg1 = (FTDistribution1DVoigt *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  IsotropicLorentzPeakShape *arg1 = (IsotropicLorentzPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  IsotropicLorentzPeakShape *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DVoigt_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicLorentzPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DVoigt_accept" "', argument " "1"" of type '" "FTDistribution1DVoigt const *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDistribution1DVoigt * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution1DVoigt_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsotropicLorentzPeakShape_clone" "', argument " "1"" of type '" "IsotropicLorentzPeakShape const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDistribution1DVoigt const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IsotropicLorentzPeakShape * >(argp1);
+  result = (IsotropicLorentzPeakShape *)((IsotropicLorentzPeakShape const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsotropicLorentzPeakShape, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DVoigt_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IsotropicLorentzPeakShape_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DVoigt *arg1 = (FTDistribution1DVoigt *) 0 ;
-  double arg2 ;
+  IsotropicLorentzPeakShape *arg1 = (IsotropicLorentzPeakShape *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution1DVoigt_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IsotropicLorentzPeakShape_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicLorentzPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DVoigt_evaluate" "', argument " "1"" of type '" "FTDistribution1DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsotropicLorentzPeakShape_accept" "', argument " "1"" of type '" "IsotropicLorentzPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DVoigt * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution1DVoigt_evaluate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((FTDistribution1DVoigt const *)arg1)->evaluate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IsotropicLorentzPeakShape * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IsotropicLorentzPeakShape_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((IsotropicLorentzPeakShape const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DVoigt_eta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IsotropicLorentzPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DVoigt *arg1 = (FTDistribution1DVoigt *) 0 ;
+  IsotropicLorentzPeakShape *arg1 = (IsotropicLorentzPeakShape *) 0 ;
+  kvector_t arg2 ;
+  kvector_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IsotropicLorentzPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicLorentzPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DVoigt_eta" "', argument " "1"" of type '" "FTDistribution1DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsotropicLorentzPeakShape_evaluate" "', argument " "1"" of type '" "IsotropicLorentzPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DVoigt * >(argp1);
-  result = (double)((FTDistribution1DVoigt const *)arg1)->eta();
+  arg1 = reinterpret_cast< IsotropicLorentzPeakShape * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IsotropicLorentzPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IsotropicLorentzPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IsotropicLorentzPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IsotropicLorentzPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = (double)((IsotropicLorentzPeakShape const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -62328,43 +63454,69 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution1DVoigt_qSecondDerivative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IsotropicLorentzPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IsotropicLorentzPeakShape, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *IsotropicLorentzPeakShape_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_GaussFisherPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DVoigt *arg1 = (FTDistribution1DVoigt *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  GaussFisherPeakShape *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution1DVoigt_qSecondDerivative" "', argument " "1"" of type '" "FTDistribution1DVoigt const *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDistribution1DVoigt * >(argp1);
-  result = (double)((FTDistribution1DVoigt const *)arg1)->qSecondDerivative();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (!SWIG_Python_UnpackTuple(args, "new_GaussFisherPeakShape", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_GaussFisherPeakShape" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_GaussFisherPeakShape" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_GaussFisherPeakShape" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (GaussFisherPeakShape *)new GaussFisherPeakShape(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_GaussFisherPeakShape, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDistribution1DVoigt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_GaussFisherPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution1DVoigt *arg1 = (FTDistribution1DVoigt *) 0 ;
+  GaussFisherPeakShape *arg1 = (GaussFisherPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution1DVoigt, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GaussFisherPeakShape, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution1DVoigt" "', argument " "1"" of type '" "FTDistribution1DVoigt *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_GaussFisherPeakShape" "', argument " "1"" of type '" "GaussFisherPeakShape *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution1DVoigt * >(argp1);
+  arg1 = reinterpret_cast< GaussFisherPeakShape * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -62373,62 +63525,51 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FTDistribution1DVoigt_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution1DVoigt, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FTDistribution1DVoigt_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_IFTDistribution2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GaussFisherPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
+  GaussFisherPeakShape *arg1 = (GaussFisherPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IFTDistribution2D *result = 0 ;
+  GaussFisherPeakShape *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GaussFisherPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_clone" "', argument " "1"" of type '" "IFTDistribution2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GaussFisherPeakShape_clone" "', argument " "1"" of type '" "GaussFisherPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
-  result = (IFTDistribution2D *)((IFTDistribution2D const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
+  arg1 = reinterpret_cast< GaussFisherPeakShape * >(argp1);
+  result = (GaussFisherPeakShape *)((GaussFisherPeakShape const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_GaussFisherPeakShape, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDistribution2D_setGamma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GaussFisherPeakShape_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
-  double arg2 ;
+  GaussFisherPeakShape *arg1 = (GaussFisherPeakShape *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFTDistribution2D_setGamma", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "GaussFisherPeakShape_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GaussFisherPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_setGamma" "', argument " "1"" of type '" "IFTDistribution2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GaussFisherPeakShape_accept" "', argument " "1"" of type '" "GaussFisherPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDistribution2D_setGamma" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setGamma(arg2);
+  arg1 = reinterpret_cast< GaussFisherPeakShape * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "GaussFisherPeakShape_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((GaussFisherPeakShape const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -62436,22 +63577,53 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDistribution2D_gamma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GaussFisherPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
+  GaussFisherPeakShape *arg1 = (GaussFisherPeakShape *) 0 ;
+  kvector_t arg2 ;
+  kvector_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
+  void *argp2 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "GaussFisherPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GaussFisherPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_gamma" "', argument " "1"" of type '" "IFTDistribution2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GaussFisherPeakShape_evaluate" "', argument " "1"" of type '" "GaussFisherPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
-  result = (double)((IFTDistribution2D const *)arg1)->gamma();
+  arg1 = reinterpret_cast< GaussFisherPeakShape * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "GaussFisherPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "GaussFisherPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "GaussFisherPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "GaussFisherPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = (double)((GaussFisherPeakShape const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -62459,106 +63631,199 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDistribution2D_delta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GaussFisherPeakShape_angularDisorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
+  GaussFisherPeakShape *arg1 = (GaussFisherPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GaussFisherPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_delta" "', argument " "1"" of type '" "IFTDistribution2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GaussFisherPeakShape_angularDisorder" "', argument " "1"" of type '" "GaussFisherPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
-  result = (double)((IFTDistribution2D const *)arg1)->delta();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< GaussFisherPeakShape * >(argp1);
+  result = (bool)((GaussFisherPeakShape const *)arg1)->angularDisorder();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDistribution2D_omegaX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *GaussFisherPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_GaussFisherPeakShape, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *GaussFisherPeakShape_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_LorentzFisherPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  LorentzFisherPeakShape *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_LorentzFisherPeakShape", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_LorentzFisherPeakShape" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_LorentzFisherPeakShape" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_LorentzFisherPeakShape" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (LorentzFisherPeakShape *)new LorentzFisherPeakShape(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_LorentzFisherPeakShape, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_LorentzFisherPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  LorentzFisherPeakShape *arg1 = (LorentzFisherPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LorentzFisherPeakShape, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_omegaX" "', argument " "1"" of type '" "IFTDistribution2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_LorentzFisherPeakShape" "', argument " "1"" of type '" "LorentzFisherPeakShape *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
-  result = (double)((IFTDistribution2D const *)arg1)->omegaX();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< LorentzFisherPeakShape * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDistribution2D_omegaY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_LorentzFisherPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
+  LorentzFisherPeakShape *arg1 = (LorentzFisherPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  LorentzFisherPeakShape *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LorentzFisherPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_omegaY" "', argument " "1"" of type '" "IFTDistribution2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LorentzFisherPeakShape_clone" "', argument " "1"" of type '" "LorentzFisherPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
-  result = (double)((IFTDistribution2D const *)arg1)->omegaY();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< LorentzFisherPeakShape * >(argp1);
+  result = (LorentzFisherPeakShape *)((LorentzFisherPeakShape const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_LorentzFisherPeakShape, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFTDistribution2D_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_LorentzFisherPeakShape_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  LorentzFisherPeakShape *arg1 = (LorentzFisherPeakShape *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "LorentzFisherPeakShape_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LorentzFisherPeakShape, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LorentzFisherPeakShape_accept" "', argument " "1"" of type '" "LorentzFisherPeakShape const *""'"); 
+  }
+  arg1 = reinterpret_cast< LorentzFisherPeakShape * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "LorentzFisherPeakShape_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((LorentzFisherPeakShape const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_LorentzFisherPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  LorentzFisherPeakShape *arg1 = (LorentzFisherPeakShape *) 0 ;
+  kvector_t arg2 ;
+  kvector_t arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
   PyObject *swig_obj[3] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFTDistribution2D_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "LorentzFisherPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LorentzFisherPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFTDistribution2D_evaluate" "', argument " "1"" of type '" "IFTDistribution2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LorentzFisherPeakShape_evaluate" "', argument " "1"" of type '" "LorentzFisherPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFTDistribution2D_evaluate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IFTDistribution2D_evaluate" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((IFTDistribution2D const *)arg1)->evaluate(arg2,arg3);
+  arg1 = reinterpret_cast< LorentzFisherPeakShape * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "LorentzFisherPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "LorentzFisherPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "LorentzFisherPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "LorentzFisherPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = (double)((LorentzFisherPeakShape const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -62566,183 +63831,150 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IFTDistribution2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_LorentzFisherPeakShape_angularDisorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFTDistribution2D *arg1 = (IFTDistribution2D *) 0 ;
+  LorentzFisherPeakShape *arg1 = (LorentzFisherPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFTDistribution2D, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LorentzFisherPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFTDistribution2D" "', argument " "1"" of type '" "IFTDistribution2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LorentzFisherPeakShape_angularDisorder" "', argument " "1"" of type '" "LorentzFisherPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< IFTDistribution2D * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< LorentzFisherPeakShape * >(argp1);
+  result = (bool)((LorentzFisherPeakShape const *)arg1)->angularDisorder();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IFTDistribution2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *LorentzFisherPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IFTDistribution2D, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_LorentzFisherPeakShape, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DCauchy__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *LorentzFisherPeakShape_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_VonMisesFisherGaussPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
-  double arg3 ;
+  kvector_t arg3 ;
+  double arg4 ;
+  double arg5 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  FTDistribution2DCauchy *result = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
+  PyObject *swig_obj[5] ;
+  VonMisesFisherGaussPeakShape *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_VonMisesFisherGaussPeakShape", 5, 5, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DCauchy" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_VonMisesFisherGaussPeakShape" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DCauchy" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_VonMisesFisherGaussPeakShape" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDistribution2DCauchy" "', argument " "3"" of type '" "double""'");
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_VonMisesFisherGaussPeakShape" "', argument " "3"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_VonMisesFisherGaussPeakShape" "', argument " "3"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_VonMisesFisherGaussPeakShape" "', argument " "4"" of type '" "double""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (FTDistribution2DCauchy *)new FTDistribution2DCauchy(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DCauchy, SWIG_POINTER_NEW |  0 );
+  arg4 = static_cast< double >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_VonMisesFisherGaussPeakShape" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  result = (VonMisesFisherGaussPeakShape *)new VonMisesFisherGaussPeakShape(arg1,arg2,arg3,arg4,arg5);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VonMisesFisherGaussPeakShape, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DCauchy__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_VonMisesFisherGaussPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  FTDistribution2DCauchy *result = 0 ;
+  VonMisesFisherGaussPeakShape *arg1 = (VonMisesFisherGaussPeakShape *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DCauchy" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DCauchy" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (FTDistribution2DCauchy *)new FTDistribution2DCauchy(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DCauchy, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesFisherGaussPeakShape, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_VonMisesFisherGaussPeakShape" "', argument " "1"" of type '" "VonMisesFisherGaussPeakShape *""'"); 
+  }
+  arg1 = reinterpret_cast< VonMisesFisherGaussPeakShape * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DCauchy(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDistribution2DCauchy", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_FTDistribution2DCauchy__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_FTDistribution2DCauchy__SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDistribution2DCauchy'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    FTDistribution2DCauchy::FTDistribution2DCauchy(double,double,double)\n"
-    "    FTDistribution2DCauchy::FTDistribution2DCauchy(double,double)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_FTDistribution2DCauchy_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VonMisesFisherGaussPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DCauchy *arg1 = (FTDistribution2DCauchy *) 0 ;
+  VonMisesFisherGaussPeakShape *arg1 = (VonMisesFisherGaussPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDistribution2DCauchy *result = 0 ;
+  VonMisesFisherGaussPeakShape *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCauchy, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesFisherGaussPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DCauchy_clone" "', argument " "1"" of type '" "FTDistribution2DCauchy const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesFisherGaussPeakShape_clone" "', argument " "1"" of type '" "VonMisesFisherGaussPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DCauchy * >(argp1);
-  result = (FTDistribution2DCauchy *)((FTDistribution2DCauchy const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DCauchy, 0 |  0 );
+  arg1 = reinterpret_cast< VonMisesFisherGaussPeakShape * >(argp1);
+  result = (VonMisesFisherGaussPeakShape *)((VonMisesFisherGaussPeakShape const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VonMisesFisherGaussPeakShape, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution2DCauchy_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VonMisesFisherGaussPeakShape_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DCauchy *arg1 = (FTDistribution2DCauchy *) 0 ;
+  VonMisesFisherGaussPeakShape *arg1 = (VonMisesFisherGaussPeakShape *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -62750,18 +63982,18 @@ SWIGINTERN PyObject *_wrap_FTDistribution2DCauchy_accept(PyObject *SWIGUNUSEDPAR
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DCauchy_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCauchy, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "VonMisesFisherGaussPeakShape_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesFisherGaussPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DCauchy_accept" "', argument " "1"" of type '" "FTDistribution2DCauchy const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesFisherGaussPeakShape_accept" "', argument " "1"" of type '" "VonMisesFisherGaussPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DCauchy * >(argp1);
+  arg1 = reinterpret_cast< VonMisesFisherGaussPeakShape * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution2DCauchy_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VonMisesFisherGaussPeakShape_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDistribution2DCauchy const *)arg1)->accept(arg2);
+  ((VonMisesFisherGaussPeakShape const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -62769,37 +64001,53 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution2DCauchy_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VonMisesFisherGaussPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DCauchy *arg1 = (FTDistribution2DCauchy *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  VonMisesFisherGaussPeakShape *arg1 = (VonMisesFisherGaussPeakShape *) 0 ;
+  kvector_t arg2 ;
+  kvector_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
   PyObject *swig_obj[3] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DCauchy_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCauchy, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "VonMisesFisherGaussPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesFisherGaussPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DCauchy_evaluate" "', argument " "1"" of type '" "FTDistribution2DCauchy const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesFisherGaussPeakShape_evaluate" "', argument " "1"" of type '" "VonMisesFisherGaussPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DCauchy * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution2DCauchy_evaluate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDistribution2DCauchy_evaluate" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((FTDistribution2DCauchy const *)arg1)->evaluate(arg2,arg3);
+  arg1 = reinterpret_cast< VonMisesFisherGaussPeakShape * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VonMisesFisherGaussPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VonMisesFisherGaussPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "VonMisesFisherGaussPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VonMisesFisherGaussPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = (double)((VonMisesFisherGaussPeakShape const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -62807,187 +64055,142 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDistribution2DCauchy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VonMisesFisherGaussPeakShape_angularDisorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DCauchy *arg1 = (FTDistribution2DCauchy *) 0 ;
+  VonMisesFisherGaussPeakShape *arg1 = (VonMisesFisherGaussPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCauchy, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesFisherGaussPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution2DCauchy" "', argument " "1"" of type '" "FTDistribution2DCauchy *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesFisherGaussPeakShape_angularDisorder" "', argument " "1"" of type '" "VonMisesFisherGaussPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DCauchy * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< VonMisesFisherGaussPeakShape * >(argp1);
+  result = (bool)((VonMisesFisherGaussPeakShape const *)arg1)->angularDisorder();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FTDistribution2DCauchy_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *VonMisesFisherGaussPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution2DCauchy, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_VonMisesFisherGaussPeakShape, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FTDistribution2DCauchy_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *VonMisesFisherGaussPeakShape_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DGauss__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_VonMisesGaussPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
-  double arg3 ;
+  kvector_t arg3 ;
+  double arg4 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  FTDistribution2DGauss *result = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  VonMisesGaussPeakShape *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_VonMisesGaussPeakShape", 4, 4, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DGauss" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_VonMisesGaussPeakShape" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DGauss" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_VonMisesGaussPeakShape" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDistribution2DGauss" "', argument " "3"" of type '" "double""'");
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_VonMisesGaussPeakShape" "', argument " "3"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_VonMisesGaussPeakShape" "', argument " "3"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_VonMisesGaussPeakShape" "', argument " "4"" of type '" "double""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (FTDistribution2DGauss *)new FTDistribution2DGauss(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DGauss, SWIG_POINTER_NEW |  0 );
+  arg4 = static_cast< double >(val4);
+  result = (VonMisesGaussPeakShape *)new VonMisesGaussPeakShape(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VonMisesGaussPeakShape, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DGauss__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_VonMisesGaussPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  FTDistribution2DGauss *result = 0 ;
+  VonMisesGaussPeakShape *arg1 = (VonMisesGaussPeakShape *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DGauss" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DGauss" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (FTDistribution2DGauss *)new FTDistribution2DGauss(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DGauss, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesGaussPeakShape, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_VonMisesGaussPeakShape" "', argument " "1"" of type '" "VonMisesGaussPeakShape *""'"); 
+  }
+  arg1 = reinterpret_cast< VonMisesGaussPeakShape * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DGauss(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDistribution2DGauss", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_FTDistribution2DGauss__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_FTDistribution2DGauss__SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDistribution2DGauss'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    FTDistribution2DGauss::FTDistribution2DGauss(double,double,double)\n"
-    "    FTDistribution2DGauss::FTDistribution2DGauss(double,double)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_FTDistribution2DGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VonMisesGaussPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DGauss *arg1 = (FTDistribution2DGauss *) 0 ;
+  VonMisesGaussPeakShape *arg1 = (VonMisesGaussPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDistribution2DGauss *result = 0 ;
+  VonMisesGaussPeakShape *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesGaussPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DGauss_clone" "', argument " "1"" of type '" "FTDistribution2DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesGaussPeakShape_clone" "', argument " "1"" of type '" "VonMisesGaussPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DGauss * >(argp1);
-  result = (FTDistribution2DGauss *)((FTDistribution2DGauss const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DGauss, 0 |  0 );
+  arg1 = reinterpret_cast< VonMisesGaussPeakShape * >(argp1);
+  result = (VonMisesGaussPeakShape *)((VonMisesGaussPeakShape const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VonMisesGaussPeakShape, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution2DGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VonMisesGaussPeakShape_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DGauss *arg1 = (FTDistribution2DGauss *) 0 ;
+  VonMisesGaussPeakShape *arg1 = (VonMisesGaussPeakShape *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -62995,18 +64198,18 @@ SWIGINTERN PyObject *_wrap_FTDistribution2DGauss_accept(PyObject *SWIGUNUSEDPARM
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DGauss_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGauss, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "VonMisesGaussPeakShape_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesGaussPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DGauss_accept" "', argument " "1"" of type '" "FTDistribution2DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesGaussPeakShape_accept" "', argument " "1"" of type '" "VonMisesGaussPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DGauss * >(argp1);
+  arg1 = reinterpret_cast< VonMisesGaussPeakShape * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution2DGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VonMisesGaussPeakShape_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDistribution2DGauss const *)arg1)->accept(arg2);
+  ((VonMisesGaussPeakShape const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -63014,37 +64217,53 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution2DGauss_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VonMisesGaussPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DGauss *arg1 = (FTDistribution2DGauss *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  VonMisesGaussPeakShape *arg1 = (VonMisesGaussPeakShape *) 0 ;
+  kvector_t arg2 ;
+  kvector_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
   PyObject *swig_obj[3] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DGauss_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGauss, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "VonMisesGaussPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesGaussPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DGauss_evaluate" "', argument " "1"" of type '" "FTDistribution2DGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesGaussPeakShape_evaluate" "', argument " "1"" of type '" "VonMisesGaussPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DGauss * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution2DGauss_evaluate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDistribution2DGauss_evaluate" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((FTDistribution2DGauss const *)arg1)->evaluate(arg2,arg3);
+  arg1 = reinterpret_cast< VonMisesGaussPeakShape * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VonMisesGaussPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VonMisesGaussPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "VonMisesGaussPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VonMisesGaussPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = (double)((VonMisesGaussPeakShape const *)arg1)->evaluate(arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -63052,187 +64271,118 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDistribution2DGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VonMisesGaussPeakShape_angularDisorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DGauss *arg1 = (FTDistribution2DGauss *) 0 ;
+  VonMisesGaussPeakShape *arg1 = (VonMisesGaussPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGauss, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesGaussPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution2DGauss" "', argument " "1"" of type '" "FTDistribution2DGauss *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesGaussPeakShape_angularDisorder" "', argument " "1"" of type '" "VonMisesGaussPeakShape const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DGauss * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< VonMisesGaussPeakShape * >(argp1);
+  result = (bool)((VonMisesGaussPeakShape const *)arg1)->angularDisorder();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FTDistribution2DGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *VonMisesGaussPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution2DGauss, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_VonMisesGaussPeakShape, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FTDistribution2DGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *VonMisesGaussPeakShape_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DGate__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction1DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
-  double arg3 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  FTDistribution2DGate *result = 0 ;
+  PyObject *swig_obj[2] ;
+  InterferenceFunction1DLattice *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_InterferenceFunction1DLattice", 2, 2, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DGate" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction1DLattice" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DGate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction1DLattice" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDistribution2DGate" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FTDistribution2DGate *)new FTDistribution2DGate(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DGate, SWIG_POINTER_NEW |  0 );
+  result = (InterferenceFunction1DLattice *)new InterferenceFunction1DLattice(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction1DLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DGate__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_InterferenceFunction1DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  FTDistribution2DGate *result = 0 ;
+  InterferenceFunction1DLattice *arg1 = (InterferenceFunction1DLattice *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DGate" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DGate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (FTDistribution2DGate *)new FTDistribution2DGate(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DGate, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction1DLattice, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunction1DLattice" "', argument " "1"" of type '" "InterferenceFunction1DLattice *""'"); 
+  }
+  arg1 = reinterpret_cast< InterferenceFunction1DLattice * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DGate(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDistribution2DGate", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_FTDistribution2DGate__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_FTDistribution2DGate__SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDistribution2DGate'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    FTDistribution2DGate::FTDistribution2DGate(double,double,double)\n"
-    "    FTDistribution2DGate::FTDistribution2DGate(double,double)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_FTDistribution2DGate_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction1DLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DGate *arg1 = (FTDistribution2DGate *) 0 ;
+  InterferenceFunction1DLattice *arg1 = (InterferenceFunction1DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDistribution2DGate *result = 0 ;
+  InterferenceFunction1DLattice *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGate, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DGate_clone" "', argument " "1"" of type '" "FTDistribution2DGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction1DLattice_clone" "', argument " "1"" of type '" "InterferenceFunction1DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DGate * >(argp1);
-  result = (FTDistribution2DGate *)((FTDistribution2DGate const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DGate, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunction1DLattice * >(argp1);
+  result = (InterferenceFunction1DLattice *)((InterferenceFunction1DLattice const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution2DGate_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction1DLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DGate *arg1 = (FTDistribution2DGate *) 0 ;
+  InterferenceFunction1DLattice *arg1 = (InterferenceFunction1DLattice *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -63240,18 +64390,18 @@ SWIGINTERN PyObject *_wrap_FTDistribution2DGate_accept(PyObject *SWIGUNUSEDPARM(
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DGate_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGate, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction1DLattice_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DGate_accept" "', argument " "1"" of type '" "FTDistribution2DGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction1DLattice_accept" "', argument " "1"" of type '" "InterferenceFunction1DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DGate * >(argp1);
+  arg1 = reinterpret_cast< InterferenceFunction1DLattice * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution2DGate_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction1DLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDistribution2DGate const *)arg1)->accept(arg2);
+  ((InterferenceFunction1DLattice const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -63259,152 +64409,218 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution2DGate_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction1DLattice_setDecayFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DGate *arg1 = (FTDistribution2DGate *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  InterferenceFunction1DLattice *arg1 = (InterferenceFunction1DLattice *) 0 ;
+  IFTDecayFunction1D *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DGate_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGate, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction1DLattice_setDecayFunction", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DGate_evaluate" "', argument " "1"" of type '" "FTDistribution2DGate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction1DLattice_setDecayFunction" "', argument " "1"" of type '" "InterferenceFunction1DLattice *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DGate * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution2DGate_evaluate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDistribution2DGate_evaluate" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((FTDistribution2DGate const *)arg1)->evaluate(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< InterferenceFunction1DLattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFTDecayFunction1D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction1DLattice_setDecayFunction" "', argument " "2"" of type '" "IFTDecayFunction1D const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction1DLattice_setDecayFunction" "', argument " "2"" of type '" "IFTDecayFunction1D const &""'"); 
+  }
+  arg2 = reinterpret_cast< IFTDecayFunction1D * >(argp2);
+  (arg1)->setDecayFunction((IFTDecayFunction1D const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDistribution2DGate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction1DLattice_getLatticeParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DGate *arg1 = (FTDistribution2DGate *) 0 ;
+  InterferenceFunction1DLattice *arg1 = (InterferenceFunction1DLattice *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  Lattice1DParameters result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction1DLattice_getLatticeParameters" "', argument " "1"" of type '" "InterferenceFunction1DLattice const *""'"); 
+  }
+  arg1 = reinterpret_cast< InterferenceFunction1DLattice * >(argp1);
+  result = ((InterferenceFunction1DLattice const *)arg1)->getLatticeParameters();
+  resultobj = SWIG_NewPointerObj((new Lattice1DParameters(static_cast< const Lattice1DParameters& >(result))), SWIGTYPE_p_Lattice1DParameters, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction1DLattice_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  InterferenceFunction1DLattice *arg1 = (InterferenceFunction1DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DGate, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution2DGate" "', argument " "1"" of type '" "FTDistribution2DGate *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction1DLattice_getChildren" "', argument " "1"" of type '" "InterferenceFunction1DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DGate * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunction1DLattice * >(argp1);
+  result = ((InterferenceFunction1DLattice const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FTDistribution2DGate_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *InterferenceFunction1DLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution2DGate, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunction1DLattice, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FTDistribution2DGate_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *InterferenceFunction1DLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DCone__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  FTDistribution2DCone *result = 0 ;
+  Lattice2D *arg1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  InterferenceFunction2DLattice *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DCone" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DCone" "', argument " "2"" of type '" "double""'");
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction2DLattice" "', argument " "1"" of type '" "Lattice2D const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction2DLattice" "', argument " "1"" of type '" "Lattice2D const &""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  result = (InterferenceFunction2DLattice *)new InterferenceFunction2DLattice((Lattice2D const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  InterferenceFunction2DLattice *result = 0 ;
+  
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction2DLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DLattice" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDistribution2DCone" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DLattice" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (FTDistribution2DCone *)new FTDistribution2DCone(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DCone, SWIG_POINTER_NEW |  0 );
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunction2DLattice" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (InterferenceFunction2DLattice *)new InterferenceFunction2DLattice(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DCone__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DLattice__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
+  double arg3 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  FTDistribution2DCone *result = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  InterferenceFunction2DLattice *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DCone" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction2DLattice" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DCone" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DLattice" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (FTDistribution2DCone *)new FTDistribution2DCone(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DCone, SWIG_POINTER_NEW |  0 );
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DLattice" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (InterferenceFunction2DLattice *)new InterferenceFunction2DLattice(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DCone(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DLattice(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[5] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDistribution2DCone", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_InterferenceFunction2DLattice", 0, 4, argv))) SWIG_fail;
   --argc;
-  if (argc == 2) {
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_InterferenceFunction2DLattice__SWIG_0(self, argc, argv);
+    }
+  }
+  if (argc == 3) {
     int _v;
     {
       int res = SWIG_AsVal_double(argv[0], NULL);
@@ -63416,11 +64632,17 @@ SWIGINTERN PyObject *_wrap_new_FTDistribution2DCone(PyObject *self, PyObject *ar
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_new_FTDistribution2DCone__SWIG_1(self, argc, argv);
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_new_InterferenceFunction2DLattice__SWIG_2(self, argc, argv);
+        }
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 4) {
     int _v;
     {
       int res = SWIG_AsVal_double(argv[0], NULL);
@@ -63437,47 +64659,76 @@ SWIGINTERN PyObject *_wrap_new_FTDistribution2DCone(PyObject *self, PyObject *ar
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_new_FTDistribution2DCone__SWIG_0(self, argc, argv);
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_InterferenceFunction2DLattice__SWIG_1(self, argc, argv);
+          }
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDistribution2DCone'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_InterferenceFunction2DLattice'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    FTDistribution2DCone::FTDistribution2DCone(double,double,double)\n"
-    "    FTDistribution2DCone::FTDistribution2DCone(double,double)\n");
+    "    InterferenceFunction2DLattice::InterferenceFunction2DLattice(Lattice2D const &)\n"
+    "    InterferenceFunction2DLattice::InterferenceFunction2DLattice(double,double,double,double)\n"
+    "    InterferenceFunction2DLattice::InterferenceFunction2DLattice(double,double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution2DCone_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_InterferenceFunction2DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DCone *arg1 = (FTDistribution2DCone *) 0 ;
+  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FTDistribution2DCone *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCone, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DCone_clone" "', argument " "1"" of type '" "FTDistribution2DCone const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunction2DLattice" "', argument " "1"" of type '" "InterferenceFunction2DLattice *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DCone * >(argp1);
-  result = (FTDistribution2DCone *)((FTDistribution2DCone const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DCone, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution2DCone_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DCone *arg1 = (FTDistribution2DCone *) 0 ;
+  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  InterferenceFunction2DLattice *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_clone" "', argument " "1"" of type '" "InterferenceFunction2DLattice const *""'"); 
+  }
+  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
+  result = (InterferenceFunction2DLattice *)((InterferenceFunction2DLattice const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -63485,18 +64736,18 @@ SWIGINTERN PyObject *_wrap_FTDistribution2DCone_accept(PyObject *SWIGUNUSEDPARM(
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DCone_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCone, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DLattice_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DCone_accept" "', argument " "1"" of type '" "FTDistribution2DCone const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_accept" "', argument " "1"" of type '" "InterferenceFunction2DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DCone * >(argp1);
+  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution2DCone_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDistribution2DCone const *)arg1)->accept(arg2);
+  ((InterferenceFunction2DLattice const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -63504,190 +64755,169 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution2DCone_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createSquare__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FTDistribution2DCone *arg1 = (FTDistribution2DCone *) 0 ;
+  double arg1 ;
   double arg2 ;
-  double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  InterferenceFunction2DLattice *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DCone_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCone, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DCone_evaluate" "', argument " "1"" of type '" "FTDistribution2DCone const *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDistribution2DCone * >(argp1);
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DLattice_createSquare" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution2DCone_evaluate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DLattice_createSquare" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDistribution2DCone_evaluate" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((FTDistribution2DCone const *)arg1)->evaluate(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = (InterferenceFunction2DLattice *)InterferenceFunction2DLattice::createSquare(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDistribution2DCone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createSquare__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FTDistribution2DCone *arg1 = (FTDistribution2DCone *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  InterferenceFunction2DLattice *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DCone, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution2DCone" "', argument " "1"" of type '" "FTDistribution2DCone *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDistribution2DCone * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DLattice_createSquare" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (InterferenceFunction2DLattice *)InterferenceFunction2DLattice::createSquare(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FTDistribution2DCone_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution2DCone, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createSquare(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "InterferenceFunction2DLattice_createSquare", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_InterferenceFunction2DLattice_createSquare__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_InterferenceFunction2DLattice_createSquare__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'InterferenceFunction2DLattice_createSquare'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    InterferenceFunction2DLattice::createSquare(double,double)\n"
+    "    InterferenceFunction2DLattice::createSquare(double)\n");
+  return 0;
 }
 
-SWIGINTERN PyObject *FTDistribution2DCone_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DVoigt__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createHexagonal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
-  double arg3 ;
-  double arg4 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  FTDistribution2DVoigt *result = 0 ;
+  InterferenceFunction2DLattice *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DVoigt" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DLattice_createHexagonal" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DVoigt" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DLattice_createHexagonal" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDistribution2DVoigt" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FTDistribution2DVoigt" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (FTDistribution2DVoigt *)new FTDistribution2DVoigt(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DVoigt, SWIG_POINTER_NEW |  0 );
+  result = (InterferenceFunction2DLattice *)InterferenceFunction2DLattice::createHexagonal(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DVoigt__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createHexagonal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
-  double arg2 ;
-  double arg3 ;
   double val1 ;
   int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  FTDistribution2DVoigt *result = 0 ;
+  InterferenceFunction2DLattice *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FTDistribution2DVoigt" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DLattice_createHexagonal" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FTDistribution2DVoigt" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FTDistribution2DVoigt" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FTDistribution2DVoigt *)new FTDistribution2DVoigt(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DVoigt, SWIG_POINTER_NEW |  0 );
+  result = (InterferenceFunction2DLattice *)InterferenceFunction2DLattice::createHexagonal(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FTDistribution2DVoigt(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createHexagonal(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FTDistribution2DVoigt", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "InterferenceFunction2DLattice_createHexagonal", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 3) {
+  if (argc == 1) {
     int _v;
     {
       int res = SWIG_AsVal_double(argv[0], NULL);
       _v = SWIG_CheckState(res);
     }
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_FTDistribution2DVoigt__SWIG_1(self, argc, argv);
-        }
-      }
+      return _wrap_InterferenceFunction2DLattice_createHexagonal__SWIG_1(self, argc, argv);
     }
   }
-  if (argc == 4) {
+  if (argc == 2) {
     int _v;
     {
       int res = SWIG_AsVal_double(argv[0], NULL);
@@ -63699,77 +64929,45 @@ SWIGINTERN PyObject *_wrap_new_FTDistribution2DVoigt(PyObject *self, PyObject *a
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_FTDistribution2DVoigt__SWIG_0(self, argc, argv);
-          }
-        }
+        return _wrap_InterferenceFunction2DLattice_createHexagonal__SWIG_0(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FTDistribution2DVoigt'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'InterferenceFunction2DLattice_createHexagonal'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    FTDistribution2DVoigt::FTDistribution2DVoigt(double,double,double,double)\n"
-    "    FTDistribution2DVoigt::FTDistribution2DVoigt(double,double,double)\n");
+    "    InterferenceFunction2DLattice::createHexagonal(double,double)\n"
+    "    InterferenceFunction2DLattice::createHexagonal(double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution2DVoigt_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FTDistribution2DVoigt *arg1 = (FTDistribution2DVoigt *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FTDistribution2DVoigt *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DVoigt, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DVoigt_clone" "', argument " "1"" of type '" "FTDistribution2DVoigt const *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDistribution2DVoigt * >(argp1);
-  result = (FTDistribution2DVoigt *)((FTDistribution2DVoigt const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FTDistribution2DVoigt, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FTDistribution2DVoigt_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_setDecayFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DVoigt *arg1 = (FTDistribution2DVoigt *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
+  IFTDecayFunction2D *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DVoigt_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DVoigt, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DLattice_setDecayFunction", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DVoigt_accept" "', argument " "1"" of type '" "FTDistribution2DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_setDecayFunction" "', argument " "1"" of type '" "InterferenceFunction2DLattice *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DVoigt * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFTDecayFunction2D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FTDistribution2DVoigt_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DLattice_setDecayFunction" "', argument " "2"" of type '" "IFTDecayFunction2D const &""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FTDistribution2DVoigt const *)arg1)->accept(arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction2DLattice_setDecayFunction" "', argument " "2"" of type '" "IFTDecayFunction2D const &""'"); 
+  }
+  arg2 = reinterpret_cast< IFTDecayFunction2D * >(argp2);
+  (arg1)->setDecayFunction((IFTDecayFunction2D const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -63777,651 +64975,593 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution2DVoigt_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_setIntegrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DVoigt *arg1 = (FTDistribution2DVoigt *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
+  bool arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
+  bool val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FTDistribution2DVoigt_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DVoigt, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DLattice_setIntegrationOverXi", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DVoigt_evaluate" "', argument " "1"" of type '" "FTDistribution2DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_setIntegrationOverXi" "', argument " "1"" of type '" "InterferenceFunction2DLattice *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DVoigt * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FTDistribution2DVoigt_evaluate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FTDistribution2DVoigt_evaluate" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DLattice_setIntegrationOverXi" "', argument " "2"" of type '" "bool""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((FTDistribution2DVoigt const *)arg1)->evaluate(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = static_cast< bool >(val2);
+  (arg1)->setIntegrationOverXi(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FTDistribution2DVoigt_eta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_integrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DVoigt *arg1 = (FTDistribution2DVoigt *) 0 ;
+  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DVoigt, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FTDistribution2DVoigt_eta" "', argument " "1"" of type '" "FTDistribution2DVoigt const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_integrationOverXi" "', argument " "1"" of type '" "InterferenceFunction2DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< FTDistribution2DVoigt * >(argp1);
-  result = (double)((FTDistribution2DVoigt const *)arg1)->eta();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
+  result = (bool)((InterferenceFunction2DLattice const *)arg1)->integrationOverXi();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FTDistribution2DVoigt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FTDistribution2DVoigt *arg1 = (FTDistribution2DVoigt *) 0 ;
+  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  Lattice2D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FTDistribution2DVoigt, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FTDistribution2DVoigt" "', argument " "1"" of type '" "FTDistribution2DVoigt *""'"); 
-  }
-  arg1 = reinterpret_cast< FTDistribution2DVoigt * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *FTDistribution2DVoigt_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FTDistribution2DVoigt, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FTDistribution2DVoigt_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FixedBinAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  double arg4 ;
-  int res1 = SWIG_OLDOBJ ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  FixedBinAxis *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_FixedBinAxis", 4, 4, swig_obj)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_FixedBinAxis" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FixedBinAxis" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_lattice" "', argument " "1"" of type '" "InterferenceFunction2DLattice const *""'"); 
   }
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FixedBinAxis" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FixedBinAxis" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FixedBinAxis" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (FixedBinAxis *)new FixedBinAxis((std::string const &)*arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FixedBinAxis, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
+  result = (Lattice2D *) &((InterferenceFunction2DLattice const *)arg1)->lattice();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice2D, 0 |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FixedBinAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_getParticleDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FixedBinAxis" "', argument " "1"" of type '" "FixedBinAxis *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_getParticleDensity" "', argument " "1"" of type '" "InterferenceFunction2DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
+  result = (double)((InterferenceFunction2DLattice const *)arg1)->getParticleDensity();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FixedBinAxis_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FixedBinAxis *result = 0 ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_clone" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_getChildren" "', argument " "1"" of type '" "InterferenceFunction2DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
-  result = (FixedBinAxis *)((FixedBinAxis const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FixedBinAxis, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
+  result = ((InterferenceFunction2DLattice const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FixedBinAxis_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_onChange(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_size" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_onChange" "', argument " "1"" of type '" "InterferenceFunction2DLattice *""'"); 
   }
-  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
-  result = ((FixedBinAxis const *)arg1)->size();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
+  (arg1)->onChange();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FixedBinAxis_getBin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Bin1D result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "FixedBinAxis_getBin", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_getBin" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
-  }
-  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FixedBinAxis_getBin" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((FixedBinAxis const *)arg1)->getBin(arg2);
-  resultobj = SWIG_NewPointerObj((new Bin1D(static_cast< const Bin1D& >(result))), SWIGTYPE_p_Bin1D, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *InterferenceFunction2DLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
-
-SWIGINTERN PyObject *_wrap_FixedBinAxis_getMin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_getMin" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
-  }
-  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
-  result = (double)((FixedBinAxis const *)arg1)->getMin();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *InterferenceFunction2DLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
 }
 
-
-SWIGINTERN PyObject *_wrap_FixedBinAxis_getMax(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  Lattice2D *arg1 = 0 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_getMax" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
   }
-  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
-  result = (double)((FixedBinAxis const *)arg1)->getMax();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal((Lattice2D const &)*arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FixedBinAxis_getBinCenter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
-  size_t arg2 ;
+  Lattice2D *arg1 = 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
+  double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  double val3 ;
+  int ecode3 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FixedBinAxis_getBinCenter", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_getBinCenter" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
   }
-  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FixedBinAxis_getBinCenter" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< size_t >(val2);
-  result = (double)((FixedBinAxis const *)arg1)->getBinCenter(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal((Lattice2D const &)*arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FixedBinAxis_findClosestIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  Lattice2D *arg1 = 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  size_t result;
+  InterferenceFunction2DParaCrystal *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FixedBinAxis_findClosestIndex", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_findClosestIndex" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
   }
-  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FixedBinAxis_findClosestIndex" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = ((FixedBinAxis const *)arg1)->findClosestIndex(arg2);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal((Lattice2D const &)*arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FixedBinAxis_getBinCenters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  Lattice2D *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< double,std::allocator< double > > result;
+  InterferenceFunction2DParaCrystal *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_getBinCenters" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
   }
-  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
-  result = ((FixedBinAxis const *)arg1)->getBinCenters();
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FixedBinAxis_getBinBoundaries(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< double,std::allocator< double > > result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_getBinBoundaries" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
   }
-  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
-  result = ((FixedBinAxis const *)arg1)->getBinBoundaries();
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal((Lattice2D const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FixedBinAxis_createClippedAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
+  double arg1 ;
   double arg2 ;
   double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg4 ;
+  double arg5 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FixedBinAxis *result = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FixedBinAxis_createClippedAxis", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis_createClippedAxis" "', argument " "1"" of type '" "FixedBinAxis const *""'"); 
-  }
-  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
+  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FixedBinAxis_createClippedAxis" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FixedBinAxis_createClippedAxis" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (FixedBinAxis *)((FixedBinAxis const *)arg1)->createClippedAxis(arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FixedBinAxis, 0 |  0 );
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal(arg1,arg2,arg3,arg4,arg5);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FixedBinAxis___getitem__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_5(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FixedBinAxis *arg1 = (FixedBinAxis *) 0 ;
-  unsigned int arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  unsigned int val2 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FixedBinAxis___getitem__", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FixedBinAxis, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FixedBinAxis___getitem__" "', argument " "1"" of type '" "FixedBinAxis *""'"); 
-  }
-  arg1 = reinterpret_cast< FixedBinAxis * >(argp1);
-  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FixedBinAxis___getitem__" "', argument " "2"" of type '" "unsigned int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< unsigned int >(val2);
-  result = (double)FixedBinAxis___getitem__(arg1,arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FixedBinAxis_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FixedBinAxis, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FixedBinAxis_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_IFormFactor__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_6(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  PyObject *arg1 = (PyObject *) 0 ;
-  IFormFactor *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  arg1 = swig_obj[0];
-  if ( arg1 != Py_None ) {
-    /* subclassed */
-    result = (IFormFactor *)new SwigDirector_IFormFactor(arg1); 
-  } else {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
-    SWIG_fail;
-  }
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
   
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IFormFactor__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  PyObject *arg1 = (PyObject *) 0 ;
-  INode *arg2 = (INode *) 0 ;
-  SwigValueWrapper< std::vector< char const *,std::allocator< char const * > > > arg3 ;
-  SwigValueWrapper< std::vector< char const *,std::allocator< char const * > > > arg4 ;
-  std::vector< double,std::allocator< double > > arg5 ;
-  std::vector< double,std::allocator< double > > arg6 ;
-  std::vector< double,std::allocator< double > > arg7 ;
-  std::vector< double,std::allocator< double > > arg8 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  void *argp4 ;
-  int res4 = 0 ;
-  IFormFactor *result = 0 ;
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[6] = {
+    0
+  };
   
-  if ((nobjs < 8) || (nobjs > 8)) SWIG_fail;
-  arg1 = swig_obj[0];
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INode, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_IFormFactor" "', argument " "2"" of type '" "INode const *""'"); 
-  }
-  arg2 = reinterpret_cast< INode * >(argp2);
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_IFormFactor" "', argument " "3"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_IFormFactor" "', argument " "3"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'");
-    } else {
-      std::vector< char const *,std::allocator< char const * > > * temp = reinterpret_cast< std::vector< char const *,std::allocator< char const * > > * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_InterferenceFunction2DParaCrystal", 0, 5, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_3(self, argc, argv);
     }
   }
-  {
-    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t,  0  | 0);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_IFormFactor" "', argument " "4"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'"); 
-    }  
-    if (!argp4) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_IFormFactor" "', argument " "4"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'");
-    } else {
-      std::vector< char const *,std::allocator< char const * > > * temp = reinterpret_cast< std::vector< char const *,std::allocator< char const * > > * >(argp4);
-      arg4 = *temp;
-      if (SWIG_IsNewObj(res4)) delete temp;
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_2(self, argc, argv);
+      }
     }
   }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[4], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactor" "', argument " "5"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+  if (argc == 3) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_1(self, argc, argv);
+        }
+      }
     }
-    arg5 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
   }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[5], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactor" "', argument " "6"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+  if (argc == 3) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
     }
-    arg6 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
-  }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[6], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactor" "', argument " "7"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_6(self, argc, argv);
+        }
+      }
     }
-    arg7 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
   }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[7], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactor" "', argument " "8"" of type '" "std::vector< double,std::allocator< double > >""'"); 
+  if (argc == 4) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_0(self, argc, argv);
+          }
+        }
+      }
     }
-    arg8 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
-  }
-  if ( arg1 != Py_None ) {
-    /* subclassed */
-    result = (IFormFactor *)new SwigDirector_IFormFactor(arg1,(INode const *)arg2,arg3,arg4,arg5,arg6,arg7,arg8); 
-  } else {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
-    SWIG_fail;
   }
-  
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_IFormFactor(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[9] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_IFormFactor", 0, 8, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
+  if (argc == 4) {
     int _v;
-    _v = (argv[0] != 0);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
-      return _wrap_new_IFormFactor__SWIG_0(self, argc, argv);
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_5(self, argc, argv);
+          }
+        }
+      }
     }
   }
-  if (argc == 8) {
+  if (argc == 5) {
     int _v;
-    _v = (argv[0] != 0);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_INode, 0);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
       _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t, SWIG_POINTER_NO_NULL | 0);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
         _v = SWIG_CheckState(res);
-        if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t, SWIG_POINTER_NO_NULL | 0);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
           _v = SWIG_CheckState(res);
-          if (_v) {
-            int res = swig::asptr(argv[4], (std::vector< double,std::allocator< double > >**)(0));
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
             _v = SWIG_CheckState(res);
-            if (_v) {
-              int res = swig::asptr(argv[5], (std::vector< double,std::allocator< double > >**)(0));
+          }
+          if (_v) {
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
               _v = SWIG_CheckState(res);
-              if (_v) {
-                int res = swig::asptr(argv[6], (std::vector< double,std::allocator< double > >**)(0));
-                _v = SWIG_CheckState(res);
-                if (_v) {
-                  int res = swig::asptr(argv[7], (std::vector< double,std::allocator< double > >**)(0));
-                  _v = SWIG_CheckState(res);
-                  if (_v) {
-                    return _wrap_new_IFormFactor__SWIG_1(self, argc, argv);
-                  }
-                }
-              }
+            }
+            if (_v) {
+              return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_4(self, argc, argv);
             }
           }
         }
@@ -64430,28 +65570,33 @@ SWIGINTERN PyObject *_wrap_new_IFormFactor(PyObject *self, PyObject *args) {
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_IFormFactor'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_InterferenceFunction2DParaCrystal'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    IFormFactor::IFormFactor()\n"
-    "    IFormFactor::IFormFactor(PyObject *,INode const *,std::vector< char const *,std::allocator< char const * > > const,std::vector< char const *,std::allocator< char const * > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > >)\n");
+    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(Lattice2D const &,double,double,double)\n"
+    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(Lattice2D const &,double,double)\n"
+    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(Lattice2D const &,double)\n"
+    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(Lattice2D const &)\n"
+    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(double,double,double,double,double)\n"
+    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(double,double,double,double)\n"
+    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(double,double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_InterferenceFunction2DParaCrystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFormFactor" "', argument " "1"" of type '" "IFormFactor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal *""'"); 
   }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -64460,164 +65605,544 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactor_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  IFormFactor *result = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_clone" "', argument " "1"" of type '" "IFormFactor const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      Swig::DirectorPureVirtualException::raise("IFormFactor::clone");
-    } else {
-      result = (IFormFactor *)((IFormFactor const *)arg1)->clone();
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
-  }
-  if (director) {
-    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_clone" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
   }
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  result = (InterferenceFunction2DParaCrystal *)((InterferenceFunction2DParaCrystal const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactor_createSlicedFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactor *arg1 = (IFormFactor *) 0 ;
-  ZLimits arg2 ;
-  IRotation *arg3 = 0 ;
-  kvector_t arg4 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  void *argp4 ;
-  int res4 = 0 ;
-  PyObject *swig_obj[4] ;
-  Swig::Director *director = 0;
-  IFormFactor *result = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_createSlicedFormFactor", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "1"" of type '" "IFormFactor const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_accept" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "2"" of type '" "ZLimits""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "2"" of type '" "ZLimits""'");
-    } else {
-      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DParaCrystal_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "3"" of type '" "IRotation const &""'"); 
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((InterferenceFunction2DParaCrystal const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
+  
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createSquare(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createSquare(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createSquare(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createSquare(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createSquare(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_createSquare", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_3(self, argc, argv);
+    }
   }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "3"" of type '" "IRotation const &""'"); 
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_2(self, argc, argv);
+      }
+    }
   }
-  arg3 = reinterpret_cast< IRotation * >(argp3);
-  {
-    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "4"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp4) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_createSlicedFormFactor" "', argument " "4"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
-      arg4 = *temp;
-      if (SWIG_IsNewObj(res4)) delete temp;
+  if (argc == 3) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_1(self, argc, argv);
+        }
+      }
     }
   }
-  result = (IFormFactor *)((IFormFactor const *)arg1)->createSlicedFormFactor(arg2,(IRotation const &)*arg3,arg4);
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (argc == 4) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
   }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'InterferenceFunction2DParaCrystal_createSquare'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    InterferenceFunction2DParaCrystal::createSquare(double,double,double,double)\n"
+    "    InterferenceFunction2DParaCrystal::createSquare(double,double,double)\n"
+    "    InterferenceFunction2DParaCrystal::createSquare(double,double)\n"
+    "    InterferenceFunction2DParaCrystal::createSquare(double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
+  
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createHexagonal(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactor_setAmbientMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IFormFactor *arg1 = (IFormFactor *) 0 ;
-  SwigValueWrapper< Material > arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_setAmbientMaterial", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_setAmbientMaterial" "', argument " "1"" of type '" "IFormFactor *""'"); 
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createHexagonal(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createHexagonal(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  InterferenceFunction2DParaCrystal *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createHexagonal(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createHexagonal(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_createHexagonal", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_3(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_setAmbientMaterial" "', argument " "2"" of type '" "Material""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_setAmbientMaterial" "', argument " "2"" of type '" "Material""'");
-    } else {
-      Material * temp = reinterpret_cast< Material * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_2(self, argc, argv);
+      }
     }
   }
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      Swig::DirectorPureVirtualException::raise("IFormFactor::setAmbientMaterial");
-    } else {
-      (arg1)->setAmbientMaterial(arg2);
+  if (argc == 3) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
     }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'InterferenceFunction2DParaCrystal_createHexagonal'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    InterferenceFunction2DParaCrystal::createHexagonal(double,double,double,double)\n"
+    "    InterferenceFunction2DParaCrystal::createHexagonal(double,double,double)\n"
+    "    InterferenceFunction2DParaCrystal::createHexagonal(double,double)\n"
+    "    InterferenceFunction2DParaCrystal::createHexagonal(double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_setDomainSizes(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_setDomainSizes", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_setDomainSizes" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal *""'"); 
   }
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_setDomainSizes" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DParaCrystal_setDomainSizes" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  (arg1)->setDomainSizes(arg2,arg3);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -64625,255 +66150,146 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactor_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_setProbabilityDistributions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactor *arg1 = (IFormFactor *) 0 ;
-  WavevectorInfo *arg2 = 0 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  IFTDistribution2D *arg2 = 0 ;
+  IFTDistribution2D *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  complex_t result;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_setProbabilityDistributions", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_evaluate" "', argument " "1"" of type '" "IFormFactor const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_setProbabilityDistributions" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal *""'"); 
   }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_WavevectorInfo,  0  | 0);
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFTDistribution2D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DParaCrystal_setProbabilityDistributions" "', argument " "2"" of type '" "IFTDistribution2D const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction2DParaCrystal_setProbabilityDistributions" "', argument " "2"" of type '" "IFTDistribution2D const &""'"); 
   }
-  arg2 = reinterpret_cast< WavevectorInfo * >(argp2);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      Swig::DirectorPureVirtualException::raise("IFormFactor::evaluate");
-    } else {
-      result = ((IFormFactor const *)arg1)->evaluate((WavevectorInfo const &)*arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+  arg2 = reinterpret_cast< IFTDistribution2D * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IFTDistribution2D,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "InterferenceFunction2DParaCrystal_setProbabilityDistributions" "', argument " "3"" of type '" "IFTDistribution2D const &""'"); 
   }
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction2DParaCrystal_setProbabilityDistributions" "', argument " "3"" of type '" "IFTDistribution2D const &""'"); 
+  }
+  arg3 = reinterpret_cast< IFTDistribution2D * >(argp3);
+  (arg1)->setProbabilityDistributions((IFTDistribution2D const &)*arg2,(IFTDistribution2D const &)*arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactor_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_setDampingLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  double result;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_setDampingLength", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_volume" "', argument " "1"" of type '" "IFormFactor const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = (double)((IFormFactor const *)arg1)->IFormFactor::volume();
-    } else {
-      result = (double)((IFormFactor const *)arg1)->volume();
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_setDampingLength" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal *""'"); 
   }
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_setDampingLength" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setDampingLength(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactor_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_domainSizes(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  double result;
+  std::vector< double,std::allocator< double > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_radialExtension" "', argument " "1"" of type '" "IFormFactor const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      Swig::DirectorPureVirtualException::raise("IFormFactor::radialExtension");
-    } else {
-      result = (double)((IFormFactor const *)arg1)->radialExtension();
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_domainSizes" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
   }
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  result = ((InterferenceFunction2DParaCrystal const *)arg1)->domainSizes();
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactor_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_setIntegrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactor *arg1 = (IFormFactor *) 0 ;
-  IRotation *arg2 = 0 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  bool arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  bool val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_bottomZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_setIntegrationOverXi", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_bottomZ" "', argument " "1"" of type '" "IFormFactor const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      Swig::DirectorPureVirtualException::raise("IFormFactor::bottomZ");
-    } else {
-      result = (double)((IFormFactor const *)arg1)->bottomZ((IRotation const &)*arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_setIntegrationOverXi" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal *""'"); 
   }
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_setIntegrationOverXi" "', argument " "2"" of type '" "bool""'");
+  } 
+  arg2 = static_cast< bool >(val2);
+  (arg1)->setIntegrationOverXi(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactor_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_integrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactor *arg1 = (IFormFactor *) 0 ;
-  IRotation *arg2 = 0 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  double result;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_topZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_topZ" "', argument " "1"" of type '" "IFormFactor const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      Swig::DirectorPureVirtualException::raise("IFormFactor::topZ");
-    } else {
-      result = (double)((IFormFactor const *)arg1)->topZ((IRotation const &)*arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IFormFactor_canSliceAnalytically(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IFormFactor *arg1 = (IFormFactor *) 0 ;
-  IRotation *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  SwigDirector_IFormFactor *darg = 0;
-  bool result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_canSliceAnalytically", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_canSliceAnalytically" "', argument " "1"" of type '" "IFormFactor const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_canSliceAnalytically" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_canSliceAnalytically" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  if (!director || !(director->swig_get_inner("canSliceAnalytically"))) {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing protected member canSliceAnalytically");
-    SWIG_fail;
-  }
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    darg = dynamic_cast<SwigDirector_IFormFactor *>(arg1);
-    if (upcall) {
-      result = (bool)((SwigDirector_IFormFactor const *)darg)->canSliceAnalyticallySwigPublic((IRotation const &)*arg2);
-    } else {
-      result = (bool)((SwigDirector_IFormFactor const *)darg)->canSliceAnalytically((IRotation const &)*arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_integrationOverXi" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
   }
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  result = (bool)((InterferenceFunction2DParaCrystal const *)arg1)->integrationOverXi();
   resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
@@ -64881,471 +66297,319 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactor_sliceFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IFormFactor *arg1 = (IFormFactor *) 0 ;
-  ZLimits arg2 ;
-  IRotation *arg3 = 0 ;
-  kvector_t arg4 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  void *argp4 ;
-  int res4 = 0 ;
-  PyObject *swig_obj[4] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  SwigDirector_IFormFactor *darg = 0;
-  IFormFactor *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactor_sliceFormFactor", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactor_sliceFormFactor" "', argument " "1"" of type '" "IFormFactor const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactor_sliceFormFactor" "', argument " "2"" of type '" "ZLimits""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_sliceFormFactor" "', argument " "2"" of type '" "ZLimits""'");
-    } else {
-      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IFormFactor_sliceFormFactor" "', argument " "3"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_sliceFormFactor" "', argument " "3"" of type '" "IRotation const &""'"); 
-  }
-  arg3 = reinterpret_cast< IRotation * >(argp3);
-  {
-    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "IFormFactor_sliceFormFactor" "', argument " "4"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp4) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactor_sliceFormFactor" "', argument " "4"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
-      arg4 = *temp;
-      if (SWIG_IsNewObj(res4)) delete temp;
-    }
-  }
-  director = SWIG_DIRECTOR_CAST(arg1);
-  if (!director || !(director->swig_get_inner("sliceFormFactor"))) {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing protected member sliceFormFactor");
-    SWIG_fail;
-  }
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    darg = dynamic_cast<SwigDirector_IFormFactor *>(arg1);
-    if (upcall) {
-      result = (IFormFactor *)((SwigDirector_IFormFactor const *)darg)->sliceFormFactorSwigPublic(arg2,(IRotation const &)*arg3,arg4);
-    } else {
-      result = (IFormFactor *)((SwigDirector_IFormFactor const *)darg)->sliceFormFactor(arg2,(IRotation const &)*arg3,arg4);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
-  }
-  if (director) {
-    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
-  }
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_disown_IFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_dampingLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactor *arg1 = (IFormFactor *) 0 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_IFormFactor" "', argument " "1"" of type '" "IFormFactor *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
-  {
-    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
-    if (director) director->swig_disown();
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_dampingLength" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
   }
-  
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  result = (double)((InterferenceFunction2DParaCrystal const *)arg1)->dampingLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IFormFactor_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IFormFactor, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *IFormFactor_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_CreateTransformedFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactor *arg1 = 0 ;
-  IRotation *arg2 = 0 ;
-  kvector_t arg3 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  IFormFactor *result = 0 ;
+  PyObject *swig_obj[1] ;
+  Lattice2D *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "CreateTransformedFormFactor", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IFormFactor,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "CreateTransformedFormFactor" "', argument " "1"" of type '" "IFormFactor const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "CreateTransformedFormFactor" "', argument " "1"" of type '" "IFormFactor const &""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactor * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "CreateTransformedFormFactor" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "CreateTransformedFormFactor" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "CreateTransformedFormFactor" "', argument " "3"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "CreateTransformedFormFactor" "', argument " "3"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_lattice" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
   }
-  result = (IFormFactor *)CreateTransformedFormFactor((IFormFactor const &)*arg1,(IRotation const &)*arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  result = (Lattice2D *) &((InterferenceFunction2DParaCrystal const *)arg1)->lattice();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_iterator(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_getParticleDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  PyObject **arg2 = (PyObject **) 0 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  swig::SwigPyIterator *result = 0 ;
+  double result;
   
-  arg2 = &swig_obj[0];
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_iterator" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_getParticleDensity" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = (swig::SwigPyIterator *)std_vector_Sl_IFormFactor_Sm__Sg__iterator(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_swig__SwigPyIterator, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  result = (double)((InterferenceFunction2DParaCrystal const *)arg1)->getParticleDensity();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___nonzero__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___nonzero__" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_getChildren" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = (bool)std_vector_Sl_IFormFactor_Sm__Sg____nonzero__((std::vector< IFormFactor * > const *)arg1);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  result = ((InterferenceFunction2DParaCrystal const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___bool__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_pdf1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  IFTDistribution2D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___bool__" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_pdf1" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = (bool)std_vector_Sl_IFormFactor_Sm__Sg____bool__((std::vector< IFormFactor * > const *)arg1);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  result = (IFTDistribution2D *)((InterferenceFunction2DParaCrystal const *)arg1)->pdf1();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___len__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_pdf2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< IFormFactor * >::size_type result;
+  IFTDistribution2D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___len__" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_pdf2" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = std_vector_Sl_IFormFactor_Sm__Sg____len__((std::vector< IFormFactor * > const *)arg1);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  result = (IFTDistribution2D *)((InterferenceFunction2DParaCrystal const *)arg1)->pdf2();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___getslice__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::difference_type arg2 ;
-  std::vector< IFormFactor * >::difference_type arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  ptrdiff_t val2 ;
-  int ecode2 = 0 ;
-  ptrdiff_t val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  std::vector< IFormFactor *,std::allocator< IFormFactor * > > *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t___getslice__", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___getslice__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___getslice__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
-  } 
-  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
-  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "vector_IFormFactorPtr_t___getslice__" "', argument " "3"" of type '" "std::vector< IFormFactor * >::difference_type""'");
-  } 
-  arg3 = static_cast< std::vector< IFormFactor * >::difference_type >(val3);
-  try {
-    result = (std::vector< IFormFactor *,std::allocator< IFormFactor * > > *)std_vector_Sl_IFormFactor_Sm__Sg____getslice__(arg1,arg2,arg3);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
-  }
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *InterferenceFunction2DParaCrystal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *InterferenceFunction2DParaCrystal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setslice____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DSuperLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::difference_type arg2 ;
-  std::vector< IFormFactor * >::difference_type arg3 ;
+  Lattice2D *arg1 = 0 ;
+  unsigned int arg2 ;
+  unsigned int arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  ptrdiff_t val2 ;
+  unsigned int val2 ;
   int ecode2 = 0 ;
-  ptrdiff_t val3 ;
+  unsigned int val3 ;
   int ecode3 = 0 ;
+  InterferenceFunction2DSuperLattice *result = 0 ;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "1"" of type '" "Lattice2D const &""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "1"" of type '" "Lattice2D const &""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "2"" of type '" "unsigned int""'");
   } 
-  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
-  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
+  arg2 = static_cast< unsigned int >(val2);
+  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "3"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "3"" of type '" "unsigned int""'");
   } 
-  arg3 = static_cast< std::vector< IFormFactor * >::difference_type >(val3);
-  try {
-    std_vector_Sl_IFormFactor_Sm__Sg____setslice____SWIG_0(arg1,arg2,arg3);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
-  }
-  resultobj = SWIG_Py_Void();
+  arg3 = static_cast< unsigned int >(val3);
+  result = (InterferenceFunction2DSuperLattice *)new InterferenceFunction2DSuperLattice((Lattice2D const &)*arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DSuperLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setslice____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DSuperLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::difference_type arg2 ;
-  std::vector< IFormFactor * >::difference_type arg3 ;
-  std::vector< IFormFactor *,std::allocator< IFormFactor * > > *arg4 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  ptrdiff_t val2 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  unsigned int arg5 ;
+  unsigned int arg6 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
   int ecode2 = 0 ;
-  ptrdiff_t val3 ;
+  double val3 ;
   int ecode3 = 0 ;
-  int res4 = SWIG_OLDOBJ ;
+  double val4 ;
+  int ecode4 = 0 ;
+  unsigned int val5 ;
+  int ecode5 = 0 ;
+  unsigned int val6 ;
+  int ecode6 = 0 ;
+  InterferenceFunction2DSuperLattice *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
-  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "3"" of type '" "std::vector< IFormFactor * >::difference_type""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "3"" of type '" "double""'");
   } 
-  arg3 = static_cast< std::vector< IFormFactor * >::difference_type >(val3);
-  {
-    std::vector< IFormFactor*,std::allocator< IFormFactor * > > *ptr = (std::vector< IFormFactor*,std::allocator< IFormFactor * > > *)0;
-    res4 = swig::asptr(swig_obj[3], &ptr);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "4"" of type '" "std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "vector_IFormFactorPtr_t___setslice__" "', argument " "4"" of type '" "std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &""'"); 
-    }
-    arg4 = ptr;
-  }
-  try {
-    std_vector_Sl_IFormFactor_Sm__Sg____setslice____SWIG_1(arg1,arg2,arg3,(std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &)*arg4);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
-  }
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res4)) delete arg4;
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  ecode5 = SWIG_AsVal_unsigned_SS_int(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "5"" of type '" "unsigned int""'");
+  } 
+  arg5 = static_cast< unsigned int >(val5);
+  ecode6 = SWIG_AsVal_unsigned_SS_int(swig_obj[5], &val6);
+  if (!SWIG_IsOK(ecode6)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "6"" of type '" "unsigned int""'");
+  } 
+  arg6 = static_cast< unsigned int >(val6);
+  result = (InterferenceFunction2DSuperLattice *)new InterferenceFunction2DSuperLattice(arg1,arg2,arg3,arg4,arg5,arg6);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DSuperLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setslice__(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DSuperLattice(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[7] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t___setslice__", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_InterferenceFunction2DSuperLattice", 0, 6, argv))) SWIG_fail;
   --argc;
   if (argc == 3) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
+        int res = SWIG_AsVal_unsigned_SS_int(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
         {
-          int res = SWIG_AsVal_ptrdiff_t(argv[2], NULL);
+          int res = SWIG_AsVal_unsigned_SS_int(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_vector_IFormFactorPtr_t___setslice____SWIG_0(self, argc, argv);
+          return _wrap_new_InterferenceFunction2DSuperLattice__SWIG_0(self, argc, argv);
         }
       }
     }
   }
-  if (argc == 4) {
+  if (argc == 6) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
       {
-        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
+        int res = SWIG_AsVal_double(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
         {
-          int res = SWIG_AsVal_ptrdiff_t(argv[2], NULL);
+          int res = SWIG_AsVal_double(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          int res = swig::asptr(argv[3], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-          _v = SWIG_CheckState(res);
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
           if (_v) {
-            return _wrap_vector_IFormFactorPtr_t___setslice____SWIG_1(self, argc, argv);
+            {
+              int res = SWIG_AsVal_unsigned_SS_int(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              {
+                int res = SWIG_AsVal_unsigned_SS_int(argv[5], NULL);
+                _v = SWIG_CheckState(res);
+              }
+              if (_v) {
+                return _wrap_new_InterferenceFunction2DSuperLattice__SWIG_1(self, argc, argv);
+              }
+            }
           }
         }
       }
@@ -65353,50 +66617,29 @@ SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setslice__(PyObject *self,
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t___setslice__'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_InterferenceFunction2DSuperLattice'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    std::vector< IFormFactor * >::__setslice__(std::vector< IFormFactor * >::difference_type,std::vector< IFormFactor * >::difference_type)\n"
-    "    std::vector< IFormFactor * >::__setslice__(std::vector< IFormFactor * >::difference_type,std::vector< IFormFactor * >::difference_type,std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &)\n");
+    "    InterferenceFunction2DSuperLattice::InterferenceFunction2DSuperLattice(Lattice2D const &,unsigned int,unsigned int)\n"
+    "    InterferenceFunction2DSuperLattice::InterferenceFunction2DSuperLattice(double,double,double,double,unsigned int,unsigned int)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___delslice__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_InterferenceFunction2DSuperLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::difference_type arg2 ;
-  std::vector< IFormFactor * >::difference_type arg3 ;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  ptrdiff_t val2 ;
-  int ecode2 = 0 ;
-  ptrdiff_t val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t___delslice__", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___delslice__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___delslice__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
-  } 
-  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
-  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "vector_IFormFactorPtr_t___delslice__" "', argument " "3"" of type '" "std::vector< IFormFactor * >::difference_type""'");
-  } 
-  arg3 = static_cast< std::vector< IFormFactor * >::difference_type >(val3);
-  try {
-    std_vector_Sl_IFormFactor_Sm__Sg____delslice__(arg1,arg2,arg3);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunction2DSuperLattice" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice *""'"); 
   }
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -65404,468 +66647,412 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___delitem____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::difference_type arg2 ;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  ptrdiff_t val2 ;
-  int ecode2 = 0 ;
+  PyObject *swig_obj[1] ;
+  InterferenceFunction2DSuperLattice *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___delitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___delitem__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
-  } 
-  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
-  try {
-    std_vector_Sl_IFormFactor_Sm__Sg____delitem____SWIG_0(arg1,arg2);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_clone" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
   }
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  result = (InterferenceFunction2DSuperLattice *)((InterferenceFunction2DSuperLattice const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___getitem____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  PySliceObject *arg2 = (PySliceObject *) 0 ;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::vector< IFormFactor *,std::allocator< IFormFactor * > > *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DSuperLattice_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___getitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  {
-    if (!PySlice_Check(swig_obj[1])) {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t___getitem__" "', argument " "2"" of type '" "PySliceObject *""'");
-    }
-    arg2 = (PySliceObject *) swig_obj[1];
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_accept" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
   }
-  try {
-    result = (std::vector< IFormFactor *,std::allocator< IFormFactor * > > *)std_vector_Sl_IFormFactor_Sm__Sg____getitem____SWIG_0(arg1,arg2);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DSuperLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_OWN |  0 );
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((InterferenceFunction2DSuperLattice const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setitem____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_setSubstructureIFF(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  PySliceObject *arg2 = (PySliceObject *) 0 ;
-  std::vector< IFormFactor *,std::allocator< IFormFactor * > > *arg3 = 0 ;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  IInterferenceFunction *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DSuperLattice_setSubstructureIFF", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  {
-    if (!PySlice_Check(swig_obj[1])) {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "2"" of type '" "PySliceObject *""'");
-    }
-    arg2 = (PySliceObject *) swig_obj[1];
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_setSubstructureIFF" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice *""'"); 
   }
-  {
-    std::vector< IFormFactor*,std::allocator< IFormFactor * > > *ptr = (std::vector< IFormFactor*,std::allocator< IFormFactor * > > *)0;
-    res3 = swig::asptr(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "3"" of type '" "std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "3"" of type '" "std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &""'"); 
-    }
-    arg3 = ptr;
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IInterferenceFunction,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DSuperLattice_setSubstructureIFF" "', argument " "2"" of type '" "IInterferenceFunction const &""'"); 
   }
-  try {
-    std_vector_Sl_IFormFactor_Sm__Sg____setitem____SWIG_0(arg1,arg2,(std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &)*arg3);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction2DSuperLattice_setSubstructureIFF" "', argument " "2"" of type '" "IInterferenceFunction const &""'"); 
   }
+  arg2 = reinterpret_cast< IInterferenceFunction * >(argp2);
+  (arg1)->setSubstructureIFF((IInterferenceFunction const &)*arg2);
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setitem____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_substructureIFF(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  PySliceObject *arg2 = (PySliceObject *) 0 ;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  Swig::Director *director = 0;
+  IInterferenceFunction *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  {
-    if (!PySlice_Check(swig_obj[1])) {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "2"" of type '" "PySliceObject *""'");
-    }
-    arg2 = (PySliceObject *) swig_obj[1];
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_substructureIFF" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
   }
-  try {
-    std_vector_Sl_IFormFactor_Sm__Sg____setitem____SWIG_1(arg1,arg2);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  result = (IInterferenceFunction *) &((InterferenceFunction2DSuperLattice const *)arg1)->substructureIFF();
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
   }
-  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___delitem____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_createSquare(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  PySliceObject *arg2 = (PySliceObject *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg1 ;
+  double arg2 ;
+  unsigned int arg3 ;
+  unsigned int arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  unsigned int val3 ;
+  int ecode3 = 0 ;
+  unsigned int val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  InterferenceFunction2DSuperLattice *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___delitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  {
-    if (!PySlice_Check(swig_obj[1])) {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t___delitem__" "', argument " "2"" of type '" "PySliceObject *""'");
-    }
-    arg2 = (PySliceObject *) swig_obj[1];
-  }
-  try {
-    std_vector_Sl_IFormFactor_Sm__Sg____delitem____SWIG_1(arg1,arg2);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
-  }
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DSuperLattice_createSquare", 4, 4, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DSuperLattice_createSquare" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DSuperLattice_createSquare" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DSuperLattice_createSquare" "', argument " "3"" of type '" "unsigned int""'");
+  } 
+  arg3 = static_cast< unsigned int >(val3);
+  ecode4 = SWIG_AsVal_unsigned_SS_int(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "InterferenceFunction2DSuperLattice_createSquare" "', argument " "4"" of type '" "unsigned int""'");
+  } 
+  arg4 = static_cast< unsigned int >(val4);
+  result = (InterferenceFunction2DSuperLattice *)InterferenceFunction2DSuperLattice::createSquare(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DSuperLattice, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___delitem__(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_createHexagonal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  unsigned int arg3 ;
+  unsigned int arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  unsigned int val3 ;
+  int ecode3 = 0 ;
+  unsigned int val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  InterferenceFunction2DSuperLattice *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t___delitem__", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        _v = PySlice_Check(argv[1]);
-      }
-      if (_v) {
-        return _wrap_vector_IFormFactorPtr_t___delitem____SWIG_1(self, argc, argv);
-      }
-    }
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DSuperLattice_createHexagonal", 4, 4, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DSuperLattice_createHexagonal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DSuperLattice_createHexagonal" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DSuperLattice_createHexagonal" "', argument " "3"" of type '" "unsigned int""'");
+  } 
+  arg3 = static_cast< unsigned int >(val3);
+  ecode4 = SWIG_AsVal_unsigned_SS_int(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "InterferenceFunction2DSuperLattice_createHexagonal" "', argument " "4"" of type '" "unsigned int""'");
+  } 
+  arg4 = static_cast< unsigned int >(val4);
+  result = (InterferenceFunction2DSuperLattice *)InterferenceFunction2DSuperLattice::createHexagonal(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DSuperLattice, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_evaluate__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  kvector_t arg2 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double result;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_vector_IFormFactorPtr_t___delitem____SWIG_0(self, argc, argv);
-      }
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)((InterferenceFunction2DSuperLattice const *)arg1)->evaluate(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t___delitem__'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    std::vector< IFormFactor * >::__delitem__(std::vector< IFormFactor * >::difference_type)\n"
-    "    std::vector< IFormFactor * >::__delitem__(PySliceObject *)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___getitem____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_evaluate__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::difference_type arg2 ;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  kvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  ptrdiff_t val2 ;
-  int ecode2 = 0 ;
-  std::vector< IFormFactor * >::value_type result;
+  void *argp2 ;
+  int res2 = 0 ;
+  double result;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___getitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___getitem__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
-  } 
-  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
-  try {
-    result = (std::vector< IFormFactor * >::value_type)std_vector_Sl_IFormFactor_Sm__Sg____getitem____SWIG_1(arg1,arg2);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  result = (double)((InterferenceFunction2DSuperLattice const *)arg1)->evaluate(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___getitem__(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_evaluate(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t___getitem__", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "InterferenceFunction2DSuperLattice_evaluate", 0, 3, argv))) SWIG_fail;
   --argc;
   if (argc == 2) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        _v = PySlice_Check(argv[1]);
-      }
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_vector_IFormFactorPtr_t___getitem____SWIG_0(self, argc, argv);
+        return _wrap_InterferenceFunction2DSuperLattice_evaluate__SWIG_1(self, argc, argv);
       }
     }
   }
-  if (argc == 2) {
+  if (argc == 3) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_vector_IFormFactorPtr_t___getitem____SWIG_1(self, argc, argv);
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_InterferenceFunction2DSuperLattice_evaluate__SWIG_0(self, argc, argv);
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t___getitem__'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'InterferenceFunction2DSuperLattice_evaluate'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    std::vector< IFormFactor * >::__getitem__(PySliceObject *)\n"
-    "    std::vector< IFormFactor * >::__getitem__(std::vector< IFormFactor * >::difference_type)\n");
+    "    InterferenceFunction2DSuperLattice::evaluate(kvector_t const,double) const\n"
+    "    InterferenceFunction2DSuperLattice::evaluate(kvector_t const) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setitem____SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_domainSize1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::difference_type arg2 ;
-  std::vector< IFormFactor * >::value_type arg3 = (std::vector< IFormFactor * >::value_type) 0 ;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  ptrdiff_t val2 ;
-  int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
+  PyObject *swig_obj[1] ;
+  unsigned int result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "2"" of type '" "std::vector< IFormFactor * >::difference_type""'");
-  } 
-  arg2 = static_cast< std::vector< IFormFactor * >::difference_type >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_IFormFactor, 0 |  0 );
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "vector_IFormFactorPtr_t___setitem__" "', argument " "3"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
-  }
-  arg3 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp3);
-  try {
-    std_vector_Sl_IFormFactor_Sm__Sg____setitem____SWIG_2(arg1,arg2,arg3);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_domainSize1" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
   }
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  result = (unsigned int)((InterferenceFunction2DSuperLattice const *)arg1)->domainSize1();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t___setitem__(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t___setitem__", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        _v = PySlice_Check(argv[1]);
-      }
-      if (_v) {
-        return _wrap_vector_IFormFactorPtr_t___setitem____SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        _v = PySlice_Check(argv[1]);
-      }
-      if (_v) {
-        int res = swig::asptr(argv[2], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_vector_IFormFactorPtr_t___setitem____SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        void *vptr = 0;
-        int res = SWIG_ConvertPtr(argv[2], &vptr, SWIGTYPE_p_IFormFactor, 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_vector_IFormFactorPtr_t___setitem____SWIG_2(self, argc, argv);
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t___setitem__'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    std::vector< IFormFactor * >::__setitem__(PySliceObject *,std::vector< IFormFactor *,std::allocator< IFormFactor * > > const &)\n"
-    "    std::vector< IFormFactor * >::__setitem__(PySliceObject *)\n"
-    "    std::vector< IFormFactor * >::__setitem__(std::vector< IFormFactor * >::difference_type,std::vector< IFormFactor * >::value_type)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_pop(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_domainSize2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< IFormFactor * >::value_type result;
+  unsigned int result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_pop" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  try {
-    result = (std::vector< IFormFactor * >::value_type)std_vector_Sl_IFormFactor_Sm__Sg__pop(arg1);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_domainSize2" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
   }
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  result = (unsigned int)((InterferenceFunction2DSuperLattice const *)arg1)->domainSize2();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_append(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_setIntegrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::value_type arg2 = (std::vector< IFormFactor * >::value_type) 0 ;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  bool arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  bool val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_append", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DSuperLattice_setIntegrationOverXi", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_append" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IFormFactor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "vector_IFormFactorPtr_t_append" "', argument " "2"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_setIntegrationOverXi" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp2);
-  std_vector_Sl_IFormFactor_Sm__Sg__append(arg1,arg2);
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DSuperLattice_setIntegrationOverXi" "', argument " "2"" of type '" "bool""'");
+  } 
+  arg2 = static_cast< bool >(val2);
+  (arg1)->setIntegrationOverXi(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -65873,50 +67060,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_new_vector_IFormFactorPtr_t__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *result = 0 ;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (std::vector< IFormFactor * > *)new std::vector< IFormFactor * >();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_vector_IFormFactorPtr_t__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  std::vector< IFormFactor * > *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    std::vector< IFormFactor*,std::allocator< IFormFactor * > > *ptr = (std::vector< IFormFactor*,std::allocator< IFormFactor * > > *)0;
-    res1 = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_vector_IFormFactorPtr_t" "', argument " "1"" of type '" "std::vector< IFormFactor * > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_vector_IFormFactorPtr_t" "', argument " "1"" of type '" "std::vector< IFormFactor * > const &""'"); 
-    }
-    arg1 = ptr;
-  }
-  result = (std::vector< IFormFactor * > *)new std::vector< IFormFactor * >((std::vector< IFormFactor * > const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_empty(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_integrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -65924,12 +67070,12 @@ SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_empty(PyObject *SWIGUNUSEDPAR
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_empty" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_integrationOverXi" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = (bool)((std::vector< IFormFactor * > const *)arg1)->empty();
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  result = (bool)((InterferenceFunction2DSuperLattice const *)arg1)->integrationOverXi();
   resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
@@ -65937,172 +67083,188 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< IFormFactor * >::size_type result;
+  Lattice2D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_size" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_lattice" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = ((std::vector< IFormFactor * > const *)arg1)->size();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  result = (Lattice2D *) &((InterferenceFunction2DSuperLattice const *)arg1)->lattice();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_swap(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * > *arg2 = 0 ;
+  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_swap", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_swap" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "vector_IFormFactorPtr_t_swap" "', argument " "2"" of type '" "std::vector< IFormFactor * > &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "vector_IFormFactorPtr_t_swap" "', argument " "2"" of type '" "std::vector< IFormFactor * > &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_getChildren" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< IFormFactor * > * >(argp2);
-  (arg1)->swap(*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  result = ((InterferenceFunction2DSuperLattice const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_begin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *InterferenceFunction2DSuperLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunction2DSuperLattice, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *InterferenceFunction2DSuperLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_InterferenceFunction3DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  Lattice *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< IFormFactor * >::iterator result;
+  InterferenceFunction3DLattice *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_begin" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction3DLattice" "', argument " "1"" of type '" "Lattice const &""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = (arg1)->begin();
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction3DLattice" "', argument " "1"" of type '" "Lattice const &""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  result = (InterferenceFunction3DLattice *)new InterferenceFunction3DLattice((Lattice const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction3DLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_end(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_InterferenceFunction3DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< IFormFactor * >::iterator result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_end" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunction3DLattice" "', argument " "1"" of type '" "InterferenceFunction3DLattice *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = (arg1)->end();
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_rbegin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< IFormFactor * >::reverse_iterator result;
+  InterferenceFunction3DLattice *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_rbegin" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_clone" "', argument " "1"" of type '" "InterferenceFunction3DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = (arg1)->rbegin();
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::reverse_iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
+  result = (InterferenceFunction3DLattice *)((InterferenceFunction3DLattice const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_rend(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< IFormFactor * >::reverse_iterator result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction3DLattice_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_rend" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_accept" "', argument " "1"" of type '" "InterferenceFunction3DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = (arg1)->rend();
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::reverse_iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction3DLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((InterferenceFunction3DLattice const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_clear(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_setPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
+  IPeakShape *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction3DLattice_setPeakShape", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_clear" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_setPeakShape" "', argument " "1"" of type '" "InterferenceFunction3DLattice *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  (arg1)->clear();
+  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IPeakShape,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction3DLattice_setPeakShape" "', argument " "2"" of type '" "IPeakShape const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction3DLattice_setPeakShape" "', argument " "2"" of type '" "IPeakShape const &""'"); 
+  }
+  arg2 = reinterpret_cast< IPeakShape * >(argp2);
+  (arg1)->setPeakShape((IPeakShape const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -66110,93 +67272,90 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_get_allocator(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SwigValueWrapper< std::allocator< IFormFactor * > > result;
+  Lattice *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_get_allocator" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_lattice" "', argument " "1"" of type '" "InterferenceFunction3DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = ((std::vector< IFormFactor * > const *)arg1)->get_allocator();
-  resultobj = SWIG_NewPointerObj((new std::vector< IFormFactor * >::allocator_type(static_cast< const std::vector< IFormFactor * >::allocator_type& >(result))), SWIGTYPE_p_std__allocatorT_IFormFactor_p_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
+  result = (Lattice *) &((InterferenceFunction3DLattice const *)arg1)->lattice();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_vector_IFormFactorPtr_t__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_supportsMultilayer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * >::size_type arg1 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  std::vector< IFormFactor * > *result = 0 ;
+  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_vector_IFormFactorPtr_t" "', argument " "1"" of type '" "std::vector< IFormFactor * >::size_type""'");
-  } 
-  arg1 = static_cast< std::vector< IFormFactor * >::size_type >(val1);
-  result = (std::vector< IFormFactor * > *)new std::vector< IFormFactor * >(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_supportsMultilayer" "', argument " "1"" of type '" "InterferenceFunction3DLattice const *""'"); 
+  }
+  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
+  result = (bool)((InterferenceFunction3DLattice const *)arg1)->supportsMultilayer();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_pop_back(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_pop_back" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_getChildren" "', argument " "1"" of type '" "InterferenceFunction3DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  (arg1)->pop_back();
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
+  result = ((InterferenceFunction3DLattice const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_resize__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_onChange(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::size_type arg2 ;
+  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_resize" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_onChange" "', argument " "1"" of type '" "InterferenceFunction3DLattice *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t_resize" "', argument " "2"" of type '" "std::vector< IFormFactor * >::size_type""'");
-  } 
-  arg2 = static_cast< std::vector< IFormFactor * >::size_type >(val2);
-  (arg1)->resize(arg2);
+  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
+  (arg1)->onChange();
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -66204,248 +67363,263 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_erase__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *InterferenceFunction3DLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunction3DLattice, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *InterferenceFunction3DLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_InterferenceFunctionFinite2DLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::iterator arg2 ;
+  Lattice2D *arg1 = 0 ;
+  unsigned int arg2 ;
+  unsigned int arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  swig::SwigPyIterator *iter2 = 0 ;
-  int res2 ;
-  std::vector< IFormFactor * >::iterator result;
+  unsigned int val2 ;
+  int ecode2 = 0 ;
+  unsigned int val3 ;
+  int ecode3 = 0 ;
+  InterferenceFunctionFinite2DLattice *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "1"" of type '" "Lattice2D const &""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
-  if (!SWIG_IsOK(res2) || !iter2) {
-    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
-  } else {
-    swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter2);
-    if (iter_t) {
-      arg2 = iter_t->get_current();
-    } else {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
-    }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "1"" of type '" "Lattice2D const &""'"); 
   }
-  result = std_vector_Sl_IFormFactor_Sm__Sg__erase__SWIG_0(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "2"" of type '" "unsigned int""'");
+  } 
+  arg2 = static_cast< unsigned int >(val2);
+  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "3"" of type '" "unsigned int""'");
+  } 
+  arg3 = static_cast< unsigned int >(val3);
+  result = (InterferenceFunctionFinite2DLattice *)new InterferenceFunctionFinite2DLattice((Lattice2D const &)*arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite2DLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_erase__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunctionFinite2DLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::iterator arg2 ;
-  std::vector< IFormFactor * >::iterator arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  swig::SwigPyIterator *iter2 = 0 ;
-  int res2 ;
-  swig::SwigPyIterator *iter3 = 0 ;
-  int res3 ;
-  std::vector< IFormFactor * >::iterator result;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  unsigned int arg5 ;
+  unsigned int arg6 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  unsigned int val5 ;
+  int ecode5 = 0 ;
+  unsigned int val6 ;
+  int ecode6 = 0 ;
+  InterferenceFunctionFinite2DLattice *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
-  if (!SWIG_IsOK(res2) || !iter2) {
-    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
-  } else {
-    swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter2);
-    if (iter_t) {
-      arg2 = iter_t->get_current();
-    } else {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
-    }
-  }
-  res3 = SWIG_ConvertPtr(swig_obj[2], SWIG_as_voidptrptr(&iter3), swig::SwigPyIterator::descriptor(), 0);
-  if (!SWIG_IsOK(res3) || !iter3) {
-    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "3"" of type '" "std::vector< IFormFactor * >::iterator""'");
-  } else {
-    swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter3);
-    if (iter_t) {
-      arg3 = iter_t->get_current();
-    } else {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_erase" "', argument " "3"" of type '" "std::vector< IFormFactor * >::iterator""'");
-    }
-  }
-  result = std_vector_Sl_IFormFactor_Sm__Sg__erase__SWIG_1(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  ecode5 = SWIG_AsVal_unsigned_SS_int(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "5"" of type '" "unsigned int""'");
+  } 
+  arg5 = static_cast< unsigned int >(val5);
+  ecode6 = SWIG_AsVal_unsigned_SS_int(swig_obj[5], &val6);
+  if (!SWIG_IsOK(ecode6)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "6"" of type '" "unsigned int""'");
+  } 
+  arg6 = static_cast< unsigned int >(val6);
+  result = (InterferenceFunctionFinite2DLattice *)new InterferenceFunctionFinite2DLattice(arg1,arg2,arg3,arg4,arg5,arg6);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite2DLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_erase(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunctionFinite2DLattice(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[7] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_erase", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_InterferenceFunctionFinite2DLattice", 0, 6, argv))) SWIG_fail;
   --argc;
-  if (argc == 2) {
+  if (argc == 3) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      swig::SwigPyIterator *iter = 0;
-      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
-      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter) != 0));
+      {
+        int res = SWIG_AsVal_unsigned_SS_int(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
-        return _wrap_vector_IFormFactorPtr_t_erase__SWIG_0(self, argc, argv);
+        {
+          int res = SWIG_AsVal_unsigned_SS_int(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_new_InterferenceFunctionFinite2DLattice__SWIG_0(self, argc, argv);
+        }
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 6) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
-      swig::SwigPyIterator *iter = 0;
-      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
-      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter) != 0));
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
-        swig::SwigPyIterator *iter = 0;
-        int res = SWIG_ConvertPtr(argv[2], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
-        _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter) != 0));
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
         if (_v) {
-          return _wrap_vector_IFormFactorPtr_t_erase__SWIG_1(self, argc, argv);
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            {
+              int res = SWIG_AsVal_unsigned_SS_int(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              {
+                int res = SWIG_AsVal_unsigned_SS_int(argv[5], NULL);
+                _v = SWIG_CheckState(res);
+              }
+              if (_v) {
+                return _wrap_new_InterferenceFunctionFinite2DLattice__SWIG_1(self, argc, argv);
+              }
+            }
+          }
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t_erase'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_InterferenceFunctionFinite2DLattice'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    std::vector< IFormFactor * >::erase(std::vector< IFormFactor * >::iterator)\n"
-    "    std::vector< IFormFactor * >::erase(std::vector< IFormFactor * >::iterator,std::vector< IFormFactor * >::iterator)\n");
+    "    InterferenceFunctionFinite2DLattice::InterferenceFunctionFinite2DLattice(Lattice2D const &,unsigned int,unsigned int)\n"
+    "    InterferenceFunctionFinite2DLattice::InterferenceFunctionFinite2DLattice(double,double,double,double,unsigned int,unsigned int)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_vector_IFormFactorPtr_t__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_InterferenceFunctionFinite2DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * >::size_type arg1 ;
-  std::vector< IFormFactor * >::value_type arg2 = (std::vector< IFormFactor * >::value_type) 0 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  std::vector< IFormFactor * > *result = 0 ;
+  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_vector_IFormFactorPtr_t" "', argument " "1"" of type '" "std::vector< IFormFactor * >::size_type""'");
-  } 
-  arg1 = static_cast< std::vector< IFormFactor * >::size_type >(val1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IFormFactor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_vector_IFormFactorPtr_t" "', argument " "2"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunctionFinite2DLattice" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp2);
-  result = (std::vector< IFormFactor * > *)new std::vector< IFormFactor * >(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_vector_IFormFactorPtr_t(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  InterferenceFunctionFinite2DLattice *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_vector_IFormFactorPtr_t", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_vector_IFormFactorPtr_t__SWIG_0(self, argc, argv);
-  }
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_new_vector_IFormFactorPtr_t__SWIG_2(self, argc, argv);
-    }
-  }
-  if (argc == 1) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_vector_IFormFactorPtr_t__SWIG_1(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IFormFactor, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_new_vector_IFormFactorPtr_t__SWIG_3(self, argc, argv);
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_clone" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
+  result = (InterferenceFunctionFinite2DLattice *)((InterferenceFunctionFinite2DLattice const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_vector_IFormFactorPtr_t'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    std::vector< IFormFactor * >::vector()\n"
-    "    std::vector< IFormFactor * >::vector(std::vector< IFormFactor * > const &)\n"
-    "    std::vector< IFormFactor * >::vector(std::vector< IFormFactor * >::size_type)\n"
-    "    std::vector< IFormFactor * >::vector(std::vector< IFormFactor * >::size_type,std::vector< IFormFactor * >::value_type)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_push_back(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::value_type arg2 = (std::vector< IFormFactor * >::value_type) 0 ;
+  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_push_back", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionFinite2DLattice_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_push_back" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_accept" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "vector_IFormFactorPtr_t_push_back" "', argument " "2"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionFinite2DLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp2);
-  (arg1)->push_back(arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((InterferenceFunctionFinite2DLattice const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -66453,82 +67627,166 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_front(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_createSquare(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  double arg1 ;
+  double arg2 ;
+  unsigned int arg3 ;
+  unsigned int arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  unsigned int val3 ;
+  int ecode3 = 0 ;
+  unsigned int val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  InterferenceFunctionFinite2DLattice *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionFinite2DLattice_createSquare", 4, 4, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunctionFinite2DLattice_createSquare" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunctionFinite2DLattice_createSquare" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunctionFinite2DLattice_createSquare" "', argument " "3"" of type '" "unsigned int""'");
+  } 
+  arg3 = static_cast< unsigned int >(val3);
+  ecode4 = SWIG_AsVal_unsigned_SS_int(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "InterferenceFunctionFinite2DLattice_createSquare" "', argument " "4"" of type '" "unsigned int""'");
+  } 
+  arg4 = static_cast< unsigned int >(val4);
+  result = (InterferenceFunctionFinite2DLattice *)InterferenceFunctionFinite2DLattice::createSquare(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite2DLattice, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_createHexagonal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  unsigned int arg3 ;
+  unsigned int arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  unsigned int val3 ;
+  int ecode3 = 0 ;
+  unsigned int val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  InterferenceFunctionFinite2DLattice *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionFinite2DLattice_createHexagonal", 4, 4, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunctionFinite2DLattice_createHexagonal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunctionFinite2DLattice_createHexagonal" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunctionFinite2DLattice_createHexagonal" "', argument " "3"" of type '" "unsigned int""'");
+  } 
+  arg3 = static_cast< unsigned int >(val3);
+  ecode4 = SWIG_AsVal_unsigned_SS_int(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "InterferenceFunctionFinite2DLattice_createHexagonal" "', argument " "4"" of type '" "unsigned int""'");
+  } 
+  arg4 = static_cast< unsigned int >(val4);
+  result = (InterferenceFunctionFinite2DLattice *)InterferenceFunctionFinite2DLattice::createHexagonal(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite2DLattice, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_numberUnitCells1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< IFormFactor * >::value_type result;
+  unsigned int result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_front" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_numberUnitCells1" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = (std::vector< IFormFactor * >::value_type)((std::vector< IFormFactor * > const *)arg1)->front();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
+  result = (unsigned int)((InterferenceFunctionFinite2DLattice const *)arg1)->numberUnitCells1();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_back(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_numberUnitCells2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< IFormFactor * >::value_type result;
+  unsigned int result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_back" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_numberUnitCells2" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = (std::vector< IFormFactor * >::value_type)((std::vector< IFormFactor * > const *)arg1)->back();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
+  result = (unsigned int)((InterferenceFunctionFinite2DLattice const *)arg1)->numberUnitCells2();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_assign(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_setIntegrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::size_type arg2 ;
-  std::vector< IFormFactor * >::value_type arg3 = (std::vector< IFormFactor * >::value_type) 0 ;
+  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  bool arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
+  bool val2 ;
   int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_assign", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionFinite2DLattice_setIntegrationOverXi", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_assign" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_setIntegrationOverXi" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t_assign" "', argument " "2"" of type '" "std::vector< IFormFactor * >::size_type""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunctionFinite2DLattice_setIntegrationOverXi" "', argument " "2"" of type '" "bool""'");
   } 
-  arg2 = static_cast< std::vector< IFormFactor * >::size_type >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_IFormFactor, 0 |  0 );
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "vector_IFormFactorPtr_t_assign" "', argument " "3"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
-  }
-  arg3 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp3);
-  (arg1)->assign(arg2,arg3);
+  arg2 = static_cast< bool >(val2);
+  (arg1)->setIntegrationOverXi(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -66536,1071 +67794,623 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_resize__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_integrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::size_type arg2 ;
-  std::vector< IFormFactor * >::value_type arg3 = (std::vector< IFormFactor * >::value_type) 0 ;
+  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_resize" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t_resize" "', argument " "2"" of type '" "std::vector< IFormFactor * >::size_type""'");
-  } 
-  arg2 = static_cast< std::vector< IFormFactor * >::size_type >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_IFormFactor, 0 |  0 );
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "vector_IFormFactorPtr_t_resize" "', argument " "3"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_integrationOverXi" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
   }
-  arg3 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp3);
-  (arg1)->resize(arg2,arg3);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
+  result = (bool)((InterferenceFunctionFinite2DLattice const *)arg1)->integrationOverXi();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_resize(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  Lattice2D *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_resize", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_vector_IFormFactorPtr_t_resize__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        void *vptr = 0;
-        int res = SWIG_ConvertPtr(argv[2], &vptr, SWIGTYPE_p_IFormFactor, 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_vector_IFormFactorPtr_t_resize__SWIG_1(self, argc, argv);
-        }
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_lattice" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
+  result = (Lattice2D *) &((InterferenceFunctionFinite2DLattice const *)arg1)->lattice();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice2D, 0 |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t_resize'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    std::vector< IFormFactor * >::resize(std::vector< IFormFactor * >::size_type)\n"
-    "    std::vector< IFormFactor * >::resize(std::vector< IFormFactor * >::size_type,std::vector< IFormFactor * >::value_type)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_insert__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_getParticleDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::iterator arg2 ;
-  std::vector< IFormFactor * >::value_type arg3 = (std::vector< IFormFactor * >::value_type) 0 ;
+  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  swig::SwigPyIterator *iter2 = 0 ;
-  int res2 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  std::vector< IFormFactor * >::iterator result;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
-  if (!SWIG_IsOK(res2) || !iter2) {
-    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
-  } else {
-    swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter2);
-    if (iter_t) {
-      arg2 = iter_t->get_current();
-    } else {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
-    }
-  }
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_IFormFactor, 0 |  0 );
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "3"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_getParticleDensity" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
   }
-  arg3 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp3);
-  result = std_vector_Sl_IFormFactor_Sm__Sg__insert__SWIG_0(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< IFormFactor * >::iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
+  result = (double)((InterferenceFunctionFinite2DLattice const *)arg1)->getParticleDensity();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_insert__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::iterator arg2 ;
-  std::vector< IFormFactor * >::size_type arg3 ;
-  std::vector< IFormFactor * >::value_type arg4 = (std::vector< IFormFactor * >::value_type) 0 ;
+  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  swig::SwigPyIterator *iter2 = 0 ;
-  int res2 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
-  if (!SWIG_IsOK(res2) || !iter2) {
-    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
-  } else {
-    swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter2);
-    if (iter_t) {
-      arg2 = iter_t->get_current();
-    } else {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "2"" of type '" "std::vector< IFormFactor * >::iterator""'");
-    }
-  }
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "3"" of type '" "std::vector< IFormFactor * >::size_type""'");
-  } 
-  arg3 = static_cast< std::vector< IFormFactor * >::size_type >(val3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4,SWIGTYPE_p_IFormFactor, 0 |  0 );
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "vector_IFormFactorPtr_t_insert" "', argument " "4"" of type '" "std::vector< IFormFactor * >::value_type""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_getChildren" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
   }
-  arg4 = reinterpret_cast< std::vector< IFormFactor * >::value_type >(argp4);
-  std_vector_Sl_IFormFactor_Sm__Sg__insert__SWIG_1(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
+  result = ((InterferenceFunctionFinite2DLattice const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_insert(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_insert", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      swig::SwigPyIterator *iter = 0;
-      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
-      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter) != 0));
-      if (_v) {
-        void *vptr = 0;
-        int res = SWIG_ConvertPtr(argv[2], &vptr, SWIGTYPE_p_IFormFactor, 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_vector_IFormFactorPtr_t_insert__SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< IFormFactor*,std::allocator< IFormFactor * > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      swig::SwigPyIterator *iter = 0;
-      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
-      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< IFormFactor * >::iterator > *>(iter) != 0));
-      if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          void *vptr = 0;
-          int res = SWIG_ConvertPtr(argv[3], &vptr, SWIGTYPE_p_IFormFactor, 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_vector_IFormFactorPtr_t_insert__SWIG_1(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'vector_IFormFactorPtr_t_insert'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    std::vector< IFormFactor * >::insert(std::vector< IFormFactor * >::iterator,std::vector< IFormFactor * >::value_type)\n"
-    "    std::vector< IFormFactor * >::insert(std::vector< IFormFactor * >::iterator,std::vector< IFormFactor * >::size_type,std::vector< IFormFactor * >::value_type)\n");
-  return 0;
+SWIGINTERN PyObject *InterferenceFunctionFinite2DLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunctionFinite2DLattice, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *InterferenceFunctionFinite2DLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_reserve(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunctionFinite3DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
-  std::vector< IFormFactor * >::size_type arg2 ;
+  Lattice *arg1 = 0 ;
+  unsigned int arg2 ;
+  unsigned int arg3 ;
+  unsigned int arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
+  unsigned int val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  unsigned int val3 ;
+  int ecode3 = 0 ;
+  unsigned int val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  InterferenceFunctionFinite3DLattice *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "vector_IFormFactorPtr_t_reserve", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "new_InterferenceFunctionFinite3DLattice", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_reserve" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunctionFinite3DLattice" "', argument " "1"" of type '" "Lattice const &""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunctionFinite3DLattice" "', argument " "1"" of type '" "Lattice const &""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "vector_IFormFactorPtr_t_reserve" "', argument " "2"" of type '" "std::vector< IFormFactor * >::size_type""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunctionFinite3DLattice" "', argument " "2"" of type '" "unsigned int""'");
   } 
-  arg2 = static_cast< std::vector< IFormFactor * >::size_type >(val2);
-  (arg1)->reserve(arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = static_cast< unsigned int >(val2);
+  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunctionFinite3DLattice" "', argument " "3"" of type '" "unsigned int""'");
+  } 
+  arg3 = static_cast< unsigned int >(val3);
+  ecode4 = SWIG_AsVal_unsigned_SS_int(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunctionFinite3DLattice" "', argument " "4"" of type '" "unsigned int""'");
+  } 
+  arg4 = static_cast< unsigned int >(val4);
+  result = (InterferenceFunctionFinite3DLattice *)new InterferenceFunctionFinite3DLattice((Lattice const &)*arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite3DLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_vector_IFormFactorPtr_t_capacity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_InterferenceFunctionFinite3DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< IFormFactor * >::size_type result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "vector_IFormFactorPtr_t_capacity" "', argument " "1"" of type '" "std::vector< IFormFactor * > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunctionFinite3DLattice" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  result = ((std::vector< IFormFactor * > const *)arg1)->capacity();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_vector_IFormFactorPtr_t(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< IFormFactor * > *arg1 = (std::vector< IFormFactor * > *) 0 ;
+  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  InterferenceFunctionFinite3DLattice *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_vector_IFormFactorPtr_t" "', argument " "1"" of type '" "std::vector< IFormFactor * > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_clone" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< IFormFactor * > * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
+  result = (InterferenceFunctionFinite3DLattice *)((InterferenceFunctionFinite3DLattice const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *vector_IFormFactorPtr_t_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_std__vectorT_IFormFactor_p_std__allocatorT_IFormFactor_p_t_t, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *vector_IFormFactorPtr_t_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_IFormFactorBorn__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PyObject *arg1 = (PyObject *) 0 ;
-  IFormFactorBorn *result = 0 ;
+  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  arg1 = swig_obj[0];
-  if ( arg1 != Py_None ) {
-    /* subclassed */
-    result = (IFormFactorBorn *)new SwigDirector_IFormFactorBorn(arg1); 
-  } else {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
-    SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionFinite3DLattice_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_accept" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
   }
-  
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactorBorn, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionFinite3DLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((InterferenceFunctionFinite3DLattice const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IFormFactorBorn__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_numberUnitCells1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PyObject *arg1 = (PyObject *) 0 ;
-  INode *arg2 = (INode *) 0 ;
-  SwigValueWrapper< std::vector< char const *,std::allocator< char const * > > > arg3 ;
-  SwigValueWrapper< std::vector< char const *,std::allocator< char const * > > > arg4 ;
-  std::vector< double,std::allocator< double > > arg5 ;
-  std::vector< double,std::allocator< double > > arg6 ;
-  std::vector< double,std::allocator< double > > arg7 ;
-  std::vector< double,std::allocator< double > > arg8 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  void *argp4 ;
-  int res4 = 0 ;
-  IFormFactorBorn *result = 0 ;
+  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  unsigned int result;
   
-  if ((nobjs < 8) || (nobjs > 8)) SWIG_fail;
-  arg1 = swig_obj[0];
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INode, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_IFormFactorBorn" "', argument " "2"" of type '" "INode const *""'"); 
-  }
-  arg2 = reinterpret_cast< INode * >(argp2);
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_IFormFactorBorn" "', argument " "3"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_IFormFactorBorn" "', argument " "3"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'");
-    } else {
-      std::vector< char const *,std::allocator< char const * > > * temp = reinterpret_cast< std::vector< char const *,std::allocator< char const * > > * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
-  }
-  {
-    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t,  0  | 0);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_IFormFactorBorn" "', argument " "4"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'"); 
-    }  
-    if (!argp4) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_IFormFactorBorn" "', argument " "4"" of type '" "std::vector< char const *,std::allocator< char const * > > const""'");
-    } else {
-      std::vector< char const *,std::allocator< char const * > > * temp = reinterpret_cast< std::vector< char const *,std::allocator< char const * > > * >(argp4);
-      arg4 = *temp;
-      if (SWIG_IsNewObj(res4)) delete temp;
-    }
-  }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[4], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactorBorn" "', argument " "5"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
-    }
-    arg5 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
-  }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[5], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactorBorn" "', argument " "6"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
-    }
-    arg6 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
-  }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[6], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactorBorn" "', argument " "7"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
-    }
-    arg7 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
-  }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[7], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_IFormFactorBorn" "', argument " "8"" of type '" "std::vector< double,std::allocator< double > >""'"); 
-    }
-    arg8 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
-  }
-  if ( arg1 != Py_None ) {
-    /* subclassed */
-    result = (IFormFactorBorn *)new SwigDirector_IFormFactorBorn(arg1,(INode const *)arg2,arg3,arg4,arg5,arg6,arg7,arg8); 
-  } else {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
-    SWIG_fail;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_numberUnitCells1" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
   }
-  
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactorBorn, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
+  result = (unsigned int)((InterferenceFunctionFinite3DLattice const *)arg1)->numberUnitCells1();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IFormFactorBorn(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[9] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_numberUnitCells2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  unsigned int result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_IFormFactorBorn", 0, 8, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    _v = (argv[0] != 0);
-    if (_v) {
-      return _wrap_new_IFormFactorBorn__SWIG_0(self, argc, argv);
-    }
-  }
-  if (argc == 8) {
-    int _v;
-    _v = (argv[0] != 0);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_INode, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_std__vectorT_char_const_p_std__allocatorT_char_const_p_t_t, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            int res = swig::asptr(argv[4], (std::vector< double,std::allocator< double > >**)(0));
-            _v = SWIG_CheckState(res);
-            if (_v) {
-              int res = swig::asptr(argv[5], (std::vector< double,std::allocator< double > >**)(0));
-              _v = SWIG_CheckState(res);
-              if (_v) {
-                int res = swig::asptr(argv[6], (std::vector< double,std::allocator< double > >**)(0));
-                _v = SWIG_CheckState(res);
-                if (_v) {
-                  int res = swig::asptr(argv[7], (std::vector< double,std::allocator< double > >**)(0));
-                  _v = SWIG_CheckState(res);
-                  if (_v) {
-                    return _wrap_new_IFormFactorBorn__SWIG_1(self, argc, argv);
-                  }
-                }
-              }
-            }
-          }
-        }
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_numberUnitCells2" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
+  result = (unsigned int)((InterferenceFunctionFinite3DLattice const *)arg1)->numberUnitCells2();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_IFormFactorBorn'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IFormFactorBorn::IFormFactorBorn()\n"
-    "    IFormFactorBorn::IFormFactorBorn(PyObject *,INode const *,std::vector< char const *,std::allocator< char const * > > const,std::vector< char const *,std::allocator< char const * > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > >)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorBorn_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_numberUnitCells3(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
+  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  IFormFactorBorn *result = 0 ;
+  unsigned int result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_clone" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      Swig::DirectorPureVirtualException::raise("IFormFactorBorn::clone");
-    } else {
-      result = (IFormFactorBorn *)((IFormFactorBorn const *)arg1)->clone();
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
-  }
-  if (director) {
-    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_numberUnitCells3" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
   }
+  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
+  result = (unsigned int)((InterferenceFunctionFinite3DLattice const *)arg1)->numberUnitCells3();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorBorn_setAmbientMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
-  SwigValueWrapper< Material > arg2 ;
+  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
+  PyObject *swig_obj[1] ;
+  Lattice *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_setAmbientMaterial", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_setAmbientMaterial" "', argument " "1"" of type '" "IFormFactorBorn *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_setAmbientMaterial" "', argument " "2"" of type '" "Material""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_setAmbientMaterial" "', argument " "2"" of type '" "Material""'");
-    } else {
-      Material * temp = reinterpret_cast< Material * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      (arg1)->IFormFactorBorn::setAmbientMaterial(arg2);
-    } else {
-      (arg1)->setAmbientMaterial(arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_lattice" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
   }
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
+  result = (Lattice *) &((InterferenceFunctionFinite3DLattice const *)arg1)->lattice();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorBorn_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_supportsMultilayer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
-  WavevectorInfo *arg2 = 0 ;
+  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  complex_t result;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_evaluate" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_WavevectorInfo,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
-  }
-  arg2 = reinterpret_cast< WavevectorInfo * >(argp2);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = ((IFormFactorBorn const *)arg1)->IFormFactorBorn::evaluate((WavevectorInfo const &)*arg2);
-    } else {
-      result = ((IFormFactorBorn const *)arg1)->evaluate((WavevectorInfo const &)*arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_supportsMultilayer" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
   }
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
+  result = (bool)((InterferenceFunctionFinite3DLattice const *)arg1)->supportsMultilayer();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorBorn_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
-  IRotation *arg2 = 0 ;
+  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  double result;
+  PyObject *swig_obj[1] ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_bottomZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_bottomZ" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = (double)((IFormFactorBorn const *)arg1)->IFormFactorBorn::bottomZ((IRotation const &)*arg2);
-    } else {
-      result = (double)((IFormFactorBorn const *)arg1)->bottomZ((IRotation const &)*arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_getChildren" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
   }
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
+  result = ((InterferenceFunctionFinite3DLattice const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorBorn_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *InterferenceFunctionFinite3DLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunctionFinite3DLattice, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *InterferenceFunctionFinite3DLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_InterferenceFunctionHardDisk(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
-  IRotation *arg2 = 0 ;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  InterferenceFunctionHardDisk *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_InterferenceFunctionHardDisk", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunctionHardDisk" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunctionHardDisk" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (InterferenceFunctionHardDisk *)new InterferenceFunctionHardDisk(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionHardDisk, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_InterferenceFunctionHardDisk(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  InterferenceFunctionHardDisk *arg1 = (InterferenceFunctionHardDisk *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  double result;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_topZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionHardDisk, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_topZ" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = (double)((IFormFactorBorn const *)arg1)->IFormFactorBorn::topZ((IRotation const &)*arg2);
-    } else {
-      result = (double)((IFormFactorBorn const *)arg1)->topZ((IRotation const &)*arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunctionHardDisk" "', argument " "1"" of type '" "InterferenceFunctionHardDisk *""'"); 
   }
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorBorn_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionHardDisk_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
-  cvector_t arg2 ;
+  InterferenceFunctionHardDisk *arg1 = (InterferenceFunctionHardDisk *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  complex_t result;
+  PyObject *swig_obj[1] ;
+  InterferenceFunctionHardDisk *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_evaluate_for_q" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      Swig::DirectorPureVirtualException::raise("IFormFactorBorn::evaluate_for_q");
-    } else {
-      result = ((IFormFactorBorn const *)arg1)->evaluate_for_q(arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionHardDisk_clone" "', argument " "1"" of type '" "InterferenceFunctionHardDisk const *""'"); 
   }
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg1 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp1);
+  result = (InterferenceFunctionHardDisk *)((InterferenceFunctionHardDisk const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorBorn_canSliceAnalytically(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionHardDisk_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
-  IRotation *arg2 = 0 ;
+  InterferenceFunctionHardDisk *arg1 = (InterferenceFunctionHardDisk *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  SwigDirector_IFormFactorBorn *darg = 0;
-  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_canSliceAnalytically", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionHardDisk_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_canSliceAnalytically" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionHardDisk_accept" "', argument " "1"" of type '" "InterferenceFunctionHardDisk const *""'"); 
   }
-  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  arg1 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_canSliceAnalytically" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_canSliceAnalytically" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  if (!director || !(director->swig_get_inner("canSliceAnalytically"))) {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing protected member canSliceAnalytically");
-    SWIG_fail;
-  }
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    darg = dynamic_cast<SwigDirector_IFormFactorBorn *>(arg1);
-    if (upcall) {
-      result = (bool)((SwigDirector_IFormFactorBorn const *)darg)->canSliceAnalyticallySwigPublic((IRotation const &)*arg2);
-    } else {
-      result = (bool)((SwigDirector_IFormFactorBorn const *)darg)->canSliceAnalytically((IRotation const &)*arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionHardDisk_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((InterferenceFunctionHardDisk const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IFormFactorBorn(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionHardDisk_getParticleDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
+  InterferenceFunctionHardDisk *arg1 = (InterferenceFunctionHardDisk *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFormFactorBorn" "', argument " "1"" of type '" "IFormFactorBorn *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionHardDisk_getParticleDensity" "', argument " "1"" of type '" "InterferenceFunctionHardDisk const *""'"); 
   }
-  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp1);
+  result = (double)((InterferenceFunctionHardDisk const *)arg1)->getParticleDensity();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_disown_IFormFactorBorn(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionHardDisk_radius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
+  InterferenceFunctionHardDisk *arg1 = (InterferenceFunctionHardDisk *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_IFormFactorBorn" "', argument " "1"" of type '" "IFormFactorBorn *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
-  {
-    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
-    if (director) director->swig_disown();
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionHardDisk_radius" "', argument " "1"" of type '" "InterferenceFunctionHardDisk const *""'"); 
   }
-  
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp1);
+  result = (double)((InterferenceFunctionHardDisk const *)arg1)->radius();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorBorn_sliceFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionHardDisk_density(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorBorn *arg1 = (IFormFactorBorn *) 0 ;
-  ZLimits arg2 ;
-  IRotation *arg3 = 0 ;
-  kvector_t arg4 ;
+  InterferenceFunctionHardDisk *arg1 = (InterferenceFunctionHardDisk *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  void *argp4 ;
-  int res4 = 0 ;
-  PyObject *swig_obj[4] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  SwigDirector_IFormFactorBorn *darg = 0;
-  IFormFactor *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactorBorn_sliceFormFactor", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "1"" of type '" "IFormFactorBorn const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactorBorn * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "2"" of type '" "ZLimits""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "2"" of type '" "ZLimits""'");
-    } else {
-      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "3"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "3"" of type '" "IRotation const &""'"); 
-  }
-  arg3 = reinterpret_cast< IRotation * >(argp3);
-  {
-    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "4"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp4) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorBorn_sliceFormFactor" "', argument " "4"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
-      arg4 = *temp;
-      if (SWIG_IsNewObj(res4)) delete temp;
-    }
-  }
-  director = SWIG_DIRECTOR_CAST(arg1);
-  if (!director || !(director->swig_get_inner("sliceFormFactor"))) {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing protected member sliceFormFactor");
-    SWIG_fail;
-  }
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    darg = dynamic_cast<SwigDirector_IFormFactorBorn *>(arg1);
-    if (upcall) {
-      result = (IFormFactor *)((SwigDirector_IFormFactorBorn const *)darg)->sliceFormFactorSwigPublic(arg2,(IRotation const &)*arg3,arg4);
-    } else {
-      result = (IFormFactor *)((SwigDirector_IFormFactorBorn const *)darg)->sliceFormFactor(arg2,(IRotation const &)*arg3,arg4);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
-  }
-  if (director) {
-    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionHardDisk_density" "', argument " "1"" of type '" "InterferenceFunctionHardDisk const *""'"); 
   }
+  arg1 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp1);
+  result = (double)((InterferenceFunctionHardDisk const *)arg1)->density();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IFormFactorBorn_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *InterferenceFunctionHardDisk_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IFormFactorBorn, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunctionHardDisk, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *IFormFactorBorn_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *InterferenceFunctionHardDisk_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_SlicingEffects_position_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunctionNone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
-  kvector_t *arg2 = (kvector_t *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  InterferenceFunctionNone *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "SlicingEffects_position_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SlicingEffects_position_set" "', argument " "1"" of type '" "SlicingEffects *""'"); 
-  }
-  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_BasicVector3DT_double_t, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SlicingEffects_position_set" "', argument " "2"" of type '" "kvector_t *""'"); 
-  }
-  arg2 = reinterpret_cast< kvector_t * >(argp2);
-  if (arg1) (arg1)->position = *arg2;
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "new_InterferenceFunctionNone", 0, 0, 0)) SWIG_fail;
+  result = (InterferenceFunctionNone *)new InterferenceFunctionNone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionNone, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SlicingEffects_position_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionNone_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
+  InterferenceFunctionNone *arg1 = (InterferenceFunctionNone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  kvector_t *result = 0 ;
+  InterferenceFunctionNone *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionNone, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SlicingEffects_position_get" "', argument " "1"" of type '" "SlicingEffects *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionNone_clone" "', argument " "1"" of type '" "InterferenceFunctionNone const *""'"); 
   }
-  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
-  result = (kvector_t *)& ((arg1)->position);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_BasicVector3DT_double_t, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunctionNone * >(argp1);
+  result = (InterferenceFunctionNone *)((InterferenceFunctionNone const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionNone, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SlicingEffects_dz_bottom_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionNone_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
-  double arg2 ;
+  InterferenceFunctionNone *arg1 = (InterferenceFunctionNone *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "SlicingEffects_dz_bottom_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionNone_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionNone, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SlicingEffects_dz_bottom_set" "', argument " "1"" of type '" "SlicingEffects *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionNone_accept" "', argument " "1"" of type '" "InterferenceFunctionNone const *""'"); 
   }
-  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SlicingEffects_dz_bottom_set" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->dz_bottom = arg2;
+  arg1 = reinterpret_cast< InterferenceFunctionNone * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionNone_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((InterferenceFunctionNone const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -67608,142 +68418,178 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_SlicingEffects_dz_bottom_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_InterferenceFunctionNone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
+  InterferenceFunctionNone *arg1 = (InterferenceFunctionNone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionNone, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SlicingEffects_dz_bottom_get" "', argument " "1"" of type '" "SlicingEffects *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunctionNone" "', argument " "1"" of type '" "InterferenceFunctionNone *""'"); 
   }
-  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
-  result = (double) ((arg1)->dz_bottom);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< InterferenceFunctionNone * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SlicingEffects_dz_top_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *InterferenceFunctionNone_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunctionNone, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *InterferenceFunctionNone_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_InterferenceFunctionRadialParaCrystal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
+  double arg1 ;
   double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  InterferenceFunctionRadialParaCrystal *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "SlicingEffects_dz_top_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SlicingEffects_dz_top_set" "', argument " "1"" of type '" "SlicingEffects *""'"); 
-  }
-  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunctionRadialParaCrystal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SlicingEffects_dz_top_set" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunctionRadialParaCrystal" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->dz_top = arg2;
-  resultobj = SWIG_Py_Void();
+  result = (InterferenceFunctionRadialParaCrystal *)new InterferenceFunctionRadialParaCrystal(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SlicingEffects_dz_top_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_InterferenceFunctionRadialParaCrystal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  InterferenceFunctionRadialParaCrystal *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SlicingEffects_dz_top_get" "', argument " "1"" of type '" "SlicingEffects *""'"); 
-  }
-  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
-  result = (double) ((arg1)->dz_top);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunctionRadialParaCrystal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (InterferenceFunctionRadialParaCrystal *)new InterferenceFunctionRadialParaCrystal(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SlicingEffects(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SlicingEffects *result = 0 ;
+SWIGINTERN PyObject *_wrap_new_InterferenceFunctionRadialParaCrystal(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_InterferenceFunctionRadialParaCrystal", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_new_InterferenceFunctionRadialParaCrystal__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_InterferenceFunctionRadialParaCrystal__SWIG_0(self, argc, argv);
+      }
+    }
+  }
   
-  if (!SWIG_Python_UnpackTuple(args, "new_SlicingEffects", 0, 0, 0)) SWIG_fail;
-  result = (SlicingEffects *)new SlicingEffects();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SlicingEffects, SWIG_POINTER_NEW |  0 );
-  return resultobj;
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_InterferenceFunctionRadialParaCrystal'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    InterferenceFunctionRadialParaCrystal::InterferenceFunctionRadialParaCrystal(double,double)\n"
+    "    InterferenceFunctionRadialParaCrystal::InterferenceFunctionRadialParaCrystal(double)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_SlicingEffects(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SlicingEffects *arg1 = (SlicingEffects *) 0 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  InterferenceFunctionRadialParaCrystal *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SlicingEffects, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SlicingEffects" "', argument " "1"" of type '" "SlicingEffects *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_clone" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< SlicingEffects * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  result = (InterferenceFunctionRadialParaCrystal *)((InterferenceFunctionRadialParaCrystal const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *SlicingEffects_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_SlicingEffects, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *SlicingEffects_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_delete_IFormFactorDecorator(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionRadialParaCrystal_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFormFactorDecorator" "', argument " "1"" of type '" "IFormFactorDecorator *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_accept" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionRadialParaCrystal_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((InterferenceFunctionRadialParaCrystal const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -67751,92 +68597,90 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorDecorator_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_setKappa(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IFormFactorDecorator *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionRadialParaCrystal_setKappa", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_clone" "', argument " "1"" of type '" "IFormFactorDecorator const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_setKappa" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal *""'"); 
   }
-  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
-  result = (IFormFactorDecorator *)((IFormFactorDecorator const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunctionRadialParaCrystal_setKappa" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setKappa(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorDecorator_setAmbientMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_kappa(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
-  SwigValueWrapper< Material > arg2 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactorDecorator_setAmbientMaterial", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_setAmbientMaterial" "', argument " "1"" of type '" "IFormFactorDecorator *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorDecorator_setAmbientMaterial" "', argument " "2"" of type '" "Material""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorDecorator_setAmbientMaterial" "', argument " "2"" of type '" "Material""'");
-    } else {
-      Material * temp = reinterpret_cast< Material * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_kappa" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
   }
-  (arg1)->setAmbientMaterial(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  result = (double)((InterferenceFunctionRadialParaCrystal const *)arg1)->kappa();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorDecorator_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_setDomainSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionRadialParaCrystal_setDomainSize", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_volume" "', argument " "1"" of type '" "IFormFactorDecorator const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_setDomainSize" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal *""'"); 
   }
-  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
-  result = (double)((IFormFactorDecorator const *)arg1)->volume();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunctionRadialParaCrystal_setDomainSize" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setDomainSize(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorDecorator_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_domainSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -67844,12 +68688,12 @@ SWIGINTERN PyObject *_wrap_IFormFactorDecorator_radialExtension(PyObject *SWIGUN
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_radialExtension" "', argument " "1"" of type '" "IFormFactorDecorator const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_domainSize" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
-  result = (double)((IFormFactorDecorator const *)arg1)->radialExtension();
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  result = (double)((InterferenceFunctionRadialParaCrystal const *)arg1)->domainSize();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -67857,281 +68701,279 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorDecorator_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_FTPDF(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
-  IRotation *arg2 = 0 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  double result;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactorDecorator_bottomZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionRadialParaCrystal_FTPDF", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_bottomZ" "', argument " "1"" of type '" "IFormFactorDecorator const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorDecorator_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorDecorator_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_FTPDF" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((IFormFactorDecorator const *)arg1)->bottomZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunctionRadialParaCrystal_FTPDF" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = ((InterferenceFunctionRadialParaCrystal const *)arg1)->FTPDF(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorDecorator_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_setProbabilityDistribution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
-  IRotation *arg2 = 0 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  IFTDistribution1D *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IFormFactorDecorator_topZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionRadialParaCrystal_setProbabilityDistribution", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_topZ" "', argument " "1"" of type '" "IFormFactorDecorator const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_setProbabilityDistribution" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal *""'"); 
   }
-  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFTDistribution1D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorDecorator_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionRadialParaCrystal_setProbabilityDistribution" "', argument " "2"" of type '" "IFTDistribution1D const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorDecorator_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunctionRadialParaCrystal_setProbabilityDistribution" "', argument " "2"" of type '" "IFTDistribution1D const &""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((IFormFactorDecorator const *)arg1)->topZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = reinterpret_cast< IFTDistribution1D * >(argp2);
+  (arg1)->setProbabilityDistribution((IFTDistribution1D const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFormFactorDecorator_getFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_peakDistance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  IFormFactor *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_getFormFactor" "', argument " "1"" of type '" "IFormFactorDecorator const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
-  result = (IFormFactor *)((IFormFactorDecorator const *)arg1)->getFormFactor();
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_peakDistance" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
   }
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  result = (double)((InterferenceFunctionRadialParaCrystal const *)arg1)->peakDistance();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IFormFactorDecorator_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IFormFactorDecorator, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_PolygonalTopology_vertexIndices_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_dampingLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolygonalTopology *arg1 = (PolygonalTopology *) 0 ;
-  std::vector< int,std::allocator< int > > *arg2 = (std::vector< int,std::allocator< int > > *) 0 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "PolygonalTopology_vertexIndices_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolygonalTopology, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolygonalTopology_vertexIndices_set" "', argument " "1"" of type '" "PolygonalTopology *""'"); 
-  }
-  arg1 = reinterpret_cast< PolygonalTopology * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_std__vectorT_int_std__allocatorT_int_t_t, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolygonalTopology_vertexIndices_set" "', argument " "2"" of type '" "std::vector< int,std::allocator< int > > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_dampingLength" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< int,std::allocator< int > > * >(argp2);
-  if (arg1) (arg1)->vertexIndices = *arg2;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  result = (double)((InterferenceFunctionRadialParaCrystal const *)arg1)->dampingLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolygonalTopology_vertexIndices_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolygonalTopology *arg1 = (PolygonalTopology *) 0 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< int,std::allocator< int > > *result = 0 ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolygonalTopology, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolygonalTopology_vertexIndices_get" "', argument " "1"" of type '" "PolygonalTopology *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_getChildren" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< PolygonalTopology * >(argp1);
-  result = (std::vector< int,std::allocator< int > > *)& ((arg1)->vertexIndices);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_int_std__allocatorT_int_t_t, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  result = ((InterferenceFunctionRadialParaCrystal const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolygonalTopology_symmetry_S2_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_randomSample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolygonalTopology *arg1 = (PolygonalTopology *) 0 ;
-  bool arg2 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  bool val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "PolygonalTopology_symmetry_S2_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolygonalTopology, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolygonalTopology_symmetry_S2_set" "', argument " "1"" of type '" "PolygonalTopology *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_randomSample" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< PolygonalTopology * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "PolygonalTopology_symmetry_S2_set" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  if (arg1) (arg1)->symmetry_S2 = arg2;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  result = (double)((InterferenceFunctionRadialParaCrystal const *)arg1)->randomSample();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolygonalTopology_symmetry_S2_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_InterferenceFunctionRadialParaCrystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolygonalTopology *arg1 = (PolygonalTopology *) 0 ;
+  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolygonalTopology, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolygonalTopology_symmetry_S2_get" "', argument " "1"" of type '" "PolygonalTopology *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunctionRadialParaCrystal" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal *""'"); 
   }
-  arg1 = reinterpret_cast< PolygonalTopology * >(argp1);
-  result = (bool) ((arg1)->symmetry_S2);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_PolygonalTopology(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *InterferenceFunctionRadialParaCrystal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *InterferenceFunctionRadialParaCrystal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_InterferenceFunctionTwin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolygonalTopology *result = 0 ;
+  kvector_t *arg1 = 0 ;
+  double arg2 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  InterferenceFunctionTwin *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_PolygonalTopology", 0, 0, 0)) SWIG_fail;
-  result = (PolygonalTopology *)new PolygonalTopology();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PolygonalTopology, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "new_InterferenceFunctionTwin", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunctionTwin" "', argument " "1"" of type '" "kvector_t const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunctionTwin" "', argument " "1"" of type '" "kvector_t const &""'"); 
+  }
+  arg1 = reinterpret_cast< kvector_t * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunctionTwin" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunctionTwin" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (InterferenceFunctionTwin *)new InterferenceFunctionTwin((kvector_t const &)*arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionTwin, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_PolygonalTopology(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionTwin_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolygonalTopology *arg1 = (PolygonalTopology *) 0 ;
+  InterferenceFunctionTwin *arg1 = (InterferenceFunctionTwin *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  InterferenceFunctionTwin *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolygonalTopology, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PolygonalTopology" "', argument " "1"" of type '" "PolygonalTopology *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionTwin_clone" "', argument " "1"" of type '" "InterferenceFunctionTwin const *""'"); 
   }
-  arg1 = reinterpret_cast< PolygonalTopology * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunctionTwin * >(argp1);
+  result = (InterferenceFunctionTwin *)((InterferenceFunctionTwin const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *PolygonalTopology_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_PolygonalTopology, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *PolygonalTopology_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_PolyhedralTopology_faces_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionTwin_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralTopology *arg1 = (PolyhedralTopology *) 0 ;
-  std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > *arg2 = (std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > *) 0 ;
+  InterferenceFunctionTwin *arg1 = (InterferenceFunctionTwin *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "PolyhedralTopology_faces_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralTopology, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionTwin_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralTopology_faces_set" "', argument " "1"" of type '" "PolyhedralTopology *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionTwin_accept" "', argument " "1"" of type '" "InterferenceFunctionTwin const *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralTopology * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_std__vectorT_PolygonalTopology_std__allocatorT_PolygonalTopology_t_t, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunctionTwin * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralTopology_faces_set" "', argument " "2"" of type '" "std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionTwin_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > * >(argp2);
-  if (arg1) (arg1)->faces = *arg2;
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((InterferenceFunctionTwin const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -68139,108 +68981,89 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralTopology_faces_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionTwin_direction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralTopology *arg1 = (PolyhedralTopology *) 0 ;
+  InterferenceFunctionTwin *arg1 = (InterferenceFunctionTwin *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > *result = 0 ;
+  kvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralTopology, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralTopology_faces_get" "', argument " "1"" of type '" "PolyhedralTopology *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionTwin_direction" "', argument " "1"" of type '" "InterferenceFunctionTwin const *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralTopology * >(argp1);
-  result = (std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > *)& ((arg1)->faces);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_PolygonalTopology_std__allocatorT_PolygonalTopology_t_t, 0 |  0 );
+  arg1 = reinterpret_cast< InterferenceFunctionTwin * >(argp1);
+  result = ((InterferenceFunctionTwin const *)arg1)->direction();
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralTopology_symmetry_Ci_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionTwin_meanDistance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralTopology *arg1 = (PolyhedralTopology *) 0 ;
-  bool arg2 ;
+  InterferenceFunctionTwin *arg1 = (InterferenceFunctionTwin *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  bool val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "PolyhedralTopology_symmetry_Ci_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralTopology, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralTopology_symmetry_Ci_set" "', argument " "1"" of type '" "PolyhedralTopology *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionTwin_meanDistance" "', argument " "1"" of type '" "InterferenceFunctionTwin const *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralTopology * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "PolyhedralTopology_symmetry_Ci_set" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  if (arg1) (arg1)->symmetry_Ci = arg2;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< InterferenceFunctionTwin * >(argp1);
+  result = (double)((InterferenceFunctionTwin const *)arg1)->meanDistance();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralTopology_symmetry_Ci_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_InterferenceFunctionTwin_stdDev(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralTopology *arg1 = (PolyhedralTopology *) 0 ;
+  InterferenceFunctionTwin *arg1 = (InterferenceFunctionTwin *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralTopology, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralTopology_symmetry_Ci_get" "', argument " "1"" of type '" "PolyhedralTopology *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionTwin_stdDev" "', argument " "1"" of type '" "InterferenceFunctionTwin const *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralTopology * >(argp1);
-  result = (bool) ((arg1)->symmetry_Ci);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_PolyhedralTopology(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  PolyhedralTopology *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_PolyhedralTopology", 0, 0, 0)) SWIG_fail;
-  result = (PolyhedralTopology *)new PolyhedralTopology();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PolyhedralTopology, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< InterferenceFunctionTwin * >(argp1);
+  result = (double)((InterferenceFunctionTwin const *)arg1)->stdDev();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_PolyhedralTopology(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_InterferenceFunctionTwin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralTopology *arg1 = (PolyhedralTopology *) 0 ;
+  InterferenceFunctionTwin *arg1 = (InterferenceFunctionTwin *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralTopology, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionTwin, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PolyhedralTopology" "', argument " "1"" of type '" "PolyhedralTopology *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunctionTwin" "', argument " "1"" of type '" "InterferenceFunctionTwin *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralTopology * >(argp1);
+  arg1 = reinterpret_cast< InterferenceFunctionTwin * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -68249,472 +69072,553 @@ fail:
 }
 
 
-SWIGINTERN PyObject *PolyhedralTopology_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *InterferenceFunctionTwin_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_PolyhedralTopology, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunctionTwin, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *PolyhedralTopology_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *InterferenceFunctionTwin_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_PolyhedralEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParticleLayout__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  kvector_t arg1 ;
-  kvector_t arg2 ;
-  void *argp1 ;
+  ParticleLayout *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (ParticleLayout *)new ParticleLayout();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleLayout, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_ParticleLayout__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IAbstractParticle *arg1 = 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  PolyhedralEdge *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  ParticleLayout *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_PolyhedralEdge", 2, 2, swig_obj)) SWIG_fail;
-  {
-    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_PolyhedralEdge" "', argument " "1"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp1) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_PolyhedralEdge" "', argument " "1"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp1);
-      arg1 = *temp;
-      if (SWIG_IsNewObj(res1)) delete temp;
-    }
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IAbstractParticle,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParticleLayout" "', argument " "1"" of type '" "IAbstractParticle const &""'"); 
   }
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_PolyhedralEdge" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_PolyhedralEdge" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleLayout" "', argument " "1"" of type '" "IAbstractParticle const &""'"); 
   }
-  result = (PolyhedralEdge *)new PolyhedralEdge(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PolyhedralEdge, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_ParticleLayout" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (ParticleLayout *)new ParticleLayout((IAbstractParticle const &)*arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleLayout, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralEdge_E(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParticleLayout__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  PolyhedralEdge *arg1 = (PolyhedralEdge *) 0 ;
+  IAbstractParticle *arg1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  ParticleLayout *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IAbstractParticle,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParticleLayout" "', argument " "1"" of type '" "IAbstractParticle const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleLayout" "', argument " "1"" of type '" "IAbstractParticle const &""'"); 
+  }
+  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
+  result = (ParticleLayout *)new ParticleLayout((IAbstractParticle const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleLayout, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_ParticleLayout(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ParticleLayout", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_ParticleLayout__SWIG_0(self, argc, argv);
+  }
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_ParticleLayout__SWIG_2(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_ParticleLayout__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ParticleLayout'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    ParticleLayout::ParticleLayout()\n"
+    "    ParticleLayout::ParticleLayout(IAbstractParticle const &,double)\n"
+    "    ParticleLayout::ParticleLayout(IAbstractParticle const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_ParticleLayout(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  kvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralEdge, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralEdge_E" "', argument " "1"" of type '" "PolyhedralEdge const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParticleLayout" "', argument " "1"" of type '" "ParticleLayout *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralEdge * >(argp1);
-  result = ((PolyhedralEdge const *)arg1)->E();
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralEdge_R(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralEdge *arg1 = (PolyhedralEdge *) 0 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  kvector_t result;
+  ParticleLayout *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralEdge, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralEdge_R" "', argument " "1"" of type '" "PolyhedralEdge const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_clone" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralEdge * >(argp1);
-  result = ((PolyhedralEdge const *)arg1)->R();
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  result = (ParticleLayout *)((ParticleLayout const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleLayout, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralEdge_qE(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralEdge *arg1 = (PolyhedralEdge *) 0 ;
-  cvector_t arg2 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "PolyhedralEdge_qE", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralEdge, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParticleLayout_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralEdge_qE" "', argument " "1"" of type '" "PolyhedralEdge const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_accept" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralEdge * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralEdge_qE" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralEdge_qE" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleLayout_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  result = ((PolyhedralEdge const *)arg1)->qE(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((ParticleLayout const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralEdge_qR(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_addParticle__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  PolyhedralEdge *arg1 = (PolyhedralEdge *) 0 ;
-  cvector_t arg2 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
+  IAbstractParticle *arg2 = 0 ;
+  double arg3 ;
+  kvector_t arg4 ;
+  IRotation *arg5 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  double val3 ;
+  int ecode3 = 0 ;
+  void *argp4 ;
+  int res4 = 0 ;
+  void *argp5 = 0 ;
+  int res5 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "PolyhedralEdge_qR", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralEdge, 0 |  0 );
+  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralEdge_qR" "', argument " "1"" of type '" "PolyhedralEdge const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_addParticle" "', argument " "1"" of type '" "ParticleLayout *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralEdge * >(argp1);
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAbstractParticle,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
+  }
+  arg2 = reinterpret_cast< IAbstractParticle * >(argp2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParticleLayout_addParticle" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralEdge_qR" "', argument " "2"" of type '" "cvector_t""'"); 
+    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "ParticleLayout_addParticle" "', argument " "4"" of type '" "kvector_t const""'"); 
     }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralEdge_qR" "', argument " "2"" of type '" "cvector_t""'");
+    if (!argp4) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "4"" of type '" "kvector_t const""'");
     } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
+      arg4 = *temp;
+      if (SWIG_IsNewObj(res4)) delete temp;
     }
   }
-  result = ((PolyhedralEdge const *)arg1)->qR(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  res5 = SWIG_ConvertPtr(swig_obj[4], &argp5, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res5)) {
+    SWIG_exception_fail(SWIG_ArgError(res5), "in method '" "ParticleLayout_addParticle" "', argument " "5"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp5) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "5"" of type '" "IRotation const &""'"); 
+  }
+  arg5 = reinterpret_cast< IRotation * >(argp5);
+  (arg1)->addParticle((IAbstractParticle const &)*arg2,arg3,arg4,(IRotation const &)*arg5);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralEdge_contrib(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_addParticle__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  PolyhedralEdge *arg1 = (PolyhedralEdge *) 0 ;
-  int arg2 ;
-  cvector_t arg3 ;
-  complex_t arg4 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
+  IAbstractParticle *arg2 = 0 ;
+  double arg3 ;
+  kvector_t arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  std::complex< double > val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  complex_t result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  void *argp4 ;
+  int res4 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "PolyhedralEdge_contrib", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralEdge, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralEdge_contrib" "', argument " "1"" of type '" "PolyhedralEdge const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_addParticle" "', argument " "1"" of type '" "ParticleLayout *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralEdge * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "PolyhedralEdge_contrib" "', argument " "2"" of type '" "int""'");
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAbstractParticle,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
+  }
+  arg2 = reinterpret_cast< IAbstractParticle * >(argp2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParticleLayout_addParticle" "', argument " "3"" of type '" "double""'");
   } 
-  arg2 = static_cast< int >(val2);
+  arg3 = static_cast< double >(val3);
   {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "PolyhedralEdge_contrib" "', argument " "3"" of type '" "cvector_t""'"); 
+    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "ParticleLayout_addParticle" "', argument " "4"" of type '" "kvector_t const""'"); 
     }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralEdge_contrib" "', argument " "3"" of type '" "cvector_t""'");
+    if (!argp4) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "4"" of type '" "kvector_t const""'");
     } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
+      arg4 = *temp;
+      if (SWIG_IsNewObj(res4)) delete temp;
     }
   }
-  ecode4 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "PolyhedralEdge_contrib" "', argument " "4"" of type '" "complex_t""'");
-  } 
-  arg4 = static_cast< complex_t >(val4);
-  result = ((PolyhedralEdge const *)arg1)->contrib(arg2,arg3,arg4);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  (arg1)->addParticle((IAbstractParticle const &)*arg2,arg3,arg4);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_PolyhedralEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_addParticle__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  PolyhedralEdge *arg1 = (PolyhedralEdge *) 0 ;
-  void *argp1 = 0 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
+  IAbstractParticle *arg2 = 0 ;
+  double arg3 ;
+  void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralEdge, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PolyhedralEdge" "', argument " "1"" of type '" "PolyhedralEdge *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_addParticle" "', argument " "1"" of type '" "ParticleLayout *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralEdge * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *PolyhedralEdge_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_PolyhedralEdge, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *PolyhedralEdge_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_PolyhedralFace_diameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  std::vector< kvector_t,std::allocator< kvector_t > > *arg1 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  {
-    std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *ptr = (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *)0;
-    res1 = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_diameter" "', argument " "1"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralFace_diameter" "', argument " "1"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > > const &""'"); 
-    }
-    arg1 = ptr;
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAbstractParticle,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
   }
-  result = (double)PolyhedralFace::diameter((std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > const &)*arg1);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_PolyhedralFace__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  std::vector< kvector_t,std::allocator< kvector_t > > *arg1 = 0 ;
-  bool arg2 ;
-  int res1 = SWIG_OLDOBJ ;
-  bool val2 ;
-  int ecode2 = 0 ;
-  PolyhedralFace *result = 0 ;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  {
-    std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *ptr = (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *)0;
-    res1 = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_PolyhedralFace" "', argument " "1"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_PolyhedralFace" "', argument " "1"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > > const &""'"); 
-    }
-    arg1 = ptr;
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
   }
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_PolyhedralFace" "', argument " "2"" of type '" "bool""'");
+  arg2 = reinterpret_cast< IAbstractParticle * >(argp2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParticleLayout_addParticle" "', argument " "3"" of type '" "double""'");
   } 
-  arg2 = static_cast< bool >(val2);
-  result = (PolyhedralFace *)new PolyhedralFace((std::vector< kvector_t,std::allocator< kvector_t > > const &)*arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PolyhedralFace, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  arg3 = static_cast< double >(val3);
+  (arg1)->addParticle((IAbstractParticle const &)*arg2,arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_PolyhedralFace__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_addParticle__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< kvector_t,std::allocator< kvector_t > > *arg1 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  PolyhedralFace *result = 0 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
+  IAbstractParticle *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *ptr = (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *)0;
-    res1 = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_PolyhedralFace" "', argument " "1"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_PolyhedralFace" "', argument " "1"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > > const &""'"); 
-    }
-    arg1 = ptr;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_addParticle" "', argument " "1"" of type '" "ParticleLayout *""'"); 
   }
-  result = (PolyhedralFace *)new PolyhedralFace((std::vector< kvector_t,std::allocator< kvector_t > > const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PolyhedralFace, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_PolyhedralFace__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  PolyhedralFace *result = 0 ;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (PolyhedralFace *)new PolyhedralFace();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PolyhedralFace, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAbstractParticle,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
+  }
+  arg2 = reinterpret_cast< IAbstractParticle * >(argp2);
+  (arg1)->addParticle((IAbstractParticle const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_PolyhedralFace(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_addParticle(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[6] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_PolyhedralFace", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ParticleLayout_addParticle", 0, 5, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_PolyhedralFace__SWIG_2(self, argc, argv);
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParticleLayout, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_ParticleLayout_addParticle__SWIG_3(self, argc, argv);
+      }
+    }
   }
-  if (argc == 1) {
+  if (argc == 3) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > >**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParticleLayout, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_PolyhedralFace__SWIG_1(self, argc, argv);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_ParticleLayout_addParticle__SWIG_2(self, argc, argv);
+        }
+      }
     }
   }
-  if (argc == 2) {
+  if (argc == 4) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > >**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParticleLayout, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_bool(argv[1], NULL);
-        _v = SWIG_CheckState(res);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_ParticleLayout_addParticle__SWIG_1(self, argc, argv);
+          }
+        }
       }
+    }
+  }
+  if (argc == 5) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParticleLayout, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_new_PolyhedralFace__SWIG_0(self, argc, argv);
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            int res = SWIG_ConvertPtr(argv[4], 0, SWIGTYPE_p_IRotation, SWIG_POINTER_NO_NULL | 0);
+            _v = SWIG_CheckState(res);
+            if (_v) {
+              return _wrap_ParticleLayout_addParticle__SWIG_0(self, argc, argv);
+            }
+          }
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_PolyhedralFace'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParticleLayout_addParticle'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    PolyhedralFace::PolyhedralFace(std::vector< kvector_t,std::allocator< kvector_t > > const &,bool)\n"
-    "    PolyhedralFace::PolyhedralFace(std::vector< kvector_t,std::allocator< kvector_t > > const &)\n"
-    "    PolyhedralFace::PolyhedralFace()\n");
+    "    ParticleLayout::addParticle(IAbstractParticle const &,double,kvector_t const,IRotation const &)\n"
+    "    ParticleLayout::addParticle(IAbstractParticle const &,double,kvector_t const)\n"
+    "    ParticleLayout::addParticle(IAbstractParticle const &,double)\n"
+    "    ParticleLayout::addParticle(IAbstractParticle const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralFace_area(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_particles(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  SwigValueWrapper< SafePointerVector< IParticle > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_area" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_particles" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
-  result = (double)((PolyhedralFace const *)arg1)->area();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  result = ((ParticleLayout const *)arg1)->particles();
+  resultobj = SWIG_NewPointerObj((new SafePointerVector< IParticle >(static_cast< const SafePointerVector< IParticle >& >(result))), SWIGTYPE_p_SafePointerVectorT_IParticle_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralFace_pyramidalVolume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_interferenceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  Swig::Director *director = 0;
+  IInterferenceFunction *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_pyramidalVolume" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_interferenceFunction" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
+  }
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  result = (IInterferenceFunction *)((ParticleLayout const *)arg1)->interferenceFunction();
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
   }
-  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
-  result = (double)((PolyhedralFace const *)arg1)->pyramidalVolume();
-  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralFace_radius3d(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_getTotalAbundance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -68722,12 +69626,12 @@ SWIGINTERN PyObject *_wrap_PolyhedralFace_radius3d(PyObject *SWIGUNUSEDPARM(self
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_radius3d" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_getTotalAbundance" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
-  result = (double)((PolyhedralFace const *)arg1)->radius3d();
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  result = (double)((ParticleLayout const *)arg1)->getTotalAbundance();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -68735,199 +69639,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralFace_normalProjectionConj(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_setInterferenceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
-  cvector_t arg2 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
+  IInterferenceFunction *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  complex_t result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "PolyhedralFace_normalProjectionConj", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_normalProjectionConj" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
-  }
-  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralFace_normalProjectionConj" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralFace_normalProjectionConj" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  result = ((PolyhedralFace const *)arg1)->normalProjectionConj(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_PolyhedralFace_ff_n(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
-  int arg2 ;
-  cvector_t arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "PolyhedralFace_ff_n", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParticleLayout_setInterferenceFunction", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_ff_n" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
-  }
-  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "PolyhedralFace_ff_n" "', argument " "2"" of type '" "int""'");
-  } 
-  arg2 = static_cast< int >(val2);
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "PolyhedralFace_ff_n" "', argument " "3"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralFace_ff_n" "', argument " "3"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_setInterferenceFunction" "', argument " "1"" of type '" "ParticleLayout *""'"); 
   }
-  result = ((PolyhedralFace const *)arg1)->ff_n(arg2,arg3);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_PolyhedralFace_ff(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
-  cvector_t arg2 ;
-  bool arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  bool val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  complex_t result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "PolyhedralFace_ff", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_ff" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IInterferenceFunction,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleLayout_setInterferenceFunction" "', argument " "2"" of type '" "IInterferenceFunction const &""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralFace_ff" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralFace_ff" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_setInterferenceFunction" "', argument " "2"" of type '" "IInterferenceFunction const &""'"); 
   }
-  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "PolyhedralFace_ff" "', argument " "3"" of type '" "bool""'");
-  } 
-  arg3 = static_cast< bool >(val3);
-  result = ((PolyhedralFace const *)arg1)->ff(arg2,arg3);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< IInterferenceFunction * >(argp2);
+  (arg1)->setInterferenceFunction((IInterferenceFunction const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralFace_ff_2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_totalParticleSurfaceDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
-  cvector_t arg2 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "PolyhedralFace_ff_2D", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_ff_2D" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
-  }
-  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralFace_ff_2D" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralFace_ff_2D" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_totalParticleSurfaceDensity" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
   }
-  result = ((PolyhedralFace const *)arg1)->ff_2D(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  result = (double)((ParticleLayout const *)arg1)->totalParticleSurfaceDensity();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PolyhedralFace_assert_Ci(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_setTotalParticleSurfaceDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
-  PolyhedralFace *arg2 = 0 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "PolyhedralFace_assert_Ci", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParticleLayout_setTotalParticleSurfaceDensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_assert_Ci" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
-  }
-  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PolyhedralFace,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralFace_assert_Ci" "', argument " "2"" of type '" "PolyhedralFace const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralFace_assert_Ci" "', argument " "2"" of type '" "PolyhedralFace const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_setTotalParticleSurfaceDensity" "', argument " "1"" of type '" "ParticleLayout *""'"); 
   }
-  arg2 = reinterpret_cast< PolyhedralFace * >(argp2);
-  ((PolyhedralFace const *)arg1)->assert_Ci((PolyhedralFace const &)*arg2);
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParticleLayout_setTotalParticleSurfaceDensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setTotalParticleSurfaceDensity(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -68935,207 +69723,199 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_PolyhedralFace(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParticleLayout_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
+  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PolyhedralFace" "', argument " "1"" of type '" "PolyhedralFace *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_getChildren" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
   }
-  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
+  result = ((ParticleLayout const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *PolyhedralFace_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ParticleLayout_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_PolyhedralFace, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_ParticleLayout, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *PolyhedralFace_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ParticleLayout_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Beam__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
-  IRotation *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  Beam *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolyhedron_bottomZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_bottomZ" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolyhedron_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolyhedron_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((FormFactorPolyhedron const *)arg1)->bottomZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (Beam *)new Beam();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Beam, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Beam__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
-  IRotation *arg2 = 0 ;
+  Beam *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  Beam *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolyhedron_topZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Beam,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_topZ" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolyhedron_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Beam" "', argument " "1"" of type '" "Beam const &""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolyhedron_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Beam" "', argument " "1"" of type '" "Beam const &""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((FormFactorPolyhedron const *)arg1)->topZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  result = (Beam *)new Beam((Beam const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Beam, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Beam(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Beam", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_Beam__SWIG_0(self, argc, argv);
+  }
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Beam, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_Beam__SWIG_1(self, argc, argv);
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Beam'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Beam::Beam()\n"
+    "    Beam::Beam(Beam const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_Beam(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
-  cvector_t arg2 ;
+  Beam *arg1 = (Beam *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolyhedron_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_evaluate_for_q" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolyhedron_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolyhedron_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Beam" "', argument " "1"" of type '" "Beam *""'"); 
   }
-  result = ((FormFactorPolyhedron const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_evaluate_centered(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_getCentralK(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
-  cvector_t arg2 ;
+  Beam *arg1 = (Beam *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  PyObject *swig_obj[1] ;
+  kvector_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolyhedron_evaluate_centered", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_evaluate_centered" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolyhedron_evaluate_centered" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolyhedron_evaluate_centered" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getCentralK" "', argument " "1"" of type '" "Beam const *""'"); 
   }
-  result = ((FormFactorPolyhedron const *)arg1)->evaluate_centered(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  result = ((Beam const *)arg1)->getCentralK();
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_setCentralK(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
+  Beam *arg1 = (Beam *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Beam_setCentralK", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_volume" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_setCentralK" "', argument " "1"" of type '" "Beam *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
-  result = (double)((FormFactorPolyhedron const *)arg1)->volume();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Beam_setCentralK" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Beam_setCentralK" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Beam_setCentralK" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setCentralK(arg2,arg3,arg4);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_getIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
+  Beam *arg1 = (Beam *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -69143,12 +69923,12 @@ SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_radialExtension(PyObject *SWIGUN
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_radialExtension" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getIntensity" "', argument " "1"" of type '" "Beam const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
-  result = (double)((FormFactorPolyhedron const *)arg1)->radialExtension();
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  result = (double)((Beam const *)arg1)->getIntensity();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -69156,21 +69936,28 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_assert_platonic(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_setIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
+  Beam *arg1 = (Beam *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Beam_setIntensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_assert_platonic" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_setIntensity" "', argument " "1"" of type '" "Beam *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
-  ((FormFactorPolyhedron const *)arg1)->assert_platonic();
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Beam_setIntensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setIntensity(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -69178,165 +69965,153 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorPolyhedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_footprintFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
+  Beam *arg1 = (Beam *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  IFootprintFactor *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorPolyhedron" "', argument " "1"" of type '" "FormFactorPolyhedron *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_footprintFactor" "', argument " "1"" of type '" "Beam const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  result = (IFootprintFactor *)((Beam const *)arg1)->footprintFactor();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFootprintFactor, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorPolyhedron_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorPolyhedron, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_setFootprintFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
-  IRotation *arg2 = 0 ;
+  Beam *arg1 = (Beam *) 0 ;
+  IFootprintFactor *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolygonalPrism_bottomZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Beam_setFootprintFactor", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalPrism_bottomZ" "', argument " "1"" of type '" "FormFactorPolygonalPrism const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_setFootprintFactor" "', argument " "1"" of type '" "Beam *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFootprintFactor,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolygonalPrism_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Beam_setFootprintFactor" "', argument " "2"" of type '" "IFootprintFactor const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolygonalPrism_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Beam_setFootprintFactor" "', argument " "2"" of type '" "IFootprintFactor const &""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((FormFactorPolygonalPrism const *)arg1)->bottomZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = reinterpret_cast< IFootprintFactor * >(argp2);
+  (arg1)->setFootprintFactor((IFootprintFactor const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_setWidthRatio(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
-  IRotation *arg2 = 0 ;
+  Beam *arg1 = (Beam *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolygonalPrism_topZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Beam_setWidthRatio", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalPrism_topZ" "', argument " "1"" of type '" "FormFactorPolygonalPrism const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolygonalPrism_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolygonalPrism_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_setWidthRatio" "', argument " "1"" of type '" "Beam *""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((FormFactorPolygonalPrism const *)arg1)->topZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Beam_setWidthRatio" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setWidthRatio(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_setPolarization(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
-  cvector_t arg2 ;
+  Beam *arg1 = (Beam *) 0 ;
+  kvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolygonalPrism_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Beam_setPolarization", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalPrism_evaluate_for_q" "', argument " "1"" of type '" "FormFactorPolygonalPrism const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_setPolarization" "', argument " "1"" of type '" "Beam *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
+  arg1 = reinterpret_cast< Beam * >(argp1);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolygonalPrism_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Beam_setPolarization" "', argument " "2"" of type '" "kvector_t const""'"); 
     }  
     if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolygonalPrism_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Beam_setPolarization" "', argument " "2"" of type '" "kvector_t const""'");
     } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
       arg2 = *temp;
       if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  result = ((FormFactorPolygonalPrism const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  (arg1)->setPolarization(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_getBlochVector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
+  Beam *arg1 = (Beam *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  kvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalPrism_volume" "', argument " "1"" of type '" "FormFactorPolygonalPrism const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getBlochVector" "', argument " "1"" of type '" "Beam const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
-  result = (double)((FormFactorPolygonalPrism const *)arg1)->volume();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  result = ((Beam const *)arg1)->getBlochVector();
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_getWavelength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
+  Beam *arg1 = (Beam *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -69344,12 +70119,12 @@ SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_getHeight(PyObject *SWIGUNUS
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalPrism_getHeight" "', argument " "1"" of type '" "FormFactorPolygonalPrism const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getWavelength" "', argument " "1"" of type '" "Beam const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
-  result = (double)((FormFactorPolygonalPrism const *)arg1)->getHeight();
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  result = (double)((Beam const *)arg1)->getWavelength();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -69357,9 +70132,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
+  Beam *arg1 = (Beam *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -69367,12 +70142,12 @@ SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_radialExtension(PyObject *SW
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalPrism_radialExtension" "', argument " "1"" of type '" "FormFactorPolygonalPrism const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getAlpha" "', argument " "1"" of type '" "Beam const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
-  result = (double)((FormFactorPolygonalPrism const *)arg1)->radialExtension();
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  result = (double)((Beam const *)arg1)->getAlpha();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -69380,151 +70155,169 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorPolygonalPrism(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_getPhi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
+  Beam *arg1 = (Beam *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorPolygonalPrism" "', argument " "1"" of type '" "FormFactorPolygonalPrism *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getPhi" "', argument " "1"" of type '" "Beam const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  result = (double)((Beam const *)arg1)->getPhi();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorPolygonalPrism_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorPolygonalPrism, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_FormFactorPolygonalSurface_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolygonalSurface *arg1 = (FormFactorPolygonalSurface *) 0 ;
-  cvector_t arg2 ;
+  Beam *arg1 = (Beam *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolygonalSurface_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalSurface, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Beam_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalSurface_evaluate_for_q" "', argument " "1"" of type '" "FormFactorPolygonalSurface const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_accept" "', argument " "1"" of type '" "Beam const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolygonalSurface * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolygonalSurface_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolygonalSurface_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Beam_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  result = ((FormFactorPolygonalSurface const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((Beam const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolygonalSurface_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Beam_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolygonalSurface *arg1 = (FormFactorPolygonalSurface *) 0 ;
+  Beam *arg1 = (Beam *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalSurface, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Beam, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalSurface_volume" "', argument " "1"" of type '" "FormFactorPolygonalSurface const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Beam_getChildren" "', argument " "1"" of type '" "Beam const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolygonalSurface * >(argp1);
-  result = (double)((FormFactorPolygonalSurface const *)arg1)->volume();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Beam * >(argp1);
+  result = ((Beam const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPolygonalSurface_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Beam_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_Beam, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *Beam_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_delete_IFootprintFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolygonalSurface *arg1 = (FormFactorPolygonalSurface *) 0 ;
+  IFootprintFactor *arg1 = (IFootprintFactor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalSurface, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFootprintFactor, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalSurface_radialExtension" "', argument " "1"" of type '" "FormFactorPolygonalSurface const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFootprintFactor" "', argument " "1"" of type '" "IFootprintFactor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolygonalSurface * >(argp1);
-  result = (double)((FormFactorPolygonalSurface const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IFootprintFactor * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorPolygonalSurface(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFootprintFactor_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorPolygonalSurface *arg1 = (FormFactorPolygonalSurface *) 0 ;
+  IFootprintFactor *arg1 = (IFootprintFactor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  IFootprintFactor *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalSurface, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFootprintFactor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorPolygonalSurface" "', argument " "1"" of type '" "FormFactorPolygonalSurface *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFootprintFactor_clone" "', argument " "1"" of type '" "IFootprintFactor const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPolygonalSurface * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IFootprintFactor * >(argp1);
+  result = (IFootprintFactor *)((IFootprintFactor const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFootprintFactor, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorPolygonalSurface_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorPolygonalSurface, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_IFootprintFactor_setWidthRatio(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IFootprintFactor *arg1 = (IFootprintFactor *) 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IFootprintFactor_setWidthRatio", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFootprintFactor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFootprintFactor_setWidthRatio" "', argument " "1"" of type '" "IFootprintFactor *""'"); 
+  }
+  arg1 = reinterpret_cast< IFootprintFactor * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFootprintFactor_setWidthRatio" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setWidthRatio(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *_wrap_ProfileBar_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+
+SWIGINTERN PyObject *_wrap_IFootprintFactor_widthRatio(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileBar *arg1 = (ProfileBar *) 0 ;
+  IFootprintFactor *arg1 = (IFootprintFactor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -69532,12 +70325,12 @@ SWIGINTERN PyObject *_wrap_ProfileBar_getLength(PyObject *SWIGUNUSEDPARM(self),
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileBar, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFootprintFactor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileBar_getLength" "', argument " "1"" of type '" "ProfileBar const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFootprintFactor_widthRatio" "', argument " "1"" of type '" "IFootprintFactor const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileBar * >(argp1);
-  result = (double)((ProfileBar const *)arg1)->getLength();
+  arg1 = reinterpret_cast< IFootprintFactor * >(argp1);
+  result = (double)((IFootprintFactor const *)arg1)->widthRatio();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -69545,22 +70338,29 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileBar_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFootprintFactor_calculate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileBar *arg1 = (ProfileBar *) 0 ;
+  IFootprintFactor *arg1 = (IFootprintFactor *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileBar, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFootprintFactor_calculate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFootprintFactor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileBar_getHeight" "', argument " "1"" of type '" "ProfileBar const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFootprintFactor_calculate" "', argument " "1"" of type '" "IFootprintFactor const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileBar * >(argp1);
-  result = (double)((ProfileBar const *)arg1)->getHeight();
+  arg1 = reinterpret_cast< IFootprintFactor * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFootprintFactor_calculate" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((IFootprintFactor const *)arg1)->calculate(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -69568,135 +70368,134 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileBar_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFootprintFactor__print(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileBar *arg1 = (ProfileBar *) 0 ;
+  IFootprintFactor *arg1 = (IFootprintFactor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  std::string result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileBar, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFootprintFactor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileBar_getWidth" "', argument " "1"" of type '" "ProfileBar const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFootprintFactor__print" "', argument " "1"" of type '" "IFootprintFactor const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileBar * >(argp1);
-  result = (double)((ProfileBar const *)arg1)->getWidth();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IFootprintFactor * >(argp1);
+  result = ((IFootprintFactor const *)arg1)->print();
+  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileBar_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IFootprintFactor_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IFootprintFactor, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_new_FootprintGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileBar *arg1 = (ProfileBar *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  FootprintGauss *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileBar, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileBar_radialExtension" "', argument " "1"" of type '" "ProfileBar const *""'"); 
-  }
-  arg1 = reinterpret_cast< ProfileBar * >(argp1);
-  result = (double)((ProfileBar const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FootprintGauss" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (FootprintGauss *)new FootprintGauss(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FootprintGauss, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileBar_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FootprintGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileBar *arg1 = (ProfileBar *) 0 ;
-  cvector_t arg2 ;
+  FootprintGauss *arg1 = (FootprintGauss *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ProfileBar_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileBar, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FootprintGauss_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileBar_evaluate_for_q" "', argument " "1"" of type '" "ProfileBar const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintGauss_accept" "', argument " "1"" of type '" "FootprintGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileBar * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ProfileBar_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ProfileBar_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< FootprintGauss * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FootprintGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  result = ((ProfileBar const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FootprintGauss const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ProfileBar(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FootprintGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileBar *arg1 = (ProfileBar *) 0 ;
+  FootprintGauss *arg1 = (FootprintGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  FootprintGauss *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileBar, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ProfileBar" "', argument " "1"" of type '" "ProfileBar *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintGauss_clone" "', argument " "1"" of type '" "FootprintGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileBar * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FootprintGauss * >(argp1);
+  result = (FootprintGauss *)((FootprintGauss const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FootprintGauss, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *ProfileBar_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ProfileBar, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_ProfileRipple1_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FootprintGauss_calculate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple1 *arg1 = (ProfileRipple1 *) 0 ;
+  FootprintGauss *arg1 = (FootprintGauss *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple1, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FootprintGauss_calculate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple1_getLength" "', argument " "1"" of type '" "ProfileRipple1 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintGauss_calculate" "', argument " "1"" of type '" "FootprintGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileRipple1 * >(argp1);
-  result = (double)((ProfileRipple1 const *)arg1)->getLength();
+  arg1 = reinterpret_cast< FootprintGauss * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FootprintGauss_calculate" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((FootprintGauss const *)arg1)->calculate(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -69704,158 +70503,160 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileRipple1_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FootprintGauss__print(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple1 *arg1 = (ProfileRipple1 *) 0 ;
+  FootprintGauss *arg1 = (FootprintGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  std::string result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple1, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple1_getHeight" "', argument " "1"" of type '" "ProfileRipple1 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintGauss__print" "', argument " "1"" of type '" "FootprintGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileRipple1 * >(argp1);
-  result = (double)((ProfileRipple1 const *)arg1)->getHeight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FootprintGauss * >(argp1);
+  result = ((FootprintGauss const *)arg1)->print();
+  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileRipple1_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FootprintGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple1 *arg1 = (ProfileRipple1 *) 0 ;
+  FootprintGauss *arg1 = (FootprintGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple1, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintGauss, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple1_getWidth" "', argument " "1"" of type '" "ProfileRipple1 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FootprintGauss" "', argument " "1"" of type '" "FootprintGauss *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileRipple1 * >(argp1);
-  result = (double)((ProfileRipple1 const *)arg1)->getWidth();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FootprintGauss * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileRipple1_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FootprintGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FootprintGauss, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FootprintGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FootprintSquare(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple1 *arg1 = (ProfileRipple1 *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  FootprintSquare *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple1, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple1_radialExtension" "', argument " "1"" of type '" "ProfileRipple1 const *""'"); 
-  }
-  arg1 = reinterpret_cast< ProfileRipple1 * >(argp1);
-  result = (double)((ProfileRipple1 const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FootprintSquare" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (FootprintSquare *)new FootprintSquare(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FootprintSquare, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileRipple1_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FootprintSquare_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple1 *arg1 = (ProfileRipple1 *) 0 ;
-  cvector_t arg2 ;
+  FootprintSquare *arg1 = (FootprintSquare *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ProfileRipple1_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple1, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FootprintSquare_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintSquare, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple1_evaluate_for_q" "', argument " "1"" of type '" "ProfileRipple1 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintSquare_accept" "', argument " "1"" of type '" "FootprintSquare const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileRipple1 * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ProfileRipple1_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ProfileRipple1_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< FootprintSquare * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FootprintSquare_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  result = ((ProfileRipple1 const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FootprintSquare const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ProfileRipple1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FootprintSquare_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple1 *arg1 = (ProfileRipple1 *) 0 ;
+  FootprintSquare *arg1 = (FootprintSquare *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  FootprintSquare *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple1, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintSquare, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ProfileRipple1" "', argument " "1"" of type '" "ProfileRipple1 *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintSquare_clone" "', argument " "1"" of type '" "FootprintSquare const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileRipple1 * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FootprintSquare * >(argp1);
+  result = (FootprintSquare *)((FootprintSquare const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FootprintSquare, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *ProfileRipple1_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ProfileRipple1, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_ProfileRipple2_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FootprintSquare_calculate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
+  FootprintSquare *arg1 = (FootprintSquare *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FootprintSquare_calculate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintSquare, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple2_getLength" "', argument " "1"" of type '" "ProfileRipple2 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintSquare_calculate" "', argument " "1"" of type '" "FootprintSquare const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
-  result = (double)((ProfileRipple2 const *)arg1)->getLength();
+  arg1 = reinterpret_cast< FootprintSquare * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FootprintSquare_calculate" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((FootprintSquare const *)arg1)->calculate(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -69863,369 +70664,249 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileRipple2_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FootprintSquare__print(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
+  FootprintSquare *arg1 = (FootprintSquare *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  std::string result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintSquare, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple2_getHeight" "', argument " "1"" of type '" "ProfileRipple2 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintSquare__print" "', argument " "1"" of type '" "FootprintSquare const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
-  result = (double)((ProfileRipple2 const *)arg1)->getHeight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FootprintSquare * >(argp1);
+  result = ((FootprintSquare const *)arg1)->print();
+  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileRipple2_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FootprintSquare(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
+  FootprintSquare *arg1 = (FootprintSquare *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintSquare, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple2_getWidth" "', argument " "1"" of type '" "ProfileRipple2 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FootprintSquare" "', argument " "1"" of type '" "FootprintSquare *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
-  result = (double)((ProfileRipple2 const *)arg1)->getWidth();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FootprintSquare * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileRipple2_getAsymmetry(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FootprintSquare_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FootprintSquare, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FootprintSquare_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_delete_IFormFactorDecorator(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
+  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple2_getAsymmetry" "', argument " "1"" of type '" "ProfileRipple2 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFormFactorDecorator" "', argument " "1"" of type '" "IFormFactorDecorator *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
-  result = (double)((ProfileRipple2 const *)arg1)->getAsymmetry();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileRipple2_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactorDecorator_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
+  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  IFormFactorDecorator *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple2_radialExtension" "', argument " "1"" of type '" "ProfileRipple2 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_clone" "', argument " "1"" of type '" "IFormFactorDecorator const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
-  result = (double)((ProfileRipple2 const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
+  result = (IFormFactorDecorator *)((IFormFactorDecorator const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ProfileRipple2_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactorDecorator_setAmbientMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
-  cvector_t arg2 ;
+  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
+  SwigValueWrapper< Material > arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ProfileRipple2_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactorDecorator_setAmbientMaterial", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple2_evaluate_for_q" "', argument " "1"" of type '" "ProfileRipple2 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_setAmbientMaterial" "', argument " "1"" of type '" "IFormFactorDecorator *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
+  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ProfileRipple2_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorDecorator_setAmbientMaterial" "', argument " "2"" of type '" "Material""'"); 
     }  
     if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ProfileRipple2_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorDecorator_setAmbientMaterial" "', argument " "2"" of type '" "Material""'");
     } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      Material * temp = reinterpret_cast< Material * >(argp2);
       arg2 = *temp;
       if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  result = ((ProfileRipple2 const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  (arg1)->setAmbientMaterial(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ProfileRipple2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactorDecorator_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
+  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ProfileRipple2" "', argument " "1"" of type '" "ProfileRipple2 *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_volume" "', argument " "1"" of type '" "IFormFactorDecorator const *""'"); 
   }
-  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *ProfileRipple2_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ProfileRipple2, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_factor_x_box(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  complex_t arg1 ;
-  double arg2 ;
-  std::complex< double > val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "factor_x_box", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "factor_x_box" "', argument " "1"" of type '" "complex_t""'");
-  } 
-  arg1 = static_cast< complex_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "factor_x_box" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = ripples::factor_x_box(arg1,arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_factor_x_Gauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  complex_t arg1 ;
-  double arg2 ;
-  std::complex< double > val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "factor_x_Gauss", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "factor_x_Gauss" "', argument " "1"" of type '" "complex_t""'");
-  } 
-  arg1 = static_cast< complex_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "factor_x_Gauss" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = ripples::factor_x_Gauss(arg1,arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_factor_x_Lorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  complex_t arg1 ;
-  double arg2 ;
-  std::complex< double > val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "factor_x_Lorentz", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "factor_x_Lorentz" "', argument " "1"" of type '" "complex_t""'");
-  } 
-  arg1 = static_cast< complex_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "factor_x_Lorentz" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = ripples::factor_x_Lorentz(arg1,arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_FormFactorAnisoPyramid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  FormFactorAnisoPyramid *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorAnisoPyramid", 4, 4, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorAnisoPyramid" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorAnisoPyramid" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorAnisoPyramid" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorAnisoPyramid" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (FormFactorAnisoPyramid *)new FormFactorAnisoPyramid(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorAnisoPyramid, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
+  result = (double)((IFormFactorDecorator const *)arg1)->volume();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorAnisoPyramid_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactorDecorator_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
+  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorAnisoPyramid *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorAnisoPyramid_clone" "', argument " "1"" of type '" "FormFactorAnisoPyramid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_radialExtension" "', argument " "1"" of type '" "IFormFactorDecorator const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
-  result = (FormFactorAnisoPyramid *)((FormFactorAnisoPyramid const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
+  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
+  result = (double)((IFormFactorDecorator const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorAnisoPyramid_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactorDecorator_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorAnisoPyramid_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactorDecorator_bottomZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorAnisoPyramid_accept" "', argument " "1"" of type '" "FormFactorAnisoPyramid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_bottomZ" "', argument " "1"" of type '" "IFormFactorDecorator const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorAnisoPyramid_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorDecorator_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorAnisoPyramid const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorDecorator_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((IFormFactorDecorator const *)arg1)->bottomZ((IRotation const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorAnisoPyramid_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactorDecorator_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
+  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IFormFactorDecorator_topZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorAnisoPyramid_getLength" "', argument " "1"" of type '" "FormFactorAnisoPyramid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_topZ" "', argument " "1"" of type '" "IFormFactorDecorator const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
-  result = (double)((FormFactorAnisoPyramid const *)arg1)->getLength();
+  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IFormFactorDecorator_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IFormFactorDecorator_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((IFormFactorDecorator const *)arg1)->topZ((IRotation const &)*arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -70233,343 +70914,628 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorAnisoPyramid_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IFormFactorDecorator_getFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
+  IFormFactorDecorator *arg1 = (IFormFactorDecorator *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  Swig::Director *director = 0;
+  IFormFactor *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorAnisoPyramid_getWidth" "', argument " "1"" of type '" "FormFactorAnisoPyramid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFormFactorDecorator_getFormFactor" "', argument " "1"" of type '" "IFormFactorDecorator const *""'"); 
+  }
+  arg1 = reinterpret_cast< IFormFactorDecorator * >(argp1);
+  result = (IFormFactor *)((IFormFactorDecorator const *)arg1)->getFormFactor();
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
   }
-  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
-  result = (double)((FormFactorAnisoPyramid const *)arg1)->getWidth();
-  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorAnisoPyramid_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IFormFactorDecorator_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IFormFactorDecorator, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_new_IMultiLayerBuilder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  PyObject *arg1 = (PyObject *) 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  IMultiLayerBuilder *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorAnisoPyramid_getHeight" "', argument " "1"" of type '" "FormFactorAnisoPyramid const *""'"); 
+  arg1 = swig_obj[0];
+  if ( arg1 != Py_None ) {
+    /* subclassed */
+    result = (IMultiLayerBuilder *)new SwigDirector_IMultiLayerBuilder(arg1); 
+  } else {
+    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
+    SWIG_fail;
+  }
+  
+  {
+    std::shared_ptr<  IMultiLayerBuilder > *smartresult = result ? new std::shared_ptr<  IMultiLayerBuilder >(result SWIG_NO_NULL_DELETER_SWIG_POINTER_NEW) : 0;
+    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(smartresult), SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, SWIG_POINTER_NEW | SWIG_POINTER_OWN);
   }
-  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
-  result = (double)((FormFactorAnisoPyramid const *)arg1)->getHeight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorAnisoPyramid_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IMultiLayerBuilder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
+  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
+  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorAnisoPyramid_getAlpha" "', argument " "1"" of type '" "FormFactorAnisoPyramid const *""'"); 
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IMultiLayerBuilder" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
+    }
+    if (newmem & SWIG_CAST_NEW_MEMORY) {
+      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
+    } else {
+      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
+    }
   }
-  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
-  result = (double)((FormFactorAnisoPyramid const *)arg1)->getAlpha();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  (void)arg1; delete smartarg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorAnisoPyramid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_buildSample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
+  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  std::shared_ptr< IMultiLayerBuilder const > tempshared1 ;
+  std::shared_ptr< IMultiLayerBuilder const > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  MultiLayer *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorAnisoPyramid" "', argument " "1"" of type '" "FormFactorAnisoPyramid *""'"); 
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_buildSample" "', argument " "1"" of type '" "IMultiLayerBuilder const *""'");
+    }
+    if (newmem & SWIG_CAST_NEW_MEMORY) {
+      tempshared1 = *reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
+      delete reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
+    } else {
+      smartarg1 = reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
+    }
+  }
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      Swig::DirectorPureVirtualException::raise("IMultiLayerBuilder::buildSample");
+    } else {
+      result = (MultiLayer *)((IMultiLayerBuilder const *)arg1)->buildSample();
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, 0 |  0 );
+  if (director) {
+    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
   }
-  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorAnisoPyramid_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorAnisoPyramid, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorAnisoPyramid_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorBox(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_createSample__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
+  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
+  size_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
+  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
+  size_t val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorBox *result = 0 ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  MultiLayer *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorBox", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorBox" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_createSample" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
+    }
+    if (newmem & SWIG_CAST_NEW_MEMORY) {
+      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
+    } else {
+      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
+    }
+  }
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorBox" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorBox" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IMultiLayerBuilder_createSample" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (FormFactorBox *)new FormFactorBox(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorBox, SWIG_POINTER_NEW |  0 );
+  arg2 = static_cast< size_t >(val2);
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (MultiLayer *)(arg1)->IMultiLayerBuilder::createSample(arg2);
+    } else {
+      result = (MultiLayer *)(arg1)->createSample(arg2);
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, 0 |  0 );
+  if (director) {
+    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
+  }
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorBox_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_createSample__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
+  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorBox *result = 0 ;
+  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
+  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  MultiLayer *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_clone" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_createSample" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
+    }
+    if (newmem & SWIG_CAST_NEW_MEMORY) {
+      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
+    } else {
+      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
+    }
+  }
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (MultiLayer *)(arg1)->IMultiLayerBuilder::createSample();
+    } else {
+      result = (MultiLayer *)(arg1)->createSample();
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, 0 |  0 );
+  if (director) {
+    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
   }
-  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
-  result = (FormFactorBox *)((FormFactorBox const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorBox, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorBox_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_createSample(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorBox_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_accept" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IMultiLayerBuilder_createSample", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_IMultiLayerBuilder_createSample__SWIG_1(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorBox_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_IMultiLayerBuilder_createSample__SWIG_0(self, argc, argv);
+      }
+    }
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorBox const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IMultiLayerBuilder_createSample'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IMultiLayerBuilder::createSample(size_t)\n"
+    "    IMultiLayerBuilder::createSample()\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorBox_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
+  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
+  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  Swig::Director *director = 0;
+  bool upcall = false;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_getLength" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
-  result = (double)((FormFactorBox const *)arg1)->getLength();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_size" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
+    }
+    if (newmem & SWIG_CAST_NEW_MEMORY) {
+      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
+    } else {
+      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
+    }
+  }
+  director = SWIG_DIRECTOR_CAST(arg1);
+  upcall = (director && (director->swig_get_self()==swig_obj[0]));
+  try {
+    if (upcall) {
+      result = (arg1)->IMultiLayerBuilder::size();
+    } else {
+      result = (arg1)->size();
+    }
+  } catch (Swig::DirectorException&) {
+    SWIG_fail;
+  }
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorBox_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_registerParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
+  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
+  std::string *arg2 = 0 ;
+  int64_t arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
+  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  long long val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  RealParameter *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IMultiLayerBuilder_registerParameter", 3, 3, swig_obj)) SWIG_fail;
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_registerParameter" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
+    }
+    if (newmem & SWIG_CAST_NEW_MEMORY) {
+      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
+    } else {
+      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
+    }
+  }
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IMultiLayerBuilder_registerParameter" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IMultiLayerBuilder_registerParameter" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  ecode3 = SWIG_AsVal_long_SS_long(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IMultiLayerBuilder_registerParameter" "', argument " "3"" of type '" "int64_t""'");
+  } 
+  arg3 = static_cast< int64_t >(val3);
+  result = (RealParameter *)IMultiLayerBuilder_registerParameter(arg1,(std::string const &)*arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_setParameterValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
+  std::string *arg2 = 0 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
+  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IMultiLayerBuilder_setParameterValue", 3, 3, swig_obj)) SWIG_fail;
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_setParameterValue" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
+    }
+    if (newmem & SWIG_CAST_NEW_MEMORY) {
+      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
+    } else {
+      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
+    }
+  }
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IMultiLayerBuilder_setParameterValue" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IMultiLayerBuilder_setParameterValue" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IMultiLayerBuilder_setParameterValue" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  IMultiLayerBuilder_setParameterValue(arg1,(std::string const &)*arg2,arg3);
+  resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_parametersToString(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  std::shared_ptr< IMultiLayerBuilder const > tempshared1 ;
+  std::shared_ptr< IMultiLayerBuilder const > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  std::string result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_getWidth" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_parametersToString" "', argument " "1"" of type '" "IMultiLayerBuilder const *""'");
+    }
+    if (newmem & SWIG_CAST_NEW_MEMORY) {
+      tempshared1 = *reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
+      delete reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
+    } else {
+      smartarg1 = reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
+    }
   }
-  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
-  result = (double)((FormFactorBox const *)arg1)->getWidth();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = IMultiLayerBuilder_parametersToString((IMultiLayerBuilder const *)arg1);
+  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorBox_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_createParameterTree(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
+  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  std::shared_ptr< IMultiLayerBuilder const > tempshared1 ;
+  std::shared_ptr< IMultiLayerBuilder const > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  ParameterPool *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_volume" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_createParameterTree" "', argument " "1"" of type '" "IMultiLayerBuilder const *""'");
+    }
+    if (newmem & SWIG_CAST_NEW_MEMORY) {
+      tempshared1 = *reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
+      delete reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
+    } else {
+      smartarg1 = reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
+    }
   }
-  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
-  result = (double)((FormFactorBox const *)arg1)->volume();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = (ParameterPool *)IMultiLayerBuilder_createParameterTree((IMultiLayerBuilder const *)arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterPool, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorBox_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_parameterPool(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
+  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  std::shared_ptr< IMultiLayerBuilder const > tempshared1 ;
+  std::shared_ptr< IMultiLayerBuilder const > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  ParameterPool *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_radialExtension" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_parameterPool" "', argument " "1"" of type '" "IMultiLayerBuilder const *""'");
+    }
+    if (newmem & SWIG_CAST_NEW_MEMORY) {
+      tempshared1 = *reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
+      delete reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
+    } else {
+      smartarg1 = reinterpret_cast< std::shared_ptr< const IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
+    }
   }
-  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
-  result = (double)((FormFactorBox const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = (ParameterPool *)IMultiLayerBuilder_parameterPool((IMultiLayerBuilder const *)arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterPool, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorBox_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IMultiLayerBuilder_onChange(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
-  cvector_t arg2 ;
+  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
+  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorBox_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_evaluate_for_q" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorBox_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorBox_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IMultiLayerBuilder_onChange" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
+    }
+    if (newmem & SWIG_CAST_NEW_MEMORY) {
+      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
     } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
     }
   }
-  result = ((FormFactorBox const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  IMultiLayerBuilder_onChange(arg1);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorBox(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_disown_IMultiLayerBuilder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
+  IMultiLayerBuilder *arg1 = (IMultiLayerBuilder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  std::shared_ptr< IMultiLayerBuilder > tempshared1 ;
+  std::shared_ptr< IMultiLayerBuilder > *smartarg1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorBox" "', argument " "1"" of type '" "FormFactorBox *""'"); 
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 |  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_IMultiLayerBuilder" "', argument " "1"" of type '" "IMultiLayerBuilder *""'");
+    }
+    if (newmem & SWIG_CAST_NEW_MEMORY) {
+      tempshared1 = *reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      delete reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >(tempshared1.get());
+    } else {
+      smartarg1 = reinterpret_cast< std::shared_ptr<  IMultiLayerBuilder > * >(argp1);
+      arg1 = const_cast< IMultiLayerBuilder * >((smartarg1 ? smartarg1->get() : 0));
+    }
   }
-  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
-  delete arg1;
+  {
+    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
+    if (director) director->swig_disown();
+  }
+  
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -70577,73 +71543,171 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorBox_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IMultiLayerBuilder_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorBox, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FormFactorBox_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IMultiLayerBuilder_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FormFactorCantellatedCube(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Layer__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
+  SwigValueWrapper< Material > arg1 ;
   double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  void *argp1 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  FormFactorCantellatedCube *result = 0 ;
+  Layer *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorCantellatedCube", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorCantellatedCube" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  {
+    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0  | 0);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Layer" "', argument " "1"" of type '" "Material""'"); 
+    }  
+    if (!argp1) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Layer" "', argument " "1"" of type '" "Material""'");
+    } else {
+      Material * temp = reinterpret_cast< Material * >(argp1);
+      arg1 = *temp;
+      if (SWIG_IsNewObj(res1)) delete temp;
+    }
+  }
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorCantellatedCube" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Layer" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (FormFactorCantellatedCube *)new FormFactorCantellatedCube(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCantellatedCube, SWIG_POINTER_NEW |  0 );
+  result = (Layer *)new Layer(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Layer, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCantellatedCube_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Layer__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorCantellatedCube *arg1 = (FormFactorCantellatedCube *) 0 ;
+  SwigValueWrapper< Material > arg1 ;
+  void *argp1 ;
+  int res1 = 0 ;
+  Layer *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0  | 0);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Layer" "', argument " "1"" of type '" "Material""'"); 
+    }  
+    if (!argp1) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Layer" "', argument " "1"" of type '" "Material""'");
+    } else {
+      Material * temp = reinterpret_cast< Material * >(argp1);
+      arg1 = *temp;
+      if (SWIG_IsNewObj(res1)) delete temp;
+    }
+  }
+  result = (Layer *)new Layer(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Layer, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_Layer(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Layer", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_Layer__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_Layer__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Layer'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Layer::Layer(Material,double)\n"
+    "    Layer::Layer(Material)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_Layer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Layer *arg1 = (Layer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorCantellatedCube *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCantellatedCube, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCantellatedCube_clone" "', argument " "1"" of type '" "FormFactorCantellatedCube const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Layer" "', argument " "1"" of type '" "Layer *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCantellatedCube * >(argp1);
-  result = (FormFactorCantellatedCube *)((FormFactorCantellatedCube const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCantellatedCube, 0 |  0 );
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCantellatedCube_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Layer_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCantellatedCube *arg1 = (FormFactorCantellatedCube *) 0 ;
+  Layer *arg1 = (Layer *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  Layer *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_clone" "', argument " "1"" of type '" "Layer const *""'"); 
+  }
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  result = (Layer *)((Layer const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Layer, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Layer_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Layer *arg1 = (Layer *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -70651,18 +71715,18 @@ SWIGINTERN PyObject *_wrap_FormFactorCantellatedCube_accept(PyObject *SWIGUNUSED
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorCantellatedCube_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCantellatedCube, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Layer_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCantellatedCube_accept" "', argument " "1"" of type '" "FormFactorCantellatedCube const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_accept" "', argument " "1"" of type '" "Layer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCantellatedCube * >(argp1);
+  arg1 = reinterpret_cast< Layer * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCantellatedCube_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Layer_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorCantellatedCube const *)arg1)->accept(arg2);
+  ((Layer const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -70670,32 +71734,38 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCantellatedCube_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Layer_setThickness(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCantellatedCube *arg1 = (FormFactorCantellatedCube *) 0 ;
+  Layer *arg1 = (Layer *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCantellatedCube, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Layer_setThickness", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCantellatedCube_getLength" "', argument " "1"" of type '" "FormFactorCantellatedCube const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_setThickness" "', argument " "1"" of type '" "Layer *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCantellatedCube * >(argp1);
-  result = (double)((FormFactorCantellatedCube const *)arg1)->getLength();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Layer_setThickness" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setThickness(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCantellatedCube_getRemovedLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Layer_thickness(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCantellatedCube *arg1 = (FormFactorCantellatedCube *) 0 ;
+  Layer *arg1 = (Layer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -70703,12 +71773,12 @@ SWIGINTERN PyObject *_wrap_FormFactorCantellatedCube_getRemovedLength(PyObject *
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCantellatedCube, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCantellatedCube_getRemovedLength" "', argument " "1"" of type '" "FormFactorCantellatedCube const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_thickness" "', argument " "1"" of type '" "Layer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCantellatedCube * >(argp1);
-  result = (double)((FormFactorCantellatedCube const *)arg1)->getRemovedLength();
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  result = (double)((Layer const *)arg1)->thickness();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -70716,122 +71786,91 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorCantellatedCube(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Layer_material(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCantellatedCube *arg1 = (FormFactorCantellatedCube *) 0 ;
+  Layer *arg1 = (Layer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  Material *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCantellatedCube, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorCantellatedCube" "', argument " "1"" of type '" "FormFactorCantellatedCube *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_material" "', argument " "1"" of type '" "Layer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCantellatedCube * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *FormFactorCantellatedCube_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorCantellatedCube, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorCantellatedCube_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorCone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorCone *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorCone", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorCone" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorCone" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorCone" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FormFactorCone *)new FormFactorCone(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCone, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  result = (Material *)((Layer const *)arg1)->material();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Material, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCone_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Layer_setMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
+  Layer *arg1 = (Layer *) 0 ;
+  SwigValueWrapper< Material > arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorCone *result = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Layer_setMaterial", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_clone" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_setMaterial" "', argument " "1"" of type '" "Layer *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
-  result = (FormFactorCone *)((FormFactorCone const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCone, 0 |  0 );
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Layer_setMaterial" "', argument " "2"" of type '" "Material""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Layer_setMaterial" "', argument " "2"" of type '" "Material""'");
+    } else {
+      Material * temp = reinterpret_cast< Material * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  (arg1)->setMaterial(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCone_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Layer_addLayout(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  Layer *arg1 = (Layer *) 0 ;
+  ILayout *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorCone_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Layer_addLayout", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_accept" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_addLayout" "', argument " "1"" of type '" "Layer *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ILayout,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCone_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Layer_addLayout" "', argument " "2"" of type '" "ILayout const &""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorCone const *)arg1)->accept(arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Layer_addLayout" "', argument " "2"" of type '" "ILayout const &""'"); 
+  }
+  arg2 = reinterpret_cast< ILayout * >(argp2);
+  (arg1)->addLayout((ILayout const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -70839,170 +71878,242 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCone_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Layer_numberOfLayouts(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
+  Layer *arg1 = (Layer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_getHeight" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_numberOfLayouts" "', argument " "1"" of type '" "Layer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
-  result = (double)((FormFactorCone const *)arg1)->getHeight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  result = ((Layer const *)arg1)->numberOfLayouts();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCone_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Layer_layouts(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
+  Layer *arg1 = (Layer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  SwigValueWrapper< std::vector< ILayout const *,std::allocator< ILayout const * > > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_getAlpha" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_layouts" "', argument " "1"" of type '" "Layer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
-  result = (double)((FormFactorCone const *)arg1)->getAlpha();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  result = ((Layer const *)arg1)->layouts();
+  resultobj = SWIG_NewPointerObj((new std::vector< ILayout const *,std::allocator< ILayout const * > >(static_cast< const std::vector< ILayout const *,std::allocator< ILayout const * > >& >(result))), SWIGTYPE_p_std__vectorT_ILayout_const_p_std__allocatorT_ILayout_const_p_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCone_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Layer_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
+  Layer *arg1 = (Layer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_getRadius" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_getChildren" "', argument " "1"" of type '" "Layer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
-  result = (double)((FormFactorCone const *)arg1)->getRadius();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  result = ((Layer const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCone_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Layer_registerThickness__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
+  Layer *arg1 = (Layer *) 0 ;
+  bool arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  bool val2 ;
+  int ecode2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_radialExtension" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_registerThickness" "', argument " "1"" of type '" "Layer *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
-  result = (double)((FormFactorCone const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Layer_registerThickness" "', argument " "2"" of type '" "bool""'");
+  } 
+  arg2 = static_cast< bool >(val2);
+  (arg1)->registerThickness(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCone_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Layer_registerThickness__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
-  cvector_t arg2 ;
+  Layer *arg1 = (Layer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorCone_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_evaluate_for_q" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_registerThickness" "', argument " "1"" of type '" "Layer *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCone_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorCone_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  (arg1)->registerThickness();
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Layer_registerThickness(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Layer_registerThickness", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Layer, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_Layer_registerThickness__SWIG_1(self, argc, argv);
     }
   }
-  result = ((FormFactorCone const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Layer, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_bool(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_Layer_registerThickness__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Layer_registerThickness'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Layer::registerThickness(bool)\n"
+    "    Layer::registerThickness()\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_Layer_setNumberOfSlices(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Layer *arg1 = (Layer *) 0 ;
+  unsigned int arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  unsigned int val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "Layer_setNumberOfSlices", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_setNumberOfSlices" "', argument " "1"" of type '" "Layer *""'"); 
+  }
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Layer_setNumberOfSlices" "', argument " "2"" of type '" "unsigned int""'");
+  } 
+  arg2 = static_cast< unsigned int >(val2);
+  (arg1)->setNumberOfSlices(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorCone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Layer_numberOfSlices(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
+  Layer *arg1 = (Layer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  unsigned int result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorCone" "', argument " "1"" of type '" "FormFactorCone *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_numberOfSlices" "', argument " "1"" of type '" "Layer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Layer * >(argp1);
+  result = (unsigned int)((Layer const *)arg1)->numberOfSlices();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorCone_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Layer_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorCone, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_Layer, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FormFactorCone_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Layer_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FormFactorCone6(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_LayerRoughness__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+  PyObject *resultobj = 0;
+  LayerRoughness *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (LayerRoughness *)new LayerRoughness();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_LayerRoughness, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_LayerRoughness__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -71013,59 +72124,101 @@ SWIGINTERN PyObject *_wrap_new_FormFactorCone6(PyObject *SWIGUNUSEDPARM(self), P
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorCone6 *result = 0 ;
+  LayerRoughness *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorCone6", 3, 3, swig_obj)) SWIG_fail;
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorCone6" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_LayerRoughness" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorCone6" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_LayerRoughness" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorCone6" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_LayerRoughness" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (FormFactorCone6 *)new FormFactorCone6(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCone6, SWIG_POINTER_NEW |  0 );
+  result = (LayerRoughness *)new LayerRoughness(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_LayerRoughness, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCone6_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_LayerRoughness(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_LayerRoughness", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_LayerRoughness__SWIG_0(self, argc, argv);
+  }
+  if (argc == 3) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_new_LayerRoughness__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_LayerRoughness'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    LayerRoughness::LayerRoughness()\n"
+    "    LayerRoughness::LayerRoughness(double,double,double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_LayerRoughness_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCone6 *arg1 = (FormFactorCone6 *) 0 ;
+  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorCone6 *result = 0 ;
+  LayerRoughness *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone6, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone6_clone" "', argument " "1"" of type '" "FormFactorCone6 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_clone" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone6 * >(argp1);
-  result = (FormFactorCone6 *)((FormFactorCone6 const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCone6, 0 |  0 );
+  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
+  result = (LayerRoughness *)((LayerRoughness const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_LayerRoughness, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCone6_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_LayerRoughness_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCone6 *arg1 = (FormFactorCone6 *) 0 ;
+  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -71073,18 +72226,18 @@ SWIGINTERN PyObject *_wrap_FormFactorCone6_accept(PyObject *SWIGUNUSEDPARM(self)
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorCone6_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone6, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "LayerRoughness_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone6_accept" "', argument " "1"" of type '" "FormFactorCone6 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_accept" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone6 * >(argp1);
+  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCone6_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "LayerRoughness_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorCone6 const *)arg1)->accept(arg2);
+  ((LayerRoughness const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -71092,22 +72245,37 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCone6_getBaseEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_LayerRoughness_getSpectralFun(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCone6 *arg1 = (FormFactorCone6 *) 0 ;
+  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
+  kvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone6, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "LayerRoughness_getSpectralFun", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone6_getBaseEdge" "', argument " "1"" of type '" "FormFactorCone6 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_getSpectralFun" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone6 * >(argp1);
-  result = (double)((FormFactorCone6 const *)arg1)->getBaseEdge();
+  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "LayerRoughness_getSpectralFun" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "LayerRoughness_getSpectralFun" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = (double)((LayerRoughness const *)arg1)->getSpectralFun(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -71115,22 +72283,37 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCone6_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_LayerRoughness_getCorrFun(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCone6 *arg1 = (FormFactorCone6 *) 0 ;
+  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
+  kvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone6, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "LayerRoughness_getCorrFun", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone6_getHeight" "', argument " "1"" of type '" "FormFactorCone6 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_getCorrFun" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone6 * >(argp1);
-  result = (double)((FormFactorCone6 const *)arg1)->getHeight();
+  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "LayerRoughness_getCorrFun" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "LayerRoughness_getCorrFun" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = (double)((LayerRoughness const *)arg1)->getCorrFun(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -71138,233 +72321,132 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCone6_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_LayerRoughness_setSigma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCone6 *arg1 = (FormFactorCone6 *) 0 ;
+  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone6, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "LayerRoughness_setSigma", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone6_getAlpha" "', argument " "1"" of type '" "FormFactorCone6 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_setSigma" "', argument " "1"" of type '" "LayerRoughness *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone6 * >(argp1);
-  result = (double)((FormFactorCone6 const *)arg1)->getAlpha();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "LayerRoughness_setSigma" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setSigma(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorCone6(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_LayerRoughness_getSigma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCone6 *arg1 = (FormFactorCone6 *) 0 ;
+  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone6, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorCone6" "', argument " "1"" of type '" "FormFactorCone6 *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_getSigma" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCone6 * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
+  result = (double)((LayerRoughness const *)arg1)->getSigma();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorCone6_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorCone6, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorCone6_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorCrystal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_LayerRoughness_setHurstParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = 0 ;
-  IFormFactor *arg2 = 0 ;
-  IFormFactor *arg3 = 0 ;
-  double arg4 ;
+  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  FormFactorCrystal *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "LayerRoughness_setHurstParameter", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_FormFactorCrystal" "', argument " "1"" of type '" "Lattice const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FormFactorCrystal" "', argument " "1"" of type '" "Lattice const &""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_FormFactorCrystal" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FormFactorCrystal" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  arg2 = reinterpret_cast< IFormFactor * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IFormFactor,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_FormFactorCrystal" "', argument " "3"" of type '" "IFormFactor const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FormFactorCrystal" "', argument " "3"" of type '" "IFormFactor const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_setHurstParameter" "', argument " "1"" of type '" "LayerRoughness *""'"); 
   }
-  arg3 = reinterpret_cast< IFormFactor * >(argp3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorCrystal" "', argument " "4"" of type '" "double""'");
+  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "LayerRoughness_setHurstParameter" "', argument " "2"" of type '" "double""'");
   } 
-  arg4 = static_cast< double >(val4);
-  result = (FormFactorCrystal *)new FormFactorCrystal((Lattice const &)*arg1,(IFormFactor const &)*arg2,(IFormFactor const &)*arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCrystal, SWIG_POINTER_NEW |  0 );
+  arg2 = static_cast< double >(val2);
+  (arg1)->setHurstParameter(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FormFactorCrystal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_LayerRoughness_getHurstParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = 0 ;
-  IFormFactor *arg2 = 0 ;
-  IFormFactor *arg3 = 0 ;
+  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  FormFactorCrystal *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_FormFactorCrystal" "', argument " "1"" of type '" "Lattice const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FormFactorCrystal" "', argument " "1"" of type '" "Lattice const &""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_FormFactorCrystal" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FormFactorCrystal" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  arg2 = reinterpret_cast< IFormFactor * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IFormFactor,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_FormFactorCrystal" "', argument " "3"" of type '" "IFormFactor const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_FormFactorCrystal" "', argument " "3"" of type '" "IFormFactor const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_getHurstParameter" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
   }
-  arg3 = reinterpret_cast< IFormFactor * >(argp3);
-  result = (FormFactorCrystal *)new FormFactorCrystal((Lattice const &)*arg1,(IFormFactor const &)*arg2,(IFormFactor const &)*arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCrystal, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
+  result = (double)((LayerRoughness const *)arg1)->getHurstParameter();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FormFactorCrystal(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FormFactorCrystal", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_new_FormFactorCrystal__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_FormFactorCrystal__SWIG_0(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FormFactorCrystal'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    FormFactorCrystal::FormFactorCrystal(Lattice const &,IFormFactor const &,IFormFactor const &,double)\n"
-    "    FormFactorCrystal::FormFactorCrystal(Lattice const &,IFormFactor const &,IFormFactor const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_FormFactorCrystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_LayerRoughness_setLatteralCorrLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
+  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "LayerRoughness_setLatteralCorrLength", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorCrystal" "', argument " "1"" of type '" "FormFactorCrystal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_setLatteralCorrLength" "', argument " "1"" of type '" "LayerRoughness *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "LayerRoughness_setLatteralCorrLength" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setLatteralCorrLength(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -71372,51 +72454,44 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCrystal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_LayerRoughness_getLatteralCorrLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
+  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorCrystal *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_clone" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_getLatteralCorrLength" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
-  result = (FormFactorCrystal *)((FormFactorCrystal const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
+  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
+  result = (double)((LayerRoughness const *)arg1)->getLatteralCorrLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCrystal_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_LayerRoughness(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorCrystal_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_accept" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCrystal_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_LayerRoughness" "', argument " "1"" of type '" "LayerRoughness *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorCrystal const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -71424,346 +72499,294 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCrystal_setAmbientMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *LayerRoughness_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_LayerRoughness, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *LayerRoughness_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_MultiLayer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
-  SwigValueWrapper< Material > arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  MultiLayer *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorCrystal_setAmbientMaterial", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_setAmbientMaterial" "', argument " "1"" of type '" "FormFactorCrystal *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCrystal_setAmbientMaterial" "', argument " "2"" of type '" "Material""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorCrystal_setAmbientMaterial" "', argument " "2"" of type '" "Material""'");
-    } else {
-      Material * temp = reinterpret_cast< Material * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  (arg1)->setAmbientMaterial(arg2);
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "new_MultiLayer", 0, 0, 0)) SWIG_fail;
+  result = (MultiLayer *)new MultiLayer();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCrystal_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_MultiLayer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_volume" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_MultiLayer" "', argument " "1"" of type '" "MultiLayer *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
-  result = (double)((FormFactorCrystal const *)arg1)->volume();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCrystal_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  MultiLayer *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_radialExtension" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_clone" "', argument " "1"" of type '" "MultiLayer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
-  result = (double)((FormFactorCrystal const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  result = (MultiLayer *)((MultiLayer const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCrystal_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
-  IRotation *arg2 = 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorCrystal_bottomZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_bottomZ" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_accept" "', argument " "1"" of type '" "MultiLayer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCrystal_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorCrystal_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MultiLayer_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((FormFactorCrystal const *)arg1)->bottomZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((MultiLayer const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCrystal_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_numberOfLayers(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
-  IRotation *arg2 = 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  PyObject *swig_obj[1] ;
+  size_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorCrystal_topZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_topZ" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCrystal_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorCrystal_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_numberOfLayers" "', argument " "1"" of type '" "MultiLayer const *""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((FormFactorCrystal const *)arg1)->topZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  result = ((MultiLayer const *)arg1)->numberOfLayers();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCrystal_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_addLayer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCrystal *arg1 = (FormFactorCrystal *) 0 ;
-  WavevectorInfo *arg2 = 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  Layer *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorCrystal_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_addLayer", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCrystal_evaluate" "', argument " "1"" of type '" "FormFactorCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_addLayer" "', argument " "1"" of type '" "MultiLayer *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCrystal * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_WavevectorInfo,  0  | 0);
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Layer,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCrystal_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MultiLayer_addLayer" "', argument " "2"" of type '" "Layer const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorCrystal_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MultiLayer_addLayer" "', argument " "2"" of type '" "Layer const &""'"); 
   }
-  arg2 = reinterpret_cast< WavevectorInfo * >(argp2);
-  result = ((FormFactorCrystal const *)arg1)->evaluate((WavevectorInfo const &)*arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *FormFactorCrystal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorCrystal, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorCrystal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorCuboctahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  FormFactorCuboctahedron *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorCuboctahedron", 4, 4, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorCuboctahedron" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorCuboctahedron" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorCuboctahedron" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorCuboctahedron" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (FormFactorCuboctahedron *)new FormFactorCuboctahedron(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCuboctahedron, SWIG_POINTER_NEW |  0 );
+  arg2 = reinterpret_cast< Layer * >(argp2);
+  (arg1)->addLayer((Layer const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_addLayerWithTopRoughness(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  Layer *arg2 = 0 ;
+  LayerRoughness *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorCuboctahedron *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_addLayerWithTopRoughness", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCuboctahedron_clone" "', argument " "1"" of type '" "FormFactorCuboctahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_addLayerWithTopRoughness" "', argument " "1"" of type '" "MultiLayer *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
-  result = (FormFactorCuboctahedron *)((FormFactorCuboctahedron const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Layer,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MultiLayer_addLayerWithTopRoughness" "', argument " "2"" of type '" "Layer const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MultiLayer_addLayerWithTopRoughness" "', argument " "2"" of type '" "Layer const &""'"); 
+  }
+  arg2 = reinterpret_cast< Layer * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_LayerRoughness,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "MultiLayer_addLayerWithTopRoughness" "', argument " "3"" of type '" "LayerRoughness const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MultiLayer_addLayerWithTopRoughness" "', argument " "3"" of type '" "LayerRoughness const &""'"); 
+  }
+  arg3 = reinterpret_cast< LayerRoughness * >(argp3);
+  (arg1)->addLayerWithTopRoughness((Layer const &)*arg2,(LayerRoughness const &)*arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_layer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
+  Layer *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorCuboctahedron_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_layer", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCuboctahedron_accept" "', argument " "1"" of type '" "FormFactorCuboctahedron const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCuboctahedron_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_layer" "', argument " "1"" of type '" "MultiLayer const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorCuboctahedron const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MultiLayer_layer" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (Layer *)((MultiLayer const *)arg1)->layer(arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Layer, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_layerInterface(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  LayerInterface *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_layerInterface", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCuboctahedron_getLength" "', argument " "1"" of type '" "FormFactorCuboctahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_layerInterface" "', argument " "1"" of type '" "MultiLayer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
-  result = (double)((FormFactorCuboctahedron const *)arg1)->getLength();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MultiLayer_layerInterface" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (LayerInterface *)((MultiLayer const *)arg1)->layerInterface(arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_LayerInterface, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_setCrossCorrLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_setCrossCorrLength", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCuboctahedron_getHeight" "', argument " "1"" of type '" "FormFactorCuboctahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_setCrossCorrLength" "', argument " "1"" of type '" "MultiLayer *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
-  result = (double)((FormFactorCuboctahedron const *)arg1)->getHeight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MultiLayer_setCrossCorrLength" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setCrossCorrLength(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_getHeightRatio(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_crossCorrLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -71771,12 +72794,12 @@ SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_getHeightRatio(PyObject *SWIG
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCuboctahedron_getHeightRatio" "', argument " "1"" of type '" "FormFactorCuboctahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_crossCorrLength" "', argument " "1"" of type '" "MultiLayer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
-  result = (double)((FormFactorCuboctahedron const *)arg1)->getHeightRatio();
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  result = (double)((MultiLayer const *)arg1)->crossCorrLength();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -71784,137 +72807,111 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_setExternalField(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  kvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_setExternalField", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCuboctahedron_getAlpha" "', argument " "1"" of type '" "FormFactorCuboctahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_setExternalField" "', argument " "1"" of type '" "MultiLayer *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
-  result = (double)((FormFactorCuboctahedron const *)arg1)->getAlpha();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MultiLayer_setExternalField" "', argument " "2"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MultiLayer_setExternalField" "', argument " "2"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  (arg1)->setExternalField(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorCuboctahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_externalField(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  kvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorCuboctahedron" "', argument " "1"" of type '" "FormFactorCuboctahedron *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_externalField" "', argument " "1"" of type '" "MultiLayer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *FormFactorCuboctahedron_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorCuboctahedron, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorCuboctahedron_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorCylinder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  FormFactorCylinder *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorCylinder", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorCylinder" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorCylinder" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (FormFactorCylinder *)new FormFactorCylinder(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCylinder, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  result = ((MultiLayer const *)arg1)->externalField();
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCylinder_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorCylinder *result = 0 ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCylinder_clone" "', argument " "1"" of type '" "FormFactorCylinder const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_getChildren" "', argument " "1"" of type '" "MultiLayer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
-  result = (FormFactorCylinder *)((FormFactorCylinder const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  result = ((MultiLayer const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCylinder_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_setRoughnessModel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  RoughnessModel arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  int val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorCylinder_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_setRoughnessModel", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCylinder_accept" "', argument " "1"" of type '" "FormFactorCylinder const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCylinder_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_setRoughnessModel" "', argument " "1"" of type '" "MultiLayer *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorCylinder const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MultiLayer_setRoughnessModel" "', argument " "2"" of type '" "RoughnessModel""'");
+  } 
+  arg2 = static_cast< RoughnessModel >(val2);
+  (arg1)->setRoughnessModel(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -71922,863 +72919,548 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCylinder_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MultiLayer_roughnessModel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
+  MultiLayer *arg1 = (MultiLayer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  RoughnessModel result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCylinder_getHeight" "', argument " "1"" of type '" "FormFactorCylinder const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_roughnessModel" "', argument " "1"" of type '" "MultiLayer const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
-  result = (double)((FormFactorCylinder const *)arg1)->getHeight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  result = (RoughnessModel)((MultiLayer const *)arg1)->roughnessModel();
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorCylinder_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCylinder_getRadius" "', argument " "1"" of type '" "FormFactorCylinder const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
-  result = (double)((FormFactorCylinder const *)arg1)->getRadius();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *MultiLayer_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_MultiLayer, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
-
-SWIGINTERN PyObject *_wrap_FormFactorCylinder_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCylinder_radialExtension" "', argument " "1"" of type '" "FormFactorCylinder const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
-  result = (double)((FormFactorCylinder const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *MultiLayer_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
 }
 
-
-SWIGINTERN PyObject *_wrap_FormFactorCylinder_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MaterialProfile_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
-  cvector_t arg2 ;
+  MultiLayer *arg1 = 0 ;
+  int arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  int val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  std::vector< complex_t,std::allocator< complex_t > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorCylinder_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MaterialProfile_cpp", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_MultiLayer,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCylinder_evaluate_for_q" "', argument " "1"" of type '" "FormFactorCylinder const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MaterialProfile_cpp" "', argument " "1"" of type '" "MultiLayer const &""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCylinder_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorCylinder_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MaterialProfile_cpp" "', argument " "1"" of type '" "MultiLayer const &""'"); 
   }
-  result = ((FormFactorCylinder const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MaterialProfile_cpp" "', argument " "2"" of type '" "int""'");
+  } 
+  arg2 = static_cast< int >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "MaterialProfile_cpp" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "MaterialProfile_cpp" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = MaterialProfile((MultiLayer const &)*arg1,arg2,arg3,arg4);
+  resultobj = swig::from(static_cast< std::vector< std::complex< double >,std::allocator< std::complex< double > > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorCylinder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DefaultMaterialProfileLimits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
+  MultiLayer *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::pair< double,double > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_MultiLayer,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorCylinder" "', argument " "1"" of type '" "FormFactorCylinder *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DefaultMaterialProfileLimits" "', argument " "1"" of type '" "MultiLayer const &""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DefaultMaterialProfileLimits" "', argument " "1"" of type '" "MultiLayer const &""'"); 
+  }
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  result = DefaultMaterialProfileLimits((MultiLayer const &)*arg1);
+  resultobj = swig::from(static_cast< std::pair< double,double > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorCylinder_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorCylinder, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorCylinder_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorDebyeBueche(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GenerateZValues(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
+  int arg1 ;
   double arg2 ;
-  double val1 ;
+  double arg3 ;
+  int val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  FormFactorDebyeBueche *result = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorDebyeBueche", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_Python_UnpackTuple(args, "GenerateZValues", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorDebyeBueche" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "GenerateZValues" "', argument " "1"" of type '" "int""'");
   } 
-  arg1 = static_cast< double >(val1);
+  arg1 = static_cast< int >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorDebyeBueche" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "GenerateZValues" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (FormFactorDebyeBueche *)new FormFactorDebyeBueche(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorDebyeBueche, SWIG_POINTER_NEW |  0 );
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "GenerateZValues" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = GenerateZValues(arg1,arg2,arg3);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDebyeBueche_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_RoughnessModel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorDebyeBueche *arg1 = (FormFactorDebyeBueche *) 0 ;
+  RoughnessModelWrap *arg1 = (RoughnessModelWrap *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorDebyeBueche *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDebyeBueche, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RoughnessModelWrap, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDebyeBueche_clone" "', argument " "1"" of type '" "FormFactorDebyeBueche const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RoughnessModel" "', argument " "1"" of type '" "RoughnessModelWrap *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorDebyeBueche * >(argp1);
-  result = (FormFactorDebyeBueche *)((FormFactorDebyeBueche const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorDebyeBueche, 0 |  0 );
+  arg1 = reinterpret_cast< RoughnessModelWrap * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDebyeBueche_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDebyeBueche *arg1 = (FormFactorDebyeBueche *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorDebyeBueche_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDebyeBueche, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDebyeBueche_accept" "', argument " "1"" of type '" "FormFactorDebyeBueche const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDebyeBueche * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDebyeBueche_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
-  }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorDebyeBueche const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *RoughnessModel_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_RoughnessModelWrap, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN int Swig_var_nanometer_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable nanometer is read-only.");
+  return 1;
+}
 
-SWIGINTERN PyObject *_wrap_FormFactorDebyeBueche_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDebyeBueche *arg1 = (FormFactorDebyeBueche *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+
+SWIGINTERN PyObject *Swig_var_nanometer_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDebyeBueche, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDebyeBueche_radialExtension" "', argument " "1"" of type '" "FormFactorDebyeBueche const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDebyeBueche * >(argp1);
-  result = (double)((FormFactorDebyeBueche const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::nanometer));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDebyeBueche_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDebyeBueche *arg1 = (FormFactorDebyeBueche *) 0 ;
-  cvector_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+SWIGINTERN int Swig_var_angstrom_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable angstrom is read-only.");
+  return 1;
+}
+
+
+SWIGINTERN PyObject *Swig_var_angstrom_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorDebyeBueche_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDebyeBueche, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDebyeBueche_evaluate_for_q" "', argument " "1"" of type '" "FormFactorDebyeBueche const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDebyeBueche * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDebyeBueche_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorDebyeBueche_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  result = ((FormFactorDebyeBueche const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::angstrom));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorDebyeBueche(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDebyeBueche *arg1 = (FormFactorDebyeBueche *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+SWIGINTERN int Swig_var_micrometer_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable micrometer is read-only.");
+  return 1;
+}
+
+
+SWIGINTERN PyObject *Swig_var_micrometer_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDebyeBueche, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorDebyeBueche" "', argument " "1"" of type '" "FormFactorDebyeBueche *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDebyeBueche * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::micrometer));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *FormFactorDebyeBueche_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorDebyeBueche, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN int Swig_var_millimeter_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable millimeter is read-only.");
+  return 1;
 }
 
-SWIGINTERN PyObject *FormFactorDebyeBueche_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
+
+SWIGINTERN PyObject *Swig_var_millimeter_get(void) {
+  PyObject *pyobj = 0;
+  
+  pyobj = SWIG_From_double(static_cast< double >(Units::millimeter));
+  return pyobj;
 }
 
-SWIGINTERN PyObject *_wrap_new_FormFactorDodecahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorDodecahedron *result = 0 ;
+
+SWIGINTERN int Swig_var_meter_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable meter is read-only.");
+  return 1;
+}
+
+
+SWIGINTERN PyObject *Swig_var_meter_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorDodecahedron" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (FormFactorDodecahedron *)new FormFactorDodecahedron(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorDodecahedron, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::meter));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDodecahedron_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDodecahedron *arg1 = (FormFactorDodecahedron *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorDodecahedron *result = 0 ;
+SWIGINTERN int Swig_var_nm_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable nm is read-only.");
+  return 1;
+}
+
+
+SWIGINTERN PyObject *Swig_var_nm_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDodecahedron, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDodecahedron_clone" "', argument " "1"" of type '" "FormFactorDodecahedron const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDodecahedron * >(argp1);
-  result = (FormFactorDodecahedron *)((FormFactorDodecahedron const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorDodecahedron, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::nm));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDodecahedron_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDodecahedron *arg1 = (FormFactorDodecahedron *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+SWIGINTERN int Swig_var_nm2_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable nm2 is read-only.");
+  return 1;
+}
+
+
+SWIGINTERN PyObject *Swig_var_nm2_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorDodecahedron_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDodecahedron, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDodecahedron_accept" "', argument " "1"" of type '" "FormFactorDodecahedron const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDodecahedron * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDodecahedron_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
-  }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorDodecahedron const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::nm2));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDodecahedron_getEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDodecahedron *arg1 = (FormFactorDodecahedron *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+SWIGINTERN int Swig_var_barn_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable barn is read-only.");
+  return 1;
+}
+
+
+SWIGINTERN PyObject *Swig_var_barn_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDodecahedron, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDodecahedron_getEdge" "', argument " "1"" of type '" "FormFactorDodecahedron const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDodecahedron * >(argp1);
-  result = (double)((FormFactorDodecahedron const *)arg1)->getEdge();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::barn));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorDodecahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDodecahedron *arg1 = (FormFactorDodecahedron *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+SWIGINTERN int Swig_var_radian_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable radian is read-only.");
+  return 1;
+}
+
+
+SWIGINTERN PyObject *Swig_var_radian_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDodecahedron, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorDodecahedron" "', argument " "1"" of type '" "FormFactorDodecahedron *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDodecahedron * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::radian));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *FormFactorDodecahedron_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorDodecahedron, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN int Swig_var_milliradian_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable milliradian is read-only.");
+  return 1;
 }
 
-SWIGINTERN PyObject *FormFactorDodecahedron_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
+
+SWIGINTERN PyObject *Swig_var_milliradian_get(void) {
+  PyObject *pyobj = 0;
+  
+  pyobj = SWIG_From_double(static_cast< double >(Units::milliradian));
+  return pyobj;
 }
 
-SWIGINTERN PyObject *_wrap_new_FormFactorDot(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+
+SWIGINTERN int Swig_var_degree_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable degree is read-only.");
+  return 1;
+}
+
+
+SWIGINTERN PyObject *Swig_var_degree_get(void) {
+  PyObject *pyobj = 0;
+  
+  pyobj = SWIG_From_double(static_cast< double >(Units::degree));
+  return pyobj;
+}
+
+
+SWIGINTERN int Swig_var_steradian_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable steradian is read-only.");
+  return 1;
+}
+
+
+SWIGINTERN PyObject *Swig_var_steradian_get(void) {
+  PyObject *pyobj = 0;
+  
+  pyobj = SWIG_From_double(static_cast< double >(Units::steradian));
+  return pyobj;
+}
+
+
+SWIGINTERN PyObject *_wrap_rad2deg(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double val1 ;
   int ecode1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorDot *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorDot" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "rad2deg" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  result = (FormFactorDot *)new FormFactorDot(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorDot, SWIG_POINTER_NEW |  0 );
+  result = (double)Units::rad2deg(arg1);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDot_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_deg2rad(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorDot *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_clone" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
-  result = (FormFactorDot *)((FormFactorDot const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorDot, 0 |  0 );
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "deg2rad" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (double)Units::deg2rad(arg1);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDot_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorDot_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_accept" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDot_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
-  }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorDot const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN int Swig_var_rad_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable rad is read-only.");
+  return 1;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDot_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+SWIGINTERN PyObject *Swig_var_rad_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_getRadius" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
-  result = (double)((FormFactorDot const *)arg1)->getRadius();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::rad));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDot_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_radialExtension" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
-  result = (double)((FormFactorDot const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN int Swig_var_mrad_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable mrad is read-only.");
+  return 1;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDot_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
-  IRotation *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+SWIGINTERN PyObject *Swig_var_mrad_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorDot_bottomZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_bottomZ" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDot_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorDot_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((FormFactorDot const *)arg1)->bottomZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::mrad));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDot_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
-  IRotation *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorDot_topZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_topZ" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDot_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorDot_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((FormFactorDot const *)arg1)->topZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN int Swig_var_sr_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable sr is read-only.");
+  return 1;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorDot_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
-  cvector_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+SWIGINTERN PyObject *Swig_var_sr_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorDot_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_evaluate_for_q" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDot_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorDot_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  result = ((FormFactorDot const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::sr));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorDot(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorDot" "', argument " "1"" of type '" "FormFactorDot *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN int Swig_var_deg_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable deg is read-only.");
+  return 1;
 }
 
 
-SWIGINTERN PyObject *FormFactorDot_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorDot, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *Swig_var_deg_get(void) {
+  PyObject *pyobj = 0;
+  
+  pyobj = SWIG_From_double(static_cast< double >(Units::deg));
+  return pyobj;
 }
 
-SWIGINTERN PyObject *FormFactorDot_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
+
+SWIGINTERN int Swig_var_tesla_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable tesla is read-only.");
+  return 1;
 }
 
-SWIGINTERN PyObject *_wrap_new_FormFactorEllipsoidalCylinder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorEllipsoidalCylinder *result = 0 ;
+
+SWIGINTERN PyObject *Swig_var_tesla_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorEllipsoidalCylinder", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorEllipsoidalCylinder" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorEllipsoidalCylinder" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorEllipsoidalCylinder" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FormFactorEllipsoidalCylinder *)new FormFactorEllipsoidalCylinder(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorEllipsoidalCylinder, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::tesla));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorEllipsoidalCylinder *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_clone" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
-  result = (FormFactorEllipsoidalCylinder *)((FormFactorEllipsoidalCylinder const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN int Swig_var_gauss_set(PyObject *) {
+  SWIG_Error(SWIG_AttributeError,"Variable gauss is read-only.");
+  return 1;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+SWIGINTERN PyObject *Swig_var_gauss_get(void) {
+  PyObject *pyobj = 0;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorEllipsoidalCylinder_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_accept" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorEllipsoidalCylinder_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
-  }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorEllipsoidalCylinder const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
+  pyobj = SWIG_From_double(static_cast< double >(Units::gauss));
+  return pyobj;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_getRadiusX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IDistribution1D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_getRadiusX" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IDistribution1D" "', argument " "1"" of type '" "IDistribution1D *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
-  result = (double)((FormFactorEllipsoidalCylinder const *)arg1)->getRadiusX();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_getRadiusY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  IDistribution1D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_getRadiusY" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_clone" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
-  result = (double)((FormFactorEllipsoidalCylinder const *)arg1)->getRadiusY();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
+  result = (IDistribution1D *)((IDistribution1D const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDistribution1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDistribution1D_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_getHeight" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_probabilityDensity" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
-  result = (double)((FormFactorEllipsoidalCylinder const *)arg1)->getHeight();
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_probabilityDensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((IDistribution1D const *)arg1)->probabilityDensity(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -72786,9 +73468,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -72796,12 +73478,12 @@ SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_radialExtension(PyObjec
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_radialExtension" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_getMean" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
-  result = (double)((FormFactorEllipsoidalCylinder const *)arg1)->radialExtension();
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
+  result = (double)((IDistribution1D const *)arg1)->getMean();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -72809,407 +73491,521 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantSamples__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
-  cvector_t arg2 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  RealLimits *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  std::vector< ParameterSample,std::allocator< ParameterSample > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorEllipsoidalCylinder_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_evaluate_for_q" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantSamples" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorEllipsoidalCylinder_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorEllipsoidalCylinder_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantSamples" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDistribution1D_equidistantSamples" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "IDistribution1D_equidistantSamples" "', argument " "4"" of type '" "RealLimits const &""'"); 
   }
-  result = ((FormFactorEllipsoidalCylinder const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDistribution1D_equidistantSamples" "', argument " "4"" of type '" "RealLimits const &""'"); 
+  }
+  arg4 = reinterpret_cast< RealLimits * >(argp4);
+  result = ((IDistribution1D const *)arg1)->equidistantSamples(arg2,arg3,(RealLimits const &)*arg4);
+  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample,std::allocator< ParameterSample > >(static_cast< const std::vector< ParameterSample,std::allocator< ParameterSample > >& >(result))), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorEllipsoidalCylinder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantSamples__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  std::vector< ParameterSample,std::allocator< ParameterSample > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorEllipsoidalCylinder" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantSamples" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantSamples" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDistribution1D_equidistantSamples" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = ((IDistribution1D const *)arg1)->equidistantSamples(arg2,arg3);
+  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample,std::allocator< ParameterSample > >(static_cast< const std::vector< ParameterSample,std::allocator< ParameterSample > >& >(result))), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorEllipsoidalCylinder_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorEllipsoidalCylinder, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorEllipsoidalCylinder_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorFullSphere__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantSamples__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  bool arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  bool val2 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  size_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
   int ecode2 = 0 ;
-  FormFactorFullSphere *result = 0 ;
+  std::vector< ParameterSample,std::allocator< ParameterSample > > result;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorFullSphere" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantSamples" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
+  }
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorFullSphere" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  result = (FormFactorFullSphere *)new FormFactorFullSphere(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorFullSphere, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_FormFactorFullSphere__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  FormFactorFullSphere *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorFullSphere" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantSamples" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg1 = static_cast< double >(val1);
-  result = (FormFactorFullSphere *)new FormFactorFullSphere(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorFullSphere, SWIG_POINTER_NEW |  0 );
+  arg2 = static_cast< size_t >(val2);
+  result = ((IDistribution1D const *)arg1)->equidistantSamples(arg2);
+  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample,std::allocator< ParameterSample > >(static_cast< const std::vector< ParameterSample,std::allocator< ParameterSample > >& >(result))), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FormFactorFullSphere(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantSamples(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[5] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FormFactorFullSphere", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IDistribution1D_equidistantSamples", 0, 4, argv))) SWIG_fail;
   --argc;
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDistribution1D, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_FormFactorFullSphere__SWIG_1(self, argc, argv);
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_IDistribution1D_equidistantSamples__SWIG_2(self, argc, argv);
+      }
     }
   }
-  if (argc == 2) {
+  if (argc == 3) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDistribution1D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_IDistribution1D_equidistantSamples__SWIG_1(self, argc, argv);
+        }
+      }
     }
+  }
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDistribution1D, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_bool(argv[1], NULL);
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_new_FormFactorFullSphere__SWIG_0(self, argc, argv);
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_IDistribution1D_equidistantSamples__SWIG_0(self, argc, argv);
+          }
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FormFactorFullSphere'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IDistribution1D_equidistantSamples'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    FormFactorFullSphere::FormFactorFullSphere(double,bool)\n"
-    "    FormFactorFullSphere::FormFactorFullSphere(double)\n");
+    "    IDistribution1D::equidistantSamples(size_t,double,RealLimits const &) const\n"
+    "    IDistribution1D::equidistantSamples(size_t,double) const\n"
+    "    IDistribution1D::equidistantSamples(size_t) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSphere_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantSamplesInRange(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorFullSphere *result = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  std::vector< ParameterSample,std::allocator< ParameterSample > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDistribution1D_equidistantSamplesInRange", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_clone" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantSamplesInRange" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
-  result = (FormFactorFullSphere *)((FormFactorFullSphere const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantSamplesInRange" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDistribution1D_equidistantSamplesInRange" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IDistribution1D_equidistantSamplesInRange" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = ((IDistribution1D const *)arg1)->equidistantSamplesInRange(arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample,std::allocator< ParameterSample > >(static_cast< const std::vector< ParameterSample,std::allocator< ParameterSample > >& >(result))), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSphere_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  RealLimits *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorFullSphere_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_accept" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantPoints" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorFullSphere_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDistribution1D_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "IDistribution1D_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorFullSphere const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDistribution1D_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+  }
+  arg4 = reinterpret_cast< RealLimits * >(argp4);
+  result = ((IDistribution1D const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSphere_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_getRadius" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantPoints" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
-  result = (double)((FormFactorFullSphere const *)arg1)->getRadius();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDistribution1D_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = ((IDistribution1D const *)arg1)->equidistantPoints(arg2,arg3);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSphere_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantPoints(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_radialExtension" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IDistribution1D_equidistantPoints", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDistribution1D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_IDistribution1D_equidistantPoints__SWIG_1(self, argc, argv);
+        }
+      }
+    }
   }
-  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
-  result = (double)((FormFactorFullSphere const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDistribution1D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_IDistribution1D_equidistantPoints__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IDistribution1D_equidistantPoints'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IDistribution1D::equidistantPoints(size_t,double,RealLimits const &) const\n"
+    "    IDistribution1D::equidistantPoints(size_t,double) const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSphere_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_equidistantPointsInRange(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
-  IRotation *arg2 = 0 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorFullSphere_bottomZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDistribution1D_equidistantPointsInRange", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_bottomZ" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorFullSphere_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorFullSphere_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_equidistantPointsInRange" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((FormFactorFullSphere const *)arg1)->bottomZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDistribution1D_equidistantPointsInRange" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDistribution1D_equidistantPointsInRange" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IDistribution1D_equidistantPointsInRange" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = ((IDistribution1D const *)arg1)->equidistantPointsInRange(arg2,arg3,arg4);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSphere_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
-  IRotation *arg2 = 0 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorFullSphere_topZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_topZ" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorFullSphere_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorFullSphere_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_isDelta" "', argument " "1"" of type '" "IDistribution1D const *""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((FormFactorFullSphere const *)arg1)->topZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
+  result = (bool)((IDistribution1D const *)arg1)->isDelta();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSphere_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDistribution1D_setUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
-  cvector_t arg2 ;
+  IDistribution1D *arg1 = (IDistribution1D *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
   PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorFullSphere_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDistribution1D_setUnits", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDistribution1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_evaluate_for_q" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDistribution1D_setUnits" "', argument " "1"" of type '" "IDistribution1D *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
+  arg1 = reinterpret_cast< IDistribution1D * >(argp1);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorFullSphere_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorFullSphere_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDistribution1D_setUnits" "', argument " "2"" of type '" "std::string const &""'"); 
     }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDistribution1D_setUnits" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
   }
-  result = ((FormFactorFullSphere const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_FormFactorFullSphere(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorFullSphere" "', argument " "1"" of type '" "FormFactorFullSphere *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
-  delete arg1;
+  (arg1)->setUnits((std::string const &)*arg2);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorFullSphere_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IDistribution1D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorFullSphere, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_IDistribution1D, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FormFactorFullSphere_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
+SWIGINTERN PyObject *_wrap_new_DistributionGate__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+  PyObject *resultobj = 0;
+  DistributionGate *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (DistributionGate *)new DistributionGate();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionGate, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *_wrap_new_FormFactorFullSpheroid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+
+SWIGINTERN PyObject *_wrap_new_DistributionGate__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -73217,83 +74013,142 @@ SWIGINTERN PyObject *_wrap_new_FormFactorFullSpheroid(PyObject *SWIGUNUSEDPARM(s
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  FormFactorFullSpheroid *result = 0 ;
+  DistributionGate *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorFullSpheroid", 2, 2, swig_obj)) SWIG_fail;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorFullSpheroid" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionGate" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorFullSpheroid" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_DistributionGate" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (FormFactorFullSpheroid *)new FormFactorFullSpheroid(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorFullSpheroid, SWIG_POINTER_NEW |  0 );
+  result = (DistributionGate *)new DistributionGate(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionGate, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_DistributionGate(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DistributionGate", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_DistributionGate__SWIG_0(self, argc, argv);
+  }
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_DistributionGate__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DistributionGate'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    DistributionGate::DistributionGate()\n"
+    "    DistributionGate::DistributionGate(double,double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_DistributionGate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
+  DistributionGate *arg1 = (DistributionGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorFullSpheroid *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSpheroid_clone" "', argument " "1"" of type '" "FormFactorFullSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DistributionGate" "', argument " "1"" of type '" "DistributionGate *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
-  result = (FormFactorFullSpheroid *)((FormFactorFullSpheroid const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
+  arg1 = reinterpret_cast< DistributionGate * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGate_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  DistributionGate *arg1 = (DistributionGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  DistributionGate *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorFullSpheroid_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSpheroid_accept" "', argument " "1"" of type '" "FormFactorFullSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_clone" "', argument " "1"" of type '" "DistributionGate const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorFullSpheroid_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  arg1 = reinterpret_cast< DistributionGate * >(argp1);
+  result = (DistributionGate *)((DistributionGate const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionGate, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_DistributionGate_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  DistributionGate *arg1 = (DistributionGate *) 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "DistributionGate_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_probabilityDensity" "', argument " "1"" of type '" "DistributionGate const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorFullSpheroid const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< DistributionGate * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionGate_probabilityDensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((DistributionGate const *)arg1)->probabilityDensity(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGate_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
+  DistributionGate *arg1 = (DistributionGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -73301,12 +74156,12 @@ SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_getHeight(PyObject *SWIGUNUSED
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSpheroid_getHeight" "', argument " "1"" of type '" "FormFactorFullSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_getMean" "', argument " "1"" of type '" "DistributionGate const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
-  result = (double)((FormFactorFullSpheroid const *)arg1)->getHeight();
+  arg1 = reinterpret_cast< DistributionGate * >(argp1);
+  result = (double)((DistributionGate const *)arg1)->getMean();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -73314,9 +74169,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGate_getMin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
+  DistributionGate *arg1 = (DistributionGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -73324,12 +74179,12 @@ SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_getRadius(PyObject *SWIGUNUSED
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSpheroid_getRadius" "', argument " "1"" of type '" "FormFactorFullSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_getMin" "', argument " "1"" of type '" "DistributionGate const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
-  result = (double)((FormFactorFullSpheroid const *)arg1)->getRadius();
+  arg1 = reinterpret_cast< DistributionGate * >(argp1);
+  result = (double)((DistributionGate const *)arg1)->getMin();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -73337,9 +74192,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGate_getMax(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
+  DistributionGate *arg1 = (DistributionGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -73347,12 +74202,12 @@ SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_radialExtension(PyObject *SWIG
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSpheroid_radialExtension" "', argument " "1"" of type '" "FormFactorFullSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_getMax" "', argument " "1"" of type '" "DistributionGate const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
-  result = (double)((FormFactorFullSpheroid const *)arg1)->radialExtension();
+  arg1 = reinterpret_cast< DistributionGate * >(argp1);
+  result = (double)((DistributionGate const *)arg1)->getMax();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -73360,59 +74215,200 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGate_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
-  cvector_t arg2 ;
+  DistributionGate *arg1 = (DistributionGate *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  RealLimits *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorFullSpheroid_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSpheroid_evaluate_for_q" "', argument " "1"" of type '" "FormFactorFullSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_equidistantPoints" "', argument " "1"" of type '" "DistributionGate const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorFullSpheroid_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorFullSpheroid_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< DistributionGate * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionGate_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionGate_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "DistributionGate_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
   }
-  result = ((FormFactorFullSpheroid const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionGate_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+  }
+  arg4 = reinterpret_cast< RealLimits * >(argp4);
+  result = ((DistributionGate const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorFullSpheroid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGate_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
+  DistributionGate *arg1 = (DistributionGate *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  std::vector< double,std::allocator< double > > result;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_equidistantPoints" "', argument " "1"" of type '" "DistributionGate const *""'"); 
+  }
+  arg1 = reinterpret_cast< DistributionGate * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionGate_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionGate_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = ((DistributionGate const *)arg1)->equidistantPoints(arg2,arg3);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_DistributionGate_equidistantPoints(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "DistributionGate_equidistantPoints", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionGate, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_DistributionGate_equidistantPoints__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionGate, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_DistributionGate_equidistantPoints__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DistributionGate_equidistantPoints'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    DistributionGate::equidistantPoints(size_t,double,RealLimits const &) const\n"
+    "    DistributionGate::equidistantPoints(size_t,double) const\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_DistributionGate_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  DistributionGate *arg1 = (DistributionGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorFullSpheroid" "', argument " "1"" of type '" "FormFactorFullSpheroid *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_isDelta" "', argument " "1"" of type '" "DistributionGate const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< DistributionGate * >(argp1);
+  result = (bool)((DistributionGate const *)arg1)->isDelta();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_DistributionGate_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  DistributionGate *arg1 = (DistributionGate *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "DistributionGate_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGate_accept" "', argument " "1"" of type '" "DistributionGate const *""'"); 
+  }
+  arg1 = reinterpret_cast< DistributionGate * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionGate_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((DistributionGate const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -73420,39 +74416,31 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorFullSpheroid_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *DistributionGate_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorFullSpheroid, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_DistributionGate, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FormFactorFullSpheroid_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *DistributionGate_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FormFactorGauss__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_DistributionLorentz__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  FormFactorGauss *result = 0 ;
+  DistributionLorentz *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorGauss" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (FormFactorGauss *)new FormFactorGauss(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorGauss, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (DistributionLorentz *)new DistributionLorentz();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionLorentz, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FormFactorGauss__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_DistributionLorentz__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -73460,44 +74448,37 @@ SWIGINTERN PyObject *_wrap_new_FormFactorGauss__SWIG_1(PyObject *SWIGUNUSEDPARM(
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  FormFactorGauss *result = 0 ;
+  DistributionLorentz *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorGauss" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionLorentz" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorGauss" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_DistributionLorentz" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (FormFactorGauss *)new FormFactorGauss(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorGauss, SWIG_POINTER_NEW |  0 );
+  result = (DistributionLorentz *)new DistributionLorentz(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionLorentz, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FormFactorGauss(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_DistributionLorentz(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FormFactorGauss", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DistributionLorentz", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_new_FormFactorGauss__SWIG_0(self, argc, argv);
-    }
+  if (argc == 0) {
+    return _wrap_new_DistributionLorentz__SWIG_0(self, argc, argv);
   }
   if (argc == 2) {
     int _v;
@@ -73511,88 +74492,88 @@ SWIGINTERN PyObject *_wrap_new_FormFactorGauss(PyObject *self, PyObject *args) {
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_new_FormFactorGauss__SWIG_1(self, argc, argv);
+        return _wrap_new_DistributionLorentz__SWIG_1(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FormFactorGauss'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DistributionLorentz'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    FormFactorGauss::FormFactorGauss(double)\n"
-    "    FormFactorGauss::FormFactorGauss(double,double)\n");
+    "    DistributionLorentz::DistributionLorentz()\n"
+    "    DistributionLorentz::DistributionLorentz(double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_DistributionLorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
+  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorGauss *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorGauss_clone" "', argument " "1"" of type '" "FormFactorGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DistributionLorentz" "', argument " "1"" of type '" "DistributionLorentz *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
-  result = (FormFactorGauss *)((FormFactorGauss const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorGauss, 0 |  0 );
+  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLorentz_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  DistributionLorentz *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorGauss_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorGauss_accept" "', argument " "1"" of type '" "FormFactorGauss const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_clone" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorGauss const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
+  result = (DistributionLorentz *)((DistributionLorentz const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionLorentz, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorGauss_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLorentz_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
+  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "DistributionLorentz_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorGauss_getWidth" "', argument " "1"" of type '" "FormFactorGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_probabilityDensity" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
-  result = (double)((FormFactorGauss const *)arg1)->getWidth();
+  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionLorentz_probabilityDensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((DistributionLorentz const *)arg1)->probabilityDensity(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -73600,9 +74581,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorGauss_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLorentz_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
+  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -73610,12 +74591,12 @@ SWIGINTERN PyObject *_wrap_FormFactorGauss_getHeight(PyObject *SWIGUNUSEDPARM(se
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorGauss_getHeight" "', argument " "1"" of type '" "FormFactorGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_getMean" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
-  result = (double)((FormFactorGauss const *)arg1)->getHeight();
+  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
+  result = (double)((DistributionLorentz const *)arg1)->getMean();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -73623,9 +74604,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorGauss_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLorentz_getHWHM(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
+  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -73633,12 +74614,12 @@ SWIGINTERN PyObject *_wrap_FormFactorGauss_radialExtension(PyObject *SWIGUNUSEDP
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorGauss_radialExtension" "', argument " "1"" of type '" "FormFactorGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_getHWHM" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
-  result = (double)((FormFactorGauss const *)arg1)->radialExtension();
+  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
+  result = (double)((DistributionLorentz const *)arg1)->getHWHM();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -73646,163 +74627,181 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorGauss_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLorentz_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
-  cvector_t arg2 ;
+  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  RealLimits *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorGauss_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorGauss_evaluate_for_q" "', argument " "1"" of type '" "FormFactorGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorGauss_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorGauss_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
   }
-  result = ((FormFactorGauss const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_FormFactorGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorGauss" "', argument " "1"" of type '" "FormFactorGauss *""'"); 
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionLorentz_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg4 = reinterpret_cast< RealLimits * >(argp4);
+  result = ((DistributionLorentz const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorGauss, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorHemiEllipsoid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLorentz_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
+  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
+  size_t arg2 ;
   double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorHemiEllipsoid *result = 0 ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorHemiEllipsoid", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorHemiEllipsoid" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
+  }
+  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorHemiEllipsoid" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< double >(val2);
+  arg2 = static_cast< size_t >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorHemiEllipsoid" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionLorentz_equidistantPoints" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (FormFactorHemiEllipsoid *)new FormFactorHemiEllipsoid(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorHemiEllipsoid, SWIG_POINTER_NEW |  0 );
+  result = ((DistributionLorentz const *)arg1)->equidistantPoints(arg2,arg3);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorHemiEllipsoid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+SWIGINTERN PyObject *_wrap_DistributionLorentz_equidistantPoints(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorHemiEllipsoid" "', argument " "1"" of type '" "FormFactorHemiEllipsoid *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "DistributionLorentz_equidistantPoints", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionLorentz, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_DistributionLorentz_equidistantPoints__SWIG_1(self, argc, argv);
+        }
+      }
+    }
   }
-  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionLorentz, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_DistributionLorentz_equidistantPoints__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DistributionLorentz_equidistantPoints'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    DistributionLorentz::equidistantPoints(size_t,double,RealLimits const &) const\n"
+    "    DistributionLorentz::equidistantPoints(size_t,double) const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLorentz_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
+  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorHemiEllipsoid *result = 0 ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_clone" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_isDelta" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
-  result = (FormFactorHemiEllipsoid *)((FormFactorHemiEllipsoid const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
+  result = (bool)((DistributionLorentz const *)arg1)->isDelta();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLorentz_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
+  DistributionLorentz *arg1 = (DistributionLorentz *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -73810,18 +74809,18 @@ SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_accept(PyObject *SWIGUNUSEDPA
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorHemiEllipsoid_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "DistributionLorentz_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_accept" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLorentz_accept" "', argument " "1"" of type '" "DistributionLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
+  arg1 = reinterpret_cast< DistributionLorentz * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorHemiEllipsoid_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionLorentz_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorHemiEllipsoid const *)arg1)->accept(arg2);
+  ((DistributionLorentz const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -73829,68 +74828,164 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
+SWIGINTERN PyObject *DistributionLorentz_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_DistributionLorentz, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *DistributionLorentz_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_DistributionGaussian__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+  PyObject *resultobj = 0;
+  DistributionGaussian *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (DistributionGaussian *)new DistributionGaussian();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionGaussian, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_DistributionGaussian__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  DistributionGaussian *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionGaussian" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_DistributionGaussian" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (DistributionGaussian *)new DistributionGaussian(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionGaussian, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_DistributionGaussian(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DistributionGaussian", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_DistributionGaussian__SWIG_0(self, argc, argv);
+  }
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_DistributionGaussian__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DistributionGaussian'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    DistributionGaussian::DistributionGaussian()\n"
+    "    DistributionGaussian::DistributionGaussian(double,double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_DistributionGaussian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_getHeight" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DistributionGaussian" "', argument " "1"" of type '" "DistributionGaussian *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
-  result = (double)((FormFactorHemiEllipsoid const *)arg1)->getHeight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_getRadiusX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGaussian_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
+  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  DistributionGaussian *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_getRadiusX" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_clone" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
-  result = (double)((FormFactorHemiEllipsoid const *)arg1)->getRadiusX();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
+  result = (DistributionGaussian *)((DistributionGaussian const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionGaussian, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_getRadiusY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGaussian_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
+  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "DistributionGaussian_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_getRadiusY" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_probabilityDensity" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
-  result = (double)((FormFactorHemiEllipsoid const *)arg1)->getRadiusY();
+  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionGaussian_probabilityDensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((DistributionGaussian const *)arg1)->probabilityDensity(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -73898,9 +74993,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGaussian_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
+  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -73908,12 +75003,12 @@ SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_radialExtension(PyObject *SWI
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_radialExtension" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_getMean" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
-  result = (double)((FormFactorHemiEllipsoid const *)arg1)->radialExtension();
+  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
+  result = (double)((DistributionGaussian const *)arg1)->getMean();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -73921,168 +75016,223 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGaussian_getStdDev(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
-  cvector_t arg2 ;
+  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorHemiEllipsoid_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_evaluate_for_q" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorHemiEllipsoid_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorHemiEllipsoid_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_getStdDev" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
   }
-  result = ((FormFactorHemiEllipsoid const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
+  result = (double)((DistributionGaussian const *)arg1)->getStdDev();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorHemiEllipsoid_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorHemiEllipsoid, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorHemiEllipsoid_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorIcosahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGaussian_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorIcosahedron *result = 0 ;
+  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  RealLimits *arg4 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorIcosahedron" "', argument " "1"" of type '" "double""'");
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
+  }
+  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg1 = static_cast< double >(val1);
-  result = (FormFactorIcosahedron *)new FormFactorIcosahedron(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorIcosahedron, SWIG_POINTER_NEW |  0 );
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+  }
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionGaussian_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+  }
+  arg4 = reinterpret_cast< RealLimits * >(argp4);
+  result = ((DistributionGaussian const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorIcosahedron_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGaussian_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorIcosahedron *arg1 = (FormFactorIcosahedron *) 0 ;
+  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorIcosahedron *result = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorIcosahedron, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorIcosahedron_clone" "', argument " "1"" of type '" "FormFactorIcosahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorIcosahedron * >(argp1);
-  result = (FormFactorIcosahedron *)((FormFactorIcosahedron const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorIcosahedron, 0 |  0 );
+  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionGaussian_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = ((DistributionGaussian const *)arg1)->equidistantPoints(arg2,arg3);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorIcosahedron_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorIcosahedron *arg1 = (FormFactorIcosahedron *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+SWIGINTERN PyObject *_wrap_DistributionGaussian_equidistantPoints(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorIcosahedron_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorIcosahedron, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorIcosahedron_accept" "', argument " "1"" of type '" "FormFactorIcosahedron const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "DistributionGaussian_equidistantPoints", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionGaussian, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_DistributionGaussian_equidistantPoints__SWIG_1(self, argc, argv);
+        }
+      }
+    }
   }
-  arg1 = reinterpret_cast< FormFactorIcosahedron * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorIcosahedron_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionGaussian, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_DistributionGaussian_equidistantPoints__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorIcosahedron const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DistributionGaussian_equidistantPoints'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    DistributionGaussian::equidistantPoints(size_t,double,RealLimits const &) const\n"
+    "    DistributionGaussian::equidistantPoints(size_t,double) const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorIcosahedron_getEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGaussian_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorIcosahedron *arg1 = (FormFactorIcosahedron *) 0 ;
+  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorIcosahedron, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorIcosahedron_getEdge" "', argument " "1"" of type '" "FormFactorIcosahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_isDelta" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorIcosahedron * >(argp1);
-  result = (double)((FormFactorIcosahedron const *)arg1)->getEdge();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
+  result = (bool)((DistributionGaussian const *)arg1)->isDelta();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorIcosahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionGaussian_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorIcosahedron *arg1 = (FormFactorIcosahedron *) 0 ;
+  DistributionGaussian *arg1 = (DistributionGaussian *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorIcosahedron, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "DistributionGaussian_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorIcosahedron" "', argument " "1"" of type '" "FormFactorIcosahedron *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionGaussian_accept" "', argument " "1"" of type '" "DistributionGaussian const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorIcosahedron * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< DistributionGaussian * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionGaussian_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((DistributionGaussian const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -74090,110 +75240,189 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorIcosahedron_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *DistributionGaussian_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorIcosahedron, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_DistributionGaussian, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FormFactorIcosahedron_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *DistributionGaussian_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FormFactorLongBoxGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_DistributionLogNormal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  DistributionLogNormal *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionLogNormal" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (DistributionLogNormal *)new DistributionLogNormal(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionLogNormal, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_DistributionLogNormal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
-  double arg3 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorLongBoxGauss *result = 0 ;
+  DistributionLogNormal *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorLongBoxGauss", 3, 3, swig_obj)) SWIG_fail;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorLongBoxGauss" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionLogNormal" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorLongBoxGauss" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_DistributionLogNormal" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorLongBoxGauss" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FormFactorLongBoxGauss *)new FormFactorLongBoxGauss(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLongBoxGauss, SWIG_POINTER_NEW |  0 );
+  result = (DistributionLogNormal *)new DistributionLogNormal(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionLogNormal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_DistributionLogNormal(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DistributionLogNormal", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_new_DistributionLogNormal__SWIG_0(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_DistributionLogNormal__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DistributionLogNormal'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    DistributionLogNormal::DistributionLogNormal(double)\n"
+    "    DistributionLogNormal::DistributionLogNormal(double,double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_DistributionLogNormal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
+  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorLongBoxGauss *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_clone" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DistributionLogNormal" "', argument " "1"" of type '" "DistributionLogNormal *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
-  result = (FormFactorLongBoxGauss *)((FormFactorLongBoxGauss const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLogNormal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  DistributionLogNormal *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorLongBoxGauss_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_accept" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_clone" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorLongBoxGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  result = (DistributionLogNormal *)((DistributionLogNormal const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_DistributionLogNormal_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "DistributionLogNormal_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_probabilityDensity" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorLongBoxGauss const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionLogNormal_probabilityDensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((DistributionLogNormal const *)arg1)->probabilityDensity(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLogNormal_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
+  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -74201,12 +75430,12 @@ SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_getLength(PyObject *SWIGUNUSED
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_getLength" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_getMean" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
-  result = (double)((FormFactorLongBoxGauss const *)arg1)->getLength();
+  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  result = (double)((DistributionLogNormal const *)arg1)->getMean();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -74214,9 +75443,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLogNormal_getMedian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
+  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -74224,12 +75453,12 @@ SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_getHeight(PyObject *SWIGUNUSED
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_getHeight" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_getMedian" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
-  result = (double)((FormFactorLongBoxGauss const *)arg1)->getHeight();
+  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  result = (double)((DistributionLogNormal const *)arg1)->getMedian();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -74237,9 +75466,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLogNormal_getScalePar(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
+  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -74247,12 +75476,12 @@ SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_getWidth(PyObject *SWIGUNUSEDP
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_getWidth" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_getScalePar" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
-  result = (double)((FormFactorLongBoxGauss const *)arg1)->getWidth();
+  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  result = (double)((DistributionLogNormal const *)arg1)->getScalePar();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -74260,206 +75489,401 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLogNormal_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
+  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  RealLimits *arg4 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  std::vector< double,std::allocator< double > > result;
+  
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
+  }
+  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+  }
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+  }
+  arg4 = reinterpret_cast< RealLimits * >(argp4);
+  result = ((DistributionLogNormal const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_DistributionLogNormal_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  std::vector< double,std::allocator< double > > result;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
+  }
+  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionLogNormal_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = ((DistributionLogNormal const *)arg1)->equidistantPoints(arg2,arg3);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_DistributionLogNormal_equidistantPoints(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "DistributionLogNormal_equidistantPoints", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionLogNormal, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_DistributionLogNormal_equidistantPoints__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionLogNormal, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_DistributionLogNormal_equidistantPoints__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DistributionLogNormal_equidistantPoints'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    DistributionLogNormal::equidistantPoints(size_t,double,RealLimits const &) const\n"
+    "    DistributionLogNormal::equidistantPoints(size_t,double) const\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_DistributionLogNormal_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_radialExtension" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_isDelta" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
-  result = (double)((FormFactorLongBoxGauss const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  result = (bool)((DistributionLogNormal const *)arg1)->isDelta();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLogNormal_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
-  cvector_t arg2 ;
+  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorLongBoxGauss_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "DistributionLogNormal_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_evaluate_for_q" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_accept" "', argument " "1"" of type '" "DistributionLogNormal const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorLongBoxGauss_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorLongBoxGauss_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionLogNormal_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  result = ((FormFactorLongBoxGauss const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((DistributionLogNormal const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorLongBoxGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionLogNormal_setUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
+  DistributionLogNormal *arg1 = (DistributionLogNormal *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "DistributionLogNormal_setUnits", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorLongBoxGauss" "', argument " "1"" of type '" "FormFactorLongBoxGauss *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionLogNormal_setUnits" "', argument " "1"" of type '" "DistributionLogNormal *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< DistributionLogNormal * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionLogNormal_setUnits" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionLogNormal_setUnits" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  (arg1)->setUnits((std::string const &)*arg2);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorLongBoxGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *DistributionLogNormal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorLongBoxGauss, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_DistributionLogNormal, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FormFactorLongBoxGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *DistributionLogNormal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FormFactorLongBoxLorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_DistributionCosine__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+  PyObject *resultobj = 0;
+  DistributionCosine *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (DistributionCosine *)new DistributionCosine();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionCosine, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_DistributionCosine__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
-  double arg3 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorLongBoxLorentz *result = 0 ;
+  DistributionCosine *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorLongBoxLorentz", 3, 3, swig_obj)) SWIG_fail;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorLongBoxLorentz" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionCosine" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorLongBoxLorentz" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_DistributionCosine" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorLongBoxLorentz" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FormFactorLongBoxLorentz *)new FormFactorLongBoxLorentz(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLongBoxLorentz, SWIG_POINTER_NEW |  0 );
+  result = (DistributionCosine *)new DistributionCosine(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionCosine, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_DistributionCosine(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DistributionCosine", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_DistributionCosine__SWIG_0(self, argc, argv);
+  }
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_DistributionCosine__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DistributionCosine'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    DistributionCosine::DistributionCosine()\n"
+    "    DistributionCosine::DistributionCosine(double,double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_DistributionCosine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
+  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorLongBoxLorentz *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_clone" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DistributionCosine" "', argument " "1"" of type '" "DistributionCosine *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
-  result = (FormFactorLongBoxLorentz *)((FormFactorLongBoxLorentz const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionCosine_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  DistributionCosine *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorLongBoxLorentz_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_accept" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorLongBoxLorentz_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_clone" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorLongBoxLorentz const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
+  result = (DistributionCosine *)((DistributionCosine const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionCosine, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionCosine_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
+  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "DistributionCosine_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_getLength" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_probabilityDensity" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
-  result = (double)((FormFactorLongBoxLorentz const *)arg1)->getLength();
+  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionCosine_probabilityDensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((DistributionCosine const *)arg1)->probabilityDensity(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -74467,9 +75891,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionCosine_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
+  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -74477,12 +75901,12 @@ SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_getHeight(PyObject *SWIGUNUS
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_getHeight" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_getMean" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
-  result = (double)((FormFactorLongBoxLorentz const *)arg1)->getHeight();
+  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
+  result = (double)((DistributionCosine const *)arg1)->getMean();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -74490,9 +75914,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionCosine_getSigma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
+  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -74500,12 +75924,12 @@ SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_getWidth(PyObject *SWIGUNUSE
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_getWidth" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_getSigma" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
-  result = (double)((FormFactorLongBoxLorentz const *)arg1)->getWidth();
+  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
+  result = (double)((DistributionCosine const *)arg1)->getSigma();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -74513,82 +75937,200 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionCosine_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
+  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  RealLimits *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_radialExtension" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_equidistantPoints" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
-  result = (double)((FormFactorLongBoxLorentz const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionCosine_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionCosine_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "DistributionCosine_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+  }
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionCosine_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+  }
+  arg4 = reinterpret_cast< RealLimits * >(argp4);
+  result = ((DistributionCosine const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionCosine_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
-  cvector_t arg2 ;
+  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorLongBoxLorentz_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_evaluate_for_q" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorLongBoxLorentz_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorLongBoxLorentz_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_equidistantPoints" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
   }
-  result = ((FormFactorLongBoxLorentz const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionCosine_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionCosine_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = ((DistributionCosine const *)arg1)->equidistantPoints(arg2,arg3);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorLongBoxLorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionCosine_equidistantPoints(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "DistributionCosine_equidistantPoints", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionCosine, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_DistributionCosine_equidistantPoints__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionCosine, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_DistributionCosine_equidistantPoints__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DistributionCosine_equidistantPoints'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    DistributionCosine::equidistantPoints(size_t,double,RealLimits const &) const\n"
+    "    DistributionCosine::equidistantPoints(size_t,double) const\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_DistributionCosine_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
+  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorLongBoxLorentz" "', argument " "1"" of type '" "FormFactorLongBoxLorentz *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_isDelta" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
+  result = (bool)((DistributionCosine const *)arg1)->isDelta();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_DistributionCosine_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  DistributionCosine *arg1 = (DistributionCosine *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "DistributionCosine_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionCosine, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionCosine_accept" "', argument " "1"" of type '" "DistributionCosine const *""'"); 
+  }
+  arg1 = reinterpret_cast< DistributionCosine * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionCosine_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((DistributionCosine const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -74596,86 +76138,87 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorLongBoxLorentz_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *DistributionCosine_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorLongBoxLorentz, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_DistributionCosine, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *FormFactorLongBoxLorentz_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *DistributionCosine_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_FormFactorLorentz__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_DistributionTrapezoid__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  FormFactorLorentz *result = 0 ;
+  DistributionTrapezoid *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorLorentz" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (FormFactorLorentz *)new FormFactorLorentz(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLorentz, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (DistributionTrapezoid *)new DistributionTrapezoid();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionTrapezoid, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FormFactorLorentz__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_DistributionTrapezoid__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
+  double arg3 ;
+  double arg4 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  FormFactorLorentz *result = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  DistributionTrapezoid *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorLorentz" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_DistributionTrapezoid" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorLorentz" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_DistributionTrapezoid" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (FormFactorLorentz *)new FormFactorLorentz(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLorentz, SWIG_POINTER_NEW |  0 );
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_DistributionTrapezoid" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_DistributionTrapezoid" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (DistributionTrapezoid *)new DistributionTrapezoid(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionTrapezoid, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FormFactorLorentz(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_DistributionTrapezoid(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[5] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FormFactorLorentz", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DistributionTrapezoid", 0, 4, argv))) SWIG_fail;
   --argc;
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_new_FormFactorLorentz__SWIG_0(self, argc, argv);
-    }
+  if (argc == 0) {
+    return _wrap_new_DistributionTrapezoid__SWIG_0(self, argc, argv);
   }
-  if (argc == 2) {
+  if (argc == 4) {
     int _v;
     {
       int res = SWIG_AsVal_double(argv[0], NULL);
@@ -74687,88 +76230,100 @@ SWIGINTERN PyObject *_wrap_new_FormFactorLorentz(PyObject *self, PyObject *args)
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_new_FormFactorLorentz__SWIG_1(self, argc, argv);
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_DistributionTrapezoid__SWIG_1(self, argc, argv);
+          }
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FormFactorLorentz'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DistributionTrapezoid'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    FormFactorLorentz::FormFactorLorentz(double)\n"
-    "    FormFactorLorentz::FormFactorLorentz(double,double)\n");
+    "    DistributionTrapezoid::DistributionTrapezoid()\n"
+    "    DistributionTrapezoid::DistributionTrapezoid(double,double,double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLorentz_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_DistributionTrapezoid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
+  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorLorentz *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLorentz_clone" "', argument " "1"" of type '" "FormFactorLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DistributionTrapezoid" "', argument " "1"" of type '" "DistributionTrapezoid *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
-  result = (FormFactorLorentz *)((FormFactorLorentz const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
+  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLorentz_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionTrapezoid_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  DistributionTrapezoid *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorLorentz_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLorentz_accept" "', argument " "1"" of type '" "FormFactorLorentz const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorLorentz_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_clone" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorLorentz const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
+  result = (DistributionTrapezoid *)((DistributionTrapezoid const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLorentz_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionTrapezoid_probabilityDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
+  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "DistributionTrapezoid_probabilityDensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLorentz_getWidth" "', argument " "1"" of type '" "FormFactorLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_probabilityDensity" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
-  result = (double)((FormFactorLorentz const *)arg1)->getWidth();
+  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionTrapezoid_probabilityDensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((DistributionTrapezoid const *)arg1)->probabilityDensity(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -74776,9 +76331,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLorentz_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionTrapezoid_getMean(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
+  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -74786,12 +76341,12 @@ SWIGINTERN PyObject *_wrap_FormFactorLorentz_getHeight(PyObject *SWIGUNUSEDPARM(
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLorentz_getHeight" "', argument " "1"" of type '" "FormFactorLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_getMean" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
-  result = (double)((FormFactorLorentz const *)arg1)->getHeight();
+  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
+  result = (double)((DistributionTrapezoid const *)arg1)->getMean();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -74799,9 +76354,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLorentz_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionTrapezoid_getLeftWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
+  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -74809,12 +76364,12 @@ SWIGINTERN PyObject *_wrap_FormFactorLorentz_radialExtension(PyObject *SWIGUNUSE
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLorentz_radialExtension" "', argument " "1"" of type '" "FormFactorLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_getLeftWidth" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
-  result = (double)((FormFactorLorentz const *)arg1)->radialExtension();
+  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
+  result = (double)((DistributionTrapezoid const *)arg1)->getLeftWidth();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -74822,141 +76377,227 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorLorentz_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionTrapezoid_getMiddleWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
-  cvector_t arg2 ;
+  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorLorentz_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLorentz_evaluate_for_q" "', argument " "1"" of type '" "FormFactorLorentz const *""'"); 
-  }
-  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorLorentz_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorLorentz_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_getMiddleWidth" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
   }
-  result = ((FormFactorLorentz const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
+  result = (double)((DistributionTrapezoid const *)arg1)->getMiddleWidth();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorLorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionTrapezoid_getRightWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
+  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorLorentz" "', argument " "1"" of type '" "FormFactorLorentz *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_getRightWidth" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
+  result = (double)((DistributionTrapezoid const *)arg1)->getRightWidth();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorLorentz_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorLorentz, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_DistributionTrapezoid_equidistantPoints__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  RealLimits *arg4 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  std::vector< double,std::allocator< double > > result;
+  
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
+  }
+  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+  }
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "4"" of type '" "RealLimits const &""'"); 
+  }
+  arg4 = reinterpret_cast< RealLimits * >(argp4);
+  result = ((DistributionTrapezoid const *)arg1)->equidistantPoints(arg2,arg3,(RealLimits const &)*arg4);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *FormFactorLorentz_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
 
-SWIGINTERN PyObject *_wrap_new_FormFactorOrnsteinZernike(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionTrapezoid_equidistantPoints__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
+  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
+  size_t arg2 ;
   double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorOrnsteinZernike *result = 0 ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorOrnsteinZernike", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorOrnsteinZernike" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
+  }
+  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorOrnsteinZernike" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< double >(val2);
+  arg2 = static_cast< size_t >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorOrnsteinZernike" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DistributionTrapezoid_equidistantPoints" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (FormFactorOrnsteinZernike *)new FormFactorOrnsteinZernike(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorOrnsteinZernike, SWIG_POINTER_NEW |  0 );
+  result = ((DistributionTrapezoid const *)arg1)->equidistantPoints(arg2,arg3);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorOrnsteinZernike_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionTrapezoid_equidistantPoints(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "DistributionTrapezoid_equidistantPoints", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionTrapezoid, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_DistributionTrapezoid_equidistantPoints__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DistributionTrapezoid, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_DistributionTrapezoid_equidistantPoints__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DistributionTrapezoid_equidistantPoints'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    DistributionTrapezoid::equidistantPoints(size_t,double,RealLimits const &) const\n"
+    "    DistributionTrapezoid::equidistantPoints(size_t,double) const\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_DistributionTrapezoid_isDelta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorOrnsteinZernike *arg1 = (FormFactorOrnsteinZernike *) 0 ;
+  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  FormFactorOrnsteinZernike *result = 0 ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorOrnsteinZernike, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorOrnsteinZernike_clone" "', argument " "1"" of type '" "FormFactorOrnsteinZernike const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_isDelta" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorOrnsteinZernike * >(argp1);
-  result = (FormFactorOrnsteinZernike *)((FormFactorOrnsteinZernike const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorOrnsteinZernike, 0 |  0 );
+  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
+  result = (bool)((DistributionTrapezoid const *)arg1)->isDelta();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorOrnsteinZernike_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DistributionTrapezoid_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorOrnsteinZernike *arg1 = (FormFactorOrnsteinZernike *) 0 ;
+  DistributionTrapezoid *arg1 = (DistributionTrapezoid *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -74964,18 +76605,18 @@ SWIGINTERN PyObject *_wrap_FormFactorOrnsteinZernike_accept(PyObject *SWIGUNUSED
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorOrnsteinZernike_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorOrnsteinZernike, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "DistributionTrapezoid_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorOrnsteinZernike_accept" "', argument " "1"" of type '" "FormFactorOrnsteinZernike const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DistributionTrapezoid_accept" "', argument " "1"" of type '" "DistributionTrapezoid const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorOrnsteinZernike * >(argp1);
+  arg1 = reinterpret_cast< DistributionTrapezoid * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorOrnsteinZernike_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DistributionTrapezoid_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorOrnsteinZernike const *)arg1)->accept(arg2);
+  ((DistributionTrapezoid const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -74983,82 +76624,101 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorOrnsteinZernike_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *DistributionTrapezoid_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_DistributionTrapezoid, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *DistributionTrapezoid_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_INodeVisitor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  FormFactorOrnsteinZernike *arg1 = (FormFactorOrnsteinZernike *) 0 ;
+  INodeVisitor *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_INodeVisitor", 0, 0, 0)) SWIG_fail;
+  result = (INodeVisitor *)new INodeVisitor();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_INodeVisitor, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_INodeVisitor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorOrnsteinZernike, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorOrnsteinZernike_radialExtension" "', argument " "1"" of type '" "FormFactorOrnsteinZernike const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_INodeVisitor" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorOrnsteinZernike * >(argp1);
-  result = (double)((FormFactorOrnsteinZernike const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorOrnsteinZernike_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorOrnsteinZernike *arg1 = (FormFactorOrnsteinZernike *) 0 ;
-  cvector_t arg2 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  BasicLattice *arg2 = (BasicLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorOrnsteinZernike_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorOrnsteinZernike, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorOrnsteinZernike_evaluate_for_q" "', argument " "1"" of type '" "FormFactorOrnsteinZernike const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorOrnsteinZernike * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorOrnsteinZernike_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorOrnsteinZernike_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_BasicLattice, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "BasicLattice const *""'"); 
   }
-  result = ((FormFactorOrnsteinZernike const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< BasicLattice * >(argp2);
+  (arg1)->visit((BasicLattice const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorOrnsteinZernike(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorOrnsteinZernike *arg1 = (FormFactorOrnsteinZernike *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  Beam *arg2 = (Beam *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorOrnsteinZernike, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorOrnsteinZernike" "', argument " "1"" of type '" "FormFactorOrnsteinZernike *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorOrnsteinZernike * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_Beam, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "Beam const *""'"); 
+  }
+  arg2 = reinterpret_cast< Beam * >(argp2);
+  (arg1)->visit((Beam const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75066,92 +76726,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorOrnsteinZernike_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorOrnsteinZernike, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorOrnsteinZernike_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorPrism3(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  FormFactorPrism3 *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorPrism3", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorPrism3" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorPrism3" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (FormFactorPrism3 *)new FormFactorPrism3(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorPrism3, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FormFactorPrism3_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPrism3 *arg1 = (FormFactorPrism3 *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  ConstantBackground *arg2 = (ConstantBackground *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorPrism3 *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism3, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPrism3_clone" "', argument " "1"" of type '" "FormFactorPrism3 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPrism3 * >(argp1);
-  result = (FormFactorPrism3 *)((FormFactorPrism3 const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorPrism3, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ConstantBackground, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ConstantBackground const *""'"); 
+  }
+  arg2 = reinterpret_cast< ConstantBackground * >(argp2);
+  (arg1)->visit((ConstantBackground const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPrism3_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPrism3 *arg1 = (FormFactorPrism3 *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  ConvolutionDetectorResolution *arg2 = (ConvolutionDetectorResolution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorPrism3_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism3, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPrism3_accept" "', argument " "1"" of type '" "FormFactorPrism3 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPrism3 * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ConvolutionDetectorResolution, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPrism3_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ConvolutionDetectorResolution const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorPrism3 const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< ConvolutionDetectorResolution * >(argp2);
+  (arg1)->visit((ConvolutionDetectorResolution const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75159,44 +76782,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPrism3_getBaseEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPrism3 *arg1 = (FormFactorPrism3 *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  Crystal *arg2 = (Crystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism3, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPrism3_getBaseEdge" "', argument " "1"" of type '" "FormFactorPrism3 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPrism3 * >(argp1);
-  result = (double)((FormFactorPrism3 const *)arg1)->getBaseEdge();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_Crystal, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "Crystal const *""'"); 
+  }
+  arg2 = reinterpret_cast< Crystal * >(argp2);
+  (arg1)->visit((Crystal const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorPrism3(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_5(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPrism3 *arg1 = (FormFactorPrism3 *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  DistributionCosine *arg2 = (DistributionCosine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism3, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorPrism3" "', argument " "1"" of type '" "FormFactorPrism3 *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPrism3 * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_DistributionCosine, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "DistributionCosine const *""'"); 
+  }
+  arg2 = reinterpret_cast< DistributionCosine * >(argp2);
+  (arg1)->visit((DistributionCosine const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75204,92 +76838,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorPrism3_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorPrism3, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorPrism3_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorPrism6(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_6(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  FormFactorPrism6 *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  DistributionGate *arg2 = (DistributionGate *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorPrism6", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorPrism6" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorPrism6" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (FormFactorPrism6 *)new FormFactorPrism6(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorPrism6, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_DistributionGate, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "DistributionGate const *""'"); 
+  }
+  arg2 = reinterpret_cast< DistributionGate * >(argp2);
+  (arg1)->visit((DistributionGate const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPrism6_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_7(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPrism6 *arg1 = (FormFactorPrism6 *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  DistributionGaussian *arg2 = (DistributionGaussian *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorPrism6 *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism6, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPrism6_clone" "', argument " "1"" of type '" "FormFactorPrism6 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPrism6 * >(argp1);
-  result = (FormFactorPrism6 *)((FormFactorPrism6 const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorPrism6, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_DistributionGaussian, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "DistributionGaussian const *""'"); 
+  }
+  arg2 = reinterpret_cast< DistributionGaussian * >(argp2);
+  (arg1)->visit((DistributionGaussian const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPrism6_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_8(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPrism6 *arg1 = (FormFactorPrism6 *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  DistributionLogNormal *arg2 = (DistributionLogNormal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorPrism6_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism6, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPrism6_accept" "', argument " "1"" of type '" "FormFactorPrism6 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPrism6 * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_DistributionLogNormal, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPrism6_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "DistributionLogNormal const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorPrism6 const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< DistributionLogNormal * >(argp2);
+  (arg1)->visit((DistributionLogNormal const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75297,44 +76922,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPrism6_getBaseEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_9(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPrism6 *arg1 = (FormFactorPrism6 *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  DistributionLorentz *arg2 = (DistributionLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism6, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPrism6_getBaseEdge" "', argument " "1"" of type '" "FormFactorPrism6 const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPrism6 * >(argp1);
-  result = (double)((FormFactorPrism6 const *)arg1)->getBaseEdge();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_DistributionLorentz, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "DistributionLorentz const *""'"); 
+  }
+  arg2 = reinterpret_cast< DistributionLorentz * >(argp2);
+  (arg1)->visit((DistributionLorentz const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorPrism6(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_10(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPrism6 *arg1 = (FormFactorPrism6 *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  DistributionTrapezoid *arg2 = (DistributionTrapezoid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism6, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorPrism6" "', argument " "1"" of type '" "FormFactorPrism6 *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPrism6 * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_DistributionTrapezoid, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "DistributionTrapezoid const *""'"); 
+  }
+  arg2 = reinterpret_cast< DistributionTrapezoid * >(argp2);
+  (arg1)->visit((DistributionTrapezoid const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75342,100 +76978,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorPrism6_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorPrism6, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorPrism6_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorPyramid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorPyramid *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorPyramid", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorPyramid" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorPyramid" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorPyramid" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FormFactorPyramid *)new FormFactorPyramid(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorPyramid, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FormFactorPyramid_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_11(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPyramid *arg1 = (FormFactorPyramid *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FootprintGauss *arg2 = (FootprintGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorPyramid *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPyramid_clone" "', argument " "1"" of type '" "FormFactorPyramid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPyramid * >(argp1);
-  result = (FormFactorPyramid *)((FormFactorPyramid const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FootprintGauss, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FootprintGauss const *""'"); 
+  }
+  arg2 = reinterpret_cast< FootprintGauss * >(argp2);
+  (arg1)->visit((FootprintGauss const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPyramid_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_12(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPyramid *arg1 = (FormFactorPyramid *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FootprintSquare *arg2 = (FootprintSquare *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorPyramid_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPyramid_accept" "', argument " "1"" of type '" "FormFactorPyramid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPyramid * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FootprintSquare, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPyramid_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FootprintSquare const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorPyramid const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< FootprintSquare * >(argp2);
+  (arg1)->visit((FootprintSquare const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75443,90 +77034,111 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPyramid_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_13(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPyramid *arg1 = (FormFactorPyramid *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorAnisoPyramid *arg2 = (FormFactorAnisoPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPyramid_getHeight" "', argument " "1"" of type '" "FormFactorPyramid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPyramid * >(argp1);
-  result = (double)((FormFactorPyramid const *)arg1)->getHeight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorAnisoPyramid const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorAnisoPyramid * >(argp2);
+  (arg1)->visit((FormFactorAnisoPyramid const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPyramid_getBaseEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_14(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPyramid *arg1 = (FormFactorPyramid *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorBarGauss *arg2 = (FormFactorBarGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPyramid_getBaseEdge" "', argument " "1"" of type '" "FormFactorPyramid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPyramid * >(argp1);
-  result = (double)((FormFactorPyramid const *)arg1)->getBaseEdge();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorBarGauss, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorBarGauss const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorBarGauss * >(argp2);
+  (arg1)->visit((FormFactorBarGauss const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorPyramid_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_15(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPyramid *arg1 = (FormFactorPyramid *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorBarLorentz *arg2 = (FormFactorBarLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPyramid_getAlpha" "', argument " "1"" of type '" "FormFactorPyramid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPyramid * >(argp1);
-  result = (double)((FormFactorPyramid const *)arg1)->getAlpha();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorBarLorentz, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorBarLorentz const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorBarLorentz * >(argp2);
+  (arg1)->visit((FormFactorBarLorentz const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorPyramid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_16(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorPyramid *arg1 = (FormFactorPyramid *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorBox *arg2 = (FormFactorBox *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPyramid, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorPyramid" "', argument " "1"" of type '" "FormFactorPyramid *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorPyramid * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorBox, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorBox const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorBox * >(argp2);
+  (arg1)->visit((FormFactorBox const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75534,100 +77146,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorPyramid_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorPyramid, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorPyramid_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorRipple1Box(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_17(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorRipple1Box *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorCantellatedCube *arg2 = (FormFactorCantellatedCube *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorRipple1Box", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorRipple1Box" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorRipple1Box" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorRipple1Box" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FormFactorRipple1Box *)new FormFactorRipple1Box(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple1Box, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCantellatedCube, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCantellatedCube const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorCantellatedCube * >(argp2);
+  (arg1)->visit((FormFactorCantellatedCube const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorRipple1Box_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_18(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple1Box *arg1 = (FormFactorRipple1Box *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorCone *arg2 = (FormFactorCone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorRipple1Box *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Box, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple1Box_clone" "', argument " "1"" of type '" "FormFactorRipple1Box const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple1Box * >(argp1);
-  result = (FormFactorRipple1Box *)((FormFactorRipple1Box const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple1Box, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCone, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCone const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorCone * >(argp2);
+  (arg1)->visit((FormFactorCone const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorRipple1Box_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_19(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple1Box *arg1 = (FormFactorRipple1Box *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorCone6 *arg2 = (FormFactorCone6 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorRipple1Box_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Box, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple1Box_accept" "', argument " "1"" of type '" "FormFactorRipple1Box const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple1Box * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCone6, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorRipple1Box_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCone6 const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorRipple1Box const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< FormFactorCone6 * >(argp2);
+  (arg1)->visit((FormFactorCone6 const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75635,21 +77230,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorRipple1Box(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_20(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple1Box *arg1 = (FormFactorRipple1Box *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorCoreShell *arg2 = (FormFactorCoreShell *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Box, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorRipple1Box" "', argument " "1"" of type '" "FormFactorRipple1Box *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple1Box * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCoreShell, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCoreShell const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorCoreShell * >(argp2);
+  (arg1)->visit((FormFactorCoreShell const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75657,100 +77258,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorRipple1Box_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorRipple1Box, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorRipple1Box_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorRipple1Gauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_21(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorRipple1Gauss *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorCrystal *arg2 = (FormFactorCrystal *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorRipple1Gauss", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorRipple1Gauss" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorRipple1Gauss" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorRipple1Gauss" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FormFactorRipple1Gauss *)new FormFactorRipple1Gauss(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple1Gauss, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCrystal, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCrystal const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorCrystal * >(argp2);
+  (arg1)->visit((FormFactorCrystal const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorRipple1Gauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_22(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple1Gauss *arg1 = (FormFactorRipple1Gauss *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorCuboctahedron *arg2 = (FormFactorCuboctahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorRipple1Gauss *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Gauss, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple1Gauss_clone" "', argument " "1"" of type '" "FormFactorRipple1Gauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple1Gauss * >(argp1);
-  result = (FormFactorRipple1Gauss *)((FormFactorRipple1Gauss const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple1Gauss, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCuboctahedron const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorCuboctahedron * >(argp2);
+  (arg1)->visit((FormFactorCuboctahedron const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorRipple1Gauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_23(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple1Gauss *arg1 = (FormFactorRipple1Gauss *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorCylinder *arg2 = (FormFactorCylinder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorRipple1Gauss_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Gauss, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple1Gauss_accept" "', argument " "1"" of type '" "FormFactorRipple1Gauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple1Gauss * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorRipple1Gauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorCylinder const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorRipple1Gauss const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< FormFactorCylinder * >(argp2);
+  (arg1)->visit((FormFactorCylinder const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75758,21 +77342,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorRipple1Gauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_24(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple1Gauss *arg1 = (FormFactorRipple1Gauss *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorDWBA *arg2 = (FormFactorDWBA *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Gauss, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorRipple1Gauss" "', argument " "1"" of type '" "FormFactorRipple1Gauss *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple1Gauss * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDWBA, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDWBA const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorDWBA * >(argp2);
+  (arg1)->visit((FormFactorDWBA const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75780,100 +77370,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorRipple1Gauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorRipple1Gauss, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorRipple1Gauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorRipple1Lorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_25(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorRipple1Lorentz *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorDWBAPol *arg2 = (FormFactorDWBAPol *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorRipple1Lorentz", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorRipple1Lorentz" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorRipple1Lorentz" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorRipple1Lorentz" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FormFactorRipple1Lorentz *)new FormFactorRipple1Lorentz(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple1Lorentz, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDWBAPol, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDWBAPol const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorDWBAPol * >(argp2);
+  (arg1)->visit((FormFactorDWBAPol const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorRipple1Lorentz_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_26(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple1Lorentz *arg1 = (FormFactorRipple1Lorentz *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorDecoratorMaterial *arg2 = (FormFactorDecoratorMaterial *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorRipple1Lorentz *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Lorentz, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple1Lorentz_clone" "', argument " "1"" of type '" "FormFactorRipple1Lorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple1Lorentz * >(argp1);
-  result = (FormFactorRipple1Lorentz *)((FormFactorRipple1Lorentz const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple1Lorentz, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDecoratorMaterial, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDecoratorMaterial const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorDecoratorMaterial * >(argp2);
+  (arg1)->visit((FormFactorDecoratorMaterial const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorRipple1Lorentz_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_27(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple1Lorentz *arg1 = (FormFactorRipple1Lorentz *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorDecoratorPositionFactor *arg2 = (FormFactorDecoratorPositionFactor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorRipple1Lorentz_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Lorentz, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple1Lorentz_accept" "', argument " "1"" of type '" "FormFactorRipple1Lorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple1Lorentz * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDecoratorPositionFactor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorRipple1Lorentz_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDecoratorPositionFactor const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorRipple1Lorentz const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< FormFactorDecoratorPositionFactor * >(argp2);
+  (arg1)->visit((FormFactorDecoratorPositionFactor const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75881,21 +77454,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorRipple1Lorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_28(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple1Lorentz *arg1 = (FormFactorRipple1Lorentz *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorDecoratorRotation *arg2 = (FormFactorDecoratorRotation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Lorentz, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorRipple1Lorentz" "', argument " "1"" of type '" "FormFactorRipple1Lorentz *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple1Lorentz * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDecoratorRotation, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDecoratorRotation const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorDecoratorRotation * >(argp2);
+  (arg1)->visit((FormFactorDecoratorRotation const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -75903,108 +77482,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorRipple1Lorentz_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorRipple1Lorentz, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorRipple1Lorentz_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorRipple2Box(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_29(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  FormFactorRipple2Box *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorDodecahedron *arg2 = (FormFactorDodecahedron *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorRipple2Box", 4, 4, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorRipple2Box" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorRipple2Box" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorRipple2Box" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorRipple2Box" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (FormFactorRipple2Box *)new FormFactorRipple2Box(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple2Box, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDodecahedron, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDodecahedron const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorDodecahedron * >(argp2);
+  (arg1)->visit((FormFactorDodecahedron const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorRipple2Box_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_30(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple2Box *arg1 = (FormFactorRipple2Box *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorDot *arg2 = (FormFactorDot *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorRipple2Box *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Box, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple2Box_clone" "', argument " "1"" of type '" "FormFactorRipple2Box const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple2Box * >(argp1);
-  result = (FormFactorRipple2Box *)((FormFactorRipple2Box const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple2Box, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorDot, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorDot const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorDot * >(argp2);
+  (arg1)->visit((FormFactorDot const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorRipple2Box_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_31(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple2Box *arg1 = (FormFactorRipple2Box *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorEllipsoidalCylinder *arg2 = (FormFactorEllipsoidalCylinder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorRipple2Box_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Box, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple2Box_accept" "', argument " "1"" of type '" "FormFactorRipple2Box const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple2Box * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorRipple2Box_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorRipple2Box const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp2);
+  (arg1)->visit((FormFactorEllipsoidalCylinder const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76012,21 +77566,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorRipple2Box(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_32(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple2Box *arg1 = (FormFactorRipple2Box *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorFullSphere *arg2 = (FormFactorFullSphere *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Box, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorRipple2Box" "', argument " "1"" of type '" "FormFactorRipple2Box *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple2Box * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorFullSphere const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorFullSphere * >(argp2);
+  (arg1)->visit((FormFactorFullSphere const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76034,108 +77594,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorRipple2Box_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorRipple2Box, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorRipple2Box_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorRipple2Gauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_33(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  FormFactorRipple2Gauss *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorFullSpheroid *arg2 = (FormFactorFullSpheroid *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorRipple2Gauss", 4, 4, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorRipple2Gauss" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorRipple2Gauss" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorRipple2Gauss" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorRipple2Gauss" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (FormFactorRipple2Gauss *)new FormFactorRipple2Gauss(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple2Gauss, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorFullSpheroid const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorFullSpheroid * >(argp2);
+  (arg1)->visit((FormFactorFullSpheroid const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorRipple2Gauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_34(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple2Gauss *arg1 = (FormFactorRipple2Gauss *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorGauss *arg2 = (FormFactorGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorRipple2Gauss *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Gauss, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple2Gauss_clone" "', argument " "1"" of type '" "FormFactorRipple2Gauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple2Gauss * >(argp1);
-  result = (FormFactorRipple2Gauss *)((FormFactorRipple2Gauss const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple2Gauss, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorGauss const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorGauss * >(argp2);
+  (arg1)->visit((FormFactorGauss const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorRipple2Gauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_35(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple2Gauss *arg1 = (FormFactorRipple2Gauss *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorHemiEllipsoid *arg2 = (FormFactorHemiEllipsoid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorRipple2Gauss_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Gauss, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple2Gauss_accept" "', argument " "1"" of type '" "FormFactorRipple2Gauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple2Gauss * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorRipple2Gauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorHemiEllipsoid const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorRipple2Gauss const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp2);
+  (arg1)->visit((FormFactorHemiEllipsoid const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76143,21 +77678,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorRipple2Gauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_36(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple2Gauss *arg1 = (FormFactorRipple2Gauss *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorIcosahedron *arg2 = (FormFactorIcosahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Gauss, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorRipple2Gauss" "', argument " "1"" of type '" "FormFactorRipple2Gauss *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple2Gauss * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorIcosahedron, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorIcosahedron const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorIcosahedron * >(argp2);
+  (arg1)->visit((FormFactorIcosahedron const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76165,108 +77706,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorRipple2Gauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorRipple2Gauss, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorRipple2Gauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorRipple2Lorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_37(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  FormFactorRipple2Lorentz *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorLongBoxGauss *arg2 = (FormFactorLongBoxGauss *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorRipple2Lorentz", 4, 4, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorRipple2Lorentz" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorRipple2Lorentz" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorRipple2Lorentz" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorRipple2Lorentz" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (FormFactorRipple2Lorentz *)new FormFactorRipple2Lorentz(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple2Lorentz, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorLongBoxGauss const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorLongBoxGauss * >(argp2);
+  (arg1)->visit((FormFactorLongBoxGauss const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorRipple2Lorentz_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_38(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple2Lorentz *arg1 = (FormFactorRipple2Lorentz *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorLongBoxLorentz *arg2 = (FormFactorLongBoxLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorRipple2Lorentz *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Lorentz, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple2Lorentz_clone" "', argument " "1"" of type '" "FormFactorRipple2Lorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple2Lorentz * >(argp1);
-  result = (FormFactorRipple2Lorentz *)((FormFactorRipple2Lorentz const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple2Lorentz, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorLongBoxLorentz const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp2);
+  (arg1)->visit((FormFactorLongBoxLorentz const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorRipple2Lorentz_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_39(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple2Lorentz *arg1 = (FormFactorRipple2Lorentz *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorLorentz *arg2 = (FormFactorLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorRipple2Lorentz_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Lorentz, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple2Lorentz_accept" "', argument " "1"" of type '" "FormFactorRipple2Lorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple2Lorentz * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorRipple2Lorentz_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorLorentz const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorRipple2Lorentz const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< FormFactorLorentz * >(argp2);
+  (arg1)->visit((FormFactorLorentz const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76274,21 +77790,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorRipple2Lorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_40(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorRipple2Lorentz *arg1 = (FormFactorRipple2Lorentz *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorPrism3 *arg2 = (FormFactorPrism3 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Lorentz, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorRipple2Lorentz" "', argument " "1"" of type '" "FormFactorRipple2Lorentz *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorRipple2Lorentz * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorPrism3, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorPrism3 const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorPrism3 * >(argp2);
+  (arg1)->visit((FormFactorPrism3 const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76296,92 +77818,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorRipple2Lorentz_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorRipple2Lorentz, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorRipple2Lorentz_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorSphereGaussianRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_41(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  FormFactorSphereGaussianRadius *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorPrism6 *arg2 = (FormFactorPrism6 *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorSphereGaussianRadius", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorSphereGaussianRadius" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorSphereGaussianRadius" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (FormFactorSphereGaussianRadius *)new FormFactorSphereGaussianRadius(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorSphereGaussianRadius, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorPrism6, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorPrism6 const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorPrism6 * >(argp2);
+  (arg1)->visit((FormFactorPrism6 const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorSphereGaussianRadius_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_42(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereGaussianRadius *arg1 = (FormFactorSphereGaussianRadius *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorPyramid *arg2 = (FormFactorPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorSphereGaussianRadius *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereGaussianRadius, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereGaussianRadius_clone" "', argument " "1"" of type '" "FormFactorSphereGaussianRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereGaussianRadius * >(argp1);
-  result = (FormFactorSphereGaussianRadius *)((FormFactorSphereGaussianRadius const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorSphereGaussianRadius, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorPyramid const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorPyramid * >(argp2);
+  (arg1)->visit((FormFactorPyramid const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorSphereGaussianRadius_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_43(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereGaussianRadius *arg1 = (FormFactorSphereGaussianRadius *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorRipple1Box *arg2 = (FormFactorRipple1Box *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorSphereGaussianRadius_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereGaussianRadius, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereGaussianRadius_accept" "', argument " "1"" of type '" "FormFactorSphereGaussianRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereGaussianRadius * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorRipple1Box, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorSphereGaussianRadius_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorRipple1Box const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorSphereGaussianRadius const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< FormFactorRipple1Box * >(argp2);
+  (arg1)->visit((FormFactorRipple1Box const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76389,82 +77902,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorSphereGaussianRadius_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_44(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereGaussianRadius *arg1 = (FormFactorSphereGaussianRadius *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorRipple1Gauss *arg2 = (FormFactorRipple1Gauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereGaussianRadius, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereGaussianRadius_radialExtension" "', argument " "1"" of type '" "FormFactorSphereGaussianRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereGaussianRadius * >(argp1);
-  result = (double)((FormFactorSphereGaussianRadius const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorRipple1Gauss, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorRipple1Gauss const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorRipple1Gauss * >(argp2);
+  (arg1)->visit((FormFactorRipple1Gauss const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorSphereGaussianRadius_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_45(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereGaussianRadius *arg1 = (FormFactorSphereGaussianRadius *) 0 ;
-  cvector_t arg2 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorRipple1Lorentz *arg2 = (FormFactorRipple1Lorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorSphereGaussianRadius_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereGaussianRadius, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereGaussianRadius_evaluate_for_q" "', argument " "1"" of type '" "FormFactorSphereGaussianRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereGaussianRadius * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorSphereGaussianRadius_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorSphereGaussianRadius_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorRipple1Lorentz, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorRipple1Lorentz const *""'"); 
   }
-  result = ((FormFactorSphereGaussianRadius const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< FormFactorRipple1Lorentz * >(argp2);
+  (arg1)->visit((FormFactorRipple1Lorentz const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorSphereGaussianRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_46(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereGaussianRadius *arg1 = (FormFactorSphereGaussianRadius *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorRipple2Box *arg2 = (FormFactorRipple2Box *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereGaussianRadius, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorSphereGaussianRadius" "', argument " "1"" of type '" "FormFactorSphereGaussianRadius *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereGaussianRadius * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorRipple2Box, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorRipple2Box const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorRipple2Box * >(argp2);
+  (arg1)->visit((FormFactorRipple2Box const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76472,100 +77986,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorSphereGaussianRadius_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorSphereGaussianRadius, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorSphereGaussianRadius_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorSphereLogNormalRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_47(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  size_t arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorSphereLogNormalRadius *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorRipple2Gauss *arg2 = (FormFactorRipple2Gauss *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorSphereLogNormalRadius", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorSphereLogNormalRadius" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorSphereLogNormalRadius" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorSphereLogNormalRadius" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  result = (FormFactorSphereLogNormalRadius *)new FormFactorSphereLogNormalRadius(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorSphereLogNormalRadius, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorRipple2Gauss, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorRipple2Gauss const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorRipple2Gauss * >(argp2);
+  (arg1)->visit((FormFactorRipple2Gauss const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorSphereLogNormalRadius_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_48(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereLogNormalRadius *arg1 = (FormFactorSphereLogNormalRadius *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorRipple2Lorentz *arg2 = (FormFactorRipple2Lorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorSphereLogNormalRadius *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereLogNormalRadius_clone" "', argument " "1"" of type '" "FormFactorSphereLogNormalRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereLogNormalRadius * >(argp1);
-  result = (FormFactorSphereLogNormalRadius *)((FormFactorSphereLogNormalRadius const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorRipple2Lorentz, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorRipple2Lorentz const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorRipple2Lorentz * >(argp2);
+  (arg1)->visit((FormFactorRipple2Lorentz const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorSphereLogNormalRadius_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_49(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereLogNormalRadius *arg1 = (FormFactorSphereLogNormalRadius *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorSphereGaussianRadius *arg2 = (FormFactorSphereGaussianRadius *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorSphereLogNormalRadius_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereLogNormalRadius_accept" "', argument " "1"" of type '" "FormFactorSphereLogNormalRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereLogNormalRadius * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorSphereGaussianRadius, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorSphereLogNormalRadius_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorSphereGaussianRadius const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorSphereLogNormalRadius const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< FormFactorSphereGaussianRadius * >(argp2);
+  (arg1)->visit((FormFactorSphereGaussianRadius const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76573,82 +78070,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorSphereLogNormalRadius_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_50(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereLogNormalRadius *arg1 = (FormFactorSphereLogNormalRadius *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorSphereLogNormalRadius *arg2 = (FormFactorSphereLogNormalRadius *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereLogNormalRadius_radialExtension" "', argument " "1"" of type '" "FormFactorSphereLogNormalRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereLogNormalRadius * >(argp1);
-  result = (double)((FormFactorSphereLogNormalRadius const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorSphereLogNormalRadius const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorSphereLogNormalRadius * >(argp2);
+  (arg1)->visit((FormFactorSphereLogNormalRadius const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorSphereLogNormalRadius_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_51(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereLogNormalRadius *arg1 = (FormFactorSphereLogNormalRadius *) 0 ;
-  cvector_t arg2 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorTetrahedron *arg2 = (FormFactorTetrahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorSphereLogNormalRadius_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereLogNormalRadius_evaluate_for_q" "', argument " "1"" of type '" "FormFactorSphereLogNormalRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereLogNormalRadius * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorSphereLogNormalRadius_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorSphereLogNormalRadius_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorTetrahedron const *""'"); 
   }
-  result = ((FormFactorSphereLogNormalRadius const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< FormFactorTetrahedron * >(argp2);
+  (arg1)->visit((FormFactorTetrahedron const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorSphereLogNormalRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_52(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereLogNormalRadius *arg1 = (FormFactorSphereLogNormalRadius *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorTruncatedCube *arg2 = (FormFactorTruncatedCube *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereLogNormalRadius, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorSphereLogNormalRadius" "', argument " "1"" of type '" "FormFactorSphereLogNormalRadius *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereLogNormalRadius * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorTruncatedCube, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorTruncatedCube const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorTruncatedCube * >(argp2);
+  (arg1)->visit((FormFactorTruncatedCube const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76656,92 +78154,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorSphereLogNormalRadius_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorSphereLogNormalRadius, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorSphereLogNormalRadius_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorSphereUniformRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_53(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  FormFactorSphereUniformRadius *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorTruncatedSphere *arg2 = (FormFactorTruncatedSphere *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorSphereUniformRadius", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorSphereUniformRadius" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorSphereUniformRadius" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (FormFactorSphereUniformRadius *)new FormFactorSphereUniformRadius(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorSphereUniformRadius, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorTruncatedSphere const *""'"); 
+  }
+  arg2 = reinterpret_cast< FormFactorTruncatedSphere * >(argp2);
+  (arg1)->visit((FormFactorTruncatedSphere const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorSphereUniformRadius_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_54(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereUniformRadius *arg1 = (FormFactorSphereUniformRadius *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorTruncatedSpheroid *arg2 = (FormFactorTruncatedSpheroid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorSphereUniformRadius *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereUniformRadius, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereUniformRadius_clone" "', argument " "1"" of type '" "FormFactorSphereUniformRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereUniformRadius * >(argp1);
-  result = (FormFactorSphereUniformRadius *)((FormFactorSphereUniformRadius const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorSphereUniformRadius, 0 |  0 );
+  arg2 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp2);
+  (arg1)->visit((FormFactorTruncatedSpheroid const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorSphereUniformRadius_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_55(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereUniformRadius *arg1 = (FormFactorSphereUniformRadius *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FormFactorWeighted *arg2 = (FormFactorWeighted *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorSphereUniformRadius_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereUniformRadius, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereUniformRadius_accept" "', argument " "1"" of type '" "FormFactorSphereUniformRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereUniformRadius * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorSphereUniformRadius_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FormFactorWeighted const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorSphereUniformRadius const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< FormFactorWeighted * >(argp2);
+  (arg1)->visit((FormFactorWeighted const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76749,82 +78238,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorSphereUniformRadius_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_56(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereUniformRadius *arg1 = (FormFactorSphereUniformRadius *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDecayFunction1DCauchy *arg2 = (FTDecayFunction1DCauchy *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereUniformRadius, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereUniformRadius_radialExtension" "', argument " "1"" of type '" "FormFactorSphereUniformRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereUniformRadius * >(argp1);
-  result = (double)((FormFactorSphereUniformRadius const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction1DCauchy, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction1DCauchy const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDecayFunction1DCauchy * >(argp2);
+  (arg1)->visit((FTDecayFunction1DCauchy const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorSphereUniformRadius_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_57(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereUniformRadius *arg1 = (FormFactorSphereUniformRadius *) 0 ;
-  cvector_t arg2 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDecayFunction1DGauss *arg2 = (FTDecayFunction1DGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorSphereUniformRadius_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereUniformRadius, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereUniformRadius_evaluate_for_q" "', argument " "1"" of type '" "FormFactorSphereUniformRadius const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereUniformRadius * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorSphereUniformRadius_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorSphereUniformRadius_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction1DGauss, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction1DGauss const *""'"); 
   }
-  result = ((FormFactorSphereUniformRadius const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< FTDecayFunction1DGauss * >(argp2);
+  (arg1)->visit((FTDecayFunction1DGauss const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorSphereUniformRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_58(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorSphereUniformRadius *arg1 = (FormFactorSphereUniformRadius *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDecayFunction1DTriangle *arg2 = (FTDecayFunction1DTriangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereUniformRadius, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorSphereUniformRadius" "', argument " "1"" of type '" "FormFactorSphereUniformRadius *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorSphereUniformRadius * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction1DTriangle, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction1DTriangle const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDecayFunction1DTriangle * >(argp2);
+  (arg1)->visit((FTDecayFunction1DTriangle const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76832,100 +78322,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorSphereUniformRadius_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorSphereUniformRadius, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorSphereUniformRadius_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorTetrahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_59(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  FormFactorTetrahedron *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDecayFunction1DVoigt *arg2 = (FTDecayFunction1DVoigt *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorTetrahedron", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorTetrahedron" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorTetrahedron" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorTetrahedron" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FormFactorTetrahedron *)new FormFactorTetrahedron(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTetrahedron, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction1DVoigt, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction1DVoigt const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDecayFunction1DVoigt * >(argp2);
+  (arg1)->visit((FTDecayFunction1DVoigt const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTetrahedron_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_60(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTetrahedron *arg1 = (FormFactorTetrahedron *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDecayFunction2DCauchy *arg2 = (FTDecayFunction2DCauchy *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorTetrahedron *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTetrahedron_clone" "', argument " "1"" of type '" "FormFactorTetrahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTetrahedron * >(argp1);
-  result = (FormFactorTetrahedron *)((FormFactorTetrahedron const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction2DCauchy, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction2DCauchy const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDecayFunction2DCauchy * >(argp2);
+  (arg1)->visit((FTDecayFunction2DCauchy const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTetrahedron_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_61(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTetrahedron *arg1 = (FormFactorTetrahedron *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDecayFunction2DGauss *arg2 = (FTDecayFunction2DGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorTetrahedron_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTetrahedron_accept" "', argument " "1"" of type '" "FormFactorTetrahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTetrahedron * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction2DGauss, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorTetrahedron_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction2DGauss const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorTetrahedron const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< FTDecayFunction2DGauss * >(argp2);
+  (arg1)->visit((FTDecayFunction2DGauss const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -76933,90 +78406,111 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTetrahedron_getBaseEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_62(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTetrahedron *arg1 = (FormFactorTetrahedron *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDecayFunction2DVoigt *arg2 = (FTDecayFunction2DVoigt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTetrahedron_getBaseEdge" "', argument " "1"" of type '" "FormFactorTetrahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTetrahedron * >(argp1);
-  result = (double)((FormFactorTetrahedron const *)arg1)->getBaseEdge();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDecayFunction2DVoigt, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDecayFunction2DVoigt const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDecayFunction2DVoigt * >(argp2);
+  (arg1)->visit((FTDecayFunction2DVoigt const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTetrahedron_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_63(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTetrahedron *arg1 = (FormFactorTetrahedron *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDistribution1DCauchy *arg2 = (FTDistribution1DCauchy *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTetrahedron_getHeight" "', argument " "1"" of type '" "FormFactorTetrahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTetrahedron * >(argp1);
-  result = (double)((FormFactorTetrahedron const *)arg1)->getHeight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution1DCauchy, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution1DCauchy const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDistribution1DCauchy * >(argp2);
+  (arg1)->visit((FTDistribution1DCauchy const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTetrahedron_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_64(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTetrahedron *arg1 = (FormFactorTetrahedron *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDistribution1DCosine *arg2 = (FTDistribution1DCosine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTetrahedron_getAlpha" "', argument " "1"" of type '" "FormFactorTetrahedron const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTetrahedron * >(argp1);
-  result = (double)((FormFactorTetrahedron const *)arg1)->getAlpha();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution1DCosine, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution1DCosine const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDistribution1DCosine * >(argp2);
+  (arg1)->visit((FTDistribution1DCosine const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorTetrahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_65(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTetrahedron *arg1 = (FormFactorTetrahedron *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDistribution1DGate *arg2 = (FTDistribution1DGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTetrahedron, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorTetrahedron" "', argument " "1"" of type '" "FormFactorTetrahedron *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTetrahedron * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution1DGate, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution1DGate const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDistribution1DGate * >(argp2);
+  (arg1)->visit((FTDistribution1DGate const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -77024,92 +78518,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorTetrahedron_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorTetrahedron, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorTetrahedron_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedCube(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_66(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  FormFactorTruncatedCube *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDistribution1DGauss *arg2 = (FTDistribution1DGauss *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorTruncatedCube", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorTruncatedCube" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorTruncatedCube" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (FormFactorTruncatedCube *)new FormFactorTruncatedCube(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedCube, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution1DGauss, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution1DGauss const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDistribution1DGauss * >(argp2);
+  (arg1)->visit((FTDistribution1DGauss const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedCube_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_67(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedCube *arg1 = (FormFactorTruncatedCube *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDistribution1DTriangle *arg2 = (FTDistribution1DTriangle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorTruncatedCube *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedCube, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedCube_clone" "', argument " "1"" of type '" "FormFactorTruncatedCube const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedCube * >(argp1);
-  result = (FormFactorTruncatedCube *)((FormFactorTruncatedCube const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedCube, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution1DTriangle, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution1DTriangle const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDistribution1DTriangle * >(argp2);
+  (arg1)->visit((FTDistribution1DTriangle const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedCube_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_68(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedCube *arg1 = (FormFactorTruncatedCube *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDistribution1DVoigt *arg2 = (FTDistribution1DVoigt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorTruncatedCube_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedCube, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedCube_accept" "', argument " "1"" of type '" "FormFactorTruncatedCube const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedCube * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution1DVoigt, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorTruncatedCube_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution1DVoigt const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorTruncatedCube const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< FTDistribution1DVoigt * >(argp2);
+  (arg1)->visit((FTDistribution1DVoigt const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -77117,67 +78602,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedCube_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_69(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedCube *arg1 = (FormFactorTruncatedCube *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDistribution2DCauchy *arg2 = (FTDistribution2DCauchy *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedCube, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedCube_getLength" "', argument " "1"" of type '" "FormFactorTruncatedCube const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedCube * >(argp1);
-  result = (double)((FormFactorTruncatedCube const *)arg1)->getLength();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution2DCauchy, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution2DCauchy const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDistribution2DCauchy * >(argp2);
+  (arg1)->visit((FTDistribution2DCauchy const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedCube_getRemovedLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_70(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedCube *arg1 = (FormFactorTruncatedCube *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDistribution2DCone *arg2 = (FTDistribution2DCone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedCube, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedCube_getRemovedLength" "', argument " "1"" of type '" "FormFactorTruncatedCube const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedCube * >(argp1);
-  result = (double)((FormFactorTruncatedCube const *)arg1)->getRemovedLength();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution2DCone, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution2DCone const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDistribution2DCone * >(argp2);
+  (arg1)->visit((FTDistribution2DCone const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorTruncatedCube(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_71(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedCube *arg1 = (FormFactorTruncatedCube *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDistribution2DGate *arg2 = (FTDistribution2DGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedCube, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorTruncatedCube" "', argument " "1"" of type '" "FormFactorTruncatedCube *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedCube * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution2DGate, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution2DGate const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDistribution2DGate * >(argp2);
+  (arg1)->visit((FTDistribution2DGate const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -77185,184 +78686,139 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorTruncatedCube_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorTruncatedCube, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorTruncatedCube_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedSphere__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_72(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  FormFactorTruncatedSphere *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDistribution2DGauss *arg2 = (FTDistribution2DGauss *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorTruncatedSphere" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorTruncatedSphere" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorTruncatedSphere" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FormFactorTruncatedSphere *)new FormFactorTruncatedSphere(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedSphere, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution2DGauss, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution2DGauss const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDistribution2DGauss * >(argp2);
+  (arg1)->visit((FTDistribution2DGauss const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedSphere__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_73(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  FormFactorTruncatedSphere *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  FTDistribution2DVoigt *arg2 = (FTDistribution2DVoigt *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorTruncatedSphere" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorTruncatedSphere" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (FormFactorTruncatedSphere *)new FormFactorTruncatedSphere(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedSphere, SWIG_POINTER_NEW |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_FTDistribution2DVoigt, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "FTDistribution2DVoigt const *""'"); 
+  }
+  arg2 = reinterpret_cast< FTDistribution2DVoigt * >(argp2);
+  (arg1)->visit((FTDistribution2DVoigt const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedSphere(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_74(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  GISASSimulation *arg2 = (GISASSimulation *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FormFactorTruncatedSphere", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_FormFactorTruncatedSphere__SWIG_1(self, argc, argv);
-      }
-    }
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  if (argc == 3) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_FormFactorTruncatedSphere__SWIG_0(self, argc, argv);
-        }
-      }
-    }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_GISASSimulation, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "GISASSimulation const *""'"); 
   }
-  
+  arg2 = reinterpret_cast< GISASSimulation * >(argp2);
+  (arg1)->visit((GISASSimulation const *)arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FormFactorTruncatedSphere'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    FormFactorTruncatedSphere::FormFactorTruncatedSphere(double,double,double)\n"
-    "    FormFactorTruncatedSphere::FormFactorTruncatedSphere(double,double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_75(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  HexagonalLattice *arg2 = (HexagonalLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorTruncatedSphere *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_clone" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
-  result = (FormFactorTruncatedSphere *)((FormFactorTruncatedSphere const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "HexagonalLattice const *""'"); 
+  }
+  arg2 = reinterpret_cast< HexagonalLattice * >(argp2);
+  (arg1)->visit((HexagonalLattice const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_76(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IAbstractParticle *arg2 = (IAbstractParticle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorTruncatedSphere_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_accept" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorTruncatedSphere_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IAbstractParticle const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorTruncatedSphere const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< IAbstractParticle * >(argp2);
+  (arg1)->visit((IAbstractParticle const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -77370,151 +78826,167 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_77(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IClusteredParticles *arg2 = (IClusteredParticles *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_getHeight" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
-  result = (double)((FormFactorTruncatedSphere const *)arg1)->getHeight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IClusteredParticles, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IClusteredParticles const *""'"); 
+  }
+  arg2 = reinterpret_cast< IClusteredParticles * >(argp2);
+  (arg1)->visit((IClusteredParticles const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_78(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IdentityRotation *arg2 = (IdentityRotation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_getRadius" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
-  result = (double)((FormFactorTruncatedSphere const *)arg1)->getRadius();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IdentityRotation, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IdentityRotation const *""'"); 
+  }
+  arg2 = reinterpret_cast< IdentityRotation * >(argp2);
+  (arg1)->visit((IdentityRotation const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_getRemovedTop(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_79(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IFormFactor *arg2 = (IFormFactor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_getRemovedTop" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
-  result = (double)((FormFactorTruncatedSphere const *)arg1)->getRemovedTop();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IFormFactor const *""'"); 
+  }
+  arg2 = reinterpret_cast< IFormFactor * >(argp2);
+  (arg1)->visit((IFormFactor const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_80(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IFormFactorBorn *arg2 = (IFormFactorBorn *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_radialExtension" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
-  result = (double)((FormFactorTruncatedSphere const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IFormFactorBorn, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IFormFactorBorn const *""'"); 
+  }
+  arg2 = reinterpret_cast< IFormFactorBorn * >(argp2);
+  (arg1)->visit((IFormFactorBorn const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_81(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
-  cvector_t arg2 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IFormFactorDecorator *arg2 = (IFormFactorDecorator *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorTruncatedSphere_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_evaluate_for_q" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorTruncatedSphere_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorTruncatedSphere_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IFormFactorDecorator, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IFormFactorDecorator const *""'"); 
   }
-  result = ((FormFactorTruncatedSphere const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< IFormFactorDecorator * >(argp2);
+  (arg1)->visit((IFormFactorDecorator const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorTruncatedSphere(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_82(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IInterferenceFunction *arg2 = (IInterferenceFunction *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorTruncatedSphere" "', argument " "1"" of type '" "FormFactorTruncatedSphere *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IInterferenceFunction const *""'"); 
+  }
+  arg2 = reinterpret_cast< IInterferenceFunction * >(argp2);
+  (arg1)->visit((IInterferenceFunction const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -77522,212 +78994,139 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorTruncatedSphere_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorTruncatedSphere, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorTruncatedSphere_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedSpheroid__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_83(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  FormFactorTruncatedSpheroid *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  ILayout *arg2 = (ILayout *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (FormFactorTruncatedSpheroid *)new FormFactorTruncatedSpheroid(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedSpheroid, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ILayout, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ILayout const *""'"); 
+  }
+  arg2 = reinterpret_cast< ILayout * >(argp2);
+  (arg1)->visit((ILayout const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedSpheroid__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_84(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  FormFactorTruncatedSpheroid *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  INode *arg2 = (INode *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (FormFactorTruncatedSpheroid *)new FormFactorTruncatedSpheroid(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedSpheroid, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INode, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "INode const *""'"); 
+  }
+  arg2 = reinterpret_cast< INode * >(argp2);
+  (arg1)->visit((INode const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedSpheroid(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_85(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  Instrument *arg2 = (Instrument *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FormFactorTruncatedSpheroid", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_FormFactorTruncatedSpheroid__SWIG_1(self, argc, argv);
-        }
-      }
-    }
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  if (argc == 4) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_FormFactorTruncatedSpheroid__SWIG_0(self, argc, argv);
-          }
-        }
-      }
-    }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "Instrument const *""'"); 
   }
-  
+  arg2 = reinterpret_cast< Instrument * >(argp2);
+  (arg1)->visit((Instrument const *)arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FormFactorTruncatedSpheroid'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    FormFactorTruncatedSpheroid::FormFactorTruncatedSpheroid(double,double,double,double)\n"
-    "    FormFactorTruncatedSpheroid::FormFactorTruncatedSpheroid(double,double,double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_86(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IntensityNormalizer *arg2 = (IntensityNormalizer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorTruncatedSpheroid *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_clone" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
-  result = (FormFactorTruncatedSpheroid *)((FormFactorTruncatedSpheroid const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IntensityNormalizer const *""'"); 
+  }
+  arg2 = reinterpret_cast< IntensityNormalizer * >(argp2);
+  (arg1)->visit((IntensityNormalizer const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_87(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IntensityScaleAndShiftNormalizer *arg2 = (IntensityScaleAndShiftNormalizer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorTruncatedSpheroid_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_accept" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IntensityScaleAndShiftNormalizer, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorTruncatedSpheroid_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IntensityScaleAndShiftNormalizer const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorTruncatedSpheroid const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< IntensityScaleAndShiftNormalizer * >(argp2);
+  (arg1)->visit((IntensityScaleAndShiftNormalizer const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -77735,174 +79134,195 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_88(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  InterferenceFunction1DLattice *arg2 = (InterferenceFunction1DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_getRadius" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
-  result = (double)((FormFactorTruncatedSpheroid const *)arg1)->getRadius();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunction1DLattice const *""'"); 
+  }
+  arg2 = reinterpret_cast< InterferenceFunction1DLattice * >(argp2);
+  (arg1)->visit((InterferenceFunction1DLattice const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_89(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  InterferenceFunction2DLattice *arg2 = (InterferenceFunction2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_getHeight" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
-  result = (double)((FormFactorTruncatedSpheroid const *)arg1)->getHeight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunction2DLattice const *""'"); 
+  }
+  arg2 = reinterpret_cast< InterferenceFunction2DLattice * >(argp2);
+  (arg1)->visit((InterferenceFunction2DLattice const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_getHeightFlattening(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_90(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  InterferenceFunction2DParaCrystal *arg2 = (InterferenceFunction2DParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_getHeightFlattening" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
-  result = (double)((FormFactorTruncatedSpheroid const *)arg1)->getHeightFlattening();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
+  }
+  arg2 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp2);
+  (arg1)->visit((InterferenceFunction2DParaCrystal const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_getRemovedTop(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_91(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  InterferenceFunction2DSuperLattice *arg2 = (InterferenceFunction2DSuperLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_getRemovedTop" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
-  result = (double)((FormFactorTruncatedSpheroid const *)arg1)->getRemovedTop();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
+  }
+  arg2 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp2);
+  (arg1)->visit((InterferenceFunction2DSuperLattice const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_92(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  InterferenceFunction3DLattice *arg2 = (InterferenceFunction3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_radialExtension" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
-  result = (double)((FormFactorTruncatedSpheroid const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunction3DLattice const *""'"); 
+  }
+  arg2 = reinterpret_cast< InterferenceFunction3DLattice * >(argp2);
+  (arg1)->visit((InterferenceFunction3DLattice const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_93(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
-  cvector_t arg2 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  InterferenceFunctionFinite2DLattice *arg2 = (InterferenceFunctionFinite2DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorTruncatedSpheroid_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_evaluate_for_q" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorTruncatedSpheroid_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorTruncatedSpheroid_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
-    } else {
-      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
   }
-  result = ((FormFactorTruncatedSpheroid const *)arg1)->evaluate_for_q(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp2);
+  (arg1)->visit((InterferenceFunctionFinite2DLattice const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorTruncatedSpheroid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_94(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  InterferenceFunctionFinite3DLattice *arg2 = (InterferenceFunctionFinite3DLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorTruncatedSpheroid" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
+  }
+  arg2 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp2);
+  (arg1)->visit((InterferenceFunctionFinite3DLattice const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -77910,45 +79330,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FormFactorTruncatedSpheroid_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorTruncatedSpheroid, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorTruncatedSpheroid_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FormFactorWeighted(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_95(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorWeighted *result = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  InterferenceFunctionHardDisk *arg2 = (InterferenceFunctionHardDisk *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorWeighted", 0, 0, 0)) SWIG_fail;
-  result = (FormFactorWeighted *)new FormFactorWeighted();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorWeighted, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
+  }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunctionHardDisk const *""'"); 
+  }
+  arg2 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp2);
+  (arg1)->visit((InterferenceFunctionHardDisk const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FormFactorWeighted(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_96(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  InterferenceFunctionRadialParaCrystal *arg2 = (InterferenceFunctionRadialParaCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorWeighted" "', argument " "1"" of type '" "FormFactorWeighted *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
+  }
+  arg2 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp2);
+  (arg1)->visit((InterferenceFunctionRadialParaCrystal const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -77956,51 +79386,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorWeighted_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_97(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  InterferenceFunctionTwin *arg2 = (InterferenceFunctionTwin *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FormFactorWeighted *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_clone" "', argument " "1"" of type '" "FormFactorWeighted const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
-  result = (FormFactorWeighted *)((FormFactorWeighted const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunctionTwin const *""'"); 
+  }
+  arg2 = reinterpret_cast< InterferenceFunctionTwin * >(argp2);
+  (arg1)->visit((InterferenceFunctionTwin const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorWeighted_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_98(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  InterferenceFunctionNone *arg2 = (InterferenceFunctionNone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorWeighted_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_accept" "', argument " "1"" of type '" "FormFactorWeighted const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_InterferenceFunctionNone, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "InterferenceFunctionNone const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FormFactorWeighted const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< InterferenceFunctionNone * >(argp2);
+  (arg1)->visit((InterferenceFunctionNone const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78008,127 +79442,111 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorWeighted_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_99(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IParticle *arg2 = (IParticle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_radialExtension" "', argument " "1"" of type '" "FormFactorWeighted const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
-  result = (double)((FormFactorWeighted const *)arg1)->radialExtension();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IParticle const *""'"); 
+  }
+  arg2 = reinterpret_cast< IParticle * >(argp2);
+  (arg1)->visit((IParticle const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorWeighted_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_100(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
-  IRotation *arg2 = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IPeakShape *arg2 = (IPeakShape *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorWeighted_bottomZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_bottomZ" "', argument " "1"" of type '" "FormFactorWeighted const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IPeakShape, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorWeighted_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IPeakShape const *""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((FormFactorWeighted const *)arg1)->bottomZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = reinterpret_cast< IPeakShape * >(argp2);
+  (arg1)->visit((IPeakShape const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorWeighted_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_101(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
-  IRotation *arg2 = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IRotation *arg2 = (IRotation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorWeighted_topZ", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_topZ" "', argument " "1"" of type '" "FormFactorWeighted const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IRotation, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorWeighted_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IRotation const *""'"); 
   }
   arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (double)((FormFactorWeighted const *)arg1)->topZ((IRotation const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  (arg1)->visit((IRotation const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorWeighted_addFormFactor__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_102(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
-  IFormFactor *arg2 = 0 ;
-  double arg3 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  ISample *arg2 = (ISample *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_addFormFactor" "', argument " "1"" of type '" "FormFactorWeighted *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ISample, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_addFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorWeighted_addFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ISample const *""'"); 
   }
-  arg2 = reinterpret_cast< IFormFactor * >(argp2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "FormFactorWeighted_addFormFactor" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  (arg1)->addFormFactor((IFormFactor const &)*arg2,arg3);
+  arg2 = reinterpret_cast< ISample * >(argp2);
+  (arg1)->visit((ISample const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78136,30 +79554,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorWeighted_addFormFactor__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_103(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
-  IFormFactor *arg2 = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  IsGISAXSDetector *arg2 = (IsGISAXSDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_addFormFactor" "', argument " "1"" of type '" "FormFactorWeighted *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_IsGISAXSDetector, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_addFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorWeighted_addFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "IsGISAXSDetector const *""'"); 
   }
-  arg2 = reinterpret_cast< IFormFactor * >(argp2);
-  (arg1)->addFormFactor((IFormFactor const &)*arg2);
+  arg2 = reinterpret_cast< IsGISAXSDetector * >(argp2);
+  (arg1)->visit((IsGISAXSDetector const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78167,86 +79582,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorWeighted_addFormFactor(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_104(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  Layer *arg2 = (Layer *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "FormFactorWeighted_addFormFactor", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FormFactorWeighted, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_FormFactorWeighted_addFormFactor__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_FormFactorWeighted, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_FormFactorWeighted_addFormFactor__SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FormFactorWeighted_addFormFactor'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    FormFactorWeighted::addFormFactor(IFormFactor const &,double)\n"
-    "    FormFactorWeighted::addFormFactor(IFormFactor const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_FormFactorWeighted_setAmbientMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
-  SwigValueWrapper< Material > arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorWeighted_setAmbientMaterial", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_setAmbientMaterial" "', argument " "1"" of type '" "FormFactorWeighted *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_setAmbientMaterial" "', argument " "2"" of type '" "Material""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorWeighted_setAmbientMaterial" "', argument " "2"" of type '" "Material""'");
-    } else {
-      Material * temp = reinterpret_cast< Material * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_Layer, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "Layer const *""'"); 
   }
-  (arg1)->setAmbientMaterial(arg2);
+  arg2 = reinterpret_cast< Layer * >(argp2);
+  (arg1)->visit((Layer const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78254,65 +79610,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FormFactorWeighted_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_105(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FormFactorWeighted *arg1 = (FormFactorWeighted *) 0 ;
-  WavevectorInfo *arg2 = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  LayerInterface *arg2 = (LayerInterface *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "FormFactorWeighted_evaluate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorWeighted, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorWeighted_evaluate" "', argument " "1"" of type '" "FormFactorWeighted const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FormFactorWeighted * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_WavevectorInfo,  0  | 0);
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_LayerInterface, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorWeighted_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorWeighted_evaluate" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "LayerInterface const *""'"); 
   }
-  arg2 = reinterpret_cast< WavevectorInfo * >(argp2);
-  result = ((FormFactorWeighted const *)arg1)->evaluate((WavevectorInfo const &)*arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< LayerInterface * >(argp2);
+  (arg1)->visit((LayerInterface const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *FormFactorWeighted_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorWeighted, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FormFactorWeighted_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_delete_IFootprintFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_106(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IFootprintFactor *arg1 = (IFootprintFactor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  LayerRoughness *arg2 = (LayerRoughness *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFootprintFactor, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IFootprintFactor" "', argument " "1"" of type '" "IFootprintFactor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< IFootprintFactor * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_LayerRoughness, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "LayerRoughness const *""'"); 
+  }
+  arg2 = reinterpret_cast< LayerRoughness * >(argp2);
+  (arg1)->visit((LayerRoughness const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78320,51 +79666,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFootprintFactor_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_107(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IFootprintFactor *arg1 = (IFootprintFactor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  MesoCrystal *arg2 = (MesoCrystal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IFootprintFactor *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFootprintFactor, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFootprintFactor_clone" "', argument " "1"" of type '" "IFootprintFactor const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< IFootprintFactor * >(argp1);
-  result = (IFootprintFactor *)((IFootprintFactor const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFootprintFactor, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IFootprintFactor_setWidthRatio(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IFootprintFactor *arg1 = (IFootprintFactor *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IFootprintFactor_setWidthRatio", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFootprintFactor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFootprintFactor_setWidthRatio" "', argument " "1"" of type '" "IFootprintFactor *""'"); 
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_MesoCrystal, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "MesoCrystal const *""'"); 
   }
-  arg1 = reinterpret_cast< IFootprintFactor * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFootprintFactor_setWidthRatio" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setWidthRatio(arg2);
+  arg2 = reinterpret_cast< MesoCrystal * >(argp2);
+  (arg1)->visit((MesoCrystal const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78372,134 +79694,83 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IFootprintFactor_widthRatio(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_108(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IFootprintFactor *arg1 = (IFootprintFactor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  MultiLayer *arg2 = (MultiLayer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFootprintFactor, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFootprintFactor_widthRatio" "', argument " "1"" of type '" "IFootprintFactor const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< IFootprintFactor * >(argp1);
-  result = (double)((IFootprintFactor const *)arg1)->widthRatio();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IFootprintFactor_calculate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IFootprintFactor *arg1 = (IFootprintFactor *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IFootprintFactor_calculate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFootprintFactor, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFootprintFactor_calculate" "', argument " "1"" of type '" "IFootprintFactor const *""'"); 
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_MultiLayer, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "MultiLayer const *""'"); 
   }
-  arg1 = reinterpret_cast< IFootprintFactor * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IFootprintFactor_calculate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((IFootprintFactor const *)arg1)->calculate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = reinterpret_cast< MultiLayer * >(argp2);
+  (arg1)->visit((MultiLayer const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IFootprintFactor__print(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_109(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IFootprintFactor *arg1 = (IFootprintFactor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  OffSpecSimulation *arg2 = (OffSpecSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::string result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFootprintFactor, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IFootprintFactor__print" "', argument " "1"" of type '" "IFootprintFactor const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< IFootprintFactor * >(argp1);
-  result = ((IFootprintFactor const *)arg1)->print();
-  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *IFootprintFactor_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IFootprintFactor, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_new_FootprintGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FootprintGauss *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FootprintGauss" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (FootprintGauss *)new FootprintGauss(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FootprintGauss, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "OffSpecSimulation const *""'"); 
+  }
+  arg2 = reinterpret_cast< OffSpecSimulation * >(argp2);
+  (arg1)->visit((OffSpecSimulation const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FootprintGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_110(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FootprintGauss *arg1 = (FootprintGauss *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  Particle *arg2 = (Particle *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FootprintGauss_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintGauss, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintGauss_accept" "', argument " "1"" of type '" "FootprintGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FootprintGauss * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_Particle, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FootprintGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "Particle const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FootprintGauss const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< Particle * >(argp2);
+  (arg1)->visit((Particle const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78507,97 +79778,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FootprintGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_111(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FootprintGauss *arg1 = (FootprintGauss *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  ParticleComposition *arg2 = (ParticleComposition *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FootprintGauss *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintGauss, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintGauss_clone" "', argument " "1"" of type '" "FootprintGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FootprintGauss * >(argp1);
-  result = (FootprintGauss *)((FootprintGauss const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FootprintGauss, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FootprintGauss_calculate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FootprintGauss *arg1 = (FootprintGauss *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "FootprintGauss_calculate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintGauss, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintGauss_calculate" "', argument " "1"" of type '" "FootprintGauss const *""'"); 
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ParticleComposition, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ParticleComposition const *""'"); 
   }
-  arg1 = reinterpret_cast< FootprintGauss * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FootprintGauss_calculate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((FootprintGauss const *)arg1)->calculate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = reinterpret_cast< ParticleComposition * >(argp2);
+  (arg1)->visit((ParticleComposition const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FootprintGauss__print(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_112(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FootprintGauss *arg1 = (FootprintGauss *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  ParticleCoreShell *arg2 = (ParticleCoreShell *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::string result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintGauss, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintGauss__print" "', argument " "1"" of type '" "FootprintGauss const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FootprintGauss * >(argp1);
-  result = ((FootprintGauss const *)arg1)->print();
-  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_FootprintGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  FootprintGauss *arg1 = (FootprintGauss *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintGauss, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FootprintGauss" "', argument " "1"" of type '" "FootprintGauss *""'"); 
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ParticleCoreShell const *""'"); 
   }
-  arg1 = reinterpret_cast< FootprintGauss * >(argp1);
-  delete arg1;
+  arg2 = reinterpret_cast< ParticleCoreShell * >(argp2);
+  (arg1)->visit((ParticleCoreShell const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78605,62 +79834,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FootprintGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FootprintGauss, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FootprintGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_FootprintSquare(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FootprintSquare *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FootprintSquare" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (FootprintSquare *)new FootprintSquare(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FootprintSquare, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FootprintSquare_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_113(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FootprintSquare *arg1 = (FootprintSquare *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  ParticleDistribution *arg2 = (ParticleDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FootprintSquare_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintSquare, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintSquare_accept" "', argument " "1"" of type '" "FootprintSquare const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FootprintSquare * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FootprintSquare_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ParticleDistribution const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((FootprintSquare const *)arg1)->accept(arg2);
+  arg2 = reinterpret_cast< ParticleDistribution * >(argp2);
+  (arg1)->visit((ParticleDistribution const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78668,97 +79862,111 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_FootprintSquare_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_114(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FootprintSquare *arg1 = (FootprintSquare *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  ParticleLayout *arg2 = (ParticleLayout *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  FootprintSquare *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintSquare, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintSquare_clone" "', argument " "1"" of type '" "FootprintSquare const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FootprintSquare * >(argp1);
-  result = (FootprintSquare *)((FootprintSquare const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FootprintSquare, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ParticleLayout const *""'"); 
+  }
+  arg2 = reinterpret_cast< ParticleLayout * >(argp2);
+  (arg1)->visit((ParticleLayout const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FootprintSquare_calculate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_115(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FootprintSquare *arg1 = (FootprintSquare *) 0 ;
-  double arg2 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  PoissonNoiseBackground *arg2 = (PoissonNoiseBackground *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "FootprintSquare_calculate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintSquare, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintSquare_calculate" "', argument " "1"" of type '" "FootprintSquare const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FootprintSquare * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FootprintSquare_calculate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((FootprintSquare const *)arg1)->calculate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_PoissonNoiseBackground, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "PoissonNoiseBackground const *""'"); 
+  }
+  arg2 = reinterpret_cast< PoissonNoiseBackground * >(argp2);
+  (arg1)->visit((PoissonNoiseBackground const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FootprintSquare__print(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_116(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FootprintSquare *arg1 = (FootprintSquare *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  RectangularDetector *arg2 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::string result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintSquare, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FootprintSquare__print" "', argument " "1"" of type '" "FootprintSquare const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FootprintSquare * >(argp1);
-  result = ((FootprintSquare const *)arg1)->print();
-  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "RectangularDetector const *""'"); 
+  }
+  arg2 = reinterpret_cast< RectangularDetector * >(argp2);
+  (arg1)->visit((RectangularDetector const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_FootprintSquare(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_117(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  FootprintSquare *arg1 = (FootprintSquare *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  ResolutionFunction2DGaussian *arg2 = (ResolutionFunction2DGaussian *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FootprintSquare, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FootprintSquare" "', argument " "1"" of type '" "FootprintSquare *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< FootprintSquare * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "ResolutionFunction2DGaussian const *""'"); 
+  }
+  arg2 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp2);
+  (arg1)->visit((ResolutionFunction2DGaussian const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78766,32 +79974,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *FootprintSquare_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_FootprintSquare, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *FootprintSquare_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_delete_Simulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_118(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  RotationEuler *arg2 = (RotationEuler *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Simulation" "', argument " "1"" of type '" "Simulation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_RotationEuler, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "RotationEuler const *""'"); 
+  }
+  arg2 = reinterpret_cast< RotationEuler * >(argp2);
+  (arg1)->visit((RotationEuler const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78799,44 +80002,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Simulation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_119(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  RotationX *arg2 = (RotationX *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Simulation *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_clone" "', argument " "1"" of type '" "Simulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  result = (Simulation *)((Simulation const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Simulation, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_RotationX, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "RotationX const *""'"); 
+  }
+  arg2 = reinterpret_cast< RotationX * >(argp2);
+  (arg1)->visit((RotationX const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Simulation_prepareSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_120(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  RotationY *arg2 = (RotationY *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_prepareSimulation" "', argument " "1"" of type '" "Simulation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  (arg1)->prepareSimulation();
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_RotationY, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "RotationY const *""'"); 
+  }
+  arg2 = reinterpret_cast< RotationY * >(argp2);
+  (arg1)->visit((RotationY const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78844,21 +80058,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Simulation_runSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_121(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  RotationZ *arg2 = (RotationZ *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_runSimulation" "', argument " "1"" of type '" "Simulation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  (arg1)->runSimulation();
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_RotationZ, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "RotationZ const *""'"); 
+  }
+  arg2 = reinterpret_cast< RotationZ * >(argp2);
+  (arg1)->visit((RotationZ const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78866,21 +80086,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Simulation_runMPISimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_122(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  SpecularDetector1D *arg2 = (SpecularDetector1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_runMPISimulation" "', argument " "1"" of type '" "Simulation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  (arg1)->runMPISimulation();
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_SpecularDetector1D, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "SpecularDetector1D const *""'"); 
+  }
+  arg2 = reinterpret_cast< SpecularDetector1D * >(argp2);
+  (arg1)->visit((SpecularDetector1D const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78888,31 +80114,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Simulation_setInstrument(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_123(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  Instrument *arg2 = 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  SpecularSimulation *arg2 = (SpecularSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Simulation_setInstrument", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setInstrument" "', argument " "1"" of type '" "Simulation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Instrument,  0  | 0);
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setInstrument" "', argument " "2"" of type '" "Instrument const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setInstrument" "', argument " "2"" of type '" "Instrument const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "SpecularSimulation const *""'"); 
   }
-  arg2 = reinterpret_cast< Instrument * >(argp2);
-  (arg1)->setInstrument((Instrument const &)*arg2);
+  arg2 = reinterpret_cast< SpecularSimulation * >(argp2);
+  (arg1)->visit((SpecularSimulation const *)arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -78920,5799 +80142,3001 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Simulation_getInstrument__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_124(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  SphericalDetector *arg2 = (SphericalDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Instrument *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getInstrument" "', argument " "1"" of type '" "Simulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  result = (Instrument *) &((Simulation const *)arg1)->getInstrument();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Instrument, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_SphericalDetector, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "SphericalDetector const *""'"); 
+  }
+  arg2 = reinterpret_cast< SphericalDetector * >(argp2);
+  (arg1)->visit((SphericalDetector const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Simulation_getInstrument__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit__SWIG_125(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  SquareLattice *arg2 = (SquareLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Instrument *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getInstrument" "', argument " "1"" of type '" "Simulation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_visit" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  result = (Instrument *) &(arg1)->getInstrument();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Instrument, 0 |  0 );
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_SquareLattice, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "INodeVisitor_visit" "', argument " "2"" of type '" "SquareLattice const *""'"); 
+  }
+  arg2 = reinterpret_cast< SquareLattice * >(argp2);
+  (arg1)->visit((SquareLattice const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Simulation_getInstrument(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_visit(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[2] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Simulation_getInstrument", 0, 1, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "INodeVisitor_visit", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_Simulation_getInstrument__SWIG_1(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_BasicLattice, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_0(self, argc, argv);
+      }
     }
   }
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_Simulation_getInstrument__SWIG_0(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_Beam, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_1(self, argc, argv);
+      }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Simulation_getInstrument'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Simulation::getInstrument() const\n"
-    "    Simulation::getInstrument()\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_setBeamIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Simulation_setBeamIntensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setBeamIntensity" "', argument " "1"" of type '" "Simulation *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ConstantBackground, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_2(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Simulation_setBeamIntensity" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setBeamIntensity(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_getBeamIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getBeamIntensity" "', argument " "1"" of type '" "Simulation const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ConvolutionDetectorResolution, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_3(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  result = (double)((Simulation const *)arg1)->getBeamIntensity();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_setBeamPolarization(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  kvector_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Simulation_setBeamPolarization", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setBeamPolarization" "', argument " "1"" of type '" "Simulation *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_Crystal, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_4(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setBeamPolarization" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setBeamPolarization" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_DistributionCosine, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_5(self, argc, argv);
+      }
     }
   }
-  (arg1)->setBeamPolarization(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_setDetectorResolutionFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  IResolutionFunction2D *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Simulation_setDetectorResolutionFunction", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setDetectorResolutionFunction" "', argument " "1"" of type '" "Simulation *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_DistributionGate, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_6(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IResolutionFunction2D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setDetectorResolutionFunction" "', argument " "2"" of type '" "IResolutionFunction2D const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_DistributionGaussian, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_7(self, argc, argv);
+      }
+    }
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setDetectorResolutionFunction" "', argument " "2"" of type '" "IResolutionFunction2D const &""'"); 
-  }
-  arg2 = reinterpret_cast< IResolutionFunction2D * >(argp2);
-  (arg1)->setDetectorResolutionFunction((IResolutionFunction2D const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_removeDetectorResolutionFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_removeDetectorResolutionFunction" "', argument " "1"" of type '" "Simulation *""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  (arg1)->removeDetectorResolutionFunction();
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_setAnalyzerProperties(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  kvector_t arg2 ;
-  double arg3 ;
-  double arg4 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Simulation_setAnalyzerProperties", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setAnalyzerProperties" "', argument " "1"" of type '" "Simulation *""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setAnalyzerProperties" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setAnalyzerProperties" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_DistributionLogNormal, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_8(self, argc, argv);
+      }
     }
   }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Simulation_setAnalyzerProperties" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Simulation_setAnalyzerProperties" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->setAnalyzerProperties(arg2,arg3,arg4);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_setSample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  MultiLayer *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Simulation_setSample", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setSample" "', argument " "1"" of type '" "Simulation *""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_MultiLayer,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setSample" "', argument " "2"" of type '" "MultiLayer const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setSample" "', argument " "2"" of type '" "MultiLayer const &""'"); 
-  }
-  arg2 = reinterpret_cast< MultiLayer * >(argp2);
-  (arg1)->setSample((MultiLayer const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_sample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  MultiLayer *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_sample" "', argument " "1"" of type '" "Simulation const *""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  result = (MultiLayer *)((Simulation const *)arg1)->sample();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_setSampleBuilderCpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  std::shared_ptr< IMultiLayerBuilder > arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Simulation_setSampleBuilderCpp", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setSampleBuilderCpp" "', argument " "1"" of type '" "Simulation *""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  {
-    int newmem = 0;
-    res2 = SWIG_ConvertPtrAndOwn(swig_obj[1], &argp2, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t,  0 , &newmem);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setSampleBuilderCpp" "', argument " "2"" of type '" "std::shared_ptr< IMultiLayerBuilder > const""'");
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_DistributionLorentz, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_9(self, argc, argv);
+      }
     }
-    if (argp2) arg2 = *(reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp2));
-    if (newmem & SWIG_CAST_NEW_MEMORY) delete reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp2);
-  }
-  (arg1)->setSampleBuilder(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_setBackground(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  IBackground *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Simulation_setBackground", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setBackground" "', argument " "1"" of type '" "Simulation *""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IBackground,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setBackground" "', argument " "2"" of type '" "IBackground const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setBackground" "', argument " "2"" of type '" "IBackground const &""'"); 
-  }
-  arg2 = reinterpret_cast< IBackground * >(argp2);
-  (arg1)->setBackground((IBackground const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_background(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IBackground *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_background" "', argument " "1"" of type '" "Simulation const *""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  result = (IBackground *)((Simulation const *)arg1)->background();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IBackground, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_intensityMapSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_intensityMapSize" "', argument " "1"" of type '" "Simulation const *""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  result = ((Simulation const *)arg1)->intensityMapSize();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_result(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SimulationResult result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_result" "', argument " "1"" of type '" "Simulation const *""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  result = ((Simulation const *)arg1)->result();
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_addParameterDistribution__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  std::string *arg2 = 0 ;
-  IDistribution1D *arg3 = 0 ;
-  size_t arg4 ;
-  double arg5 ;
-  RealLimits *arg6 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  size_t val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  void *argp6 = 0 ;
-  int res6 = 0 ;
-  
-  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_addParameterDistribution" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "std::string const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_DistributionTrapezoid, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_10(self, argc, argv);
+      }
     }
-    arg2 = ptr;
-  }
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IDistribution1D,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Simulation_addParameterDistribution" "', argument " "3"" of type '" "IDistribution1D const &""'"); 
   }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "3"" of type '" "IDistribution1D const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FootprintGauss, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_11(self, argc, argv);
+      }
+    }
   }
-  arg3 = reinterpret_cast< IDistribution1D * >(argp3);
-  ecode4 = SWIG_AsVal_size_t(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Simulation_addParameterDistribution" "', argument " "4"" of type '" "size_t""'");
-  } 
-  arg4 = static_cast< size_t >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "Simulation_addParameterDistribution" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  res6 = SWIG_ConvertPtr(swig_obj[5], &argp6, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res6)) {
-    SWIG_exception_fail(SWIG_ArgError(res6), "in method '" "Simulation_addParameterDistribution" "', argument " "6"" of type '" "RealLimits const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FootprintSquare, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_12(self, argc, argv);
+      }
+    }
   }
-  if (!argp6) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "6"" of type '" "RealLimits const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorAnisoPyramid, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_13(self, argc, argv);
+      }
+    }
   }
-  arg6 = reinterpret_cast< RealLimits * >(argp6);
-  (arg1)->addParameterDistribution((std::string const &)*arg2,(IDistribution1D const &)*arg3,arg4,arg5,(RealLimits const &)*arg6);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_addParameterDistribution__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  std::string *arg2 = 0 ;
-  IDistribution1D *arg3 = 0 ;
-  size_t arg4 ;
-  double arg5 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  size_t val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  
-  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_addParameterDistribution" "', argument " "1"" of type '" "Simulation *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorBarGauss, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_14(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "std::string const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorBarLorentz, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_15(self, argc, argv);
+      }
     }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "std::string const &""'"); 
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorBox, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_16(self, argc, argv);
+      }
     }
-    arg2 = ptr;
   }
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IDistribution1D,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Simulation_addParameterDistribution" "', argument " "3"" of type '" "IDistribution1D const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCantellatedCube, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_17(self, argc, argv);
+      }
+    }
   }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "3"" of type '" "IDistribution1D const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCone, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_18(self, argc, argv);
+      }
+    }
   }
-  arg3 = reinterpret_cast< IDistribution1D * >(argp3);
-  ecode4 = SWIG_AsVal_size_t(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Simulation_addParameterDistribution" "', argument " "4"" of type '" "size_t""'");
-  } 
-  arg4 = static_cast< size_t >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "Simulation_addParameterDistribution" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  (arg1)->addParameterDistribution((std::string const &)*arg2,(IDistribution1D const &)*arg3,arg4,arg5);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_addParameterDistribution__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  std::string *arg2 = 0 ;
-  IDistribution1D *arg3 = 0 ;
-  size_t arg4 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  size_t val4 ;
-  int ecode4 = 0 ;
-  
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_addParameterDistribution" "', argument " "1"" of type '" "Simulation *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCone6, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_19(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "std::string const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCoreShell, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_20(self, argc, argv);
+      }
     }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "std::string const &""'"); 
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCrystal, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_21(self, argc, argv);
+      }
     }
-    arg2 = ptr;
   }
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IDistribution1D,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Simulation_addParameterDistribution" "', argument " "3"" of type '" "IDistribution1D const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCuboctahedron, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_22(self, argc, argv);
+      }
+    }
   }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "3"" of type '" "IDistribution1D const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorCylinder, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_23(self, argc, argv);
+      }
+    }
   }
-  arg3 = reinterpret_cast< IDistribution1D * >(argp3);
-  ecode4 = SWIG_AsVal_size_t(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Simulation_addParameterDistribution" "', argument " "4"" of type '" "size_t""'");
-  } 
-  arg4 = static_cast< size_t >(val4);
-  (arg1)->addParameterDistribution((std::string const &)*arg2,(IDistribution1D const &)*arg3,arg4);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_addParameterDistribution__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  ParameterDistribution *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_addParameterDistribution" "', argument " "1"" of type '" "Simulation *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDWBA, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_24(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ParameterDistribution,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "ParameterDistribution const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDWBAPol, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_25(self, argc, argv);
+      }
+    }
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "ParameterDistribution const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDecoratorMaterial, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_26(self, argc, argv);
+      }
+    }
   }
-  arg2 = reinterpret_cast< ParameterDistribution * >(argp2);
-  (arg1)->addParameterDistribution((ParameterDistribution const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_addParameterDistribution(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[7] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Simulation_addParameterDistribution", 0, 6, argv))) SWIG_fail;
-  --argc;
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NO_NULL | 0);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDecoratorPositionFactor, 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_Simulation_addParameterDistribution__SWIG_3(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_27(self, argc, argv);
       }
     }
   }
-  if (argc == 4) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDecoratorRotation, 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          {
-            int res = SWIG_AsVal_size_t(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_Simulation_addParameterDistribution__SWIG_2(self, argc, argv);
-          }
-        }
+        return _wrap_INodeVisitor_visit__SWIG_28(self, argc, argv);
       }
     }
   }
-  if (argc == 5) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDodecahedron, 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          {
-            int res = SWIG_AsVal_size_t(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              return _wrap_Simulation_addParameterDistribution__SWIG_1(self, argc, argv);
-            }
-          }
-        }
+        return _wrap_INodeVisitor_visit__SWIG_29(self, argc, argv);
       }
     }
   }
-  if (argc == 6) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorDot, 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          {
-            int res = SWIG_AsVal_size_t(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              int res = SWIG_ConvertPtr(argv[5], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-              _v = SWIG_CheckState(res);
-              if (_v) {
-                return _wrap_Simulation_addParameterDistribution__SWIG_0(self, argc, argv);
-              }
-            }
-          }
-        }
+        return _wrap_INodeVisitor_visit__SWIG_30(self, argc, argv);
       }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Simulation_addParameterDistribution'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Simulation::addParameterDistribution(std::string const &,IDistribution1D const &,size_t,double,RealLimits const &)\n"
-    "    Simulation::addParameterDistribution(std::string const &,IDistribution1D const &,size_t,double)\n"
-    "    Simulation::addParameterDistribution(std::string const &,IDistribution1D const &,size_t)\n"
-    "    Simulation::addParameterDistribution(ParameterDistribution const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_getDistributionHandler(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  DistributionHandler *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getDistributionHandler" "', argument " "1"" of type '" "Simulation const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_31(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  result = (DistributionHandler *) &((Simulation const *)arg1)->getDistributionHandler();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionHandler, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_setOptions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  SimulationOptions *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Simulation_setOptions", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setOptions" "', argument " "1"" of type '" "Simulation *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorFullSphere, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_32(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_SimulationOptions,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setOptions" "', argument " "2"" of type '" "SimulationOptions const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorFullSpheroid, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_33(self, argc, argv);
+      }
+    }
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setOptions" "', argument " "2"" of type '" "SimulationOptions const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorGauss, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_34(self, argc, argv);
+      }
+    }
   }
-  arg2 = reinterpret_cast< SimulationOptions * >(argp2);
-  (arg1)->setOptions((SimulationOptions const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_getOptions__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  SimulationOptions *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getOptions" "', argument " "1"" of type '" "Simulation const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorHemiEllipsoid, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_35(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  result = (SimulationOptions *) &((Simulation const *)arg1)->getOptions();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_getOptions__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  SimulationOptions *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getOptions" "', argument " "1"" of type '" "Simulation *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorIcosahedron, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_36(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  result = (SimulationOptions *) &(arg1)->getOptions();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_getOptions(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Simulation_getOptions", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_Simulation_getOptions__SWIG_1(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorLongBoxGauss, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_37(self, argc, argv);
+      }
     }
   }
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_Simulation_getOptions__SWIG_0(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorLongBoxLorentz, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_38(self, argc, argv);
+      }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Simulation_getOptions'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Simulation::getOptions() const\n"
-    "    Simulation::getOptions()\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_subscribe(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  ProgressHandler::Callback_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Simulation_subscribe", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_subscribe" "', argument " "1"" of type '" "Simulation *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorLorentz, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_39(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ProgressHandler__Callback_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_subscribe" "', argument " "2"" of type '" "ProgressHandler::Callback_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_subscribe" "', argument " "2"" of type '" "ProgressHandler::Callback_t""'");
-    } else {
-      ProgressHandler::Callback_t * temp = reinterpret_cast< ProgressHandler::Callback_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorPrism3, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_40(self, argc, argv);
+      }
     }
   }
-  (arg1)->subscribe(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_setTerminalProgressMonitor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setTerminalProgressMonitor" "', argument " "1"" of type '" "Simulation *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorPrism6, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_41(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  (arg1)->setTerminalProgressMonitor();
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation *arg1 = (Simulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getChildren" "', argument " "1"" of type '" "Simulation const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorPyramid, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_42(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  result = ((Simulation const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *Simulation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Simulation, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_delete_Simulation2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation2D *arg1 = (Simulation2D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Simulation2D" "', argument " "1"" of type '" "Simulation2D *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorRipple1Box, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_43(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation2D * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation2D *arg1 = (Simulation2D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Simulation2D *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_clone" "', argument " "1"" of type '" "Simulation2D const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorRipple1Gauss, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_44(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation2D * >(argp1);
-  result = (Simulation2D *)((Simulation2D const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Simulation2D, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation2D_prepareSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation2D *arg1 = (Simulation2D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_prepareSimulation" "', argument " "1"" of type '" "Simulation2D *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorRipple1Lorentz, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_45(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation2D * >(argp1);
-  (arg1)->prepareSimulation();
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation2D_setDetectorParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation2D *arg1 = (Simulation2D *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  double arg4 ;
-  size_t arg5 ;
-  double arg6 ;
-  double arg7 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  size_t val5 ;
-  int ecode5 = 0 ;
-  double val6 ;
-  int ecode6 = 0 ;
-  double val7 ;
-  int ecode7 = 0 ;
-  PyObject *swig_obj[7] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Simulation2D_setDetectorParameters", 7, 7, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_setDetectorParameters" "', argument " "1"" of type '" "Simulation2D *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorRipple2Box, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_46(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation2D * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Simulation2D_setDetectorParameters" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Simulation2D_setDetectorParameters" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Simulation2D_setDetectorParameters" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_size_t(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "Simulation2D_setDetectorParameters" "', argument " "5"" of type '" "size_t""'");
-  } 
-  arg5 = static_cast< size_t >(val5);
-  ecode6 = SWIG_AsVal_double(swig_obj[5], &val6);
-  if (!SWIG_IsOK(ecode6)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "Simulation2D_setDetectorParameters" "', argument " "6"" of type '" "double""'");
-  } 
-  arg6 = static_cast< double >(val6);
-  ecode7 = SWIG_AsVal_double(swig_obj[6], &val7);
-  if (!SWIG_IsOK(ecode7)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode7), "in method '" "Simulation2D_setDetectorParameters" "', argument " "7"" of type '" "double""'");
-  } 
-  arg7 = static_cast< double >(val7);
-  (arg1)->setDetectorParameters(arg2,arg3,arg4,arg5,arg6,arg7);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation2D_setDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation2D *arg1 = (Simulation2D *) 0 ;
-  IDetector2D *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Simulation2D_setDetector", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_setDetector" "', argument " "1"" of type '" "Simulation2D *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorRipple2Gauss, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_47(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation2D * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDetector2D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation2D_setDetector" "', argument " "2"" of type '" "IDetector2D const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorRipple2Lorentz, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_48(self, argc, argv);
+      }
+    }
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation2D_setDetector" "', argument " "2"" of type '" "IDetector2D const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorSphereGaussianRadius, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_49(self, argc, argv);
+      }
+    }
   }
-  arg2 = reinterpret_cast< IDetector2D * >(argp2);
-  (arg1)->setDetector((IDetector2D const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation2D_removeMasks(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation2D *arg1 = (Simulation2D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_removeMasks" "', argument " "1"" of type '" "Simulation2D *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_50(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation2D * >(argp1);
-  (arg1)->removeMasks();
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation2D_addMask__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Simulation2D *arg1 = (Simulation2D *) 0 ;
-  IShape2D *arg2 = 0 ;
-  bool arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  bool val3 ;
-  int ecode3 = 0 ;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_addMask" "', argument " "1"" of type '" "Simulation2D *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorTetrahedron, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_51(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation2D * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IShape2D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorTruncatedCube, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_52(self, argc, argv);
+      }
+    }
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorTruncatedSphere, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_53(self, argc, argv);
+      }
+    }
   }
-  arg2 = reinterpret_cast< IShape2D * >(argp2);
-  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Simulation2D_addMask" "', argument " "3"" of type '" "bool""'");
-  } 
-  arg3 = static_cast< bool >(val3);
-  (arg1)->addMask((IShape2D const &)*arg2,arg3);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation2D_addMask__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Simulation2D *arg1 = (Simulation2D *) 0 ;
-  IShape2D *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_addMask" "', argument " "1"" of type '" "Simulation2D *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorTruncatedSpheroid, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_54(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation2D * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IShape2D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FormFactorWeighted, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_55(self, argc, argv);
+      }
+    }
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction1DCauchy, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_56(self, argc, argv);
+      }
+    }
   }
-  arg2 = reinterpret_cast< IShape2D * >(argp2);
-  (arg1)->addMask((IShape2D const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation2D_addMask(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Simulation2D_addMask", 0, 3, argv))) SWIG_fail;
-  --argc;
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation2D, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IShape2D, SWIG_POINTER_NO_NULL | 0);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction1DGauss, 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_Simulation2D_addMask__SWIG_1(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_57(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation2D, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IShape2D, SWIG_POINTER_NO_NULL | 0);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction1DTriangle, 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_bool(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_Simulation2D_addMask__SWIG_0(self, argc, argv);
-        }
+        return _wrap_INodeVisitor_visit__SWIG_58(self, argc, argv);
       }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Simulation2D_addMask'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Simulation2D::addMask(IShape2D const &,bool)\n"
-    "    Simulation2D::addMask(IShape2D const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation2D_maskAll(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation2D *arg1 = (Simulation2D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_maskAll" "', argument " "1"" of type '" "Simulation2D *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction1DVoigt, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_59(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation2D * >(argp1);
-  (arg1)->maskAll();
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Simulation2D_setRegionOfInterest(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Simulation2D *arg1 = (Simulation2D *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double arg5 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  PyObject *swig_obj[5] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Simulation2D_setRegionOfInterest", 5, 5, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_setRegionOfInterest" "', argument " "1"" of type '" "Simulation2D *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction2DCauchy, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_60(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Simulation2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Simulation2D_setRegionOfInterest" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Simulation2D_setRegionOfInterest" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Simulation2D_setRegionOfInterest" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "Simulation2D_setRegionOfInterest" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  (arg1)->setRegionOfInterest(arg2,arg3,arg4,arg5);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *Simulation2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Simulation2D, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_new_SimulationOptions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_SimulationOptions", 0, 0, 0)) SWIG_fail;
-  result = (SimulationOptions *)new SimulationOptions();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationOptions, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_isIntegrate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  bool result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_isIntegrate" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction2DGauss, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_61(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  result = (bool)((SimulationOptions const *)arg1)->isIntegrate();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_getMcPoints(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_getMcPoints" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDecayFunction2DVoigt, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_62(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  result = ((SimulationOptions const *)arg1)->getMcPoints();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_setMonteCarloIntegration__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  bool arg2 ;
-  size_t arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  bool val2 ;
-  int ecode2 = 0 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setMonteCarloIntegration" "', argument " "1"" of type '" "SimulationOptions *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution1DCauchy, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_63(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationOptions_setMonteCarloIntegration" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "SimulationOptions_setMonteCarloIntegration" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  (arg1)->setMonteCarloIntegration(arg2,arg3);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_setMonteCarloIntegration__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  bool arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  bool val2 ;
-  int ecode2 = 0 ;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setMonteCarloIntegration" "', argument " "1"" of type '" "SimulationOptions *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution1DCosine, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_64(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationOptions_setMonteCarloIntegration" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  (arg1)->setMonteCarloIntegration(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_setMonteCarloIntegration__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setMonteCarloIntegration" "', argument " "1"" of type '" "SimulationOptions *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution1DGate, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_65(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  (arg1)->setMonteCarloIntegration();
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_setMonteCarloIntegration(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "SimulationOptions_setMonteCarloIntegration", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationOptions, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_SimulationOptions_setMonteCarloIntegration__SWIG_2(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution1DGauss, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_66(self, argc, argv);
+      }
     }
   }
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationOptions, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_bool(argv[1], NULL);
-        _v = SWIG_CheckState(res);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution1DTriangle, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_67(self, argc, argv);
       }
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution1DVoigt, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_SimulationOptions_setMonteCarloIntegration__SWIG_1(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_68(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationOptions, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_bool(argv[1], NULL);
-        _v = SWIG_CheckState(res);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution2DCauchy, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_69(self, argc, argv);
       }
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution2DCone, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_SimulationOptions_setMonteCarloIntegration__SWIG_0(self, argc, argv);
-        }
+        return _wrap_INodeVisitor_visit__SWIG_70(self, argc, argv);
       }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'SimulationOptions_setMonteCarloIntegration'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    SimulationOptions::setMonteCarloIntegration(bool,size_t)\n"
-    "    SimulationOptions::setMonteCarloIntegration(bool)\n"
-    "    SimulationOptions::setMonteCarloIntegration()\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_setNumberOfThreads(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  int arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "SimulationOptions_setNumberOfThreads", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setNumberOfThreads" "', argument " "1"" of type '" "SimulationOptions *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution2DGate, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_71(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationOptions_setNumberOfThreads" "', argument " "2"" of type '" "int""'");
-  } 
-  arg2 = static_cast< int >(val2);
-  (arg1)->setNumberOfThreads(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_getNumberOfThreads(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  unsigned int result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_getNumberOfThreads" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
-  }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  result = (unsigned int)((SimulationOptions const *)arg1)->getNumberOfThreads();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_setNumberOfBatches(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  int arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "SimulationOptions_setNumberOfBatches", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setNumberOfBatches" "', argument " "1"" of type '" "SimulationOptions *""'"); 
-  }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationOptions_setNumberOfBatches" "', argument " "2"" of type '" "int""'");
-  } 
-  arg2 = static_cast< int >(val2);
-  (arg1)->setNumberOfBatches(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_getNumberOfBatches(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  unsigned int result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_getNumberOfBatches" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
-  }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  result = (unsigned int)((SimulationOptions const *)arg1)->getNumberOfBatches();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_getCurrentBatch(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  unsigned int result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_getCurrentBatch" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
-  }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  result = (unsigned int)((SimulationOptions const *)arg1)->getCurrentBatch();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_setThreadInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  ThreadInfo *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "SimulationOptions_setThreadInfo", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setThreadInfo" "', argument " "1"" of type '" "SimulationOptions *""'"); 
-  }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ThreadInfo,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SimulationOptions_setThreadInfo" "', argument " "2"" of type '" "ThreadInfo const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SimulationOptions_setThreadInfo" "', argument " "2"" of type '" "ThreadInfo const &""'"); 
-  }
-  arg2 = reinterpret_cast< ThreadInfo * >(argp2);
-  (arg1)->setThreadInfo((ThreadInfo const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_getHardwareConcurrency(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  unsigned int result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_getHardwareConcurrency" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
-  }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  result = (unsigned int)((SimulationOptions const *)arg1)->getHardwareConcurrency();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_setIncludeSpecular(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  bool arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  bool val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "SimulationOptions_setIncludeSpecular", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setIncludeSpecular" "', argument " "1"" of type '" "SimulationOptions *""'"); 
-  }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationOptions_setIncludeSpecular" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  (arg1)->setIncludeSpecular(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_includeSpecular(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  bool result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_includeSpecular" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
-  }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  result = (bool)((SimulationOptions const *)arg1)->includeSpecular();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_setUseAvgMaterials(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  bool arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  bool val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "SimulationOptions_setUseAvgMaterials", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setUseAvgMaterials" "', argument " "1"" of type '" "SimulationOptions *""'"); 
-  }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationOptions_setUseAvgMaterials" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  (arg1)->setUseAvgMaterials(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationOptions_useAvgMaterials(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  bool result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_useAvgMaterials" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
-  }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  result = (bool)((SimulationOptions const *)arg1)->useAvgMaterials();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_SimulationOptions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SimulationOptions" "', argument " "1"" of type '" "SimulationOptions *""'"); 
-  }
-  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *SimulationOptions_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_SimulationOptions, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *SimulationOptions_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_GISASSimulation__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  GISASSimulation *result = 0 ;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (GISASSimulation *)new GISASSimulation();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_GISASSimulation, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_GISASSimulation__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  MultiLayer *arg1 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  GISASSimulation *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_MultiLayer,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_GISASSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_GISASSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
-  }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  result = (GISASSimulation *)new GISASSimulation((MultiLayer const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_GISASSimulation, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_GISASSimulation__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  std::shared_ptr< IMultiLayerBuilder > arg1 ;
-  void *argp1 ;
-  int res1 = 0 ;
-  GISASSimulation *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t,  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_GISASSimulation" "', argument " "1"" of type '" "std::shared_ptr< IMultiLayerBuilder > const""'");
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution2DGauss, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_72(self, argc, argv);
+      }
     }
-    if (argp1) arg1 = *(reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1));
-    if (newmem & SWIG_CAST_NEW_MEMORY) delete reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1);
   }
-  result = (GISASSimulation *)new GISASSimulation(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_GISASSimulation, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_GISASSimulation(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_GISASSimulation", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_GISASSimulation__SWIG_0(self, argc, argv);
-  }
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_MultiLayer, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_GISASSimulation__SWIG_1(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_FTDistribution2DVoigt, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_73(self, argc, argv);
+      }
     }
   }
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_GISASSimulation__SWIG_2(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_GISASSimulation, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_74(self, argc, argv);
+      }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_GISASSimulation'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    GISASSimulation::GISASSimulation()\n"
-    "    GISASSimulation::GISASSimulation(MultiLayer const &)\n"
-    "    GISASSimulation::GISASSimulation(std::shared_ptr< IMultiLayerBuilder > const)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_GISASSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_GISASSimulation" "', argument " "1"" of type '" "GISASSimulation *""'"); 
-  }
-  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_GISASSimulation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  GISASSimulation *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GISASSimulation_clone" "', argument " "1"" of type '" "GISASSimulation const *""'"); 
-  }
-  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
-  result = (GISASSimulation *)((GISASSimulation const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_GISASSimulation, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_GISASSimulation_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "GISASSimulation_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GISASSimulation_accept" "', argument " "1"" of type '" "GISASSimulation const *""'"); 
-  }
-  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "GISASSimulation_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
-  }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((GISASSimulation const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_GISASSimulation_prepareSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GISASSimulation_prepareSimulation" "', argument " "1"" of type '" "GISASSimulation *""'"); 
-  }
-  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
-  (arg1)->prepareSimulation();
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_GISASSimulation_result(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SimulationResult result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GISASSimulation_result" "', argument " "1"" of type '" "GISASSimulation const *""'"); 
-  }
-  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
-  result = ((GISASSimulation const *)arg1)->result();
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_GISASSimulation_setBeamParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "GISASSimulation_setBeamParameters", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GISASSimulation_setBeamParameters" "', argument " "1"" of type '" "GISASSimulation *""'"); 
-  }
-  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "GISASSimulation_setBeamParameters" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "GISASSimulation_setBeamParameters" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "GISASSimulation_setBeamParameters" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->setBeamParameters(arg2,arg3,arg4);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_GISASSimulation_intensityMapSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GISASSimulation_intensityMapSize" "', argument " "1"" of type '" "GISASSimulation const *""'"); 
-  }
-  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
-  result = ((GISASSimulation const *)arg1)->intensityMapSize();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *GISASSimulation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_GISASSimulation, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *GISASSimulation_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_delete_IHistogram(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IHistogram" "', argument " "1"" of type '" "IHistogram *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IHistogram *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_clone" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (IHistogram *)((IHistogram const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getRank(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getRank" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = ((IHistogram const *)arg1)->getRank();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getTotalNumberOfBins(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getTotalNumberOfBins" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = ((IHistogram const *)arg1)->getTotalNumberOfBins();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getXaxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IAxis *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getXaxis" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (IAxis *) &((IHistogram const *)arg1)->getXaxis();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getYaxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IAxis *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getYaxis" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (IAxis *) &((IHistogram const *)arg1)->getYaxis();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getXmin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getXmin" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (double)((IHistogram const *)arg1)->getXmin();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getXmax(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getXmax" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (double)((IHistogram const *)arg1)->getXmax();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getNbinsX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getNbinsX" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = ((IHistogram const *)arg1)->getNbinsX();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getYmin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getYmin" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (double)((IHistogram const *)arg1)->getYmin();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getYmax(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getYmax" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (double)((IHistogram const *)arg1)->getYmax();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getNbinsY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getNbinsY" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = ((IHistogram const *)arg1)->getNbinsY();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getGlobalBin__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  size_t arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  size_t result;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getGlobalBin" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getGlobalBin" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_getGlobalBin" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  result = ((IHistogram const *)arg1)->getGlobalBin(arg2,arg3);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getGlobalBin__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  size_t result;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getGlobalBin" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getGlobalBin" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((IHistogram const *)arg1)->getGlobalBin(arg2);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getGlobalBin(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getGlobalBin", 0, 3, argv))) SWIG_fail;
-  --argc;
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_HexagonalLattice, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_75(self, argc, argv);
       }
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_MesoCrystal, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_IHistogram_getGlobalBin__SWIG_1(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_107(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IClusteredParticles, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_77(self, argc, argv);
       }
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IdentityRotation, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IHistogram_getGlobalBin__SWIG_0(self, argc, argv);
-        }
+        return _wrap_INodeVisitor_visit__SWIG_78(self, argc, argv);
       }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getGlobalBin'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IHistogram::getGlobalBin(size_t,size_t) const\n"
-    "    IHistogram::getGlobalBin(size_t) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_findGlobalBin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  size_t result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_findGlobalBin", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_findGlobalBin" "', argument " "1"" of type '" "IHistogram const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IFormFactorBorn, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_80(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_findGlobalBin" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_findGlobalBin" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = ((IHistogram const *)arg1)->findGlobalBin(arg2,arg3);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getXaxisIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  size_t result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_getXaxisIndex", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getXaxisIndex" "', argument " "1"" of type '" "IHistogram const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IFormFactorDecorator, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_81(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getXaxisIndex" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((IHistogram const *)arg1)->getXaxisIndex(arg2);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getYaxisIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  size_t result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_getYaxisIndex", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getYaxisIndex" "', argument " "1"" of type '" "IHistogram const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IFormFactor, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_79(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getYaxisIndex" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((IHistogram const *)arg1)->getYaxisIndex(arg2);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getXaxisValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_getXaxisValue", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getXaxisValue" "', argument " "1"" of type '" "IHistogram *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunction1DLattice, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_88(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getXaxisValue" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = (double)(arg1)->getXaxisValue(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getYaxisValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_getYaxisValue", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getYaxisValue" "', argument " "1"" of type '" "IHistogram *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ParticleLayout, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_114(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getYaxisValue" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = (double)(arg1)->getYaxisValue(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getBinContent__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double result;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinContent" "', argument " "1"" of type '" "IHistogram const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_Instrument, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_85(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinContent" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = (double)((IHistogram const *)arg1)->getBinContent(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getData__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  OutputData< CumulativeValue > *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getData" "', argument " "1"" of type '" "IHistogram const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IntensityScaleAndShiftNormalizer, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_87(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (OutputData< CumulativeValue > *) &((IHistogram const *)arg1)->getData();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_CumulativeValue_t, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getData__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  OutputData< CumulativeValue > *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getData" "', argument " "1"" of type '" "IHistogram *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IntensityNormalizer, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_86(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (OutputData< CumulativeValue > *) &(arg1)->getData();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_CumulativeValue_t, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getData(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getData", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunction2DLattice, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_89(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_IHistogram_getData__SWIG_1(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_90(self, argc, argv);
+      }
     }
   }
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_IHistogram_getData__SWIG_0(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_91(self, argc, argv);
+      }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getData'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IHistogram::getData() const\n"
-    "    IHistogram::getData()\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getBinContent__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  size_t arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  double result;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinContent" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinContent" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_getBinContent" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  result = (double)((IHistogram const *)arg1)->getBinContent(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getBinContent(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getBinContent", 0, 3, argv))) SWIG_fail;
-  --argc;
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunction3DLattice, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_IHistogram_getBinContent__SWIG_0(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_92(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IHistogram_getBinContent__SWIG_1(self, argc, argv);
-        }
+        return _wrap_INodeVisitor_visit__SWIG_93(self, argc, argv);
       }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getBinContent'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IHistogram::getBinContent(size_t) const\n"
-    "    IHistogram::getBinContent(size_t,size_t) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_setBinContent(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_setBinContent", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_setBinContent" "', argument " "1"" of type '" "IHistogram *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_setBinContent" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_setBinContent" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  (arg1)->setBinContent(arg2,arg3);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_addBinContent(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_addBinContent", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_addBinContent" "', argument " "1"" of type '" "IHistogram *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_addBinContent" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_addBinContent" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  (arg1)->addBinContent(arg2,arg3);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getBinError__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double result;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinError" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinError" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = (double)((IHistogram const *)arg1)->getBinError(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getBinError__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  size_t arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  double result;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinError" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinError" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_getBinError" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  result = (double)((IHistogram const *)arg1)->getBinError(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getBinError(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getBinError", 0, 3, argv))) SWIG_fail;
-  --argc;
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_IHistogram_getBinError__SWIG_0(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_94(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunctionHardDisk, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IHistogram_getBinError__SWIG_1(self, argc, argv);
-        }
+        return _wrap_INodeVisitor_visit__SWIG_95(self, argc, argv);
       }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getBinError'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IHistogram::getBinError(size_t) const\n"
-    "    IHistogram::getBinError(size_t,size_t) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getBinAverage__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double result;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinAverage" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinAverage" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = (double)((IHistogram const *)arg1)->getBinAverage(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getBinAverage__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  size_t arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  double result;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinAverage" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinAverage" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_getBinAverage" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  result = (double)((IHistogram const *)arg1)->getBinAverage(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getBinAverage(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getBinAverage", 0, 3, argv))) SWIG_fail;
-  --argc;
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_IHistogram_getBinAverage__SWIG_0(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_96(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunctionTwin, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IHistogram_getBinAverage__SWIG_1(self, argc, argv);
-        }
+        return _wrap_INodeVisitor_visit__SWIG_97(self, argc, argv);
       }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getBinAverage'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IHistogram::getBinAverage(size_t) const\n"
-    "    IHistogram::getBinAverage(size_t,size_t) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getBinNumberOfEntries__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  int result;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinNumberOfEntries" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinNumberOfEntries" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = (int)((IHistogram const *)arg1)->getBinNumberOfEntries(arg2);
-  resultobj = SWIG_From_int(static_cast< int >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getBinNumberOfEntries__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  size_t arg2 ;
-  size_t arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  int result;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinNumberOfEntries" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinNumberOfEntries" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_getBinNumberOfEntries" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  result = (int)((IHistogram const *)arg1)->getBinNumberOfEntries(arg2,arg3);
-  resultobj = SWIG_From_int(static_cast< int >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getBinNumberOfEntries(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getBinNumberOfEntries", 0, 3, argv))) SWIG_fail;
-  --argc;
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_InterferenceFunctionNone, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_IHistogram_getBinNumberOfEntries__SWIG_0(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_98(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IInterferenceFunction, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IHistogram_getBinNumberOfEntries__SWIG_1(self, argc, argv);
-        }
+        return _wrap_INodeVisitor_visit__SWIG_82(self, argc, argv);
       }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getBinNumberOfEntries'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IHistogram::getBinNumberOfEntries(size_t) const\n"
-    "    IHistogram::getBinNumberOfEntries(size_t,size_t) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getMaximum(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getMaximum" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (double)((IHistogram const *)arg1)->getMaximum();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getMaximumBinIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getMaximumBinIndex" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = ((IHistogram const *)arg1)->getMaximumBinIndex();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getMinimum(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getMinimum" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (double)((IHistogram const *)arg1)->getMinimum();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getMinimumBinIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getMinimumBinIndex" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = ((IHistogram const *)arg1)->getMinimumBinIndex();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_scale(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_scale", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_scale" "', argument " "1"" of type '" "IHistogram *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_scale" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->scale(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_integral(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_integral" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (double)((IHistogram const *)arg1)->integral();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_array__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  IHistogram::DataType arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
-  PyObject *result = 0 ;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_array" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_array" "', argument " "2"" of type '" "IHistogram::DataType""'");
-  } 
-  arg2 = static_cast< IHistogram::DataType >(val2);
-  result = (PyObject *)((IHistogram const *)arg1)->array(arg2);
-  resultobj = result;
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_array__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_array" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (PyObject *)((IHistogram const *)arg1)->array();
-  resultobj = result;
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_array(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_array", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_IHistogram_array__SWIG_1(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_Particle, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_110(self, argc, argv);
+      }
     }
   }
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_int(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IPeakShape, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_IHistogram_array__SWIG_0(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_100(self, argc, argv);
       }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_array'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IHistogram::array(IHistogram::DataType) const\n"
-    "    IHistogram::array() const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getArrayObsolete__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  IHistogram::DataType arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
-  PyObject *result = 0 ;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getArrayObsolete" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getArrayObsolete" "', argument " "2"" of type '" "IHistogram::DataType""'");
-  } 
-  arg2 = static_cast< IHistogram::DataType >(val2);
-  result = (PyObject *)((IHistogram const *)arg1)->getArray(arg2);
-  resultobj = result;
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getArrayObsolete__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getArrayObsolete" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (PyObject *)((IHistogram const *)arg1)->getArray();
-  resultobj = result;
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_getArrayObsolete(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getArrayObsolete", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_IHistogram_getArrayObsolete__SWIG_1(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_RotationEuler, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_118(self, argc, argv);
+      }
     }
   }
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_int(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_Layer, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_IHistogram_getArrayObsolete__SWIG_0(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_104(self, argc, argv);
       }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getArrayObsolete'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IHistogram::getArray(IHistogram::DataType) const\n"
-    "    IHistogram::getArray() const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_reset(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_reset" "', argument " "1"" of type '" "IHistogram *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  (arg1)->reset();
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_createHistogram(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  OutputData< double > *arg1 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IHistogram *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_createHistogram" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_createHistogram" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = (IHistogram *)IHistogram::createHistogram((OutputData< double > const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_createFrom__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  IHistogram *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_createFrom" "', argument " "1"" of type '" "std::string const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IsGISAXSDetector, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_103(self, argc, argv);
+      }
     }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_createFrom" "', argument " "1"" of type '" "std::string const &""'"); 
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_LayerRoughness, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_106(self, argc, argv);
+      }
     }
-    arg1 = ptr;
   }
-  result = (IHistogram *)IHistogram::createFrom((std::string const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_createFrom__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg1 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  IHistogram *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    res1 = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_createFrom" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ParticleComposition, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_111(self, argc, argv);
+      }
     }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_createFrom" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_LayerInterface, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_105(self, argc, argv);
+      }
     }
-    arg1 = ptr;
   }
-  result = (IHistogram *)IHistogram::createFrom((std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_createFrom(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_createFrom", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_MultiLayer, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_108(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 2) {
     int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_IHistogram_createFrom__SWIG_0(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ParticleCoreShell, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_112(self, argc, argv);
+      }
     }
   }
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_IHistogram_createFrom__SWIG_1(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_OffSpecSimulation, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_109(self, argc, argv);
+      }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_createFrom'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IHistogram::createFrom(std::string const &)\n"
-    "    IHistogram::createFrom(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_createOutputData__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  IHistogram::DataType arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
-  OutputData< double > *result = 0 ;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_createOutputData" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_createOutputData" "', argument " "2"" of type '" "IHistogram::DataType""'");
-  } 
-  arg2 = static_cast< IHistogram::DataType >(val2);
-  result = (OutputData< double > *)((IHistogram const *)arg1)->createOutputData(arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_createOutputData__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  OutputData< double > *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_createOutputData" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  result = (OutputData< double > *)((IHistogram const *)arg1)->createOutputData();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_createOutputData(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_createOutputData", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_IHistogram_createOutputData__SWIG_1(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IParticle, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_99(self, argc, argv);
+      }
     }
   }
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_int(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ParticleDistribution, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_IHistogram_createOutputData__SWIG_0(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_113(self, argc, argv);
       }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_createOutputData'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IHistogram::createOutputData(IHistogram::DataType) const\n"
-    "    IHistogram::createOutputData() const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_hasSameShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  IHistogram *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  bool result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_hasSameShape", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_hasSameShape" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IHistogram,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IHistogram_hasSameShape" "', argument " "2"" of type '" "IHistogram const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_hasSameShape" "', argument " "2"" of type '" "IHistogram const &""'"); 
-  }
-  arg2 = reinterpret_cast< IHistogram * >(argp2);
-  result = (bool)((IHistogram const *)arg1)->hasSameShape((IHistogram const &)*arg2);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_hasSameDimensions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  IHistogram *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  bool result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_hasSameDimensions", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_hasSameDimensions" "', argument " "1"" of type '" "IHistogram const *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IHistogram,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IHistogram_hasSameDimensions" "', argument " "2"" of type '" "IHistogram const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_hasSameDimensions" "', argument " "2"" of type '" "IHistogram const &""'"); 
-  }
-  arg2 = reinterpret_cast< IHistogram * >(argp2);
-  result = (bool)((IHistogram const *)arg1)->hasSameDimensions((IHistogram const &)*arg2);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram___iadd__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  IHistogram *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  IHistogram *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram___iadd__", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram___iadd__" "', argument " "1"" of type '" "IHistogram *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IHistogram,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IHistogram___iadd__" "', argument " "2"" of type '" "IHistogram const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram___iadd__" "', argument " "2"" of type '" "IHistogram const &""'"); 
-  }
-  arg2 = reinterpret_cast< IHistogram * >(argp2);
-  result = (IHistogram *) &(arg1)->operator +=((IHistogram const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_relativeDifferenceHistogram(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  IHistogram *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  IHistogram *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_relativeDifferenceHistogram", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_relativeDifferenceHistogram" "', argument " "1"" of type '" "IHistogram *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IHistogram,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IHistogram_relativeDifferenceHistogram" "', argument " "2"" of type '" "IHistogram const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_relativeDifferenceHistogram" "', argument " "2"" of type '" "IHistogram const &""'"); 
-  }
-  arg2 = reinterpret_cast< IHistogram * >(argp2);
-  result = (IHistogram *)(arg1)->relativeDifferenceHistogram((IHistogram const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_save(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  std::string *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_save", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_save" "', argument " "1"" of type '" "IHistogram *""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IHistogram_save" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_save" "', argument " "2"" of type '" "std::string const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IAbstractParticle, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_76(self, argc, argv);
+      }
     }
-    arg2 = ptr;
-  }
-  (arg1)->save((std::string const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IHistogram_load(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IHistogram *arg1 = (IHistogram *) 0 ;
-  std::string *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IHistogram_load", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_load" "', argument " "1"" of type '" "IHistogram *""'"); 
   }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IHistogram_load" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_load" "', argument " "2"" of type '" "std::string const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ILayout, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_83(self, argc, argv);
+      }
     }
-    arg2 = ptr;
   }
-  (arg1)->load((std::string const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *IHistogram_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IHistogram, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_new_Histogram1D__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  int arg1 ;
-  double arg2 ;
-  double arg3 ;
-  int val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  Histogram1D *result = 0 ;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Histogram1D" "', argument " "1"" of type '" "int""'");
-  } 
-  arg1 = static_cast< int >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Histogram1D" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Histogram1D" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (Histogram1D *)new Histogram1D(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_Histogram1D__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  int arg1 ;
-  std::vector< double,std::allocator< double > > *arg2 = 0 ;
-  int val1 ;
-  int ecode1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  Histogram1D *result = 0 ;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Histogram1D" "', argument " "1"" of type '" "int""'");
-  } 
-  arg1 = static_cast< int >(val1);
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res2 = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Histogram1D" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram1D" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_RotationX, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_119(self, argc, argv);
+      }
     }
-    arg2 = ptr;
-  }
-  result = (Histogram1D *)new Histogram1D(arg1,(std::vector< double,std::allocator< double > > const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_Histogram1D__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  IAxis *arg1 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  Histogram1D *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IAxis,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Histogram1D" "', argument " "1"" of type '" "IAxis const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram1D" "', argument " "1"" of type '" "IAxis const &""'"); 
-  }
-  arg1 = reinterpret_cast< IAxis * >(argp1);
-  result = (Histogram1D *)new Histogram1D((IAxis const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_Histogram1D__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  OutputData< double > *arg1 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  Histogram1D *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Histogram1D" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram1D" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = (Histogram1D *)new Histogram1D((OutputData< double > const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_Histogram1D(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Histogram1D", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IAxis, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_Histogram1D__SWIG_2(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_PoissonNoiseBackground, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_115(self, argc, argv);
+      }
     }
   }
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_Histogram1D__SWIG_3(self, argc, argv);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_RectangularDetector, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_116(self, argc, argv);
+      }
     }
   }
   if (argc == 2) {
     int _v;
-    {
-      int res = SWIG_AsVal_int(argv[0], NULL);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ResolutionFunction2DGaussian, 0);
       _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_117(self, argc, argv);
+      }
     }
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      int res = swig::asptr(argv[1], (std::vector< double,std::allocator< double > >**)(0));
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_RotationY, 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_new_Histogram1D__SWIG_1(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_120(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
-    {
-      int res = SWIG_AsVal_int(argv[0], NULL);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_RotationZ, 0);
       _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_121(self, argc, argv);
+      }
     }
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_IRotation, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_Histogram1D__SWIG_0(self, argc, argv);
-        }
+        return _wrap_INodeVisitor_visit__SWIG_101(self, argc, argv);
       }
     }
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Histogram1D'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Histogram1D::Histogram1D(int,double,double)\n"
-    "    Histogram1D::Histogram1D(int,std::vector< double,std::allocator< double > > const &)\n"
-    "    Histogram1D::Histogram1D(IAxis const &)\n"
-    "    Histogram1D::Histogram1D(OutputData< double > const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_Histogram1D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Histogram1D *arg1 = (Histogram1D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Histogram1D *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_clone" "', argument " "1"" of type '" "Histogram1D const *""'"); 
-  }
-  arg1 = reinterpret_cast< Histogram1D * >(argp1);
-  result = (Histogram1D *)((Histogram1D const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Histogram1D_getRank(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Histogram1D *arg1 = (Histogram1D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getRank" "', argument " "1"" of type '" "Histogram1D const *""'"); 
-  }
-  arg1 = reinterpret_cast< Histogram1D * >(argp1);
-  result = ((Histogram1D const *)arg1)->getRank();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Histogram1D_fill__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Histogram1D *arg1 = (Histogram1D *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  int result;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_fill" "', argument " "1"" of type '" "Histogram1D *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_ISample, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_102(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Histogram1D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram1D_fill" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram1D_fill" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (int)(arg1)->fill(arg2,arg3);
-  resultobj = SWIG_From_int(static_cast< int >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Histogram1D_fill__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Histogram1D *arg1 = (Histogram1D *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  int result;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_fill" "', argument " "1"" of type '" "Histogram1D *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_SpecularSimulation, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_123(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< Histogram1D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram1D_fill" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (int)(arg1)->fill(arg2);
-  resultobj = SWIG_From_int(static_cast< int >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Histogram1D_fill(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Histogram1D_fill", 0, 3, argv))) SWIG_fail;
-  --argc;
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram1D, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_SpecularDetector1D, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_122(self, argc, argv);
       }
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_SphericalDetector, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_Histogram1D_fill__SWIG_1(self, argc, argv);
+        return _wrap_INodeVisitor_visit__SWIG_124(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram1D, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_SquareLattice, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_INodeVisitor_visit__SWIG_125(self, argc, argv);
       }
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_INodeVisitor, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_INode, 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_Histogram1D_fill__SWIG_0(self, argc, argv);
-        }
+        return _wrap_INodeVisitor_visit__SWIG_84(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Histogram1D_fill'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'INodeVisitor_visit'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    Histogram1D::fill(double,double)\n"
-    "    Histogram1D::fill(double)\n");
+    "    INodeVisitor::visit(BasicLattice const *)\n"
+    "    INodeVisitor::visit(Beam const *)\n"
+    "    INodeVisitor::visit(ConstantBackground const *)\n"
+    "    INodeVisitor::visit(ConvolutionDetectorResolution const *)\n"
+    "    INodeVisitor::visit(Crystal const *)\n"
+    "    INodeVisitor::visit(DistributionCosine const *)\n"
+    "    INodeVisitor::visit(DistributionGate const *)\n"
+    "    INodeVisitor::visit(DistributionGaussian const *)\n"
+    "    INodeVisitor::visit(DistributionLogNormal const *)\n"
+    "    INodeVisitor::visit(DistributionLorentz const *)\n"
+    "    INodeVisitor::visit(DistributionTrapezoid const *)\n"
+    "    INodeVisitor::visit(FootprintGauss const *)\n"
+    "    INodeVisitor::visit(FootprintSquare const *)\n"
+    "    INodeVisitor::visit(FormFactorAnisoPyramid const *)\n"
+    "    INodeVisitor::visit(FormFactorBarGauss const *)\n"
+    "    INodeVisitor::visit(FormFactorBarLorentz const *)\n"
+    "    INodeVisitor::visit(FormFactorBox const *)\n"
+    "    INodeVisitor::visit(FormFactorCantellatedCube const *)\n"
+    "    INodeVisitor::visit(FormFactorCone const *)\n"
+    "    INodeVisitor::visit(FormFactorCone6 const *)\n"
+    "    INodeVisitor::visit(FormFactorCoreShell const *)\n"
+    "    INodeVisitor::visit(FormFactorCrystal const *)\n"
+    "    INodeVisitor::visit(FormFactorCuboctahedron const *)\n"
+    "    INodeVisitor::visit(FormFactorCylinder const *)\n"
+    "    INodeVisitor::visit(FormFactorDWBA const *)\n"
+    "    INodeVisitor::visit(FormFactorDWBAPol const *)\n"
+    "    INodeVisitor::visit(FormFactorDecoratorMaterial const *)\n"
+    "    INodeVisitor::visit(FormFactorDecoratorPositionFactor const *)\n"
+    "    INodeVisitor::visit(FormFactorDecoratorRotation const *)\n"
+    "    INodeVisitor::visit(FormFactorDodecahedron const *)\n"
+    "    INodeVisitor::visit(FormFactorDot const *)\n"
+    "    INodeVisitor::visit(FormFactorEllipsoidalCylinder const *)\n"
+    "    INodeVisitor::visit(FormFactorFullSphere const *)\n"
+    "    INodeVisitor::visit(FormFactorFullSpheroid const *)\n"
+    "    INodeVisitor::visit(FormFactorGauss const *)\n"
+    "    INodeVisitor::visit(FormFactorHemiEllipsoid const *)\n"
+    "    INodeVisitor::visit(FormFactorIcosahedron const *)\n"
+    "    INodeVisitor::visit(FormFactorLongBoxGauss const *)\n"
+    "    INodeVisitor::visit(FormFactorLongBoxLorentz const *)\n"
+    "    INodeVisitor::visit(FormFactorLorentz const *)\n"
+    "    INodeVisitor::visit(FormFactorPrism3 const *)\n"
+    "    INodeVisitor::visit(FormFactorPrism6 const *)\n"
+    "    INodeVisitor::visit(FormFactorPyramid const *)\n"
+    "    INodeVisitor::visit(FormFactorRipple1Box const *)\n"
+    "    INodeVisitor::visit(FormFactorRipple1Gauss const *)\n"
+    "    INodeVisitor::visit(FormFactorRipple1Lorentz const *)\n"
+    "    INodeVisitor::visit(FormFactorRipple2Box const *)\n"
+    "    INodeVisitor::visit(FormFactorRipple2Gauss const *)\n"
+    "    INodeVisitor::visit(FormFactorRipple2Lorentz const *)\n"
+    "    INodeVisitor::visit(FormFactorSphereGaussianRadius const *)\n"
+    "    INodeVisitor::visit(FormFactorSphereLogNormalRadius const *)\n"
+    "    INodeVisitor::visit(FormFactorTetrahedron const *)\n"
+    "    INodeVisitor::visit(FormFactorTruncatedCube const *)\n"
+    "    INodeVisitor::visit(FormFactorTruncatedSphere const *)\n"
+    "    INodeVisitor::visit(FormFactorTruncatedSpheroid const *)\n"
+    "    INodeVisitor::visit(FormFactorWeighted const *)\n"
+    "    INodeVisitor::visit(FTDecayFunction1DCauchy const *)\n"
+    "    INodeVisitor::visit(FTDecayFunction1DGauss const *)\n"
+    "    INodeVisitor::visit(FTDecayFunction1DTriangle const *)\n"
+    "    INodeVisitor::visit(FTDecayFunction1DVoigt const *)\n"
+    "    INodeVisitor::visit(FTDecayFunction2DCauchy const *)\n"
+    "    INodeVisitor::visit(FTDecayFunction2DGauss const *)\n"
+    "    INodeVisitor::visit(FTDecayFunction2DVoigt const *)\n"
+    "    INodeVisitor::visit(FTDistribution1DCauchy const *)\n"
+    "    INodeVisitor::visit(FTDistribution1DCosine const *)\n"
+    "    INodeVisitor::visit(FTDistribution1DGate const *)\n"
+    "    INodeVisitor::visit(FTDistribution1DGauss const *)\n"
+    "    INodeVisitor::visit(FTDistribution1DTriangle const *)\n"
+    "    INodeVisitor::visit(FTDistribution1DVoigt const *)\n"
+    "    INodeVisitor::visit(FTDistribution2DCauchy const *)\n"
+    "    INodeVisitor::visit(FTDistribution2DCone const *)\n"
+    "    INodeVisitor::visit(FTDistribution2DGate const *)\n"
+    "    INodeVisitor::visit(FTDistribution2DGauss const *)\n"
+    "    INodeVisitor::visit(FTDistribution2DVoigt const *)\n"
+    "    INodeVisitor::visit(GISASSimulation const *)\n"
+    "    INodeVisitor::visit(HexagonalLattice const *)\n"
+    "    INodeVisitor::visit(IAbstractParticle const *)\n"
+    "    INodeVisitor::visit(IClusteredParticles const *)\n"
+    "    INodeVisitor::visit(IdentityRotation const *)\n"
+    "    INodeVisitor::visit(IFormFactor const *)\n"
+    "    INodeVisitor::visit(IFormFactorBorn const *)\n"
+    "    INodeVisitor::visit(IFormFactorDecorator const *)\n"
+    "    INodeVisitor::visit(IInterferenceFunction const *)\n"
+    "    INodeVisitor::visit(ILayout const *)\n"
+    "    INodeVisitor::visit(INode const *)\n"
+    "    INodeVisitor::visit(Instrument const *)\n"
+    "    INodeVisitor::visit(IntensityNormalizer const *)\n"
+    "    INodeVisitor::visit(IntensityScaleAndShiftNormalizer const *)\n"
+    "    INodeVisitor::visit(InterferenceFunction1DLattice const *)\n"
+    "    INodeVisitor::visit(InterferenceFunction2DLattice const *)\n"
+    "    INodeVisitor::visit(InterferenceFunction2DParaCrystal const *)\n"
+    "    INodeVisitor::visit(InterferenceFunction2DSuperLattice const *)\n"
+    "    INodeVisitor::visit(InterferenceFunction3DLattice const *)\n"
+    "    INodeVisitor::visit(InterferenceFunctionFinite2DLattice const *)\n"
+    "    INodeVisitor::visit(InterferenceFunctionFinite3DLattice const *)\n"
+    "    INodeVisitor::visit(InterferenceFunctionHardDisk const *)\n"
+    "    INodeVisitor::visit(InterferenceFunctionRadialParaCrystal const *)\n"
+    "    INodeVisitor::visit(InterferenceFunctionTwin const *)\n"
+    "    INodeVisitor::visit(InterferenceFunctionNone const *)\n"
+    "    INodeVisitor::visit(IParticle const *)\n"
+    "    INodeVisitor::visit(IPeakShape const *)\n"
+    "    INodeVisitor::visit(IRotation const *)\n"
+    "    INodeVisitor::visit(ISample const *)\n"
+    "    INodeVisitor::visit(IsGISAXSDetector const *)\n"
+    "    INodeVisitor::visit(Layer const *)\n"
+    "    INodeVisitor::visit(LayerInterface const *)\n"
+    "    INodeVisitor::visit(LayerRoughness const *)\n"
+    "    INodeVisitor::visit(MesoCrystal const *)\n"
+    "    INodeVisitor::visit(MultiLayer const *)\n"
+    "    INodeVisitor::visit(OffSpecSimulation const *)\n"
+    "    INodeVisitor::visit(Particle const *)\n"
+    "    INodeVisitor::visit(ParticleComposition const *)\n"
+    "    INodeVisitor::visit(ParticleCoreShell const *)\n"
+    "    INodeVisitor::visit(ParticleDistribution const *)\n"
+    "    INodeVisitor::visit(ParticleLayout const *)\n"
+    "    INodeVisitor::visit(PoissonNoiseBackground const *)\n"
+    "    INodeVisitor::visit(RectangularDetector const *)\n"
+    "    INodeVisitor::visit(ResolutionFunction2DGaussian const *)\n"
+    "    INodeVisitor::visit(RotationEuler const *)\n"
+    "    INodeVisitor::visit(RotationX const *)\n"
+    "    INodeVisitor::visit(RotationY const *)\n"
+    "    INodeVisitor::visit(RotationZ const *)\n"
+    "    INodeVisitor::visit(SpecularDetector1D const *)\n"
+    "    INodeVisitor::visit(SpecularSimulation const *)\n"
+    "    INodeVisitor::visit(SphericalDetector const *)\n"
+    "    INodeVisitor::visit(SquareLattice const *)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram1D_getBinCenters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_depth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram1D *arg1 = (Histogram1D *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< double,std::allocator< double > > result;
+  int result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getBinCenters" "', argument " "1"" of type '" "Histogram1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_depth" "', argument " "1"" of type '" "INodeVisitor const *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram1D * >(argp1);
-  result = ((Histogram1D const *)arg1)->getBinCenters();
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  result = (int)((INodeVisitor const *)arg1)->depth();
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram1D_getBinValues(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_INodeVisitor_setDepth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram1D *arg1 = (Histogram1D *) 0 ;
+  INodeVisitor *arg1 = (INodeVisitor *) 0 ;
+  int arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< double,std::allocator< double > > result;
+  int val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "INodeVisitor_setDepth", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getBinValues" "', argument " "1"" of type '" "Histogram1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "INodeVisitor_setDepth" "', argument " "1"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram1D * >(argp1);
-  result = ((Histogram1D const *)arg1)->getBinValues();
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< INodeVisitor * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "INodeVisitor_setDepth" "', argument " "2"" of type '" "int""'");
+  } 
+  arg2 = static_cast< int >(val2);
+  (arg1)->setDepth(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram1D_getBinErrors(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Histogram1D *arg1 = (Histogram1D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< double,std::allocator< double > > result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getBinErrors" "', argument " "1"" of type '" "Histogram1D const *""'"); 
-  }
-  arg1 = reinterpret_cast< Histogram1D * >(argp1);
-  result = ((Histogram1D const *)arg1)->getBinErrors();
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *INodeVisitor_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_INodeVisitor, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *INodeVisitor_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_Histogram1D_getBinCentersNumpy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VisitNodesPreorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram1D *arg1 = (Histogram1D *) 0 ;
+  INode *arg1 = 0 ;
+  INodeVisitor *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  PyObject *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "VisitNodesPreorder", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_INode,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getBinCentersNumpy" "', argument " "1"" of type '" "Histogram1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VisitNodesPreorder" "', argument " "1"" of type '" "INode const &""'"); 
   }
-  arg1 = reinterpret_cast< Histogram1D * >(argp1);
-  result = (PyObject *)((Histogram1D const *)arg1)->getBinCentersNumpy();
-  resultobj = result;
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VisitNodesPreorder" "', argument " "1"" of type '" "INode const &""'"); 
+  }
+  arg1 = reinterpret_cast< INode * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_INodeVisitor,  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VisitNodesPreorder" "', argument " "2"" of type '" "INodeVisitor &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VisitNodesPreorder" "', argument " "2"" of type '" "INodeVisitor &""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  VisitNodesPreorder((INode const &)*arg1,*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram1D_getBinValuesNumpy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_VisitNodesPostorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram1D *arg1 = (Histogram1D *) 0 ;
+  INode *arg1 = 0 ;
+  INodeVisitor *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  PyObject *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "VisitNodesPostorder", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_INode,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getBinValuesNumpy" "', argument " "1"" of type '" "Histogram1D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VisitNodesPostorder" "', argument " "1"" of type '" "INode const &""'"); 
   }
-  arg1 = reinterpret_cast< Histogram1D * >(argp1);
-  result = (PyObject *)((Histogram1D const *)arg1)->getBinValuesNumpy();
-  resultobj = result;
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VisitNodesPostorder" "', argument " "1"" of type '" "INode const &""'"); 
+  }
+  arg1 = reinterpret_cast< INode * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_INodeVisitor,  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VisitNodesPostorder" "', argument " "2"" of type '" "INodeVisitor &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VisitNodesPostorder" "', argument " "2"" of type '" "INodeVisitor &""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  VisitNodesPostorder((INode const &)*arg1,*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram1D_getBinErrorsNumpy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_SimulationOptions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram1D *arg1 = (Histogram1D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  PyObject *result = 0 ;
+  SimulationOptions *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getBinErrorsNumpy" "', argument " "1"" of type '" "Histogram1D const *""'"); 
-  }
-  arg1 = reinterpret_cast< Histogram1D * >(argp1);
-  result = (PyObject *)((Histogram1D const *)arg1)->getBinErrorsNumpy();
-  resultobj = result;
+  if (!SWIG_Python_UnpackTuple(args, "new_SimulationOptions", 0, 0, 0)) SWIG_fail;
+  result = (SimulationOptions *)new SimulationOptions();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationOptions, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram1D_crop(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_isIntegrate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram1D *arg1 = (Histogram1D *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  Histogram1D *result = 0 ;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "Histogram1D_crop", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_crop" "', argument " "1"" of type '" "Histogram1D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_isIntegrate" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram1D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram1D_crop" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram1D_crop" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (Histogram1D *)(arg1)->crop(arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  result = (bool)((SimulationOptions const *)arg1)->isIntegrate();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Histogram1D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_getMcPoints(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram1D *arg1 = (Histogram1D *) 0 ;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Histogram1D" "', argument " "1"" of type '" "Histogram1D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_getMcPoints" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram1D * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  result = ((SimulationOptions const *)arg1)->getMcPoints();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *Histogram1D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Histogram1D, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *Histogram1D_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_Histogram2D__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_setMonteCarloIntegration__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  int arg1 ;
-  double arg2 ;
-  double arg3 ;
-  int arg4 ;
-  double arg5 ;
-  double arg6 ;
-  int val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
+  bool arg2 ;
+  size_t arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  bool val2 ;
   int ecode2 = 0 ;
-  double val3 ;
+  size_t val3 ;
   int ecode3 = 0 ;
-  int val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  double val6 ;
-  int ecode6 = 0 ;
-  Histogram2D *result = 0 ;
   
-  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
-  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Histogram2D" "', argument " "1"" of type '" "int""'");
-  } 
-  arg1 = static_cast< int >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setMonteCarloIntegration" "', argument " "1"" of type '" "SimulationOptions *""'"); 
+  }
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Histogram2D" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Histogram2D" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_int(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_Histogram2D" "', argument " "4"" of type '" "int""'");
-  } 
-  arg4 = static_cast< int >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_Histogram2D" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  ecode6 = SWIG_AsVal_double(swig_obj[5], &val6);
-  if (!SWIG_IsOK(ecode6)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "new_Histogram2D" "', argument " "6"" of type '" "double""'");
-  } 
-  arg6 = static_cast< double >(val6);
-  result = (Histogram2D *)new Histogram2D(arg1,arg2,arg3,arg4,arg5,arg6);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_Histogram2D__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  int arg1 ;
-  std::vector< double,std::allocator< double > > *arg2 = 0 ;
-  int arg3 ;
-  std::vector< double,std::allocator< double > > *arg4 = 0 ;
-  int val1 ;
-  int ecode1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  int val3 ;
-  int ecode3 = 0 ;
-  int res4 = SWIG_OLDOBJ ;
-  Histogram2D *result = 0 ;
-  
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Histogram2D" "', argument " "1"" of type '" "int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationOptions_setMonteCarloIntegration" "', argument " "2"" of type '" "bool""'");
   } 
-  arg1 = static_cast< int >(val1);
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res2 = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Histogram2D" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram2D" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg2 = ptr;
-  }
-  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
+  arg2 = static_cast< bool >(val2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Histogram2D" "', argument " "3"" of type '" "int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "SimulationOptions_setMonteCarloIntegration" "', argument " "3"" of type '" "size_t""'");
   } 
-  arg3 = static_cast< int >(val3);
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res4 = swig::asptr(swig_obj[3], &ptr);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_Histogram2D" "', argument " "4"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram2D" "', argument " "4"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg4 = ptr;
-  }
-  result = (Histogram2D *)new Histogram2D(arg1,(std::vector< double,std::allocator< double > > const &)*arg2,arg3,(std::vector< double,std::allocator< double > > const &)*arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  if (SWIG_IsNewObj(res4)) delete arg4;
+  arg3 = static_cast< size_t >(val3);
+  (arg1)->setMonteCarloIntegration(arg2,arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
-  if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Histogram2D__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_setMonteCarloIntegration__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IAxis *arg1 = 0 ;
-  IAxis *arg2 = 0 ;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
+  bool arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  Histogram2D *result = 0 ;
+  bool val2 ;
+  int ecode2 = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IAxis,  0  | 0);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Histogram2D" "', argument " "1"" of type '" "IAxis const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram2D" "', argument " "1"" of type '" "IAxis const &""'"); 
-  }
-  arg1 = reinterpret_cast< IAxis * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAxis,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Histogram2D" "', argument " "2"" of type '" "IAxis const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram2D" "', argument " "2"" of type '" "IAxis const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setMonteCarloIntegration" "', argument " "1"" of type '" "SimulationOptions *""'"); 
   }
-  arg2 = reinterpret_cast< IAxis * >(argp2);
-  result = (Histogram2D *)new Histogram2D((IAxis const &)*arg1,(IAxis const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationOptions_setMonteCarloIntegration" "', argument " "2"" of type '" "bool""'");
+  } 
+  arg2 = static_cast< bool >(val2);
+  (arg1)->setMonteCarloIntegration(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Histogram2D__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_setMonteCarloIntegration__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = 0 ;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Histogram2D *result = 0 ;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Histogram2D" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram2D" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = (Histogram2D *)new Histogram2D((OutputData< double > const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_Histogram2D__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > arg1 ;
-  Histogram2D *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    int res = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_Histogram2D" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >""'"); 
-    }
-    arg1 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setMonteCarloIntegration" "', argument " "1"" of type '" "SimulationOptions *""'"); 
   }
-  result = (Histogram2D *)new Histogram2D(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  (arg1)->setMonteCarloIntegration();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Histogram2D(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_setMonteCarloIntegration(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[7] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Histogram2D", 0, 6, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "SimulationOptions_setMonteCarloIntegration", 0, 3, argv))) SWIG_fail;
   --argc;
   if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_Histogram2D__SWIG_3(self, argc, argv);
-    }
-  }
-  if (argc == 1) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationOptions, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_Histogram2D__SWIG_4(self, argc, argv);
+      return _wrap_SimulationOptions_setMonteCarloIntegration__SWIG_2(self, argc, argv);
     }
   }
   if (argc == 2) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IAxis, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationOptions, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAxis, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_new_Histogram2D__SWIG_2(self, argc, argv);
+      {
+        int res = SWIG_AsVal_bool(argv[1], NULL);
+        _v = SWIG_CheckState(res);
       }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    {
-      int res = SWIG_AsVal_int(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      int res = swig::asptr(argv[1], (std::vector< double,std::allocator< double > >**)(0));
-      _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_int(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          int res = swig::asptr(argv[3], (std::vector< double,std::allocator< double > >**)(0));
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_new_Histogram2D__SWIG_1(self, argc, argv);
-          }
-        }
+        return _wrap_SimulationOptions_setMonteCarloIntegration__SWIG_1(self, argc, argv);
       }
     }
   }
-  if (argc == 6) {
+  if (argc == 3) {
     int _v;
-    {
-      int res = SWIG_AsVal_int(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationOptions, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_double(argv[1], NULL);
+        int res = SWIG_AsVal_bool(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
         {
-          int res = SWIG_AsVal_double(argv[2], NULL);
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          {
-            int res = SWIG_AsVal_int(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              {
-                int res = SWIG_AsVal_double(argv[5], NULL);
-                _v = SWIG_CheckState(res);
-              }
-              if (_v) {
-                return _wrap_new_Histogram2D__SWIG_0(self, argc, argv);
-              }
-            }
-          }
+          return _wrap_SimulationOptions_setMonteCarloIntegration__SWIG_0(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Histogram2D'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'SimulationOptions_setMonteCarloIntegration'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    Histogram2D::Histogram2D(int,double,double,int,double,double)\n"
-    "    Histogram2D::Histogram2D(int,std::vector< double,std::allocator< double > > const &,int,std::vector< double,std::allocator< double > > const &)\n"
-    "    Histogram2D::Histogram2D(IAxis const &,IAxis const &)\n"
-    "    Histogram2D::Histogram2D(OutputData< double > const &)\n"
-    "    Histogram2D::Histogram2D(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >)\n");
+    "    SimulationOptions::setMonteCarloIntegration(bool,size_t)\n"
+    "    SimulationOptions::setMonteCarloIntegration(bool)\n"
+    "    SimulationOptions::setMonteCarloIntegration()\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_setNumberOfThreads(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
+  int arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Histogram2D *result = 0 ;
+  int val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SimulationOptions_setNumberOfThreads", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_clone" "', argument " "1"" of type '" "Histogram2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setNumberOfThreads" "', argument " "1"" of type '" "SimulationOptions *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  result = (Histogram2D *)((Histogram2D const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, 0 |  0 );
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationOptions_setNumberOfThreads" "', argument " "2"" of type '" "int""'");
+  } 
+  arg2 = static_cast< int >(val2);
+  (arg1)->setNumberOfThreads(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_getRank(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_getNumberOfThreads(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
+  unsigned int result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_getRank" "', argument " "1"" of type '" "Histogram2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_getNumberOfThreads" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  result = ((Histogram2D const *)arg1)->getRank();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  result = (unsigned int)((SimulationOptions const *)arg1)->getNumberOfThreads();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_fill__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_setNumberOfBatches(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
+  int arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
+  int val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  int result;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SimulationOptions_setNumberOfBatches", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_fill" "', argument " "1"" of type '" "Histogram2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setNumberOfBatches" "', argument " "1"" of type '" "SimulationOptions *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_fill" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram2D_fill" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Histogram2D_fill" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationOptions_setNumberOfBatches" "', argument " "2"" of type '" "int""'");
   } 
-  arg4 = static_cast< double >(val4);
-  result = (int)(arg1)->fill(arg2,arg3,arg4);
-  resultobj = SWIG_From_int(static_cast< int >(result));
+  arg2 = static_cast< int >(val2);
+  (arg1)->setNumberOfBatches(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_fill__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_getNumberOfBatches(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  int result;
+  PyObject *swig_obj[1] ;
+  unsigned int result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_fill" "', argument " "1"" of type '" "Histogram2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_getNumberOfBatches" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_fill" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram2D_fill" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (int)(arg1)->fill(arg2,arg3);
-  resultobj = SWIG_From_int(static_cast< int >(result));
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  result = (unsigned int)((SimulationOptions const *)arg1)->getNumberOfBatches();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_fill(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_SimulationOptions_getCurrentBatch(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  unsigned int result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Histogram2D_fill", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_Histogram2D_fill__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_Histogram2D_fill__SWIG_0(self, argc, argv);
-          }
-        }
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_getCurrentBatch" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
   }
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  result = (unsigned int)((SimulationOptions const *)arg1)->getCurrentBatch();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_SimulationOptions_setThreadInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
+  ThreadInfo *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
+  if (!SWIG_Python_UnpackTuple(args, "SimulationOptions_setThreadInfo", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setThreadInfo" "', argument " "1"" of type '" "SimulationOptions *""'"); 
+  }
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ThreadInfo,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SimulationOptions_setThreadInfo" "', argument " "2"" of type '" "ThreadInfo const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SimulationOptions_setThreadInfo" "', argument " "2"" of type '" "ThreadInfo const &""'"); 
+  }
+  arg2 = reinterpret_cast< ThreadInfo * >(argp2);
+  (arg1)->setThreadInfo((ThreadInfo const &)*arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Histogram2D_fill'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Histogram2D::fill(double,double,double)\n"
-    "    Histogram2D::fill(double,double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_projectionX__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_getHardwareConcurrency(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Histogram1D *result = 0 ;
+  PyObject *swig_obj[1] ;
+  unsigned int result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_projectionX" "', argument " "1"" of type '" "Histogram2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_getHardwareConcurrency" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  result = (Histogram1D *)(arg1)->projectionX();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  result = (unsigned int)((SimulationOptions const *)arg1)->getHardwareConcurrency();
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_projectionX__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_setIncludeSpecular(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
-  double arg2 ;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
+  bool arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
+  bool val2 ;
   int ecode2 = 0 ;
-  Histogram1D *result = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SimulationOptions_setIncludeSpecular", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_projectionX" "', argument " "1"" of type '" "Histogram2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setIncludeSpecular" "', argument " "1"" of type '" "SimulationOptions *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_projectionX" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationOptions_setIncludeSpecular" "', argument " "2"" of type '" "bool""'");
   } 
-  arg2 = static_cast< double >(val2);
-  result = (Histogram1D *)(arg1)->projectionX(arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
+  arg2 = static_cast< bool >(val2);
+  (arg1)->setIncludeSpecular(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_projectionX__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationOptions_includeSpecular(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
+  PyObject *swig_obj[1] ;
+  bool result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_includeSpecular" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
+  }
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  result = (bool)((SimulationOptions const *)arg1)->includeSpecular();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_SimulationOptions_setUseAvgMaterials(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
+  bool arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  bool val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  Histogram1D *result = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SimulationOptions_setUseAvgMaterials", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_projectionX" "', argument " "1"" of type '" "Histogram2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_setUseAvgMaterials" "', argument " "1"" of type '" "SimulationOptions *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_projectionX" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram2D_projectionX" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationOptions_setUseAvgMaterials" "', argument " "2"" of type '" "bool""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (Histogram1D *)(arg1)->projectionX(arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
+  arg2 = static_cast< bool >(val2);
+  (arg1)->setUseAvgMaterials(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_projectionX(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_SimulationOptions_useAvgMaterials(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Histogram2D_projectionX", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_Histogram2D_projectionX__SWIG_0(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_Histogram2D_projectionX__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_Histogram2D_projectionX__SWIG_2(self, argc, argv);
-        }
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationOptions_useAvgMaterials" "', argument " "1"" of type '" "SimulationOptions const *""'"); 
   }
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  result = (bool)((SimulationOptions const *)arg1)->useAvgMaterials();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_SimulationOptions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  SimulationOptions *arg1 = (SimulationOptions *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationOptions, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SimulationOptions" "', argument " "1"" of type '" "SimulationOptions *""'"); 
+  }
+  arg1 = reinterpret_cast< SimulationOptions * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Histogram2D_projectionX'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Histogram2D::projectionX()\n"
-    "    Histogram2D::projectionX(double)\n"
-    "    Histogram2D::projectionX(double,double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_projectionY__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *SimulationOptions_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_SimulationOptions, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *SimulationOptions_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_delete_IParameterReal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Histogram1D *result = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_projectionY" "', argument " "1"" of type '" "Histogram2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IParameterReal" "', argument " "1"" of type '" "IParameter< double > *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  result = (Histogram1D *)(arg1)->projectionY();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
+  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_projectionY__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IParameterReal_clone__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
-  double arg2 ;
+  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  Histogram1D *result = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  IParameter< double > *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_projectionY" "', argument " "1"" of type '" "Histogram2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_clone" "', argument " "1"" of type '" "IParameter< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_projectionY" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (Histogram1D *)(arg1)->projectionY(arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
+  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParameterReal_clone" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParameterReal_clone" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  result = (IParameter< double > *)((IParameter< double > const *)arg1)->clone((std::string const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_projectionY__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IParameterReal_clone__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  Histogram1D *result = 0 ;
+  IParameter< double > *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_projectionY" "', argument " "1"" of type '" "Histogram2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_clone" "', argument " "1"" of type '" "IParameter< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_projectionY" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram2D_projectionY" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (Histogram1D *)(arg1)->projectionY(arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
+  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
+  result = (IParameter< double > *)((IParameter< double > const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_projectionY(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IParameterReal_clone(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Histogram2D_projectionY", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IParameterReal_clone", 0, 2, argv))) SWIG_fail;
   --argc;
   if (argc == 1) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParameterT_double_t, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_Histogram2D_projectionY__SWIG_0(self, argc, argv);
+      return _wrap_IParameterReal_clone__SWIG_1(self, argc, argv);
     }
   }
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_Histogram2D_projectionY__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParameterT_double_t, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
+      _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_Histogram2D_projectionY__SWIG_2(self, argc, argv);
-        }
+        return _wrap_IParameterReal_clone__SWIG_0(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Histogram2D_projectionY'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IParameterReal_clone'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    Histogram2D::projectionY()\n"
-    "    Histogram2D::projectionY(double)\n"
-    "    Histogram2D::projectionY(double,double)\n");
+    "    IParameter< double >::clone(std::string const &) const\n"
+    "    IParameter< double >::clone() const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_crop(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IParameterReal_isNull(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  bool result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_isNull" "', argument " "1"" of type '" "IParameter< double > const *""'"); 
+  }
+  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
+  result = (bool)((IParameter< double > const *)arg1)->isNull();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IParameterReal_getData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double arg5 ;
+  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  PyObject *swig_obj[5] ;
-  Histogram2D *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Histogram2D_crop", 5, 5, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_crop" "', argument " "1"" of type '" "Histogram2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_getData" "', argument " "1"" of type '" "IParameter< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_crop" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram2D_crop" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Histogram2D_crop" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "Histogram2D_crop" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  result = (Histogram2D *)(arg1)->crop(arg2,arg3,arg4,arg5);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, 0 |  0 );
+  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
+  result = (double *) &((IParameter< double > const *)arg1)->getData();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_double, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_setContent(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IParameterReal_setData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg2 = 0 ;
+  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
+  double *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Histogram2D_setContent", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IParameterReal_setData", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_setContent" "', argument " "1"" of type '" "Histogram2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_setData" "', argument " "1"" of type '" "IParameter< double > *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    res2 = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Histogram2D_setContent" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Histogram2D_setContent" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    arg2 = ptr;
+  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_double,  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParameterReal_setData" "', argument " "2"" of type '" "double &""'"); 
   }
-  (arg1)->setContent((std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParameterReal_setData" "', argument " "2"" of type '" "double &""'"); 
+  }
+  arg2 = reinterpret_cast< double * >(argp2);
+  (arg1)->setData(*arg2);
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Histogram2D_addContent(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IParameterReal_hasSameData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg2 = 0 ;
+  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
+  IParameter< double > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "Histogram2D_addContent", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IParameterReal_hasSameData", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_addContent" "', argument " "1"" of type '" "Histogram2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_hasSameData" "', argument " "1"" of type '" "IParameter< double > *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    res2 = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Histogram2D_addContent" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Histogram2D_addContent" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    arg2 = ptr;
+  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IParameterT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParameterReal_hasSameData" "', argument " "2"" of type '" "IParameter< double > const &""'"); 
   }
-  (arg1)->addContent((std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParameterReal_hasSameData" "', argument " "2"" of type '" "IParameter< double > const &""'"); 
+  }
+  arg2 = reinterpret_cast< IParameter< double > * >(argp2);
+  result = (bool)(arg1)->hasSameData((IParameter< double > const &)*arg2);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Histogram2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IParameterReal_getName(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::string *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Histogram2D" "', argument " "1"" of type '" "Histogram2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_getName" "', argument " "1"" of type '" "IParameter< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
+  result = (std::string *) &((IParameter< double > const *)arg1)->getName();
+  resultobj = SWIG_From_std_string(static_cast< std::string >(*result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *Histogram2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IParameterReal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Histogram2D, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_IParameterT_double_t, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *Histogram2D_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
+SWIGINTERN PyObject *_wrap_new_ParameterSample__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  ParameterSample *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_ParameterSample" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_ParameterSample" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (ParameterSample *)new ParameterSample(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterSample, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *_wrap_AxisInfo_m_name_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+
+SWIGINTERN PyObject *_wrap_new_ParameterSample__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  AxisInfo *arg1 = (AxisInfo *) 0 ;
-  std::string *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[2] ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  ParameterSample *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "AxisInfo_m_name_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "AxisInfo_m_name_set" "', argument " "1"" of type '" "AxisInfo *""'"); 
-  }
-  arg1 = reinterpret_cast< AxisInfo * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "AxisInfo_m_name_set" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "AxisInfo_m_name_set" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
-  }
-  if (arg1) (arg1)->m_name = *arg2;
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_ParameterSample" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (ParameterSample *)new ParameterSample(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterSample, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_AxisInfo_m_name_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParameterSample__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  AxisInfo *arg1 = (AxisInfo *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::string *result = 0 ;
+  ParameterSample *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "AxisInfo_m_name_get" "', argument " "1"" of type '" "AxisInfo *""'"); 
-  }
-  arg1 = reinterpret_cast< AxisInfo * >(argp1);
-  result = (std::string *) & ((arg1)->m_name);
-  resultobj = SWIG_From_std_string(static_cast< std::string >(*result));
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (ParameterSample *)new ParameterSample();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterSample, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_AxisInfo_m_min_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParameterSample(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ParameterSample", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_ParameterSample__SWIG_2(self, argc, argv);
+  }
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_new_ParameterSample__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_ParameterSample__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ParameterSample'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    ParameterSample::ParameterSample(double,double)\n"
+    "    ParameterSample::ParameterSample(double)\n"
+    "    ParameterSample::ParameterSample()\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterSample_value_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  AxisInfo *arg1 = (AxisInfo *) 0 ;
+  ParameterSample *arg1 = (ParameterSample *) 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -84720,18 +83144,18 @@ SWIGINTERN PyObject *_wrap_AxisInfo_m_min_set(PyObject *SWIGUNUSEDPARM(self), Py
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "AxisInfo_m_min_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParameterSample_value_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterSample, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "AxisInfo_m_min_set" "', argument " "1"" of type '" "AxisInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSample_value_set" "', argument " "1"" of type '" "ParameterSample *""'"); 
   }
-  arg1 = reinterpret_cast< AxisInfo * >(argp1);
+  arg1 = reinterpret_cast< ParameterSample * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "AxisInfo_m_min_set" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSample_value_set" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->m_min = arg2;
+  if (arg1) (arg1)->value = arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -84739,9 +83163,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_AxisInfo_m_min_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSample_value_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  AxisInfo *arg1 = (AxisInfo *) 0 ;
+  ParameterSample *arg1 = (ParameterSample *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -84749,12 +83173,12 @@ SWIGINTERN PyObject *_wrap_AxisInfo_m_min_get(PyObject *SWIGUNUSEDPARM(self), Py
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterSample, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "AxisInfo_m_min_get" "', argument " "1"" of type '" "AxisInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSample_value_get" "', argument " "1"" of type '" "ParameterSample *""'"); 
   }
-  arg1 = reinterpret_cast< AxisInfo * >(argp1);
-  result = (double) ((arg1)->m_min);
+  arg1 = reinterpret_cast< ParameterSample * >(argp1);
+  result = (double) ((arg1)->value);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -84762,9 +83186,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_AxisInfo_m_max_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSample_weight_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  AxisInfo *arg1 = (AxisInfo *) 0 ;
+  ParameterSample *arg1 = (ParameterSample *) 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -84772,18 +83196,18 @@ SWIGINTERN PyObject *_wrap_AxisInfo_m_max_set(PyObject *SWIGUNUSEDPARM(self), Py
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "AxisInfo_m_max_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParameterSample_weight_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterSample, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "AxisInfo_m_max_set" "', argument " "1"" of type '" "AxisInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSample_weight_set" "', argument " "1"" of type '" "ParameterSample *""'"); 
   }
-  arg1 = reinterpret_cast< AxisInfo * >(argp1);
+  arg1 = reinterpret_cast< ParameterSample * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "AxisInfo_m_max_set" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSample_weight_set" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->m_max = arg2;
+  if (arg1) (arg1)->weight = arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -84791,9 +83215,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_AxisInfo_m_max_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSample_weight_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  AxisInfo *arg1 = (AxisInfo *) 0 ;
+  ParameterSample *arg1 = (ParameterSample *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -84801,12 +83225,12 @@ SWIGINTERN PyObject *_wrap_AxisInfo_m_max_get(PyObject *SWIGUNUSEDPARM(self), Py
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterSample, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "AxisInfo_m_max_get" "', argument " "1"" of type '" "AxisInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSample_weight_get" "', argument " "1"" of type '" "ParameterSample *""'"); 
   }
-  arg1 = reinterpret_cast< AxisInfo * >(argp1);
-  result = (double) ((arg1)->m_max);
+  arg1 = reinterpret_cast< ParameterSample * >(argp1);
+  result = (double) ((arg1)->weight);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -84814,33 +83238,20 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_new_AxisInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  AxisInfo *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_AxisInfo", 0, 0, 0)) SWIG_fail;
-  result = (AxisInfo *)new AxisInfo();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_AxisInfo, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_AxisInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_ParameterSample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  AxisInfo *arg1 = (AxisInfo *) 0 ;
+  ParameterSample *arg1 = (ParameterSample *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterSample, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_AxisInfo" "', argument " "1"" of type '" "AxisInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParameterSample" "', argument " "1"" of type '" "ParameterSample *""'"); 
   }
-  arg1 = reinterpret_cast< AxisInfo * >(argp1);
+  arg1 = reinterpret_cast< ParameterSample * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -84849,904 +83260,1064 @@ fail:
 }
 
 
-SWIGINTERN PyObject *AxisInfo_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ParameterSample_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_AxisInfo, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_ParameterSample, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *AxisInfo_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ParameterSample_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_SimulationResult__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_iterator(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimulationResult *result = 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  PyObject **arg2 = (PyObject **) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  swig::SwigPyIterator *result = 0 ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (SimulationResult *)new SimulationResult();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationResult, SWIG_POINTER_NEW |  0 );
+  arg2 = &swig_obj[0];
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_iterator" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = (swig::SwigPyIterator *)std_vector_Sl_ParameterSample_Sg__iterator(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_swig__SwigPyIterator, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SimulationResult__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___nonzero__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = 0 ;
-  IUnitConverter *arg2 = 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  SimulationResult *result = 0 ;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SimulationResult" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SimulationResult" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IUnitConverter,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_SimulationResult" "', argument " "2"" of type '" "IUnitConverter const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SimulationResult" "', argument " "2"" of type '" "IUnitConverter const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___nonzero__" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
   }
-  arg2 = reinterpret_cast< IUnitConverter * >(argp2);
-  result = (SimulationResult *)new SimulationResult((OutputData< double > const &)*arg1,(IUnitConverter const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationResult, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = (bool)std_vector_Sl_ParameterSample_Sg____nonzero__((std::vector< ParameterSample > const *)arg1);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SimulationResult__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___bool__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  SimulationResult *result = 0 ;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_SimulationResult,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SimulationResult" "', argument " "1"" of type '" "SimulationResult const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SimulationResult" "', argument " "1"" of type '" "SimulationResult const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___bool__" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  result = (SimulationResult *)new SimulationResult((SimulationResult const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationResult, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = (bool)std_vector_Sl_ParameterSample_Sg____bool__((std::vector< ParameterSample > const *)arg1);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SimulationResult__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___len__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  SimulationResult *result = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< ParameterSample >::size_type result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_SimulationResult,  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SimulationResult" "', argument " "1"" of type '" "SimulationResult &&""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SimulationResult" "', argument " "1"" of type '" "SimulationResult &&""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___len__" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  result = (SimulationResult *)new SimulationResult((SimulationResult &&)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationResult, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = std_vector_Sl_ParameterSample_Sg____len__((std::vector< ParameterSample > const *)arg1);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SimulationResult(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___getslice__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::difference_type arg2 ;
+  std::vector< ParameterSample >::difference_type arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  ptrdiff_t val2 ;
+  int ecode2 = 0 ;
+  ptrdiff_t val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  std::vector< ParameterSample,std::allocator< ParameterSample > > *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_SimulationResult", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_SimulationResult__SWIG_0(self, argc, argv);
-  }
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_SimulationResult, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_SimulationResult__SWIG_2(self, argc, argv);
-    }
-  }
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, SWIG_POINTER_NO_NULL);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_SimulationResult__SWIG_3(self, argc, argv);
-    }
+  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector___getslice__", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___getslice__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IUnitConverter, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_new_SimulationResult__SWIG_1(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___getslice__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
+  } 
+  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
+  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterSampleVector___getslice__" "', argument " "3"" of type '" "std::vector< ParameterSample >::difference_type""'");
+  } 
+  arg3 = static_cast< std::vector< ParameterSample >::difference_type >(val3);
+  try {
+    result = (std::vector< ParameterSample,std::allocator< ParameterSample > > *)std_vector_Sl_ParameterSample_Sg____getslice__(arg1,arg2,arg3);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
   }
-  
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_SimulationResult'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    SimulationResult::SimulationResult()\n"
-    "    SimulationResult::SimulationResult(OutputData< double > const &,IUnitConverter const &)\n"
-    "    SimulationResult::SimulationResult(SimulationResult const &)\n"
-    "    SimulationResult::SimulationResult(SimulationResult &&)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_histogram2d__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___setslice____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
-  AxesUnits arg2 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::difference_type arg2 ;
+  std::vector< ParameterSample >::difference_type arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int val2 ;
+  ptrdiff_t val2 ;
   int ecode2 = 0 ;
-  Histogram2D *result = 0 ;
+  ptrdiff_t val3 ;
+  int ecode3 = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_histogram2d" "', argument " "1"" of type '" "SimulationResult const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___setslice__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult_histogram2d" "', argument " "2"" of type '" "AxesUnits""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___setslice__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
   } 
-  arg2 = static_cast< AxesUnits >(val2);
-  result = (Histogram2D *)((SimulationResult const *)arg1)->histogram2d(arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_OWN |  0 );
+  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
+  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterSampleVector___setslice__" "', argument " "3"" of type '" "std::vector< ParameterSample >::difference_type""'");
+  } 
+  arg3 = static_cast< std::vector< ParameterSample >::difference_type >(val3);
+  try {
+    std_vector_Sl_ParameterSample_Sg____setslice____SWIG_0(arg1,arg2,arg3);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  }
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_histogram2d__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___setslice____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::difference_type arg2 ;
+  std::vector< ParameterSample >::difference_type arg3 ;
+  std::vector< ParameterSample,std::allocator< ParameterSample > > *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Histogram2D *result = 0 ;
+  ptrdiff_t val2 ;
+  int ecode2 = 0 ;
+  ptrdiff_t val3 ;
+  int ecode3 = 0 ;
+  int res4 = SWIG_OLDOBJ ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_histogram2d" "', argument " "1"" of type '" "SimulationResult const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___setslice__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  result = (Histogram2D *)((SimulationResult const *)arg1)->histogram2d();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___setslice__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
+  } 
+  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
+  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterSampleVector___setslice__" "', argument " "3"" of type '" "std::vector< ParameterSample >::difference_type""'");
+  } 
+  arg3 = static_cast< std::vector< ParameterSample >::difference_type >(val3);
+  {
+    std::vector< ParameterSample,std::allocator< ParameterSample > > *ptr = (std::vector< ParameterSample,std::allocator< ParameterSample > > *)0;
+    res4 = swig::asptr(swig_obj[3], &ptr);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "ParameterSampleVector___setslice__" "', argument " "4"" of type '" "std::vector< ParameterSample,std::allocator< ParameterSample > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector___setslice__" "', argument " "4"" of type '" "std::vector< ParameterSample,std::allocator< ParameterSample > > const &""'"); 
+    }
+    arg4 = ptr;
+  }
+  try {
+    std_vector_Sl_ParameterSample_Sg____setslice____SWIG_1(arg1,arg2,arg3,(std::vector< ParameterSample,std::allocator< ParameterSample > > const &)*arg4);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  }
+  resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res4)) delete arg4;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_histogram2d(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___setslice__(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[5] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "SimulationResult_histogram2d", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector___setslice__", 0, 4, argv))) SWIG_fail;
   --argc;
-  if (argc == 1) {
+  if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_SimulationResult_histogram2d__SWIG_1(self, argc, argv);
+      {
+        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_ptrdiff_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_ParameterSampleVector___setslice____SWIG_0(self, argc, argv);
+        }
+      }
     }
   }
-  if (argc == 2) {
+  if (argc == 4) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_int(argv[1], NULL);
+        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_SimulationResult_histogram2d__SWIG_0(self, argc, argv);
+        {
+          int res = SWIG_AsVal_ptrdiff_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = swig::asptr(argv[3], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_ParameterSampleVector___setslice____SWIG_1(self, argc, argv);
+          }
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'SimulationResult_histogram2d'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector___setslice__'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    SimulationResult::histogram2d(AxesUnits) const\n"
-    "    SimulationResult::histogram2d() const\n");
+    "    std::vector< ParameterSample >::__setslice__(std::vector< ParameterSample >::difference_type,std::vector< ParameterSample >::difference_type)\n"
+    "    std::vector< ParameterSample >::__setslice__(std::vector< ParameterSample >::difference_type,std::vector< ParameterSample >::difference_type,std::vector< ParameterSample,std::allocator< ParameterSample > > const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_axisInfo__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___delslice__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
-  AxesUnits arg2 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::difference_type arg2 ;
+  std::vector< ParameterSample >::difference_type arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int val2 ;
+  ptrdiff_t val2 ;
   int ecode2 = 0 ;
-  std::vector< AxisInfo,std::allocator< AxisInfo > > result;
+  ptrdiff_t val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector___delslice__", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_axisInfo" "', argument " "1"" of type '" "SimulationResult const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___delslice__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult_axisInfo" "', argument " "2"" of type '" "AxesUnits""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___delslice__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
   } 
-  arg2 = static_cast< AxesUnits >(val2);
-  result = ((SimulationResult const *)arg1)->axisInfo(arg2);
-  resultobj = swig::from(static_cast< std::vector< AxisInfo,std::allocator< AxisInfo > > >(result));
+  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
+  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterSampleVector___delslice__" "', argument " "3"" of type '" "std::vector< ParameterSample >::difference_type""'");
+  } 
+  arg3 = static_cast< std::vector< ParameterSample >::difference_type >(val3);
+  try {
+    std_vector_Sl_ParameterSample_Sg____delslice__(arg1,arg2,arg3);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  }
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_axisInfo__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___delitem____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::difference_type arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::vector< AxisInfo,std::allocator< AxisInfo > > result;
+  ptrdiff_t val2 ;
+  int ecode2 = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_axisInfo" "', argument " "1"" of type '" "SimulationResult const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___delitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  result = ((SimulationResult const *)arg1)->axisInfo();
-  resultobj = swig::from(static_cast< std::vector< AxisInfo,std::allocator< AxisInfo > > >(result));
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___delitem__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
+  } 
+  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
+  try {
+    std_vector_Sl_ParameterSample_Sg____delitem____SWIG_0(arg1,arg2);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  }
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_axisInfo(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___getitem____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  PySliceObject *arg2 = (PySliceObject *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  std::vector< ParameterSample,std::allocator< ParameterSample > > *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "SimulationResult_axisInfo", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_SimulationResult_axisInfo__SWIG_1(self, argc, argv);
-    }
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___getitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_int(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_SimulationResult_axisInfo__SWIG_0(self, argc, argv);
-      }
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  {
+    if (!PySlice_Check(swig_obj[1])) {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector___getitem__" "', argument " "2"" of type '" "PySliceObject *""'");
     }
+    arg2 = (PySliceObject *) swig_obj[1];
   }
-  
+  try {
+    result = (std::vector< ParameterSample,std::allocator< ParameterSample > > *)std_vector_Sl_ParameterSample_Sg____getitem____SWIG_0(arg1,arg2);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  }
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'SimulationResult_axisInfo'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    SimulationResult::axisInfo(AxesUnits) const\n"
-    "    SimulationResult::axisInfo() const\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_converter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___setitem____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  PySliceObject *arg2 = (PySliceObject *) 0 ;
+  std::vector< ParameterSample,std::allocator< ParameterSample > > *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IUnitConverter *result = 0 ;
+  int res3 = SWIG_OLDOBJ ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_converter" "', argument " "1"" of type '" "SimulationResult const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___setitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  result = (IUnitConverter *) &((SimulationResult const *)arg1)->converter();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  {
+    if (!PySlice_Check(swig_obj[1])) {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector___setitem__" "', argument " "2"" of type '" "PySliceObject *""'");
+    }
+    arg2 = (PySliceObject *) swig_obj[1];
+  }
+  {
+    std::vector< ParameterSample,std::allocator< ParameterSample > > *ptr = (std::vector< ParameterSample,std::allocator< ParameterSample > > *)0;
+    res3 = swig::asptr(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParameterSampleVector___setitem__" "', argument " "3"" of type '" "std::vector< ParameterSample,std::allocator< ParameterSample > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector___setitem__" "', argument " "3"" of type '" "std::vector< ParameterSample,std::allocator< ParameterSample > > const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  try {
+    std_vector_Sl_ParameterSample_Sg____setitem____SWIG_0(arg1,arg2,(std::vector< ParameterSample,std::allocator< ParameterSample > > const &)*arg3);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  }
+  resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___setitem____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  PySliceObject *arg2 = (PySliceObject *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_size" "', argument " "1"" of type '" "SimulationResult const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___setitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  result = ((SimulationResult const *)arg1)->size();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  {
+    if (!PySlice_Check(swig_obj[1])) {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector___setitem__" "', argument " "2"" of type '" "PySliceObject *""'");
+    }
+    arg2 = (PySliceObject *) swig_obj[1];
+  }
+  try {
+    std_vector_Sl_ParameterSample_Sg____setitem____SWIG_1(arg1,arg2);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  }
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_array__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___delitem____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
-  AxesUnits arg2 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  PySliceObject *arg2 = (PySliceObject *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
-  PyObject *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_array" "', argument " "1"" of type '" "SimulationResult const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___delitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult_array" "', argument " "2"" of type '" "AxesUnits""'");
-  } 
-  arg2 = static_cast< AxesUnits >(val2);
-  result = (PyObject *)((SimulationResult const *)arg1)->array(arg2);
-  resultobj = result;
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  {
+    if (!PySlice_Check(swig_obj[1])) {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector___delitem__" "', argument " "2"" of type '" "PySliceObject *""'");
+    }
+    arg2 = (PySliceObject *) swig_obj[1];
+  }
+  try {
+    std_vector_Sl_ParameterSample_Sg____delitem____SWIG_1(arg1,arg2);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  } catch(std::invalid_argument &_e) {
+    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  }
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_array__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___delitem__(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector___delitem__", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        _v = PySlice_Check(argv[1]);
+      }
+      if (_v) {
+        return _wrap_ParameterSampleVector___delitem____SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_ParameterSampleVector___delitem____SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector___delitem__'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    std::vector< ParameterSample >::__delitem__(std::vector< ParameterSample >::difference_type)\n"
+    "    std::vector< ParameterSample >::__delitem__(PySliceObject *)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___getitem____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::difference_type arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *result = 0 ;
+  ptrdiff_t val2 ;
+  int ecode2 = 0 ;
+  std::vector< ParameterSample >::value_type *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_array" "', argument " "1"" of type '" "SimulationResult const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___getitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  result = (PyObject *)((SimulationResult const *)arg1)->array();
-  resultobj = result;
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___getitem__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
+  } 
+  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
+  try {
+    result = (std::vector< ParameterSample >::value_type *) &std_vector_Sl_ParameterSample_Sg____getitem____SWIG_1((std::vector< ParameterSample > const *)arg1,arg2);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  }
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterSample, 0 |  0 );
+  (void)swig::container_owner<swig::traits<std::vector< ParameterSample >::value_type>::category>::back_reference(resultobj, swig_obj[0]);
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_array(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___getitem__(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "SimulationResult_array", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector___getitem__", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_SimulationResult_array__SWIG_1(self, argc, argv);
+      {
+        _v = PySlice_Check(argv[1]);
+      }
+      if (_v) {
+        return _wrap_ParameterSampleVector___getitem____SWIG_0(self, argc, argv);
+      }
     }
   }
   if (argc == 2) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_int(argv[1], NULL);
+        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_SimulationResult_array__SWIG_0(self, argc, argv);
+        return _wrap_ParameterSampleVector___getitem____SWIG_1(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'SimulationResult_array'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector___getitem__'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    SimulationResult::array(AxesUnits) const\n"
-    "    SimulationResult::array() const\n");
+    "    std::vector< ParameterSample >::__getitem__(PySliceObject *)\n"
+    "    std::vector< ParameterSample >::__getitem__(std::vector< ParameterSample >::difference_type) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_axis__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___setitem____SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
-  AxesUnits arg2 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::difference_type arg2 ;
+  std::vector< ParameterSample >::value_type *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int val2 ;
+  ptrdiff_t val2 ;
   int ecode2 = 0 ;
-  std::vector< double,std::allocator< double > > result;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_axis" "', argument " "1"" of type '" "SimulationResult const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___setitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult_axis" "', argument " "2"" of type '" "AxesUnits""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___setitem__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
   } 
-  arg2 = static_cast< AxesUnits >(val2);
-  result = ((SimulationResult const *)arg1)->axis(arg2);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationResult_axis__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  std::vector< double,std::allocator< double > > result;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_axis" "', argument " "1"" of type '" "SimulationResult const *""'"); 
+  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_ParameterSample,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParameterSampleVector___setitem__" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  result = ((SimulationResult const *)arg1)->axis();
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationResult_axis__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
-  size_t arg2 ;
-  AxesUnits arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  int val3 ;
-  int ecode3 = 0 ;
-  std::vector< double,std::allocator< double > > result;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_axis" "', argument " "1"" of type '" "SimulationResult const *""'"); 
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector___setitem__" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult_axis" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "SimulationResult_axis" "', argument " "3"" of type '" "AxesUnits""'");
-  } 
-  arg3 = static_cast< AxesUnits >(val3);
-  result = ((SimulationResult const *)arg1)->axis(arg2,arg3);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SimulationResult_axis__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  std::vector< double,std::allocator< double > > result;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_axis" "', argument " "1"" of type '" "SimulationResult const *""'"); 
+  arg3 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp3);
+  try {
+    std_vector_Sl_ParameterSample_Sg____setitem____SWIG_2(arg1,arg2,(ParameterSample const &)*arg3);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult_axis" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((SimulationResult const *)arg1)->axis(arg2);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult_axis(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector___setitem__(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "SimulationResult_axis", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector___setitem__", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_SimulationResult_axis__SWIG_1(self, argc, argv);
-    }
-  }
   if (argc == 2) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_int(argv[1], NULL);
-        _v = SWIG_CheckState(res);
+        _v = PySlice_Check(argv[1]);
       }
       if (_v) {
-        return _wrap_SimulationResult_axis__SWIG_0(self, argc, argv);
+        return _wrap_ParameterSampleVector___setitem____SWIG_1(self, argc, argv);
       }
     }
   }
-  if (argc == 2) {
+  if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
+        _v = PySlice_Check(argv[1]);
       }
       if (_v) {
-        return _wrap_SimulationResult_axis__SWIG_3(self, argc, argv);
+        int res = swig::asptr(argv[2], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_ParameterSampleVector___setitem____SWIG_0(self, argc, argv);
+        }
       }
     }
   }
   if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        {
-          int res = SWIG_AsVal_int(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_ParameterSample, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
         if (_v) {
-          return _wrap_SimulationResult_axis__SWIG_2(self, argc, argv);
+          return _wrap_ParameterSampleVector___setitem____SWIG_2(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'SimulationResult_axis'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector___setitem__'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    SimulationResult::axis(AxesUnits) const\n"
-    "    SimulationResult::axis() const\n"
-    "    SimulationResult::axis(size_t,AxesUnits) const\n"
-    "    SimulationResult::axis(size_t) const\n");
+    "    std::vector< ParameterSample >::__setitem__(PySliceObject *,std::vector< ParameterSample,std::allocator< ParameterSample > > const &)\n"
+    "    std::vector< ParameterSample >::__setitem__(PySliceObject *)\n"
+    "    std::vector< ParameterSample >::__setitem__(std::vector< ParameterSample >::difference_type,std::vector< ParameterSample >::value_type const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult___getitem__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_pop(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
-  unsigned int arg2 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  unsigned int val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  PyObject *swig_obj[1] ;
+  std::vector< ParameterSample >::value_type result;
   
-  if (!SWIG_Python_UnpackTuple(args, "SimulationResult___getitem__", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult___getitem__" "', argument " "1"" of type '" "SimulationResult *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_pop" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult___getitem__" "', argument " "2"" of type '" "unsigned int""'");
-  } 
-  arg2 = static_cast< unsigned int >(val2);
-  result = (double)SimulationResult___getitem__(arg1,arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  try {
+    result = std_vector_Sl_ParameterSample_Sg__pop(arg1);
+  } catch(std::out_of_range &_e) {
+    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+  }
+  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample >::value_type(static_cast< const std::vector< ParameterSample >::value_type& >(result))), SWIGTYPE_p_ParameterSample, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationResult___setitem__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_append(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
-  unsigned int arg2 ;
-  double arg3 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::value_type *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  unsigned int val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "SimulationResult___setitem__", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector_append", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult___setitem__" "', argument " "1"" of type '" "SimulationResult *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_append" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult___setitem__" "', argument " "2"" of type '" "unsigned int""'");
-  } 
-  arg2 = static_cast< unsigned int >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "SimulationResult___setitem__" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)SimulationResult___setitem__(arg1,arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ParameterSample,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterSampleVector_append" "', argument " "2"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_append" "', argument " "2"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  arg2 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp2);
+  std_vector_Sl_ParameterSample_Sg__append(arg1,(ParameterSample const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_SimulationResult(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParameterSampleVector__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = (SimulationResult *) 0 ;
+  std::vector< ParameterSample > *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (std::vector< ParameterSample > *)new std::vector< ParameterSample >();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_ParameterSampleVector__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  std::vector< ParameterSample > *arg1 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  std::vector< ParameterSample > *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    std::vector< ParameterSample,std::allocator< ParameterSample > > *ptr = (std::vector< ParameterSample,std::allocator< ParameterSample > > *)0;
+    res1 = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParameterSampleVector" "', argument " "1"" of type '" "std::vector< ParameterSample > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterSampleVector" "', argument " "1"" of type '" "std::vector< ParameterSample > const &""'"); 
+    }
+    arg1 = ptr;
+  }
+  result = (std::vector< ParameterSample > *)new std::vector< ParameterSample >((std::vector< ParameterSample > const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_empty(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SimulationResult" "', argument " "1"" of type '" "SimulationResult *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_empty" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = (bool)((std::vector< ParameterSample > const *)arg1)->empty();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *SimulationResult_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_SimulationResult, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< ParameterSample >::size_type result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_size" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = ((std::vector< ParameterSample > const *)arg1)->size();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *SimulationResult_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
+
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_swap(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample > *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector_swap", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_swap" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t,  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterSampleVector_swap" "', argument " "2"" of type '" "std::vector< ParameterSample > &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_swap" "', argument " "2"" of type '" "std::vector< ParameterSample > &""'"); 
+  }
+  arg2 = reinterpret_cast< std::vector< ParameterSample > * >(argp2);
+  (arg1)->swap(*arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *_wrap_delete_IBackground(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_begin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IBackground *arg1 = (IBackground *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::vector< ParameterSample >::iterator result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IBackground, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IBackground" "', argument " "1"" of type '" "IBackground *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_begin" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< IBackground * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = (arg1)->begin();
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IBackground_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_end(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IBackground *arg1 = (IBackground *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IBackground *result = 0 ;
+  std::vector< ParameterSample >::iterator result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IBackground, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IBackground_clone" "', argument " "1"" of type '" "IBackground const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_end" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< IBackground * >(argp1);
-  result = (IBackground *)((IBackground const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IBackground, 0 |  0 );
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = (arg1)->end();
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IBackground_addBackGround(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_rbegin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IBackground *arg1 = (IBackground *) 0 ;
-  double arg2 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  PyObject *swig_obj[1] ;
+  std::vector< ParameterSample >::reverse_iterator result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IBackground_addBackGround", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IBackground, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IBackground_addBackGround" "', argument " "1"" of type '" "IBackground const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_rbegin" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< IBackground * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IBackground_addBackGround" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((IBackground const *)arg1)->addBackGround(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = (arg1)->rbegin();
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::reverse_iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IBackground_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IBackground, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_new_ConstantBackground(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_rend(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  ConstantBackground *result = 0 ;
+  std::vector< ParameterSample >::reverse_iterator result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_ConstantBackground" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (ConstantBackground *)new ConstantBackground(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ConstantBackground, SWIG_POINTER_NEW |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_rend" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = (arg1)->rend();
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::reverse_iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ConstantBackground(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_clear(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ConstantBackground *arg1 = (ConstantBackground *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ConstantBackground, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ConstantBackground" "', argument " "1"" of type '" "ConstantBackground *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_clear" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< ConstantBackground * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  (arg1)->clear();
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -85754,74 +84325,93 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ConstantBackground_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_get_allocator(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ConstantBackground *arg1 = (ConstantBackground *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  ConstantBackground *result = 0 ;
+  SwigValueWrapper< std::allocator< ParameterSample > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ConstantBackground, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConstantBackground_clone" "', argument " "1"" of type '" "ConstantBackground const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_get_allocator" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
   }
-  arg1 = reinterpret_cast< ConstantBackground * >(argp1);
-  result = (ConstantBackground *)((ConstantBackground const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ConstantBackground, 0 |  0 );
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = ((std::vector< ParameterSample > const *)arg1)->get_allocator();
+  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample >::allocator_type(static_cast< const std::vector< ParameterSample >::allocator_type& >(result))), SWIGTYPE_p_std__allocatorT_ParameterSample_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ConstantBackground_backgroundValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParameterSampleVector__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ConstantBackground *arg1 = (ConstantBackground *) 0 ;
+  std::vector< ParameterSample >::size_type arg1 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  std::vector< ParameterSample > *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_ParameterSampleVector" "', argument " "1"" of type '" "std::vector< ParameterSample >::size_type""'");
+  } 
+  arg1 = static_cast< std::vector< ParameterSample >::size_type >(val1);
+  result = (std::vector< ParameterSample > *)new std::vector< ParameterSample >(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_pop_back(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ConstantBackground, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConstantBackground_backgroundValue" "', argument " "1"" of type '" "ConstantBackground const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_pop_back" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< ConstantBackground * >(argp1);
-  result = (double)((ConstantBackground const *)arg1)->backgroundValue();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  (arg1)->pop_back();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ConstantBackground_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_resize__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ConstantBackground *arg1 = (ConstantBackground *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::size_type arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  size_t val2 ;
+  int ecode2 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ConstantBackground_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ConstantBackground, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConstantBackground_accept" "', argument " "1"" of type '" "ConstantBackground const *""'"); 
-  }
-  arg1 = reinterpret_cast< ConstantBackground * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ConstantBackground_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_resize" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((ConstantBackground const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector_resize" "', argument " "2"" of type '" "std::vector< ParameterSample >::size_type""'");
+  } 
+  arg2 = static_cast< std::vector< ParameterSample >::size_type >(val2);
+  (arg1)->resize(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -85829,85 +84419,341 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ConstantBackground_addBackGround(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_erase__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ConstantBackground *arg1 = (ConstantBackground *) 0 ;
-  double arg2 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::iterator arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  swig::SwigPyIterator *iter2 = 0 ;
+  int res2 ;
+  std::vector< ParameterSample >::iterator result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ConstantBackground_addBackGround", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ConstantBackground, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConstantBackground_addBackGround" "', argument " "1"" of type '" "ConstantBackground const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_erase" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< ConstantBackground * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ConstantBackground_addBackGround" "', argument " "2"" of type '" "double""'");
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
+  if (!SWIG_IsOK(res2) || !iter2) {
+    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_erase" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
+  } else {
+    swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter2);
+    if (iter_t) {
+      arg2 = iter_t->get_current();
+    } else {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_erase" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
+    }
+  }
+  result = std_vector_Sl_ParameterSample_Sg__erase__SWIG_0(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_erase__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::iterator arg2 ;
+  std::vector< ParameterSample >::iterator arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  swig::SwigPyIterator *iter2 = 0 ;
+  int res2 ;
+  swig::SwigPyIterator *iter3 = 0 ;
+  int res3 ;
+  std::vector< ParameterSample >::iterator result;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_erase" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
+  if (!SWIG_IsOK(res2) || !iter2) {
+    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_erase" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
+  } else {
+    swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter2);
+    if (iter_t) {
+      arg2 = iter_t->get_current();
+    } else {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_erase" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
+    }
+  }
+  res3 = SWIG_ConvertPtr(swig_obj[2], SWIG_as_voidptrptr(&iter3), swig::SwigPyIterator::descriptor(), 0);
+  if (!SWIG_IsOK(res3) || !iter3) {
+    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_erase" "', argument " "3"" of type '" "std::vector< ParameterSample >::iterator""'");
+  } else {
+    swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter3);
+    if (iter_t) {
+      arg3 = iter_t->get_current();
+    } else {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_erase" "', argument " "3"" of type '" "std::vector< ParameterSample >::iterator""'");
+    }
+  }
+  result = std_vector_Sl_ParameterSample_Sg__erase__SWIG_1(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_erase(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector_erase", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      swig::SwigPyIterator *iter = 0;
+      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
+      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter) != 0));
+      if (_v) {
+        return _wrap_ParameterSampleVector_erase__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      swig::SwigPyIterator *iter = 0;
+      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
+      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter) != 0));
+      if (_v) {
+        swig::SwigPyIterator *iter = 0;
+        int res = SWIG_ConvertPtr(argv[2], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
+        _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter) != 0));
+        if (_v) {
+          return _wrap_ParameterSampleVector_erase__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector_erase'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    std::vector< ParameterSample >::erase(std::vector< ParameterSample >::iterator)\n"
+    "    std::vector< ParameterSample >::erase(std::vector< ParameterSample >::iterator,std::vector< ParameterSample >::iterator)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_ParameterSampleVector__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  std::vector< ParameterSample >::size_type arg1 ;
+  std::vector< ParameterSample >::value_type *arg2 = 0 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  std::vector< ParameterSample > *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_ParameterSampleVector" "', argument " "1"" of type '" "std::vector< ParameterSample >::size_type""'");
   } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((ConstantBackground const *)arg1)->addBackGround(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = static_cast< std::vector< ParameterSample >::size_type >(val1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ParameterSample,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParameterSampleVector" "', argument " "2"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterSampleVector" "', argument " "2"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  arg2 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp2);
+  result = (std::vector< ParameterSample > *)new std::vector< ParameterSample >(arg1,(std::vector< ParameterSample >::value_type const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *ConstantBackground_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ConstantBackground, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_new_ParameterSampleVector(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ParameterSampleVector", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_ParameterSampleVector__SWIG_0(self, argc, argv);
+  }
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_new_ParameterSampleVector__SWIG_2(self, argc, argv);
+    }
+  }
+  if (argc == 1) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_ParameterSampleVector__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_ParameterSample, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_new_ParameterSampleVector__SWIG_3(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ParameterSampleVector'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    std::vector< ParameterSample >::vector()\n"
+    "    std::vector< ParameterSample >::vector(std::vector< ParameterSample > const &)\n"
+    "    std::vector< ParameterSample >::vector(std::vector< ParameterSample >::size_type)\n"
+    "    std::vector< ParameterSample >::vector(std::vector< ParameterSample >::size_type,std::vector< ParameterSample >::value_type const &)\n");
+  return 0;
 }
 
-SWIGINTERN PyObject *ConstantBackground_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
+
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_push_back(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::value_type *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector_push_back", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_push_back" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ParameterSample,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterSampleVector_push_back" "', argument " "2"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_push_back" "', argument " "2"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  arg2 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp2);
+  (arg1)->push_back((std::vector< ParameterSample >::value_type const &)*arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *_wrap_IDetector_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_front(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IDetector *result = 0 ;
+  std::vector< ParameterSample >::value_type *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_clone" "', argument " "1"" of type '" "IDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_front" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  result = (IDetector *)((IDetector const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDetector, 0 |  0 );
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = (std::vector< ParameterSample >::value_type *) &((std::vector< ParameterSample > const *)arg1)->front();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterSample, 0 |  0 );
+  (void)swig::container_owner<swig::traits<std::vector< ParameterSample >::value_type>::category>::back_reference(resultobj, swig_obj[0]);
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_back(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::vector< ParameterSample >::value_type *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IDetector" "', argument " "1"" of type '" "IDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_back" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = (std::vector< ParameterSample >::value_type *) &((std::vector< ParameterSample > const *)arg1)->back();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterSample, 0 |  0 );
+  (void)swig::container_owner<swig::traits<std::vector< ParameterSample >::value_type>::category>::back_reference(resultobj, swig_obj[0]);
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_assign(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::size_type arg2 ;
+  std::vector< ParameterSample >::value_type *arg3 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector_assign", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_assign" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector_assign" "', argument " "2"" of type '" "std::vector< ParameterSample >::size_type""'");
+  } 
+  arg2 = static_cast< std::vector< ParameterSample >::size_type >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_ParameterSample,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParameterSampleVector_assign" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_assign" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  arg3 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp3);
+  (arg1)->assign(arg2,(std::vector< ParameterSample >::value_type const &)*arg3);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -85915,53 +84761,188 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_init(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_resize__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
-  Beam *arg2 = 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::size_type arg2 ;
+  std::vector< ParameterSample >::value_type *arg3 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_resize" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+  }
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector_resize" "', argument " "2"" of type '" "std::vector< ParameterSample >::size_type""'");
+  } 
+  arg2 = static_cast< std::vector< ParameterSample >::size_type >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_ParameterSample,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParameterSampleVector_resize" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_resize" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  arg3 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp3);
+  (arg1)->resize(arg2,(std::vector< ParameterSample >::value_type const &)*arg3);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_resize(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector_resize", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_ParameterSampleVector_resize__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_ParameterSample, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_ParameterSampleVector_resize__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector_resize'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    std::vector< ParameterSample >::resize(std::vector< ParameterSample >::size_type)\n"
+    "    std::vector< ParameterSample >::resize(std::vector< ParameterSample >::size_type,std::vector< ParameterSample >::value_type const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_insert__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::iterator arg2 ;
+  std::vector< ParameterSample >::value_type *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  swig::SwigPyIterator *iter2 = 0 ;
+  int res2 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  std::vector< ParameterSample >::iterator result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector_init", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_init" "', argument " "1"" of type '" "IDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_insert" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Beam,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_init" "', argument " "2"" of type '" "Beam const &""'"); 
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
+  if (!SWIG_IsOK(res2) || !iter2) {
+    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_insert" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
+  } else {
+    swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter2);
+    if (iter_t) {
+      arg2 = iter_t->get_current();
+    } else {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_insert" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
+    }
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_init" "', argument " "2"" of type '" "Beam const &""'"); 
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_ParameterSample,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParameterSampleVector_insert" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
   }
-  arg2 = reinterpret_cast< Beam * >(argp2);
-  (arg1)->init((Beam const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_insert" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  arg3 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp3);
+  result = std_vector_Sl_ParameterSample_Sg__insert__SWIG_0(arg1,arg2,(ParameterSample const &)*arg3);
+  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::iterator & >(result)),
+    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_clear(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_insert__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::iterator arg2 ;
+  std::vector< ParameterSample >::size_type arg3 ;
+  std::vector< ParameterSample >::value_type *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  swig::SwigPyIterator *iter2 = 0 ;
+  int res2 ;
+  size_t val3 ;
+  int ecode3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_clear" "', argument " "1"" of type '" "IDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_insert" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  (arg1)->clear();
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
+  if (!SWIG_IsOK(res2) || !iter2) {
+    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_insert" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
+  } else {
+    swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter2);
+    if (iter_t) {
+      arg2 = iter_t->get_current();
+    } else {
+      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_insert" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
+    }
+  }
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterSampleVector_insert" "', argument " "3"" of type '" "std::vector< ParameterSample >::size_type""'");
+  } 
+  arg3 = static_cast< std::vector< ParameterSample >::size_type >(val3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_ParameterSample,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "ParameterSampleVector_insert" "', argument " "4"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_insert" "', argument " "4"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  }
+  arg4 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp4);
+  std_vector_Sl_ParameterSample_Sg__insert__SWIG_1(arg1,arg2,arg3,(ParameterSample const &)*arg4);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -85969,122 +84950,109 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_addAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
-  IAxis *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_insert(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector_addAxis", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_addAxis" "', argument " "1"" of type '" "IDetector *""'"); 
-  }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAxis,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_addAxis" "', argument " "2"" of type '" "IAxis const &""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector_insert", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      swig::SwigPyIterator *iter = 0;
+      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
+      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter) != 0));
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_ParameterSample, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_ParameterSampleVector_insert__SWIG_0(self, argc, argv);
+        }
+      }
+    }
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_addAxis" "', argument " "2"" of type '" "IAxis const &""'"); 
+  if (argc == 4) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      swig::SwigPyIterator *iter = 0;
+      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
+      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter) != 0));
+      if (_v) {
+        {
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_ParameterSample, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_ParameterSampleVector_insert__SWIG_1(self, argc, argv);
+          }
+        }
+      }
+    }
   }
-  arg2 = reinterpret_cast< IAxis * >(argp2);
-  (arg1)->addAxis((IAxis const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector_insert'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    std::vector< ParameterSample >::insert(std::vector< ParameterSample >::iterator,std::vector< ParameterSample >::value_type const &)\n"
+    "    std::vector< ParameterSample >::insert(std::vector< ParameterSample >::iterator,std::vector< ParameterSample >::size_type,std::vector< ParameterSample >::value_type const &)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_getAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_reserve(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
-  size_t arg2 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  std::vector< ParameterSample >::size_type arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   size_t val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  IAxis *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector_getAxis", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector_reserve", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_getAxis" "', argument " "1"" of type '" "IDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_reserve" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
   ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDetector_getAxis" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector_reserve" "', argument " "2"" of type '" "std::vector< ParameterSample >::size_type""'");
   } 
-  arg2 = static_cast< size_t >(val2);
-  result = (IAxis *) &((IDetector const *)arg1)->getAxis(arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
+  arg2 = static_cast< std::vector< ParameterSample >::size_type >(val2);
+  (arg1)->reserve(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_dimension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterSampleVector_capacity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
+  std::vector< ParameterSample >::size_type result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_dimension" "', argument " "1"" of type '" "IDetector const *""'"); 
-  }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  result = ((IDetector const *)arg1)->dimension();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IDetector_axisBinIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
-  size_t arg2 ;
-  size_t arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  size_t result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IDetector_axisBinIndex", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_axisBinIndex" "', argument " "1"" of type '" "IDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_capacity" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDetector_axisBinIndex" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDetector_axisBinIndex" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  result = ((IDetector const *)arg1)->axisBinIndex(arg2,arg3);
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  result = ((std::vector< ParameterSample > const *)arg1)->capacity();
   resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
@@ -86092,213 +85060,438 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_totalSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_ParameterSampleVector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_totalSize" "', argument " "1"" of type '" "IDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParameterSampleVector" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  result = ((IDetector const *)arg1)->totalSize();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_detectorMask(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ParameterSampleVector_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *ParameterSampleVector_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_ParameterDistribution__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  DetectorMask *result = 0 ;
+  std::string *arg1 = 0 ;
+  IDistribution1D *arg2 = 0 ;
+  size_t arg3 ;
+  double arg4 ;
+  RealLimits *arg5 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  size_t val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  void *argp5 = 0 ;
+  int res5 = 0 ;
+  ParameterDistribution *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_detectorMask" "', argument " "1"" of type '" "IDetector const *""'"); 
+  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  result = (DetectorMask *)((IDetector const *)arg1)->detectorMask();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DetectorMask, 0 |  0 );
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDistribution1D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
+  }
+  arg2 = reinterpret_cast< IDistribution1D * >(argp2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_ParameterDistribution" "', argument " "3"" of type '" "size_t""'");
+  } 
+  arg3 = static_cast< size_t >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_ParameterDistribution" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  res5 = SWIG_ConvertPtr(swig_obj[4], &argp5, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res5)) {
+    SWIG_exception_fail(SWIG_ArgError(res5), "in method '" "new_ParameterDistribution" "', argument " "5"" of type '" "RealLimits const &""'"); 
+  }
+  if (!argp5) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "5"" of type '" "RealLimits const &""'"); 
+  }
+  arg5 = reinterpret_cast< RealLimits * >(argp5);
+  result = (ParameterDistribution *)new ParameterDistribution((std::string const &)*arg1,(IDistribution1D const &)*arg2,arg3,arg4,(RealLimits const &)*arg5);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_setAnalyzerProperties(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParameterDistribution__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
-  kvector_t arg2 ;
-  double arg3 ;
+  std::string *arg1 = 0 ;
+  IDistribution1D *arg2 = 0 ;
+  size_t arg3 ;
   double arg4 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
+  int res1 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  double val3 ;
+  size_t val3 ;
   int ecode3 = 0 ;
   double val4 ;
   int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
+  ParameterDistribution *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector_setAnalyzerProperties", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_setAnalyzerProperties" "', argument " "1"" of type '" "IDetector *""'"); 
-  }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_setAnalyzerProperties" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_setAnalyzerProperties" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
     }
+    arg1 = ptr;
   }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDistribution1D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
+  }
+  arg2 = reinterpret_cast< IDistribution1D * >(argp2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDetector_setAnalyzerProperties" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_ParameterDistribution" "', argument " "3"" of type '" "size_t""'");
   } 
-  arg3 = static_cast< double >(val3);
+  arg3 = static_cast< size_t >(val3);
   ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IDetector_setAnalyzerProperties" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_ParameterDistribution" "', argument " "4"" of type '" "double""'");
   } 
   arg4 = static_cast< double >(val4);
-  (arg1)->setAnalyzerProperties(arg2,arg3,arg4);
-  resultobj = SWIG_Py_Void();
+  result = (ParameterDistribution *)new ParameterDistribution((std::string const &)*arg1,(IDistribution1D const &)*arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_setDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParameterDistribution__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
-  IDetectorResolution *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  std::string *arg1 = 0 ;
+  IDistribution1D *arg2 = 0 ;
+  size_t arg3 ;
+  int res1 = SWIG_OLDOBJ ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  size_t val3 ;
+  int ecode3 = 0 ;
+  ParameterDistribution *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector_setDetectorResolution", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_setDetectorResolution" "', argument " "1"" of type '" "IDetector *""'"); 
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDetectorResolution,  0  | 0);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDistribution1D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_setDetectorResolution" "', argument " "2"" of type '" "IDetectorResolution const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_setDetectorResolution" "', argument " "2"" of type '" "IDetectorResolution const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
   }
-  arg2 = reinterpret_cast< IDetectorResolution * >(argp2);
-  (arg1)->setDetectorResolution((IDetectorResolution const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = reinterpret_cast< IDistribution1D * >(argp2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_ParameterDistribution" "', argument " "3"" of type '" "size_t""'");
+  } 
+  arg3 = static_cast< size_t >(val3);
+  result = (ParameterDistribution *)new ParameterDistribution((std::string const &)*arg1,(IDistribution1D const &)*arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_setResolutionFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParameterDistribution__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
-  IResolutionFunction2D *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  std::string *arg1 = 0 ;
+  IDistribution1D *arg2 = 0 ;
+  size_t arg3 ;
+  double arg4 ;
+  double arg5 ;
+  int res1 = SWIG_OLDOBJ ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  size_t val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
+  ParameterDistribution *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector_setResolutionFunction", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_setResolutionFunction" "', argument " "1"" of type '" "IDetector *""'"); 
+  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IResolutionFunction2D,  0  | 0);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDistribution1D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_setResolutionFunction" "', argument " "2"" of type '" "IResolutionFunction2D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_setResolutionFunction" "', argument " "2"" of type '" "IResolutionFunction2D const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
   }
-  arg2 = reinterpret_cast< IResolutionFunction2D * >(argp2);
-  (arg1)->setResolutionFunction((IResolutionFunction2D const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = reinterpret_cast< IDistribution1D * >(argp2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_ParameterDistribution" "', argument " "3"" of type '" "size_t""'");
+  } 
+  arg3 = static_cast< size_t >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_ParameterDistribution" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_ParameterDistribution" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  result = (ParameterDistribution *)new ParameterDistribution((std::string const &)*arg1,(IDistribution1D const &)*arg2,arg3,arg4,arg5);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_applyDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParameterDistribution__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
-  OutputData< double > *arg2 = (OutputData< double > *) 0 ;
+  ParameterDistribution *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  ParameterDistribution *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector_applyDetectorResolution", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_ParameterDistribution,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_applyDetectorResolution" "', argument " "1"" of type '" "IDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "ParameterDistribution const &""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_applyDetectorResolution" "', argument " "2"" of type '" "OutputData< double > *""'"); 
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "ParameterDistribution const &""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  ((IDetector const *)arg1)->applyDetectorResolution(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  result = (ParameterDistribution *)new ParameterDistribution((ParameterDistribution const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_removeDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ParameterDistribution(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[6] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ParameterDistribution", 0, 5, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_ParameterDistribution__SWIG_4(self, argc, argv);
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_new_ParameterDistribution__SWIG_2(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_ParameterDistribution__SWIG_1(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  if (argc == 5) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            int res = SWIG_ConvertPtr(argv[4], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+            _v = SWIG_CheckState(res);
+            if (_v) {
+              return _wrap_new_ParameterDistribution__SWIG_0(self, argc, argv);
+            }
+          }
+        }
+      }
+    }
+  }
+  if (argc == 5) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              return _wrap_new_ParameterDistribution__SWIG_3(self, argc, argv);
+            }
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ParameterDistribution'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    ParameterDistribution::ParameterDistribution(std::string const &,IDistribution1D const &,size_t,double,RealLimits const &)\n"
+    "    ParameterDistribution::ParameterDistribution(std::string const &,IDistribution1D const &,size_t,double)\n"
+    "    ParameterDistribution::ParameterDistribution(std::string const &,IDistribution1D const &,size_t)\n"
+    "    ParameterDistribution::ParameterDistribution(std::string const &,IDistribution1D const &,size_t,double,double)\n"
+    "    ParameterDistribution::ParameterDistribution(ParameterDistribution const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_ParameterDistribution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_removeDetectorResolution" "', argument " "1"" of type '" "IDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParameterDistribution" "', argument " "1"" of type '" "ParameterDistribution *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  (arg1)->removeDetectorResolution();
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -86306,373 +85499,338 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_detectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterDistribution_linkParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  std::string arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IDetectorResolution *result = 0 ;
+  PyObject *swig_obj[2] ;
+  ParameterDistribution *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParameterDistribution_linkParameter", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_detectorResolution" "', argument " "1"" of type '" "IDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_linkParameter" "', argument " "1"" of type '" "ParameterDistribution *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  result = (IDetectorResolution *)((IDetector const *)arg1)->detectorResolution();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDetectorResolution, 0 |  0 );
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    int res = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "ParameterDistribution_linkParameter" "', argument " "2"" of type '" "std::string""'"); 
+    }
+    arg2 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
+  }
+  result = (ParameterDistribution *) &(arg1)->linkParameter(arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterDistribution, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_regionOfInterest(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterDistribution_getMainParameterName(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  RegionOfInterest *result = 0 ;
+  std::string result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_regionOfInterest" "', argument " "1"" of type '" "IDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getMainParameterName" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  result = (RegionOfInterest *)((IDetector const *)arg1)->regionOfInterest();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RegionOfInterest, 0 |  0 );
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  result = ((ParameterDistribution const *)arg1)->getMainParameterName();
+  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_resetRegionOfInterest(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterDistribution_getNbrSamples(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_resetRegionOfInterest" "', argument " "1"" of type '" "IDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getNbrSamples" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  (arg1)->resetRegionOfInterest();
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  result = ((ParameterDistribution const *)arg1)->getNbrSamples();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_detectionProperties(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterDistribution_getSigmaFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  DetectionProperties *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_detectionProperties" "', argument " "1"" of type '" "IDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getSigmaFactor" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  result = (DetectionProperties *) &((IDetector const *)arg1)->detectionProperties();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DetectionProperties, 0 |  0 );
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  result = (double)((ParameterDistribution const *)arg1)->getSigmaFactor();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_createDetectorIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterDistribution_getDistribution__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
-  std::vector< SimulationElement,std::allocator< SimulationElement > > *arg2 = 0 ;
+  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  OutputData< double > *result = 0 ;
+  IDistribution1D *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector_createDetectorIntensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_createDetectorIntensity" "', argument " "1"" of type '" "IDetector const *""'"); 
-  }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__vectorT_SimulationElement_std__allocatorT_SimulationElement_t_t,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_createDetectorIntensity" "', argument " "2"" of type '" "std::vector< SimulationElement,std::allocator< SimulationElement > > const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_createDetectorIntensity" "', argument " "2"" of type '" "std::vector< SimulationElement,std::allocator< SimulationElement > > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getDistribution" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< SimulationElement,std::allocator< SimulationElement > > * >(argp2);
-  result = (OutputData< double > *)((IDetector const *)arg1)->createDetectorIntensity((std::vector< SimulationElement,std::allocator< SimulationElement > > const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  result = (IDistribution1D *)((ParameterDistribution const *)arg1)->getDistribution();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDistribution1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_defaultAxesUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterDistribution_getDistribution__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  AxesUnits result;
+  IDistribution1D *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_defaultAxesUnits" "', argument " "1"" of type '" "IDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getDistribution" "', argument " "1"" of type '" "ParameterDistribution *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  result = (AxesUnits)((IDetector const *)arg1)->defaultAxesUnits();
-  resultobj = SWIG_From_int(static_cast< int >(result));
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  result = (IDistribution1D *)(arg1)->getDistribution();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDistribution1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_numberOfSimulationElements(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterDistribution_getDistribution(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterDistribution_getDistribution", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParameterDistribution, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_ParameterDistribution_getDistribution__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParameterDistribution, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_ParameterDistribution_getDistribution__SWIG_0(self, argc, argv);
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterDistribution_getDistribution'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    ParameterDistribution::getDistribution() const\n"
+    "    ParameterDistribution::getDistribution()\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterDistribution_generateSamples(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
+  std::vector< ParameterSample,std::allocator< ParameterSample > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_numberOfSimulationElements" "', argument " "1"" of type '" "IDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_generateSamples" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  result = ((IDetector const *)arg1)->numberOfSimulationElements();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  result = ((ParameterDistribution const *)arg1)->generateSamples();
+  resultobj = swig::from(static_cast< std::vector< ParameterSample,std::allocator< ParameterSample > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterDistribution_getLinkedParameterNames(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
+  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  std::vector< std::string,std::allocator< std::string > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_getChildren" "', argument " "1"" of type '" "IDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getLinkedParameterNames" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  result = ((IDetector const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  result = ((ParameterDistribution const *)arg1)->getLinkedParameterNames();
+  resultobj = swig::from(static_cast< std::vector< std::string,std::allocator< std::string > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_iterate__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterDistribution_getLimits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
-  std::function< void (IDetector::const_iterator) > arg2 ;
-  bool arg3 ;
+  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  bool val3 ;
-  int ecode3 = 0 ;
+  PyObject *swig_obj[1] ;
+  RealLimits result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_iterate" "', argument " "1"" of type '" "IDetector const *""'"); 
-  }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__functionT_void_fSimulationAreaIterator_const_RF_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_iterate" "', argument " "2"" of type '" "std::function< void (IDetector::const_iterator) >""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_iterate" "', argument " "2"" of type '" "std::function< void (IDetector::const_iterator) >""'");
-    } else {
-      std::function< void (IDetector::const_iterator) > * temp = reinterpret_cast< std::function< void (IDetector::const_iterator) > * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getLimits" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
   }
-  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDetector_iterate" "', argument " "3"" of type '" "bool""'");
-  } 
-  arg3 = static_cast< bool >(val3);
-  ((IDetector const *)arg1)->iterate(arg2,arg3);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  result = ((ParameterDistribution const *)arg1)->getLimits();
+  resultobj = SWIG_NewPointerObj((new RealLimits(static_cast< const RealLimits& >(result))), SWIGTYPE_p_RealLimits, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_iterate__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterDistribution_getMinValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector *arg1 = (IDetector *) 0 ;
-  std::function< void (IDetector::const_iterator) > arg2 ;
+  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_iterate" "', argument " "1"" of type '" "IDetector const *""'"); 
-  }
-  arg1 = reinterpret_cast< IDetector * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__functionT_void_fSimulationAreaIterator_const_RF_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_iterate" "', argument " "2"" of type '" "std::function< void (IDetector::const_iterator) >""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_iterate" "', argument " "2"" of type '" "std::function< void (IDetector::const_iterator) >""'");
-    } else {
-      std::function< void (IDetector::const_iterator) > * temp = reinterpret_cast< std::function< void (IDetector::const_iterator) > * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getMinValue" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
   }
-  ((IDetector const *)arg1)->iterate(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  result = (double)((ParameterDistribution const *)arg1)->getMinValue();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector_iterate(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_ParameterDistribution_getMaxValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IDetector_iterate", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDetector, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_std__functionT_void_fSimulationAreaIterator_const_RF_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_IDetector_iterate__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDetector, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_std__functionT_void_fSimulationAreaIterator_const_RF_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        {
-          int res = SWIG_AsVal_bool(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IDetector_iterate__SWIG_0(self, argc, argv);
-        }
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getMaxValue" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
+  result = (double)((ParameterDistribution const *)arg1)->getMaxValue();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IDetector_iterate'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IDetector::iterate(std::function< void (IDetector::const_iterator) >,bool) const\n"
-    "    IDetector::iterate(std::function< void (IDetector::const_iterator) >) const\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *IDetector_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ParameterDistribution_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IDetector, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_ParameterDistribution, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *_wrap_IDetector2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ParameterDistribution_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_ParameterPool(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IDetector2D *result = 0 ;
+  ParameterPool *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_clone" "', argument " "1"" of type '" "IDetector2D const *""'"); 
-  }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  result = (IDetector2D *)((IDetector2D const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "new_ParameterPool", 0, 0, 0)) SWIG_fail;
+  result = (ParameterPool *)new ParameterPool();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterPool, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IDetector2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_ParameterPool(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IDetector2D" "', argument " "1"" of type '" "IDetector2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParameterPool" "', argument " "1"" of type '" "ParameterPool *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -86681,133 +85839,88 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_setDetectorParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterPool_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  double arg4 ;
-  size_t arg5 ;
-  double arg6 ;
-  double arg7 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  size_t val5 ;
-  int ecode5 = 0 ;
-  double val6 ;
-  int ecode6 = 0 ;
-  double val7 ;
-  int ecode7 = 0 ;
-  PyObject *swig_obj[7] ;
+  PyObject *swig_obj[1] ;
+  ParameterPool *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector2D_setDetectorParameters", 7, 7, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_setDetectorParameters" "', argument " "1"" of type '" "IDetector2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_clone" "', argument " "1"" of type '" "ParameterPool const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDetector2D_setDetectorParameters" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDetector2D_setDetectorParameters" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IDetector2D_setDetectorParameters" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_size_t(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "IDetector2D_setDetectorParameters" "', argument " "5"" of type '" "size_t""'");
-  } 
-  arg5 = static_cast< size_t >(val5);
-  ecode6 = SWIG_AsVal_double(swig_obj[5], &val6);
-  if (!SWIG_IsOK(ecode6)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "IDetector2D_setDetectorParameters" "', argument " "6"" of type '" "double""'");
-  } 
-  arg6 = static_cast< double >(val6);
-  ecode7 = SWIG_AsVal_double(swig_obj[6], &val7);
-  if (!SWIG_IsOK(ecode7)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode7), "in method '" "IDetector2D_setDetectorParameters" "', argument " "7"" of type '" "double""'");
-  } 
-  arg7 = static_cast< double >(val7);
-  (arg1)->setDetectorParameters(arg2,arg3,arg4,arg5,arg6,arg7);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  result = (ParameterPool *)((ParameterPool const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterPool, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_setDetectorAxes(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterPool_copyToExternalPool(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
-  IAxis *arg2 = 0 ;
-  IAxis *arg3 = 0 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  std::string *arg2 = 0 ;
+  ParameterPool *arg3 = (ParameterPool *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
   void *argp3 = 0 ;
   int res3 = 0 ;
   PyObject *swig_obj[3] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector2D_setDetectorAxes", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_copyToExternalPool", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_setDetectorAxes" "', argument " "1"" of type '" "IDetector2D *""'"); 
-  }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAxis,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector2D_setDetectorAxes" "', argument " "2"" of type '" "IAxis const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_copyToExternalPool" "', argument " "1"" of type '" "ParameterPool const *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector2D_setDetectorAxes" "', argument " "2"" of type '" "IAxis const &""'"); 
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_copyToExternalPool" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_copyToExternalPool" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
   }
-  arg2 = reinterpret_cast< IAxis * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IAxis,  0  | 0);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IDetector2D_setDetectorAxes" "', argument " "3"" of type '" "IAxis const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector2D_setDetectorAxes" "', argument " "3"" of type '" "IAxis const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParameterPool_copyToExternalPool" "', argument " "3"" of type '" "ParameterPool *""'"); 
   }
-  arg3 = reinterpret_cast< IAxis * >(argp3);
-  (arg1)->setDetectorAxes((IAxis const &)*arg2,(IAxis const &)*arg3);
+  arg3 = reinterpret_cast< ParameterPool * >(argp3);
+  ((ParameterPool const *)arg1)->copyToExternalPool((std::string const &)*arg2,arg3);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_removeMasks(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterPool_clear(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_removeMasks" "', argument " "1"" of type '" "IDetector2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_clear" "', argument " "1"" of type '" "ParameterPool *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  (arg1)->removeMasks();
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  (arg1)->clear();
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -86815,1486 +85928,2301 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_detectorMask(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterPool_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  DetectorMask *result = 0 ;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_detectorMask" "', argument " "1"" of type '" "IDetector2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_size" "', argument " "1"" of type '" "ParameterPool const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  result = (DetectorMask *)((IDetector2D const *)arg1)->detectorMask();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DetectorMask, 0 |  0 );
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  result = ((ParameterPool const *)arg1)->size();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_addMask__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterPool_addParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
-  IShape2D *arg2 = 0 ;
-  bool arg3 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  RealParameter *arg2 = (RealParameter *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  bool val3 ;
-  int ecode3 = 0 ;
+  PyObject *swig_obj[2] ;
+  RealParameter *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_addParameter", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_addMask" "', argument " "1"" of type '" "IDetector2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_addParameter" "', argument " "1"" of type '" "ParameterPool *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IShape2D,  0  | 0);
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_RealParameter, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_addParameter" "', argument " "2"" of type '" "RealParameter *""'"); 
   }
-  arg2 = reinterpret_cast< IShape2D * >(argp2);
-  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDetector2D_addMask" "', argument " "3"" of type '" "bool""'");
-  } 
-  arg3 = static_cast< bool >(val3);
-  (arg1)->addMask((IShape2D const &)*arg2,arg3);
-  resultobj = SWIG_Py_Void();
+  arg2 = reinterpret_cast< RealParameter * >(argp2);
+  result = (RealParameter *) &(arg1)->addParameter(arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_addMask__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ParameterPool_parameter__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
-  IShape2D *arg2 = 0 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  RealParameter *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_addMask" "', argument " "1"" of type '" "IDetector2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_parameter" "', argument " "1"" of type '" "ParameterPool *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IShape2D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_parameter" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_parameter" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
+  result = (RealParameter *)(arg1)->parameter((std::string const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterPool_parameter__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  std::string *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  RealParameter *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_parameter" "', argument " "1"" of type '" "ParameterPool const *""'"); 
   }
-  arg2 = reinterpret_cast< IShape2D * >(argp2);
-  (arg1)->addMask((IShape2D const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_parameter" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_parameter" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  result = (RealParameter *)((ParameterPool const *)arg1)->parameter((std::string const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_addMask(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterPool_parameter(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IDetector2D_addMask", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterPool_parameter", 0, 2, argv))) SWIG_fail;
   --argc;
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDetector2D, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParameterPool, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IShape2D, SWIG_POINTER_NO_NULL | 0);
+      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_IDetector2D_addMask__SWIG_1(self, argc, argv);
+        return _wrap_ParameterPool_parameter__SWIG_0(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDetector2D, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParameterPool, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IShape2D, SWIG_POINTER_NO_NULL | 0);
+      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
       _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_bool(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IDetector2D_addMask__SWIG_0(self, argc, argv);
-        }
+        return _wrap_ParameterPool_parameter__SWIG_1(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IDetector2D_addMask'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterPool_parameter'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    IDetector2D::addMask(IShape2D const &,bool)\n"
-    "    IDetector2D::addMask(IShape2D const &)\n");
+    "    ParameterPool::parameter(std::string const &)\n"
+    "    ParameterPool::parameter(std::string const &) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_maskAll(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterPool_parameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  SwigValueWrapper< std::vector< RealParameter *,std::allocator< RealParameter * > > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_maskAll" "', argument " "1"" of type '" "IDetector2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_parameters" "', argument " "1"" of type '" "ParameterPool const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  (arg1)->maskAll();
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  result = ((ParameterPool const *)arg1)->parameters();
+  resultobj = SWIG_NewPointerObj((new std::vector< RealParameter *,std::allocator< RealParameter * > >(static_cast< const std::vector< RealParameter *,std::allocator< RealParameter * > >& >(result))), SWIGTYPE_p_std__vectorT_RealParameter_p_std__allocatorT_RealParameter_p_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_regionOfInterest(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterPool_getMatchedParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RegionOfInterest *result = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
+  SwigValueWrapper< std::vector< RealParameter *,std::allocator< RealParameter * > > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_getMatchedParameters", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_regionOfInterest" "', argument " "1"" of type '" "IDetector2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_getMatchedParameters" "', argument " "1"" of type '" "ParameterPool const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  result = (RegionOfInterest *)((IDetector2D const *)arg1)->regionOfInterest();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RegionOfInterest, 0 |  0 );
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_getMatchedParameters" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_getMatchedParameters" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  result = ((ParameterPool const *)arg1)->getMatchedParameters((std::string const &)*arg2);
+  resultobj = SWIG_NewPointerObj((new std::vector< RealParameter *,std::allocator< RealParameter * > >(static_cast< const std::vector< RealParameter *,std::allocator< RealParameter * > >& >(result))), SWIGTYPE_p_std__vectorT_RealParameter_p_std__allocatorT_RealParameter_p_t_t, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_setRegionOfInterest(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterPool_getUniqueMatch(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
-  double arg2 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  std::string *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
+  RealParameter *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_getUniqueMatch", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_getUniqueMatch" "', argument " "1"" of type '" "ParameterPool const *""'"); 
+  }
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_getUniqueMatch" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_getUniqueMatch" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  result = (RealParameter *)((ParameterPool const *)arg1)->getUniqueMatch((std::string const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterPool_setParameterValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  std::string *arg2 = 0 ;
   double arg3 ;
-  double arg4 ;
-  double arg5 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
   double val3 ;
   int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  PyObject *swig_obj[5] ;
+  PyObject *swig_obj[3] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector2D_setRegionOfInterest", 5, 5, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_setParameterValue", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_setRegionOfInterest" "', argument " "1"" of type '" "IDetector2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_setParameterValue" "', argument " "1"" of type '" "ParameterPool *""'"); 
+  }
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_setParameterValue" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_setParameterValue" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
   }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDetector2D_setRegionOfInterest" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDetector2D_setRegionOfInterest" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterPool_setParameterValue" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IDetector2D_setRegionOfInterest" "', argument " "4"" of type '" "double""'");
+  (arg1)->setParameterValue((std::string const &)*arg2,arg3);
+  resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterPool_setMatchedParametersValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  std::string *arg2 = 0 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  int result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_setMatchedParametersValue", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_setMatchedParametersValue" "', argument " "1"" of type '" "ParameterPool *""'"); 
+  }
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_setMatchedParametersValue" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_setMatchedParametersValue" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterPool_setMatchedParametersValue" "', argument " "3"" of type '" "double""'");
   } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "IDetector2D_setRegionOfInterest" "', argument " "5"" of type '" "double""'");
+  arg3 = static_cast< double >(val3);
+  result = (int)(arg1)->setMatchedParametersValue((std::string const &)*arg2,arg3);
+  resultobj = SWIG_From_int(static_cast< int >(result));
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ParameterPool_setUniqueMatchValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  std::string *arg2 = 0 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_setUniqueMatchValue", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_setUniqueMatchValue" "', argument " "1"" of type '" "ParameterPool *""'"); 
+  }
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_setUniqueMatchValue" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_setUniqueMatchValue" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterPool_setUniqueMatchValue" "', argument " "3"" of type '" "double""'");
   } 
-  arg5 = static_cast< double >(val5);
-  (arg1)->setRegionOfInterest(arg2,arg3,arg4,arg5);
+  arg3 = static_cast< double >(val3);
+  (arg1)->setUniqueMatchValue((std::string const &)*arg2,arg3);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_resetRegionOfInterest(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterPool_parameterNames(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::vector< std::string,std::allocator< std::string > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_resetRegionOfInterest" "', argument " "1"" of type '" "IDetector2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_parameterNames" "', argument " "1"" of type '" "ParameterPool const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  (arg1)->resetRegionOfInterest();
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  result = ((ParameterPool const *)arg1)->parameterNames();
+  resultobj = swig::from(static_cast< std::vector< std::string,std::allocator< std::string > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_active_indices(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterPool_removeParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SwigValueWrapper< std::vector< size_t,std::allocator< size_t > > > result;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_removeParameter", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_active_indices" "', argument " "1"" of type '" "IDetector2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_removeParameter" "', argument " "1"" of type '" "ParameterPool *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  result = ((IDetector2D const *)arg1)->active_indices();
-  resultobj = SWIG_NewPointerObj((new std::vector< size_t,std::allocator< size_t > >(static_cast< const std::vector< size_t,std::allocator< size_t > >& >(result))), SWIGTYPE_p_std__vectorT_size_t_std__allocatorT_size_t_t_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_removeParameter" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_removeParameter" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  (arg1)->removeParameter((std::string const &)*arg2);
+  resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_createPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ParameterPool___getitem__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  ParameterPool *arg1 = (ParameterPool *) 0 ;
   size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   size_t val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  IPixel *result = 0 ;
+  RealParameter *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector2D_createPixel", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ParameterPool___getitem__", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_createPixel" "', argument " "1"" of type '" "IDetector2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool___getitem__" "', argument " "1"" of type '" "ParameterPool const *""'"); 
   }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  arg1 = reinterpret_cast< ParameterPool * >(argp1);
   ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDetector2D_createPixel" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterPool___getitem__" "', argument " "2"" of type '" "size_t""'");
   } 
   arg2 = static_cast< size_t >(val2);
-  result = (IPixel *)((IDetector2D const *)arg1)->createPixel(arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IPixel, 0 |  0 );
+  result = (RealParameter *)ParameterPool___getitem__((ParameterPool const *)arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetector2D_getIndexOfSpecular(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ParameterPool_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_ParameterPool, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *ParameterPool_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_RangedDistributionGate__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  IDetector2D *arg1 = (IDetector2D *) 0 ;
-  Beam *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  size_t result;
+  RangedDistributionGate *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetector2D_getIndexOfSpecular", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_getIndexOfSpecular" "', argument " "1"" of type '" "IDetector2D const *""'"); 
-  }
-  arg1 = reinterpret_cast< IDetector2D * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Beam,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector2D_getIndexOfSpecular" "', argument " "2"" of type '" "Beam const &""'"); 
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (RangedDistributionGate *)new RangedDistributionGate();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGate, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_RangedDistributionGate__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  size_t arg1 ;
+  double arg2 ;
+  RealLimits *arg3 = 0 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  RangedDistributionGate *result = 0 ;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionGate" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionGate" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RangedDistributionGate" "', argument " "3"" of type '" "RealLimits const &""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector2D_getIndexOfSpecular" "', argument " "2"" of type '" "Beam const &""'"); 
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RangedDistributionGate" "', argument " "3"" of type '" "RealLimits const &""'"); 
   }
-  arg2 = reinterpret_cast< Beam * >(argp2);
-  result = ((IDetector2D const *)arg1)->getIndexOfSpecular((Beam const &)*arg2);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg3 = reinterpret_cast< RealLimits * >(argp3);
+  result = (RangedDistributionGate *)new RangedDistributionGate(arg1,arg2,(RealLimits const &)*arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGate, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IDetector2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IDetector2D, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_new_RangedDistributionGate__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  size_t arg1 ;
+  double arg2 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  RangedDistributionGate *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionGate" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionGate" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (RangedDistributionGate *)new RangedDistributionGate(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGate, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *_wrap_delete_IDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+
+SWIGINTERN PyObject *_wrap_new_RangedDistributionGate__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IDetectorResolution *arg1 = (IDetectorResolution *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  size_t arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  RangedDistributionGate *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetectorResolution, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IDetectorResolution" "', argument " "1"" of type '" "IDetectorResolution *""'"); 
-  }
-  arg1 = reinterpret_cast< IDetectorResolution * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionGate" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionGate" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RangedDistributionGate" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_RangedDistributionGate" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (RangedDistributionGate *)new RangedDistributionGate(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGate, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetectorResolution_applyDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RangedDistributionGate(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RangedDistributionGate", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_RangedDistributionGate__SWIG_0(self, argc, argv);
+  }
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_RangedDistributionGate__SWIG_2(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_new_RangedDistributionGate__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_RangedDistributionGate__SWIG_3(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RangedDistributionGate'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    RangedDistributionGate::RangedDistributionGate()\n"
+    "    RangedDistributionGate::RangedDistributionGate(size_t,double,RealLimits const &)\n"
+    "    RangedDistributionGate::RangedDistributionGate(size_t,double)\n"
+    "    RangedDistributionGate::RangedDistributionGate(size_t,double,double,double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_RangedDistributionGate_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetectorResolution *arg1 = (IDetectorResolution *) 0 ;
-  OutputData< double > *arg2 = (OutputData< double > *) 0 ;
+  RangedDistributionGate *arg1 = (RangedDistributionGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  RangedDistributionGate *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IDetectorResolution_applyDetectorResolution", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetectorResolution, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionGate, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetectorResolution_applyDetectorResolution" "', argument " "1"" of type '" "IDetectorResolution const *""'"); 
-  }
-  arg1 = reinterpret_cast< IDetectorResolution * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetectorResolution_applyDetectorResolution" "', argument " "2"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RangedDistributionGate_clone" "', argument " "1"" of type '" "RangedDistributionGate const *""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  ((IDetectorResolution const *)arg1)->applyDetectorResolution(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RangedDistributionGate * >(argp1);
+  result = (RangedDistributionGate *)((RangedDistributionGate const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGate, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IDetectorResolution_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_RangedDistributionGate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IDetectorResolution *arg1 = (IDetectorResolution *) 0 ;
+  RangedDistributionGate *arg1 = (RangedDistributionGate *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IDetectorResolution *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetectorResolution, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionGate, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetectorResolution_clone" "', argument " "1"" of type '" "IDetectorResolution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RangedDistributionGate" "', argument " "1"" of type '" "RangedDistributionGate *""'"); 
   }
-  arg1 = reinterpret_cast< IDetectorResolution * >(argp1);
-  result = (IDetectorResolution *)((IDetectorResolution const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDetectorResolution, 0 |  0 );
+  arg1 = reinterpret_cast< RangedDistributionGate * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IDetectorResolution_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *RangedDistributionGate_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IDetectorResolution, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_RangedDistributionGate, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *_wrap_new_IInterferenceFunction__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *RangedDistributionGate_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_RangedDistributionLorentz__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  PyObject *arg1 = (PyObject *) 0 ;
-  IInterferenceFunction *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  arg1 = swig_obj[0];
-  if ( arg1 != Py_None ) {
-    /* subclassed */
-    result = (IInterferenceFunction *)new SwigDirector_IInterferenceFunction(arg1); 
-  } else {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
-    SWIG_fail;
-  }
+  RangedDistributionLorentz *result = 0 ;
   
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IInterferenceFunction, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (RangedDistributionLorentz *)new RangedDistributionLorentz();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLorentz, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IInterferenceFunction__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_RangedDistributionLorentz__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  PyObject *arg1 = (PyObject *) 0 ;
-  IInterferenceFunction *arg2 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  IInterferenceFunction *result = 0 ;
+  size_t arg1 ;
+  double arg2 ;
+  RealLimits *arg3 = 0 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  RangedDistributionLorentz *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  arg1 = swig_obj[0];
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IInterferenceFunction,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_IInterferenceFunction" "', argument " "2"" of type '" "IInterferenceFunction const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_IInterferenceFunction" "', argument " "2"" of type '" "IInterferenceFunction const &""'"); 
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionLorentz" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionLorentz" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RangedDistributionLorentz" "', argument " "3"" of type '" "RealLimits const &""'"); 
   }
-  arg2 = reinterpret_cast< IInterferenceFunction * >(argp2);
-  if ( arg1 != Py_None ) {
-    /* subclassed */
-    result = (IInterferenceFunction *)new SwigDirector_IInterferenceFunction(arg1,(IInterferenceFunction const &)*arg2); 
-  } else {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing abstract class or protected constructor"); 
-    SWIG_fail;
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RangedDistributionLorentz" "', argument " "3"" of type '" "RealLimits const &""'"); 
   }
+  arg3 = reinterpret_cast< RealLimits * >(argp3);
+  result = (RangedDistributionLorentz *)new RangedDistributionLorentz(arg1,arg2,(RealLimits const &)*arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLorentz, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_RangedDistributionLorentz__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  size_t arg1 ;
+  double arg2 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  RangedDistributionLorentz *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionLorentz" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionLorentz" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (RangedDistributionLorentz *)new RangedDistributionLorentz(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLorentz, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_RangedDistributionLorentz__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  size_t arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  RangedDistributionLorentz *result = 0 ;
   
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IInterferenceFunction, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionLorentz" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionLorentz" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RangedDistributionLorentz" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_RangedDistributionLorentz" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (RangedDistributionLorentz *)new RangedDistributionLorentz(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLorentz, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IInterferenceFunction(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RangedDistributionLorentz(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[5] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_IInterferenceFunction", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RangedDistributionLorentz", 0, 4, argv))) SWIG_fail;
   --argc;
-  if (argc == 1) {
+  if (argc == 0) {
+    return _wrap_new_RangedDistributionLorentz__SWIG_0(self, argc, argv);
+  }
+  if (argc == 2) {
     int _v;
-    _v = (argv[0] != 0);
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
-      return _wrap_new_IInterferenceFunction__SWIG_0(self, argc, argv);
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_RangedDistributionLorentz__SWIG_2(self, argc, argv);
+      }
     }
   }
-  if (argc == 2) {
+  if (argc == 3) {
     int _v;
-    _v = (argv[0] != 0);
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IInterferenceFunction, SWIG_POINTER_NO_NULL | 0);
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_new_RangedDistributionLorentz__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
       _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
-        return _wrap_new_IInterferenceFunction__SWIG_1(self, argc, argv);
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_RangedDistributionLorentz__SWIG_3(self, argc, argv);
+          }
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_IInterferenceFunction'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RangedDistributionLorentz'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    IInterferenceFunction::IInterferenceFunction()\n"
-    "    IInterferenceFunction::IInterferenceFunction(PyObject *,IInterferenceFunction const &)\n");
+    "    RangedDistributionLorentz::RangedDistributionLorentz()\n"
+    "    RangedDistributionLorentz::RangedDistributionLorentz(size_t,double,RealLimits const &)\n"
+    "    RangedDistributionLorentz::RangedDistributionLorentz(size_t,double)\n"
+    "    RangedDistributionLorentz::RangedDistributionLorentz(size_t,double,double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IInterferenceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RangedDistributionLorentz_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
+  RangedDistributionLorentz *arg1 = (RangedDistributionLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  RangedDistributionLorentz *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IInterferenceFunction" "', argument " "1"" of type '" "IInterferenceFunction *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RangedDistributionLorentz_clone" "', argument " "1"" of type '" "RangedDistributionLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RangedDistributionLorentz * >(argp1);
+  result = (RangedDistributionLorentz *)((RangedDistributionLorentz const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLorentz, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IInterferenceFunction_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_RangedDistributionLorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
+  RangedDistributionLorentz *arg1 = (RangedDistributionLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  IInterferenceFunction *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionLorentz, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_clone" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
-  }
-  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      Swig::DirectorPureVirtualException::raise("IInterferenceFunction::clone");
-    } else {
-      result = (IInterferenceFunction *)((IInterferenceFunction const *)arg1)->clone();
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
-  }
-  if (director) {
-    SWIG_AcquirePtr(resultobj, director->swig_release_ownership(SWIG_as_voidptr(result)));
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RangedDistributionLorentz" "', argument " "1"" of type '" "RangedDistributionLorentz *""'"); 
   }
+  arg1 = reinterpret_cast< RangedDistributionLorentz * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IInterferenceFunction_evaluate__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *RangedDistributionLorentz_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_RangedDistributionLorentz, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *RangedDistributionLorentz_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_RangedDistributionGaussian__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
-  kvector_t arg2 ;
-  double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  double result;
+  RangedDistributionGaussian *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (RangedDistributionGaussian *)new RangedDistributionGaussian();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGaussian, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_RangedDistributionGaussian__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  size_t arg1 ;
+  double arg2 ;
+  RealLimits *arg3 = 0 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  RangedDistributionGaussian *result = 0 ;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_evaluate" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
-  }
-  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IInterferenceFunction_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IInterferenceFunction_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IInterferenceFunction_evaluate" "', argument " "3"" of type '" "double""'");
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionGaussian" "', argument " "1"" of type '" "size_t""'");
   } 
-  arg3 = static_cast< double >(val3);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = (double)((IInterferenceFunction const *)arg1)->IInterferenceFunction::evaluate(arg2,arg3);
-    } else {
-      result = (double)((IInterferenceFunction const *)arg1)->evaluate(arg2,arg3);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionGaussian" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RangedDistributionGaussian" "', argument " "3"" of type '" "RealLimits const &""'"); 
   }
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RangedDistributionGaussian" "', argument " "3"" of type '" "RealLimits const &""'"); 
+  }
+  arg3 = reinterpret_cast< RealLimits * >(argp3);
+  result = (RangedDistributionGaussian *)new RangedDistributionGaussian(arg1,arg2,(RealLimits const &)*arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGaussian, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IInterferenceFunction_evaluate__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_RangedDistributionGaussian__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
-  kvector_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  double result;
+  size_t arg1 ;
+  double arg2 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  RangedDistributionGaussian *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_evaluate" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
-  }
-  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IInterferenceFunction_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IInterferenceFunction_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = (double)((IInterferenceFunction const *)arg1)->IInterferenceFunction::evaluate(arg2);
-    } else {
-      result = (double)((IInterferenceFunction const *)arg1)->evaluate(arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionGaussian" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionGaussian" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (RangedDistributionGaussian *)new RangedDistributionGaussian(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGaussian, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IInterferenceFunction_evaluate(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RangedDistributionGaussian__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  size_t arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  RangedDistributionGaussian *result = 0 ;
+  
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionGaussian" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionGaussian" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RangedDistributionGaussian" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_RangedDistributionGaussian" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (RangedDistributionGaussian *)new RangedDistributionGaussian(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGaussian, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_RangedDistributionGaussian(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[5] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IInterferenceFunction_evaluate", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RangedDistributionGaussian", 0, 4, argv))) SWIG_fail;
   --argc;
+  if (argc == 0) {
+    return _wrap_new_RangedDistributionGaussian__SWIG_0(self, argc, argv);
+  }
   if (argc == 2) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IInterferenceFunction, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
       _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
-        return _wrap_IInterferenceFunction_evaluate__SWIG_1(self, argc, argv);
+        return _wrap_new_RangedDistributionGaussian__SWIG_2(self, argc, argv);
       }
     }
   }
   if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IInterferenceFunction, 0);
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_new_RangedDistributionGaussian__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
       _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
         {
           int res = SWIG_AsVal_double(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_IInterferenceFunction_evaluate__SWIG_0(self, argc, argv);
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_RangedDistributionGaussian__SWIG_3(self, argc, argv);
+          }
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IInterferenceFunction_evaluate'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RangedDistributionGaussian'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    IInterferenceFunction::evaluate(kvector_t const,double) const\n"
-    "    IInterferenceFunction::evaluate(kvector_t const) const\n");
+    "    RangedDistributionGaussian::RangedDistributionGaussian()\n"
+    "    RangedDistributionGaussian::RangedDistributionGaussian(size_t,double,RealLimits const &)\n"
+    "    RangedDistributionGaussian::RangedDistributionGaussian(size_t,double)\n"
+    "    RangedDistributionGaussian::RangedDistributionGaussian(size_t,double,double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IInterferenceFunction_setPositionVariance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IInterferenceFunction_setPositionVariance", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_setPositionVariance" "', argument " "1"" of type '" "IInterferenceFunction *""'"); 
-  }
-  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IInterferenceFunction_setPositionVariance" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setPositionVariance(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IInterferenceFunction_positionVariance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RangedDistributionGaussian_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
+  RangedDistributionGaussian *arg1 = (RangedDistributionGaussian *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  RangedDistributionGaussian *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionGaussian, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_positionVariance" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RangedDistributionGaussian_clone" "', argument " "1"" of type '" "RangedDistributionGaussian const *""'"); 
   }
-  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
-  result = (double)((IInterferenceFunction const *)arg1)->positionVariance();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< RangedDistributionGaussian * >(argp1);
+  result = (RangedDistributionGaussian *)((RangedDistributionGaussian const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGaussian, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IInterferenceFunction_getParticleDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_RangedDistributionGaussian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
+  RangedDistributionGaussian *arg1 = (RangedDistributionGaussian *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionGaussian, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_getParticleDensity" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
-  }
-  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = (double)((IInterferenceFunction const *)arg1)->IInterferenceFunction::getParticleDensity();
-    } else {
-      result = (double)((IInterferenceFunction const *)arg1)->getParticleDensity();
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RangedDistributionGaussian" "', argument " "1"" of type '" "RangedDistributionGaussian *""'"); 
   }
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< RangedDistributionGaussian * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IInterferenceFunction_supportsMultilayer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  bool result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_supportsMultilayer" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
-  }
-  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
-  director = SWIG_DIRECTOR_CAST(arg1);
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    if (upcall) {
-      result = (bool)((IInterferenceFunction const *)arg1)->IInterferenceFunction::supportsMultilayer();
-    } else {
-      result = (bool)((IInterferenceFunction const *)arg1)->supportsMultilayer();
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *RangedDistributionGaussian_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_RangedDistributionGaussian, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
-
-SWIGINTERN PyObject *_wrap_IInterferenceFunction_DWfactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
-  kvector_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IInterferenceFunction_DWfactor", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_DWfactor" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
-  }
-  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IInterferenceFunction_DWfactor" "', argument " "2"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IInterferenceFunction_DWfactor" "', argument " "2"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  result = (double)((IInterferenceFunction const *)arg1)->DWfactor(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *RangedDistributionGaussian_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
 }
 
-
-SWIGINTERN PyObject *_wrap_IInterferenceFunction_iff_without_dw(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RangedDistributionLogNormal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
-  kvector_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  bool upcall = false;
-  SwigDirector_IInterferenceFunction *darg = 0;
-  double result;
+  RangedDistributionLogNormal *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IInterferenceFunction_iff_without_dw", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IInterferenceFunction_iff_without_dw" "', argument " "1"" of type '" "IInterferenceFunction const *""'"); 
-  }
-  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IInterferenceFunction_iff_without_dw" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IInterferenceFunction_iff_without_dw" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  director = SWIG_DIRECTOR_CAST(arg1);
-  if (!director || !(director->swig_get_inner("iff_without_dw"))) {
-    SWIG_SetErrorMsg(PyExc_RuntimeError,"accessing protected member iff_without_dw");
-    SWIG_fail;
-  }
-  upcall = (director && (director->swig_get_self()==swig_obj[0]));
-  try {
-    darg = dynamic_cast<SwigDirector_IInterferenceFunction *>(arg1);
-    if (upcall) {
-      Swig::DirectorPureVirtualException::raise("IInterferenceFunction::iff_without_dw");
-    } else {
-      result = (double)((SwigDirector_IInterferenceFunction const *)darg)->iff_without_dw(arg2);
-    }
-  } catch (Swig::DirectorException&) {
-    SWIG_fail;
-  }
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (RangedDistributionLogNormal *)new RangedDistributionLogNormal();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLogNormal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_disown_IInterferenceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RangedDistributionLogNormal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IInterferenceFunction *arg1 = (IInterferenceFunction *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  size_t arg1 ;
+  double arg2 ;
+  RealLimits *arg3 = 0 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  RangedDistributionLogNormal *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "disown_IInterferenceFunction" "', argument " "1"" of type '" "IInterferenceFunction *""'"); 
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionLogNormal" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionLogNormal" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RangedDistributionLogNormal" "', argument " "3"" of type '" "RealLimits const &""'"); 
   }
-  arg1 = reinterpret_cast< IInterferenceFunction * >(argp1);
-  {
-    Swig::Director *director = SWIG_DIRECTOR_CAST(arg1);
-    if (director) director->swig_disown();
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RangedDistributionLogNormal" "', argument " "3"" of type '" "RealLimits const &""'"); 
   }
-  
-  resultobj = SWIG_Py_Void();
+  arg3 = reinterpret_cast< RealLimits * >(argp3);
+  result = (RangedDistributionLogNormal *)new RangedDistributionLogNormal(arg1,arg2,(RealLimits const &)*arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLogNormal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IInterferenceFunction_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IInterferenceFunction, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *IInterferenceFunction_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_delete_ILayout(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RangedDistributionLogNormal__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ILayout *arg1 = (ILayout *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  size_t arg1 ;
+  double arg2 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  RangedDistributionLogNormal *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ILayout" "', argument " "1"" of type '" "ILayout *""'"); 
-  }
-  arg1 = reinterpret_cast< ILayout * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionLogNormal" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionLogNormal" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (RangedDistributionLogNormal *)new RangedDistributionLogNormal(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLogNormal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ILayout_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RangedDistributionLogNormal__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ILayout *arg1 = (ILayout *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  ILayout *result = 0 ;
+  size_t arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  RangedDistributionLogNormal *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_clone" "', argument " "1"" of type '" "ILayout const *""'"); 
-  }
-  arg1 = reinterpret_cast< ILayout * >(argp1);
-  result = (ILayout *)((ILayout const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ILayout, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionLogNormal" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionLogNormal" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RangedDistributionLogNormal" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_RangedDistributionLogNormal" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (RangedDistributionLogNormal *)new RangedDistributionLogNormal(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLogNormal, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ILayout_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  ILayout *arg1 = (ILayout *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+SWIGINTERN PyObject *_wrap_new_RangedDistributionLogNormal(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
   
-  if (!SWIG_Python_UnpackTuple(args, "ILayout_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_accept" "', argument " "1"" of type '" "ILayout const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RangedDistributionLogNormal", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_RangedDistributionLogNormal__SWIG_0(self, argc, argv);
   }
-  arg1 = reinterpret_cast< ILayout * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ILayout_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_RangedDistributionLogNormal__SWIG_2(self, argc, argv);
+      }
+    }
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((ILayout const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
+  if (argc == 3) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_new_RangedDistributionLogNormal__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_RangedDistributionLogNormal__SWIG_3(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RangedDistributionLogNormal'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    RangedDistributionLogNormal::RangedDistributionLogNormal()\n"
+    "    RangedDistributionLogNormal::RangedDistributionLogNormal(size_t,double,RealLimits const &)\n"
+    "    RangedDistributionLogNormal::RangedDistributionLogNormal(size_t,double)\n"
+    "    RangedDistributionLogNormal::RangedDistributionLogNormal(size_t,double,double,double)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_ILayout_particles(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RangedDistributionLogNormal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ILayout *arg1 = (ILayout *) 0 ;
+  RangedDistributionLogNormal *arg1 = (RangedDistributionLogNormal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SwigValueWrapper< SafePointerVector< IParticle > > result;
+  RangedDistributionLogNormal *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionLogNormal, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_particles" "', argument " "1"" of type '" "ILayout const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RangedDistributionLogNormal_clone" "', argument " "1"" of type '" "RangedDistributionLogNormal const *""'"); 
   }
-  arg1 = reinterpret_cast< ILayout * >(argp1);
-  result = ((ILayout const *)arg1)->particles();
-  resultobj = SWIG_NewPointerObj((new SafePointerVector< IParticle >(static_cast< const SafePointerVector< IParticle >& >(result))), SWIGTYPE_p_SafePointerVectorT_IParticle_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< RangedDistributionLogNormal * >(argp1);
+  result = (RangedDistributionLogNormal *)((RangedDistributionLogNormal const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLogNormal, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ILayout_interferenceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_RangedDistributionLogNormal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ILayout *arg1 = (ILayout *) 0 ;
+  RangedDistributionLogNormal *arg1 = (RangedDistributionLogNormal *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  IInterferenceFunction *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionLogNormal, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_interferenceFunction" "', argument " "1"" of type '" "ILayout const *""'"); 
-  }
-  arg1 = reinterpret_cast< ILayout * >(argp1);
-  result = (IInterferenceFunction *)((ILayout const *)arg1)->interferenceFunction();
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RangedDistributionLogNormal" "', argument " "1"" of type '" "RangedDistributionLogNormal *""'"); 
   }
+  arg1 = reinterpret_cast< RangedDistributionLogNormal * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ILayout_getTotalAbundance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *RangedDistributionLogNormal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_RangedDistributionLogNormal, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *RangedDistributionLogNormal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_RangedDistributionCosine__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  ILayout *arg1 = (ILayout *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  RangedDistributionCosine *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_getTotalAbundance" "', argument " "1"" of type '" "ILayout const *""'"); 
-  }
-  arg1 = reinterpret_cast< ILayout * >(argp1);
-  result = (double)((ILayout const *)arg1)->getTotalAbundance();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (RangedDistributionCosine *)new RangedDistributionCosine();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionCosine, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ILayout_totalParticleSurfaceDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RangedDistributionCosine__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ILayout *arg1 = (ILayout *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  size_t arg1 ;
+  double arg2 ;
+  RealLimits *arg3 = 0 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  RangedDistributionCosine *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_totalParticleSurfaceDensity" "', argument " "1"" of type '" "ILayout const *""'"); 
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionCosine" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionCosine" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RangedDistributionCosine" "', argument " "3"" of type '" "RealLimits const &""'"); 
   }
-  arg1 = reinterpret_cast< ILayout * >(argp1);
-  result = (double)((ILayout const *)arg1)->totalParticleSurfaceDensity();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RangedDistributionCosine" "', argument " "3"" of type '" "RealLimits const &""'"); 
+  }
+  arg3 = reinterpret_cast< RealLimits * >(argp3);
+  result = (RangedDistributionCosine *)new RangedDistributionCosine(arg1,arg2,(RealLimits const &)*arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionCosine, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ILayout_setTotalParticleSurfaceDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RangedDistributionCosine__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ILayout *arg1 = (ILayout *) 0 ;
+  size_t arg1 ;
   double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  RangedDistributionCosine *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ILayout_setTotalParticleSurfaceDensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_setTotalParticleSurfaceDensity" "', argument " "1"" of type '" "ILayout *""'"); 
-  }
-  arg1 = reinterpret_cast< ILayout * >(argp1);
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionCosine" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ILayout_setTotalParticleSurfaceDensity" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionCosine" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  (arg1)->setTotalParticleSurfaceDensity(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_ILayout_weight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  ILayout *arg1 = (ILayout *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_weight" "', argument " "1"" of type '" "ILayout const *""'"); 
-  }
-  arg1 = reinterpret_cast< ILayout * >(argp1);
-  result = (double)((ILayout const *)arg1)->weight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = (RangedDistributionCosine *)new RangedDistributionCosine(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionCosine, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ILayout_setWeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RangedDistributionCosine__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ILayout *arg1 = (ILayout *) 0 ;
+  size_t arg1 ;
   double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg3 ;
+  double arg4 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  RangedDistributionCosine *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ILayout_setWeight", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILayout, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILayout_setWeight" "', argument " "1"" of type '" "ILayout *""'"); 
-  }
-  arg1 = reinterpret_cast< ILayout * >(argp1);
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionCosine" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ILayout_setWeight" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionCosine" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  (arg1)->setWeight(arg2);
-  resultobj = SWIG_Py_Void();
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RangedDistributionCosine" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_RangedDistributionCosine" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (RangedDistributionCosine *)new RangedDistributionCosine(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionCosine, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *ILayout_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ILayout, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_new_RangedDistributionCosine(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RangedDistributionCosine", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_RangedDistributionCosine__SWIG_0(self, argc, argv);
+  }
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_RangedDistributionCosine__SWIG_2(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_new_RangedDistributionCosine__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_RangedDistributionCosine__SWIG_3(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RangedDistributionCosine'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    RangedDistributionCosine::RangedDistributionCosine()\n"
+    "    RangedDistributionCosine::RangedDistributionCosine(size_t,double,RealLimits const &)\n"
+    "    RangedDistributionCosine::RangedDistributionCosine(size_t,double)\n"
+    "    RangedDistributionCosine::RangedDistributionCosine(size_t,double,double,double)\n");
+  return 0;
 }
 
-SWIGINTERN PyObject *_wrap_delete_IAbstractParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+
+SWIGINTERN PyObject *_wrap_RangedDistributionCosine_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
+  RangedDistributionCosine *arg1 = (RangedDistributionCosine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  RangedDistributionCosine *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionCosine, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IAbstractParticle" "', argument " "1"" of type '" "IAbstractParticle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RangedDistributionCosine_clone" "', argument " "1"" of type '" "RangedDistributionCosine const *""'"); 
   }
-  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RangedDistributionCosine * >(argp1);
+  result = (RangedDistributionCosine *)((RangedDistributionCosine const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionCosine, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IAbstractParticle_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_RangedDistributionCosine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
+  RangedDistributionCosine *arg1 = (RangedDistributionCosine *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IAbstractParticle *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionCosine, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IAbstractParticle_clone" "', argument " "1"" of type '" "IAbstractParticle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RangedDistributionCosine" "', argument " "1"" of type '" "RangedDistributionCosine *""'"); 
   }
-  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
-  result = (IAbstractParticle *)((IAbstractParticle const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAbstractParticle, 0 |  0 );
+  arg1 = reinterpret_cast< RangedDistributionCosine * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IAbstractParticle_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *RangedDistributionCosine_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_RangedDistributionCosine, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *RangedDistributionCosine_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_RealParameter__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  std::string *arg1 = 0 ;
+  double *arg2 = (double *) 0 ;
+  std::string *arg3 = 0 ;
+  std::function< void () > *arg4 = 0 ;
+  RealLimits *arg5 = 0 ;
+  Attributes *arg6 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  int res3 = SWIG_OLDOBJ ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  void *argp5 = 0 ;
+  int res5 = 0 ;
+  void *argp6 = 0 ;
+  int res6 = 0 ;
+  RealParameter *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IAbstractParticle_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IAbstractParticle_accept" "', argument " "1"" of type '" "IAbstractParticle const *""'"); 
+  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_double, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IAbstractParticle_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_RealParameter" "', argument " "2"" of type '" "double *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((IAbstractParticle const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = reinterpret_cast< double * >(argp2);
+  {
+    std::string *ptr = (std::string *)0;
+    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_std__functionT_void_fF_t,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_RealParameter" "', argument " "4"" of type '" "std::function< void () > const &""'"); 
+  }
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "4"" of type '" "std::function< void () > const &""'"); 
+  }
+  arg4 = reinterpret_cast< std::function< void () > * >(argp4);
+  res5 = SWIG_ConvertPtr(swig_obj[4], &argp5, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res5)) {
+    SWIG_exception_fail(SWIG_ArgError(res5), "in method '" "new_RealParameter" "', argument " "5"" of type '" "RealLimits const &""'"); 
+  }
+  if (!argp5) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "5"" of type '" "RealLimits const &""'"); 
+  }
+  arg5 = reinterpret_cast< RealLimits * >(argp5);
+  res6 = SWIG_ConvertPtr(swig_obj[5], &argp6, SWIGTYPE_p_Attributes,  0  | 0);
+  if (!SWIG_IsOK(res6)) {
+    SWIG_exception_fail(SWIG_ArgError(res6), "in method '" "new_RealParameter" "', argument " "6"" of type '" "Attributes const &""'"); 
+  }
+  if (!argp6) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "6"" of type '" "Attributes const &""'"); 
+  }
+  arg6 = reinterpret_cast< Attributes * >(argp6);
+  result = (RealParameter *)new RealParameter((std::string const &)*arg1,arg2,(std::string const &)*arg3,(std::function< void () > const &)*arg4,(RealLimits const &)*arg5,(Attributes const &)*arg6);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IAbstractParticle_abundance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RealParameter__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  std::string *arg1 = 0 ;
+  double *arg2 = (double *) 0 ;
+  std::string *arg3 = 0 ;
+  std::function< void () > *arg4 = 0 ;
+  RealLimits *arg5 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  void *argp5 = 0 ;
+  int res5 = 0 ;
+  RealParameter *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IAbstractParticle_abundance" "', argument " "1"" of type '" "IAbstractParticle const *""'"); 
+  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
-  result = (double)((IAbstractParticle const *)arg1)->abundance();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_double, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_RealParameter" "', argument " "2"" of type '" "double *""'"); 
+  }
+  arg2 = reinterpret_cast< double * >(argp2);
+  {
+    std::string *ptr = (std::string *)0;
+    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_std__functionT_void_fF_t,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_RealParameter" "', argument " "4"" of type '" "std::function< void () > const &""'"); 
+  }
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "4"" of type '" "std::function< void () > const &""'"); 
+  }
+  arg4 = reinterpret_cast< std::function< void () > * >(argp4);
+  res5 = SWIG_ConvertPtr(swig_obj[4], &argp5, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res5)) {
+    SWIG_exception_fail(SWIG_ArgError(res5), "in method '" "new_RealParameter" "', argument " "5"" of type '" "RealLimits const &""'"); 
+  }
+  if (!argp5) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "5"" of type '" "RealLimits const &""'"); 
+  }
+  arg5 = reinterpret_cast< RealLimits * >(argp5);
+  result = (RealParameter *)new RealParameter((std::string const &)*arg1,arg2,(std::string const &)*arg3,(std::function< void () > const &)*arg4,(RealLimits const &)*arg5);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IAbstractParticle_setAbundance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RealParameter__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  std::string *arg1 = 0 ;
+  double *arg2 = (double *) 0 ;
+  std::string *arg3 = 0 ;
+  std::function< void () > *arg4 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  RealParameter *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IAbstractParticle_setAbundance", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IAbstractParticle_setAbundance" "', argument " "1"" of type '" "IAbstractParticle *""'"); 
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IAbstractParticle_setAbundance" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setAbundance(arg2);
-  resultobj = SWIG_Py_Void();
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_double, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_RealParameter" "', argument " "2"" of type '" "double *""'"); 
+  }
+  arg2 = reinterpret_cast< double * >(argp2);
+  {
+    std::string *ptr = (std::string *)0;
+    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_std__functionT_void_fF_t,  0  | 0);
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_RealParameter" "', argument " "4"" of type '" "std::function< void () > const &""'"); 
+  }
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "4"" of type '" "std::function< void () > const &""'"); 
+  }
+  arg4 = reinterpret_cast< std::function< void () > * >(argp4);
+  result = (RealParameter *)new RealParameter((std::string const &)*arg1,arg2,(std::string const &)*arg3,(std::function< void () > const &)*arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IAbstractParticle_translate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RealParameter__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
-  kvector_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
+  std::string *arg1 = 0 ;
+  double *arg2 = (double *) 0 ;
+  std::string *arg3 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  int res3 = SWIG_OLDOBJ ;
+  RealParameter *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IAbstractParticle_translate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IAbstractParticle_translate" "', argument " "1"" of type '" "IAbstractParticle *""'"); 
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_double, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_RealParameter" "', argument " "2"" of type '" "double *""'"); 
+  }
+  arg2 = reinterpret_cast< double * >(argp2);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IAbstractParticle_translate" "', argument " "2"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IAbstractParticle_translate" "', argument " "2"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+    std::string *ptr = (std::string *)0;
+    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
     }
+    arg3 = ptr;
   }
-  (arg1)->translate(arg2);
-  resultobj = SWIG_Py_Void();
+  result = (RealParameter *)new RealParameter((std::string const &)*arg1,arg2,(std::string const &)*arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IAbstractParticle_rotate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RealParameter__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IAbstractParticle *arg1 = (IAbstractParticle *) 0 ;
-  IRotation *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  std::string *arg1 = 0 ;
+  double *arg2 = (double *) 0 ;
+  int res1 = SWIG_OLDOBJ ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  RealParameter *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IAbstractParticle_rotate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IAbstractParticle, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IAbstractParticle_rotate" "', argument " "1"" of type '" "IAbstractParticle *""'"); 
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_double, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IAbstractParticle_rotate" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IAbstractParticle_rotate" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_RealParameter" "', argument " "2"" of type '" "double *""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  (arg1)->rotate((IRotation const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = reinterpret_cast< double * >(argp2);
+  result = (RealParameter *)new RealParameter((std::string const &)*arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IAbstractParticle_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IAbstractParticle, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_new_RealParameter(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[7] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RealParameter", 0, 6, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_new_RealParameter__SWIG_4(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_new_RealParameter__SWIG_3(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_std__functionT_void_fF_t, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_new_RealParameter__SWIG_2(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  if (argc == 5) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_std__functionT_void_fF_t, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            int res = SWIG_ConvertPtr(argv[4], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+            _v = SWIG_CheckState(res);
+            if (_v) {
+              return _wrap_new_RealParameter__SWIG_1(self, argc, argv);
+            }
+          }
+        }
+      }
+    }
+  }
+  if (argc == 6) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_std__functionT_void_fF_t, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            int res = SWIG_ConvertPtr(argv[4], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+            _v = SWIG_CheckState(res);
+            if (_v) {
+              int res = SWIG_ConvertPtr(argv[5], 0, SWIGTYPE_p_Attributes, SWIG_POINTER_NO_NULL | 0);
+              _v = SWIG_CheckState(res);
+              if (_v) {
+                return _wrap_new_RealParameter__SWIG_0(self, argc, argv);
+              }
+            }
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RealParameter'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    RealParameter::RealParameter(std::string const &,double *,std::string const &,std::function< void () > const &,RealLimits const &,Attributes const &)\n"
+    "    RealParameter::RealParameter(std::string const &,double *,std::string const &,std::function< void () > const &,RealLimits const &)\n"
+    "    RealParameter::RealParameter(std::string const &,double *,std::string const &,std::function< void () > const &)\n"
+    "    RealParameter::RealParameter(std::string const &,double *,std::string const &)\n"
+    "    RealParameter::RealParameter(std::string const &,double *)\n");
+  return 0;
 }
 
-SWIGINTERN PyObject *_wrap_delete_IParameterReal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+
+SWIGINTERN PyObject *_wrap_delete_RealParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
+  RealParameter *arg1 = (RealParameter *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IParameterReal" "', argument " "1"" of type '" "IParameter< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RealParameter" "', argument " "1"" of type '" "RealParameter *""'"); 
   }
-  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
+  arg1 = reinterpret_cast< RealParameter * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -88303,34 +88231,34 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IParameterReal_clone__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RealParameter_clone__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
+  RealParameter *arg1 = (RealParameter *) 0 ;
   std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   int res2 = SWIG_OLDOBJ ;
-  IParameter< double > *result = 0 ;
+  RealParameter *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_clone" "', argument " "1"" of type '" "IParameter< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_clone" "', argument " "1"" of type '" "RealParameter const *""'"); 
   }
-  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
+  arg1 = reinterpret_cast< RealParameter * >(argp1);
   {
     std::string *ptr = (std::string *)0;
     res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParameterReal_clone" "', argument " "2"" of type '" "std::string const &""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RealParameter_clone" "', argument " "2"" of type '" "std::string const &""'"); 
     }
     if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParameterReal_clone" "', argument " "2"" of type '" "std::string const &""'"); 
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RealParameter_clone" "', argument " "2"" of type '" "std::string const &""'"); 
     }
     arg2 = ptr;
   }
-  result = (IParameter< double > *)((IParameter< double > const *)arg1)->clone((std::string const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
+  result = (RealParameter *)((RealParameter const *)arg1)->clone((std::string const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
   if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
@@ -88339,211 +88267,70 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IParameterReal_clone__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RealParameter_clone__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
+  RealParameter *arg1 = (RealParameter *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  IParameter< double > *result = 0 ;
+  RealParameter *result = 0 ;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_clone" "', argument " "1"" of type '" "IParameter< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_clone" "', argument " "1"" of type '" "RealParameter const *""'"); 
   }
-  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
-  result = (IParameter< double > *)((IParameter< double > const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
+  arg1 = reinterpret_cast< RealParameter * >(argp1);
+  result = (RealParameter *)((RealParameter const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParameterReal_clone(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_RealParameter_clone(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IParameterReal_clone", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "RealParameter_clone", 0, 2, argv))) SWIG_fail;
   --argc;
   if (argc == 1) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParameterT_double_t, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RealParameter, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_IParameterReal_clone__SWIG_1(self, argc, argv);
+      return _wrap_RealParameter_clone__SWIG_1(self, argc, argv);
     }
   }
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParameterT_double_t, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RealParameter, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
       int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_IParameterReal_clone__SWIG_0(self, argc, argv);
+        return _wrap_RealParameter_clone__SWIG_0(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IParameterReal_clone'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'RealParameter_clone'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    IParameter< double >::clone(std::string const &) const\n"
-    "    IParameter< double >::clone() const\n");
+    "    RealParameter::clone(std::string const &) const\n"
+    "    RealParameter::clone() const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParameterReal_isNull(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  bool result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_isNull" "', argument " "1"" of type '" "IParameter< double > const *""'"); 
-  }
-  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
-  result = (bool)((IParameter< double > const *)arg1)->isNull();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IParameterReal_getData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_getData" "', argument " "1"" of type '" "IParameter< double > const *""'"); 
-  }
-  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
-  result = (double *) &((IParameter< double > const *)arg1)->getData();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_double, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IParameterReal_setData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
-  double *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IParameterReal_setData", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_setData" "', argument " "1"" of type '" "IParameter< double > *""'"); 
-  }
-  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_double,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParameterReal_setData" "', argument " "2"" of type '" "double &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParameterReal_setData" "', argument " "2"" of type '" "double &""'"); 
-  }
-  arg2 = reinterpret_cast< double * >(argp2);
-  (arg1)->setData(*arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IParameterReal_hasSameData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
-  IParameter< double > *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  bool result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IParameterReal_hasSameData", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_hasSameData" "', argument " "1"" of type '" "IParameter< double > *""'"); 
-  }
-  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IParameterT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParameterReal_hasSameData" "', argument " "2"" of type '" "IParameter< double > const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParameterReal_hasSameData" "', argument " "2"" of type '" "IParameter< double > const &""'"); 
-  }
-  arg2 = reinterpret_cast< IParameter< double > * >(argp2);
-  result = (bool)(arg1)->hasSameData((IParameter< double > const &)*arg2);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IParameterReal_getName(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IParameter< double > *arg1 = (IParameter< double > *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::string *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParameterT_double_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParameterReal_getName" "', argument " "1"" of type '" "IParameter< double > const *""'"); 
-  }
-  arg1 = reinterpret_cast< IParameter< double > * >(argp1);
-  result = (std::string *) &((IParameter< double > const *)arg1)->getName();
-  resultobj = SWIG_From_std_string(static_cast< std::string >(*result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *IParameterReal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IParameterT_double_t, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_ParticleLimits_m_bottom_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RealParameter_setValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLimits *arg1 = (ParticleLimits *) 0 ;
+  RealParameter *arg1 = (RealParameter *) 0 ;
   double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -88551,18 +88338,18 @@ SWIGINTERN PyObject *_wrap_ParticleLimits_m_bottom_set(PyObject *SWIGUNUSEDPARM(
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParticleLimits_m_bottom_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLimits, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RealParameter_setValue", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLimits_m_bottom_set" "', argument " "1"" of type '" "ParticleLimits *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_setValue" "', argument " "1"" of type '" "RealParameter *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleLimits * >(argp1);
+  arg1 = reinterpret_cast< RealParameter * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParticleLimits_m_bottom_set" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RealParameter_setValue" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->m_bottom = arg2;
+  (arg1)->setValue(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -88570,9 +88357,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLimits_m_bottom_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RealParameter_value(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLimits *arg1 = (ParticleLimits *) 0 ;
+  RealParameter *arg1 = (RealParameter *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -88580,12 +88367,12 @@ SWIGINTERN PyObject *_wrap_ParticleLimits_m_bottom_get(PyObject *SWIGUNUSEDPARM(
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLimits, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLimits_m_bottom_get" "', argument " "1"" of type '" "ParticleLimits *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_value" "', argument " "1"" of type '" "RealParameter const *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleLimits * >(argp1);
-  result = (double) ((arg1)->m_bottom);
+  arg1 = reinterpret_cast< RealParameter * >(argp1);
+  result = (double)((RealParameter const *)arg1)->value();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -88593,271 +88380,252 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLimits_m_top_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RealParameter_setLimits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLimits *arg1 = (ParticleLimits *) 0 ;
-  double arg2 ;
+  RealParameter *arg1 = (RealParameter *) 0 ;
+  RealLimits *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  RealParameter *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParticleLimits_m_top_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLimits, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RealParameter_setLimits", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLimits_m_top_set" "', argument " "1"" of type '" "ParticleLimits *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_setLimits" "', argument " "1"" of type '" "RealParameter *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleLimits * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParticleLimits_m_top_set" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->m_top = arg2;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_ParticleLimits_m_top_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  ParticleLimits *arg1 = (ParticleLimits *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLimits, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLimits_m_top_get" "', argument " "1"" of type '" "ParticleLimits *""'"); 
+  arg1 = reinterpret_cast< RealParameter * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RealParameter_setLimits" "', argument " "2"" of type '" "RealLimits const &""'"); 
   }
-  arg1 = reinterpret_cast< ParticleLimits * >(argp1);
-  result = (double) ((arg1)->m_top);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_ParticleLimits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  ParticleLimits *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_ParticleLimits", 0, 0, 0)) SWIG_fail;
-  result = (ParticleLimits *)new ParticleLimits();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleLimits, SWIG_POINTER_NEW |  0 );
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RealParameter_setLimits" "', argument " "2"" of type '" "RealLimits const &""'"); 
+  }
+  arg2 = reinterpret_cast< RealLimits * >(argp2);
+  result = (RealParameter *) &(arg1)->setLimits((RealLimits const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ParticleLimits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RealParameter_limits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLimits *arg1 = (ParticleLimits *) 0 ;
+  RealParameter *arg1 = (RealParameter *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  RealLimits result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLimits, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParticleLimits" "', argument " "1"" of type '" "ParticleLimits *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_limits" "', argument " "1"" of type '" "RealParameter const *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleLimits * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RealParameter * >(argp1);
+  result = ((RealParameter const *)arg1)->limits();
+  resultobj = SWIG_NewPointerObj((new RealLimits(static_cast< const RealLimits& >(result))), SWIGTYPE_p_RealLimits, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *ParticleLimits_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ParticleLimits, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *ParticleLimits_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_delete_IParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RealParameter_setLimited(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
+  RealParameter *arg1 = (RealParameter *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  RealParameter *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RealParameter_setLimited", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IParticle" "', argument " "1"" of type '" "IParticle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_setLimited" "', argument " "1"" of type '" "RealParameter *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RealParameter * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RealParameter_setLimited" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RealParameter_setLimited" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (RealParameter *) &(arg1)->setLimited(arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RealParameter_setPositive(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
+  RealParameter *arg1 = (RealParameter *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IParticle *result = 0 ;
+  RealParameter *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_clone" "', argument " "1"" of type '" "IParticle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_setPositive" "', argument " "1"" of type '" "RealParameter *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  result = (IParticle *)((IParticle const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IParticle, 0 |  0 );
+  arg1 = reinterpret_cast< RealParameter * >(argp1);
+  result = (RealParameter *) &(arg1)->setPositive();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_createFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RealParameter_setNonnegative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
+  RealParameter *arg1 = (RealParameter *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  IFormFactor *result = 0 ;
+  RealParameter *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_createFormFactor" "', argument " "1"" of type '" "IParticle const *""'"); 
-  }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  result = (IFormFactor *)((IParticle const *)arg1)->createFormFactor();
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_setNonnegative" "', argument " "1"" of type '" "RealParameter *""'"); 
   }
+  arg1 = reinterpret_cast< RealParameter * >(argp1);
+  result = (RealParameter *) &(arg1)->setNonnegative();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_createSlicedParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RealParameter_setUnit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
-  ZLimits arg2 ;
+  RealParameter *arg1 = (RealParameter *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
   PyObject *swig_obj[2] ;
-  SlicedParticle result;
+  RealParameter *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IParticle_createSlicedParticle", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RealParameter_setUnit", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_createSlicedParticle" "', argument " "1"" of type '" "IParticle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_setUnit" "', argument " "1"" of type '" "RealParameter *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
+  arg1 = reinterpret_cast< RealParameter * >(argp1);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParticle_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParticle_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'");
-    } else {
-      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RealParameter_setUnit" "', argument " "2"" of type '" "std::string const &""'"); 
     }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RealParameter_setUnit" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
   }
-  result = ((IParticle const *)arg1)->createSlicedParticle(arg2);
-  
-  resultobj = SWIG_NewPointerObj(new SlicedParticle(std::move(result)), SWIGTYPE_p_SlicedParticle, SWIG_POINTER_OWN);
-  
+  result = (RealParameter *) &(arg1)->setUnit((std::string const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_position(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RealParameter_unit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
+  RealParameter *arg1 = (RealParameter *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  kvector_t result;
+  std::string result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_position" "', argument " "1"" of type '" "IParticle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_unit" "', argument " "1"" of type '" "RealParameter const *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  result = ((IParticle const *)arg1)->position();
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< RealParameter * >(argp1);
+  result = ((RealParameter const *)arg1)->unit();
+  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_setPosition__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *RealParameter_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_RealParameter, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *RealParameter_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_ThreadInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
-  kvector_t arg2 ;
+  ThreadInfo *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_ThreadInfo", 0, 0, 0)) SWIG_fail;
+  result = (ThreadInfo *)new ThreadInfo();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ThreadInfo, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ThreadInfo_n_threads_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
+  unsigned int arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
+  unsigned int val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ThreadInfo_n_threads_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_setPosition" "', argument " "1"" of type '" "IParticle *""'"); 
-  }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParticle_setPosition" "', argument " "2"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParticle_setPosition" "', argument " "2"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ThreadInfo_n_threads_set" "', argument " "1"" of type '" "ThreadInfo *""'"); 
   }
-  (arg1)->setPosition(arg2);
+  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
+  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ThreadInfo_n_threads_set" "', argument " "2"" of type '" "unsigned int""'");
+  } 
+  arg2 = static_cast< unsigned int >(val2);
+  if (arg1) (arg1)->n_threads = arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -88865,43 +88633,51 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_setPosition__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ThreadInfo_n_threads_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
+  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
+  PyObject *swig_obj[1] ;
+  unsigned int result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ThreadInfo_n_threads_get" "', argument " "1"" of type '" "ThreadInfo *""'"); 
+  }
+  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
+  result = (unsigned int) ((arg1)->n_threads);
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ThreadInfo_n_batches_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
+  unsigned int arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  unsigned int val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ThreadInfo_n_batches_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_setPosition" "', argument " "1"" of type '" "IParticle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ThreadInfo_n_batches_set" "', argument " "1"" of type '" "ThreadInfo *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
+  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IParticle_setPosition" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IParticle_setPosition" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IParticle_setPosition" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ThreadInfo_n_batches_set" "', argument " "2"" of type '" "unsigned int""'");
   } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->setPosition(arg2,arg3,arg4);
+  arg2 = static_cast< unsigned int >(val2);
+  if (arg1) (arg1)->n_batches = arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -88909,94 +88685,51 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_setPosition(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_ThreadInfo_n_batches_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  unsigned int result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IParticle_setPosition", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParticle, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_IParticle_setPosition__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParticle, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_IParticle_setPosition__SWIG_1(self, argc, argv);
-          }
-        }
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ThreadInfo_n_batches_get" "', argument " "1"" of type '" "ThreadInfo *""'"); 
   }
-  
+  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
+  result = (unsigned int) ((arg1)->n_batches);
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IParticle_setPosition'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IParticle::setPosition(kvector_t)\n"
-    "    IParticle::setPosition(double,double,double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_translate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ThreadInfo_current_batch_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
-  kvector_t arg2 ;
+  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
+  unsigned int arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
+  unsigned int val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IParticle_translate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ThreadInfo_current_batch_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_translate" "', argument " "1"" of type '" "IParticle *""'"); 
-  }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParticle_translate" "', argument " "2"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParticle_translate" "', argument " "2"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ThreadInfo_current_batch_set" "', argument " "1"" of type '" "ThreadInfo *""'"); 
   }
-  (arg1)->translate(arg2);
+  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
+  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ThreadInfo_current_batch_set" "', argument " "2"" of type '" "unsigned int""'");
+  } 
+  arg2 = static_cast< unsigned int >(val2);
+  if (arg1) (arg1)->current_batch = arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -89004,54 +88737,44 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_rotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ThreadInfo_current_batch_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
+  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IRotation *result = 0 ;
+  unsigned int result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_rotation" "', argument " "1"" of type '" "IParticle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ThreadInfo_current_batch_get" "', argument " "1"" of type '" "ThreadInfo *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  result = (IRotation *)((IParticle const *)arg1)->rotation();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
+  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
+  result = (unsigned int) ((arg1)->current_batch);
+  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_setRotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_ThreadInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
-  IRotation *arg2 = 0 ;
+  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IParticle_setRotation", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_setRotation" "', argument " "1"" of type '" "IParticle *""'"); 
-  }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParticle_setRotation" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParticle_setRotation" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ThreadInfo" "', argument " "1"" of type '" "ThreadInfo *""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  (arg1)->setRotation((IRotation const &)*arg2);
+  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -89059,31 +88782,39 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_rotate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ThreadInfo_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_ThreadInfo, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *ThreadInfo_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_PolygonalTopology_vertexIndices_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
-  IRotation *arg2 = 0 ;
+  PolygonalTopology *arg1 = (PolygonalTopology *) 0 ;
+  std::vector< int,std::allocator< int > > *arg2 = (std::vector< int,std::allocator< int > > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IParticle_rotate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PolygonalTopology_vertexIndices_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolygonalTopology, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_rotate" "', argument " "1"" of type '" "IParticle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolygonalTopology_vertexIndices_set" "', argument " "1"" of type '" "PolygonalTopology *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  arg1 = reinterpret_cast< PolygonalTopology * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_std__vectorT_int_std__allocatorT_int_t_t, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IParticle_rotate" "', argument " "2"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IParticle_rotate" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolygonalTopology_vertexIndices_set" "', argument " "2"" of type '" "std::vector< int,std::allocator< int > > *""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  (arg1)->rotate((IRotation const &)*arg2);
+  arg2 = reinterpret_cast< std::vector< int,std::allocator< int > > * >(argp2);
+  if (arg1) (arg1)->vertexIndices = *arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -89091,50 +88822,51 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolygonalTopology_vertexIndices_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
+  PolygonalTopology *arg1 = (PolygonalTopology *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  std::vector< int,std::allocator< int > > *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolygonalTopology, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_getChildren" "', argument " "1"" of type '" "IParticle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolygonalTopology_vertexIndices_get" "', argument " "1"" of type '" "PolygonalTopology *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  result = ((IParticle const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< PolygonalTopology * >(argp1);
+  result = (std::vector< int,std::allocator< int > > *)& ((arg1)->vertexIndices);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_int_std__allocatorT_int_t_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_registerAbundance__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_PolygonalTopology_symmetry_S2_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
+  PolygonalTopology *arg1 = (PolygonalTopology *) 0 ;
   bool arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   bool val2 ;
   int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PolygonalTopology_symmetry_S2_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolygonalTopology, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_registerAbundance" "', argument " "1"" of type '" "IParticle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolygonalTopology_symmetry_S2_set" "', argument " "1"" of type '" "PolygonalTopology *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
+  arg1 = reinterpret_cast< PolygonalTopology * >(argp1);
   ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IParticle_registerAbundance" "', argument " "2"" of type '" "bool""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "PolygonalTopology_symmetry_S2_set" "', argument " "2"" of type '" "bool""'");
   } 
   arg2 = static_cast< bool >(val2);
-  (arg1)->registerAbundance(arg2);
+  if (arg1) (arg1)->symmetry_S2 = arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -89142,109 +88874,57 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_registerAbundance__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_PolygonalTopology_symmetry_S2_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
+  PolygonalTopology *arg1 = (PolygonalTopology *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolygonalTopology, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_registerAbundance" "', argument " "1"" of type '" "IParticle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolygonalTopology_symmetry_S2_get" "', argument " "1"" of type '" "PolygonalTopology *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  (arg1)->registerAbundance();
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< PolygonalTopology * >(argp1);
+  result = (bool) ((arg1)->symmetry_S2);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_registerAbundance(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IParticle_registerAbundance", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParticle, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_IParticle_registerAbundance__SWIG_1(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParticle, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_bool(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_IParticle_registerAbundance__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IParticle_registerAbundance'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IParticle::registerAbundance(bool)\n"
-    "    IParticle::registerAbundance()\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IParticle_registerPosition__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_PolygonalTopology(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
-  bool arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  bool val2 ;
-  int ecode2 = 0 ;
+  PolygonalTopology *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_registerPosition" "', argument " "1"" of type '" "IParticle *""'"); 
-  }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IParticle_registerPosition" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  (arg1)->registerPosition(arg2);
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "new_PolygonalTopology", 0, 0, 0)) SWIG_fail;
+  result = (PolygonalTopology *)new PolygonalTopology();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PolygonalTopology, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_registerPosition__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_PolygonalTopology(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
+  PolygonalTopology *arg1 = (PolygonalTopology *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolygonalTopology, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_registerPosition" "', argument " "1"" of type '" "IParticle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PolygonalTopology" "', argument " "1"" of type '" "PolygonalTopology *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  (arg1)->registerPosition();
+  arg1 = reinterpret_cast< PolygonalTopology * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -89252,116 +88932,91 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_registerPosition(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IParticle_registerPosition", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParticle, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_IParticle_registerPosition__SWIG_1(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IParticle, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_bool(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_IParticle_registerPosition__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IParticle_registerPosition'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IParticle::registerPosition(bool)\n"
-    "    IParticle::registerPosition()\n");
-  return 0;
+SWIGINTERN PyObject *PolygonalTopology_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_PolygonalTopology, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *PolygonalTopology_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_IParticle_decompose(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralTopology_faces_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
+  PolyhedralTopology *arg1 = (PolyhedralTopology *) 0 ;
+  std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > *arg2 = (std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SwigValueWrapper< SafePointerVector< IParticle > > result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PolyhedralTopology_faces_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralTopology, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_decompose" "', argument " "1"" of type '" "IParticle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralTopology_faces_set" "', argument " "1"" of type '" "PolyhedralTopology *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  result = ((IParticle const *)arg1)->decompose();
-  resultobj = SWIG_NewPointerObj((new SafePointerVector< IParticle >(static_cast< const SafePointerVector< IParticle >& >(result))), SWIGTYPE_p_SafePointerVectorT_IParticle_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< PolyhedralTopology * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_std__vectorT_PolygonalTopology_std__allocatorT_PolygonalTopology_t_t, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralTopology_faces_set" "', argument " "2"" of type '" "std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > *""'"); 
+  }
+  arg2 = reinterpret_cast< std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > * >(argp2);
+  if (arg1) (arg1)->faces = *arg2;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IParticle_bottomTopZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralTopology_faces_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = (IParticle *) 0 ;
+  PolyhedralTopology *arg1 = (PolyhedralTopology *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  ParticleLimits result;
+  std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IParticle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralTopology, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IParticle_bottomTopZ" "', argument " "1"" of type '" "IParticle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralTopology_faces_get" "', argument " "1"" of type '" "PolyhedralTopology *""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  result = ((IParticle const *)arg1)->bottomTopZ();
-  resultobj = SWIG_NewPointerObj((new ParticleLimits(static_cast< const ParticleLimits& >(result))), SWIGTYPE_p_ParticleLimits, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< PolyhedralTopology * >(argp1);
+  result = (std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > *)& ((arg1)->faces);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_PolygonalTopology_std__allocatorT_PolygonalTopology_t_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IParticle_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IParticle, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_delete_IPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralTopology_symmetry_Ci_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IPeakShape *arg1 = (IPeakShape *) 0 ;
+  PolyhedralTopology *arg1 = (PolyhedralTopology *) 0 ;
+  bool arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  bool val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPeakShape, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PolyhedralTopology_symmetry_Ci_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralTopology, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IPeakShape" "', argument " "1"" of type '" "IPeakShape *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralTopology_symmetry_Ci_set" "', argument " "1"" of type '" "PolyhedralTopology *""'"); 
   }
-  arg1 = reinterpret_cast< IPeakShape * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< PolyhedralTopology * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "PolyhedralTopology_symmetry_Ci_set" "', argument " "2"" of type '" "bool""'");
+  } 
+  arg2 = static_cast< bool >(val2);
+  if (arg1) (arg1)->symmetry_Ci = arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -89369,326 +89024,311 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralTopology_symmetry_Ci_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IPeakShape *arg1 = (IPeakShape *) 0 ;
+  PolyhedralTopology *arg1 = (PolyhedralTopology *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IPeakShape *result = 0 ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPeakShape, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralTopology, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPeakShape_clone" "', argument " "1"" of type '" "IPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralTopology_symmetry_Ci_get" "', argument " "1"" of type '" "PolyhedralTopology *""'"); 
   }
-  arg1 = reinterpret_cast< IPeakShape * >(argp1);
-  result = (IPeakShape *)((IPeakShape const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IPeakShape, 0 |  0 );
+  arg1 = reinterpret_cast< PolyhedralTopology * >(argp1);
+  result = (bool) ((arg1)->symmetry_Ci);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_PolyhedralTopology(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IPeakShape *arg1 = (IPeakShape *) 0 ;
-  kvector_t arg2 ;
-  kvector_t arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  PolyhedralTopology *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPeakShape, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPeakShape_evaluate" "', argument " "1"" of type '" "IPeakShape const *""'"); 
-  }
-  arg1 = reinterpret_cast< IPeakShape * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
-  }
-  result = (double)((IPeakShape const *)arg1)->evaluate(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (!SWIG_Python_UnpackTuple(args, "new_PolyhedralTopology", 0, 0, 0)) SWIG_fail;
+  result = (PolyhedralTopology *)new PolyhedralTopology();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PolyhedralTopology, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IPeakShape_angularDisorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_PolyhedralTopology(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IPeakShape *arg1 = (IPeakShape *) 0 ;
+  PolyhedralTopology *arg1 = (PolyhedralTopology *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPeakShape, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralTopology, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPeakShape_angularDisorder" "', argument " "1"" of type '" "IPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PolyhedralTopology" "', argument " "1"" of type '" "PolyhedralTopology *""'"); 
   }
-  arg1 = reinterpret_cast< IPeakShape * >(argp1);
-  result = (bool)((IPeakShape const *)arg1)->angularDisorder();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< PolyhedralTopology * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *PolyhedralTopology_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IPeakShape, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_PolyhedralTopology, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *_wrap_new_IsotropicGaussPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *PolyhedralTopology_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_PolyhedralEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  kvector_t arg1 ;
+  kvector_t arg2 ;
+  void *argp1 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  IsotropicGaussPeakShape *result = 0 ;
+  PolyhedralEdge *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_IsotropicGaussPeakShape", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IsotropicGaussPeakShape" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_IsotropicGaussPeakShape" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (IsotropicGaussPeakShape *)new IsotropicGaussPeakShape(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsotropicGaussPeakShape, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "new_PolyhedralEdge", 2, 2, swig_obj)) SWIG_fail;
+  {
+    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_PolyhedralEdge" "', argument " "1"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp1) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_PolyhedralEdge" "', argument " "1"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp1);
+      arg1 = *temp;
+      if (SWIG_IsNewObj(res1)) delete temp;
+    }
+  }
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_PolyhedralEdge" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_PolyhedralEdge" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = (PolyhedralEdge *)new PolyhedralEdge(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PolyhedralEdge, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IsotropicGaussPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralEdge_E(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IsotropicGaussPeakShape *arg1 = (IsotropicGaussPeakShape *) 0 ;
+  PolyhedralEdge *arg1 = (PolyhedralEdge *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  kvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicGaussPeakShape, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralEdge, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IsotropicGaussPeakShape" "', argument " "1"" of type '" "IsotropicGaussPeakShape *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralEdge_E" "', argument " "1"" of type '" "PolyhedralEdge const *""'"); 
   }
-  arg1 = reinterpret_cast< IsotropicGaussPeakShape * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< PolyhedralEdge * >(argp1);
+  result = ((PolyhedralEdge const *)arg1)->E();
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IsotropicGaussPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralEdge_R(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IsotropicGaussPeakShape *arg1 = (IsotropicGaussPeakShape *) 0 ;
+  PolyhedralEdge *arg1 = (PolyhedralEdge *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IsotropicGaussPeakShape *result = 0 ;
+  kvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicGaussPeakShape, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralEdge, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsotropicGaussPeakShape_clone" "', argument " "1"" of type '" "IsotropicGaussPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralEdge_R" "', argument " "1"" of type '" "PolyhedralEdge const *""'"); 
   }
-  arg1 = reinterpret_cast< IsotropicGaussPeakShape * >(argp1);
-  result = (IsotropicGaussPeakShape *)((IsotropicGaussPeakShape const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsotropicGaussPeakShape, 0 |  0 );
+  arg1 = reinterpret_cast< PolyhedralEdge * >(argp1);
+  result = ((PolyhedralEdge const *)arg1)->R();
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IsotropicGaussPeakShape_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralEdge_qE(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IsotropicGaussPeakShape *arg1 = (IsotropicGaussPeakShape *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  PolyhedralEdge *arg1 = (PolyhedralEdge *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IsotropicGaussPeakShape_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicGaussPeakShape, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PolyhedralEdge_qE", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralEdge, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsotropicGaussPeakShape_accept" "', argument " "1"" of type '" "IsotropicGaussPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralEdge_qE" "', argument " "1"" of type '" "PolyhedralEdge const *""'"); 
   }
-  arg1 = reinterpret_cast< IsotropicGaussPeakShape * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IsotropicGaussPeakShape_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  arg1 = reinterpret_cast< PolyhedralEdge * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralEdge_qE" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralEdge_qE" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((IsotropicGaussPeakShape const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  result = ((PolyhedralEdge const *)arg1)->qE(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IsotropicGaussPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralEdge_qR(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IsotropicGaussPeakShape *arg1 = (IsotropicGaussPeakShape *) 0 ;
-  kvector_t arg2 ;
-  kvector_t arg3 ;
+  PolyhedralEdge *arg1 = (PolyhedralEdge *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 ;
   int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IsotropicGaussPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicGaussPeakShape, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PolyhedralEdge_qR", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralEdge, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsotropicGaussPeakShape_evaluate" "', argument " "1"" of type '" "IsotropicGaussPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralEdge_qR" "', argument " "1"" of type '" "PolyhedralEdge const *""'"); 
   }
-  arg1 = reinterpret_cast< IsotropicGaussPeakShape * >(argp1);
+  arg1 = reinterpret_cast< PolyhedralEdge * >(argp1);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IsotropicGaussPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralEdge_qR" "', argument " "2"" of type '" "cvector_t""'"); 
     }  
     if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IsotropicGaussPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralEdge_qR" "', argument " "2"" of type '" "cvector_t""'");
     } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
       arg2 = *temp;
       if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IsotropicGaussPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IsotropicGaussPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
-  }
-  result = (double)((IsotropicGaussPeakShape const *)arg1)->evaluate(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = ((PolyhedralEdge const *)arg1)->qR(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IsotropicGaussPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IsotropicGaussPeakShape, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *IsotropicGaussPeakShape_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_IsotropicLorentzPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralEdge_contrib(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
+  PolyhedralEdge *arg1 = (PolyhedralEdge *) 0 ;
+  int arg2 ;
+  cvector_t arg3 ;
+  complex_t arg4 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  IsotropicLorentzPeakShape *result = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  std::complex< double > val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_IsotropicLorentzPeakShape", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IsotropicLorentzPeakShape" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_Python_UnpackTuple(args, "PolyhedralEdge_contrib", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralEdge, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralEdge_contrib" "', argument " "1"" of type '" "PolyhedralEdge const *""'"); 
+  }
+  arg1 = reinterpret_cast< PolyhedralEdge * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_IsotropicLorentzPeakShape" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "PolyhedralEdge_contrib" "', argument " "2"" of type '" "int""'");
   } 
-  arg2 = static_cast< double >(val2);
-  result = (IsotropicLorentzPeakShape *)new IsotropicLorentzPeakShape(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsotropicLorentzPeakShape, SWIG_POINTER_NEW |  0 );
+  arg2 = static_cast< int >(val2);
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "PolyhedralEdge_contrib" "', argument " "3"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralEdge_contrib" "', argument " "3"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  ecode4 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "PolyhedralEdge_contrib" "', argument " "4"" of type '" "complex_t""'");
+  } 
+  arg4 = static_cast< complex_t >(val4);
+  result = ((PolyhedralEdge const *)arg1)->contrib(arg2,arg3,arg4);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IsotropicLorentzPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_PolyhedralEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IsotropicLorentzPeakShape *arg1 = (IsotropicLorentzPeakShape *) 0 ;
+  PolyhedralEdge *arg1 = (PolyhedralEdge *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicLorentzPeakShape, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralEdge, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IsotropicLorentzPeakShape" "', argument " "1"" of type '" "IsotropicLorentzPeakShape *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PolyhedralEdge" "', argument " "1"" of type '" "PolyhedralEdge *""'"); 
   }
-  arg1 = reinterpret_cast< IsotropicLorentzPeakShape * >(argp1);
+  arg1 = reinterpret_cast< PolyhedralEdge * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -89697,375 +89337,451 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IsotropicLorentzPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *PolyhedralEdge_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_PolyhedralEdge, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *PolyhedralEdge_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_PolyhedralFace_diameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IsotropicLorentzPeakShape *arg1 = (IsotropicLorentzPeakShape *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  std::vector< kvector_t,std::allocator< kvector_t > > *arg1 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
   PyObject *swig_obj[1] ;
-  IsotropicLorentzPeakShape *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicLorentzPeakShape, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsotropicLorentzPeakShape_clone" "', argument " "1"" of type '" "IsotropicLorentzPeakShape const *""'"); 
+  {
+    std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *ptr = (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *)0;
+    res1 = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_diameter" "', argument " "1"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralFace_diameter" "', argument " "1"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > > const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IsotropicLorentzPeakShape * >(argp1);
-  result = (IsotropicLorentzPeakShape *)((IsotropicLorentzPeakShape const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsotropicLorentzPeakShape, 0 |  0 );
+  result = (double)PolyhedralFace::diameter((std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > const &)*arg1);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IsotropicLorentzPeakShape_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_PolyhedralFace__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IsotropicLorentzPeakShape *arg1 = (IsotropicLorentzPeakShape *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  std::vector< kvector_t,std::allocator< kvector_t > > *arg1 = 0 ;
+  bool arg2 ;
+  int res1 = SWIG_OLDOBJ ;
+  bool val2 ;
+  int ecode2 = 0 ;
+  PolyhedralFace *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IsotropicLorentzPeakShape_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicLorentzPeakShape, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsotropicLorentzPeakShape_accept" "', argument " "1"" of type '" "IsotropicLorentzPeakShape const *""'"); 
-  }
-  arg1 = reinterpret_cast< IsotropicLorentzPeakShape * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IsotropicLorentzPeakShape_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  {
+    std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *ptr = (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *)0;
+    res1 = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_PolyhedralFace" "', argument " "1"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_PolyhedralFace" "', argument " "1"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > > const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((IsotropicLorentzPeakShape const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_PolyhedralFace" "', argument " "2"" of type '" "bool""'");
+  } 
+  arg2 = static_cast< bool >(val2);
+  result = (PolyhedralFace *)new PolyhedralFace((std::vector< kvector_t,std::allocator< kvector_t > > const &)*arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PolyhedralFace, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IsotropicLorentzPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_PolyhedralFace__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IsotropicLorentzPeakShape *arg1 = (IsotropicLorentzPeakShape *) 0 ;
-  kvector_t arg2 ;
-  kvector_t arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  std::vector< kvector_t,std::allocator< kvector_t > > *arg1 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  PolyhedralFace *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IsotropicLorentzPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsotropicLorentzPeakShape, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsotropicLorentzPeakShape_evaluate" "', argument " "1"" of type '" "IsotropicLorentzPeakShape const *""'"); 
-  }
-  arg1 = reinterpret_cast< IsotropicLorentzPeakShape * >(argp1);
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IsotropicLorentzPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IsotropicLorentzPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+    std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *ptr = (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *)0;
+    res1 = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_PolyhedralFace" "', argument " "1"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > > const &""'"); 
     }
-  }
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IsotropicLorentzPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IsotropicLorentzPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_PolyhedralFace" "', argument " "1"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > > const &""'"); 
     }
+    arg1 = ptr;
   }
-  result = (double)((IsotropicLorentzPeakShape const *)arg1)->evaluate(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = (PolyhedralFace *)new PolyhedralFace((std::vector< kvector_t,std::allocator< kvector_t > > const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PolyhedralFace, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IsotropicLorentzPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IsotropicLorentzPeakShape, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *IsotropicLorentzPeakShape_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_GaussFisherPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_PolyhedralFace__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  GaussFisherPeakShape *result = 0 ;
+  PolyhedralFace *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_GaussFisherPeakShape", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_GaussFisherPeakShape" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_GaussFisherPeakShape" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_GaussFisherPeakShape" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (GaussFisherPeakShape *)new GaussFisherPeakShape(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_GaussFisherPeakShape, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (PolyhedralFace *)new PolyhedralFace();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PolyhedralFace, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_GaussFisherPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_PolyhedralFace(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_PolyhedralFace", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_PolyhedralFace__SWIG_2(self, argc, argv);
+  }
+  if (argc == 1) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_PolyhedralFace__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_bool(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_PolyhedralFace__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_PolyhedralFace'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    PolyhedralFace::PolyhedralFace(std::vector< kvector_t,std::allocator< kvector_t > > const &,bool)\n"
+    "    PolyhedralFace::PolyhedralFace(std::vector< kvector_t,std::allocator< kvector_t > > const &)\n"
+    "    PolyhedralFace::PolyhedralFace()\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_PolyhedralFace_area(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  GaussFisherPeakShape *arg1 = (GaussFisherPeakShape *) 0 ;
+  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GaussFisherPeakShape, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_GaussFisherPeakShape" "', argument " "1"" of type '" "GaussFisherPeakShape *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_area" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
   }
-  arg1 = reinterpret_cast< GaussFisherPeakShape * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
+  result = (double)((PolyhedralFace const *)arg1)->area();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_GaussFisherPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralFace_pyramidalVolume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  GaussFisherPeakShape *arg1 = (GaussFisherPeakShape *) 0 ;
+  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  GaussFisherPeakShape *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GaussFisherPeakShape, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GaussFisherPeakShape_clone" "', argument " "1"" of type '" "GaussFisherPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_pyramidalVolume" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
   }
-  arg1 = reinterpret_cast< GaussFisherPeakShape * >(argp1);
-  result = (GaussFisherPeakShape *)((GaussFisherPeakShape const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_GaussFisherPeakShape, 0 |  0 );
+  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
+  result = (double)((PolyhedralFace const *)arg1)->pyramidalVolume();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_GaussFisherPeakShape_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralFace_radius3d(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  GaussFisherPeakShape *arg1 = (GaussFisherPeakShape *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "GaussFisherPeakShape_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GaussFisherPeakShape, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GaussFisherPeakShape_accept" "', argument " "1"" of type '" "GaussFisherPeakShape const *""'"); 
-  }
-  arg1 = reinterpret_cast< GaussFisherPeakShape * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "GaussFisherPeakShape_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_radius3d" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((GaussFisherPeakShape const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
+  result = (double)((PolyhedralFace const *)arg1)->radius3d();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_GaussFisherPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralFace_normalProjectionConj(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  GaussFisherPeakShape *arg1 = (GaussFisherPeakShape *) 0 ;
-  kvector_t arg2 ;
-  kvector_t arg3 ;
+  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 ;
   int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "GaussFisherPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GaussFisherPeakShape, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PolyhedralFace_normalProjectionConj", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GaussFisherPeakShape_evaluate" "', argument " "1"" of type '" "GaussFisherPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_normalProjectionConj" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
   }
-  arg1 = reinterpret_cast< GaussFisherPeakShape * >(argp1);
+  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "GaussFisherPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralFace_normalProjectionConj" "', argument " "2"" of type '" "cvector_t""'"); 
     }  
     if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "GaussFisherPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralFace_normalProjectionConj" "', argument " "2"" of type '" "cvector_t""'");
     } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
       arg2 = *temp;
       if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
+  result = ((PolyhedralFace const *)arg1)->normalProjectionConj(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_PolyhedralFace_ff_n(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
+  int arg2 ;
+  cvector_t arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int val2 ;
+  int ecode2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
+  complex_t result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "PolyhedralFace_ff_n", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_ff_n" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
+  }
+  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "PolyhedralFace_ff_n" "', argument " "2"" of type '" "int""'");
+  } 
+  arg2 = static_cast< int >(val2);
   {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
     if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "GaussFisherPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "PolyhedralFace_ff_n" "', argument " "3"" of type '" "cvector_t""'"); 
     }  
     if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "GaussFisherPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralFace_ff_n" "', argument " "3"" of type '" "cvector_t""'");
     } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp3);
       arg3 = *temp;
       if (SWIG_IsNewObj(res3)) delete temp;
     }
   }
-  result = (double)((GaussFisherPeakShape const *)arg1)->evaluate(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = ((PolyhedralFace const *)arg1)->ff_n(arg2,arg3);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_GaussFisherPeakShape_angularDisorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralFace_ff(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  GaussFisherPeakShape *arg1 = (GaussFisherPeakShape *) 0 ;
+  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
+  cvector_t arg2 ;
+  bool arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  bool result;
+  void *argp2 ;
+  int res2 = 0 ;
+  bool val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  complex_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GaussFisherPeakShape, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PolyhedralFace_ff", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GaussFisherPeakShape_angularDisorder" "', argument " "1"" of type '" "GaussFisherPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_ff" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
   }
-  arg1 = reinterpret_cast< GaussFisherPeakShape * >(argp1);
-  result = (bool)((GaussFisherPeakShape const *)arg1)->angularDisorder();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralFace_ff" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralFace_ff" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "PolyhedralFace_ff" "', argument " "3"" of type '" "bool""'");
+  } 
+  arg3 = static_cast< bool >(val3);
+  result = ((PolyhedralFace const *)arg1)->ff(arg2,arg3);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *GaussFisherPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_GaussFisherPeakShape, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_PolyhedralFace_ff_2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
+  cvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "PolyhedralFace_ff_2D", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_ff_2D" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
+  }
+  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralFace_ff_2D" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralFace_ff_2D" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((PolyhedralFace const *)arg1)->ff_2D(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *GaussFisherPeakShape_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
 
-SWIGINTERN PyObject *_wrap_new_LorentzFisherPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PolyhedralFace_assert_Ci(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  LorentzFisherPeakShape *result = 0 ;
+  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
+  PolyhedralFace *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_LorentzFisherPeakShape", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_LorentzFisherPeakShape" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_LorentzFisherPeakShape" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_LorentzFisherPeakShape" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (LorentzFisherPeakShape *)new LorentzFisherPeakShape(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_LorentzFisherPeakShape, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PolyhedralFace_assert_Ci", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PolyhedralFace_assert_Ci" "', argument " "1"" of type '" "PolyhedralFace const *""'"); 
+  }
+  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_PolyhedralFace,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PolyhedralFace_assert_Ci" "', argument " "2"" of type '" "PolyhedralFace const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "PolyhedralFace_assert_Ci" "', argument " "2"" of type '" "PolyhedralFace const &""'"); 
+  }
+  arg2 = reinterpret_cast< PolyhedralFace * >(argp2);
+  ((PolyhedralFace const *)arg1)->assert_Ci((PolyhedralFace const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_LorentzFisherPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_PolyhedralFace(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  LorentzFisherPeakShape *arg1 = (LorentzFisherPeakShape *) 0 ;
+  PolyhedralFace *arg1 = (PolyhedralFace *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LorentzFisherPeakShape, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolyhedralFace, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_LorentzFisherPeakShape" "', argument " "1"" of type '" "LorentzFisherPeakShape *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PolyhedralFace" "', argument " "1"" of type '" "PolyhedralFace *""'"); 
   }
-  arg1 = reinterpret_cast< LorentzFisherPeakShape * >(argp1);
+  arg1 = reinterpret_cast< PolyhedralFace * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -90074,222 +89790,241 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_LorentzFisherPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *PolyhedralFace_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_PolyhedralFace, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *PolyhedralFace_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  LorentzFisherPeakShape *arg1 = (LorentzFisherPeakShape *) 0 ;
+  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  LorentzFisherPeakShape *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LorentzFisherPeakShape, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolyhedron_bottomZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LorentzFisherPeakShape_clone" "', argument " "1"" of type '" "LorentzFisherPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_bottomZ" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
   }
-  arg1 = reinterpret_cast< LorentzFisherPeakShape * >(argp1);
-  result = (LorentzFisherPeakShape *)((LorentzFisherPeakShape const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_LorentzFisherPeakShape, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolyhedron_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolyhedron_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((FormFactorPolyhedron const *)arg1)->bottomZ((IRotation const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_LorentzFisherPeakShape_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  LorentzFisherPeakShape *arg1 = (LorentzFisherPeakShape *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "LorentzFisherPeakShape_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LorentzFisherPeakShape, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolyhedron_topZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LorentzFisherPeakShape_accept" "', argument " "1"" of type '" "LorentzFisherPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_topZ" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
   }
-  arg1 = reinterpret_cast< LorentzFisherPeakShape * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "LorentzFisherPeakShape_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolyhedron_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((LorentzFisherPeakShape const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolyhedron_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((FormFactorPolyhedron const *)arg1)->topZ((IRotation const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_LorentzFisherPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  LorentzFisherPeakShape *arg1 = (LorentzFisherPeakShape *) 0 ;
-  kvector_t arg2 ;
-  kvector_t arg3 ;
+  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 ;
   int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "LorentzFisherPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LorentzFisherPeakShape, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolyhedron_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LorentzFisherPeakShape_evaluate" "', argument " "1"" of type '" "LorentzFisherPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_evaluate_for_q" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
   }
-  arg1 = reinterpret_cast< LorentzFisherPeakShape * >(argp1);
+  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "LorentzFisherPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolyhedron_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
     }  
     if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "LorentzFisherPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolyhedron_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
     } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
       arg2 = *temp;
       if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
+  result = ((FormFactorPolyhedron const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_evaluate_centered(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
+  cvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolyhedron_evaluate_centered", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_evaluate_centered" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
   {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "LorentzFisherPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolyhedron_evaluate_centered" "', argument " "2"" of type '" "cvector_t""'"); 
     }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "LorentzFisherPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolyhedron_evaluate_centered" "', argument " "2"" of type '" "cvector_t""'");
     } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  result = (double)((LorentzFisherPeakShape const *)arg1)->evaluate(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = ((FormFactorPolyhedron const *)arg1)->evaluate_centered(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_LorentzFisherPeakShape_angularDisorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  LorentzFisherPeakShape *arg1 = (LorentzFisherPeakShape *) 0 ;
+  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LorentzFisherPeakShape, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LorentzFisherPeakShape_angularDisorder" "', argument " "1"" of type '" "LorentzFisherPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_volume" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
   }
-  arg1 = reinterpret_cast< LorentzFisherPeakShape * >(argp1);
-  result = (bool)((LorentzFisherPeakShape const *)arg1)->angularDisorder();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
+  result = (double)((FormFactorPolyhedron const *)arg1)->volume();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *LorentzFisherPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_LorentzFisherPeakShape, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_radialExtension" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
+  result = (double)((FormFactorPolyhedron const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *LorentzFisherPeakShape_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
 
-SWIGINTERN PyObject *_wrap_new_VonMisesFisherGaussPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPolyhedron_assert_platonic(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  kvector_t arg3 ;
-  double arg4 ;
-  double arg5 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  PyObject *swig_obj[5] ;
-  VonMisesFisherGaussPeakShape *result = 0 ;
+  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_VonMisesFisherGaussPeakShape", 5, 5, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_VonMisesFisherGaussPeakShape" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_VonMisesFisherGaussPeakShape" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_VonMisesFisherGaussPeakShape" "', argument " "3"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_VonMisesFisherGaussPeakShape" "', argument " "3"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolyhedron_assert_platonic" "', argument " "1"" of type '" "FormFactorPolyhedron const *""'"); 
   }
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_VonMisesFisherGaussPeakShape" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_VonMisesFisherGaussPeakShape" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  result = (VonMisesFisherGaussPeakShape *)new VonMisesFisherGaussPeakShape(arg1,arg2,arg3,arg4,arg5);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VonMisesFisherGaussPeakShape, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
+  ((FormFactorPolyhedron const *)arg1)->assert_platonic();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_VonMisesFisherGaussPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorPolyhedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VonMisesFisherGaussPeakShape *arg1 = (VonMisesFisherGaussPeakShape *) 0 ;
+  FormFactorPolyhedron *arg1 = (FormFactorPolyhedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesFisherGaussPeakShape, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolyhedron, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_VonMisesFisherGaussPeakShape" "', argument " "1"" of type '" "VonMisesFisherGaussPeakShape *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorPolyhedron" "', argument " "1"" of type '" "FormFactorPolyhedron *""'"); 
   }
-  arg1 = reinterpret_cast< VonMisesFisherGaussPeakShape * >(argp1);
+  arg1 = reinterpret_cast< FormFactorPolyhedron * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -90298,267 +90033,201 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_VonMisesFisherGaussPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorPolyhedron_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorPolyhedron, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VonMisesFisherGaussPeakShape *arg1 = (VonMisesFisherGaussPeakShape *) 0 ;
+  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  VonMisesFisherGaussPeakShape *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesFisherGaussPeakShape, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolygonalPrism_bottomZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesFisherGaussPeakShape_clone" "', argument " "1"" of type '" "VonMisesFisherGaussPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalPrism_bottomZ" "', argument " "1"" of type '" "FormFactorPolygonalPrism const *""'"); 
   }
-  arg1 = reinterpret_cast< VonMisesFisherGaussPeakShape * >(argp1);
-  result = (VonMisesFisherGaussPeakShape *)((VonMisesFisherGaussPeakShape const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VonMisesFisherGaussPeakShape, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolygonalPrism_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolygonalPrism_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((FormFactorPolygonalPrism const *)arg1)->bottomZ((IRotation const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_VonMisesFisherGaussPeakShape_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VonMisesFisherGaussPeakShape *arg1 = (VonMisesFisherGaussPeakShape *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "VonMisesFisherGaussPeakShape_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesFisherGaussPeakShape, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolygonalPrism_topZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesFisherGaussPeakShape_accept" "', argument " "1"" of type '" "VonMisesFisherGaussPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalPrism_topZ" "', argument " "1"" of type '" "FormFactorPolygonalPrism const *""'"); 
   }
-  arg1 = reinterpret_cast< VonMisesFisherGaussPeakShape * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VonMisesFisherGaussPeakShape_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolygonalPrism_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((VonMisesFisherGaussPeakShape const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolygonalPrism_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
+  }
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((FormFactorPolygonalPrism const *)arg1)->topZ((IRotation const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_VonMisesFisherGaussPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VonMisesFisherGaussPeakShape *arg1 = (VonMisesFisherGaussPeakShape *) 0 ;
-  kvector_t arg2 ;
-  kvector_t arg3 ;
+  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 ;
   int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "VonMisesFisherGaussPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesFisherGaussPeakShape, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolygonalPrism_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesFisherGaussPeakShape_evaluate" "', argument " "1"" of type '" "VonMisesFisherGaussPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalPrism_evaluate_for_q" "', argument " "1"" of type '" "FormFactorPolygonalPrism const *""'"); 
   }
-  arg1 = reinterpret_cast< VonMisesFisherGaussPeakShape * >(argp1);
+  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VonMisesFisherGaussPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolygonalPrism_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
     }  
     if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VonMisesFisherGaussPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolygonalPrism_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
     } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
       arg2 = *temp;
       if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "VonMisesFisherGaussPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VonMisesFisherGaussPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
-  }
-  result = (double)((VonMisesFisherGaussPeakShape const *)arg1)->evaluate(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = ((FormFactorPolygonalPrism const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_VonMisesFisherGaussPeakShape_angularDisorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VonMisesFisherGaussPeakShape *arg1 = (VonMisesFisherGaussPeakShape *) 0 ;
+  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesFisherGaussPeakShape, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesFisherGaussPeakShape_angularDisorder" "', argument " "1"" of type '" "VonMisesFisherGaussPeakShape const *""'"); 
-  }
-  arg1 = reinterpret_cast< VonMisesFisherGaussPeakShape * >(argp1);
-  result = (bool)((VonMisesFisherGaussPeakShape const *)arg1)->angularDisorder();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *VonMisesFisherGaussPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_VonMisesFisherGaussPeakShape, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *VonMisesFisherGaussPeakShape_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_VonMisesGaussPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  kvector_t arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  VonMisesGaussPeakShape *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_VonMisesGaussPeakShape", 4, 4, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_VonMisesGaussPeakShape" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_VonMisesGaussPeakShape" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_VonMisesGaussPeakShape" "', argument " "3"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_VonMisesGaussPeakShape" "', argument " "3"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalPrism_volume" "', argument " "1"" of type '" "FormFactorPolygonalPrism const *""'"); 
   }
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_VonMisesGaussPeakShape" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (VonMisesGaussPeakShape *)new VonMisesGaussPeakShape(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VonMisesGaussPeakShape, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
+  result = (double)((FormFactorPolygonalPrism const *)arg1)->volume();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_VonMisesGaussPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VonMisesGaussPeakShape *arg1 = (VonMisesGaussPeakShape *) 0 ;
+  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesGaussPeakShape, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_VonMisesGaussPeakShape" "', argument " "1"" of type '" "VonMisesGaussPeakShape *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalPrism_getHeight" "', argument " "1"" of type '" "FormFactorPolygonalPrism const *""'"); 
   }
-  arg1 = reinterpret_cast< VonMisesGaussPeakShape * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
+  result = (double)((FormFactorPolygonalPrism const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_VonMisesGaussPeakShape_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPolygonalPrism_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VonMisesGaussPeakShape *arg1 = (VonMisesGaussPeakShape *) 0 ;
+  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  VonMisesGaussPeakShape *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesGaussPeakShape, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesGaussPeakShape_clone" "', argument " "1"" of type '" "VonMisesGaussPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalPrism_radialExtension" "', argument " "1"" of type '" "FormFactorPolygonalPrism const *""'"); 
   }
-  arg1 = reinterpret_cast< VonMisesGaussPeakShape * >(argp1);
-  result = (VonMisesGaussPeakShape *)((VonMisesGaussPeakShape const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VonMisesGaussPeakShape, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
+  result = (double)((FormFactorPolygonalPrism const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_VonMisesGaussPeakShape_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  VonMisesGaussPeakShape *arg1 = (VonMisesGaussPeakShape *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+SWIGINTERN PyObject *_wrap_delete_FormFactorPolygonalPrism(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorPolygonalPrism *arg1 = (FormFactorPolygonalPrism *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "VonMisesGaussPeakShape_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesGaussPeakShape, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalPrism, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesGaussPeakShape_accept" "', argument " "1"" of type '" "VonMisesGaussPeakShape const *""'"); 
-  }
-  arg1 = reinterpret_cast< VonMisesGaussPeakShape * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VonMisesGaussPeakShape_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorPolygonalPrism" "', argument " "1"" of type '" "FormFactorPolygonalPrism *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((VonMisesGaussPeakShape const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< FormFactorPolygonalPrism * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -90566,108 +90235,111 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_VonMisesGaussPeakShape_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorPolygonalPrism_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorPolygonalPrism, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_FormFactorPolygonalSurface_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VonMisesGaussPeakShape *arg1 = (VonMisesGaussPeakShape *) 0 ;
-  kvector_t arg2 ;
-  kvector_t arg3 ;
+  FormFactorPolygonalSurface *arg1 = (FormFactorPolygonalSurface *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 ;
   int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "VonMisesGaussPeakShape_evaluate", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesGaussPeakShape, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorPolygonalSurface_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalSurface, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesGaussPeakShape_evaluate" "', argument " "1"" of type '" "VonMisesGaussPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalSurface_evaluate_for_q" "', argument " "1"" of type '" "FormFactorPolygonalSurface const *""'"); 
   }
-  arg1 = reinterpret_cast< VonMisesGaussPeakShape * >(argp1);
+  arg1 = reinterpret_cast< FormFactorPolygonalSurface * >(argp1);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VonMisesGaussPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPolygonalSurface_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
     }  
     if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VonMisesGaussPeakShape_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorPolygonalSurface_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
     } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
       arg2 = *temp;
       if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "VonMisesGaussPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VonMisesGaussPeakShape_evaluate" "', argument " "3"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
-  }
-  result = (double)((VonMisesGaussPeakShape const *)arg1)->evaluate(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = ((FormFactorPolygonalSurface const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_VonMisesGaussPeakShape_angularDisorder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPolygonalSurface_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VonMisesGaussPeakShape *arg1 = (VonMisesGaussPeakShape *) 0 ;
+  FormFactorPolygonalSurface *arg1 = (FormFactorPolygonalSurface *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VonMisesGaussPeakShape, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalSurface, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VonMisesGaussPeakShape_angularDisorder" "', argument " "1"" of type '" "VonMisesGaussPeakShape const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalSurface_volume" "', argument " "1"" of type '" "FormFactorPolygonalSurface const *""'"); 
   }
-  arg1 = reinterpret_cast< VonMisesGaussPeakShape * >(argp1);
-  result = (bool)((VonMisesGaussPeakShape const *)arg1)->angularDisorder();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FormFactorPolygonalSurface * >(argp1);
+  result = (double)((FormFactorPolygonalSurface const *)arg1)->volume();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *VonMisesGaussPeakShape_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_VonMisesGaussPeakShape, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_FormFactorPolygonalSurface_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorPolygonalSurface *arg1 = (FormFactorPolygonalSurface *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalSurface, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPolygonalSurface_radialExtension" "', argument " "1"" of type '" "FormFactorPolygonalSurface const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorPolygonalSurface * >(argp1);
+  result = (double)((FormFactorPolygonalSurface const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *VonMisesGaussPeakShape_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
 
-SWIGINTERN PyObject *_wrap_delete_IResolutionFunction2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorPolygonalSurface(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IResolutionFunction2D *arg1 = (IResolutionFunction2D *) 0 ;
+  FormFactorPolygonalSurface *arg1 = (FormFactorPolygonalSurface *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IResolutionFunction2D, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPolygonalSurface, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IResolutionFunction2D" "', argument " "1"" of type '" "IResolutionFunction2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorPolygonalSurface" "', argument " "1"" of type '" "FormFactorPolygonalSurface *""'"); 
   }
-  arg1 = reinterpret_cast< IResolutionFunction2D * >(argp1);
+  arg1 = reinterpret_cast< FormFactorPolygonalSurface * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -90676,37 +90348,29 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IResolutionFunction2D_evaluateCDF(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorPolygonalSurface_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorPolygonalSurface, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_ProfileBar_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IResolutionFunction2D *arg1 = (IResolutionFunction2D *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  ProfileBar *arg1 = (ProfileBar *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
+  PyObject *swig_obj[1] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IResolutionFunction2D_evaluateCDF", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IResolutionFunction2D, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileBar, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IResolutionFunction2D_evaluateCDF" "', argument " "1"" of type '" "IResolutionFunction2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileBar_getLength" "', argument " "1"" of type '" "ProfileBar const *""'"); 
   }
-  arg1 = reinterpret_cast< IResolutionFunction2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IResolutionFunction2D_evaluateCDF" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IResolutionFunction2D_evaluateCDF" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((IResolutionFunction2D const *)arg1)->evaluateCDF(arg2,arg3);
+  arg1 = reinterpret_cast< ProfileBar * >(argp1);
+  result = (double)((ProfileBar const *)arg1)->getLength();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -90714,435 +90378,468 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IResolutionFunction2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileBar_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IResolutionFunction2D *arg1 = (IResolutionFunction2D *) 0 ;
+  ProfileBar *arg1 = (ProfileBar *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IResolutionFunction2D *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IResolutionFunction2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileBar, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IResolutionFunction2D_clone" "', argument " "1"" of type '" "IResolutionFunction2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileBar_getHeight" "', argument " "1"" of type '" "ProfileBar const *""'"); 
   }
-  arg1 = reinterpret_cast< IResolutionFunction2D * >(argp1);
-  result = (IResolutionFunction2D *)((IResolutionFunction2D const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IResolutionFunction2D, 0 |  0 );
+  arg1 = reinterpret_cast< ProfileBar * >(argp1);
+  result = (double)((ProfileBar const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IResolutionFunction2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IResolutionFunction2D, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_IRotation_createRotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileBar_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Transform3D *arg1 = 0 ;
+  ProfileBar *arg1 = (ProfileBar *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IRotation *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Transform3D,  0  | 0);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileBar, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IRotation_createRotation" "', argument " "1"" of type '" "Transform3D const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IRotation_createRotation" "', argument " "1"" of type '" "Transform3D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileBar_getWidth" "', argument " "1"" of type '" "ProfileBar const *""'"); 
   }
-  arg1 = reinterpret_cast< Transform3D * >(argp1);
-  result = (IRotation *)IRotation::createRotation((Transform3D const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
+  arg1 = reinterpret_cast< ProfileBar * >(argp1);
+  result = (double)((ProfileBar const *)arg1)->getWidth();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IRotation_createIdentity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileBar_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IRotation *result = 0 ;
+  ProfileBar *arg1 = (ProfileBar *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IRotation_createIdentity", 0, 0, 0)) SWIG_fail;
-  result = (IRotation *)IRotation::createIdentity();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileBar, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileBar_radialExtension" "', argument " "1"" of type '" "ProfileBar const *""'"); 
+  }
+  arg1 = reinterpret_cast< ProfileBar * >(argp1);
+  result = (double)((ProfileBar const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IRotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileBar_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IRotation *arg1 = (IRotation *) 0 ;
+  ProfileBar *arg1 = (ProfileBar *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IRotation, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ProfileBar_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileBar, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IRotation" "', argument " "1"" of type '" "IRotation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileBar_evaluate_for_q" "', argument " "1"" of type '" "ProfileBar const *""'"); 
   }
-  arg1 = reinterpret_cast< IRotation * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ProfileBar * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ProfileBar_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ProfileBar_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((ProfileBar const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IRotation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_ProfileBar(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IRotation *arg1 = (IRotation *) 0 ;
+  ProfileBar *arg1 = (ProfileBar *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IRotation *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IRotation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileBar, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IRotation_clone" "', argument " "1"" of type '" "IRotation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ProfileBar" "', argument " "1"" of type '" "ProfileBar *""'"); 
   }
-  arg1 = reinterpret_cast< IRotation * >(argp1);
-  result = (IRotation *)((IRotation const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
+  arg1 = reinterpret_cast< ProfileBar * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IRotation_createInverse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ProfileBar_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_ProfileBar, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_ProfileRipple1_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IRotation *arg1 = (IRotation *) 0 ;
+  ProfileRipple1 *arg1 = (ProfileRipple1 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IRotation *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IRotation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple1, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IRotation_createInverse" "', argument " "1"" of type '" "IRotation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple1_getLength" "', argument " "1"" of type '" "ProfileRipple1 const *""'"); 
   }
-  arg1 = reinterpret_cast< IRotation * >(argp1);
-  result = (IRotation *)((IRotation const *)arg1)->createInverse();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
+  arg1 = reinterpret_cast< ProfileRipple1 * >(argp1);
+  result = (double)((ProfileRipple1 const *)arg1)->getLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IRotation_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileRipple1_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IRotation *arg1 = (IRotation *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  ProfileRipple1 *arg1 = (ProfileRipple1 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IRotation_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IRotation, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple1, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IRotation_accept" "', argument " "1"" of type '" "IRotation const *""'"); 
-  }
-  arg1 = reinterpret_cast< IRotation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IRotation_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple1_getHeight" "', argument " "1"" of type '" "ProfileRipple1 const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((IRotation const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ProfileRipple1 * >(argp1);
+  result = (double)((ProfileRipple1 const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IRotation_getTransform3D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileRipple1_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IRotation *arg1 = (IRotation *) 0 ;
+  ProfileRipple1 *arg1 = (ProfileRipple1 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Transform3D result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IRotation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple1, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IRotation_getTransform3D" "', argument " "1"" of type '" "IRotation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple1_getWidth" "', argument " "1"" of type '" "ProfileRipple1 const *""'"); 
   }
-  arg1 = reinterpret_cast< IRotation * >(argp1);
-  result = ((IRotation const *)arg1)->getTransform3D();
-  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< ProfileRipple1 * >(argp1);
+  result = (double)((ProfileRipple1 const *)arg1)->getWidth();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IRotation_isIdentity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileRipple1_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IRotation *arg1 = (IRotation *) 0 ;
+  ProfileRipple1 *arg1 = (ProfileRipple1 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IRotation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple1, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IRotation_isIdentity" "', argument " "1"" of type '" "IRotation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple1_radialExtension" "', argument " "1"" of type '" "ProfileRipple1 const *""'"); 
   }
-  arg1 = reinterpret_cast< IRotation * >(argp1);
-  result = (bool)((IRotation const *)arg1)->isIdentity();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< ProfileRipple1 * >(argp1);
+  result = (double)((ProfileRipple1 const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IRotation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IRotation, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_createProduct(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileRipple1_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IRotation *arg1 = 0 ;
-  IRotation *arg2 = 0 ;
+  ProfileRipple1 *arg1 = (ProfileRipple1 *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  IRotation *result = 0 ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "createProduct", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "ProfileRipple1_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple1, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "createProduct" "', argument " "1"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "createProduct" "', argument " "1"" of type '" "IRotation const &""'"); 
-  }
-  arg1 = reinterpret_cast< IRotation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "createProduct" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple1_evaluate_for_q" "', argument " "1"" of type '" "ProfileRipple1 const *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "createProduct" "', argument " "2"" of type '" "IRotation const &""'"); 
+  arg1 = reinterpret_cast< ProfileRipple1 * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ProfileRipple1_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ProfileRipple1_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  result = (IRotation *)createProduct((IRotation const &)*arg1,(IRotation const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
+  result = ((ProfileRipple1 const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IsZRotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_ProfileRipple1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IRotation *arg1 = 0 ;
+  ProfileRipple1 *arg1 = (ProfileRipple1 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IRotation,  0  | 0);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple1, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsZRotation" "', argument " "1"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IsZRotation" "', argument " "1"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ProfileRipple1" "', argument " "1"" of type '" "ProfileRipple1 *""'"); 
   }
-  arg1 = reinterpret_cast< IRotation * >(argp1);
-  result = (bool)IsZRotation((IRotation const &)*arg1);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< ProfileRipple1 * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IdentityRotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ProfileRipple1_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_ProfileRipple1, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_ProfileRipple2_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IdentityRotation *result = 0 ;
+  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_IdentityRotation", 0, 0, 0)) SWIG_fail;
-  result = (IdentityRotation *)new IdentityRotation();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IdentityRotation, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple2_getLength" "', argument " "1"" of type '" "ProfileRipple2 const *""'"); 
+  }
+  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
+  result = (double)((ProfileRipple2 const *)arg1)->getLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IdentityRotation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileRipple2_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IdentityRotation *arg1 = (IdentityRotation *) 0 ;
+  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IdentityRotation *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IdentityRotation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IdentityRotation_clone" "', argument " "1"" of type '" "IdentityRotation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple2_getHeight" "', argument " "1"" of type '" "ProfileRipple2 const *""'"); 
   }
-  arg1 = reinterpret_cast< IdentityRotation * >(argp1);
-  result = (IdentityRotation *)((IdentityRotation const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IdentityRotation, 0 |  0 );
+  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
+  result = (double)((ProfileRipple2 const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IdentityRotation_createInverse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileRipple2_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IdentityRotation *arg1 = (IdentityRotation *) 0 ;
+  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IdentityRotation *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IdentityRotation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IdentityRotation_createInverse" "', argument " "1"" of type '" "IdentityRotation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple2_getWidth" "', argument " "1"" of type '" "ProfileRipple2 const *""'"); 
   }
-  arg1 = reinterpret_cast< IdentityRotation * >(argp1);
-  result = (IdentityRotation *)((IdentityRotation const *)arg1)->createInverse();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IdentityRotation, 0 |  0 );
+  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
+  result = (double)((ProfileRipple2 const *)arg1)->getWidth();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IdentityRotation_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileRipple2_getAsymmetry(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IdentityRotation *arg1 = (IdentityRotation *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IdentityRotation_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IdentityRotation, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IdentityRotation_accept" "', argument " "1"" of type '" "IdentityRotation const *""'"); 
-  }
-  arg1 = reinterpret_cast< IdentityRotation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IdentityRotation_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple2_getAsymmetry" "', argument " "1"" of type '" "ProfileRipple2 const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((IdentityRotation const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
+  result = (double)((ProfileRipple2 const *)arg1)->getAsymmetry();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IdentityRotation_getTransform3D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileRipple2_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IdentityRotation *arg1 = (IdentityRotation *) 0 ;
+  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Transform3D result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IdentityRotation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IdentityRotation_getTransform3D" "', argument " "1"" of type '" "IdentityRotation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple2_radialExtension" "', argument " "1"" of type '" "ProfileRipple2 const *""'"); 
   }
-  arg1 = reinterpret_cast< IdentityRotation * >(argp1);
-  result = ((IdentityRotation const *)arg1)->getTransform3D();
-  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
+  result = (double)((ProfileRipple2 const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IdentityRotation_isIdentity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ProfileRipple2_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IdentityRotation *arg1 = (IdentityRotation *) 0 ;
+  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  bool result;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IdentityRotation, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ProfileRipple2_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IdentityRotation_isIdentity" "', argument " "1"" of type '" "IdentityRotation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ProfileRipple2_evaluate_for_q" "', argument " "1"" of type '" "ProfileRipple2 const *""'"); 
   }
-  arg1 = reinterpret_cast< IdentityRotation * >(argp1);
-  result = (bool)((IdentityRotation const *)arg1)->isIdentity();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ProfileRipple2_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ProfileRipple2_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((ProfileRipple2 const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IdentityRotation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_ProfileRipple2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IdentityRotation *arg1 = (IdentityRotation *) 0 ;
+  ProfileRipple2 *arg1 = (ProfileRipple2 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IdentityRotation, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ProfileRipple2, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IdentityRotation" "', argument " "1"" of type '" "IdentityRotation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ProfileRipple2" "', argument " "1"" of type '" "ProfileRipple2 *""'"); 
   }
-  arg1 = reinterpret_cast< IdentityRotation * >(argp1);
+  arg1 = reinterpret_cast< ProfileRipple2 * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -91151,118 +90848,160 @@ fail:
 }
 
 
-SWIGINTERN PyObject *IdentityRotation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ProfileRipple2_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IdentityRotation, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_ProfileRipple2, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *IdentityRotation_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_RotationX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorAnisoPyramid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
   double val1 ;
   int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RotationX *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  FormFactorAnisoPyramid *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorAnisoPyramid", 4, 4, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RotationX" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorAnisoPyramid" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  result = (RotationX *)new RotationX(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationX, SWIG_POINTER_NEW |  0 );
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorAnisoPyramid" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorAnisoPyramid" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorAnisoPyramid" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (FormFactorAnisoPyramid *)new FormFactorAnisoPyramid(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorAnisoPyramid, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationX_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorAnisoPyramid_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationX *arg1 = (RotationX *) 0 ;
+  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  RotationX *result = 0 ;
+  FormFactorAnisoPyramid *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationX, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationX_clone" "', argument " "1"" of type '" "RotationX const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorAnisoPyramid_clone" "', argument " "1"" of type '" "FormFactorAnisoPyramid const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationX * >(argp1);
-  result = (RotationX *)((RotationX const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationX, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
+  result = (FormFactorAnisoPyramid *)((FormFactorAnisoPyramid const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationX_createInverse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorAnisoPyramid_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationX *arg1 = (RotationX *) 0 ;
+  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorAnisoPyramid_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorAnisoPyramid_accept" "', argument " "1"" of type '" "FormFactorAnisoPyramid const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorAnisoPyramid_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorAnisoPyramid const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorAnisoPyramid_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  RotationX *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationX, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationX_createInverse" "', argument " "1"" of type '" "RotationX const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorAnisoPyramid_getLength" "', argument " "1"" of type '" "FormFactorAnisoPyramid const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationX * >(argp1);
-  result = (RotationX *)((RotationX const *)arg1)->createInverse();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationX, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
+  result = (double)((FormFactorAnisoPyramid const *)arg1)->getLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationX_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorAnisoPyramid_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationX *arg1 = (RotationX *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "RotationX_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationX, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationX_accept" "', argument " "1"" of type '" "RotationX const *""'"); 
-  }
-  arg1 = reinterpret_cast< RotationX * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RotationX_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorAnisoPyramid_getWidth" "', argument " "1"" of type '" "FormFactorAnisoPyramid const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((RotationX const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
+  result = (double)((FormFactorAnisoPyramid const *)arg1)->getWidth();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationX_getAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorAnisoPyramid_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationX *arg1 = (RotationX *) 0 ;
+  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -91270,12 +91009,12 @@ SWIGINTERN PyObject *_wrap_RotationX_getAngle(PyObject *SWIGUNUSEDPARM(self), Py
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationX, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationX_getAngle" "', argument " "1"" of type '" "RotationX const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorAnisoPyramid_getHeight" "', argument " "1"" of type '" "FormFactorAnisoPyramid const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationX * >(argp1);
-  result = (double)((RotationX const *)arg1)->getAngle();
+  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
+  result = (double)((FormFactorAnisoPyramid const *)arg1)->getHeight();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -91283,43 +91022,43 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationX_getTransform3D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorAnisoPyramid_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationX *arg1 = (RotationX *) 0 ;
+  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Transform3D result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationX, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationX_getTransform3D" "', argument " "1"" of type '" "RotationX const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorAnisoPyramid_getAlpha" "', argument " "1"" of type '" "FormFactorAnisoPyramid const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationX * >(argp1);
-  result = ((RotationX const *)arg1)->getTransform3D();
-  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
+  result = (double)((FormFactorAnisoPyramid const *)arg1)->getAlpha();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_RotationX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorAnisoPyramid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationX *arg1 = (RotationX *) 0 ;
+  FormFactorAnisoPyramid *arg1 = (FormFactorAnisoPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationX, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorAnisoPyramid, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RotationX" "', argument " "1"" of type '" "RotationX *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorAnisoPyramid" "', argument " "1"" of type '" "FormFactorAnisoPyramid *""'"); 
   }
-  arg1 = reinterpret_cast< RotationX * >(argp1);
+  arg1 = reinterpret_cast< FormFactorAnisoPyramid * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -91328,89 +91067,81 @@ fail:
 }
 
 
-SWIGINTERN PyObject *RotationX_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorAnisoPyramid_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RotationX, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorAnisoPyramid, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *RotationX_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorAnisoPyramid_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_RotationY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorBox(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
+  double arg2 ;
+  double arg3 ;
   double val1 ;
   int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RotationY *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  FormFactorBox *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorBox", 3, 3, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RotationY" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorBox" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  result = (RotationY *)new RotationY(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationY, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_RotationY_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  RotationY *arg1 = (RotationY *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RotationY *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationY, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationY_clone" "', argument " "1"" of type '" "RotationY const *""'"); 
-  }
-  arg1 = reinterpret_cast< RotationY * >(argp1);
-  result = (RotationY *)((RotationY const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationY, 0 |  0 );
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorBox" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorBox" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FormFactorBox *)new FormFactorBox(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorBox, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationY_createInverse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorBox_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationY *arg1 = (RotationY *) 0 ;
+  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  RotationY *result = 0 ;
+  FormFactorBox *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationY, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationY_createInverse" "', argument " "1"" of type '" "RotationY const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_clone" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationY * >(argp1);
-  result = (RotationY *)((RotationY const *)arg1)->createInverse();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationY, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
+  result = (FormFactorBox *)((FormFactorBox const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorBox, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationY_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorBox_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationY *arg1 = (RotationY *) 0 ;
+  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -91418,18 +91149,18 @@ SWIGINTERN PyObject *_wrap_RotationY_accept(PyObject *SWIGUNUSEDPARM(self), PyOb
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RotationY_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationY, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorBox_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationY_accept" "', argument " "1"" of type '" "RotationY const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_accept" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationY * >(argp1);
+  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RotationY_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorBox_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((RotationY const *)arg1)->accept(arg2);
+  ((FormFactorBox const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -91437,9 +91168,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationY_getAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorBox_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationY *arg1 = (RotationY *) 0 ;
+  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -91447,12 +91178,12 @@ SWIGINTERN PyObject *_wrap_RotationY_getAngle(PyObject *SWIGUNUSEDPARM(self), Py
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationY, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationY_getAngle" "', argument " "1"" of type '" "RotationY const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_getLength" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationY * >(argp1);
-  result = (double)((RotationY const *)arg1)->getAngle();
+  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
+  result = (double)((FormFactorBox const *)arg1)->getLength();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -91460,176 +91191,202 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationY_getTransform3D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorBox_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationY *arg1 = (RotationY *) 0 ;
+  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Transform3D result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationY, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationY_getTransform3D" "', argument " "1"" of type '" "RotationY const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_getWidth" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationY * >(argp1);
-  result = ((RotationY const *)arg1)->getTransform3D();
-  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
+  result = (double)((FormFactorBox const *)arg1)->getWidth();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_RotationY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorBox_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationY *arg1 = (RotationY *) 0 ;
+  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationY, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RotationY" "', argument " "1"" of type '" "RotationY *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_volume" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationY * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
+  result = (double)((FormFactorBox const *)arg1)->volume();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *RotationY_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RotationY, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *RotationY_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_RotationZ__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorBox_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  RotationZ *result = 0 ;
+  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RotationZ" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (RotationZ *)new RotationZ(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationZ, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_radialExtension" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
+  result = (double)((FormFactorBox const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RotationZ__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_FormFactorBox_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationZ *result = 0 ;
+  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
+  cvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (RotationZ *)new RotationZ();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationZ, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorBox_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorBox_evaluate_for_q" "', argument " "1"" of type '" "FormFactorBox const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorBox_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorBox_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((FormFactorBox const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RotationZ(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_delete_FormFactorBox(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorBox *arg1 = (FormFactorBox *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RotationZ", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_RotationZ__SWIG_1(self, argc, argv);
-  }
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_new_RotationZ__SWIG_0(self, argc, argv);
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorBox, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorBox" "', argument " "1"" of type '" "FormFactorBox *""'"); 
   }
-  
+  arg1 = reinterpret_cast< FormFactorBox * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RotationZ'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    RotationZ::RotationZ(double)\n"
-    "    RotationZ::RotationZ()\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationZ_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  RotationZ *arg1 = (RotationZ *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RotationZ *result = 0 ;
+SWIGINTERN PyObject *FormFactorBox_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorBox, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorBox_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorCantellatedCube(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  FormFactorCantellatedCube *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationZ, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationZ_clone" "', argument " "1"" of type '" "RotationZ const *""'"); 
-  }
-  arg1 = reinterpret_cast< RotationZ * >(argp1);
-  result = (RotationZ *)((RotationZ const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationZ, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorCantellatedCube", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorCantellatedCube" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorCantellatedCube" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (FormFactorCantellatedCube *)new FormFactorCantellatedCube(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCantellatedCube, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationZ_createInverse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCantellatedCube_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationZ *arg1 = (RotationZ *) 0 ;
+  FormFactorCantellatedCube *arg1 = (FormFactorCantellatedCube *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  RotationZ *result = 0 ;
+  FormFactorCantellatedCube *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationZ, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCantellatedCube, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationZ_createInverse" "', argument " "1"" of type '" "RotationZ const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCantellatedCube_clone" "', argument " "1"" of type '" "FormFactorCantellatedCube const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationZ * >(argp1);
-  result = (RotationZ *)((RotationZ const *)arg1)->createInverse();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationZ, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCantellatedCube * >(argp1);
+  result = (FormFactorCantellatedCube *)((FormFactorCantellatedCube const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCantellatedCube, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationZ_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCantellatedCube_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationZ *arg1 = (RotationZ *) 0 ;
+  FormFactorCantellatedCube *arg1 = (FormFactorCantellatedCube *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -91637,18 +91394,18 @@ SWIGINTERN PyObject *_wrap_RotationZ_accept(PyObject *SWIGUNUSEDPARM(self), PyOb
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RotationZ_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationZ, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorCantellatedCube_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCantellatedCube, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationZ_accept" "', argument " "1"" of type '" "RotationZ const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCantellatedCube_accept" "', argument " "1"" of type '" "FormFactorCantellatedCube const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationZ * >(argp1);
+  arg1 = reinterpret_cast< FormFactorCantellatedCube * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RotationZ_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCantellatedCube_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((RotationZ const *)arg1)->accept(arg2);
+  ((FormFactorCantellatedCube const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -91656,9 +91413,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationZ_getAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCantellatedCube_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationZ *arg1 = (RotationZ *) 0 ;
+  FormFactorCantellatedCube *arg1 = (FormFactorCantellatedCube *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -91666,12 +91423,12 @@ SWIGINTERN PyObject *_wrap_RotationZ_getAngle(PyObject *SWIGUNUSEDPARM(self), Py
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationZ, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCantellatedCube, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationZ_getAngle" "', argument " "1"" of type '" "RotationZ const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCantellatedCube_getLength" "', argument " "1"" of type '" "FormFactorCantellatedCube const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationZ * >(argp1);
-  result = (double)((RotationZ const *)arg1)->getAngle();
+  arg1 = reinterpret_cast< FormFactorCantellatedCube * >(argp1);
+  result = (double)((FormFactorCantellatedCube const *)arg1)->getLength();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -91679,43 +91436,43 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationZ_getTransform3D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCantellatedCube_getRemovedLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationZ *arg1 = (RotationZ *) 0 ;
+  FormFactorCantellatedCube *arg1 = (FormFactorCantellatedCube *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Transform3D result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationZ, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCantellatedCube, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationZ_getTransform3D" "', argument " "1"" of type '" "RotationZ const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCantellatedCube_getRemovedLength" "', argument " "1"" of type '" "FormFactorCantellatedCube const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationZ * >(argp1);
-  result = ((RotationZ const *)arg1)->getTransform3D();
-  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< FormFactorCantellatedCube * >(argp1);
+  result = (double)((FormFactorCantellatedCube const *)arg1)->getRemovedLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_RotationZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorCantellatedCube(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationZ *arg1 = (RotationZ *) 0 ;
+  FormFactorCantellatedCube *arg1 = (FormFactorCantellatedCube *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationZ, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCantellatedCube, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RotationZ" "', argument " "1"" of type '" "RotationZ *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorCantellatedCube" "', argument " "1"" of type '" "FormFactorCantellatedCube *""'"); 
   }
-  arg1 = reinterpret_cast< RotationZ * >(argp1);
+  arg1 = reinterpret_cast< FormFactorCantellatedCube * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -91724,18 +91481,18 @@ fail:
 }
 
 
-SWIGINTERN PyObject *RotationZ_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorCantellatedCube_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RotationZ, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorCantellatedCube, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *RotationZ_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorCantellatedCube_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_RotationEuler(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorCone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -91747,81 +91504,58 @@ SWIGINTERN PyObject *_wrap_new_RotationEuler(PyObject *SWIGUNUSEDPARM(self), PyO
   double val3 ;
   int ecode3 = 0 ;
   PyObject *swig_obj[3] ;
-  RotationEuler *result = 0 ;
+  FormFactorCone *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_RotationEuler", 3, 3, swig_obj)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorCone", 3, 3, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RotationEuler" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorCone" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RotationEuler" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorCone" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RotationEuler" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorCone" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (RotationEuler *)new RotationEuler(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationEuler, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_RotationEuler_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  RotationEuler *arg1 = (RotationEuler *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RotationEuler *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_clone" "', argument " "1"" of type '" "RotationEuler const *""'"); 
-  }
-  arg1 = reinterpret_cast< RotationEuler * >(argp1);
-  result = (RotationEuler *)((RotationEuler const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RotationEuler, 0 |  0 );
+  result = (FormFactorCone *)new FormFactorCone(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCone, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationEuler_createInverse(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCone_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationEuler *arg1 = (RotationEuler *) 0 ;
+  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IRotation *result = 0 ;
+  FormFactorCone *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_createInverse" "', argument " "1"" of type '" "RotationEuler const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_clone" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationEuler * >(argp1);
-  result = (IRotation *)((RotationEuler const *)arg1)->createInverse();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IRotation, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
+  result = (FormFactorCone *)((FormFactorCone const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCone, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationEuler_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCone_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationEuler *arg1 = (RotationEuler *) 0 ;
+  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -91829,18 +91563,18 @@ SWIGINTERN PyObject *_wrap_RotationEuler_accept(PyObject *SWIGUNUSEDPARM(self),
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RotationEuler_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorCone_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_accept" "', argument " "1"" of type '" "RotationEuler const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_accept" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationEuler * >(argp1);
+  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RotationEuler_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCone_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((RotationEuler const *)arg1)->accept(arg2);
+  ((FormFactorCone const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -91848,9 +91582,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationEuler_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCone_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationEuler *arg1 = (RotationEuler *) 0 ;
+  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -91858,12 +91592,12 @@ SWIGINTERN PyObject *_wrap_RotationEuler_getAlpha(PyObject *SWIGUNUSEDPARM(self)
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_getAlpha" "', argument " "1"" of type '" "RotationEuler const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_getHeight" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationEuler * >(argp1);
-  result = (double)((RotationEuler const *)arg1)->getAlpha();
+  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
+  result = (double)((FormFactorCone const *)arg1)->getHeight();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -91871,9 +91605,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationEuler_getBeta(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCone_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationEuler *arg1 = (RotationEuler *) 0 ;
+  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -91881,12 +91615,12 @@ SWIGINTERN PyObject *_wrap_RotationEuler_getBeta(PyObject *SWIGUNUSEDPARM(self),
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_getBeta" "', argument " "1"" of type '" "RotationEuler const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_getAlpha" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationEuler * >(argp1);
-  result = (double)((RotationEuler const *)arg1)->getBeta();
+  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
+  result = (double)((FormFactorCone const *)arg1)->getAlpha();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -91894,9 +91628,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationEuler_getGamma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCone_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationEuler *arg1 = (RotationEuler *) 0 ;
+  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -91904,12 +91638,12 @@ SWIGINTERN PyObject *_wrap_RotationEuler_getGamma(PyObject *SWIGUNUSEDPARM(self)
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_getGamma" "', argument " "1"" of type '" "RotationEuler const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_getRadius" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationEuler * >(argp1);
-  result = (double)((RotationEuler const *)arg1)->getGamma();
+  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
+  result = (double)((FormFactorCone const *)arg1)->getRadius();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -91917,43 +91651,81 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RotationEuler_getTransform3D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCone_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationEuler *arg1 = (RotationEuler *) 0 ;
+  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Transform3D result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RotationEuler_getTransform3D" "', argument " "1"" of type '" "RotationEuler const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_radialExtension" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
   }
-  arg1 = reinterpret_cast< RotationEuler * >(argp1);
-  result = ((RotationEuler const *)arg1)->getTransform3D();
-  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
+  result = (double)((FormFactorCone const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_RotationEuler(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCone_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RotationEuler *arg1 = (RotationEuler *) 0 ;
+  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
+  cvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorCone_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone_evaluate_for_q" "', argument " "1"" of type '" "FormFactorCone const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCone_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorCone_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((FormFactorCone const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_FormFactorCone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorCone *arg1 = (FormFactorCone *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RotationEuler, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RotationEuler" "', argument " "1"" of type '" "RotationEuler *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorCone" "', argument " "1"" of type '" "FormFactorCone *""'"); 
   }
-  arg1 = reinterpret_cast< RotationEuler * >(argp1);
+  arg1 = reinterpret_cast< FormFactorCone * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -91962,457 +91734,414 @@ fail:
 }
 
 
-SWIGINTERN PyObject *RotationEuler_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorCone_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RotationEuler, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorCone, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *RotationEuler_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorCone_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_delete_ISelectionRule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorCone6(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ISelectionRule *arg1 = (ISelectionRule *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  FormFactorCone6 *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISelectionRule, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ISelectionRule" "', argument " "1"" of type '" "ISelectionRule *""'"); 
-  }
-  arg1 = reinterpret_cast< ISelectionRule * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorCone6", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorCone6" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorCone6" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorCone6" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FormFactorCone6 *)new FormFactorCone6(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCone6, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ISelectionRule_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCone6_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ISelectionRule *arg1 = (ISelectionRule *) 0 ;
+  FormFactorCone6 *arg1 = (FormFactorCone6 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  ISelectionRule *result = 0 ;
+  FormFactorCone6 *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISelectionRule, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone6, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ISelectionRule_clone" "', argument " "1"" of type '" "ISelectionRule const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone6_clone" "', argument " "1"" of type '" "FormFactorCone6 const *""'"); 
   }
-  arg1 = reinterpret_cast< ISelectionRule * >(argp1);
-  result = (ISelectionRule *)((ISelectionRule const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ISelectionRule, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCone6 * >(argp1);
+  result = (FormFactorCone6 *)((FormFactorCone6 const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCone6, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ISelectionRule_coordinateSelected(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCone6_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ISelectionRule *arg1 = (ISelectionRule *) 0 ;
-  ivector_t *arg2 = 0 ;
+  FormFactorCone6 *arg1 = (FormFactorCone6 *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ISelectionRule_coordinateSelected", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISelectionRule, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorCone6_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone6, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ISelectionRule_coordinateSelected" "', argument " "1"" of type '" "ISelectionRule const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone6_accept" "', argument " "1"" of type '" "FormFactorCone6 const *""'"); 
   }
-  arg1 = reinterpret_cast< ISelectionRule * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_int_t,  0  | 0);
+  arg1 = reinterpret_cast< FormFactorCone6 * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ISelectionRule_coordinateSelected" "', argument " "2"" of type '" "ivector_t const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ISelectionRule_coordinateSelected" "', argument " "2"" of type '" "ivector_t const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCone6_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< ivector_t * >(argp2);
-  result = (bool)((ISelectionRule const *)arg1)->coordinateSelected((ivector_t const &)*arg2);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorCone6 const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *ISelectionRule_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ISelectionRule, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_new_SimpleSelectionRule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCone6_getBaseEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  int arg1 ;
-  int arg2 ;
-  int arg3 ;
-  int arg4 ;
-  int val1 ;
-  int ecode1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
-  int val3 ;
-  int ecode3 = 0 ;
-  int val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  SimpleSelectionRule *result = 0 ;
+  FormFactorCone6 *arg1 = (FormFactorCone6 *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_SimpleSelectionRule", 4, 4, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_SimpleSelectionRule" "', argument " "1"" of type '" "int""'");
-  } 
-  arg1 = static_cast< int >(val1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_SimpleSelectionRule" "', argument " "2"" of type '" "int""'");
-  } 
-  arg2 = static_cast< int >(val2);
-  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_SimpleSelectionRule" "', argument " "3"" of type '" "int""'");
-  } 
-  arg3 = static_cast< int >(val3);
-  ecode4 = SWIG_AsVal_int(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_SimpleSelectionRule" "', argument " "4"" of type '" "int""'");
-  } 
-  arg4 = static_cast< int >(val4);
-  result = (SimpleSelectionRule *)new SimpleSelectionRule(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimpleSelectionRule, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone6, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone6_getBaseEdge" "', argument " "1"" of type '" "FormFactorCone6 const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorCone6 * >(argp1);
+  result = (double)((FormFactorCone6 const *)arg1)->getBaseEdge();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_SimpleSelectionRule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCone6_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimpleSelectionRule *arg1 = (SimpleSelectionRule *) 0 ;
+  FormFactorCone6 *arg1 = (FormFactorCone6 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimpleSelectionRule, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone6, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SimpleSelectionRule" "', argument " "1"" of type '" "SimpleSelectionRule *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone6_getHeight" "', argument " "1"" of type '" "FormFactorCone6 const *""'"); 
   }
-  arg1 = reinterpret_cast< SimpleSelectionRule * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorCone6 * >(argp1);
+  result = (double)((FormFactorCone6 const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimpleSelectionRule_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCone6_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimpleSelectionRule *arg1 = (SimpleSelectionRule *) 0 ;
+  FormFactorCone6 *arg1 = (FormFactorCone6 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SimpleSelectionRule *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimpleSelectionRule, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone6, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimpleSelectionRule_clone" "', argument " "1"" of type '" "SimpleSelectionRule const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCone6_getAlpha" "', argument " "1"" of type '" "FormFactorCone6 const *""'"); 
   }
-  arg1 = reinterpret_cast< SimpleSelectionRule * >(argp1);
-  result = (SimpleSelectionRule *)((SimpleSelectionRule const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimpleSelectionRule, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCone6 * >(argp1);
+  result = (double)((FormFactorCone6 const *)arg1)->getAlpha();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimpleSelectionRule_coordinateSelected(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorCone6(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimpleSelectionRule *arg1 = (SimpleSelectionRule *) 0 ;
-  ivector_t *arg2 = 0 ;
+  FormFactorCone6 *arg1 = (FormFactorCone6 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  bool result;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "SimpleSelectionRule_coordinateSelected", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimpleSelectionRule, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCone6, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimpleSelectionRule_coordinateSelected" "', argument " "1"" of type '" "SimpleSelectionRule const *""'"); 
-  }
-  arg1 = reinterpret_cast< SimpleSelectionRule * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_int_t,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SimpleSelectionRule_coordinateSelected" "', argument " "2"" of type '" "ivector_t const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SimpleSelectionRule_coordinateSelected" "', argument " "2"" of type '" "ivector_t const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorCone6" "', argument " "1"" of type '" "FormFactorCone6 *""'"); 
   }
-  arg2 = reinterpret_cast< ivector_t * >(argp2);
-  result = (bool)((SimpleSelectionRule const *)arg1)->coordinateSelected((ivector_t const &)*arg2);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FormFactorCone6 * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *SimpleSelectionRule_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorCone6_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_SimpleSelectionRule, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorCone6, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *SimpleSelectionRule_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorCone6_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_Instrument__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_new_FormFactorCuboctahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *result = 0 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  FormFactorCuboctahedron *result = 0 ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (Instrument *)new Instrument();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Instrument, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorCuboctahedron", 4, 4, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorCuboctahedron" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorCuboctahedron" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorCuboctahedron" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorCuboctahedron" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (FormFactorCuboctahedron *)new FormFactorCuboctahedron(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCuboctahedron, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Instrument__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = 0 ;
+  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Instrument *result = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorCuboctahedron *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Instrument,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Instrument" "', argument " "1"" of type '" "Instrument const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Instrument" "', argument " "1"" of type '" "Instrument const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCuboctahedron_clone" "', argument " "1"" of type '" "FormFactorCuboctahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  result = (Instrument *)new Instrument((Instrument const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Instrument, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
+  result = (FormFactorCuboctahedron *)((FormFactorCuboctahedron const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Instrument(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Instrument", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_Instrument__SWIG_0(self, argc, argv);
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorCuboctahedron_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCuboctahedron_accept" "', argument " "1"" of type '" "FormFactorCuboctahedron const *""'"); 
   }
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Instrument, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_Instrument__SWIG_1(self, argc, argv);
-    }
+  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCuboctahedron_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorCuboctahedron const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Instrument'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Instrument::Instrument()\n"
-    "    Instrument::Instrument(Instrument const &)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Instrument(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
+  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Instrument" "', argument " "1"" of type '" "Instrument *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCuboctahedron_getLength" "', argument " "1"" of type '" "FormFactorCuboctahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
+  result = (double)((FormFactorCuboctahedron const *)arg1)->getLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "Instrument_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_accept" "', argument " "1"" of type '" "Instrument const *""'"); 
-  }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCuboctahedron_getHeight" "', argument " "1"" of type '" "FormFactorCuboctahedron const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((Instrument const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
+  result = (double)((FormFactorCuboctahedron const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_getBeam__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_getHeightRatio(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
+  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Beam *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getBeam" "', argument " "1"" of type '" "Instrument *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCuboctahedron_getHeightRatio" "', argument " "1"" of type '" "FormFactorCuboctahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  result = (Beam *) &(arg1)->getBeam();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Beam, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
+  result = (double)((FormFactorCuboctahedron const *)arg1)->getHeightRatio();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_getBeam__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorCuboctahedron_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
+  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Beam *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getBeam" "', argument " "1"" of type '" "Instrument const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCuboctahedron_getAlpha" "', argument " "1"" of type '" "FormFactorCuboctahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  result = (Beam *) &((Instrument const *)arg1)->getBeam();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Beam, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
+  result = (double)((FormFactorCuboctahedron const *)arg1)->getAlpha();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_getBeam(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Instrument_getBeam", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Instrument, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_Instrument_getBeam__SWIG_0(self, argc, argv);
-    }
-  }
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Instrument, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_Instrument_getBeam__SWIG_1(self, argc, argv);
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Instrument_getBeam'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Instrument::getBeam()\n"
-    "    Instrument::getBeam() const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_Instrument_setBeam(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorCuboctahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
-  Beam *arg2 = 0 ;
+  FormFactorCuboctahedron *arg1 = (FormFactorCuboctahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Instrument_setBeam", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCuboctahedron, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setBeam" "', argument " "1"" of type '" "Instrument *""'"); 
-  }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Beam,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_setBeam" "', argument " "2"" of type '" "Beam const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Instrument_setBeam" "', argument " "2"" of type '" "Beam const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorCuboctahedron" "', argument " "1"" of type '" "FormFactorCuboctahedron *""'"); 
   }
-  arg2 = reinterpret_cast< Beam * >(argp2);
-  (arg1)->setBeam((Beam const &)*arg2);
+  arg1 = reinterpret_cast< FormFactorCuboctahedron * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -92420,110 +92149,92 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_setBeamParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorCuboctahedron_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorCuboctahedron, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorCuboctahedron_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorCylinder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
+  double arg1 ;
   double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
+  PyObject *swig_obj[2] ;
+  FormFactorCylinder *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Instrument_setBeamParameters", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setBeamParameters" "', argument " "1"" of type '" "Instrument *""'"); 
-  }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorCylinder", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorCylinder" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Instrument_setBeamParameters" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorCylinder" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Instrument_setBeamParameters" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Instrument_setBeamParameters" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->setBeamParameters(arg2,arg3,arg4);
-  resultobj = SWIG_Py_Void();
+  result = (FormFactorCylinder *)new FormFactorCylinder(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCylinder, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_setBeamIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCylinder_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
-  double arg2 ;
+  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  FormFactorCylinder *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Instrument_setBeamIntensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setBeamIntensity" "', argument " "1"" of type '" "Instrument *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCylinder_clone" "', argument " "1"" of type '" "FormFactorCylinder const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Instrument_setBeamIntensity" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setBeamIntensity(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
+  result = (FormFactorCylinder *)((FormFactorCylinder const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_setBeamPolarization(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCylinder_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
-  kvector_t arg2 ;
+  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Instrument_setBeamPolarization", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorCylinder_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setBeamPolarization" "', argument " "1"" of type '" "Instrument *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCylinder_accept" "', argument " "1"" of type '" "FormFactorCylinder const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_setBeamPolarization" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Instrument_setBeamPolarization" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCylinder_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  (arg1)->setBeamPolarization(arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorCylinder const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -92531,9 +92242,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_getBeamIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorCylinder_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
+  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -92541,12 +92252,12 @@ SWIGINTERN PyObject *_wrap_Instrument_getBeamIntensity(PyObject *SWIGUNUSEDPARM(
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getBeamIntensity" "', argument " "1"" of type '" "Instrument const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCylinder_getHeight" "', argument " "1"" of type '" "FormFactorCylinder const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  result = (double)((Instrument const *)arg1)->getBeamIntensity();
+  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
+  result = (double)((FormFactorCylinder const *)arg1)->getHeight();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -92554,185 +92265,191 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_getDetector__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorCylinder_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
+  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  IDetector *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getDetector" "', argument " "1"" of type '" "Instrument const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCylinder_getRadius" "', argument " "1"" of type '" "FormFactorCylinder const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  result = (IDetector *)((Instrument const *)arg1)->getDetector();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDetector, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
+  result = (double)((FormFactorCylinder const *)arg1)->getRadius();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_getDetector__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorCylinder_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
+  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  IDetector *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getDetector" "', argument " "1"" of type '" "Instrument *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCylinder_radialExtension" "', argument " "1"" of type '" "FormFactorCylinder const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  result = (IDetector *)(arg1)->getDetector();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDetector, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
+  result = (double)((FormFactorCylinder const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_getDetector(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_FormFactorCylinder_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
+  cvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Instrument_getDetector", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Instrument, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_Instrument_getDetector__SWIG_1(self, argc, argv);
-    }
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorCylinder_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorCylinder_evaluate_for_q" "', argument " "1"" of type '" "FormFactorCylinder const *""'"); 
   }
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Instrument, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_Instrument_getDetector__SWIG_0(self, argc, argv);
+  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorCylinder_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorCylinder_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  
+  result = ((FormFactorCylinder const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Instrument_getDetector'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Instrument::getDetector() const\n"
-    "    Instrument::getDetector()\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_getDetectorMask(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorCylinder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
+  FormFactorCylinder *arg1 = (FormFactorCylinder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  DetectorMask *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorCylinder, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getDetectorMask" "', argument " "1"" of type '" "Instrument const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorCylinder" "', argument " "1"" of type '" "FormFactorCylinder *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  result = (DetectorMask *)((Instrument const *)arg1)->getDetectorMask();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DetectorMask, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorCylinder * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_getDetectorAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  IAxis *result = 0 ;
+SWIGINTERN PyObject *FormFactorCylinder_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorCylinder, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorCylinder_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorDodecahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorDodecahedron *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Instrument_getDetectorAxis", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getDetectorAxis" "', argument " "1"" of type '" "Instrument const *""'"); 
-  }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Instrument_getDetectorAxis" "', argument " "2"" of type '" "size_t""'");
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorDodecahedron" "', argument " "1"" of type '" "double""'");
   } 
-  arg2 = static_cast< size_t >(val2);
-  result = (IAxis *) &((Instrument const *)arg1)->getDetectorAxis(arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
+  arg1 = static_cast< double >(val1);
+  result = (FormFactorDodecahedron *)new FormFactorDodecahedron(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorDodecahedron, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_getDetectorDimension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDodecahedron_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
+  FormFactorDodecahedron *arg1 = (FormFactorDodecahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
+  FormFactorDodecahedron *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDodecahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getDetectorDimension" "', argument " "1"" of type '" "Instrument const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDodecahedron_clone" "', argument " "1"" of type '" "FormFactorDodecahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  result = ((Instrument const *)arg1)->getDetectorDimension();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< FormFactorDodecahedron * >(argp1);
+  result = (FormFactorDodecahedron *)((FormFactorDodecahedron const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorDodecahedron, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_setDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDodecahedron_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
-  IDetector *arg2 = 0 ;
+  FormFactorDodecahedron *arg1 = (FormFactorDodecahedron *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Instrument_setDetector", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorDodecahedron_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDodecahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setDetector" "', argument " "1"" of type '" "Instrument *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDodecahedron_accept" "', argument " "1"" of type '" "FormFactorDodecahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDetector,  0  | 0);
+  arg1 = reinterpret_cast< FormFactorDodecahedron * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_setDetector" "', argument " "2"" of type '" "IDetector const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Instrument_setDetector" "', argument " "2"" of type '" "IDetector const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDodecahedron_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< IDetector * >(argp2);
-  (arg1)->setDetector((IDetector const &)*arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorDodecahedron const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -92740,53 +92457,44 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_setDetectorResolutionFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDodecahedron_getEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
-  IResolutionFunction2D *arg2 = 0 ;
+  FormFactorDodecahedron *arg1 = (FormFactorDodecahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "Instrument_setDetectorResolutionFunction", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDodecahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setDetectorResolutionFunction" "', argument " "1"" of type '" "Instrument *""'"); 
-  }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IResolutionFunction2D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_setDetectorResolutionFunction" "', argument " "2"" of type '" "IResolutionFunction2D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Instrument_setDetectorResolutionFunction" "', argument " "2"" of type '" "IResolutionFunction2D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDodecahedron_getEdge" "', argument " "1"" of type '" "FormFactorDodecahedron const *""'"); 
   }
-  arg2 = reinterpret_cast< IResolutionFunction2D * >(argp2);
-  (arg1)->setDetectorResolutionFunction((IResolutionFunction2D const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorDodecahedron * >(argp1);
+  result = (double)((FormFactorDodecahedron const *)arg1)->getEdge();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_removeDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorDodecahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
+  FormFactorDodecahedron *arg1 = (FormFactorDodecahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDodecahedron, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_removeDetectorResolution" "', argument " "1"" of type '" "Instrument *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorDodecahedron" "', argument " "1"" of type '" "FormFactorDodecahedron *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  (arg1)->removeDetectorResolution();
+  arg1 = reinterpret_cast< FormFactorDodecahedron * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -92794,181 +92502,142 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_setAnalyzerProperties(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorDodecahedron_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorDodecahedron, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorDodecahedron_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorDot(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
-  kvector_t arg2 ;
-  double arg3 ;
-  double arg4 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorDot *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Instrument_setAnalyzerProperties", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setAnalyzerProperties" "', argument " "1"" of type '" "Instrument *""'"); 
-  }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_setAnalyzerProperties" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Instrument_setAnalyzerProperties" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Instrument_setAnalyzerProperties" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Instrument_setAnalyzerProperties" "', argument " "4"" of type '" "double""'");
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorDot" "', argument " "1"" of type '" "double""'");
   } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->setAnalyzerProperties(arg2,arg3,arg4);
-  resultobj = SWIG_Py_Void();
+  arg1 = static_cast< double >(val1);
+  result = (FormFactorDot *)new FormFactorDot(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorDot, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_applyDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDot_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
-  OutputData< double > *arg2 = (OutputData< double > *) 0 ;
+  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  FormFactorDot *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Instrument_applyDetectorResolution", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_applyDetectorResolution" "', argument " "1"" of type '" "Instrument const *""'"); 
-  }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_applyDetectorResolution" "', argument " "2"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_clone" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  ((Instrument const *)arg1)->applyDetectorResolution(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
+  result = (FormFactorDot *)((FormFactorDot const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorDot, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_createDetectorIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDot_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
-  std::vector< SimulationElement,std::allocator< SimulationElement > > *arg2 = 0 ;
+  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  OutputData< double > *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Instrument_createDetectorIntensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorDot_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_createDetectorIntensity" "', argument " "1"" of type '" "Instrument const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_accept" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__vectorT_SimulationElement_std__allocatorT_SimulationElement_t_t,  0  | 0);
+  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_createDetectorIntensity" "', argument " "2"" of type '" "std::vector< SimulationElement,std::allocator< SimulationElement > > const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Instrument_createDetectorIntensity" "', argument " "2"" of type '" "std::vector< SimulationElement,std::allocator< SimulationElement > > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDot_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< SimulationElement,std::allocator< SimulationElement > > * >(argp2);
-  result = (OutputData< double > *)((Instrument const *)arg1)->createDetectorIntensity((std::vector< SimulationElement,std::allocator< SimulationElement > > const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorDot const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_initDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDot_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
+  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_initDetector" "', argument " "1"" of type '" "Instrument *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_getRadius" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  (arg1)->initDetector();
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
+  result = (double)((FormFactorDot const *)arg1)->getRadius();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Instrument_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDot_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Instrument *arg1 = (Instrument *) 0 ;
+  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getChildren" "', argument " "1"" of type '" "Instrument const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_radialExtension" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
   }
-  arg1 = reinterpret_cast< Instrument * >(argp1);
-  result = ((Instrument const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
+  result = (double)((FormFactorDot const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *Instrument_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Instrument, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *Instrument_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_RelativeDifference(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDot_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = 0 ;
-  SimulationResult *arg2 = 0 ;
+  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
@@ -92976,24 +92645,21 @@ SWIGINTERN PyObject *_wrap_RelativeDifference(PyObject *SWIGUNUSEDPARM(self), Py
   PyObject *swig_obj[2] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "RelativeDifference", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_SimulationResult,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorDot_bottomZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RelativeDifference" "', argument " "1"" of type '" "SimulationResult const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RelativeDifference" "', argument " "1"" of type '" "SimulationResult const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_bottomZ" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_SimulationResult,  0  | 0);
+  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RelativeDifference" "', argument " "2"" of type '" "SimulationResult const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDot_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RelativeDifference" "', argument " "2"" of type '" "SimulationResult const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorDot_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  arg2 = reinterpret_cast< SimulationResult * >(argp2);
-  result = (double)IntensityDataFunctions::RelativeDifference((SimulationResult const &)*arg1,(SimulationResult const &)*arg2);
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((FormFactorDot const *)arg1)->bottomZ((IRotation const &)*arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -93001,34 +92667,32 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_getRelativeDifference__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorDot_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = 0 ;
-  OutputData< double > *arg2 = 0 ;
+  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorDot_topZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "getRelativeDifference" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "getRelativeDifference" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_topZ" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "getRelativeDifference" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDot_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "getRelativeDifference" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorDot_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  result = (double)IntensityDataFunctions::getRelativeDifference((OutputData< double > const &)*arg1,(OutputData< double > const &)*arg2);
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((FormFactorDot const *)arg1)->topZ((IRotation const &)*arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -93036,229 +92700,160 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_checkRelativeDifference(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDot_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = 0 ;
-  OutputData< double > *arg2 = 0 ;
-  double arg3 ;
+  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  bool result;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "checkRelativeDifference", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorDot_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "checkRelativeDifference" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "checkRelativeDifference" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "checkRelativeDifference" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDot_evaluate_for_q" "', argument " "1"" of type '" "FormFactorDot const *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "checkRelativeDifference" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDot_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorDot_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "checkRelativeDifference" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (bool)IntensityDataFunctions::checkRelativeDifference((OutputData< double > const &)*arg1,(OutputData< double > const &)*arg2,arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  result = ((FormFactorDot const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_getRelativeDifference__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorDot(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IHistogram *arg1 = 0 ;
-  IHistogram *arg2 = 0 ;
+  FormFactorDot *arg1 = (FormFactorDot *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  double result;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IHistogram,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDot, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "getRelativeDifference" "', argument " "1"" of type '" "IHistogram const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "getRelativeDifference" "', argument " "1"" of type '" "IHistogram const &""'"); 
-  }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IHistogram,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "getRelativeDifference" "', argument " "2"" of type '" "IHistogram const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "getRelativeDifference" "', argument " "2"" of type '" "IHistogram const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorDot" "', argument " "1"" of type '" "FormFactorDot *""'"); 
   }
-  arg2 = reinterpret_cast< IHistogram * >(argp2);
-  result = (double)IntensityDataFunctions::getRelativeDifference((IHistogram const &)*arg1,(IHistogram const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FormFactorDot * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_getRelativeDifference(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "getRelativeDifference", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_getRelativeDifference__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IHistogram, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IHistogram, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_getRelativeDifference__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'getRelativeDifference'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IntensityDataFunctions::getRelativeDifference(OutputData< double > const &,OutputData< double > const &)\n"
-    "    IntensityDataFunctions::getRelativeDifference(IHistogram const &,IHistogram const &)\n");
-  return 0;
+SWIGINTERN PyObject *FormFactorDot_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorDot, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *FormFactorDot_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_coordinateToBinf__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FormFactorEllipsoidalCylinder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
-  IAxis *arg2 = 0 ;
+  double arg2 ;
+  double arg3 ;
   double val1 ;
   int ecode1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  double result;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  FormFactorEllipsoidalCylinder *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorEllipsoidalCylinder", 3, 3, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "coordinateToBinf" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorEllipsoidalCylinder" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAxis,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "coordinateToBinf" "', argument " "2"" of type '" "IAxis const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateToBinf" "', argument " "2"" of type '" "IAxis const &""'"); 
-  }
-  arg2 = reinterpret_cast< IAxis * >(argp2);
-  result = (double)IntensityDataFunctions::coordinateToBinf(arg1,(IAxis const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorEllipsoidalCylinder" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorEllipsoidalCylinder" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FormFactorEllipsoidalCylinder *)new FormFactorEllipsoidalCylinder(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorEllipsoidalCylinder, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_coordinateFromBinf__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  IAxis *arg2 = 0 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  double result;
+  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorEllipsoidalCylinder *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "coordinateFromBinf" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAxis,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "coordinateFromBinf" "', argument " "2"" of type '" "IAxis const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateFromBinf" "', argument " "2"" of type '" "IAxis const &""'"); 
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_clone" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
   }
-  arg2 = reinterpret_cast< IAxis * >(argp2);
-  result = (double)IntensityDataFunctions::coordinateFromBinf(arg1,(IAxis const &)*arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
+  result = (FormFactorEllipsoidalCylinder *)((FormFactorEllipsoidalCylinder const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_coordinateToBinf__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double *arg1 = 0 ;
-  double *arg2 = 0 ;
-  OutputData< double > *arg3 = 0 ;
+  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_double,  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorEllipsoidalCylinder_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "coordinateToBinf" "', argument " "1"" of type '" "double &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateToBinf" "', argument " "1"" of type '" "double &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_accept" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
   }
-  arg1 = reinterpret_cast< double * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_double,  0 );
+  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "coordinateToBinf" "', argument " "2"" of type '" "double &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateToBinf" "', argument " "2"" of type '" "double &""'"); 
-  }
-  arg2 = reinterpret_cast< double * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "coordinateToBinf" "', argument " "3"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateToBinf" "', argument " "3"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorEllipsoidalCylinder_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg3 = reinterpret_cast< OutputData< double > * >(argp3);
-  IntensityDataFunctions::coordinateToBinf(*arg1,*arg2,(OutputData< double > const &)*arg3);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorEllipsoidalCylinder const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -93266,685 +92861,479 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_coordinateToBinf(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "coordinateToBinf", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAxis, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_coordinateToBinf__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_double, SWIG_POINTER_NO_NULL);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, SWIG_POINTER_NO_NULL);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_coordinateToBinf__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'coordinateToBinf'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IntensityDataFunctions::coordinateToBinf(double,IAxis const &)\n"
-    "    IntensityDataFunctions::coordinateToBinf(double &,double &,OutputData< double > const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_coordinateFromBinf__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_getRadiusX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double *arg1 = 0 ;
-  double *arg2 = 0 ;
-  OutputData< double > *arg3 = 0 ;
+  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_double,  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "coordinateFromBinf" "', argument " "1"" of type '" "double &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateFromBinf" "', argument " "1"" of type '" "double &""'"); 
-  }
-  arg1 = reinterpret_cast< double * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_double,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "coordinateFromBinf" "', argument " "2"" of type '" "double &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateFromBinf" "', argument " "2"" of type '" "double &""'"); 
-  }
-  arg2 = reinterpret_cast< double * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "coordinateFromBinf" "', argument " "3"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateFromBinf" "', argument " "3"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_getRadiusX" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
   }
-  arg3 = reinterpret_cast< OutputData< double > * >(argp3);
-  IntensityDataFunctions::coordinateFromBinf(*arg1,*arg2,(OutputData< double > const &)*arg3);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
+  result = (double)((FormFactorEllipsoidalCylinder const *)arg1)->getRadiusX();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_coordinateFromBinf(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_getRadiusY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "coordinateFromBinf", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAxis, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_coordinateFromBinf__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_double, SWIG_POINTER_NO_NULL);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, SWIG_POINTER_NO_NULL);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_coordinateFromBinf__SWIG_1(self, argc, argv);
-        }
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_getRadiusY" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
+  result = (double)((FormFactorEllipsoidalCylinder const *)arg1)->getRadiusY();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'coordinateFromBinf'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    IntensityDataFunctions::coordinateFromBinf(double,IAxis const &)\n"
-    "    IntensityDataFunctions::coordinateFromBinf(double &,double &,OutputData< double > const &)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_create2DArrayfromOutputData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = 0 ;
+  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "create2DArrayfromOutputData" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "create2DArrayfromOutputData" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_getHeight" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = IntensityDataFunctions::create2DArrayfromOutputData((OutputData< double > const &)*arg1);
-  resultobj = swig::from(static_cast< std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > >(result));
+  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
+  result = (double)((FormFactorEllipsoidalCylinder const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FT2DArray(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg1 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
+  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    res1 = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FT2DArray" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FT2DArray" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    arg1 = ptr;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_radialExtension" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
   }
-  result = IntensityDataFunctions::FT2DArray((std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg1);
-  resultobj = swig::from(static_cast< std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > >(result));
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
+  result = (double)((FormFactorEllipsoidalCylinder const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ConvertData__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorEllipsoidalCylinder_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Simulation *arg1 = 0 ;
-  OutputData< double > *arg2 = 0 ;
-  bool arg3 ;
+  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
-  bool val3 ;
-  int ecode3 = 0 ;
-  SimulationResult result;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Simulation,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorEllipsoidalCylinder_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ConvertData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorEllipsoidalCylinder_evaluate_for_q" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder const *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorEllipsoidalCylinder_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorEllipsoidalCylinder_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ConvertData" "', argument " "3"" of type '" "bool""'");
-  } 
-  arg3 = static_cast< bool >(val3);
-  result = IntensityDataFunctions::ConvertData((Simulation const &)*arg1,(OutputData< double > const &)*arg2,arg3);
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
+  result = ((FormFactorEllipsoidalCylinder const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ConvertData__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorEllipsoidalCylinder(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Simulation *arg1 = 0 ;
-  OutputData< double > *arg2 = 0 ;
+  FormFactorEllipsoidalCylinder *arg1 = (FormFactorEllipsoidalCylinder *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  SimulationResult result;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Simulation,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorEllipsoidalCylinder, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ConvertData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorEllipsoidalCylinder" "', argument " "1"" of type '" "FormFactorEllipsoidalCylinder *""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  result = IntensityDataFunctions::ConvertData((Simulation const &)*arg1,(OutputData< double > const &)*arg2);
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< FormFactorEllipsoidalCylinder * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ConvertData__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *FormFactorEllipsoidalCylinder_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorEllipsoidalCylinder, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorEllipsoidalCylinder_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorFullSphere__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Simulation *arg1 = 0 ;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg2 = 0 ;
-  bool arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  bool val3 ;
-  int ecode3 = 0 ;
-  SimulationResult result;
+  double arg1 ;
+  bool arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  bool val2 ;
+  int ecode2 = 0 ;
+  FormFactorFullSphere *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Simulation,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    res2 = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ConvertData" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    arg2 = ptr;
-  }
-  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ConvertData" "', argument " "3"" of type '" "bool""'");
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorFullSphere" "', argument " "1"" of type '" "double""'");
   } 
-  arg3 = static_cast< bool >(val3);
-  result = IntensityDataFunctions::ConvertData((Simulation const &)*arg1,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg2,arg3);
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorFullSphere" "', argument " "2"" of type '" "bool""'");
+  } 
+  arg2 = static_cast< bool >(val2);
+  result = (FormFactorFullSphere *)new FormFactorFullSphere(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorFullSphere, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ConvertData__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FormFactorFullSphere__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Simulation *arg1 = 0 ;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  SimulationResult result;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  FormFactorFullSphere *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Simulation,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
-  }
-  arg1 = reinterpret_cast< Simulation * >(argp1);
-  {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    res2 = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ConvertData" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    arg2 = ptr;
-  }
-  result = IntensityDataFunctions::ConvertData((Simulation const &)*arg1,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg2);
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorFullSphere" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (FormFactorFullSphere *)new FormFactorFullSphere(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorFullSphere, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ConvertData(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorFullSphere(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ConvertData", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FormFactorFullSphere", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Simulation, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_ConvertData__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Simulation, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = swig::asptr(argv[1], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_ConvertData__SWIG_3(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
+  if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Simulation, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
       _v = SWIG_CheckState(res);
-      if (_v) {
-        {
-          int res = SWIG_AsVal_bool(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_ConvertData__SWIG_0(self, argc, argv);
-        }
-      }
+    }
+    if (_v) {
+      return _wrap_new_FormFactorFullSphere__SWIG_1(self, argc, argv);
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Simulation, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = swig::asptr(argv[1], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
       _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_bool(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
-        {
-          int res = SWIG_AsVal_bool(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_ConvertData__SWIG_2(self, argc, argv);
-        }
+        return _wrap_new_FormFactorFullSphere__SWIG_0(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ConvertData'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FormFactorFullSphere'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    IntensityDataFunctions::ConvertData(Simulation const &,OutputData< double > const &,bool)\n"
-    "    IntensityDataFunctions::ConvertData(Simulation const &,OutputData< double > const &)\n"
-    "    IntensityDataFunctions::ConvertData(Simulation const &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &,bool)\n"
-    "    IntensityDataFunctions::ConvertData(Simulation const &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)\n");
+    "    FormFactorFullSphere::FormFactorFullSphere(double,bool)\n"
+    "    FormFactorFullSphere::FormFactorFullSphere(double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityDataIOFactory_readOutputData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSphere_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
+  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  OutputData< double > *result = 0 ;
+  FormFactorFullSphere *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityDataIOFactory_readOutputData" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_readOutputData" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_clone" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
   }
-  result = (OutputData< double > *)IntensityDataIOFactory::readOutputData((std::string const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
+  result = (FormFactorFullSphere *)((FormFactorFullSphere const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityDataIOFactory_readReflectometryData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSphere_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[1] ;
-  OutputData< double > *result = 0 ;
+  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityDataIOFactory_readReflectometryData" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_readReflectometryData" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorFullSphere_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_accept" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
   }
-  result = (OutputData< double > *)IntensityDataIOFactory::readReflectometryData((std::string const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorFullSphere_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorFullSphere const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityDataIOFactory_readIntensityData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSphere_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
+  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IHistogram *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityDataIOFactory_readIntensityData" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_readIntensityData" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_getRadius" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
   }
-  result = (IHistogram *)IntensityDataIOFactory::readIntensityData((std::string const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
+  result = (double)((FormFactorFullSphere const *)arg1)->getRadius();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityDataIOFactory_writeOutputData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSphere_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = 0 ;
-  std::string *arg2 = 0 ;
+  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityDataIOFactory_writeOutputData", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityDataIOFactory_writeOutputData" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_writeOutputData" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityDataIOFactory_writeOutputData" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_writeOutputData" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_radialExtension" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
   }
-  IntensityDataIOFactory::writeOutputData((OutputData< double > const &)*arg1,(std::string const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
+  result = (double)((FormFactorFullSphere const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityDataIOFactory_writeIntensityData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSphere_bottomZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IHistogram *arg1 = 0 ;
-  std::string *arg2 = 0 ;
+  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityDataIOFactory_writeIntensityData", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IHistogram,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorFullSphere_bottomZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityDataIOFactory_writeIntensityData" "', argument " "1"" of type '" "IHistogram const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_bottomZ" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
   }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_writeIntensityData" "', argument " "1"" of type '" "IHistogram const &""'"); 
+  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorFullSphere_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  arg1 = reinterpret_cast< IHistogram * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityDataIOFactory_writeIntensityData" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_writeIntensityData" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorFullSphere_bottomZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  IntensityDataIOFactory::writeIntensityData((IHistogram const &)*arg1,(std::string const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((FormFactorFullSphere const *)arg1)->bottomZ((IRotation const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityDataIOFactory_writeSimulationResult(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSphere_topZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimulationResult *arg1 = 0 ;
-  std::string *arg2 = 0 ;
+  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
+  IRotation *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityDataIOFactory_writeSimulationResult", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_SimulationResult,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorFullSphere_topZ", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityDataIOFactory_writeSimulationResult" "', argument " "1"" of type '" "SimulationResult const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_topZ" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
   }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_writeSimulationResult" "', argument " "1"" of type '" "SimulationResult const &""'"); 
+  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorFullSphere_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  arg1 = reinterpret_cast< SimulationResult * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityDataIOFactory_writeSimulationResult" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_writeSimulationResult" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorFullSphere_topZ" "', argument " "2"" of type '" "IRotation const &""'"); 
   }
-  IntensityDataIOFactory::writeSimulationResult((SimulationResult const &)*arg1,(std::string const &)*arg2);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg2 = reinterpret_cast< IRotation * >(argp2);
+  result = (double)((FormFactorFullSphere const *)arg1)->topZ((IRotation const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IntensityDataIOFactory(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSphere_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IntensityDataIOFactory *result = 0 ;
+  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
+  cvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_IntensityDataIOFactory", 0, 0, 0)) SWIG_fail;
-  result = (IntensityDataIOFactory *)new IntensityDataIOFactory();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityDataIOFactory, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorFullSphere_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSphere_evaluate_for_q" "', argument " "1"" of type '" "FormFactorFullSphere const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorFullSphere_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorFullSphere_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((FormFactorFullSphere const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IntensityDataIOFactory(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorFullSphere(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IntensityDataIOFactory *arg1 = (IntensityDataIOFactory *) 0 ;
+  FormFactorFullSphere *arg1 = (FormFactorFullSphere *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityDataIOFactory, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSphere, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IntensityDataIOFactory" "', argument " "1"" of type '" "IntensityDataIOFactory *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorFullSphere" "', argument " "1"" of type '" "FormFactorFullSphere *""'"); 
   }
-  arg1 = reinterpret_cast< IntensityDataIOFactory * >(argp1);
+  arg1 = reinterpret_cast< FormFactorFullSphere * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -93953,18 +93342,18 @@ fail:
 }
 
 
-SWIGINTERN PyObject *IntensityDataIOFactory_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorFullSphere_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IntensityDataIOFactory, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorFullSphere, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *IntensityDataIOFactory_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorFullSphere_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction1DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorFullSpheroid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -93973,75 +93362,53 @@ SWIGINTERN PyObject *_wrap_new_InterferenceFunction1DLattice(PyObject *SWIGUNUSE
   double val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  InterferenceFunction1DLattice *result = 0 ;
+  FormFactorFullSpheroid *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_InterferenceFunction1DLattice", 2, 2, swig_obj)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorFullSpheroid", 2, 2, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction1DLattice" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorFullSpheroid" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction1DLattice" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorFullSpheroid" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (InterferenceFunction1DLattice *)new InterferenceFunction1DLattice(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction1DLattice, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_InterferenceFunction1DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  InterferenceFunction1DLattice *arg1 = (InterferenceFunction1DLattice *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction1DLattice, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunction1DLattice" "', argument " "1"" of type '" "InterferenceFunction1DLattice *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunction1DLattice * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  result = (FormFactorFullSpheroid *)new FormFactorFullSpheroid(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorFullSpheroid, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction1DLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction1DLattice *arg1 = (InterferenceFunction1DLattice *) 0 ;
+  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  InterferenceFunction1DLattice *result = 0 ;
+  FormFactorFullSpheroid *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction1DLattice_clone" "', argument " "1"" of type '" "InterferenceFunction1DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSpheroid_clone" "', argument " "1"" of type '" "FormFactorFullSpheroid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction1DLattice * >(argp1);
-  result = (InterferenceFunction1DLattice *)((InterferenceFunction1DLattice const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
+  result = (FormFactorFullSpheroid *)((FormFactorFullSpheroid const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction1DLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction1DLattice *arg1 = (InterferenceFunction1DLattice *) 0 ;
+  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -94049,18 +93416,18 @@ SWIGINTERN PyObject *_wrap_InterferenceFunction1DLattice_accept(PyObject *SWIGUN
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction1DLattice_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorFullSpheroid_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction1DLattice_accept" "', argument " "1"" of type '" "InterferenceFunction1DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSpheroid_accept" "', argument " "1"" of type '" "FormFactorFullSpheroid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction1DLattice * >(argp1);
+  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction1DLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorFullSpheroid_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((InterferenceFunction1DLattice const *)arg1)->accept(arg2);
+  ((FormFactorFullSpheroid const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -94068,165 +93435,147 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction1DLattice_setDecayFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction1DLattice *arg1 = (InterferenceFunction1DLattice *) 0 ;
-  IFTDecayFunction1D *arg2 = 0 ;
+  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction1DLattice_setDecayFunction", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction1DLattice_setDecayFunction" "', argument " "1"" of type '" "InterferenceFunction1DLattice *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunction1DLattice * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFTDecayFunction1D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction1DLattice_setDecayFunction" "', argument " "2"" of type '" "IFTDecayFunction1D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction1DLattice_setDecayFunction" "', argument " "2"" of type '" "IFTDecayFunction1D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSpheroid_getHeight" "', argument " "1"" of type '" "FormFactorFullSpheroid const *""'"); 
   }
-  arg2 = reinterpret_cast< IFTDecayFunction1D * >(argp2);
-  (arg1)->setDecayFunction((IFTDecayFunction1D const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
+  result = (double)((FormFactorFullSpheroid const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction1DLattice_getLatticeParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction1DLattice *arg1 = (InterferenceFunction1DLattice *) 0 ;
+  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Lattice1DParameters result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction1DLattice_getLatticeParameters" "', argument " "1"" of type '" "InterferenceFunction1DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSpheroid_getRadius" "', argument " "1"" of type '" "FormFactorFullSpheroid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction1DLattice * >(argp1);
-  result = ((InterferenceFunction1DLattice const *)arg1)->getLatticeParameters();
-  resultobj = SWIG_NewPointerObj((new Lattice1DParameters(static_cast< const Lattice1DParameters& >(result))), SWIGTYPE_p_Lattice1DParameters, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
+  result = (double)((FormFactorFullSpheroid const *)arg1)->getRadius();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction1DLattice_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction1DLattice *arg1 = (InterferenceFunction1DLattice *) 0 ;
+  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction1DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction1DLattice_getChildren" "', argument " "1"" of type '" "InterferenceFunction1DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSpheroid_radialExtension" "', argument " "1"" of type '" "FormFactorFullSpheroid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction1DLattice * >(argp1);
-  result = ((InterferenceFunction1DLattice const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
+  result = (double)((FormFactorFullSpheroid const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *InterferenceFunction1DLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunction1DLattice, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *InterferenceFunction1DLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorFullSpheroid_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = 0 ;
+  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  InterferenceFunction2DLattice *result = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorFullSpheroid_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction2DLattice" "', argument " "1"" of type '" "Lattice2D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorFullSpheroid_evaluate_for_q" "', argument " "1"" of type '" "FormFactorFullSpheroid const *""'"); 
   }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction2DLattice" "', argument " "1"" of type '" "Lattice2D const &""'"); 
+  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorFullSpheroid_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorFullSpheroid_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  result = (InterferenceFunction2DLattice *)new InterferenceFunction2DLattice((Lattice2D const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_POINTER_NEW |  0 );
+  result = ((FormFactorFullSpheroid const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorFullSpheroid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  InterferenceFunction2DLattice *result = 0 ;
+  FormFactorFullSpheroid *arg1 = (FormFactorFullSpheroid *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction2DLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DLattice" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DLattice" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunction2DLattice" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (InterferenceFunction2DLattice *)new InterferenceFunction2DLattice(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorFullSpheroid, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorFullSpheroid" "', argument " "1"" of type '" "FormFactorFullSpheroid *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorFullSpheroid * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DLattice__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *FormFactorFullSpheroid_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorFullSpheroid, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorFullSpheroid_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorHemiEllipsoid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -94237,123 +93586,47 @@ SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DLattice__SWIG_2(PyObject *S
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  InterferenceFunction2DLattice *result = 0 ;
+  PyObject *swig_obj[3] ;
+  FormFactorHemiEllipsoid *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorHemiEllipsoid", 3, 3, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction2DLattice" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorHemiEllipsoid" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DLattice" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorHemiEllipsoid" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DLattice" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorHemiEllipsoid" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (InterferenceFunction2DLattice *)new InterferenceFunction2DLattice(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_POINTER_NEW |  0 );
+  result = (FormFactorHemiEllipsoid *)new FormFactorHemiEllipsoid(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorHemiEllipsoid, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DLattice(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_InterferenceFunction2DLattice", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_InterferenceFunction2DLattice__SWIG_0(self, argc, argv);
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_InterferenceFunction2DLattice__SWIG_2(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_InterferenceFunction2DLattice__SWIG_1(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_InterferenceFunction2DLattice'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    InterferenceFunction2DLattice::InterferenceFunction2DLattice(Lattice2D const &)\n"
-    "    InterferenceFunction2DLattice::InterferenceFunction2DLattice(double,double,double,double)\n"
-    "    InterferenceFunction2DLattice::InterferenceFunction2DLattice(double,double,double)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_InterferenceFunction2DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorHemiEllipsoid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
+  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunction2DLattice" "', argument " "1"" of type '" "InterferenceFunction2DLattice *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorHemiEllipsoid" "', argument " "1"" of type '" "FormFactorHemiEllipsoid *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
+  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -94362,32 +93635,32 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
+  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  InterferenceFunction2DLattice *result = 0 ;
+  FormFactorHemiEllipsoid *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_clone" "', argument " "1"" of type '" "InterferenceFunction2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_clone" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
-  result = (InterferenceFunction2DLattice *)((InterferenceFunction2DLattice const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
+  result = (FormFactorHemiEllipsoid *)((FormFactorHemiEllipsoid const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
+  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -94395,18 +93668,18 @@ SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_accept(PyObject *SWIGUN
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DLattice_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorHemiEllipsoid_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_accept" "', argument " "1"" of type '" "InterferenceFunction2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_accept" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
+  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorHemiEllipsoid_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((InterferenceFunction2DLattice const *)arg1)->accept(arg2);
+  ((FormFactorHemiEllipsoid const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -94414,101 +93687,148 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createSquare__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  InterferenceFunction2DLattice *result = 0 ;
+  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DLattice_createSquare" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DLattice_createSquare" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (InterferenceFunction2DLattice *)InterferenceFunction2DLattice::createSquare(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_POINTER_OWN |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_getHeight" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
+  result = (double)((FormFactorHemiEllipsoid const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createSquare__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_getRadiusX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  InterferenceFunction2DLattice *result = 0 ;
+  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DLattice_createSquare" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (InterferenceFunction2DLattice *)InterferenceFunction2DLattice::createSquare(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_getRadiusX" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
+  result = (double)((FormFactorHemiEllipsoid const *)arg1)->getRadiusX();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createSquare(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_getRadiusY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "InterferenceFunction2DLattice_createSquare", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_InterferenceFunction2DLattice_createSquare__SWIG_1(self, argc, argv);
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_getRadiusY" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_InterferenceFunction2DLattice_createSquare__SWIG_0(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
+  result = (double)((FormFactorHemiEllipsoid const *)arg1)->getRadiusY();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_radialExtension" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
   }
+  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
+  result = (double)((FormFactorHemiEllipsoid const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorHemiEllipsoid_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorHemiEllipsoid *arg1 = (FormFactorHemiEllipsoid *) 0 ;
+  cvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorHemiEllipsoid_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHemiEllipsoid, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHemiEllipsoid_evaluate_for_q" "', argument " "1"" of type '" "FormFactorHemiEllipsoid const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorHemiEllipsoid * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorHemiEllipsoid_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorHemiEllipsoid_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((FormFactorHemiEllipsoid const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'InterferenceFunction2DLattice_createSquare'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    InterferenceFunction2DLattice::createSquare(double,double)\n"
-    "    InterferenceFunction2DLattice::createSquare(double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createHexagonal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *FormFactorHemiEllipsoid_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorHemiEllipsoid, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorHemiEllipsoid_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorHollowSphere(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -94516,146 +93836,156 @@ SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createHexagonal__SWIG_0
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  InterferenceFunction2DLattice *result = 0 ;
+  PyObject *swig_obj[2] ;
+  FormFactorHollowSphere *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorHollowSphere", 2, 2, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DLattice_createHexagonal" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorHollowSphere" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DLattice_createHexagonal" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorHollowSphere" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (InterferenceFunction2DLattice *)InterferenceFunction2DLattice::createHexagonal(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_POINTER_OWN |  0 );
+  result = (FormFactorHollowSphere *)new FormFactorHollowSphere(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorHollowSphere, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createHexagonal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorHollowSphere_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  InterferenceFunction2DLattice *result = 0 ;
+  FormFactorHollowSphere *arg1 = (FormFactorHollowSphere *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorHollowSphere *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DLattice_createHexagonal" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (InterferenceFunction2DLattice *)InterferenceFunction2DLattice::createHexagonal(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHollowSphere, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHollowSphere_clone" "', argument " "1"" of type '" "FormFactorHollowSphere const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorHollowSphere * >(argp1);
+  result = (FormFactorHollowSphere *)((FormFactorHollowSphere const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorHollowSphere, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_createHexagonal(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_FormFactorHollowSphere_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorHollowSphere *arg1 = (FormFactorHollowSphere *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "InterferenceFunction2DLattice_createHexagonal", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_InterferenceFunction2DLattice_createHexagonal__SWIG_1(self, argc, argv);
-    }
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorHollowSphere_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHollowSphere, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHollowSphere_accept" "', argument " "1"" of type '" "FormFactorHollowSphere const *""'"); 
   }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_InterferenceFunction2DLattice_createHexagonal__SWIG_0(self, argc, argv);
-      }
-    }
+  arg1 = reinterpret_cast< FormFactorHollowSphere * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorHollowSphere_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorHollowSphere const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorHollowSphere_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorHollowSphere *arg1 = (FormFactorHollowSphere *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHollowSphere, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHollowSphere_radialExtension" "', argument " "1"" of type '" "FormFactorHollowSphere const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorHollowSphere * >(argp1);
+  result = (double)((FormFactorHollowSphere const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'InterferenceFunction2DLattice_createHexagonal'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    InterferenceFunction2DLattice::createHexagonal(double,double)\n"
-    "    InterferenceFunction2DLattice::createHexagonal(double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_setDecayFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorHollowSphere_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
-  IFTDecayFunction2D *arg2 = 0 ;
+  FormFactorHollowSphere *arg1 = (FormFactorHollowSphere *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DLattice_setDecayFunction", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorHollowSphere_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHollowSphere, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_setDecayFunction" "', argument " "1"" of type '" "InterferenceFunction2DLattice *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFTDecayFunction2D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DLattice_setDecayFunction" "', argument " "2"" of type '" "IFTDecayFunction2D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorHollowSphere_evaluate_for_q" "', argument " "1"" of type '" "FormFactorHollowSphere const *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction2DLattice_setDecayFunction" "', argument " "2"" of type '" "IFTDecayFunction2D const &""'"); 
+  arg1 = reinterpret_cast< FormFactorHollowSphere * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorHollowSphere_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorHollowSphere_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< IFTDecayFunction2D * >(argp2);
-  (arg1)->setDecayFunction((IFTDecayFunction2D const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  result = ((FormFactorHollowSphere const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_setIntegrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorHollowSphere(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
-  bool arg2 ;
+  FormFactorHollowSphere *arg1 = (FormFactorHollowSphere *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  bool val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DLattice_setIntegrationOverXi", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorHollowSphere, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_setIntegrationOverXi" "', argument " "1"" of type '" "InterferenceFunction2DLattice *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorHollowSphere" "', argument " "1"" of type '" "FormFactorHollowSphere *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DLattice_setIntegrationOverXi" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  (arg1)->setIntegrationOverXi(arg2);
+  arg1 = reinterpret_cast< FormFactorHollowSphere * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -94663,113 +93993,130 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_integrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorHollowSphere_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorHollowSphere, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorHollowSphere_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorIcosahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  FormFactorIcosahedron *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_integrationOverXi" "', argument " "1"" of type '" "InterferenceFunction2DLattice const *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
-  result = (bool)((InterferenceFunction2DLattice const *)arg1)->integrationOverXi();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorIcosahedron" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (FormFactorIcosahedron *)new FormFactorIcosahedron(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorIcosahedron, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorIcosahedron_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
+  FormFactorIcosahedron *arg1 = (FormFactorIcosahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Lattice2D *result = 0 ;
+  FormFactorIcosahedron *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorIcosahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_lattice" "', argument " "1"" of type '" "InterferenceFunction2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorIcosahedron_clone" "', argument " "1"" of type '" "FormFactorIcosahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
-  result = (Lattice2D *) &((InterferenceFunction2DLattice const *)arg1)->lattice();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice2D, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorIcosahedron * >(argp1);
+  result = (FormFactorIcosahedron *)((FormFactorIcosahedron const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorIcosahedron, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_getParticleDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorIcosahedron_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
+  FormFactorIcosahedron *arg1 = (FormFactorIcosahedron *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorIcosahedron_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorIcosahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_getParticleDensity" "', argument " "1"" of type '" "InterferenceFunction2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorIcosahedron_accept" "', argument " "1"" of type '" "FormFactorIcosahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
-  result = (double)((InterferenceFunction2DLattice const *)arg1)->getParticleDensity();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FormFactorIcosahedron * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorIcosahedron_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorIcosahedron const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorIcosahedron_getEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
+  FormFactorIcosahedron *arg1 = (FormFactorIcosahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorIcosahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_getChildren" "', argument " "1"" of type '" "InterferenceFunction2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorIcosahedron_getEdge" "', argument " "1"" of type '" "FormFactorIcosahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
-  result = ((InterferenceFunction2DLattice const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< FormFactorIcosahedron * >(argp1);
+  result = (double)((FormFactorIcosahedron const *)arg1)->getEdge();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DLattice_onChange(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorIcosahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DLattice *arg1 = (InterferenceFunction2DLattice *) 0 ;
+  FormFactorIcosahedron *arg1 = (FormFactorIcosahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorIcosahedron, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DLattice_onChange" "', argument " "1"" of type '" "InterferenceFunction2DLattice *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorIcosahedron" "', argument " "1"" of type '" "FormFactorIcosahedron *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DLattice * >(argp1);
-  (arg1)->onChange();
+  arg1 = reinterpret_cast< FormFactorIcosahedron * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -94777,485 +94124,251 @@ fail:
 }
 
 
-SWIGINTERN PyObject *InterferenceFunction2DLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorIcosahedron_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunction2DLattice, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorIcosahedron, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *InterferenceFunction2DLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorIcosahedron_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FormFactorLongBoxGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = 0 ;
+  double arg1 ;
   double arg2 ;
   double arg3 ;
-  double arg4 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  PyObject *swig_obj[3] ;
+  FormFactorLongBoxGauss *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorLongBoxGauss", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorLongBoxGauss" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorLongBoxGauss" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorLongBoxGauss" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal((Lattice2D const &)*arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
+  result = (FormFactorLongBoxGauss *)new FormFactorLongBoxGauss(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLongBoxGauss, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = 0 ;
-  double arg2 ;
-  double arg3 ;
+  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorLongBoxGauss *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_clone" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal((Lattice2D const &)*arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
+  result = (FormFactorLongBoxGauss *)((FormFactorLongBoxGauss const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = 0 ;
-  double arg2 ;
+  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorLongBoxGauss_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_accept" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
   }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
+  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorLongBoxGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal((Lattice2D const &)*arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorLongBoxGauss const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = 0 ;
+  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "Lattice2D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_getLength" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal((Lattice2D const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
+  result = (double)((FormFactorLongBoxGauss const *)arg1)->getLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double arg5 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal(arg1,arg2,arg3,arg4,arg5);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_getHeight" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
+  result = (double)((FormFactorLongBoxGauss const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_5(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_getWidth" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
+  result = (double)((FormFactorLongBoxGauss const *)arg1)->getWidth();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal__SWIG_6(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DParaCrystal" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (InterferenceFunction2DParaCrystal *)new InterferenceFunction2DParaCrystal(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_radialExtension" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
+  result = (double)((FormFactorLongBoxGauss const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DParaCrystal(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[6] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxGauss_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
+  cvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_InterferenceFunction2DParaCrystal", 0, 5, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_3(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_2(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_6(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_0(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_5(self, argc, argv);
-          }
-        }
-      }
-    }
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorLongBoxGauss_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxGauss_evaluate_for_q" "', argument " "1"" of type '" "FormFactorLongBoxGauss const *""'"); 
   }
-  if (argc == 5) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              return _wrap_new_InterferenceFunction2DParaCrystal__SWIG_4(self, argc, argv);
-            }
-          }
-        }
-      }
+  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorLongBoxGauss_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorLongBoxGauss_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  
+  result = ((FormFactorLongBoxGauss const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_InterferenceFunction2DParaCrystal'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(Lattice2D const &,double,double,double)\n"
-    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(Lattice2D const &,double,double)\n"
-    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(Lattice2D const &,double)\n"
-    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(Lattice2D const &)\n"
-    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(double,double,double,double,double)\n"
-    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(double,double,double,double)\n"
-    "    InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(double,double,double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_InterferenceFunction2DParaCrystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorLongBoxGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  FormFactorLongBoxGauss *arg1 = (FormFactorLongBoxGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxGauss, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunction2DParaCrystal" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorLongBoxGauss" "', argument " "1"" of type '" "FormFactorLongBoxGauss *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  arg1 = reinterpret_cast< FormFactorLongBoxGauss * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -95264,32 +94377,81 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorLongBoxGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorLongBoxGauss, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorLongBoxGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorLongBoxLorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  FormFactorLongBoxLorentz *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorLongBoxLorentz", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorLongBoxLorentz" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorLongBoxLorentz" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorLongBoxLorentz" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FormFactorLongBoxLorentz *)new FormFactorLongBoxLorentz(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLongBoxLorentz, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  FormFactorLongBoxLorentz *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_clone" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_clone" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
-  result = (InterferenceFunction2DParaCrystal *)((InterferenceFunction2DParaCrystal const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
+  result = (FormFactorLongBoxLorentz *)((FormFactorLongBoxLorentz const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -95297,18 +94459,18 @@ SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_accept(PyObject *SW
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorLongBoxLorentz_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_accept" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_accept" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DParaCrystal_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorLongBoxLorentz_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((InterferenceFunction2DParaCrystal const *)arg1)->accept(arg2);
+  ((FormFactorLongBoxLorentz const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -95316,317 +94478,308 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createSquare(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_OWN |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_getLength" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
+  result = (double)((FormFactorLongBoxLorentz const *)arg1)->getLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createSquare(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_getHeight" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
+  result = (double)((FormFactorLongBoxLorentz const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createSquare(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_getWidth" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
+  result = (double)((FormFactorLongBoxLorentz const *)arg1)->getWidth();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createSquare" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createSquare(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_radialExtension" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
+  result = (double)((FormFactorLongBoxLorentz const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createSquare(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_FormFactorLongBoxLorentz_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
+  cvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_createSquare", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_3(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_2(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_1(self, argc, argv);
-        }
-      }
-    }
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorLongBoxLorentz_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLongBoxLorentz_evaluate_for_q" "', argument " "1"" of type '" "FormFactorLongBoxLorentz const *""'"); 
   }
-  if (argc == 4) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_InterferenceFunction2DParaCrystal_createSquare__SWIG_0(self, argc, argv);
-          }
-        }
-      }
+  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorLongBoxLorentz_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorLongBoxLorentz_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  
+  result = ((FormFactorLongBoxLorentz const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'InterferenceFunction2DParaCrystal_createSquare'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    InterferenceFunction2DParaCrystal::createSquare(double,double,double,double)\n"
-    "    InterferenceFunction2DParaCrystal::createSquare(double,double,double)\n"
-    "    InterferenceFunction2DParaCrystal::createSquare(double,double)\n"
-    "    InterferenceFunction2DParaCrystal::createSquare(double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorLongBoxLorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  FormFactorLongBoxLorentz *arg1 = (FormFactorLongBoxLorentz *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createHexagonal(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_POINTER_OWN |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLongBoxLorentz, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorLongBoxLorentz" "', argument " "1"" of type '" "FormFactorLongBoxLorentz *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorLongBoxLorentz * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *FormFactorLongBoxLorentz_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorLongBoxLorentz, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorLongBoxLorentz_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorPrism3(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
-  double arg3 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  PyObject *swig_obj[2] ;
+  FormFactorPrism3 *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorPrism3", 2, 2, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorPrism3" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorPrism3" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createHexagonal(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  result = (FormFactorPrism3 *)new FormFactorPrism3(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorPrism3, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorPrism3_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorPrism3 *arg1 = (FormFactorPrism3 *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorPrism3 *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism3, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPrism3_clone" "', argument " "1"" of type '" "FormFactorPrism3 const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorPrism3 * >(argp1);
+  result = (FormFactorPrism3 *)((FormFactorPrism3 const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorPrism3, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorPrism3_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorPrism3 *arg1 = (FormFactorPrism3 *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorPrism3_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism3, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPrism3_accept" "', argument " "1"" of type '" "FormFactorPrism3 const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorPrism3 * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPrism3_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorPrism3 const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorPrism3_getBaseEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorPrism3 *arg1 = (FormFactorPrism3 *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism3, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPrism3_getBaseEdge" "', argument " "1"" of type '" "FormFactorPrism3 const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorPrism3 * >(argp1);
+  result = (double)((FormFactorPrism3 const *)arg1)->getBaseEdge();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_FormFactorPrism3(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorPrism3 *arg1 = (FormFactorPrism3 *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism3, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorPrism3" "', argument " "1"" of type '" "FormFactorPrism3 *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorPrism3 * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *FormFactorPrism3_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorPrism3, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorPrism3_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorPrism6(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -95634,217 +94787,118 @@ SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createHexagonal__SW
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  PyObject *swig_obj[2] ;
+  FormFactorPrism6 *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorPrism6", 2, 2, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorPrism6" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorPrism6" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createHexagonal(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  result = (FormFactorPrism6 *)new FormFactorPrism6(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorPrism6, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorPrism6_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  InterferenceFunction2DParaCrystal *result = 0 ;
+  FormFactorPrism6 *arg1 = (FormFactorPrism6 *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorPrism6 *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DParaCrystal_createHexagonal" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (InterferenceFunction2DParaCrystal *)InterferenceFunction2DParaCrystal::createHexagonal(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism6, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPrism6_clone" "', argument " "1"" of type '" "FormFactorPrism6 const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorPrism6 * >(argp1);
+  result = (FormFactorPrism6 *)((FormFactorPrism6 const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorPrism6, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_createHexagonal(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_FormFactorPrism6_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorPrism6 *arg1 = (FormFactorPrism6 *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_createHexagonal", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_3(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_2(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_1(self, argc, argv);
-        }
-      }
-    }
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorPrism6_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism6, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPrism6_accept" "', argument " "1"" of type '" "FormFactorPrism6 const *""'"); 
   }
-  if (argc == 4) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_InterferenceFunction2DParaCrystal_createHexagonal__SWIG_0(self, argc, argv);
-          }
-        }
-      }
-    }
+  arg1 = reinterpret_cast< FormFactorPrism6 * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPrism6_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorPrism6 const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'InterferenceFunction2DParaCrystal_createHexagonal'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    InterferenceFunction2DParaCrystal::createHexagonal(double,double,double,double)\n"
-    "    InterferenceFunction2DParaCrystal::createHexagonal(double,double,double)\n"
-    "    InterferenceFunction2DParaCrystal::createHexagonal(double,double)\n"
-    "    InterferenceFunction2DParaCrystal::createHexagonal(double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_setDomainSizes(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPrism6_getBaseEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  FormFactorPrism6 *arg1 = (FormFactorPrism6 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_setDomainSizes", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism6, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_setDomainSizes" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPrism6_getBaseEdge" "', argument " "1"" of type '" "FormFactorPrism6 const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_setDomainSizes" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DParaCrystal_setDomainSizes" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  (arg1)->setDomainSizes(arg2,arg3);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorPrism6 * >(argp1);
+  result = (double)((FormFactorPrism6 const *)arg1)->getBaseEdge();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_setProbabilityDistributions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorPrism6(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
-  IFTDistribution2D *arg2 = 0 ;
-  IFTDistribution2D *arg3 = 0 ;
+  FormFactorPrism6 *arg1 = (FormFactorPrism6 *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_setProbabilityDistributions", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPrism6, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_setProbabilityDistributions" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFTDistribution2D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DParaCrystal_setProbabilityDistributions" "', argument " "2"" of type '" "IFTDistribution2D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction2DParaCrystal_setProbabilityDistributions" "', argument " "2"" of type '" "IFTDistribution2D const &""'"); 
-  }
-  arg2 = reinterpret_cast< IFTDistribution2D * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IFTDistribution2D,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "InterferenceFunction2DParaCrystal_setProbabilityDistributions" "', argument " "3"" of type '" "IFTDistribution2D const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction2DParaCrystal_setProbabilityDistributions" "', argument " "3"" of type '" "IFTDistribution2D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorPrism6" "', argument " "1"" of type '" "FormFactorPrism6 *""'"); 
   }
-  arg3 = reinterpret_cast< IFTDistribution2D * >(argp3);
-  (arg1)->setProbabilityDistributions((IFTDistribution2D const &)*arg2,(IFTDistribution2D const &)*arg3);
+  arg1 = reinterpret_cast< FormFactorPrism6 * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -95852,80 +94906,100 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_setDampingLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorPrism6_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorPrism6, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorPrism6_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorPyramid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  double arg1 ;
   double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  FormFactorPyramid *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_setDampingLength", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_setDampingLength" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorPyramid", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorPyramid" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_setDampingLength" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorPyramid" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  (arg1)->setDampingLength(arg2);
-  resultobj = SWIG_Py_Void();
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorPyramid" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FormFactorPyramid *)new FormFactorPyramid(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorPyramid, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_domainSizes(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPyramid_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  FormFactorPyramid *arg1 = (FormFactorPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< double,std::allocator< double > > result;
+  FormFactorPyramid *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_domainSizes" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPyramid_clone" "', argument " "1"" of type '" "FormFactorPyramid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
-  result = ((InterferenceFunction2DParaCrystal const *)arg1)->domainSizes();
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< FormFactorPyramid * >(argp1);
+  result = (FormFactorPyramid *)((FormFactorPyramid const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_setIntegrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPyramid_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
-  bool arg2 ;
+  FormFactorPyramid *arg1 = (FormFactorPyramid *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  bool val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DParaCrystal_setIntegrationOverXi", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorPyramid_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_setIntegrationOverXi" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPyramid_accept" "', argument " "1"" of type '" "FormFactorPyramid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DParaCrystal_setIntegrationOverXi" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  (arg1)->setIntegrationOverXi(arg2);
+  arg1 = reinterpret_cast< FormFactorPyramid * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorPyramid_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorPyramid const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -95933,32 +95007,32 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_integrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPyramid_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  FormFactorPyramid *arg1 = (FormFactorPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_integrationOverXi" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPyramid_getHeight" "', argument " "1"" of type '" "FormFactorPyramid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
-  result = (bool)((InterferenceFunction2DParaCrystal const *)arg1)->integrationOverXi();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FormFactorPyramid * >(argp1);
+  result = (double)((FormFactorPyramid const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_dampingLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPyramid_getBaseEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  FormFactorPyramid *arg1 = (FormFactorPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -95966,12 +95040,12 @@ SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_dampingLength(PyObj
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_dampingLength" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPyramid_getBaseEdge" "', argument " "1"" of type '" "FormFactorPyramid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
-  result = (double)((InterferenceFunction2DParaCrystal const *)arg1)->dampingLength();
+  arg1 = reinterpret_cast< FormFactorPyramid * >(argp1);
+  result = (double)((FormFactorPyramid const *)arg1)->getBaseEdge();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -95979,325 +95053,289 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorPyramid_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  FormFactorPyramid *arg1 = (FormFactorPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Lattice2D *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPyramid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_lattice" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorPyramid_getAlpha" "', argument " "1"" of type '" "FormFactorPyramid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
-  result = (Lattice2D *) &((InterferenceFunction2DParaCrystal const *)arg1)->lattice();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice2D, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorPyramid * >(argp1);
+  result = (double)((FormFactorPyramid const *)arg1)->getAlpha();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_getParticleDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorPyramid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  FormFactorPyramid *arg1 = (FormFactorPyramid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorPyramid, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_getParticleDensity" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorPyramid" "', argument " "1"" of type '" "FormFactorPyramid *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
-  result = (double)((InterferenceFunction2DParaCrystal const *)arg1)->getParticleDensity();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FormFactorPyramid * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorPyramid_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorPyramid, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorPyramid_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorRipple1Box(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  FormFactorRipple1Box *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorRipple1Box", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorRipple1Box" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorRipple1Box" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorRipple1Box" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FormFactorRipple1Box *)new FormFactorRipple1Box(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple1Box, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorRipple1Box_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorRipple1Box *arg1 = (FormFactorRipple1Box *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  FormFactorRipple1Box *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Box, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_getChildren" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple1Box_clone" "', argument " "1"" of type '" "FormFactorRipple1Box const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
-  result = ((InterferenceFunction2DParaCrystal const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< FormFactorRipple1Box * >(argp1);
+  result = (FormFactorRipple1Box *)((FormFactorRipple1Box const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple1Box, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_pdf1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorRipple1Box_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  FormFactorRipple1Box *arg1 = (FormFactorRipple1Box *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IFTDistribution2D *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorRipple1Box_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Box, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_pdf1" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple1Box_accept" "', argument " "1"" of type '" "FormFactorRipple1Box const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
-  result = (IFTDistribution2D *)((InterferenceFunction2DParaCrystal const *)arg1)->pdf1();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorRipple1Box * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorRipple1Box_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorRipple1Box const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DParaCrystal_pdf2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorRipple1Box(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DParaCrystal *arg1 = (InterferenceFunction2DParaCrystal *) 0 ;
+  FormFactorRipple1Box *arg1 = (FormFactorRipple1Box *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IFTDistribution2D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Box, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DParaCrystal_pdf2" "', argument " "1"" of type '" "InterferenceFunction2DParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorRipple1Box" "', argument " "1"" of type '" "FormFactorRipple1Box *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DParaCrystal * >(argp1);
-  result = (IFTDistribution2D *)((InterferenceFunction2DParaCrystal const *)arg1)->pdf2();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFTDistribution2D, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorRipple1Box * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *InterferenceFunction2DParaCrystal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorRipple1Box_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunction2DParaCrystal, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorRipple1Box, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *InterferenceFunction2DParaCrystal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorRipple1Box_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DSuperLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Lattice2D *arg1 = 0 ;
-  unsigned int arg2 ;
-  unsigned int arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  unsigned int val2 ;
-  int ecode2 = 0 ;
-  unsigned int val3 ;
-  int ecode3 = 0 ;
-  InterferenceFunction2DSuperLattice *result = 0 ;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "1"" of type '" "Lattice2D const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "1"" of type '" "Lattice2D const &""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "2"" of type '" "unsigned int""'");
-  } 
-  arg2 = static_cast< unsigned int >(val2);
-  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "3"" of type '" "unsigned int""'");
-  } 
-  arg3 = static_cast< unsigned int >(val3);
-  result = (InterferenceFunction2DSuperLattice *)new InterferenceFunction2DSuperLattice((Lattice2D const &)*arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DSuperLattice, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DSuperLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FormFactorRipple1Gauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
   double arg3 ;
-  double arg4 ;
-  unsigned int arg5 ;
-  unsigned int arg6 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  unsigned int val5 ;
-  int ecode5 = 0 ;
-  unsigned int val6 ;
-  int ecode6 = 0 ;
-  InterferenceFunction2DSuperLattice *result = 0 ;
+  PyObject *swig_obj[3] ;
+  FormFactorRipple1Gauss *result = 0 ;
   
-  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorRipple1Gauss", 3, 3, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorRipple1Gauss" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorRipple1Gauss" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorRipple1Gauss" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_unsigned_SS_int(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "5"" of type '" "unsigned int""'");
-  } 
-  arg5 = static_cast< unsigned int >(val5);
-  ecode6 = SWIG_AsVal_unsigned_SS_int(swig_obj[5], &val6);
-  if (!SWIG_IsOK(ecode6)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "new_InterferenceFunction2DSuperLattice" "', argument " "6"" of type '" "unsigned int""'");
-  } 
-  arg6 = static_cast< unsigned int >(val6);
-  result = (InterferenceFunction2DSuperLattice *)new InterferenceFunction2DSuperLattice(arg1,arg2,arg3,arg4,arg5,arg6);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DSuperLattice, SWIG_POINTER_NEW |  0 );
+  result = (FormFactorRipple1Gauss *)new FormFactorRipple1Gauss(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple1Gauss, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction2DSuperLattice(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[7] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_FormFactorRipple1Gauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorRipple1Gauss *arg1 = (FormFactorRipple1Gauss *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorRipple1Gauss *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_InterferenceFunction2DSuperLattice", 0, 6, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_unsigned_SS_int(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_unsigned_SS_int(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_InterferenceFunction2DSuperLattice__SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 6) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            {
-              int res = SWIG_AsVal_unsigned_SS_int(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              {
-                int res = SWIG_AsVal_unsigned_SS_int(argv[5], NULL);
-                _v = SWIG_CheckState(res);
-              }
-              if (_v) {
-                return _wrap_new_InterferenceFunction2DSuperLattice__SWIG_1(self, argc, argv);
-              }
-            }
-          }
-        }
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Gauss, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple1Gauss_clone" "', argument " "1"" of type '" "FormFactorRipple1Gauss const *""'"); 
   }
+  arg1 = reinterpret_cast< FormFactorRipple1Gauss * >(argp1);
+  result = (FormFactorRipple1Gauss *)((FormFactorRipple1Gauss const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple1Gauss, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorRipple1Gauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorRipple1Gauss *arg1 = (FormFactorRipple1Gauss *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorRipple1Gauss_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Gauss, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple1Gauss_accept" "', argument " "1"" of type '" "FormFactorRipple1Gauss const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorRipple1Gauss * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorRipple1Gauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorRipple1Gauss const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_InterferenceFunction2DSuperLattice'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    InterferenceFunction2DSuperLattice::InterferenceFunction2DSuperLattice(Lattice2D const &,unsigned int,unsigned int)\n"
-    "    InterferenceFunction2DSuperLattice::InterferenceFunction2DSuperLattice(double,double,double,double,unsigned int,unsigned int)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_InterferenceFunction2DSuperLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorRipple1Gauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  FormFactorRipple1Gauss *arg1 = (FormFactorRipple1Gauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Gauss, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunction2DSuperLattice" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorRipple1Gauss" "', argument " "1"" of type '" "FormFactorRipple1Gauss *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  arg1 = reinterpret_cast< FormFactorRipple1Gauss * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -96306,32 +95344,81 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorRipple1Gauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorRipple1Gauss, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorRipple1Gauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorRipple1Lorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  FormFactorRipple1Lorentz *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorRipple1Lorentz", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorRipple1Lorentz" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorRipple1Lorentz" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorRipple1Lorentz" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FormFactorRipple1Lorentz *)new FormFactorRipple1Lorentz(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple1Lorentz, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorRipple1Lorentz_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorRipple1Lorentz *arg1 = (FormFactorRipple1Lorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  InterferenceFunction2DSuperLattice *result = 0 ;
+  FormFactorRipple1Lorentz *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Lorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_clone" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple1Lorentz_clone" "', argument " "1"" of type '" "FormFactorRipple1Lorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
-  result = (InterferenceFunction2DSuperLattice *)((InterferenceFunction2DSuperLattice const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorRipple1Lorentz * >(argp1);
+  result = (FormFactorRipple1Lorentz *)((FormFactorRipple1Lorentz const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple1Lorentz, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorRipple1Lorentz_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  FormFactorRipple1Lorentz *arg1 = (FormFactorRipple1Lorentz *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -96339,18 +95426,40 @@ SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_accept(PyObject *S
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DSuperLattice_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorRipple1Lorentz_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Lorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_accept" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple1Lorentz_accept" "', argument " "1"" of type '" "FormFactorRipple1Lorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
+  arg1 = reinterpret_cast< FormFactorRipple1Lorentz * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DSuperLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorRipple1Lorentz_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((InterferenceFunction2DSuperLattice const *)arg1)->accept(arg2);
+  ((FormFactorRipple1Lorentz const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_FormFactorRipple1Lorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorRipple1Lorentz *arg1 = (FormFactorRipple1Lorentz *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple1Lorentz, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorRipple1Lorentz" "', argument " "1"" of type '" "FormFactorRipple1Lorentz *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorRipple1Lorentz * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -96358,31 +95467,108 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_setSubstructureIFF(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorRipple1Lorentz_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorRipple1Lorentz, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorRipple1Lorentz_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorRipple2Box(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  FormFactorRipple2Box *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorRipple2Box", 4, 4, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorRipple2Box" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorRipple2Box" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorRipple2Box" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorRipple2Box" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (FormFactorRipple2Box *)new FormFactorRipple2Box(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple2Box, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorRipple2Box_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorRipple2Box *arg1 = (FormFactorRipple2Box *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorRipple2Box *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Box, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple2Box_clone" "', argument " "1"" of type '" "FormFactorRipple2Box const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorRipple2Box * >(argp1);
+  result = (FormFactorRipple2Box *)((FormFactorRipple2Box const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple2Box, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorRipple2Box_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
-  IInterferenceFunction *arg2 = 0 ;
+  FormFactorRipple2Box *arg1 = (FormFactorRipple2Box *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DSuperLattice_setSubstructureIFF", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorRipple2Box_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Box, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_setSubstructureIFF" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple2Box_accept" "', argument " "1"" of type '" "FormFactorRipple2Box const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IInterferenceFunction,  0  | 0);
+  arg1 = reinterpret_cast< FormFactorRipple2Box * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DSuperLattice_setSubstructureIFF" "', argument " "2"" of type '" "IInterferenceFunction const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction2DSuperLattice_setSubstructureIFF" "', argument " "2"" of type '" "IInterferenceFunction const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorRipple2Box_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< IInterferenceFunction * >(argp2);
-  (arg1)->setSubstructureIFF((IInterferenceFunction const &)*arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorRipple2Box const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -96390,631 +95576,636 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_substructureIFF(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorRipple2Box(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  FormFactorRipple2Box *arg1 = (FormFactorRipple2Box *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  IInterferenceFunction *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Box, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_substructureIFF" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
-  result = (IInterferenceFunction *) &((InterferenceFunction2DSuperLattice const *)arg1)->substructureIFF();
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorRipple2Box" "', argument " "1"" of type '" "FormFactorRipple2Box *""'"); 
   }
+  arg1 = reinterpret_cast< FormFactorRipple2Box * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_createSquare(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorRipple2Box_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorRipple2Box, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorRipple2Box_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorRipple2Gauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
-  unsigned int arg3 ;
-  unsigned int arg4 ;
+  double arg3 ;
+  double arg4 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  unsigned int val3 ;
+  double val3 ;
   int ecode3 = 0 ;
-  unsigned int val4 ;
+  double val4 ;
   int ecode4 = 0 ;
   PyObject *swig_obj[4] ;
-  InterferenceFunction2DSuperLattice *result = 0 ;
+  FormFactorRipple2Gauss *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DSuperLattice_createSquare", 4, 4, swig_obj)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorRipple2Gauss", 4, 4, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DSuperLattice_createSquare" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorRipple2Gauss" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DSuperLattice_createSquare" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorRipple2Gauss" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DSuperLattice_createSquare" "', argument " "3"" of type '" "unsigned int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorRipple2Gauss" "', argument " "3"" of type '" "double""'");
   } 
-  arg3 = static_cast< unsigned int >(val3);
-  ecode4 = SWIG_AsVal_unsigned_SS_int(swig_obj[3], &val4);
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "InterferenceFunction2DSuperLattice_createSquare" "', argument " "4"" of type '" "unsigned int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorRipple2Gauss" "', argument " "4"" of type '" "double""'");
   } 
-  arg4 = static_cast< unsigned int >(val4);
-  result = (InterferenceFunction2DSuperLattice *)InterferenceFunction2DSuperLattice::createSquare(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DSuperLattice, SWIG_POINTER_OWN |  0 );
+  arg4 = static_cast< double >(val4);
+  result = (FormFactorRipple2Gauss *)new FormFactorRipple2Gauss(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple2Gauss, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_createHexagonal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorRipple2Gauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorRipple2Gauss *arg1 = (FormFactorRipple2Gauss *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  FormFactorRipple2Gauss *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Gauss, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple2Gauss_clone" "', argument " "1"" of type '" "FormFactorRipple2Gauss const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorRipple2Gauss * >(argp1);
+  result = (FormFactorRipple2Gauss *)((FormFactorRipple2Gauss const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple2Gauss, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorRipple2Gauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorRipple2Gauss *arg1 = (FormFactorRipple2Gauss *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorRipple2Gauss_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Gauss, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple2Gauss_accept" "', argument " "1"" of type '" "FormFactorRipple2Gauss const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorRipple2Gauss * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorRipple2Gauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorRipple2Gauss const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_FormFactorRipple2Gauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorRipple2Gauss *arg1 = (FormFactorRipple2Gauss *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Gauss, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorRipple2Gauss" "', argument " "1"" of type '" "FormFactorRipple2Gauss *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorRipple2Gauss * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *FormFactorRipple2Gauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorRipple2Gauss, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorRipple2Gauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorRipple2Lorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
-  unsigned int arg3 ;
-  unsigned int arg4 ;
+  double arg3 ;
+  double arg4 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  unsigned int val3 ;
+  double val3 ;
   int ecode3 = 0 ;
-  unsigned int val4 ;
+  double val4 ;
   int ecode4 = 0 ;
   PyObject *swig_obj[4] ;
-  InterferenceFunction2DSuperLattice *result = 0 ;
+  FormFactorRipple2Lorentz *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DSuperLattice_createHexagonal", 4, 4, swig_obj)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorRipple2Lorentz", 4, 4, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunction2DSuperLattice_createHexagonal" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorRipple2Lorentz" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DSuperLattice_createHexagonal" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorRipple2Lorentz" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DSuperLattice_createHexagonal" "', argument " "3"" of type '" "unsigned int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorRipple2Lorentz" "', argument " "3"" of type '" "double""'");
   } 
-  arg3 = static_cast< unsigned int >(val3);
-  ecode4 = SWIG_AsVal_unsigned_SS_int(swig_obj[3], &val4);
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "InterferenceFunction2DSuperLattice_createHexagonal" "', argument " "4"" of type '" "unsigned int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorRipple2Lorentz" "', argument " "4"" of type '" "double""'");
   } 
-  arg4 = static_cast< unsigned int >(val4);
-  result = (InterferenceFunction2DSuperLattice *)InterferenceFunction2DSuperLattice::createHexagonal(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction2DSuperLattice, SWIG_POINTER_OWN |  0 );
+  arg4 = static_cast< double >(val4);
+  result = (FormFactorRipple2Lorentz *)new FormFactorRipple2Lorentz(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple2Lorentz, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_evaluate__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorRipple2Lorentz_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
-  kvector_t arg2 ;
-  double arg3 ;
+  FormFactorRipple2Lorentz *arg1 = (FormFactorRipple2Lorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double result;
+  PyObject *swig_obj[1] ;
+  FormFactorRipple2Lorentz *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Lorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple2Lorentz_clone" "', argument " "1"" of type '" "FormFactorRipple2Lorentz const *""'"); 
   }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((InterferenceFunction2DSuperLattice const *)arg1)->evaluate(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FormFactorRipple2Lorentz * >(argp1);
+  result = (FormFactorRipple2Lorentz *)((FormFactorRipple2Lorentz const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorRipple2Lorentz, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_evaluate__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FormFactorRipple2Lorentz_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
-  kvector_t arg2 ;
+  FormFactorRipple2Lorentz *arg1 = (FormFactorRipple2Lorentz *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  double result;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorRipple2Lorentz_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Lorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorRipple2Lorentz_accept" "', argument " "1"" of type '" "FormFactorRipple2Lorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction2DSuperLattice_evaluate" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< FormFactorRipple2Lorentz * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorRipple2Lorentz_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  result = (double)((InterferenceFunction2DSuperLattice const *)arg1)->evaluate(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorRipple2Lorentz const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_evaluate(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "InterferenceFunction2DSuperLattice_evaluate", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_InterferenceFunction2DSuperLattice_evaluate__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_InterferenceFunction2DSuperLattice_evaluate__SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'InterferenceFunction2DSuperLattice_evaluate'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    InterferenceFunction2DSuperLattice::evaluate(kvector_t const,double) const\n"
-    "    InterferenceFunction2DSuperLattice::evaluate(kvector_t const) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_domainSize1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorRipple2Lorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  FormFactorRipple2Lorentz *arg1 = (FormFactorRipple2Lorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  unsigned int result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorRipple2Lorentz, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_domainSize1" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorRipple2Lorentz" "', argument " "1"" of type '" "FormFactorRipple2Lorentz *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
-  result = (unsigned int)((InterferenceFunction2DSuperLattice const *)arg1)->domainSize1();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  arg1 = reinterpret_cast< FormFactorRipple2Lorentz * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_domainSize2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  unsigned int result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_domainSize2" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
-  result = (unsigned int)((InterferenceFunction2DSuperLattice const *)arg1)->domainSize2();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *FormFactorRipple2Lorentz_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorRipple2Lorentz, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *FormFactorRipple2Lorentz_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_setIntegrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorTetrahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
-  bool arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  bool val2 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  FormFactorTetrahedron *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction2DSuperLattice_setIntegrationOverXi", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_setIntegrationOverXi" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorTetrahedron", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorTetrahedron" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunction2DSuperLattice_setIntegrationOverXi" "', argument " "2"" of type '" "bool""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorTetrahedron" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< bool >(val2);
-  (arg1)->setIntegrationOverXi(arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorTetrahedron" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FormFactorTetrahedron *)new FormFactorTetrahedron(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTetrahedron, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_integrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTetrahedron_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  FormFactorTetrahedron *arg1 = (FormFactorTetrahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  FormFactorTetrahedron *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_integrationOverXi" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTetrahedron_clone" "', argument " "1"" of type '" "FormFactorTetrahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
-  result = (bool)((InterferenceFunction2DSuperLattice const *)arg1)->integrationOverXi();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FormFactorTetrahedron * >(argp1);
+  result = (FormFactorTetrahedron *)((FormFactorTetrahedron const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTetrahedron_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  FormFactorTetrahedron *arg1 = (FormFactorTetrahedron *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Lattice2D *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorTetrahedron_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_lattice" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTetrahedron_accept" "', argument " "1"" of type '" "FormFactorTetrahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
-  result = (Lattice2D *) &((InterferenceFunction2DSuperLattice const *)arg1)->lattice();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice2D, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorTetrahedron * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorTetrahedron_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorTetrahedron const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction2DSuperLattice_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTetrahedron_getBaseEdge(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction2DSuperLattice *arg1 = (InterferenceFunction2DSuperLattice *) 0 ;
+  FormFactorTetrahedron *arg1 = (FormFactorTetrahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction2DSuperLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction2DSuperLattice_getChildren" "', argument " "1"" of type '" "InterferenceFunction2DSuperLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTetrahedron_getBaseEdge" "', argument " "1"" of type '" "FormFactorTetrahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction2DSuperLattice * >(argp1);
-  result = ((InterferenceFunction2DSuperLattice const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< FormFactorTetrahedron * >(argp1);
+  result = (double)((FormFactorTetrahedron const *)arg1)->getBaseEdge();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *InterferenceFunction2DSuperLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunction2DSuperLattice, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *InterferenceFunction2DSuperLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_InterferenceFunction3DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTetrahedron_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = 0 ;
+  FormFactorTetrahedron *arg1 = (FormFactorTetrahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  InterferenceFunction3DLattice *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice,  0  | 0);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunction3DLattice" "', argument " "1"" of type '" "Lattice const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunction3DLattice" "', argument " "1"" of type '" "Lattice const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTetrahedron_getHeight" "', argument " "1"" of type '" "FormFactorTetrahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  result = (InterferenceFunction3DLattice *)new InterferenceFunction3DLattice((Lattice const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction3DLattice, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< FormFactorTetrahedron * >(argp1);
+  result = (double)((FormFactorTetrahedron const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_InterferenceFunction3DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTetrahedron_getAlpha(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
+  FormFactorTetrahedron *arg1 = (FormFactorTetrahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTetrahedron, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunction3DLattice" "', argument " "1"" of type '" "InterferenceFunction3DLattice *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTetrahedron_getAlpha" "', argument " "1"" of type '" "FormFactorTetrahedron const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorTetrahedron * >(argp1);
+  result = (double)((FormFactorTetrahedron const *)arg1)->getAlpha();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorTetrahedron(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
+  FormFactorTetrahedron *arg1 = (FormFactorTetrahedron *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  InterferenceFunction3DLattice *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTetrahedron, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_clone" "', argument " "1"" of type '" "InterferenceFunction3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorTetrahedron" "', argument " "1"" of type '" "FormFactorTetrahedron *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
-  result = (InterferenceFunction3DLattice *)((InterferenceFunction3DLattice const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorTetrahedron * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorTetrahedron_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorTetrahedron, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorTetrahedron_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedCube(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
+  FormFactorTruncatedCube *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction3DLattice_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_accept" "', argument " "1"" of type '" "InterferenceFunction3DLattice const *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction3DLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
-  }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((InterferenceFunction3DLattice const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorTruncatedCube", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorTruncatedCube" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorTruncatedCube" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (FormFactorTruncatedCube *)new FormFactorTruncatedCube(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedCube, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_setPeakShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedCube_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
-  IPeakShape *arg2 = 0 ;
+  FormFactorTruncatedCube *arg1 = (FormFactorTruncatedCube *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  FormFactorTruncatedCube *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunction3DLattice_setPeakShape", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedCube, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_setPeakShape" "', argument " "1"" of type '" "InterferenceFunction3DLattice *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IPeakShape,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunction3DLattice_setPeakShape" "', argument " "2"" of type '" "IPeakShape const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunction3DLattice_setPeakShape" "', argument " "2"" of type '" "IPeakShape const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedCube_clone" "', argument " "1"" of type '" "FormFactorTruncatedCube const *""'"); 
   }
-  arg2 = reinterpret_cast< IPeakShape * >(argp2);
-  (arg1)->setPeakShape((IPeakShape const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorTruncatedCube * >(argp1);
+  result = (FormFactorTruncatedCube *)((FormFactorTruncatedCube const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedCube, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedCube_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
+  FormFactorTruncatedCube *arg1 = (FormFactorTruncatedCube *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Lattice *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorTruncatedCube_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedCube, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_lattice" "', argument " "1"" of type '" "InterferenceFunction3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedCube_accept" "', argument " "1"" of type '" "FormFactorTruncatedCube const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
-  result = (Lattice *) &((InterferenceFunction3DLattice const *)arg1)->lattice();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorTruncatedCube * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorTruncatedCube_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorTruncatedCube const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_supportsMultilayer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedCube_getLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
+  FormFactorTruncatedCube *arg1 = (FormFactorTruncatedCube *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedCube, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_supportsMultilayer" "', argument " "1"" of type '" "InterferenceFunction3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedCube_getLength" "', argument " "1"" of type '" "FormFactorTruncatedCube const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
-  result = (bool)((InterferenceFunction3DLattice const *)arg1)->supportsMultilayer();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FormFactorTruncatedCube * >(argp1);
+  result = (double)((FormFactorTruncatedCube const *)arg1)->getLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedCube_getRemovedLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
+  FormFactorTruncatedCube *arg1 = (FormFactorTruncatedCube *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedCube, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_getChildren" "', argument " "1"" of type '" "InterferenceFunction3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedCube_getRemovedLength" "', argument " "1"" of type '" "FormFactorTruncatedCube const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
-  result = ((InterferenceFunction3DLattice const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< FormFactorTruncatedCube * >(argp1);
+  result = (double)((FormFactorTruncatedCube const *)arg1)->getRemovedLength();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunction3DLattice_onChange(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorTruncatedCube(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunction3DLattice *arg1 = (InterferenceFunction3DLattice *) 0 ;
+  FormFactorTruncatedCube *arg1 = (FormFactorTruncatedCube *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunction3DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedCube, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunction3DLattice_onChange" "', argument " "1"" of type '" "InterferenceFunction3DLattice *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorTruncatedCube" "', argument " "1"" of type '" "FormFactorTruncatedCube *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunction3DLattice * >(argp1);
-  (arg1)->onChange();
+  arg1 = reinterpret_cast< FormFactorTruncatedCube * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -97022,147 +96213,108 @@ fail:
 }
 
 
-SWIGINTERN PyObject *InterferenceFunction3DLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorTruncatedCube_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunction3DLattice, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorTruncatedCube, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *InterferenceFunction3DLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorTruncatedCube_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunctionFinite2DLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedSphere__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = 0 ;
-  unsigned int arg2 ;
-  unsigned int arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  unsigned int val2 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
   int ecode2 = 0 ;
-  unsigned int val3 ;
+  double val3 ;
   int ecode3 = 0 ;
-  InterferenceFunctionFinite2DLattice *result = 0 ;
+  FormFactorTruncatedSphere *result = 0 ;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice2D,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "1"" of type '" "Lattice2D const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "1"" of type '" "Lattice2D const &""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorTruncatedSphere" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "2"" of type '" "unsigned int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorTruncatedSphere" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< unsigned int >(val2);
-  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "3"" of type '" "unsigned int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorTruncatedSphere" "', argument " "3"" of type '" "double""'");
   } 
-  arg3 = static_cast< unsigned int >(val3);
-  result = (InterferenceFunctionFinite2DLattice *)new InterferenceFunctionFinite2DLattice((Lattice2D const &)*arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite2DLattice, SWIG_POINTER_NEW |  0 );
+  arg3 = static_cast< double >(val3);
+  result = (FormFactorTruncatedSphere *)new FormFactorTruncatedSphere(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedSphere, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunctionFinite2DLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedSphere__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  unsigned int arg5 ;
-  unsigned int arg6 ;
   double val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  unsigned int val5 ;
-  int ecode5 = 0 ;
-  unsigned int val6 ;
-  int ecode6 = 0 ;
-  InterferenceFunctionFinite2DLattice *result = 0 ;
+  FormFactorTruncatedSphere *result = 0 ;
   
-  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorTruncatedSphere" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorTruncatedSphere" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_unsigned_SS_int(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "5"" of type '" "unsigned int""'");
-  } 
-  arg5 = static_cast< unsigned int >(val5);
-  ecode6 = SWIG_AsVal_unsigned_SS_int(swig_obj[5], &val6);
-  if (!SWIG_IsOK(ecode6)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "new_InterferenceFunctionFinite2DLattice" "', argument " "6"" of type '" "unsigned int""'");
-  } 
-  arg6 = static_cast< unsigned int >(val6);
-  result = (InterferenceFunctionFinite2DLattice *)new InterferenceFunctionFinite2DLattice(arg1,arg2,arg3,arg4,arg5,arg6);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite2DLattice, SWIG_POINTER_NEW |  0 );
+  result = (FormFactorTruncatedSphere *)new FormFactorTruncatedSphere(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedSphere, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunctionFinite2DLattice(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedSphere(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[7] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_InterferenceFunctionFinite2DLattice", 0, 6, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FormFactorTruncatedSphere", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice2D, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
       {
-        int res = SWIG_AsVal_unsigned_SS_int(argv[1], NULL);
+        int res = SWIG_AsVal_double(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        {
-          int res = SWIG_AsVal_unsigned_SS_int(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_InterferenceFunctionFinite2DLattice__SWIG_0(self, argc, argv);
-        }
+        return _wrap_new_FormFactorTruncatedSphere__SWIG_1(self, argc, argv);
       }
     }
   }
-  if (argc == 6) {
+  if (argc == 3) {
     int _v;
     {
       int res = SWIG_AsVal_double(argv[0], NULL);
@@ -97179,87 +96331,47 @@ SWIGINTERN PyObject *_wrap_new_InterferenceFunctionFinite2DLattice(PyObject *sel
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            {
-              int res = SWIG_AsVal_unsigned_SS_int(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              {
-                int res = SWIG_AsVal_unsigned_SS_int(argv[5], NULL);
-                _v = SWIG_CheckState(res);
-              }
-              if (_v) {
-                return _wrap_new_InterferenceFunctionFinite2DLattice__SWIG_1(self, argc, argv);
-              }
-            }
-          }
+          return _wrap_new_FormFactorTruncatedSphere__SWIG_0(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_InterferenceFunctionFinite2DLattice'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FormFactorTruncatedSphere'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    InterferenceFunctionFinite2DLattice::InterferenceFunctionFinite2DLattice(Lattice2D const &,unsigned int,unsigned int)\n"
-    "    InterferenceFunctionFinite2DLattice::InterferenceFunctionFinite2DLattice(double,double,double,double,unsigned int,unsigned int)\n");
+    "    FormFactorTruncatedSphere::FormFactorTruncatedSphere(double,double,double)\n"
+    "    FormFactorTruncatedSphere::FormFactorTruncatedSphere(double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_InterferenceFunctionFinite2DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunctionFinite2DLattice" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  InterferenceFunctionFinite2DLattice *result = 0 ;
+  FormFactorTruncatedSphere *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_clone" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_clone" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
-  result = (InterferenceFunctionFinite2DLattice *)((InterferenceFunctionFinite2DLattice const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
+  result = (FormFactorTruncatedSphere *)((FormFactorTruncatedSphere const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -97267,392 +96379,364 @@ SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_accept(PyObject *
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionFinite2DLattice_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_accept" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionFinite2DLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
-  }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((InterferenceFunctionFinite2DLattice const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_createSquare(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  unsigned int arg3 ;
-  unsigned int arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  unsigned int val3 ;
-  int ecode3 = 0 ;
-  unsigned int val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  InterferenceFunctionFinite2DLattice *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionFinite2DLattice_createSquare", 4, 4, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunctionFinite2DLattice_createSquare" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunctionFinite2DLattice_createSquare" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunctionFinite2DLattice_createSquare" "', argument " "3"" of type '" "unsigned int""'");
-  } 
-  arg3 = static_cast< unsigned int >(val3);
-  ecode4 = SWIG_AsVal_unsigned_SS_int(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "InterferenceFunctionFinite2DLattice_createSquare" "', argument " "4"" of type '" "unsigned int""'");
-  } 
-  arg4 = static_cast< unsigned int >(val4);
-  result = (InterferenceFunctionFinite2DLattice *)InterferenceFunctionFinite2DLattice::createSquare(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite2DLattice, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_createHexagonal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  unsigned int arg3 ;
-  unsigned int arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  unsigned int val3 ;
-  int ecode3 = 0 ;
-  unsigned int val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  InterferenceFunctionFinite2DLattice *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionFinite2DLattice_createHexagonal", 4, 4, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "InterferenceFunctionFinite2DLattice_createHexagonal" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunctionFinite2DLattice_createHexagonal" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "InterferenceFunctionFinite2DLattice_createHexagonal" "', argument " "3"" of type '" "unsigned int""'");
-  } 
-  arg3 = static_cast< unsigned int >(val3);
-  ecode4 = SWIG_AsVal_unsigned_SS_int(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "InterferenceFunctionFinite2DLattice_createHexagonal" "', argument " "4"" of type '" "unsigned int""'");
-  } 
-  arg4 = static_cast< unsigned int >(val4);
-  result = (InterferenceFunctionFinite2DLattice *)InterferenceFunctionFinite2DLattice::createHexagonal(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite2DLattice, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_numberUnitCells1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  unsigned int result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorTruncatedSphere_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_numberUnitCells1" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_accept" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
-  result = (unsigned int)((InterferenceFunctionFinite2DLattice const *)arg1)->numberUnitCells1();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorTruncatedSphere_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorTruncatedSphere const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_numberUnitCells2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  unsigned int result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_numberUnitCells2" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_getHeight" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
-  result = (unsigned int)((InterferenceFunctionFinite2DLattice const *)arg1)->numberUnitCells2();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
+  result = (double)((FormFactorTruncatedSphere const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_setIntegrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
-  bool arg2 ;
+  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  bool val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionFinite2DLattice_setIntegrationOverXi", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_setIntegrationOverXi" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_getRadius" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunctionFinite2DLattice_setIntegrationOverXi" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  (arg1)->setIntegrationOverXi(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
+  result = (double)((FormFactorTruncatedSphere const *)arg1)->getRadius();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_integrationOverXi(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_getRemovedTop(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_integrationOverXi" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_getRemovedTop" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
-  result = (bool)((InterferenceFunctionFinite2DLattice const *)arg1)->integrationOverXi();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
+  result = (double)((FormFactorTruncatedSphere const *)arg1)->getRemovedTop();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Lattice2D *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_lattice" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_radialExtension" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
-  result = (Lattice2D *) &((InterferenceFunctionFinite2DLattice const *)arg1)->lattice();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice2D, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
+  result = (double)((FormFactorTruncatedSphere const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_getParticleDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSphere_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorTruncatedSphere_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_getParticleDensity" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSphere_evaluate_for_q" "', argument " "1"" of type '" "FormFactorTruncatedSphere const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
-  result = (double)((InterferenceFunctionFinite2DLattice const *)arg1)->getParticleDensity();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorTruncatedSphere_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorTruncatedSphere_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((FormFactorTruncatedSphere const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite2DLattice_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorTruncatedSphere(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite2DLattice *arg1 = (InterferenceFunctionFinite2DLattice *) 0 ;
+  FormFactorTruncatedSphere *arg1 = (FormFactorTruncatedSphere *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite2DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSphere, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite2DLattice_getChildren" "', argument " "1"" of type '" "InterferenceFunctionFinite2DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorTruncatedSphere" "', argument " "1"" of type '" "FormFactorTruncatedSphere *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite2DLattice * >(argp1);
-  result = ((InterferenceFunctionFinite2DLattice const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< FormFactorTruncatedSphere * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *InterferenceFunctionFinite2DLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorTruncatedSphere_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunctionFinite2DLattice, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorTruncatedSphere, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *InterferenceFunctionFinite2DLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorTruncatedSphere_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunctionFinite3DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedSpheroid__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = 0 ;
-  unsigned int arg2 ;
-  unsigned int arg3 ;
-  unsigned int arg4 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  unsigned int val2 ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
   int ecode2 = 0 ;
-  unsigned int val3 ;
+  double val3 ;
   int ecode3 = 0 ;
-  unsigned int val4 ;
+  double val4 ;
   int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  InterferenceFunctionFinite3DLattice *result = 0 ;
+  FormFactorTruncatedSpheroid *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_InterferenceFunctionFinite3DLattice", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunctionFinite3DLattice" "', argument " "1"" of type '" "Lattice const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunctionFinite3DLattice" "', argument " "1"" of type '" "Lattice const &""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunctionFinite3DLattice" "', argument " "2"" of type '" "unsigned int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< unsigned int >(val2);
-  ecode3 = SWIG_AsVal_unsigned_SS_int(swig_obj[2], &val3);
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunctionFinite3DLattice" "', argument " "3"" of type '" "unsigned int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "3"" of type '" "double""'");
   } 
-  arg3 = static_cast< unsigned int >(val3);
-  ecode4 = SWIG_AsVal_unsigned_SS_int(swig_obj[3], &val4);
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_InterferenceFunctionFinite3DLattice" "', argument " "4"" of type '" "unsigned int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "4"" of type '" "double""'");
   } 
-  arg4 = static_cast< unsigned int >(val4);
-  result = (InterferenceFunctionFinite3DLattice *)new InterferenceFunctionFinite3DLattice((Lattice const &)*arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite3DLattice, SWIG_POINTER_NEW |  0 );
+  arg4 = static_cast< double >(val4);
+  result = (FormFactorTruncatedSpheroid *)new FormFactorTruncatedSpheroid(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedSpheroid, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_InterferenceFunctionFinite3DLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedSpheroid__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double arg1 ;
+  double arg2 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  FormFactorTruncatedSpheroid *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunctionFinite3DLattice" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorTruncatedSpheroid" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (FormFactorTruncatedSpheroid *)new FormFactorTruncatedSpheroid(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedSpheroid, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorTruncatedSpheroid(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FormFactorTruncatedSpheroid", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_new_FormFactorTruncatedSpheroid__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_FormFactorTruncatedSpheroid__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FormFactorTruncatedSpheroid'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FormFactorTruncatedSpheroid::FormFactorTruncatedSpheroid(double,double,double,double)\n"
+    "    FormFactorTruncatedSpheroid::FormFactorTruncatedSpheroid(double,double,double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
+  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  InterferenceFunctionFinite3DLattice *result = 0 ;
+  FormFactorTruncatedSpheroid *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_clone" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_clone" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
-  result = (InterferenceFunctionFinite3DLattice *)((InterferenceFunctionFinite3DLattice const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
+  result = (FormFactorTruncatedSpheroid *)((FormFactorTruncatedSpheroid const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
+  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -97660,18 +96744,18 @@ SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_accept(PyObject *
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionFinite3DLattice_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorTruncatedSpheroid_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_accept" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_accept" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
+  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionFinite3DLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorTruncatedSpheroid_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((InterferenceFunctionFinite3DLattice const *)arg1)->accept(arg2);
+  ((FormFactorTruncatedSpheroid const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -97679,308 +96763,367 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_numberUnitCells1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_getRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
+  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  unsigned int result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_numberUnitCells1" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_getRadius" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
-  result = (unsigned int)((InterferenceFunctionFinite3DLattice const *)arg1)->numberUnitCells1();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
+  result = (double)((FormFactorTruncatedSpheroid const *)arg1)->getRadius();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_numberUnitCells2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
+  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  unsigned int result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_numberUnitCells2" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_getHeight" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
-  result = (unsigned int)((InterferenceFunctionFinite3DLattice const *)arg1)->numberUnitCells2();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
+  result = (double)((FormFactorTruncatedSpheroid const *)arg1)->getHeight();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_numberUnitCells3(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_getHeightFlattening(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
+  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  unsigned int result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_numberUnitCells3" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_getHeightFlattening" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
-  result = (unsigned int)((InterferenceFunctionFinite3DLattice const *)arg1)->numberUnitCells3();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
+  result = (double)((FormFactorTruncatedSpheroid const *)arg1)->getHeightFlattening();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_getRemovedTop(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
+  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Lattice *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_lattice" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_getRemovedTop" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
-  result = (Lattice *) &((InterferenceFunctionFinite3DLattice const *)arg1)->lattice();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
+  result = (double)((FormFactorTruncatedSpheroid const *)arg1)->getRemovedTop();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_supportsMultilayer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
+  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_supportsMultilayer" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_radialExtension" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
-  result = (bool)((InterferenceFunctionFinite3DLattice const *)arg1)->supportsMultilayer();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
+  result = (double)((FormFactorTruncatedSpheroid const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionFinite3DLattice_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorTruncatedSpheroid_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionFinite3DLattice *arg1 = (InterferenceFunctionFinite3DLattice *) 0 ;
+  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
+  cvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorTruncatedSpheroid_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorTruncatedSpheroid_evaluate_for_q" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorTruncatedSpheroid_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorTruncatedSpheroid_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((FormFactorTruncatedSpheroid const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_FormFactorTruncatedSpheroid(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorTruncatedSpheroid *arg1 = (FormFactorTruncatedSpheroid *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionFinite3DLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorTruncatedSpheroid, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionFinite3DLattice_getChildren" "', argument " "1"" of type '" "InterferenceFunctionFinite3DLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorTruncatedSpheroid" "', argument " "1"" of type '" "FormFactorTruncatedSpheroid *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionFinite3DLattice * >(argp1);
-  result = ((InterferenceFunctionFinite3DLattice const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< FormFactorTruncatedSpheroid * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *InterferenceFunctionFinite3DLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorTruncatedSpheroid_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunctionFinite3DLattice, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorTruncatedSpheroid, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *InterferenceFunctionFinite3DLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorTruncatedSpheroid_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunctionHardDisk(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_factor_x_box(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
+  complex_t arg1 ;
   double arg2 ;
-  double val1 ;
+  std::complex< double > val1 ;
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  InterferenceFunctionHardDisk *result = 0 ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_InterferenceFunctionHardDisk", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_Python_UnpackTuple(args, "factor_x_box", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunctionHardDisk" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "factor_x_box" "', argument " "1"" of type '" "complex_t""'");
   } 
-  arg1 = static_cast< double >(val1);
+  arg1 = static_cast< complex_t >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunctionHardDisk" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "factor_x_box" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (InterferenceFunctionHardDisk *)new InterferenceFunctionHardDisk(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionHardDisk, SWIG_POINTER_NEW |  0 );
+  result = ripples::factor_x_box(arg1,arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_InterferenceFunctionHardDisk(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_factor_x_Gauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionHardDisk *arg1 = (InterferenceFunctionHardDisk *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  complex_t arg1 ;
+  double arg2 ;
+  std::complex< double > val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionHardDisk, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunctionHardDisk" "', argument " "1"" of type '" "InterferenceFunctionHardDisk *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "factor_x_Gauss", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "factor_x_Gauss" "', argument " "1"" of type '" "complex_t""'");
+  } 
+  arg1 = static_cast< complex_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "factor_x_Gauss" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = ripples::factor_x_Gauss(arg1,arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionHardDisk_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_factor_x_Lorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionHardDisk *arg1 = (InterferenceFunctionHardDisk *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  InterferenceFunctionHardDisk *result = 0 ;
+  complex_t arg1 ;
+  double arg2 ;
+  std::complex< double > val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionHardDisk_clone" "', argument " "1"" of type '" "InterferenceFunctionHardDisk const *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp1);
-  result = (InterferenceFunctionHardDisk *)((InterferenceFunctionHardDisk const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "factor_x_Lorentz", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "factor_x_Lorentz" "', argument " "1"" of type '" "complex_t""'");
+  } 
+  arg1 = static_cast< complex_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "factor_x_Lorentz" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = ripples::factor_x_Lorentz(arg1,arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionHardDisk_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorDebyeBueche(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionHardDisk *arg1 = (InterferenceFunctionHardDisk *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
+  FormFactorDebyeBueche *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionHardDisk_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionHardDisk_accept" "', argument " "1"" of type '" "InterferenceFunctionHardDisk const *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionHardDisk_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
-  }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((InterferenceFunctionHardDisk const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorDebyeBueche", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorDebyeBueche" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorDebyeBueche" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (FormFactorDebyeBueche *)new FormFactorDebyeBueche(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorDebyeBueche, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionHardDisk_getParticleDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDebyeBueche_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionHardDisk *arg1 = (InterferenceFunctionHardDisk *) 0 ;
+  FormFactorDebyeBueche *arg1 = (FormFactorDebyeBueche *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  FormFactorDebyeBueche *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDebyeBueche, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionHardDisk_getParticleDensity" "', argument " "1"" of type '" "InterferenceFunctionHardDisk const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDebyeBueche_clone" "', argument " "1"" of type '" "FormFactorDebyeBueche const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp1);
-  result = (double)((InterferenceFunctionHardDisk const *)arg1)->getParticleDensity();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FormFactorDebyeBueche * >(argp1);
+  result = (FormFactorDebyeBueche *)((FormFactorDebyeBueche const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorDebyeBueche, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionHardDisk_radius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDebyeBueche_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionHardDisk *arg1 = (InterferenceFunctionHardDisk *) 0 ;
+  FormFactorDebyeBueche *arg1 = (FormFactorDebyeBueche *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorDebyeBueche_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDebyeBueche, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionHardDisk_radius" "', argument " "1"" of type '" "InterferenceFunctionHardDisk const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDebyeBueche_accept" "', argument " "1"" of type '" "FormFactorDebyeBueche const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp1);
-  result = (double)((InterferenceFunctionHardDisk const *)arg1)->radius();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FormFactorDebyeBueche * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDebyeBueche_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorDebyeBueche const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionHardDisk_density(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDebyeBueche_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionHardDisk *arg1 = (InterferenceFunctionHardDisk *) 0 ;
+  FormFactorDebyeBueche *arg1 = (FormFactorDebyeBueche *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -97988,12 +97131,12 @@ SWIGINTERN PyObject *_wrap_InterferenceFunctionHardDisk_density(PyObject *SWIGUN
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionHardDisk, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDebyeBueche, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionHardDisk_density" "', argument " "1"" of type '" "InterferenceFunctionHardDisk const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDebyeBueche_radialExtension" "', argument " "1"" of type '" "FormFactorDebyeBueche const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionHardDisk * >(argp1);
-  result = (double)((InterferenceFunctionHardDisk const *)arg1)->density();
+  arg1 = reinterpret_cast< FormFactorDebyeBueche * >(argp1);
+  result = (double)((FormFactorDebyeBueche const *)arg1)->radialExtension();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -98001,96 +97144,58 @@ fail:
 }
 
 
-SWIGINTERN PyObject *InterferenceFunctionHardDisk_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunctionHardDisk, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *InterferenceFunctionHardDisk_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_InterferenceFunctionNone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  InterferenceFunctionNone *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_InterferenceFunctionNone", 0, 0, 0)) SWIG_fail;
-  result = (InterferenceFunctionNone *)new InterferenceFunctionNone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionNone, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_InterferenceFunctionNone_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  InterferenceFunctionNone *arg1 = (InterferenceFunctionNone *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  InterferenceFunctionNone *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionNone, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionNone_clone" "', argument " "1"" of type '" "InterferenceFunctionNone const *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunctionNone * >(argp1);
-  result = (InterferenceFunctionNone *)((InterferenceFunctionNone const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionNone, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_InterferenceFunctionNone_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorDebyeBueche_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionNone *arg1 = (InterferenceFunctionNone *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  FormFactorDebyeBueche *arg1 = (FormFactorDebyeBueche *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionNone_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionNone, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorDebyeBueche_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDebyeBueche, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionNone_accept" "', argument " "1"" of type '" "InterferenceFunctionNone const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorDebyeBueche_evaluate_for_q" "', argument " "1"" of type '" "FormFactorDebyeBueche const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionNone * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionNone_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  arg1 = reinterpret_cast< FormFactorDebyeBueche * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorDebyeBueche_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorDebyeBueche_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((InterferenceFunctionNone const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  result = ((FormFactorDebyeBueche const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_InterferenceFunctionNone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorDebyeBueche(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionNone *arg1 = (InterferenceFunctionNone *) 0 ;
+  FormFactorDebyeBueche *arg1 = (FormFactorDebyeBueche *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionNone, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorDebyeBueche, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunctionNone" "', argument " "1"" of type '" "InterferenceFunctionNone *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorDebyeBueche" "', argument " "1"" of type '" "FormFactorDebyeBueche *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionNone * >(argp1);
+  arg1 = reinterpret_cast< FormFactorDebyeBueche * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -98099,74 +97204,74 @@ fail:
 }
 
 
-SWIGINTERN PyObject *InterferenceFunctionNone_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorDebyeBueche_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunctionNone, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorDebyeBueche, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *InterferenceFunctionNone_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorDebyeBueche_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunctionRadialParaCrystal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FormFactorGauss__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
-  double arg2 ;
   double val1 ;
   int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  InterferenceFunctionRadialParaCrystal *result = 0 ;
+  FormFactorGauss *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunctionRadialParaCrystal" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorGauss" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunctionRadialParaCrystal" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (InterferenceFunctionRadialParaCrystal *)new InterferenceFunctionRadialParaCrystal(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, SWIG_POINTER_NEW |  0 );
+  result = (FormFactorGauss *)new FormFactorGauss(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorGauss, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunctionRadialParaCrystal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_FormFactorGauss__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
+  double arg2 ;
   double val1 ;
   int ecode1 = 0 ;
-  InterferenceFunctionRadialParaCrystal *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  FormFactorGauss *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_InterferenceFunctionRadialParaCrystal" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorGauss" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  result = (InterferenceFunctionRadialParaCrystal *)new InterferenceFunctionRadialParaCrystal(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, SWIG_POINTER_NEW |  0 );
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorGauss" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (FormFactorGauss *)new FormFactorGauss(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorGauss, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunctionRadialParaCrystal(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorGauss(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_InterferenceFunctionRadialParaCrystal", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FormFactorGauss", 0, 2, argv))) SWIG_fail;
   --argc;
   if (argc == 1) {
     int _v;
@@ -98175,7 +97280,7 @@ SWIGINTERN PyObject *_wrap_new_InterferenceFunctionRadialParaCrystal(PyObject *s
       _v = SWIG_CheckState(res);
     }
     if (_v) {
-      return _wrap_new_InterferenceFunctionRadialParaCrystal__SWIG_1(self, argc, argv);
+      return _wrap_new_FormFactorGauss__SWIG_0(self, argc, argv);
     }
   }
   if (argc == 2) {
@@ -98190,46 +97295,46 @@ SWIGINTERN PyObject *_wrap_new_InterferenceFunctionRadialParaCrystal(PyObject *s
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_new_InterferenceFunctionRadialParaCrystal__SWIG_0(self, argc, argv);
+        return _wrap_new_FormFactorGauss__SWIG_1(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_InterferenceFunctionRadialParaCrystal'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FormFactorGauss'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    InterferenceFunctionRadialParaCrystal::InterferenceFunctionRadialParaCrystal(double,double)\n"
-    "    InterferenceFunctionRadialParaCrystal::InterferenceFunctionRadialParaCrystal(double)\n");
+    "    FormFactorGauss::FormFactorGauss(double)\n"
+    "    FormFactorGauss::FormFactorGauss(double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorGauss_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  InterferenceFunctionRadialParaCrystal *result = 0 ;
+  FormFactorGauss *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_clone" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorGauss_clone" "', argument " "1"" of type '" "FormFactorGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
-  result = (InterferenceFunctionRadialParaCrystal *)((InterferenceFunctionRadialParaCrystal const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
+  result = (FormFactorGauss *)((FormFactorGauss const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorGauss, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorGauss_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -98237,18 +97342,18 @@ SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_accept(PyObject
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionRadialParaCrystal_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorGauss_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_accept" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorGauss_accept" "', argument " "1"" of type '" "FormFactorGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionRadialParaCrystal_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorGauss_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((InterferenceFunctionRadialParaCrystal const *)arg1)->accept(arg2);
+  ((FormFactorGauss const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -98256,38 +97361,32 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_setKappa(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorGauss_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
-  double arg2 ;
+  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionRadialParaCrystal_setKappa", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_setKappa" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorGauss_getWidth" "', argument " "1"" of type '" "FormFactorGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunctionRadialParaCrystal_setKappa" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setKappa(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
+  result = (double)((FormFactorGauss const *)arg1)->getWidth();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_kappa(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorGauss_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -98295,12 +97394,12 @@ SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_kappa(PyObject
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_kappa" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorGauss_getHeight" "', argument " "1"" of type '" "FormFactorGauss const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
-  result = (double)((InterferenceFunctionRadialParaCrystal const *)arg1)->kappa();
+  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
+  result = (double)((FormFactorGauss const *)arg1)->getHeight();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -98308,113 +97407,239 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_setDomainSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorGauss_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
-  double arg2 ;
+  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorGauss_radialExtension" "', argument " "1"" of type '" "FormFactorGauss const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
+  result = (double)((FormFactorGauss const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_FormFactorGauss_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
+  cvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorGauss_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorGauss_evaluate_for_q" "', argument " "1"" of type '" "FormFactorGauss const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorGauss_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorGauss_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((FormFactorGauss const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_FormFactorGauss(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorGauss *arg1 = (FormFactorGauss *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorGauss, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorGauss" "', argument " "1"" of type '" "FormFactorGauss *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorGauss * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *FormFactorGauss_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorGauss, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorGauss_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorLorentz__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  FormFactorLorentz *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorLorentz" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (FormFactorLorentz *)new FormFactorLorentz(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLorentz, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_FormFactorLorentz__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  FormFactorLorentz *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionRadialParaCrystal_setDomainSize", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_setDomainSize" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorLorentz" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunctionRadialParaCrystal_setDomainSize" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorLorentz" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  (arg1)->setDomainSize(arg2);
-  resultobj = SWIG_Py_Void();
+  result = (FormFactorLorentz *)new FormFactorLorentz(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLorentz, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_domainSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+SWIGINTERN PyObject *_wrap_new_FormFactorLorentz(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_domainSize" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_FormFactorLorentz", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_new_FormFactorLorentz__SWIG_0(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
-  result = (double)((InterferenceFunctionRadialParaCrystal const *)arg1)->domainSize();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_FormFactorLorentz__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_FormFactorLorentz'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    FormFactorLorentz::FormFactorLorentz(double)\n"
+    "    FormFactorLorentz::FormFactorLorentz(double,double)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_FTPDF(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorLorentz_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
-  double arg2 ;
+  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  PyObject *swig_obj[1] ;
+  FormFactorLorentz *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionRadialParaCrystal_FTPDF", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_FTPDF" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLorentz_clone" "', argument " "1"" of type '" "FormFactorLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "InterferenceFunctionRadialParaCrystal_FTPDF" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = ((InterferenceFunctionRadialParaCrystal const *)arg1)->FTPDF(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
+  result = (FormFactorLorentz *)((FormFactorLorentz const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_setProbabilityDistribution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorLorentz_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
-  IFTDistribution1D *arg2 = 0 ;
+  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionRadialParaCrystal_setProbabilityDistribution", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorLorentz_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_setProbabilityDistribution" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLorentz_accept" "', argument " "1"" of type '" "FormFactorLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFTDistribution1D,  0  | 0);
+  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionRadialParaCrystal_setProbabilityDistribution" "', argument " "2"" of type '" "IFTDistribution1D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "InterferenceFunctionRadialParaCrystal_setProbabilityDistribution" "', argument " "2"" of type '" "IFTDistribution1D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorLorentz_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg2 = reinterpret_cast< IFTDistribution1D * >(argp2);
-  (arg1)->setProbabilityDistribution((IFTDistribution1D const &)*arg2);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorLorentz const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -98422,9 +97647,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_peakDistance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorLorentz_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -98432,12 +97657,12 @@ SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_peakDistance(Py
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_peakDistance" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLorentz_getWidth" "', argument " "1"" of type '" "FormFactorLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
-  result = (double)((InterferenceFunctionRadialParaCrystal const *)arg1)->peakDistance();
+  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
+  result = (double)((FormFactorLorentz const *)arg1)->getWidth();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -98445,9 +97670,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_dampingLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorLorentz_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -98455,12 +97680,12 @@ SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_dampingLength(P
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_dampingLength" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLorentz_getHeight" "', argument " "1"" of type '" "FormFactorLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
-  result = (double)((InterferenceFunctionRadialParaCrystal const *)arg1)->dampingLength();
+  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
+  result = (double)((FormFactorLorentz const *)arg1)->getHeight();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -98468,66 +97693,81 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorLorentz_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_getChildren" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLorentz_radialExtension" "', argument " "1"" of type '" "FormFactorLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
-  result = ((InterferenceFunctionRadialParaCrystal const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
+  result = (double)((FormFactorLorentz const *)arg1)->radialExtension();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionRadialParaCrystal_randomSample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorLorentz_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorLorentz_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionRadialParaCrystal_randomSample" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorLorentz_evaluate_for_q" "', argument " "1"" of type '" "FormFactorLorentz const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
-  result = (double)((InterferenceFunctionRadialParaCrystal const *)arg1)->randomSample();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorLorentz_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorLorentz_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((FormFactorLorentz const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_InterferenceFunctionRadialParaCrystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorLorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionRadialParaCrystal *arg1 = (InterferenceFunctionRadialParaCrystal *) 0 ;
+  FormFactorLorentz *arg1 = (FormFactorLorentz *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorLorentz, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunctionRadialParaCrystal" "', argument " "1"" of type '" "InterferenceFunctionRadialParaCrystal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorLorentz" "', argument " "1"" of type '" "FormFactorLorentz *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionRadialParaCrystal * >(argp1);
+  arg1 = reinterpret_cast< FormFactorLorentz * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -98536,84 +97776,81 @@ fail:
 }
 
 
-SWIGINTERN PyObject *InterferenceFunctionRadialParaCrystal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorLorentz_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunctionRadialParaCrystal, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorLorentz, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *InterferenceFunctionRadialParaCrystal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorLorentz_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_InterferenceFunctionTwin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorOrnsteinZernike(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  kvector_t *arg1 = 0 ;
+  double arg1 ;
   double arg2 ;
   double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
   PyObject *swig_obj[3] ;
-  InterferenceFunctionTwin *result = 0 ;
+  FormFactorOrnsteinZernike *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_InterferenceFunctionTwin", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_InterferenceFunctionTwin" "', argument " "1"" of type '" "kvector_t const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_InterferenceFunctionTwin" "', argument " "1"" of type '" "kvector_t const &""'"); 
-  }
-  arg1 = reinterpret_cast< kvector_t * >(argp1);
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorOrnsteinZernike", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorOrnsteinZernike" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_InterferenceFunctionTwin" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorOrnsteinZernike" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_InterferenceFunctionTwin" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorOrnsteinZernike" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (InterferenceFunctionTwin *)new InterferenceFunctionTwin((kvector_t const &)*arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionTwin, SWIG_POINTER_NEW |  0 );
+  result = (FormFactorOrnsteinZernike *)new FormFactorOrnsteinZernike(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorOrnsteinZernike, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionTwin_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorOrnsteinZernike_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionTwin *arg1 = (InterferenceFunctionTwin *) 0 ;
+  FormFactorOrnsteinZernike *arg1 = (FormFactorOrnsteinZernike *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  InterferenceFunctionTwin *result = 0 ;
+  FormFactorOrnsteinZernike *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorOrnsteinZernike, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionTwin_clone" "', argument " "1"" of type '" "InterferenceFunctionTwin const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorOrnsteinZernike_clone" "', argument " "1"" of type '" "FormFactorOrnsteinZernike const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionTwin * >(argp1);
-  result = (InterferenceFunctionTwin *)((InterferenceFunctionTwin const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorOrnsteinZernike * >(argp1);
+  result = (FormFactorOrnsteinZernike *)((FormFactorOrnsteinZernike const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorOrnsteinZernike, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionTwin_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorOrnsteinZernike_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionTwin *arg1 = (InterferenceFunctionTwin *) 0 ;
+  FormFactorOrnsteinZernike *arg1 = (FormFactorOrnsteinZernike *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -98621,18 +97858,18 @@ SWIGINTERN PyObject *_wrap_InterferenceFunctionTwin_accept(PyObject *SWIGUNUSEDP
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "InterferenceFunctionTwin_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorOrnsteinZernike_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorOrnsteinZernike, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionTwin_accept" "', argument " "1"" of type '" "InterferenceFunctionTwin const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorOrnsteinZernike_accept" "', argument " "1"" of type '" "FormFactorOrnsteinZernike const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionTwin * >(argp1);
+  arg1 = reinterpret_cast< FormFactorOrnsteinZernike * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "InterferenceFunctionTwin_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorOrnsteinZernike_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((InterferenceFunctionTwin const *)arg1)->accept(arg2);
+  ((FormFactorOrnsteinZernike const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -98640,32 +97877,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionTwin_direction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  InterferenceFunctionTwin *arg1 = (InterferenceFunctionTwin *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  kvector_t result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionTwin_direction" "', argument " "1"" of type '" "InterferenceFunctionTwin const *""'"); 
-  }
-  arg1 = reinterpret_cast< InterferenceFunctionTwin * >(argp1);
-  result = ((InterferenceFunctionTwin const *)arg1)->direction();
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_InterferenceFunctionTwin_meanDistance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorOrnsteinZernike_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionTwin *arg1 = (InterferenceFunctionTwin *) 0 ;
+  FormFactorOrnsteinZernike *arg1 = (FormFactorOrnsteinZernike *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -98673,12 +97887,12 @@ SWIGINTERN PyObject *_wrap_InterferenceFunctionTwin_meanDistance(PyObject *SWIGU
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorOrnsteinZernike, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionTwin_meanDistance" "', argument " "1"" of type '" "InterferenceFunctionTwin const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorOrnsteinZernike_radialExtension" "', argument " "1"" of type '" "FormFactorOrnsteinZernike const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionTwin * >(argp1);
-  result = (double)((InterferenceFunctionTwin const *)arg1)->meanDistance();
+  arg1 = reinterpret_cast< FormFactorOrnsteinZernike * >(argp1);
+  result = (double)((FormFactorOrnsteinZernike const *)arg1)->radialExtension();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -98686,43 +97900,58 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_InterferenceFunctionTwin_stdDev(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorOrnsteinZernike_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionTwin *arg1 = (InterferenceFunctionTwin *) 0 ;
+  FormFactorOrnsteinZernike *arg1 = (FormFactorOrnsteinZernike *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionTwin, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorOrnsteinZernike_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorOrnsteinZernike, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "InterferenceFunctionTwin_stdDev" "', argument " "1"" of type '" "InterferenceFunctionTwin const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorOrnsteinZernike_evaluate_for_q" "', argument " "1"" of type '" "FormFactorOrnsteinZernike const *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionTwin * >(argp1);
-  result = (double)((InterferenceFunctionTwin const *)arg1)->stdDev();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FormFactorOrnsteinZernike * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorOrnsteinZernike_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorOrnsteinZernike_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((FormFactorOrnsteinZernike const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_InterferenceFunctionTwin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorOrnsteinZernike(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  InterferenceFunctionTwin *arg1 = (InterferenceFunctionTwin *) 0 ;
+  FormFactorOrnsteinZernike *arg1 = (FormFactorOrnsteinZernike *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_InterferenceFunctionTwin, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorOrnsteinZernike, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_InterferenceFunctionTwin" "', argument " "1"" of type '" "InterferenceFunctionTwin *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorOrnsteinZernike" "', argument " "1"" of type '" "FormFactorOrnsteinZernike *""'"); 
   }
-  arg1 = reinterpret_cast< InterferenceFunctionTwin * >(argp1);
+  arg1 = reinterpret_cast< FormFactorOrnsteinZernike * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -98731,187 +97960,102 @@ fail:
 }
 
 
-SWIGINTERN PyObject *InterferenceFunctionTwin_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorOrnsteinZernike_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_InterferenceFunctionTwin, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorOrnsteinZernike, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *InterferenceFunctionTwin_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorOrnsteinZernike_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_delete_IPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IPixel *arg1 = (IPixel *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPixel, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IPixel" "', argument " "1"" of type '" "IPixel *""'"); 
-  }
-  arg1 = reinterpret_cast< IPixel * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IPixel_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IPixel *arg1 = (IPixel *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IPixel *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPixel, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPixel_clone" "', argument " "1"" of type '" "IPixel const *""'"); 
-  }
-  arg1 = reinterpret_cast< IPixel * >(argp1);
-  result = (IPixel *)((IPixel const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IPixel, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IPixel_createZeroSizePixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_FormFactorSphereGaussianRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IPixel *arg1 = (IPixel *) 0 ;
+  double arg1 ;
   double arg2 ;
-  double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  IPixel *result = 0 ;
+  PyObject *swig_obj[2] ;
+  FormFactorSphereGaussianRadius *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IPixel_createZeroSizePixel", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPixel, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPixel_createZeroSizePixel" "', argument " "1"" of type '" "IPixel const *""'"); 
-  }
-  arg1 = reinterpret_cast< IPixel * >(argp1);
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorSphereGaussianRadius", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorSphereGaussianRadius" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IPixel_createZeroSizePixel" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorSphereGaussianRadius" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IPixel_createZeroSizePixel" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (IPixel *)((IPixel const *)arg1)->createZeroSizePixel(arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IPixel, 0 |  0 );
+  result = (FormFactorSphereGaussianRadius *)new FormFactorSphereGaussianRadius(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorSphereGaussianRadius, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IPixel_getK(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorSphereGaussianRadius_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IPixel *arg1 = (IPixel *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
+  FormFactorSphereGaussianRadius *arg1 = (FormFactorSphereGaussianRadius *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  kvector_t result;
+  PyObject *swig_obj[1] ;
+  FormFactorSphereGaussianRadius *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IPixel_getK", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPixel, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereGaussianRadius, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPixel_getK" "', argument " "1"" of type '" "IPixel const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereGaussianRadius_clone" "', argument " "1"" of type '" "FormFactorSphereGaussianRadius const *""'"); 
   }
-  arg1 = reinterpret_cast< IPixel * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IPixel_getK" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IPixel_getK" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IPixel_getK" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = ((IPixel const *)arg1)->getK(arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< FormFactorSphereGaussianRadius * >(argp1);
+  result = (FormFactorSphereGaussianRadius *)((FormFactorSphereGaussianRadius const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorSphereGaussianRadius, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IPixel_getIntegrationFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorSphereGaussianRadius_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IPixel *arg1 = (IPixel *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  FormFactorSphereGaussianRadius *arg1 = (FormFactorSphereGaussianRadius *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IPixel_getIntegrationFactor", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPixel, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorSphereGaussianRadius_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereGaussianRadius, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPixel_getIntegrationFactor" "', argument " "1"" of type '" "IPixel const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereGaussianRadius_accept" "', argument " "1"" of type '" "FormFactorSphereGaussianRadius const *""'"); 
   }
-  arg1 = reinterpret_cast< IPixel * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IPixel_getIntegrationFactor" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IPixel_getIntegrationFactor" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((IPixel const *)arg1)->getIntegrationFactor(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FormFactorSphereGaussianRadius * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorSphereGaussianRadius_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorSphereGaussianRadius const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IPixel_getSolidAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorSphereGaussianRadius_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IPixel *arg1 = (IPixel *) 0 ;
+  FormFactorSphereGaussianRadius *arg1 = (FormFactorSphereGaussianRadius *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -98919,12 +98063,12 @@ SWIGINTERN PyObject *_wrap_IPixel_getSolidAngle(PyObject *SWIGUNUSEDPARM(self),
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IPixel, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereGaussianRadius, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IPixel_getSolidAngle" "', argument " "1"" of type '" "IPixel const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereGaussianRadius_radialExtension" "', argument " "1"" of type '" "FormFactorSphereGaussianRadius const *""'"); 
   }
-  arg1 = reinterpret_cast< IPixel * >(argp1);
-  result = (double)((IPixel const *)arg1)->getSolidAngle();
+  arg1 = reinterpret_cast< FormFactorSphereGaussianRadius * >(argp1);
+  result = (double)((FormFactorSphereGaussianRadius const *)arg1)->radialExtension();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -98932,197 +98076,170 @@ fail:
 }
 
 
-SWIGINTERN PyObject *IPixel_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IPixel, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_new_SphericalPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorSphereGaussianRadius_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Bin1D *arg1 = 0 ;
-  Bin1D *arg2 = 0 ;
+  FormFactorSphereGaussianRadius *arg1 = (FormFactorSphereGaussianRadius *) 0 ;
+  cvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  SphericalPixel *result = 0 ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_SphericalPixel", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorSphereGaussianRadius_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereGaussianRadius, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SphericalPixel" "', argument " "1"" of type '" "Bin1D const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SphericalPixel" "', argument " "1"" of type '" "Bin1D const &""'"); 
-  }
-  arg1 = reinterpret_cast< Bin1D * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_SphericalPixel" "', argument " "2"" of type '" "Bin1D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereGaussianRadius_evaluate_for_q" "', argument " "1"" of type '" "FormFactorSphereGaussianRadius const *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SphericalPixel" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  arg1 = reinterpret_cast< FormFactorSphereGaussianRadius * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorSphereGaussianRadius_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorSphereGaussianRadius_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< Bin1D * >(argp2);
-  result = (SphericalPixel *)new SphericalPixel((Bin1D const &)*arg1,(Bin1D const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalPixel, SWIG_POINTER_NEW |  0 );
+  result = ((FormFactorSphereGaussianRadius const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SphericalPixel_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_FormFactorSphereGaussianRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SphericalPixel *arg1 = (SphericalPixel *) 0 ;
+  FormFactorSphereGaussianRadius *arg1 = (FormFactorSphereGaussianRadius *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SphericalPixel *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalPixel, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereGaussianRadius, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalPixel_clone" "', argument " "1"" of type '" "SphericalPixel const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorSphereGaussianRadius" "', argument " "1"" of type '" "FormFactorSphereGaussianRadius *""'"); 
   }
-  arg1 = reinterpret_cast< SphericalPixel * >(argp1);
-  result = (SphericalPixel *)((SphericalPixel const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalPixel, 0 |  0 );
+  arg1 = reinterpret_cast< FormFactorSphereGaussianRadius * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SphericalPixel_createZeroSizePixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorSphereGaussianRadius_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorSphereGaussianRadius, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *FormFactorSphereGaussianRadius_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_FormFactorSphereLogNormalRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SphericalPixel *arg1 = (SphericalPixel *) 0 ;
+  double arg1 ;
   double arg2 ;
-  double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  size_t arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
+  size_t val3 ;
   int ecode3 = 0 ;
   PyObject *swig_obj[3] ;
-  SphericalPixel *result = 0 ;
+  FormFactorSphereLogNormalRadius *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "SphericalPixel_createZeroSizePixel", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalPixel, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalPixel_createZeroSizePixel" "', argument " "1"" of type '" "SphericalPixel const *""'"); 
-  }
-  arg1 = reinterpret_cast< SphericalPixel * >(argp1);
+  if (!SWIG_Python_UnpackTuple(args, "new_FormFactorSphereLogNormalRadius", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_FormFactorSphereLogNormalRadius" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SphericalPixel_createZeroSizePixel" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_FormFactorSphereLogNormalRadius" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "SphericalPixel_createZeroSizePixel" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_FormFactorSphereLogNormalRadius" "', argument " "3"" of type '" "size_t""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (SphericalPixel *)((SphericalPixel const *)arg1)->createZeroSizePixel(arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalPixel, 0 |  0 );
+  arg3 = static_cast< size_t >(val3);
+  result = (FormFactorSphereLogNormalRadius *)new FormFactorSphereLogNormalRadius(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorSphereLogNormalRadius, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SphericalPixel_getK(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorSphereLogNormalRadius_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SphericalPixel *arg1 = (SphericalPixel *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
+  FormFactorSphereLogNormalRadius *arg1 = (FormFactorSphereLogNormalRadius *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  kvector_t result;
+  PyObject *swig_obj[1] ;
+  FormFactorSphereLogNormalRadius *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "SphericalPixel_getK", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalPixel, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalPixel_getK" "', argument " "1"" of type '" "SphericalPixel const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereLogNormalRadius_clone" "', argument " "1"" of type '" "FormFactorSphereLogNormalRadius const *""'"); 
   }
-  arg1 = reinterpret_cast< SphericalPixel * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SphericalPixel_getK" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "SphericalPixel_getK" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "SphericalPixel_getK" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = ((SphericalPixel const *)arg1)->getK(arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< FormFactorSphereLogNormalRadius * >(argp1);
+  result = (FormFactorSphereLogNormalRadius *)((FormFactorSphereLogNormalRadius const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SphericalPixel_getIntegrationFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorSphereLogNormalRadius_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SphericalPixel *arg1 = (SphericalPixel *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  FormFactorSphereLogNormalRadius *arg1 = (FormFactorSphereLogNormalRadius *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "SphericalPixel_getIntegrationFactor", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalPixel, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorSphereLogNormalRadius_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalPixel_getIntegrationFactor" "', argument " "1"" of type '" "SphericalPixel const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereLogNormalRadius_accept" "', argument " "1"" of type '" "FormFactorSphereLogNormalRadius const *""'"); 
   }
-  arg1 = reinterpret_cast< SphericalPixel * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SphericalPixel_getIntegrationFactor" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "SphericalPixel_getIntegrationFactor" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((SphericalPixel const *)arg1)->getIntegrationFactor(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< FormFactorSphereLogNormalRadius * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorSphereLogNormalRadius_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((FormFactorSphereLogNormalRadius const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SphericalPixel_getSolidAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorSphereLogNormalRadius_radialExtension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SphericalPixel *arg1 = (SphericalPixel *) 0 ;
+  FormFactorSphereLogNormalRadius *arg1 = (FormFactorSphereLogNormalRadius *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -99130,12 +98247,12 @@ SWIGINTERN PyObject *_wrap_SphericalPixel_getSolidAngle(PyObject *SWIGUNUSEDPARM
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalPixel, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalPixel_getSolidAngle" "', argument " "1"" of type '" "SphericalPixel const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereLogNormalRadius_radialExtension" "', argument " "1"" of type '" "FormFactorSphereLogNormalRadius const *""'"); 
   }
-  arg1 = reinterpret_cast< SphericalPixel * >(argp1);
-  result = (double)((SphericalPixel const *)arg1)->getSolidAngle();
+  arg1 = reinterpret_cast< FormFactorSphereLogNormalRadius * >(argp1);
+  result = (double)((FormFactorSphereLogNormalRadius const *)arg1)->radialExtension();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -99143,20 +98260,58 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_SphericalPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_FormFactorSphereLogNormalRadius_evaluate_for_q(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SphericalPixel *arg1 = (SphericalPixel *) 0 ;
+  FormFactorSphereLogNormalRadius *arg1 = (FormFactorSphereLogNormalRadius *) 0 ;
+  cvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "FormFactorSphereLogNormalRadius_evaluate_for_q", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereLogNormalRadius, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FormFactorSphereLogNormalRadius_evaluate_for_q" "', argument " "1"" of type '" "FormFactorSphereLogNormalRadius const *""'"); 
+  }
+  arg1 = reinterpret_cast< FormFactorSphereLogNormalRadius * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_std__complexT_double_t_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "FormFactorSphereLogNormalRadius_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FormFactorSphereLogNormalRadius_evaluate_for_q" "', argument " "2"" of type '" "cvector_t""'");
+    } else {
+      cvector_t * temp = reinterpret_cast< cvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((FormFactorSphereLogNormalRadius const *)arg1)->evaluate_for_q(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_FormFactorSphereLogNormalRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  FormFactorSphereLogNormalRadius *arg1 = (FormFactorSphereLogNormalRadius *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalPixel, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_FormFactorSphereLogNormalRadius, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SphericalPixel" "', argument " "1"" of type '" "SphericalPixel *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_FormFactorSphereLogNormalRadius" "', argument " "1"" of type '" "FormFactorSphereLogNormalRadius *""'"); 
   }
-  arg1 = reinterpret_cast< SphericalPixel * >(argp1);
+  arg1 = reinterpret_cast< FormFactorSphereLogNormalRadius * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -99165,230 +98320,77 @@ fail:
 }
 
 
-SWIGINTERN PyObject *SphericalPixel_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorSphereLogNormalRadius_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_SphericalPixel, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_FormFactorSphereLogNormalRadius, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *SphericalPixel_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *FormFactorSphereLogNormalRadius_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_SphericalDetector__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  SphericalDetector *result = 0 ;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (SphericalDetector *)new SphericalDetector();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalDetector, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_SphericalDetector__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  double arg3 ;
-  size_t arg4 ;
-  double arg5 ;
-  double arg6 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  size_t val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  double val6 ;
-  int ecode6 = 0 ;
-  SphericalDetector *result = 0 ;
-  
-  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_SphericalDetector" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_SphericalDetector" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_SphericalDetector" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_size_t(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_SphericalDetector" "', argument " "4"" of type '" "size_t""'");
-  } 
-  arg4 = static_cast< size_t >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_SphericalDetector" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  ecode6 = SWIG_AsVal_double(swig_obj[5], &val6);
-  if (!SWIG_IsOK(ecode6)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "new_SphericalDetector" "', argument " "6"" of type '" "double""'");
-  } 
-  arg6 = static_cast< double >(val6);
-  result = (SphericalDetector *)new SphericalDetector(arg1,arg2,arg3,arg4,arg5,arg6);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalDetector, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_SphericalDetector__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_Simulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SphericalDetector *arg1 = 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  SphericalDetector *result = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_SphericalDetector,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SphericalDetector" "', argument " "1"" of type '" "SphericalDetector const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SphericalDetector" "', argument " "1"" of type '" "SphericalDetector const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Simulation" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< SphericalDetector * >(argp1);
-  result = (SphericalDetector *)new SphericalDetector((SphericalDetector const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalDetector, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SphericalDetector(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[7] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_SphericalDetector", 0, 6, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_SphericalDetector__SWIG_0(self, argc, argv);
-  }
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_SphericalDetector, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_SphericalDetector__SWIG_2(self, argc, argv);
-    }
-  }
-  if (argc == 6) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_size_t(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              {
-                int res = SWIG_AsVal_double(argv[5], NULL);
-                _v = SWIG_CheckState(res);
-              }
-              if (_v) {
-                return _wrap_new_SphericalDetector__SWIG_1(self, argc, argv);
-              }
-            }
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_SphericalDetector'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    SphericalDetector::SphericalDetector()\n"
-    "    SphericalDetector::SphericalDetector(size_t,double,double,size_t,double,double)\n"
-    "    SphericalDetector::SphericalDetector(SphericalDetector const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_SphericalDetector_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SphericalDetector *arg1 = (SphericalDetector *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SphericalDetector *result = 0 ;
+  Simulation *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalDetector_clone" "', argument " "1"" of type '" "SphericalDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_clone" "', argument " "1"" of type '" "Simulation const *""'"); 
   }
-  arg1 = reinterpret_cast< SphericalDetector * >(argp1);
-  result = (SphericalDetector *)((SphericalDetector const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalDetector, 0 |  0 );
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  result = (Simulation *)((Simulation const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Simulation, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SphericalDetector_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_prepareSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SphericalDetector *arg1 = (SphericalDetector *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "SphericalDetector_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalDetector, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalDetector_accept" "', argument " "1"" of type '" "SphericalDetector const *""'"); 
-  }
-  arg1 = reinterpret_cast< SphericalDetector * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SphericalDetector_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_prepareSimulation" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((SphericalDetector const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  (arg1)->prepareSimulation();
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -99396,21 +98398,21 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_SphericalDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_runSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SphericalDetector *arg1 = (SphericalDetector *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalDetector, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SphericalDetector" "', argument " "1"" of type '" "SphericalDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_runSimulation" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< SphericalDetector * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  (arg1)->runSimulation();
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -99418,253 +98420,160 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_SphericalDetector_defaultAxesUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_runMPISimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SphericalDetector *arg1 = (SphericalDetector *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  AxesUnits result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalDetector_defaultAxesUnits" "', argument " "1"" of type '" "SphericalDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_runMPISimulation" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< SphericalDetector * >(argp1);
-  result = (AxesUnits)((SphericalDetector const *)arg1)->defaultAxesUnits();
-  resultobj = SWIG_From_int(static_cast< int >(result));
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  (arg1)->runMPISimulation();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *SphericalDetector_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_SphericalDetector, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *SphericalDetector_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_IsGISAXSDetector__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_Simulation_setInstrument(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IsGISAXSDetector *result = 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  Instrument *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (IsGISAXSDetector *)new IsGISAXSDetector();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsGISAXSDetector, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Simulation_setInstrument", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setInstrument" "', argument " "1"" of type '" "Simulation *""'"); 
+  }
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Instrument,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setInstrument" "', argument " "2"" of type '" "Instrument const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setInstrument" "', argument " "2"" of type '" "Instrument const &""'"); 
+  }
+  arg2 = reinterpret_cast< Instrument * >(argp2);
+  (arg1)->setInstrument((Instrument const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IsGISAXSDetector__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Simulation_getInstrument__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  double arg3 ;
-  size_t arg4 ;
-  double arg5 ;
-  double arg6 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  size_t val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  double val6 ;
-  int ecode6 = 0 ;
-  IsGISAXSDetector *result = 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  Instrument *result = 0 ;
   
-  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IsGISAXSDetector" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_IsGISAXSDetector" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_IsGISAXSDetector" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_size_t(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_IsGISAXSDetector" "', argument " "4"" of type '" "size_t""'");
-  } 
-  arg4 = static_cast< size_t >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_IsGISAXSDetector" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  ecode6 = SWIG_AsVal_double(swig_obj[5], &val6);
-  if (!SWIG_IsOK(ecode6)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "new_IsGISAXSDetector" "', argument " "6"" of type '" "double""'");
-  } 
-  arg6 = static_cast< double >(val6);
-  result = (IsGISAXSDetector *)new IsGISAXSDetector(arg1,arg2,arg3,arg4,arg5,arg6);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsGISAXSDetector, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getInstrument" "', argument " "1"" of type '" "Simulation const *""'"); 
+  }
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  result = (Instrument *) &((Simulation const *)arg1)->getInstrument();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Instrument, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IsGISAXSDetector__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Simulation_getInstrument__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IsGISAXSDetector *arg1 = 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  IsGISAXSDetector *result = 0 ;
+  Instrument *result = 0 ;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IsGISAXSDetector,  0  | 0);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_IsGISAXSDetector" "', argument " "1"" of type '" "IsGISAXSDetector const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_IsGISAXSDetector" "', argument " "1"" of type '" "IsGISAXSDetector const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getInstrument" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< IsGISAXSDetector * >(argp1);
-  result = (IsGISAXSDetector *)new IsGISAXSDetector((IsGISAXSDetector const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsGISAXSDetector, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  result = (Instrument *) &(arg1)->getInstrument();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Instrument, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_IsGISAXSDetector(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_getInstrument(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[7] = {
+  PyObject *argv[2] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_IsGISAXSDetector", 0, 6, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Simulation_getInstrument", 0, 1, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_IsGISAXSDetector__SWIG_0(self, argc, argv);
-  }
   if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IsGISAXSDetector, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_IsGISAXSDetector__SWIG_2(self, argc, argv);
+      return _wrap_Simulation_getInstrument__SWIG_1(self, argc, argv);
     }
   }
-  if (argc == 6) {
+  if (argc == 1) {
     int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_size_t(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              {
-                int res = SWIG_AsVal_double(argv[5], NULL);
-                _v = SWIG_CheckState(res);
-              }
-              if (_v) {
-                return _wrap_new_IsGISAXSDetector__SWIG_1(self, argc, argv);
-              }
-            }
-          }
-        }
-      }
+      return _wrap_Simulation_getInstrument__SWIG_0(self, argc, argv);
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_IsGISAXSDetector'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Simulation_getInstrument'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    IsGISAXSDetector::IsGISAXSDetector()\n"
-    "    IsGISAXSDetector::IsGISAXSDetector(size_t,double,double,size_t,double,double)\n"
-    "    IsGISAXSDetector::IsGISAXSDetector(IsGISAXSDetector const &)\n");
+    "    Simulation::getInstrument() const\n"
+    "    Simulation::getInstrument()\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IsGISAXSDetector_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IsGISAXSDetector *arg1 = (IsGISAXSDetector *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IsGISAXSDetector *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsGISAXSDetector, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsGISAXSDetector_clone" "', argument " "1"" of type '" "IsGISAXSDetector const *""'"); 
-  }
-  arg1 = reinterpret_cast< IsGISAXSDetector * >(argp1);
-  result = (IsGISAXSDetector *)((IsGISAXSDetector const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsGISAXSDetector, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IsGISAXSDetector_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_setBeamIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IsGISAXSDetector *arg1 = (IsGISAXSDetector *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IsGISAXSDetector_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsGISAXSDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Simulation_setBeamIntensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsGISAXSDetector_accept" "', argument " "1"" of type '" "IsGISAXSDetector const *""'"); 
-  }
-  arg1 = reinterpret_cast< IsGISAXSDetector * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IsGISAXSDetector_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setBeamIntensity" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((IsGISAXSDetector const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Simulation_setBeamIntensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setBeamIntensity(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -99672,109 +98581,91 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IsGISAXSDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_getBeamIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IsGISAXSDetector *arg1 = (IsGISAXSDetector *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsGISAXSDetector, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IsGISAXSDetector" "', argument " "1"" of type '" "IsGISAXSDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getBeamIntensity" "', argument " "1"" of type '" "Simulation const *""'"); 
   }
-  arg1 = reinterpret_cast< IsGISAXSDetector * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  result = (double)((Simulation const *)arg1)->getBeamIntensity();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IsGISAXSDetector_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IsGISAXSDetector, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *IsGISAXSDetector_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_delete_ILatticeOrientation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_setBeamPolarization(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ILatticeOrientation *arg1 = (ILatticeOrientation *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  kvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILatticeOrientation, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Simulation_setBeamPolarization", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ILatticeOrientation" "', argument " "1"" of type '" "ILatticeOrientation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setBeamPolarization" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< ILatticeOrientation * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_ILatticeOrientation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  ILatticeOrientation *arg1 = (ILatticeOrientation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  ILatticeOrientation *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILatticeOrientation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILatticeOrientation_clone" "', argument " "1"" of type '" "ILatticeOrientation const *""'"); 
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setBeamPolarization" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setBeamPolarization" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg1 = reinterpret_cast< ILatticeOrientation * >(argp1);
-  result = (ILatticeOrientation *)((ILatticeOrientation const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ILatticeOrientation, 0 |  0 );
+  (arg1)->setBeamPolarization(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ILatticeOrientation_usePrimitiveLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_setDetectorResolutionFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ILatticeOrientation *arg1 = (ILatticeOrientation *) 0 ;
-  Lattice *arg2 = 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  IResolutionFunction2D *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ILatticeOrientation_usePrimitiveLattice", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILatticeOrientation, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Simulation_setDetectorResolutionFunction", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILatticeOrientation_usePrimitiveLattice" "', argument " "1"" of type '" "ILatticeOrientation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setDetectorResolutionFunction" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< ILatticeOrientation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Lattice,  0  | 0);
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IResolutionFunction2D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ILatticeOrientation_usePrimitiveLattice" "', argument " "2"" of type '" "Lattice const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setDetectorResolutionFunction" "', argument " "2"" of type '" "IResolutionFunction2D const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ILatticeOrientation_usePrimitiveLattice" "', argument " "2"" of type '" "Lattice const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setDetectorResolutionFunction" "', argument " "2"" of type '" "IResolutionFunction2D const &""'"); 
   }
-  arg2 = reinterpret_cast< Lattice * >(argp2);
-  (arg1)->usePrimitiveLattice((Lattice const &)*arg2);
+  arg2 = reinterpret_cast< IResolutionFunction2D * >(argp2);
+  (arg1)->setDetectorResolutionFunction((IResolutionFunction2D const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -99782,96 +98673,106 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ILatticeOrientation_transformationMatrix(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_removeDetectorResolutionFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ILatticeOrientation *arg1 = (ILatticeOrientation *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Transform3D result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILatticeOrientation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILatticeOrientation_transformationMatrix" "', argument " "1"" of type '" "ILatticeOrientation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_removeDetectorResolutionFunction" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< ILatticeOrientation * >(argp1);
-  result = ((ILatticeOrientation const *)arg1)->transformationMatrix();
-  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  (arg1)->removeDetectorResolutionFunction();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *ILatticeOrientation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ILatticeOrientation, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_new_MillerIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_setAnalyzerProperties(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  kvector_t arg2 ;
   double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  double arg4 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  MillerIndex *result = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_MillerIndex", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_MillerIndex" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_MillerIndex" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
+  if (!SWIG_Python_UnpackTuple(args, "Simulation_setAnalyzerProperties", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setAnalyzerProperties" "', argument " "1"" of type '" "Simulation *""'"); 
+  }
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setAnalyzerProperties" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setAnalyzerProperties" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_MillerIndex" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Simulation_setAnalyzerProperties" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (MillerIndex *)new MillerIndex(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MillerIndex, SWIG_POINTER_NEW |  0 );
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Simulation_setAnalyzerProperties" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setAnalyzerProperties(arg2,arg3,arg4);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MillerIndex_h_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_setSample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MillerIndex *arg1 = (MillerIndex *) 0 ;
-  double arg2 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  MultiLayer *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "MillerIndex_h_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Simulation_setSample", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndex_h_set" "', argument " "1"" of type '" "MillerIndex *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setSample" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< MillerIndex * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MillerIndex_h_set" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->h = arg2;
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_MultiLayer,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setSample" "', argument " "2"" of type '" "MultiLayer const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setSample" "', argument " "2"" of type '" "MultiLayer const &""'"); 
+  }
+  arg2 = reinterpret_cast< MultiLayer * >(argp2);
+  (arg1)->setSample((MultiLayer const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -99879,51 +98780,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_MillerIndex_h_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_sample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MillerIndex *arg1 = (MillerIndex *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  MultiLayer *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndex_h_get" "', argument " "1"" of type '" "MillerIndex *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_sample" "', argument " "1"" of type '" "Simulation const *""'"); 
   }
-  arg1 = reinterpret_cast< MillerIndex * >(argp1);
-  result = (double) ((arg1)->h);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  result = (MultiLayer *)((Simulation const *)arg1)->sample();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MillerIndex_k_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_setSampleBuilderCpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MillerIndex *arg1 = (MillerIndex *) 0 ;
-  double arg2 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  std::shared_ptr< IMultiLayerBuilder > arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "MillerIndex_k_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Simulation_setSampleBuilderCpp", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndex_k_set" "', argument " "1"" of type '" "MillerIndex *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setSampleBuilderCpp" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< MillerIndex * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MillerIndex_k_set" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->k = arg2;
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  {
+    int newmem = 0;
+    res2 = SWIG_ConvertPtrAndOwn(swig_obj[1], &argp2, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t,  0 , &newmem);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setSampleBuilderCpp" "', argument " "2"" of type '" "std::shared_ptr< IMultiLayerBuilder > const""'");
+    }
+    if (argp2) arg2 = *(reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp2));
+    if (newmem & SWIG_CAST_NEW_MEMORY) delete reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp2);
+  }
+  (arg1)->setSampleBuilder(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -99931,246 +98836,320 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_MillerIndex_k_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_setBackground(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MillerIndex *arg1 = (MillerIndex *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  IBackground *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Simulation_setBackground", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndex_k_get" "', argument " "1"" of type '" "MillerIndex *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setBackground" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< MillerIndex * >(argp1);
-  result = (double) ((arg1)->k);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IBackground,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setBackground" "', argument " "2"" of type '" "IBackground const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setBackground" "', argument " "2"" of type '" "IBackground const &""'"); 
+  }
+  arg2 = reinterpret_cast< IBackground * >(argp2);
+  (arg1)->setBackground((IBackground const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MillerIndex_l_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_background(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MillerIndex *arg1 = (MillerIndex *) 0 ;
-  double arg2 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  IBackground *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "MillerIndex_l_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndex_l_set" "', argument " "1"" of type '" "MillerIndex *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_background" "', argument " "1"" of type '" "Simulation const *""'"); 
   }
-  arg1 = reinterpret_cast< MillerIndex * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MillerIndex_l_set" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->l = arg2;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  result = (IBackground *)((Simulation const *)arg1)->background();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IBackground, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MillerIndex_l_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_intensityMapSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MillerIndex *arg1 = (MillerIndex *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndex_l_get" "', argument " "1"" of type '" "MillerIndex *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_intensityMapSize" "', argument " "1"" of type '" "Simulation const *""'"); 
   }
-  arg1 = reinterpret_cast< MillerIndex * >(argp1);
-  result = (double) ((arg1)->l);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  result = ((Simulation const *)arg1)->intensityMapSize();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_MillerIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_result(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MillerIndex *arg1 = (MillerIndex *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  SimulationResult result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_MillerIndex" "', argument " "1"" of type '" "MillerIndex *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_result" "', argument " "1"" of type '" "Simulation const *""'"); 
   }
-  arg1 = reinterpret_cast< MillerIndex * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  result = ((Simulation const *)arg1)->result();
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *MillerIndex_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_MillerIndex, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *MillerIndex_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_MillerIndexOrientation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_addParameterDistribution__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  MillerIndexOrientation::QComponent arg1 ;
-  SwigValueWrapper< MillerIndex > arg2 ;
-  MillerIndexOrientation::QComponent arg3 ;
-  SwigValueWrapper< MillerIndex > arg4 ;
-  int val1 ;
-  int ecode1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  int val3 ;
-  int ecode3 = 0 ;
-  void *argp4 ;
-  int res4 = 0 ;
-  PyObject *swig_obj[4] ;
-  MillerIndexOrientation *result = 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  std::string *arg2 = 0 ;
+  IDistribution1D *arg3 = 0 ;
+  size_t arg4 ;
+  double arg5 ;
+  RealLimits *arg6 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  size_t val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
+  void *argp6 = 0 ;
+  int res6 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_MillerIndexOrientation", 4, 4, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_MillerIndexOrientation" "', argument " "1"" of type '" "MillerIndexOrientation::QComponent""'");
-  } 
-  arg1 = static_cast< MillerIndexOrientation::QComponent >(val1);
+  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_addParameterDistribution" "', argument " "1"" of type '" "Simulation *""'"); 
+  }
+  arg1 = reinterpret_cast< Simulation * >(argp1);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_MillerIndex,  0  | 0);
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_MillerIndexOrientation" "', argument " "2"" of type '" "MillerIndex""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_MillerIndexOrientation" "', argument " "2"" of type '" "MillerIndex""'");
-    } else {
-      MillerIndex * temp = reinterpret_cast< MillerIndex * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "std::string const &""'"); 
     }
+    arg2 = ptr;
   }
-  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_MillerIndexOrientation" "', argument " "3"" of type '" "MillerIndexOrientation::QComponent""'");
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IDistribution1D,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Simulation_addParameterDistribution" "', argument " "3"" of type '" "IDistribution1D const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "3"" of type '" "IDistribution1D const &""'"); 
+  }
+  arg3 = reinterpret_cast< IDistribution1D * >(argp3);
+  ecode4 = SWIG_AsVal_size_t(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Simulation_addParameterDistribution" "', argument " "4"" of type '" "size_t""'");
   } 
-  arg3 = static_cast< MillerIndexOrientation::QComponent >(val3);
-  {
-    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_MillerIndex,  0  | 0);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_MillerIndexOrientation" "', argument " "4"" of type '" "MillerIndex""'"); 
-    }  
-    if (!argp4) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_MillerIndexOrientation" "', argument " "4"" of type '" "MillerIndex""'");
-    } else {
-      MillerIndex * temp = reinterpret_cast< MillerIndex * >(argp4);
-      arg4 = *temp;
-      if (SWIG_IsNewObj(res4)) delete temp;
-    }
+  arg4 = static_cast< size_t >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "Simulation_addParameterDistribution" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  res6 = SWIG_ConvertPtr(swig_obj[5], &argp6, SWIGTYPE_p_RealLimits,  0  | 0);
+  if (!SWIG_IsOK(res6)) {
+    SWIG_exception_fail(SWIG_ArgError(res6), "in method '" "Simulation_addParameterDistribution" "', argument " "6"" of type '" "RealLimits const &""'"); 
   }
-  result = (MillerIndexOrientation *)new MillerIndexOrientation(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MillerIndexOrientation, SWIG_POINTER_NEW |  0 );
+  if (!argp6) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "6"" of type '" "RealLimits const &""'"); 
+  }
+  arg6 = reinterpret_cast< RealLimits * >(argp6);
+  (arg1)->addParameterDistribution((std::string const &)*arg2,(IDistribution1D const &)*arg3,arg4,arg5,(RealLimits const &)*arg6);
+  resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_MillerIndexOrientation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_addParameterDistribution__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  MillerIndexOrientation *arg1 = (MillerIndexOrientation *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  std::string *arg2 = 0 ;
+  IDistribution1D *arg3 = 0 ;
+  size_t arg4 ;
+  double arg5 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  int res2 = SWIG_OLDOBJ ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  size_t val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndexOrientation, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_MillerIndexOrientation" "', argument " "1"" of type '" "MillerIndexOrientation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_addParameterDistribution" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< MillerIndexOrientation * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IDistribution1D,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Simulation_addParameterDistribution" "', argument " "3"" of type '" "IDistribution1D const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "3"" of type '" "IDistribution1D const &""'"); 
+  }
+  arg3 = reinterpret_cast< IDistribution1D * >(argp3);
+  ecode4 = SWIG_AsVal_size_t(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Simulation_addParameterDistribution" "', argument " "4"" of type '" "size_t""'");
+  } 
+  arg4 = static_cast< size_t >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "Simulation_addParameterDistribution" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  (arg1)->addParameterDistribution((std::string const &)*arg2,(IDistribution1D const &)*arg3,arg4,arg5);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MillerIndexOrientation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_addParameterDistribution__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  MillerIndexOrientation *arg1 = (MillerIndexOrientation *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  std::string *arg2 = 0 ;
+  IDistribution1D *arg3 = 0 ;
+  size_t arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  MillerIndexOrientation *result = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  size_t val4 ;
+  int ecode4 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndexOrientation, 0 |  0 );
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndexOrientation_clone" "', argument " "1"" of type '" "MillerIndexOrientation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_addParameterDistribution" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< MillerIndexOrientation * >(argp1);
-  result = (MillerIndexOrientation *)((MillerIndexOrientation const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MillerIndexOrientation, 0 |  0 );
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IDistribution1D,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Simulation_addParameterDistribution" "', argument " "3"" of type '" "IDistribution1D const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "3"" of type '" "IDistribution1D const &""'"); 
+  }
+  arg3 = reinterpret_cast< IDistribution1D * >(argp3);
+  ecode4 = SWIG_AsVal_size_t(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Simulation_addParameterDistribution" "', argument " "4"" of type '" "size_t""'");
+  } 
+  arg4 = static_cast< size_t >(val4);
+  (arg1)->addParameterDistribution((std::string const &)*arg2,(IDistribution1D const &)*arg3,arg4);
+  resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MillerIndexOrientation_usePrimitiveLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_addParameterDistribution__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  MillerIndexOrientation *arg1 = (MillerIndexOrientation *) 0 ;
-  Lattice *arg2 = 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  ParameterDistribution *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "MillerIndexOrientation_usePrimitiveLattice", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndexOrientation, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndexOrientation_usePrimitiveLattice" "', argument " "1"" of type '" "MillerIndexOrientation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_addParameterDistribution" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< MillerIndexOrientation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Lattice,  0  | 0);
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ParameterDistribution,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MillerIndexOrientation_usePrimitiveLattice" "', argument " "2"" of type '" "Lattice const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "ParameterDistribution const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MillerIndexOrientation_usePrimitiveLattice" "', argument " "2"" of type '" "Lattice const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_addParameterDistribution" "', argument " "2"" of type '" "ParameterDistribution const &""'"); 
   }
-  arg2 = reinterpret_cast< Lattice * >(argp2);
-  (arg1)->usePrimitiveLattice((Lattice const &)*arg2);
+  arg2 = reinterpret_cast< ParameterDistribution * >(argp2);
+  (arg1)->addParameterDistribution((ParameterDistribution const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -100178,228 +99157,287 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_MillerIndexOrientation_transformationMatrix(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_addParameterDistribution(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[7] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Simulation_addParameterDistribution", 0, 6, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_Simulation_addParameterDistribution__SWIG_3(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          {
+            int res = SWIG_AsVal_size_t(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_Simulation_addParameterDistribution__SWIG_2(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  if (argc == 5) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          {
+            int res = SWIG_AsVal_size_t(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              return _wrap_Simulation_addParameterDistribution__SWIG_1(self, argc, argv);
+            }
+          }
+        }
+      }
+    }
+  }
+  if (argc == 6) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          {
+            int res = SWIG_AsVal_size_t(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              int res = SWIG_ConvertPtr(argv[5], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
+              _v = SWIG_CheckState(res);
+              if (_v) {
+                return _wrap_Simulation_addParameterDistribution__SWIG_0(self, argc, argv);
+              }
+            }
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Simulation_addParameterDistribution'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Simulation::addParameterDistribution(std::string const &,IDistribution1D const &,size_t,double,RealLimits const &)\n"
+    "    Simulation::addParameterDistribution(std::string const &,IDistribution1D const &,size_t,double)\n"
+    "    Simulation::addParameterDistribution(std::string const &,IDistribution1D const &,size_t)\n"
+    "    Simulation::addParameterDistribution(ParameterDistribution const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_Simulation_getDistributionHandler(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MillerIndexOrientation *arg1 = (MillerIndexOrientation *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Transform3D result;
+  DistributionHandler *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndexOrientation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndexOrientation_transformationMatrix" "', argument " "1"" of type '" "MillerIndexOrientation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getDistributionHandler" "', argument " "1"" of type '" "Simulation const *""'"); 
   }
-  arg1 = reinterpret_cast< MillerIndexOrientation * >(argp1);
-  result = ((MillerIndexOrientation const *)arg1)->transformationMatrix();
-  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  result = (DistributionHandler *) &((Simulation const *)arg1)->getDistributionHandler();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DistributionHandler, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *MillerIndexOrientation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_MillerIndexOrientation, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *MillerIndexOrientation_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_Lattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_Simulation_setOptions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *result = 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  SimulationOptions *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (Lattice *)new Lattice();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Simulation_setOptions", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setOptions" "', argument " "1"" of type '" "Simulation *""'"); 
+  }
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_SimulationOptions,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_setOptions" "', argument " "2"" of type '" "SimulationOptions const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_setOptions" "', argument " "2"" of type '" "SimulationOptions const &""'"); 
+  }
+  arg2 = reinterpret_cast< SimulationOptions * >(argp2);
+  (arg1)->setOptions((SimulationOptions const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Lattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Simulation_getOptions__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  kvector_t arg1 ;
-  kvector_t arg2 ;
-  kvector_t arg3 ;
-  void *argp1 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  Lattice *result = 0 ;
+  SimulationOptions *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  {
-    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Lattice" "', argument " "1"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp1) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Lattice" "', argument " "1"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp1);
-      arg1 = *temp;
-      if (SWIG_IsNewObj(res1)) delete temp;
-    }
-  }
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Lattice" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Lattice" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_Lattice" "', argument " "3"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Lattice" "', argument " "3"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getOptions" "', argument " "1"" of type '" "Simulation const *""'"); 
   }
-  result = (Lattice *)new Lattice(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  result = (SimulationOptions *) &((Simulation const *)arg1)->getOptions();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationOptions, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Lattice__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Simulation_getOptions__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Lattice *result = 0 ;
+  SimulationOptions *result = 0 ;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice,  0  | 0);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Lattice" "', argument " "1"" of type '" "Lattice const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Lattice" "', argument " "1"" of type '" "Lattice const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getOptions" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  result = (Lattice *)new Lattice((Lattice const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  result = (SimulationOptions *) &(arg1)->getOptions();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationOptions, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Lattice(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_getOptions(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[2] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Lattice", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Simulation_getOptions", 0, 1, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_Lattice__SWIG_0(self, argc, argv);
-  }
   if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_Lattice__SWIG_2(self, argc, argv);
+      return _wrap_Simulation_getOptions__SWIG_1(self, argc, argv);
     }
   }
-  if (argc == 3) {
+  if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_new_Lattice__SWIG_1(self, argc, argv);
-        }
-      }
+      return _wrap_Simulation_getOptions__SWIG_0(self, argc, argv);
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Lattice'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Simulation_getOptions'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    Lattice::Lattice()\n"
-    "    Lattice::Lattice(kvector_t const,kvector_t const,kvector_t const)\n"
-    "    Lattice::Lattice(Lattice const &)\n");
+    "    Simulation::getOptions() const\n"
+    "    Simulation::getOptions()\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Lattice" "', argument " "1"" of type '" "Lattice *""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Lattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_subscribe(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
+  ProgressHandler::Callback_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
+  void *argp2 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Simulation_subscribe", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_accept" "', argument " "1"" of type '" "Lattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_subscribe" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ProgressHandler__Callback_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation_subscribe" "', argument " "2"" of type '" "ProgressHandler::Callback_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation_subscribe" "', argument " "2"" of type '" "ProgressHandler::Callback_t""'");
+    } else {
+      ProgressHandler::Callback_t * temp = reinterpret_cast< ProgressHandler::Callback_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((Lattice const *)arg1)->accept(arg2);
+  (arg1)->subscribe(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -100407,54 +99445,21 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_createTransformedLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
-  Transform3D *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  SwigValueWrapper< Lattice > result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_createTransformedLattice", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_createTransformedLattice" "', argument " "1"" of type '" "Lattice const *""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Transform3D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_createTransformedLattice" "', argument " "2"" of type '" "Transform3D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_createTransformedLattice" "', argument " "2"" of type '" "Transform3D const &""'"); 
-  }
-  arg2 = reinterpret_cast< Transform3D * >(argp2);
-  result = ((Lattice const *)arg1)->createTransformedLattice((Transform3D const &)*arg2);
-  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Lattice_initialize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_setTerminalProgressMonitor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_initialize" "', argument " "1"" of type '" "Lattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_setTerminalProgressMonitor" "', argument " "1"" of type '" "Simulation *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  ((Lattice const *)arg1)->initialize();
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  (arg1)->setTerminalProgressMonitor();
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -100462,137 +99467,96 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_getBasisVectorA(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
+  Simulation *arg1 = (Simulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  kvector_t result;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getBasisVectorA" "', argument " "1"" of type '" "Lattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation_getChildren" "', argument " "1"" of type '" "Simulation const *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  result = ((Lattice const *)arg1)->getBasisVectorA();
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  result = ((Simulation const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_getBasisVectorB(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Simulation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_Simulation, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_delete_Simulation2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
+  Simulation2D *arg1 = (Simulation2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  kvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getBasisVectorB" "', argument " "1"" of type '" "Lattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Simulation2D" "', argument " "1"" of type '" "Simulation2D *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  result = ((Lattice const *)arg1)->getBasisVectorB();
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< Simulation2D * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_getBasisVectorC(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
+  Simulation2D *arg1 = (Simulation2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  kvector_t result;
+  Simulation2D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getBasisVectorC" "', argument " "1"" of type '" "Lattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_clone" "', argument " "1"" of type '" "Simulation2D const *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  result = ((Lattice const *)arg1)->getBasisVectorC();
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< Simulation2D * >(argp1);
+  result = (Simulation2D *)((Simulation2D const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Simulation2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_resetBasis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation2D_prepareSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
-  kvector_t arg2 ;
-  kvector_t arg3 ;
-  kvector_t arg4 ;
+  Simulation2D *arg1 = (Simulation2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  void *argp4 ;
-  int res4 = 0 ;
-  PyObject *swig_obj[4] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_resetBasis", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_resetBasis" "', argument " "1"" of type '" "Lattice *""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_resetBasis" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_resetBasis" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Lattice_resetBasis" "', argument " "3"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_resetBasis" "', argument " "3"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
-  }
-  {
-    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "Lattice_resetBasis" "', argument " "4"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp4) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_resetBasis" "', argument " "4"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
-      arg4 = *temp;
-      if (SWIG_IsNewObj(res4)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_prepareSimulation" "', argument " "1"" of type '" "Simulation2D *""'"); 
   }
-  (arg1)->resetBasis(arg2,arg3,arg4);
+  arg1 = reinterpret_cast< Simulation2D * >(argp1);
+  (arg1)->prepareSimulation();
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -100600,122 +99564,100 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_getMillerDirection(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation2D_setDetectorParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
-  double arg2 ;
+  Simulation2D *arg1 = (Simulation2D *) 0 ;
+  size_t arg2 ;
   double arg3 ;
   double arg4 ;
+  size_t arg5 ;
+  double arg6 ;
+  double arg7 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
+  size_t val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
   double val4 ;
   int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  kvector_t result;
+  size_t val5 ;
+  int ecode5 = 0 ;
+  double val6 ;
+  int ecode6 = 0 ;
+  double val7 ;
+  int ecode7 = 0 ;
+  PyObject *swig_obj[7] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_getMillerDirection", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Simulation2D_setDetectorParameters", 7, 7, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getMillerDirection" "', argument " "1"" of type '" "Lattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_setDetectorParameters" "', argument " "1"" of type '" "Simulation2D *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< Simulation2D * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice_getMillerDirection" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Simulation2D_setDetectorParameters" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< double >(val2);
+  arg2 = static_cast< size_t >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Lattice_getMillerDirection" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Simulation2D_setDetectorParameters" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
   ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Lattice_getMillerDirection" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Simulation2D_setDetectorParameters" "', argument " "4"" of type '" "double""'");
   } 
   arg4 = static_cast< double >(val4);
-  result = ((Lattice const *)arg1)->getMillerDirection(arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Lattice_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_volume" "', argument " "1"" of type '" "Lattice const *""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  result = (double)((Lattice const *)arg1)->volume();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  ecode5 = SWIG_AsVal_size_t(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "Simulation2D_setDetectorParameters" "', argument " "5"" of type '" "size_t""'");
+  } 
+  arg5 = static_cast< size_t >(val5);
+  ecode6 = SWIG_AsVal_double(swig_obj[5], &val6);
+  if (!SWIG_IsOK(ecode6)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "Simulation2D_setDetectorParameters" "', argument " "6"" of type '" "double""'");
+  } 
+  arg6 = static_cast< double >(val6);
+  ecode7 = SWIG_AsVal_double(swig_obj[6], &val7);
+  if (!SWIG_IsOK(ecode7)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode7), "in method '" "Simulation2D_setDetectorParameters" "', argument " "7"" of type '" "double""'");
+  } 
+  arg7 = static_cast< double >(val7);
+  (arg1)->setDetectorParameters(arg2,arg3,arg4,arg5,arg6,arg7);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_getReciprocalLatticeBasis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation2D_setDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
-  kvector_t *arg2 = 0 ;
-  kvector_t *arg3 = 0 ;
-  kvector_t *arg4 = 0 ;
+  Simulation2D *arg1 = (Simulation2D *) 0 ;
+  IDetector2D *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  PyObject *swig_obj[4] ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_getReciprocalLatticeBasis", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Simulation2D_setDetector", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "1"" of type '" "Lattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_setDetector" "', argument " "1"" of type '" "Simulation2D *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0 );
+  arg1 = reinterpret_cast< Simulation2D * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDetector2D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "2"" of type '" "kvector_t &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation2D_setDetector" "', argument " "2"" of type '" "IDetector2D const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "2"" of type '" "kvector_t &""'"); 
-  }
-  arg2 = reinterpret_cast< kvector_t * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0 );
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "3"" of type '" "kvector_t &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "3"" of type '" "kvector_t &""'"); 
-  }
-  arg3 = reinterpret_cast< kvector_t * >(argp3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0 );
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "4"" of type '" "kvector_t &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "4"" of type '" "kvector_t &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation2D_setDetector" "', argument " "2"" of type '" "IDetector2D const &""'"); 
   }
-  arg4 = reinterpret_cast< kvector_t * >(argp4);
-  ((Lattice const *)arg1)->getReciprocalLatticeBasis(*arg2,*arg3,*arg4);
+  arg2 = reinterpret_cast< IDetector2D * >(argp2);
+  (arg1)->setDetector((IDetector2D const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -100723,153 +99665,91 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_getNearestLatticeVectorCoordinates(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
-  kvector_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  SwigValueWrapper< BasicVector3D< int > > result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_getNearestLatticeVectorCoordinates", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getNearestLatticeVectorCoordinates" "', argument " "1"" of type '" "Lattice const *""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_getNearestLatticeVectorCoordinates" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_getNearestLatticeVectorCoordinates" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  result = ((Lattice const *)arg1)->getNearestLatticeVectorCoordinates(arg2);
-  resultobj = SWIG_NewPointerObj((new ivector_t(static_cast< const ivector_t& >(result))), SWIGTYPE_p_BasicVector3DT_int_t, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Lattice_getNearestReciprocalLatticeVectorCoordinates(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation2D_removeMasks(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
-  kvector_t arg2 ;
+  Simulation2D *arg1 = (Simulation2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  SwigValueWrapper< BasicVector3D< int > > result;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_getNearestReciprocalLatticeVectorCoordinates", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getNearestReciprocalLatticeVectorCoordinates" "', argument " "1"" of type '" "Lattice const *""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_getNearestReciprocalLatticeVectorCoordinates" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_getNearestReciprocalLatticeVectorCoordinates" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_removeMasks" "', argument " "1"" of type '" "Simulation2D *""'"); 
   }
-  result = ((Lattice const *)arg1)->getNearestReciprocalLatticeVectorCoordinates(arg2);
-  resultobj = SWIG_NewPointerObj((new ivector_t(static_cast< const ivector_t& >(result))), SWIGTYPE_p_BasicVector3DT_int_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< Simulation2D * >(argp1);
+  (arg1)->removeMasks();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_reciprocalLatticeVectorsWithinRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation2D_addMask__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
-  kvector_t arg2 ;
-  double arg3 ;
+  Simulation2D *arg1 = (Simulation2D *) 0 ;
+  IShape2D *arg2 = 0 ;
+  bool arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  double val3 ;
+  bool val3 ;
   int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  std::vector< kvector_t,std::allocator< kvector_t > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_reciprocalLatticeVectorsWithinRadius", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_reciprocalLatticeVectorsWithinRadius" "', argument " "1"" of type '" "Lattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_addMask" "', argument " "1"" of type '" "Simulation2D *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_reciprocalLatticeVectorsWithinRadius" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_reciprocalLatticeVectorsWithinRadius" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< Simulation2D * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IShape2D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
   }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
+  }
+  arg2 = reinterpret_cast< IShape2D * >(argp2);
+  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Lattice_reciprocalLatticeVectorsWithinRadius" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Simulation2D_addMask" "', argument " "3"" of type '" "bool""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = ((Lattice const *)arg1)->reciprocalLatticeVectorsWithinRadius(arg2,arg3);
-  resultobj = swig::from(static_cast< std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > >(result));
+  arg3 = static_cast< bool >(val3);
+  (arg1)->addMask((IShape2D const &)*arg2,arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_setSelectionRule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation2D_addMask__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
-  ISelectionRule *arg2 = 0 ;
+  Simulation2D *arg1 = (Simulation2D *) 0 ;
+  IShape2D *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_setSelectionRule", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_setSelectionRule" "', argument " "1"" of type '" "Lattice *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_addMask" "', argument " "1"" of type '" "Simulation2D *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ISelectionRule,  0  | 0);
+  arg1 = reinterpret_cast< Simulation2D * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IShape2D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_setSelectionRule" "', argument " "2"" of type '" "ISelectionRule const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Simulation2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_setSelectionRule" "', argument " "2"" of type '" "ISelectionRule const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Simulation2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
   }
-  arg2 = reinterpret_cast< ISelectionRule * >(argp2);
-  (arg1)->setSelectionRule((ISelectionRule const &)*arg2);
+  arg2 = reinterpret_cast< IShape2D * >(argp2);
+  (arg1)->addMask((IShape2D const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -100877,187 +99757,124 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_createCubicLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SwigValueWrapper< Lattice > result;
+SWIGINTERN PyObject *_wrap_Simulation2D_addMask(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Simulation2D_addMask", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation2D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IShape2D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_Simulation2D_addMask__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Simulation2D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IShape2D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_bool(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_Simulation2D_addMask__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Lattice_createCubicLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = Lattice::createCubicLattice(arg1);
-  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
-  return resultobj;
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Simulation2D_addMask'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Simulation2D::addMask(IShape2D const &,bool)\n"
+    "    Simulation2D::addMask(IShape2D const &)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_createFCCLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation2D_maskAll(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  Simulation2D *arg1 = (Simulation2D *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SwigValueWrapper< Lattice > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Lattice_createFCCLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = Lattice::createFCCLattice(arg1);
-  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Lattice_createHexagonalLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  SwigValueWrapper< Lattice > result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_createHexagonalLattice", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Lattice_createHexagonalLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice_createHexagonalLattice" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = Lattice::createHexagonalLattice(arg1,arg2);
-  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_maskAll" "', argument " "1"" of type '" "Simulation2D *""'"); 
+  }
+  arg1 = reinterpret_cast< Simulation2D * >(argp1);
+  (arg1)->maskAll();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice_createHCPLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Simulation2D_setRegionOfInterest(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
+  Simulation2D *arg1 = (Simulation2D *) 0 ;
   double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  double arg3 ;
+  double arg4 ;
+  double arg5 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  SwigValueWrapper< Lattice > result;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
+  PyObject *swig_obj[5] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_createHCPLattice", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Lattice_createHCPLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
+  if (!SWIG_Python_UnpackTuple(args, "Simulation2D_setRegionOfInterest", 5, 5, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Simulation2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Simulation2D_setRegionOfInterest" "', argument " "1"" of type '" "Simulation2D *""'"); 
+  }
+  arg1 = reinterpret_cast< Simulation2D * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice_createHCPLattice" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Simulation2D_setRegionOfInterest" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = Lattice::createHCPLattice(arg1,arg2);
-  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Lattice_createTetragonalLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  SwigValueWrapper< Lattice > result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_createTetragonalLattice", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Lattice_createTetragonalLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice_createTetragonalLattice" "', argument " "2"" of type '" "double""'");
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Simulation2D_setRegionOfInterest" "', argument " "3"" of type '" "double""'");
   } 
-  arg2 = static_cast< double >(val2);
-  result = Lattice::createTetragonalLattice(arg1,arg2);
-  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Lattice_createBCTLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  SwigValueWrapper< Lattice > result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "Lattice_createBCTLattice", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Lattice_createBCTLattice" "', argument " "1"" of type '" "double""'");
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Simulation2D_setRegionOfInterest" "', argument " "4"" of type '" "double""'");
   } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice_createBCTLattice" "', argument " "2"" of type '" "double""'");
+  arg4 = static_cast< double >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "Simulation2D_setRegionOfInterest" "', argument " "5"" of type '" "double""'");
   } 
-  arg2 = static_cast< double >(val2);
-  result = Lattice::createBCTLattice(arg1,arg2);
-  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_Lattice_onChange(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Lattice *arg1 = (Lattice *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_onChange" "', argument " "1"" of type '" "Lattice *""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice * >(argp1);
-  (arg1)->onChange();
+  arg5 = static_cast< double >(val5);
+  (arg1)->setRegionOfInterest(arg2,arg3,arg4,arg5);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -101065,233 +99882,128 @@ fail:
 }
 
 
-SWIGINTERN PyObject *Lattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Simulation2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Lattice, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_Simulation2D, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *Lattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_CreateFCCLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  ILatticeOrientation *arg2 = 0 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  SwigValueWrapper< Lattice > result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "CreateFCCLattice", 2, 2, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "CreateFCCLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ILatticeOrientation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "CreateFCCLattice" "', argument " "2"" of type '" "ILatticeOrientation const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "CreateFCCLattice" "', argument " "2"" of type '" "ILatticeOrientation const &""'"); 
-  }
-  arg2 = reinterpret_cast< ILatticeOrientation * >(argp2);
-  result = LatticeUtils::CreateFCCLattice(arg1,(ILatticeOrientation const &)*arg2);
-  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_CreateHCPLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  ILatticeOrientation *arg3 = 0 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  SwigValueWrapper< Lattice > result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "CreateHCPLattice", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "CreateHCPLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "CreateHCPLattice" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_ILatticeOrientation,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "CreateHCPLattice" "', argument " "3"" of type '" "ILatticeOrientation const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "CreateHCPLattice" "', argument " "3"" of type '" "ILatticeOrientation const &""'"); 
-  }
-  arg3 = reinterpret_cast< ILatticeOrientation * >(argp3);
-  result = LatticeUtils::CreateHCPLattice(arg1,arg2,(ILatticeOrientation const &)*arg3);
-  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_CreateBCTLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_GISASSimulation__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  ILatticeOrientation *arg3 = 0 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  SwigValueWrapper< Lattice > result;
+  GISASSimulation *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "CreateBCTLattice", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "CreateBCTLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "CreateBCTLattice" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_ILatticeOrientation,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "CreateBCTLattice" "', argument " "3"" of type '" "ILatticeOrientation const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "CreateBCTLattice" "', argument " "3"" of type '" "ILatticeOrientation const &""'"); 
-  }
-  arg3 = reinterpret_cast< ILatticeOrientation * >(argp3);
-  result = LatticeUtils::CreateBCTLattice(arg1,arg2,(ILatticeOrientation const &)*arg3);
-  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (GISASSimulation *)new GISASSimulation();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_GISASSimulation, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Lattice1DParameters__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_new_GISASSimulation__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Lattice1DParameters *result = 0 ;
+  MultiLayer *arg1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  GISASSimulation *result = 0 ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (Lattice1DParameters *)new Lattice1DParameters();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice1DParameters, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_MultiLayer,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_GISASSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_GISASSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
+  }
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  result = (GISASSimulation *)new GISASSimulation((MultiLayer const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_GISASSimulation, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Lattice1DParameters__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_GISASSimulation__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  Lattice1DParameters *result = 0 ;
+  std::shared_ptr< IMultiLayerBuilder > arg1 ;
+  void *argp1 ;
+  int res1 = 0 ;
+  GISASSimulation *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Lattice1DParameters" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Lattice1DParameters" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (Lattice1DParameters *)new Lattice1DParameters(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice1DParameters, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t,  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_GISASSimulation" "', argument " "1"" of type '" "std::shared_ptr< IMultiLayerBuilder > const""'");
+    }
+    if (argp1) arg1 = *(reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1));
+    if (newmem & SWIG_CAST_NEW_MEMORY) delete reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1);
+  }
+  result = (GISASSimulation *)new GISASSimulation(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_GISASSimulation, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Lattice1DParameters(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_GISASSimulation(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[2] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Lattice1DParameters", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_GISASSimulation", 0, 1, argv))) SWIG_fail;
   --argc;
   if (argc == 0) {
-    return _wrap_new_Lattice1DParameters__SWIG_0(self, argc, argv);
+    return _wrap_new_GISASSimulation__SWIG_0(self, argc, argv);
   }
-  if (argc == 2) {
+  if (argc == 1) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_MultiLayer, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_GISASSimulation__SWIG_1(self, argc, argv);
     }
+  }
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_Lattice1DParameters__SWIG_1(self, argc, argv);
-      }
+      return _wrap_new_GISASSimulation__SWIG_2(self, argc, argv);
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Lattice1DParameters'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_GISASSimulation'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    Lattice1DParameters::Lattice1DParameters()\n"
-    "    Lattice1DParameters::Lattice1DParameters(double,double)\n");
+    "    GISASSimulation::GISASSimulation()\n"
+    "    GISASSimulation::GISASSimulation(MultiLayer const &)\n"
+    "    GISASSimulation::GISASSimulation(std::shared_ptr< IMultiLayerBuilder > const)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice1DParameters_m_length_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_GISASSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice1DParameters *arg1 = (Lattice1DParameters *) 0 ;
-  double arg2 ;
+  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Lattice1DParameters_m_length_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice1DParameters, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice1DParameters_m_length_set" "', argument " "1"" of type '" "Lattice1DParameters *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_GISASSimulation" "', argument " "1"" of type '" "GISASSimulation *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice1DParameters * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice1DParameters_m_length_set" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->m_length = arg2;
+  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -101299,51 +100011,51 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice1DParameters_m_length_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GISASSimulation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice1DParameters *arg1 = (Lattice1DParameters *) 0 ;
+  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  GISASSimulation *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice1DParameters, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice1DParameters_m_length_get" "', argument " "1"" of type '" "Lattice1DParameters *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GISASSimulation_clone" "', argument " "1"" of type '" "GISASSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice1DParameters * >(argp1);
-  result = (double) ((arg1)->m_length);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
+  result = (GISASSimulation *)((GISASSimulation const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_GISASSimulation, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice1DParameters_m_xi_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GISASSimulation_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice1DParameters *arg1 = (Lattice1DParameters *) 0 ;
-  double arg2 ;
+  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Lattice1DParameters_m_xi_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice1DParameters, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "GISASSimulation_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice1DParameters_m_xi_set" "', argument " "1"" of type '" "Lattice1DParameters *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GISASSimulation_accept" "', argument " "1"" of type '" "GISASSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice1DParameters * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice1DParameters_m_xi_set" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->m_xi = arg2;
+  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "GISASSimulation_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((GISASSimulation const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -101351,245 +100063,297 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice1DParameters_m_xi_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GISASSimulation_prepareSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice1DParameters *arg1 = (Lattice1DParameters *) 0 ;
+  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice1DParameters, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice1DParameters_m_xi_get" "', argument " "1"" of type '" "Lattice1DParameters *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GISASSimulation_prepareSimulation" "', argument " "1"" of type '" "GISASSimulation *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice1DParameters * >(argp1);
-  result = (double) ((arg1)->m_xi);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
+  (arg1)->prepareSimulation();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Lattice1DParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GISASSimulation_result(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice1DParameters *arg1 = (Lattice1DParameters *) 0 ;
+  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  SimulationResult result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice1DParameters, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Lattice1DParameters" "', argument " "1"" of type '" "Lattice1DParameters *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GISASSimulation_result" "', argument " "1"" of type '" "GISASSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice1DParameters * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
+  result = ((GISASSimulation const *)arg1)->result();
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *Lattice1DParameters_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Lattice1DParameters, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *Lattice1DParameters_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_Lattice2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GISASSimulation_setBeamParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = (Lattice2D *) 0 ;
+  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Lattice2D *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "GISASSimulation_setBeamParameters", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_clone" "', argument " "1"" of type '" "Lattice2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GISASSimulation_setBeamParameters" "', argument " "1"" of type '" "GISASSimulation *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  result = (Lattice2D *)((Lattice2D const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice2D, 0 |  0 );
+  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "GISASSimulation_setBeamParameters" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "GISASSimulation_setBeamParameters" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "GISASSimulation_setBeamParameters" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setBeamParameters(arg2,arg3,arg4);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice2D_length1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_GISASSimulation_intensityMapSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = (Lattice2D *) 0 ;
+  GISASSimulation *arg1 = (GISASSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_GISASSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_length1" "', argument " "1"" of type '" "Lattice2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "GISASSimulation_intensityMapSize" "', argument " "1"" of type '" "GISASSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  result = (double)((Lattice2D const *)arg1)->length1();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< GISASSimulation * >(argp1);
+  result = ((GISASSimulation const *)arg1)->intensityMapSize();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice2D_length2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *GISASSimulation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_GISASSimulation, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *GISASSimulation_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_DepthProbeSimulation__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = (Lattice2D *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  DepthProbeSimulation *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_length2" "', argument " "1"" of type '" "Lattice2D const *""'"); 
-  }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  result = (double)((Lattice2D const *)arg1)->length2();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (DepthProbeSimulation *)new DepthProbeSimulation();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DepthProbeSimulation, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice2D_latticeAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_DepthProbeSimulation__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = (Lattice2D *) 0 ;
+  MultiLayer *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  DepthProbeSimulation *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_MultiLayer,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_latticeAngle" "', argument " "1"" of type '" "Lattice2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_DepthProbeSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
   }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  result = (double)((Lattice2D const *)arg1)->latticeAngle();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_DepthProbeSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
+  }
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  result = (DepthProbeSimulation *)new DepthProbeSimulation((MultiLayer const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DepthProbeSimulation, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice2D_unitCellArea(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_DepthProbeSimulation__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = (Lattice2D *) 0 ;
-  void *argp1 = 0 ;
+  std::shared_ptr< IMultiLayerBuilder > arg1 ;
+  void *argp1 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  DepthProbeSimulation *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_unitCellArea" "', argument " "1"" of type '" "Lattice2D const *""'"); 
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t,  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_DepthProbeSimulation" "', argument " "1"" of type '" "std::shared_ptr< IMultiLayerBuilder > const""'");
+    }
+    if (argp1) arg1 = *(reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1));
+    if (newmem & SWIG_CAST_NEW_MEMORY) delete reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1);
   }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  result = (double)((Lattice2D const *)arg1)->unitCellArea();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  result = (DepthProbeSimulation *)new DepthProbeSimulation(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DepthProbeSimulation, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice2D_rotationAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_DepthProbeSimulation(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DepthProbeSimulation", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_DepthProbeSimulation__SWIG_0(self, argc, argv);
+  }
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_MultiLayer, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_DepthProbeSimulation__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_DepthProbeSimulation__SWIG_2(self, argc, argv);
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DepthProbeSimulation'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    DepthProbeSimulation::DepthProbeSimulation()\n"
+    "    DepthProbeSimulation::DepthProbeSimulation(MultiLayer const &)\n"
+    "    DepthProbeSimulation::DepthProbeSimulation(std::shared_ptr< IMultiLayerBuilder > const)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_DepthProbeSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = (Lattice2D *) 0 ;
+  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_rotationAngle" "', argument " "1"" of type '" "Lattice2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DepthProbeSimulation" "', argument " "1"" of type '" "DepthProbeSimulation *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  result = (double)((Lattice2D const *)arg1)->rotationAngle();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice2D_reciprocalBases(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DepthProbeSimulation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = (Lattice2D *) 0 ;
+  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Lattice2D::ReciprocalBases result;
+  DepthProbeSimulation *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_reciprocalBases" "', argument " "1"" of type '" "Lattice2D const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_clone" "', argument " "1"" of type '" "DepthProbeSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  result = ((Lattice2D const *)arg1)->reciprocalBases();
-  resultobj = SWIG_NewPointerObj((new Lattice2D::ReciprocalBases(static_cast< const Lattice2D::ReciprocalBases& >(result))), SWIGTYPE_p_Lattice2D__ReciprocalBases, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
+  result = (DepthProbeSimulation *)((DepthProbeSimulation const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Lattice2D_setRotationEnabled(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DepthProbeSimulation_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = (Lattice2D *) 0 ;
-  bool arg2 ;
+  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  bool val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Lattice2D_setRotationEnabled", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "DepthProbeSimulation_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_setRotationEnabled" "', argument " "1"" of type '" "Lattice2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_accept" "', argument " "1"" of type '" "DepthProbeSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice2D_setRotationEnabled" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  (arg1)->setRotationEnabled(arg2);
+  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DepthProbeSimulation_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((DepthProbeSimulation const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -101597,131 +100361,154 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Lattice2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DepthProbeSimulation_result(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Lattice2D *arg1 = (Lattice2D *) 0 ;
+  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  SimulationResult result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Lattice2D" "', argument " "1"" of type '" "Lattice2D *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_result" "', argument " "1"" of type '" "DepthProbeSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< Lattice2D * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
+  result = ((DepthProbeSimulation const *)arg1)->result();
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *Lattice2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Lattice2D, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_new_BasicLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_DepthProbeSimulation_setBeamParameters__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
+  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
   double arg2 ;
-  double arg3 ;
+  int arg3 ;
   double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  double arg5 ;
+  IFootprintFactor *arg6 = (IFootprintFactor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
+  int val3 ;
   int ecode3 = 0 ;
   double val4 ;
   int ecode4 = 0 ;
-  BasicLattice *result = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
+  void *argp6 = 0 ;
+  int res6 = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_BasicLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
+  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "1"" of type '" "DepthProbeSimulation *""'"); 
+  }
+  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_BasicLattice" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_BasicLattice" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "3"" of type '" "int""'");
   } 
-  arg3 = static_cast< double >(val3);
+  arg3 = static_cast< int >(val3);
   ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_BasicLattice" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "4"" of type '" "double""'");
   } 
   arg4 = static_cast< double >(val4);
-  result = (BasicLattice *)new BasicLattice(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_BasicLattice, SWIG_POINTER_NEW |  0 );
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  res6 = SWIG_ConvertPtr(swig_obj[5], &argp6,SWIGTYPE_p_IFootprintFactor, 0 |  0 );
+  if (!SWIG_IsOK(res6)) {
+    SWIG_exception_fail(SWIG_ArgError(res6), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "6"" of type '" "IFootprintFactor const *""'"); 
+  }
+  arg6 = reinterpret_cast< IFootprintFactor * >(argp6);
+  (arg1)->setBeamParameters(arg2,arg3,arg4,arg5,(IFootprintFactor const *)arg6);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_BasicLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_DepthProbeSimulation_setBeamParameters__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
+  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
   double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  int arg3 ;
+  double arg4 ;
+  double arg5 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
+  int val3 ;
   int ecode3 = 0 ;
-  BasicLattice *result = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_BasicLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
+  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "1"" of type '" "DepthProbeSimulation *""'"); 
+  }
+  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_BasicLattice" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_BasicLattice" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "3"" of type '" "int""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (BasicLattice *)new BasicLattice(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_BasicLattice, SWIG_POINTER_NEW |  0 );
+  arg3 = static_cast< int >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  (arg1)->setBeamParameters(arg2,arg3,arg4,arg5);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_BasicLattice(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_DepthProbeSimulation_setBeamParameters(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[7] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_BasicLattice", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "DepthProbeSimulation_setBeamParameters", 0, 6, argv))) SWIG_fail;
   --argc;
-  if (argc == 3) {
+  if (argc == 5) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DepthProbeSimulation, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
       {
         int res = SWIG_AsVal_double(argv[1], NULL);
@@ -101729,21 +100516,32 @@ SWIGINTERN PyObject *_wrap_new_BasicLattice(PyObject *self, PyObject *args) {
       }
       if (_v) {
         {
-          int res = SWIG_AsVal_double(argv[2], NULL);
+          int res = SWIG_AsVal_int(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_new_BasicLattice__SWIG_1(self, argc, argv);
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              return _wrap_DepthProbeSimulation_setBeamParameters__SWIG_1(self, argc, argv);
+            }
+          }
         }
       }
     }
   }
-  if (argc == 4) {
+  if (argc == 6) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DepthProbeSimulation, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
       {
         int res = SWIG_AsVal_double(argv[1], NULL);
@@ -101751,7 +100549,7 @@ SWIGINTERN PyObject *_wrap_new_BasicLattice(PyObject *self, PyObject *args) {
       }
       if (_v) {
         {
-          int res = SWIG_AsVal_double(argv[2], NULL);
+          int res = SWIG_AsVal_int(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
@@ -101760,7 +100558,18 @@ SWIGINTERN PyObject *_wrap_new_BasicLattice(PyObject *self, PyObject *args) {
             _v = SWIG_CheckState(res);
           }
           if (_v) {
-            return _wrap_new_BasicLattice__SWIG_0(self, argc, argv);
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              void *vptr = 0;
+              int res = SWIG_ConvertPtr(argv[5], &vptr, SWIGTYPE_p_IFootprintFactor, 0);
+              _v = SWIG_CheckState(res);
+              if (_v) {
+                return _wrap_DepthProbeSimulation_setBeamParameters__SWIG_0(self, argc, argv);
+              }
+            }
           }
         }
       }
@@ -101768,40 +100577,309 @@ SWIGINTERN PyObject *_wrap_new_BasicLattice(PyObject *self, PyObject *args) {
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_BasicLattice'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DepthProbeSimulation_setBeamParameters'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    BasicLattice::BasicLattice(double,double,double,double)\n"
-    "    BasicLattice::BasicLattice(double,double,double)\n");
+    "    DepthProbeSimulation::setBeamParameters(double,int,double,double,IFootprintFactor const *)\n"
+    "    DepthProbeSimulation::setBeamParameters(double,int,double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_BasicLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DepthProbeSimulation_setZSpan(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  BasicLattice *arg1 = (BasicLattice *) 0 ;
+  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
+  double arg4 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "DepthProbeSimulation_setZSpan", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_setZSpan" "', argument " "1"" of type '" "DepthProbeSimulation *""'"); 
+  }
+  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DepthProbeSimulation_setZSpan" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DepthProbeSimulation_setZSpan" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "DepthProbeSimulation_setZSpan" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setZSpan(arg2,arg3,arg4);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_DepthProbeSimulation_getAlphaAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  BasicLattice *result = 0 ;
+  IAxis *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "BasicLattice_clone" "', argument " "1"" of type '" "BasicLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_getAlphaAxis" "', argument " "1"" of type '" "DepthProbeSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< BasicLattice * >(argp1);
-  result = (BasicLattice *)((BasicLattice const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_BasicLattice, 0 |  0 );
+  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
+  result = (IAxis *)((DepthProbeSimulation const *)arg1)->getAlphaAxis();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_BasicLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DepthProbeSimulation_getZAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  BasicLattice *arg1 = (BasicLattice *) 0 ;
+  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IAxis *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_getZAxis" "', argument " "1"" of type '" "DepthProbeSimulation const *""'"); 
+  }
+  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
+  result = (IAxis *)((DepthProbeSimulation const *)arg1)->getZAxis();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_DepthProbeSimulation_intensityMapSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  size_t result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_intensityMapSize" "', argument " "1"" of type '" "DepthProbeSimulation const *""'"); 
+  }
+  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
+  result = ((DepthProbeSimulation const *)arg1)->intensityMapSize();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *DepthProbeSimulation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_DepthProbeSimulation, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *DepthProbeSimulation_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_SpecularSimulation__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+  PyObject *resultobj = 0;
+  SpecularSimulation *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (SpecularSimulation *)new SpecularSimulation();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SpecularSimulation, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_SpecularSimulation__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  MultiLayer *arg1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  SpecularSimulation *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_MultiLayer,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SpecularSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SpecularSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
+  }
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  result = (SpecularSimulation *)new SpecularSimulation((MultiLayer const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SpecularSimulation, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_SpecularSimulation__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  std::shared_ptr< IMultiLayerBuilder > arg1 ;
+  void *argp1 ;
+  int res1 = 0 ;
+  SpecularSimulation *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t,  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SpecularSimulation" "', argument " "1"" of type '" "std::shared_ptr< IMultiLayerBuilder > const""'");
+    }
+    if (argp1) arg1 = *(reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1));
+    if (newmem & SWIG_CAST_NEW_MEMORY) delete reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1);
+  }
+  result = (SpecularSimulation *)new SpecularSimulation(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SpecularSimulation, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_SpecularSimulation(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_SpecularSimulation", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_SpecularSimulation__SWIG_0(self, argc, argv);
+  }
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_MultiLayer, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_SpecularSimulation__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_SpecularSimulation__SWIG_2(self, argc, argv);
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_SpecularSimulation'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    SpecularSimulation::SpecularSimulation()\n"
+    "    SpecularSimulation::SpecularSimulation(MultiLayer const &)\n"
+    "    SpecularSimulation::SpecularSimulation(std::shared_ptr< IMultiLayerBuilder > const)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_SpecularSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SpecularSimulation" "', argument " "1"" of type '" "SpecularSimulation *""'"); 
+  }
+  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_SpecularSimulation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  SpecularSimulation *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_clone" "', argument " "1"" of type '" "SpecularSimulation const *""'"); 
+  }
+  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
+  result = (SpecularSimulation *)((SpecularSimulation const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SpecularSimulation, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_SpecularSimulation_prepareSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_prepareSimulation" "', argument " "1"" of type '" "SpecularSimulation *""'"); 
+  }
+  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
+  (arg1)->prepareSimulation();
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_SpecularSimulation_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -101809,18 +100887,18 @@ SWIGINTERN PyObject *_wrap_BasicLattice_accept(PyObject *SWIGUNUSEDPARM(self), P
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "BasicLattice_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SpecularSimulation_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "BasicLattice_accept" "', argument " "1"" of type '" "BasicLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_accept" "', argument " "1"" of type '" "SpecularSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< BasicLattice * >(argp1);
+  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "BasicLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SpecularSimulation_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((BasicLattice const *)arg1)->accept(arg2);
+  ((SpecularSimulation const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -101828,251 +100906,289 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_BasicLattice_length1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SpecularSimulation_result(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  BasicLattice *arg1 = (BasicLattice *) 0 ;
+  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  SimulationResult result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "BasicLattice_length1" "', argument " "1"" of type '" "BasicLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_result" "', argument " "1"" of type '" "SpecularSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< BasicLattice * >(argp1);
-  result = (double)((BasicLattice const *)arg1)->length1();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
+  result = ((SpecularSimulation const *)arg1)->result();
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_BasicLattice_length2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SpecularSimulation_setScan(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  BasicLattice *arg1 = (BasicLattice *) 0 ;
+  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
+  ISpecularScan *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SpecularSimulation_setScan", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "BasicLattice_length2" "', argument " "1"" of type '" "BasicLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_setScan" "', argument " "1"" of type '" "SpecularSimulation *""'"); 
   }
-  arg1 = reinterpret_cast< BasicLattice * >(argp1);
-  result = (double)((BasicLattice const *)arg1)->length2();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ISpecularScan,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SpecularSimulation_setScan" "', argument " "2"" of type '" "ISpecularScan const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SpecularSimulation_setScan" "', argument " "2"" of type '" "ISpecularScan const &""'"); 
+  }
+  arg2 = reinterpret_cast< ISpecularScan * >(argp2);
+  (arg1)->setScan((ISpecularScan const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_BasicLattice_latticeAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SpecularSimulation_coordinateAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  BasicLattice *arg1 = (BasicLattice *) 0 ;
+  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  IAxis *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "BasicLattice_latticeAngle" "', argument " "1"" of type '" "BasicLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_coordinateAxis" "', argument " "1"" of type '" "SpecularSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< BasicLattice * >(argp1);
-  result = (double)((BasicLattice const *)arg1)->latticeAngle();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
+  result = (IAxis *)((SpecularSimulation const *)arg1)->coordinateAxis();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_BasicLattice_unitCellArea(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SpecularSimulation_footprintFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  BasicLattice *arg1 = (BasicLattice *) 0 ;
+  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  IFootprintFactor *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "BasicLattice_unitCellArea" "', argument " "1"" of type '" "BasicLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_footprintFactor" "', argument " "1"" of type '" "SpecularSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< BasicLattice * >(argp1);
-  result = (double)((BasicLattice const *)arg1)->unitCellArea();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
+  result = (IFootprintFactor *)((SpecularSimulation const *)arg1)->footprintFactor();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFootprintFactor, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_BasicLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SpecularSimulation_intensityMapSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  BasicLattice *arg1 = (BasicLattice *) 0 ;
+  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_BasicLattice" "', argument " "1"" of type '" "BasicLattice *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_intensityMapSize" "', argument " "1"" of type '" "SpecularSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< BasicLattice * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
+  result = ((SpecularSimulation const *)arg1)->intensityMapSize();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *BasicLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *SpecularSimulation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_BasicLattice, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_SpecularSimulation, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *BasicLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *SpecularSimulation_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_SquareLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_OffSpecSimulation__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  SquareLattice *result = 0 ;
+  OffSpecSimulation *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_SquareLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_SquareLattice" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (SquareLattice *)new SquareLattice(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SquareLattice, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (OffSpecSimulation *)new OffSpecSimulation();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OffSpecSimulation, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SquareLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_OffSpecSimulation__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  SquareLattice *result = 0 ;
+  MultiLayer *arg1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  OffSpecSimulation *result = 0 ;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_SquareLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (SquareLattice *)new SquareLattice(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SquareLattice, SWIG_POINTER_NEW |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_MultiLayer,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_OffSpecSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_OffSpecSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
+  }
+  arg1 = reinterpret_cast< MultiLayer * >(argp1);
+  result = (OffSpecSimulation *)new OffSpecSimulation((MultiLayer const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OffSpecSimulation, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SquareLattice(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_OffSpecSimulation__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  std::shared_ptr< IMultiLayerBuilder > arg1 ;
+  void *argp1 ;
+  int res1 = 0 ;
+  OffSpecSimulation *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    int newmem = 0;
+    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t,  0 , &newmem);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_OffSpecSimulation" "', argument " "1"" of type '" "std::shared_ptr< IMultiLayerBuilder > const""'");
+    }
+    if (argp1) arg1 = *(reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1));
+    if (newmem & SWIG_CAST_NEW_MEMORY) delete reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1);
+  }
+  result = (OffSpecSimulation *)new OffSpecSimulation(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OffSpecSimulation, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_OffSpecSimulation(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[2] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_SquareLattice", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_OffSpecSimulation", 0, 1, argv))) SWIG_fail;
   --argc;
+  if (argc == 0) {
+    return _wrap_new_OffSpecSimulation__SWIG_0(self, argc, argv);
+  }
   if (argc == 1) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_MultiLayer, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_SquareLattice__SWIG_1(self, argc, argv);
+      return _wrap_new_OffSpecSimulation__SWIG_1(self, argc, argv);
     }
   }
-  if (argc == 2) {
+  if (argc == 1) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_SquareLattice__SWIG_0(self, argc, argv);
-      }
+      return _wrap_new_OffSpecSimulation__SWIG_2(self, argc, argv);
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_SquareLattice'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_OffSpecSimulation'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    SquareLattice::SquareLattice(double,double)\n"
-    "    SquareLattice::SquareLattice(double)\n");
+    "    OffSpecSimulation::OffSpecSimulation()\n"
+    "    OffSpecSimulation::OffSpecSimulation(MultiLayer const &)\n"
+    "    OffSpecSimulation::OffSpecSimulation(std::shared_ptr< IMultiLayerBuilder > const)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_SquareLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_OffSpecSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SquareLattice *arg1 = (SquareLattice *) 0 ;
+  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SquareLattice *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SquareLattice_clone" "', argument " "1"" of type '" "SquareLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_OffSpecSimulation" "', argument " "1"" of type '" "OffSpecSimulation *""'"); 
   }
-  arg1 = reinterpret_cast< SquareLattice * >(argp1);
-  result = (SquareLattice *)((SquareLattice const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SquareLattice, 0 |  0 );
+  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SquareLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_OffSpecSimulation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SquareLattice *arg1 = (SquareLattice *) 0 ;
+  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  OffSpecSimulation *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_clone" "', argument " "1"" of type '" "OffSpecSimulation const *""'"); 
+  }
+  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
+  result = (OffSpecSimulation *)((OffSpecSimulation const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_OffSpecSimulation_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -102080,18 +101196,18 @@ SWIGINTERN PyObject *_wrap_SquareLattice_accept(PyObject *SWIGUNUSEDPARM(self),
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "SquareLattice_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "OffSpecSimulation_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SquareLattice_accept" "', argument " "1"" of type '" "SquareLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_accept" "', argument " "1"" of type '" "OffSpecSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< SquareLattice * >(argp1);
+  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SquareLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "OffSpecSimulation_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((SquareLattice const *)arg1)->accept(arg2);
+  ((OffSpecSimulation const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -102099,251 +101215,332 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_SquareLattice_length1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_OffSpecSimulation_prepareSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SquareLattice *arg1 = (SquareLattice *) 0 ;
+  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SquareLattice_length1" "', argument " "1"" of type '" "SquareLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_prepareSimulation" "', argument " "1"" of type '" "OffSpecSimulation *""'"); 
   }
-  arg1 = reinterpret_cast< SquareLattice * >(argp1);
-  result = (double)((SquareLattice const *)arg1)->length1();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
+  (arg1)->prepareSimulation();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SquareLattice_length2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_OffSpecSimulation_result(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SquareLattice *arg1 = (SquareLattice *) 0 ;
+  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  SimulationResult result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SquareLattice_length2" "', argument " "1"" of type '" "SquareLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_result" "', argument " "1"" of type '" "OffSpecSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< SquareLattice * >(argp1);
-  result = (double)((SquareLattice const *)arg1)->length2();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
+  result = ((OffSpecSimulation const *)arg1)->result();
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SquareLattice_latticeAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_OffSpecSimulation_setBeamParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SquareLattice *arg1 = (SquareLattice *) 0 ;
+  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
+  double arg2 ;
+  IAxis *arg3 = 0 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  double val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "OffSpecSimulation_setBeamParameters", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SquareLattice_latticeAngle" "', argument " "1"" of type '" "SquareLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_setBeamParameters" "', argument " "1"" of type '" "OffSpecSimulation *""'"); 
   }
-  arg1 = reinterpret_cast< SquareLattice * >(argp1);
-  result = (double)((SquareLattice const *)arg1)->latticeAngle();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "OffSpecSimulation_setBeamParameters" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IAxis,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "OffSpecSimulation_setBeamParameters" "', argument " "3"" of type '" "IAxis const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "OffSpecSimulation_setBeamParameters" "', argument " "3"" of type '" "IAxis const &""'"); 
+  }
+  arg3 = reinterpret_cast< IAxis * >(argp3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "OffSpecSimulation_setBeamParameters" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setBeamParameters(arg2,(IAxis const &)*arg3,arg4);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SquareLattice_unitCellArea(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_OffSpecSimulation_beamAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SquareLattice *arg1 = (SquareLattice *) 0 ;
+  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  IAxis *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SquareLattice_unitCellArea" "', argument " "1"" of type '" "SquareLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_beamAxis" "', argument " "1"" of type '" "OffSpecSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< SquareLattice * >(argp1);
-  result = (double)((SquareLattice const *)arg1)->unitCellArea();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
+  result = (IAxis *)((OffSpecSimulation const *)arg1)->beamAxis();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_SquareLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_OffSpecSimulation_intensityMapSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SquareLattice *arg1 = (SquareLattice *) 0 ;
+  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SquareLattice" "', argument " "1"" of type '" "SquareLattice *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_intensityMapSize" "', argument " "1"" of type '" "OffSpecSimulation const *""'"); 
   }
-  arg1 = reinterpret_cast< SquareLattice * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
+  result = ((OffSpecSimulation const *)arg1)->intensityMapSize();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *SquareLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *OffSpecSimulation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_SquareLattice, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_OffSpecSimulation, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *SquareLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *OffSpecSimulation_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_HexagonalLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_IBackground(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
+  IBackground *arg1 = (IBackground *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IBackground, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IBackground" "', argument " "1"" of type '" "IBackground *""'"); 
+  }
+  arg1 = reinterpret_cast< IBackground * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IBackground_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IBackground *arg1 = (IBackground *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IBackground *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IBackground, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IBackground_clone" "', argument " "1"" of type '" "IBackground const *""'"); 
+  }
+  arg1 = reinterpret_cast< IBackground * >(argp1);
+  result = (IBackground *)((IBackground const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IBackground, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IBackground_addBackGround(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IBackground *arg1 = (IBackground *) 0 ;
   double arg2 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  HexagonalLattice *result = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_HexagonalLattice" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
+  if (!SWIG_Python_UnpackTuple(args, "IBackground_addBackGround", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IBackground, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IBackground_addBackGround" "', argument " "1"" of type '" "IBackground const *""'"); 
+  }
+  arg1 = reinterpret_cast< IBackground * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_HexagonalLattice" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IBackground_addBackGround" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (HexagonalLattice *)new HexagonalLattice(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_HexagonalLattice, SWIG_POINTER_NEW |  0 );
+  result = (double)((IBackground const *)arg1)->addBackGround(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_HexagonalLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *IBackground_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IBackground, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_new_ConstantBackground(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double val1 ;
   int ecode1 = 0 ;
-  HexagonalLattice *result = 0 ;
+  PyObject *swig_obj[1] ;
+  ConstantBackground *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_HexagonalLattice" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_ConstantBackground" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  result = (HexagonalLattice *)new HexagonalLattice(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_HexagonalLattice, SWIG_POINTER_NEW |  0 );
+  result = (ConstantBackground *)new ConstantBackground(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ConstantBackground, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_HexagonalLattice(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_delete_ConstantBackground(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ConstantBackground *arg1 = (ConstantBackground *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_HexagonalLattice", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_new_HexagonalLattice__SWIG_1(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_HexagonalLattice__SWIG_0(self, argc, argv);
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ConstantBackground, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ConstantBackground" "', argument " "1"" of type '" "ConstantBackground *""'"); 
   }
+  arg1 = reinterpret_cast< ConstantBackground * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ConstantBackground_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ConstantBackground *arg1 = (ConstantBackground *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  ConstantBackground *result = 0 ;
   
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ConstantBackground, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConstantBackground_clone" "', argument " "1"" of type '" "ConstantBackground const *""'"); 
+  }
+  arg1 = reinterpret_cast< ConstantBackground * >(argp1);
+  result = (ConstantBackground *)((ConstantBackground const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ConstantBackground, 0 |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_HexagonalLattice'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    HexagonalLattice::HexagonalLattice(double,double)\n"
-    "    HexagonalLattice::HexagonalLattice(double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_HexagonalLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ConstantBackground_backgroundValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
+  ConstantBackground *arg1 = (ConstantBackground *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  HexagonalLattice *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ConstantBackground, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HexagonalLattice_clone" "', argument " "1"" of type '" "HexagonalLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConstantBackground_backgroundValue" "', argument " "1"" of type '" "ConstantBackground const *""'"); 
   }
-  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
-  result = (HexagonalLattice *)((HexagonalLattice const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_HexagonalLattice, 0 |  0 );
+  arg1 = reinterpret_cast< ConstantBackground * >(argp1);
+  result = (double)((ConstantBackground const *)arg1)->backgroundValue();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_HexagonalLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ConstantBackground_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
+  ConstantBackground *arg1 = (ConstantBackground *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -102351,18 +101548,18 @@ SWIGINTERN PyObject *_wrap_HexagonalLattice_accept(PyObject *SWIGUNUSEDPARM(self
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "HexagonalLattice_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ConstantBackground_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ConstantBackground, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HexagonalLattice_accept" "', argument " "1"" of type '" "HexagonalLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConstantBackground_accept" "', argument " "1"" of type '" "ConstantBackground const *""'"); 
   }
-  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
+  arg1 = reinterpret_cast< ConstantBackground * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "HexagonalLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ConstantBackground_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((HexagonalLattice const *)arg1)->accept(arg2);
+  ((ConstantBackground const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -102370,22 +101567,29 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_HexagonalLattice_length1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ConstantBackground_addBackGround(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
+  ConstantBackground *arg1 = (ConstantBackground *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ConstantBackground_addBackGround", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ConstantBackground, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HexagonalLattice_length1" "', argument " "1"" of type '" "HexagonalLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConstantBackground_addBackGround" "', argument " "1"" of type '" "ConstantBackground const *""'"); 
   }
-  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
-  result = (double)((HexagonalLattice const *)arg1)->length1();
+  arg1 = reinterpret_cast< ConstantBackground * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ConstantBackground_addBackGround" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((ConstantBackground const *)arg1)->addBackGround(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -102393,435 +101597,469 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_HexagonalLattice_length2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ConstantBackground_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_ConstantBackground, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *ConstantBackground_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_PoissonNoiseBackground(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
+  PoissonNoiseBackground *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_PoissonNoiseBackground", 0, 0, 0)) SWIG_fail;
+  result = (PoissonNoiseBackground *)new PoissonNoiseBackground();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PoissonNoiseBackground, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_PoissonNoiseBackground(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  PoissonNoiseBackground *arg1 = (PoissonNoiseBackground *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PoissonNoiseBackground, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HexagonalLattice_length2" "', argument " "1"" of type '" "HexagonalLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PoissonNoiseBackground" "', argument " "1"" of type '" "PoissonNoiseBackground *""'"); 
   }
-  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
-  result = (double)((HexagonalLattice const *)arg1)->length2();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< PoissonNoiseBackground * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_HexagonalLattice_latticeAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PoissonNoiseBackground_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
+  PoissonNoiseBackground *arg1 = (PoissonNoiseBackground *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  PoissonNoiseBackground *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PoissonNoiseBackground, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HexagonalLattice_latticeAngle" "', argument " "1"" of type '" "HexagonalLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PoissonNoiseBackground_clone" "', argument " "1"" of type '" "PoissonNoiseBackground const *""'"); 
   }
-  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
-  result = (double)((HexagonalLattice const *)arg1)->latticeAngle();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< PoissonNoiseBackground * >(argp1);
+  result = (PoissonNoiseBackground *)((PoissonNoiseBackground const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PoissonNoiseBackground, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_HexagonalLattice_unitCellArea(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PoissonNoiseBackground_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
+  PoissonNoiseBackground *arg1 = (PoissonNoiseBackground *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PoissonNoiseBackground_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PoissonNoiseBackground, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HexagonalLattice_unitCellArea" "', argument " "1"" of type '" "HexagonalLattice const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PoissonNoiseBackground_accept" "', argument " "1"" of type '" "PoissonNoiseBackground const *""'"); 
   }
-  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
-  result = (double)((HexagonalLattice const *)arg1)->unitCellArea();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< PoissonNoiseBackground * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PoissonNoiseBackground_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((PoissonNoiseBackground const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_HexagonalLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_PoissonNoiseBackground_addBackGround(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
+  PoissonNoiseBackground *arg1 = (PoissonNoiseBackground *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "PoissonNoiseBackground_addBackGround", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PoissonNoiseBackground, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_HexagonalLattice" "', argument " "1"" of type '" "HexagonalLattice *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PoissonNoiseBackground_addBackGround" "', argument " "1"" of type '" "PoissonNoiseBackground const *""'"); 
   }
-  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< PoissonNoiseBackground * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "PoissonNoiseBackground_addBackGround" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((PoissonNoiseBackground const *)arg1)->addBackGround(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *HexagonalLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *PoissonNoiseBackground_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_HexagonalLattice, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_PoissonNoiseBackground, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *HexagonalLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *PoissonNoiseBackground_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_Layer__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityDataIOFactory_readOutputData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SwigValueWrapper< Material > arg1 ;
-  double arg2 ;
-  void *argp1 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  Layer *result = 0 ;
+  std::string *arg1 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[1] ;
+  OutputData< double > *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
   {
-    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0  | 0);
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
     if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Layer" "', argument " "1"" of type '" "Material""'"); 
-    }  
-    if (!argp1) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Layer" "', argument " "1"" of type '" "Material""'");
-    } else {
-      Material * temp = reinterpret_cast< Material * >(argp1);
-      arg1 = *temp;
-      if (SWIG_IsNewObj(res1)) delete temp;
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityDataIOFactory_readOutputData" "', argument " "1"" of type '" "std::string const &""'"); 
     }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_readOutputData" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Layer" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (Layer *)new Layer(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Layer, SWIG_POINTER_NEW |  0 );
+  result = (OutputData< double > *)IntensityDataIOFactory::readOutputData((std::string const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Layer__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityDataIOFactory_readReflectometryData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SwigValueWrapper< Material > arg1 ;
-  void *argp1 ;
-  int res1 = 0 ;
-  Layer *result = 0 ;
+  std::string *arg1 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[1] ;
+  OutputData< double > *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
   {
-    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0  | 0);
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
     if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Layer" "', argument " "1"" of type '" "Material""'"); 
-    }  
-    if (!argp1) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Layer" "', argument " "1"" of type '" "Material""'");
-    } else {
-      Material * temp = reinterpret_cast< Material * >(argp1);
-      arg1 = *temp;
-      if (SWIG_IsNewObj(res1)) delete temp;
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityDataIOFactory_readReflectometryData" "', argument " "1"" of type '" "std::string const &""'"); 
     }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_readReflectometryData" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  result = (Layer *)new Layer(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Layer, SWIG_POINTER_NEW |  0 );
+  result = (OutputData< double > *)IntensityDataIOFactory::readReflectometryData((std::string const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Layer(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_IntensityDataIOFactory_readIntensityData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  std::string *arg1 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[1] ;
+  IHistogram *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Layer", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_Layer__SWIG_1(self, argc, argv);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityDataIOFactory_readIntensityData" "', argument " "1"" of type '" "std::string const &""'"); 
     }
-  }
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_Layer__SWIG_0(self, argc, argv);
-      }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_readIntensityData" "', argument " "1"" of type '" "std::string const &""'"); 
     }
+    arg1 = ptr;
   }
-  
+  result = (IHistogram *)IntensityDataIOFactory::readIntensityData((std::string const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Layer'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Layer::Layer(Material,double)\n"
-    "    Layer::Layer(Material)\n");
-  return 0;
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Layer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityDataIOFactory_writeOutputData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
+  OutputData< double > *arg1 = 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityDataIOFactory_writeOutputData", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Layer" "', argument " "1"" of type '" "Layer *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityDataIOFactory_writeOutputData" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
   }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  delete arg1;
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_writeOutputData" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityDataIOFactory_writeOutputData" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_writeOutputData" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  IntensityDataIOFactory::writeOutputData((OutputData< double > const &)*arg1,(std::string const &)*arg2);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityDataIOFactory_writeIntensityData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
+  IHistogram *arg1 = 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Layer *result = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityDataIOFactory_writeIntensityData", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IHistogram,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_clone" "', argument " "1"" of type '" "Layer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityDataIOFactory_writeIntensityData" "', argument " "1"" of type '" "IHistogram const &""'"); 
   }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  result = (Layer *)((Layer const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Layer, 0 |  0 );
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_writeIntensityData" "', argument " "1"" of type '" "IHistogram const &""'"); 
+  }
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityDataIOFactory_writeIntensityData" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_writeIntensityData" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  IntensityDataIOFactory::writeIntensityData((IHistogram const &)*arg1,(std::string const &)*arg2);
+  resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityDataIOFactory_writeSimulationResult(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  SimulationResult *arg1 = 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Layer_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityDataIOFactory_writeSimulationResult", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_SimulationResult,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_accept" "', argument " "1"" of type '" "Layer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityDataIOFactory_writeSimulationResult" "', argument " "1"" of type '" "SimulationResult const &""'"); 
   }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Layer_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_writeSimulationResult" "', argument " "1"" of type '" "SimulationResult const &""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((Layer const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityDataIOFactory_writeSimulationResult" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityDataIOFactory_writeSimulationResult" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  IntensityDataIOFactory::writeSimulationResult((SimulationResult const &)*arg1,(std::string const &)*arg2);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_setThickness(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IntensityDataIOFactory(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  IntensityDataIOFactory *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Layer_setThickness", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_setThickness" "', argument " "1"" of type '" "Layer *""'"); 
-  }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Layer_setThickness" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setThickness(arg2);
-  resultobj = SWIG_Py_Void();
+  if (!SWIG_Python_UnpackTuple(args, "new_IntensityDataIOFactory", 0, 0, 0)) SWIG_fail;
+  result = (IntensityDataIOFactory *)new IntensityDataIOFactory();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityDataIOFactory, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_thickness(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IntensityDataIOFactory(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
+  IntensityDataIOFactory *arg1 = (IntensityDataIOFactory *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityDataIOFactory, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_thickness" "', argument " "1"" of type '" "Layer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IntensityDataIOFactory" "', argument " "1"" of type '" "IntensityDataIOFactory *""'"); 
   }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  result = (double)((Layer const *)arg1)->thickness();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IntensityDataIOFactory * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_material(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IntensityDataIOFactory_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IntensityDataIOFactory, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *IntensityDataIOFactory_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_delete_IHistogram(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Material *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_material" "', argument " "1"" of type '" "Layer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IHistogram" "', argument " "1"" of type '" "IHistogram *""'"); 
   }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  result = (Material *)((Layer const *)arg1)->material();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Material, 0 |  0 );
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_setMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
-  SwigValueWrapper< Material > arg2 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  IHistogram *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Layer_setMaterial", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_setMaterial" "', argument " "1"" of type '" "Layer *""'"); 
-  }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Layer_setMaterial" "', argument " "2"" of type '" "Material""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Layer_setMaterial" "', argument " "2"" of type '" "Material""'");
-    } else {
-      Material * temp = reinterpret_cast< Material * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_clone" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  (arg1)->setMaterial(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (IHistogram *)((IHistogram const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_addLayout(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getRank(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
-  ILayout *arg2 = 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  size_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "Layer_addLayout", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_addLayout" "', argument " "1"" of type '" "Layer *""'"); 
-  }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ILayout,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Layer_addLayout" "', argument " "2"" of type '" "ILayout const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Layer_addLayout" "', argument " "2"" of type '" "ILayout const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getRank" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg2 = reinterpret_cast< ILayout * >(argp2);
-  (arg1)->addLayout((ILayout const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = ((IHistogram const *)arg1)->getRank();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_numberOfLayouts(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getTotalNumberOfBins(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -102829,12 +102067,12 @@ SWIGINTERN PyObject *_wrap_Layer_numberOfLayouts(PyObject *SWIGUNUSEDPARM(self),
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_numberOfLayouts" "', argument " "1"" of type '" "Layer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getTotalNumberOfBins" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  result = ((Layer const *)arg1)->numberOfLayouts();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = ((IHistogram const *)arg1)->getTotalNumberOfBins();
   resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
@@ -102842,419 +102080,431 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_layouts(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getXaxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SwigValueWrapper< std::vector< ILayout const *,std::allocator< ILayout const * > > > result;
+  IAxis *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_layouts" "', argument " "1"" of type '" "Layer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getXaxis" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  result = ((Layer const *)arg1)->layouts();
-  resultobj = SWIG_NewPointerObj((new std::vector< ILayout const *,std::allocator< ILayout const * > >(static_cast< const std::vector< ILayout const *,std::allocator< ILayout const * > >& >(result))), SWIGTYPE_p_std__vectorT_ILayout_const_p_std__allocatorT_ILayout_const_p_t_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (IAxis *) &((IHistogram const *)arg1)->getXaxis();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getYaxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  IAxis *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_getChildren" "', argument " "1"" of type '" "Layer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getYaxis" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  result = ((Layer const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (IAxis *) &((IHistogram const *)arg1)->getYaxis();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_registerThickness__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IHistogram_getXmin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
-  bool arg2 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  bool val2 ;
-  int ecode2 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_registerThickness" "', argument " "1"" of type '" "Layer *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getXmin" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Layer_registerThickness" "', argument " "2"" of type '" "bool""'");
-  } 
-  arg2 = static_cast< bool >(val2);
-  (arg1)->registerThickness(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (double)((IHistogram const *)arg1)->getXmin();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_registerThickness__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IHistogram_getXmax(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_registerThickness" "', argument " "1"" of type '" "Layer *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getXmax" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  (arg1)->registerThickness();
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (double)((IHistogram const *)arg1)->getXmax();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_registerThickness(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_IHistogram_getNbinsX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  size_t result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Layer_registerThickness", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Layer, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_Layer_registerThickness__SWIG_1(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Layer, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_bool(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_Layer_registerThickness__SWIG_0(self, argc, argv);
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getNbinsX" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = ((IHistogram const *)arg1)->getNbinsX();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Layer_registerThickness'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Layer::registerThickness(bool)\n"
-    "    Layer::registerThickness()\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_setNumberOfSlices(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getYmin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
-  unsigned int arg2 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  unsigned int val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "Layer_setNumberOfSlices", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_setNumberOfSlices" "', argument " "1"" of type '" "Layer *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getYmin" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Layer_setNumberOfSlices" "', argument " "2"" of type '" "unsigned int""'");
-  } 
-  arg2 = static_cast< unsigned int >(val2);
-  (arg1)->setNumberOfSlices(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (double)((IHistogram const *)arg1)->getYmin();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Layer_numberOfSlices(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getYmax(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Layer *arg1 = (Layer *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  unsigned int result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Layer, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Layer_numberOfSlices" "', argument " "1"" of type '" "Layer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getYmax" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Layer * >(argp1);
-  result = (unsigned int)((Layer const *)arg1)->numberOfSlices();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (double)((IHistogram const *)arg1)->getYmax();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *Layer_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Layer, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *Layer_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_LayerRoughness__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_IHistogram_getNbinsY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  LayerRoughness *result = 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  size_t result;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (LayerRoughness *)new LayerRoughness();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_LayerRoughness, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getNbinsY" "', argument " "1"" of type '" "IHistogram const *""'"); 
+  }
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = ((IHistogram const *)arg1)->getNbinsY();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_LayerRoughness__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IHistogram_getGlobalBin__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
+  size_t arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
   int ecode2 = 0 ;
-  double val3 ;
+  size_t val3 ;
   int ecode3 = 0 ;
-  LayerRoughness *result = 0 ;
+  size_t result;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_LayerRoughness" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getGlobalBin" "', argument " "1"" of type '" "IHistogram const *""'"); 
+  }
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_LayerRoughness" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getGlobalBin" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_LayerRoughness" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_getGlobalBin" "', argument " "3"" of type '" "size_t""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (LayerRoughness *)new LayerRoughness(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_LayerRoughness, SWIG_POINTER_NEW |  0 );
+  arg3 = static_cast< size_t >(val3);
+  result = ((IHistogram const *)arg1)->getGlobalBin(arg2,arg3);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_LayerRoughness(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getGlobalBin__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  size_t result;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getGlobalBin" "', argument " "1"" of type '" "IHistogram const *""'"); 
+  }
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getGlobalBin" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = ((IHistogram const *)arg1)->getGlobalBin(arg2);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IHistogram_getGlobalBin(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_LayerRoughness", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getGlobalBin", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_LayerRoughness__SWIG_0(self, argc, argv);
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_IHistogram_getGlobalBin__SWIG_1(self, argc, argv);
+      }
+    }
   }
   if (argc == 3) {
     int _v;
-    {
-      int res = SWIG_AsVal_double(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_double(argv[1], NULL);
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
         {
-          int res = SWIG_AsVal_double(argv[2], NULL);
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_new_LayerRoughness__SWIG_1(self, argc, argv);
+          return _wrap_IHistogram_getGlobalBin__SWIG_0(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_LayerRoughness'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getGlobalBin'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    LayerRoughness::LayerRoughness()\n"
-    "    LayerRoughness::LayerRoughness(double,double,double)\n");
+    "    IHistogram::getGlobalBin(size_t,size_t) const\n"
+    "    IHistogram::getGlobalBin(size_t) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_LayerRoughness_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_findGlobalBin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  LayerRoughness *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  size_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_findGlobalBin", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_clone" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_findGlobalBin" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
-  result = (LayerRoughness *)((LayerRoughness const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_LayerRoughness, 0 |  0 );
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_findGlobalBin" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_findGlobalBin" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = ((IHistogram const *)arg1)->findGlobalBin(arg2,arg3);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_LayerRoughness_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getXaxisIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
+  size_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "LayerRoughness_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_getXaxisIndex", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_accept" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
-  }
-  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "LayerRoughness_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getXaxisIndex" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((LayerRoughness const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getXaxisIndex" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = ((IHistogram const *)arg1)->getXaxisIndex(arg2);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_LayerRoughness_getSpectralFun(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getYaxisIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
-  kvector_t arg2 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  double result;
+  size_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "LayerRoughness_getSpectralFun", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_getYaxisIndex", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_getSpectralFun" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
-  }
-  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "LayerRoughness_getSpectralFun" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "LayerRoughness_getSpectralFun" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getYaxisIndex" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  result = (double)((LayerRoughness const *)arg1)->getSpectralFun(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getYaxisIndex" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = ((IHistogram const *)arg1)->getYaxisIndex(arg2);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_LayerRoughness_getCorrFun(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getXaxisValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
-  kvector_t arg2 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "LayerRoughness_getCorrFun", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_getXaxisValue", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_getCorrFun" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
-  }
-  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "LayerRoughness_getCorrFun" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "LayerRoughness_getCorrFun" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getXaxisValue" "', argument " "1"" of type '" "IHistogram *""'"); 
   }
-  result = (double)((LayerRoughness const *)arg1)->getCorrFun(arg2);
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getXaxisValue" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (double)(arg1)->getXaxisValue(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -103262,51 +102512,58 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_LayerRoughness_setSigma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getYaxisValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
-  double arg2 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
+  size_t val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "LayerRoughness_setSigma", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_getYaxisValue", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_setSigma" "', argument " "1"" of type '" "LayerRoughness *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getYaxisValue" "', argument " "1"" of type '" "IHistogram *""'"); 
   }
-  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "LayerRoughness_setSigma" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getYaxisValue" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setSigma(arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = static_cast< size_t >(val2);
+  result = (double)(arg1)->getYaxisValue(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_LayerRoughness_getSigma(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getBinContent__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  size_t val2 ;
+  int ecode2 = 0 ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_getSigma" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinContent" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
-  result = (double)((LayerRoughness const *)arg1)->getSigma();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinContent" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (double)((IHistogram const *)arg1)->getBinContent(arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -103314,125 +102571,205 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_LayerRoughness_setHurstParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getData__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
-  double arg2 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  OutputData< CumulativeValue > *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "LayerRoughness_setHurstParameter", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_setHurstParameter" "', argument " "1"" of type '" "LayerRoughness *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getData" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "LayerRoughness_setHurstParameter" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setHurstParameter(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (OutputData< CumulativeValue > *) &((IHistogram const *)arg1)->getData();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_CumulativeValue_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_LayerRoughness_getHurstParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getData__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  OutputData< CumulativeValue > *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_getHurstParameter" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getData" "', argument " "1"" of type '" "IHistogram *""'"); 
   }
-  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
-  result = (double)((LayerRoughness const *)arg1)->getHurstParameter();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (OutputData< CumulativeValue > *) &(arg1)->getData();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_CumulativeValue_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_LayerRoughness_setLatteralCorrLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getData(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getData", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_IHistogram_getData__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_IHistogram_getData__SWIG_0(self, argc, argv);
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getData'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IHistogram::getData() const\n"
+    "    IHistogram::getData()\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_IHistogram_getBinContent__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
-  double arg2 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
+  size_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
+  size_t val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  size_t val3 ;
+  int ecode3 = 0 ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "LayerRoughness_setLatteralCorrLength", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_setLatteralCorrLength" "', argument " "1"" of type '" "LayerRoughness *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinContent" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "LayerRoughness_setLatteralCorrLength" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinContent" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setLatteralCorrLength(arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_getBinContent" "', argument " "3"" of type '" "size_t""'");
+  } 
+  arg3 = static_cast< size_t >(val3);
+  result = (double)((IHistogram const *)arg1)->getBinContent(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_LayerRoughness_getLatteralCorrLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+SWIGINTERN PyObject *_wrap_IHistogram_getBinContent(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "LayerRoughness_getLatteralCorrLength" "', argument " "1"" of type '" "LayerRoughness const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getBinContent", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_IHistogram_getBinContent__SWIG_0(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
-  result = (double)((LayerRoughness const *)arg1)->getLatteralCorrLength();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_IHistogram_getBinContent__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getBinContent'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IHistogram::getBinContent(size_t) const\n"
+    "    IHistogram::getBinContent(size_t,size_t) const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_LayerRoughness(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_setBinContent(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  LayerRoughness *arg1 = (LayerRoughness *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_LayerRoughness, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_setBinContent", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_LayerRoughness" "', argument " "1"" of type '" "LayerRoughness *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_setBinContent" "', argument " "1"" of type '" "IHistogram *""'"); 
   }
-  arg1 = reinterpret_cast< LayerRoughness * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_setBinContent" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_setBinContent" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  (arg1)->setBinContent(arg2,arg3);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -103440,440 +102777,406 @@ fail:
 }
 
 
-SWIGINTERN PyObject *LayerRoughness_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_LayerRoughness, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *LayerRoughness_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_Line(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_addBinContent(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
   double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  Line *result = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_Line", 4, 4, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Line" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_addBinContent", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_addBinContent" "', argument " "1"" of type '" "IHistogram *""'"); 
+  }
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Line" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_addBinContent" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< double >(val2);
+  arg2 = static_cast< size_t >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Line" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_addBinContent" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_Line" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (Line *)new Line(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Line, SWIG_POINTER_NEW |  0 );
+  (arg1)->addBinContent(arg2,arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Line_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getBinError__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Line *arg1 = (Line *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Line *result = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Line, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Line_clone" "', argument " "1"" of type '" "Line const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinError" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Line * >(argp1);
-  result = (Line *)((Line const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Line, 0 |  0 );
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinError" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (double)((IHistogram const *)arg1)->getBinError(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Line_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IHistogram_getBinError__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Line *arg1 = (Line *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
+  size_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
+  size_t val2 ;
   int ecode2 = 0 ;
-  double val3 ;
+  size_t val3 ;
   int ecode3 = 0 ;
-  bool result;
+  double result;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Line, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Line_contains" "', argument " "1"" of type '" "Line const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinError" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Line * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Line_contains" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinError" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Line_contains" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_getBinError" "', argument " "3"" of type '" "size_t""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (bool)((Line const *)arg1)->contains(arg2,arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg3 = static_cast< size_t >(val3);
+  result = (double)((IHistogram const *)arg1)->getBinError(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Line_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IHistogram_getBinError(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getBinError", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_IHistogram_getBinError__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_IHistogram_getBinError__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getBinError'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IHistogram::getBinError(size_t) const\n"
+    "    IHistogram::getBinError(size_t,size_t) const\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_IHistogram_getBinAverage__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Line *arg1 = (Line *) 0 ;
-  Bin1D *arg2 = 0 ;
-  Bin1D *arg3 = 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  bool result;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  double result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Line, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Line_contains" "', argument " "1"" of type '" "Line const *""'"); 
-  }
-  arg1 = reinterpret_cast< Line * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Line_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Line_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
-  }
-  arg2 = reinterpret_cast< Bin1D * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Line_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinAverage" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Line_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinAverage" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (double)((IHistogram const *)arg1)->getBinAverage(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IHistogram_getBinAverage__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
+  size_t arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  size_t val3 ;
+  int ecode3 = 0 ;
+  double result;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinAverage" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg3 = reinterpret_cast< Bin1D * >(argp3);
-  result = (bool)((Line const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinAverage" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_getBinAverage" "', argument " "3"" of type '" "size_t""'");
+  } 
+  arg3 = static_cast< size_t >(val3);
+  result = (double)((IHistogram const *)arg1)->getBinAverage(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Line_contains(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getBinAverage(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Line_contains", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getBinAverage", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Line, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_Line_contains__SWIG_1(self, argc, argv);
-        }
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_IHistogram_getBinAverage__SWIG_0(self, argc, argv);
       }
     }
   }
   if (argc == 3) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Line, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_double(argv[1], NULL);
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
         {
-          int res = SWIG_AsVal_double(argv[2], NULL);
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_Line_contains__SWIG_0(self, argc, argv);
+          return _wrap_IHistogram_getBinAverage__SWIG_1(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Line_contains'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getBinAverage'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    Line::contains(double,double) const\n"
-    "    Line::contains(Bin1D const &,Bin1D const &) const\n");
+    "    IHistogram::getBinAverage(size_t) const\n"
+    "    IHistogram::getBinAverage(size_t,size_t) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Line(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getBinNumberOfEntries__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Line *arg1 = (Line *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  int result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Line, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Line" "', argument " "1"" of type '" "Line *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinNumberOfEntries" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Line * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *Line_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Line, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *Line_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_VerticalLine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  PyObject *swig_obj[1] ;
-  VerticalLine *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_VerticalLine" "', argument " "1"" of type '" "double""'");
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinNumberOfEntries" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg1 = static_cast< double >(val1);
-  result = (VerticalLine *)new VerticalLine(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VerticalLine, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_VerticalLine_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  VerticalLine *arg1 = (VerticalLine *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  VerticalLine *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VerticalLine, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VerticalLine_clone" "', argument " "1"" of type '" "VerticalLine const *""'"); 
-  }
-  arg1 = reinterpret_cast< VerticalLine * >(argp1);
-  result = (VerticalLine *)((VerticalLine const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VerticalLine, 0 |  0 );
+  arg2 = static_cast< size_t >(val2);
+  result = (int)((IHistogram const *)arg1)->getBinNumberOfEntries(arg2);
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_VerticalLine_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IHistogram_getBinNumberOfEntries__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  VerticalLine *arg1 = (VerticalLine *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  size_t arg2 ;
+  size_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
+  size_t val2 ;
   int ecode2 = 0 ;
-  double val3 ;
+  size_t val3 ;
   int ecode3 = 0 ;
-  bool result;
+  int result;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VerticalLine, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VerticalLine_contains" "', argument " "1"" of type '" "VerticalLine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getBinNumberOfEntries" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< VerticalLine * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "VerticalLine_contains" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getBinNumberOfEntries" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "VerticalLine_contains" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IHistogram_getBinNumberOfEntries" "', argument " "3"" of type '" "size_t""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (bool)((VerticalLine const *)arg1)->contains(arg2,arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_VerticalLine_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  VerticalLine *arg1 = (VerticalLine *) 0 ;
-  Bin1D *arg2 = 0 ;
-  Bin1D *arg3 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  bool result;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VerticalLine, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VerticalLine_contains" "', argument " "1"" of type '" "VerticalLine const *""'"); 
-  }
-  arg1 = reinterpret_cast< VerticalLine * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "VerticalLine_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VerticalLine_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
-  }
-  arg2 = reinterpret_cast< Bin1D * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "VerticalLine_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "VerticalLine_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
-  }
-  arg3 = reinterpret_cast< Bin1D * >(argp3);
-  result = (bool)((VerticalLine const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg3 = static_cast< size_t >(val3);
+  result = (int)((IHistogram const *)arg1)->getBinNumberOfEntries(arg2,arg3);
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_VerticalLine_contains(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getBinNumberOfEntries(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "VerticalLine_contains", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getBinNumberOfEntries", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_VerticalLine, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_VerticalLine_contains__SWIG_1(self, argc, argv);
-        }
+      }
+      if (_v) {
+        return _wrap_IHistogram_getBinNumberOfEntries__SWIG_0(self, argc, argv);
       }
     }
   }
   if (argc == 3) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_VerticalLine, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_double(argv[1], NULL);
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
         {
-          int res = SWIG_AsVal_double(argv[2], NULL);
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_VerticalLine_contains__SWIG_0(self, argc, argv);
+          return _wrap_IHistogram_getBinNumberOfEntries__SWIG_1(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'VerticalLine_contains'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getBinNumberOfEntries'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    VerticalLine::contains(double,double) const\n"
-    "    VerticalLine::contains(Bin1D const &,Bin1D const &) const\n");
+    "    IHistogram::getBinNumberOfEntries(size_t) const\n"
+    "    IHistogram::getBinNumberOfEntries(size_t,size_t) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_VerticalLine_getXpos(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getMaximum(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VerticalLine *arg1 = (VerticalLine *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -103881,12 +103184,12 @@ SWIGINTERN PyObject *_wrap_VerticalLine_getXpos(PyObject *SWIGUNUSEDPARM(self),
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VerticalLine, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VerticalLine_getXpos" "', argument " "1"" of type '" "VerticalLine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getMaximum" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< VerticalLine * >(argp1);
-  result = (double)((VerticalLine const *)arg1)->getXpos();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (double)((IHistogram const *)arg1)->getMaximum();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -103894,574 +103197,567 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_VerticalLine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getMaximumBinIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  VerticalLine *arg1 = (VerticalLine *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VerticalLine, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_VerticalLine" "', argument " "1"" of type '" "VerticalLine *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getMaximumBinIndex" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< VerticalLine * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = ((IHistogram const *)arg1)->getMaximumBinIndex();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *VerticalLine_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_VerticalLine, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *VerticalLine_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_HorizontalLine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getMinimum(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double val1 ;
-  int ecode1 = 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  HorizontalLine *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_HorizontalLine" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  result = (HorizontalLine *)new HorizontalLine(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_HorizontalLine, SWIG_POINTER_NEW |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getMinimum" "', argument " "1"" of type '" "IHistogram const *""'"); 
+  }
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (double)((IHistogram const *)arg1)->getMinimum();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_HorizontalLine_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getMinimumBinIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  HorizontalLine *arg1 = (HorizontalLine *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  HorizontalLine *result = 0 ;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HorizontalLine, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HorizontalLine_clone" "', argument " "1"" of type '" "HorizontalLine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getMinimumBinIndex" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< HorizontalLine * >(argp1);
-  result = (HorizontalLine *)((HorizontalLine const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_HorizontalLine, 0 |  0 );
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = ((IHistogram const *)arg1)->getMinimumBinIndex();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_HorizontalLine_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IHistogram_scale(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  HorizontalLine *arg1 = (HorizontalLine *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   double arg2 ;
-  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  bool result;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HorizontalLine, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_scale", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HorizontalLine_contains" "', argument " "1"" of type '" "HorizontalLine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_scale" "', argument " "1"" of type '" "IHistogram *""'"); 
   }
-  arg1 = reinterpret_cast< HorizontalLine * >(argp1);
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "HorizontalLine_contains" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_scale" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "HorizontalLine_contains" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (bool)((HorizontalLine const *)arg1)->contains(arg2,arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  (arg1)->scale(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_HorizontalLine_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IHistogram_integral(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  HorizontalLine *arg1 = (HorizontalLine *) 0 ;
-  Bin1D *arg2 = 0 ;
-  Bin1D *arg3 = 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  bool result;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HorizontalLine, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HorizontalLine_contains" "', argument " "1"" of type '" "HorizontalLine const *""'"); 
-  }
-  arg1 = reinterpret_cast< HorizontalLine * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "HorizontalLine_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HorizontalLine_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_integral" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg2 = reinterpret_cast< Bin1D * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "HorizontalLine_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (double)((IHistogram const *)arg1)->integral();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IHistogram_array__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  IHistogram::DataType arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int val2 ;
+  int ecode2 = 0 ;
+  PyObject *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_array" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HorizontalLine_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_array" "', argument " "2"" of type '" "IHistogram::DataType""'");
+  } 
+  arg2 = static_cast< IHistogram::DataType >(val2);
+  result = (PyObject *)((IHistogram const *)arg1)->array(arg2);
+  resultobj = result;
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IHistogram_array__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_array" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg3 = reinterpret_cast< Bin1D * >(argp3);
-  result = (bool)((HorizontalLine const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (PyObject *)((IHistogram const *)arg1)->array();
+  resultobj = result;
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_HorizontalLine_contains(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_array(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "HorizontalLine_contains", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_array", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 3) {
+  if (argc == 1) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_HorizontalLine, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_HorizontalLine_contains__SWIG_1(self, argc, argv);
-        }
-      }
+      return _wrap_IHistogram_array__SWIG_1(self, argc, argv);
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_HorizontalLine, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_double(argv[1], NULL);
+        int res = SWIG_AsVal_int(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_HorizontalLine_contains__SWIG_0(self, argc, argv);
-        }
+        return _wrap_IHistogram_array__SWIG_0(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'HorizontalLine_contains'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_array'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    HorizontalLine::contains(double,double) const\n"
-    "    HorizontalLine::contains(Bin1D const &,Bin1D const &) const\n");
+    "    IHistogram::array(IHistogram::DataType) const\n"
+    "    IHistogram::array() const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_HorizontalLine_getYpos(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  HorizontalLine *arg1 = (HorizontalLine *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HorizontalLine, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HorizontalLine_getYpos" "', argument " "1"" of type '" "HorizontalLine const *""'"); 
-  }
-  arg1 = reinterpret_cast< HorizontalLine * >(argp1);
-  result = (double)((HorizontalLine const *)arg1)->getYpos();
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_HorizontalLine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  HorizontalLine *arg1 = (HorizontalLine *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HorizontalLine, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_HorizontalLine" "', argument " "1"" of type '" "HorizontalLine *""'"); 
-  }
-  arg1 = reinterpret_cast< HorizontalLine * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *HorizontalLine_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_HorizontalLine, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *HorizontalLine_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_Material__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IHistogram_getArrayObsolete__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Material *arg1 = 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  IHistogram::DataType arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Material *result = 0 ;
+  int val2 ;
+  int ecode2 = 0 ;
+  PyObject *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0  | 0);
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Material" "', argument " "1"" of type '" "Material const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Material" "', argument " "1"" of type '" "Material const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getArrayObsolete" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  result = (Material *)new Material((Material const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Material, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_getArrayObsolete" "', argument " "2"" of type '" "IHistogram::DataType""'");
+  } 
+  arg2 = static_cast< IHistogram::DataType >(val2);
+  result = (PyObject *)((IHistogram const *)arg1)->getArray(arg2);
+  resultobj = result;
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Material__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IHistogram_getArrayObsolete__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Material *arg1 = 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Material *result = 0 ;
+  PyObject *result = 0 ;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Material" "', argument " "1"" of type '" "Material &&""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Material" "', argument " "1"" of type '" "Material &&""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_getArrayObsolete" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  result = (Material *)new Material((Material &&)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Material, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (PyObject *)((IHistogram const *)arg1)->getArray();
+  resultobj = result;
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Material(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_getArrayObsolete(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[2] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Material", 0, 1, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_getArrayObsolete", 0, 2, argv))) SWIG_fail;
   --argc;
   if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_Material__SWIG_0(self, argc, argv);
+      return _wrap_IHistogram_getArrayObsolete__SWIG_1(self, argc, argv);
     }
   }
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_Material__SWIG_1(self, argc, argv);
+      {
+        int res = SWIG_AsVal_int(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_IHistogram_getArrayObsolete__SWIG_0(self, argc, argv);
+      }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Material'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_getArrayObsolete'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    Material::Material(Material const &)\n"
-    "    Material::Material(Material &&)\n");
+    "    IHistogram::getArray(IHistogram::DataType) const\n"
+    "    IHistogram::getArray() const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Material_inverted(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_reset(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SwigValueWrapper< Material > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_inverted" "', argument " "1"" of type '" "Material const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_reset" "', argument " "1"" of type '" "IHistogram *""'"); 
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  result = ((Material const *)arg1)->inverted();
-  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  (arg1)->reset();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Material_refractiveIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_createHistogram(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
-  double arg2 ;
+  OutputData< double > *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  PyObject *swig_obj[1] ;
+  IHistogram *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Material_refractiveIndex", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_refractiveIndex" "', argument " "1"" of type '" "Material const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_createHistogram" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Material_refractiveIndex" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = ((Material const *)arg1)->refractiveIndex(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_createHistogram" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = (IHistogram *)IHistogram::createHistogram((OutputData< double > const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Material_refractiveIndex2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_createFrom__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  complex_t result;
+  std::string *arg1 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  IHistogram *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Material_refractiveIndex2", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_refractiveIndex2" "', argument " "1"" of type '" "Material const *""'"); 
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_createFrom" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_createFrom" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Material_refractiveIndex2" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = ((Material const *)arg1)->refractiveIndex2(arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  result = (IHistogram *)IHistogram::createFrom((std::string const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Material_isScalarMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_createFrom__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  bool result;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg1 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  IHistogram *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_isScalarMaterial" "', argument " "1"" of type '" "Material const *""'"); 
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res1 = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_createFrom" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_createFrom" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  result = (bool)((Material const *)arg1)->isScalarMaterial();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  result = (IHistogram *)IHistogram::createFrom((std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Material_isMagneticMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  bool result;
+SWIGINTERN PyObject *_wrap_IHistogram_createFrom(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_isMagneticMaterial" "', argument " "1"" of type '" "Material const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_createFrom", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_IHistogram_createFrom__SWIG_0(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  result = (bool)((Material const *)arg1)->isMagneticMaterial();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  return resultobj;
+  if (argc == 1) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_IHistogram_createFrom__SWIG_1(self, argc, argv);
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_createFrom'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IHistogram::createFrom(std::string const &)\n"
+    "    IHistogram::createFrom(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Material_getName(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_createOutputData__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  IHistogram::DataType arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::string result;
+  int val2 ;
+  int ecode2 = 0 ;
+  OutputData< double > *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_getName" "', argument " "1"" of type '" "Material const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_createOutputData" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  result = ((Material const *)arg1)->getName();
-  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IHistogram_createOutputData" "', argument " "2"" of type '" "IHistogram::DataType""'");
+  } 
+  arg2 = static_cast< IHistogram::DataType >(val2);
+  result = (OutputData< double > *)((IHistogram const *)arg1)->createOutputData(arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Material_magnetization(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_createOutputData__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  kvector_t result;
+  OutputData< double > *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_magnetization" "', argument " "1"" of type '" "Material const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_createOutputData" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  result = ((Material const *)arg1)->magnetization();
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  result = (OutputData< double > *)((IHistogram const *)arg1)->createOutputData();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Material_materialData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  complex_t result;
+SWIGINTERN PyObject *_wrap_IHistogram_createOutputData(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_materialData" "', argument " "1"" of type '" "Material const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IHistogram_createOutputData", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_IHistogram_createOutputData__SWIG_1(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  result = ((Material const *)arg1)->materialData();
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
-  return resultobj;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IHistogram, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_int(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_IHistogram_createOutputData__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IHistogram_createOutputData'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IHistogram::createOutputData(IHistogram::DataType) const\n"
+    "    IHistogram::createOutputData() const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Material_isEmpty(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_hasSameShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  IHistogram *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   bool result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_hasSameShape", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_isEmpty" "', argument " "1"" of type '" "Material const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_hasSameShape" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  result = (bool)((Material const *)arg1)->isEmpty();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IHistogram,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IHistogram_hasSameShape" "', argument " "2"" of type '" "IHistogram const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_hasSameShape" "', argument " "2"" of type '" "IHistogram const &""'"); 
+  }
+  arg2 = reinterpret_cast< IHistogram * >(argp2);
+  result = (bool)((IHistogram const *)arg1)->hasSameShape((IHistogram const &)*arg2);
   resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
@@ -104469,22 +103765,32 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Material_isDefaultMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_hasSameDimensions(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  IHistogram *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   bool result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_hasSameDimensions", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_isDefaultMaterial" "', argument " "1"" of type '" "Material const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_hasSameDimensions" "', argument " "1"" of type '" "IHistogram const *""'"); 
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  result = (bool)((Material const *)arg1)->isDefaultMaterial();
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IHistogram,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IHistogram_hasSameDimensions" "', argument " "2"" of type '" "IHistogram const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_hasSameDimensions" "', argument " "2"" of type '" "IHistogram const &""'"); 
+  }
+  arg2 = reinterpret_cast< IHistogram * >(argp2);
+  result = (bool)((IHistogram const *)arg1)->hasSameDimensions((IHistogram const &)*arg2);
   resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
@@ -104492,377 +103798,316 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Material_scalarSubtrSLD(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram___iadd__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
-  WavevectorInfo *arg2 = 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  IHistogram *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  complex_t result;
+  IHistogram *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Material_scalarSubtrSLD", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram___iadd__", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_scalarSubtrSLD" "', argument " "1"" of type '" "Material const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram___iadd__" "', argument " "1"" of type '" "IHistogram *""'"); 
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_WavevectorInfo,  0  | 0);
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IHistogram,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Material_scalarSubtrSLD" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IHistogram___iadd__" "', argument " "2"" of type '" "IHistogram const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Material_scalarSubtrSLD" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram___iadd__" "', argument " "2"" of type '" "IHistogram const &""'"); 
   }
-  arg2 = reinterpret_cast< WavevectorInfo * >(argp2);
-  result = ((Material const *)arg1)->scalarSubtrSLD((WavevectorInfo const &)*arg2);
-  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
+  arg2 = reinterpret_cast< IHistogram * >(argp2);
+  result = (IHistogram *) &(arg1)->operator +=((IHistogram const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Material_transformedMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_relativeDifferenceHistogram(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
-  Transform3D *arg2 = 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  IHistogram *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  SwigValueWrapper< Material > result;
+  IHistogram *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Material_transformedMaterial", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_relativeDifferenceHistogram", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_transformedMaterial" "', argument " "1"" of type '" "Material const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_relativeDifferenceHistogram" "', argument " "1"" of type '" "IHistogram *""'"); 
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Transform3D,  0  | 0);
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IHistogram,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Material_transformedMaterial" "', argument " "2"" of type '" "Transform3D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IHistogram_relativeDifferenceHistogram" "', argument " "2"" of type '" "IHistogram const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Material_transformedMaterial" "', argument " "2"" of type '" "Transform3D const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_relativeDifferenceHistogram" "', argument " "2"" of type '" "IHistogram const &""'"); 
   }
-  arg2 = reinterpret_cast< Transform3D * >(argp2);
-  result = ((Material const *)arg1)->transformedMaterial((Transform3D const &)*arg2);
-  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
+  arg2 = reinterpret_cast< IHistogram * >(argp2);
+  result = (IHistogram *)(arg1)->relativeDifferenceHistogram((IHistogram const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IHistogram, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Material(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IHistogram_save(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Material *arg1 = (Material *) 0 ;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_save", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Material" "', argument " "1"" of type '" "Material *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_save" "', argument " "1"" of type '" "IHistogram *""'"); 
   }
-  arg1 = reinterpret_cast< Material * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IHistogram_save" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_save" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  (arg1)->save((std::string const &)*arg2);
+  resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IHistogram_load(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IHistogram *arg1 = (IHistogram *) 0 ;
+  std::string *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IHistogram_load", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IHistogram, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IHistogram_load" "', argument " "1"" of type '" "IHistogram *""'"); 
+  }
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IHistogram_load" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IHistogram_load" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  (arg1)->load((std::string const &)*arg2);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *Material_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IHistogram_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Material, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_IHistogram, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *Material_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_HomogeneousMaterial__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  SwigValueWrapper< Material > result;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = HomogeneousMaterial();
-  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_HomogeneousMaterial__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_Histogram1D__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
+  int arg1 ;
   double arg2 ;
   double arg3 ;
-  kvector_t arg4 ;
-  int res1 = SWIG_OLDOBJ ;
+  int val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  void *argp4 ;
-  int res4 = 0 ;
-  SwigValueWrapper< Material > result;
+  Histogram1D *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
-  }
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Histogram1D" "', argument " "1"" of type '" "int""'");
+  } 
+  arg1 = static_cast< int >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "HomogeneousMaterial" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Histogram1D" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "HomogeneousMaterial" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Histogram1D" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  {
-    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "HomogeneousMaterial" "', argument " "4"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp4) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HomogeneousMaterial" "', argument " "4"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
-      arg4 = *temp;
-      if (SWIG_IsNewObj(res4)) delete temp;
-    }
-  }
-  result = HomogeneousMaterial((std::string const &)*arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  result = (Histogram1D *)new Histogram1D(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_HomogeneousMaterial__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_Histogram1D__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  double arg2 ;
-  double arg3 ;
-  int res1 = SWIG_OLDOBJ ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  SwigValueWrapper< Material > result;
+  int arg1 ;
+  std::vector< double,std::allocator< double > > *arg2 = 0 ;
+  int val1 ;
+  int ecode1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  Histogram1D *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Histogram1D" "', argument " "1"" of type '" "int""'");
+  } 
+  arg1 = static_cast< int >(val1);
   {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res2 = swig::asptr(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Histogram1D" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
     }
     if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram1D" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
     }
-    arg1 = ptr;
+    arg2 = ptr;
   }
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "HomogeneousMaterial" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "HomogeneousMaterial" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = HomogeneousMaterial((std::string const &)*arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  result = (Histogram1D *)new Histogram1D(arg1,(std::vector< double,std::allocator< double > > const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_HomogeneousMaterial__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_Histogram1D__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  complex_t arg2 ;
-  kvector_t arg3 ;
-  int res1 = SWIG_OLDOBJ ;
-  std::complex< double > val2 ;
-  int ecode2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  SwigValueWrapper< Material > result;
+  IAxis *arg1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  Histogram1D *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IAxis,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Histogram1D" "', argument " "1"" of type '" "IAxis const &""'"); 
   }
-  ecode2 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "HomogeneousMaterial" "', argument " "2"" of type '" "complex_t""'");
-  } 
-  arg2 = static_cast< complex_t >(val2);
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "HomogeneousMaterial" "', argument " "3"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HomogeneousMaterial" "', argument " "3"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram1D" "', argument " "1"" of type '" "IAxis const &""'"); 
   }
-  result = HomogeneousMaterial((std::string const &)*arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  arg1 = reinterpret_cast< IAxis * >(argp1);
+  result = (Histogram1D *)new Histogram1D((IAxis const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_HomogeneousMaterial__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_Histogram1D__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  complex_t arg2 ;
-  int res1 = SWIG_OLDOBJ ;
-  std::complex< double > val2 ;
-  int ecode2 = 0 ;
-  SwigValueWrapper< Material > result;
+  OutputData< double > *arg1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  Histogram1D *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Histogram1D" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
   }
-  ecode2 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "HomogeneousMaterial" "', argument " "2"" of type '" "complex_t""'");
-  } 
-  arg2 = static_cast< complex_t >(val2);
-  result = HomogeneousMaterial((std::string const &)*arg1,arg2);
-  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram1D" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = (Histogram1D *)new Histogram1D((OutputData< double > const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_HomogeneousMaterial(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Histogram1D(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "HomogeneousMaterial", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Histogram1D", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_HomogeneousMaterial__SWIG_0(self, argc, argv);
-  }
-  if (argc == 2) {
+  if (argc == 1) {
     int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IAxis, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_std_complex_Sl_double_Sg_(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_HomogeneousMaterial__SWIG_4(self, argc, argv);
-      }
+      return _wrap_new_Histogram1D__SWIG_2(self, argc, argv);
     }
   }
-  if (argc == 3) {
+  if (argc == 1) {
     int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_HomogeneousMaterial__SWIG_2(self, argc, argv);
-        }
-      }
+      return _wrap_new_Histogram1D__SWIG_3(self, argc, argv);
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_int(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
-      {
-        int res = SWIG_AsVal_std_complex_Sl_double_Sg_(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      int res = swig::asptr(argv[1], (std::vector< double,std::allocator< double > >**)(0));
+      _v = SWIG_CheckState(res);
       if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_HomogeneousMaterial__SWIG_3(self, argc, argv);
-        }
+        return _wrap_new_Histogram1D__SWIG_1(self, argc, argv);
       }
     }
   }
-  if (argc == 4) {
+  if (argc == 3) {
     int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_int(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
       {
         int res = SWIG_AsVal_double(argv[1], NULL);
@@ -104874,159 +104119,147 @@ SWIGINTERN PyObject *_wrap_HomogeneousMaterial(PyObject *self, PyObject *args) {
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_HomogeneousMaterial__SWIG_1(self, argc, argv);
-          }
+          return _wrap_new_Histogram1D__SWIG_0(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'HomogeneousMaterial'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Histogram1D'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    HomogeneousMaterial()\n"
-    "    HomogeneousMaterial(std::string const &,double,double,kvector_t)\n"
-    "    HomogeneousMaterial(std::string const &,double,double)\n"
-    "    HomogeneousMaterial(std::string const &,complex_t,kvector_t)\n"
-    "    HomogeneousMaterial(std::string const &,complex_t)\n");
+    "    Histogram1D::Histogram1D(int,double,double)\n"
+    "    Histogram1D::Histogram1D(int,std::vector< double,std::allocator< double > > const &)\n"
+    "    Histogram1D::Histogram1D(IAxis const &)\n"
+    "    Histogram1D::Histogram1D(OutputData< double > const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_MaterialBySLD__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_Histogram1D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SwigValueWrapper< Material > result;
+  Histogram1D *arg1 = (Histogram1D *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  Histogram1D *result = 0 ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = MaterialBySLD();
-  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_clone" "', argument " "1"" of type '" "Histogram1D const *""'"); 
+  }
+  arg1 = reinterpret_cast< Histogram1D * >(argp1);
+  result = (Histogram1D *)((Histogram1D const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MaterialBySLD__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Histogram1D_getRank(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
+  Histogram1D *arg1 = (Histogram1D *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  size_t result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getRank" "', argument " "1"" of type '" "Histogram1D const *""'"); 
+  }
+  arg1 = reinterpret_cast< Histogram1D * >(argp1);
+  result = ((Histogram1D const *)arg1)->getRank();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Histogram1D_fill__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  Histogram1D *arg1 = (Histogram1D *) 0 ;
   double arg2 ;
   double arg3 ;
-  kvector_t arg4 ;
-  int res1 = SWIG_OLDOBJ ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  void *argp4 ;
-  int res4 = 0 ;
-  SwigValueWrapper< Material > result;
+  int result;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MaterialBySLD" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MaterialBySLD" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_fill" "', argument " "1"" of type '" "Histogram1D *""'"); 
   }
+  arg1 = reinterpret_cast< Histogram1D * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MaterialBySLD" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram1D_fill" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "MaterialBySLD" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram1D_fill" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  {
-    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "MaterialBySLD" "', argument " "4"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp4) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MaterialBySLD" "', argument " "4"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
-      arg4 = *temp;
-      if (SWIG_IsNewObj(res4)) delete temp;
-    }
-  }
-  result = MaterialBySLD((std::string const &)*arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  result = (int)(arg1)->fill(arg2,arg3);
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MaterialBySLD__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Histogram1D_fill__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
+  Histogram1D *arg1 = (Histogram1D *) 0 ;
   double arg2 ;
-  double arg3 ;
-  int res1 = SWIG_OLDOBJ ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  SwigValueWrapper< Material > result;
+  int result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MaterialBySLD" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MaterialBySLD" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_fill" "', argument " "1"" of type '" "Histogram1D *""'"); 
   }
+  arg1 = reinterpret_cast< Histogram1D * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MaterialBySLD" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram1D_fill" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "MaterialBySLD" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = MaterialBySLD((std::string const &)*arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  result = (int)(arg1)->fill(arg2);
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MaterialBySLD(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram1D_fill(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "MaterialBySLD", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Histogram1D_fill", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_MaterialBySLD__SWIG_0(self, argc, argv);
-  }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram1D, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
       {
@@ -105034,19 +104267,14 @@ SWIGINTERN PyObject *_wrap_MaterialBySLD(PyObject *self, PyObject *args) {
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_MaterialBySLD__SWIG_2(self, argc, argv);
-        }
+        return _wrap_Histogram1D_fill__SWIG_1(self, argc, argv);
       }
     }
   }
-  if (argc == 4) {
+  if (argc == 3) {
     int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram1D, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
       {
@@ -105059,345 +104287,212 @@ SWIGINTERN PyObject *_wrap_MaterialBySLD(PyObject *self, PyObject *args) {
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_MaterialBySLD__SWIG_1(self, argc, argv);
-          }
+          return _wrap_Histogram1D_fill__SWIG_0(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'MaterialBySLD'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Histogram1D_fill'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    MaterialBySLD()\n"
-    "    MaterialBySLD(std::string const &,double,double,kvector_t)\n"
-    "    MaterialBySLD(std::string const &,double,double)\n");
+    "    Histogram1D::fill(double,double)\n"
+    "    Histogram1D::fill(double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_MesoCrystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IClusteredParticles *arg1 = 0 ;
-  IFormFactor *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  MesoCrystal *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_MesoCrystal", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IClusteredParticles,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_MesoCrystal" "', argument " "1"" of type '" "IClusteredParticles const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_MesoCrystal" "', argument " "1"" of type '" "IClusteredParticles const &""'"); 
-  }
-  arg1 = reinterpret_cast< IClusteredParticles * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_MesoCrystal" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_MesoCrystal" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  arg2 = reinterpret_cast< IFormFactor * >(argp2);
-  result = (MesoCrystal *)new MesoCrystal((IClusteredParticles const &)*arg1,(IFormFactor const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MesoCrystal, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_MesoCrystal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram1D_getBinCenters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MesoCrystal *arg1 = (MesoCrystal *) 0 ;
+  Histogram1D *arg1 = (Histogram1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::vector< double,std::allocator< double > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MesoCrystal, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_MesoCrystal" "', argument " "1"" of type '" "MesoCrystal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getBinCenters" "', argument " "1"" of type '" "Histogram1D const *""'"); 
   }
-  arg1 = reinterpret_cast< MesoCrystal * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Histogram1D * >(argp1);
+  result = ((Histogram1D const *)arg1)->getBinCenters();
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MesoCrystal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram1D_getBinValues(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MesoCrystal *arg1 = (MesoCrystal *) 0 ;
+  Histogram1D *arg1 = (Histogram1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  MesoCrystal *result = 0 ;
+  std::vector< double,std::allocator< double > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MesoCrystal, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MesoCrystal_clone" "', argument " "1"" of type '" "MesoCrystal const *""'"); 
-  }
-  arg1 = reinterpret_cast< MesoCrystal * >(argp1);
-  result = (MesoCrystal *)((MesoCrystal const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MesoCrystal, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_MesoCrystal_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  MesoCrystal *arg1 = (MesoCrystal *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "MesoCrystal_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MesoCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MesoCrystal_accept" "', argument " "1"" of type '" "MesoCrystal const *""'"); 
-  }
-  arg1 = reinterpret_cast< MesoCrystal * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MesoCrystal_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getBinValues" "', argument " "1"" of type '" "Histogram1D const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((MesoCrystal const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Histogram1D * >(argp1);
+  result = ((Histogram1D const *)arg1)->getBinValues();
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MesoCrystal_createSlicedParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram1D_getBinErrors(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MesoCrystal *arg1 = (MesoCrystal *) 0 ;
-  ZLimits arg2 ;
+  Histogram1D *arg1 = (Histogram1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  SlicedParticle result;
+  PyObject *swig_obj[1] ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "MesoCrystal_createSlicedParticle", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MesoCrystal, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MesoCrystal_createSlicedParticle" "', argument " "1"" of type '" "MesoCrystal const *""'"); 
-  }
-  arg1 = reinterpret_cast< MesoCrystal * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MesoCrystal_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MesoCrystal_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'");
-    } else {
-      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getBinErrors" "', argument " "1"" of type '" "Histogram1D const *""'"); 
   }
-  result = ((MesoCrystal const *)arg1)->createSlicedParticle(arg2);
-  
-  resultobj = SWIG_NewPointerObj(new SlicedParticle(std::move(result)), SWIGTYPE_p_SlicedParticle, SWIG_POINTER_OWN);
-  
+  arg1 = reinterpret_cast< Histogram1D * >(argp1);
+  result = ((Histogram1D const *)arg1)->getBinErrors();
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MesoCrystal_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram1D_getBinCentersNumpy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MesoCrystal *arg1 = (MesoCrystal *) 0 ;
+  Histogram1D *arg1 = (Histogram1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  PyObject *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MesoCrystal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MesoCrystal_getChildren" "', argument " "1"" of type '" "MesoCrystal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getBinCentersNumpy" "', argument " "1"" of type '" "Histogram1D const *""'"); 
   }
-  arg1 = reinterpret_cast< MesoCrystal * >(argp1);
-  result = ((MesoCrystal const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *MesoCrystal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_MesoCrystal, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *MesoCrystal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_MultiLayer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  MultiLayer *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_MultiLayer", 0, 0, 0)) SWIG_fail;
-  result = (MultiLayer *)new MultiLayer();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Histogram1D * >(argp1);
+  result = (PyObject *)((Histogram1D const *)arg1)->getBinCentersNumpy();
+  resultobj = result;
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_MultiLayer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram1D_getBinValuesNumpy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  Histogram1D *arg1 = (Histogram1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  PyObject *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_MultiLayer" "', argument " "1"" of type '" "MultiLayer *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getBinValuesNumpy" "', argument " "1"" of type '" "Histogram1D const *""'"); 
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Histogram1D * >(argp1);
+  result = (PyObject *)((Histogram1D const *)arg1)->getBinValuesNumpy();
+  resultobj = result;
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MultiLayer_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram1D_getBinErrorsNumpy(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  Histogram1D *arg1 = (Histogram1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  MultiLayer *result = 0 ;
+  PyObject *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_clone" "', argument " "1"" of type '" "MultiLayer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_getBinErrorsNumpy" "', argument " "1"" of type '" "Histogram1D const *""'"); 
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  result = (MultiLayer *)((MultiLayer const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, 0 |  0 );
+  arg1 = reinterpret_cast< Histogram1D * >(argp1);
+  result = (PyObject *)((Histogram1D const *)arg1)->getBinErrorsNumpy();
+  resultobj = result;
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MultiLayer_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram1D_crop(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  Histogram1D *arg1 = (Histogram1D *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  Histogram1D *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Histogram1D_crop", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_accept" "', argument " "1"" of type '" "MultiLayer const *""'"); 
-  }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MultiLayer_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram1D_crop" "', argument " "1"" of type '" "Histogram1D *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((MultiLayer const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Histogram1D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram1D_crop" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram1D_crop" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (Histogram1D *)(arg1)->crop(arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MultiLayer_numberOfLayers(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_Histogram1D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  Histogram1D *arg1 = (Histogram1D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_numberOfLayers" "', argument " "1"" of type '" "MultiLayer const *""'"); 
-  }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  result = ((MultiLayer const *)arg1)->numberOfLayers();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_MultiLayer_addLayer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
-  Layer *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_addLayer", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram1D, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_addLayer" "', argument " "1"" of type '" "MultiLayer *""'"); 
-  }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Layer,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MultiLayer_addLayer" "', argument " "2"" of type '" "Layer const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MultiLayer_addLayer" "', argument " "2"" of type '" "Layer const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Histogram1D" "', argument " "1"" of type '" "Histogram1D *""'"); 
   }
-  arg2 = reinterpret_cast< Layer * >(argp2);
-  (arg1)->addLayer((Layer const &)*arg2);
+  arg1 = reinterpret_cast< Histogram1D * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -105405,772 +104500,1068 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_MultiLayer_addLayerWithTopRoughness(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
-  Layer *arg2 = 0 ;
-  LayerRoughness *arg3 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_addLayerWithTopRoughness", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_addLayerWithTopRoughness" "', argument " "1"" of type '" "MultiLayer *""'"); 
-  }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Layer,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MultiLayer_addLayerWithTopRoughness" "', argument " "2"" of type '" "Layer const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MultiLayer_addLayerWithTopRoughness" "', argument " "2"" of type '" "Layer const &""'"); 
-  }
-  arg2 = reinterpret_cast< Layer * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_LayerRoughness,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "MultiLayer_addLayerWithTopRoughness" "', argument " "3"" of type '" "LayerRoughness const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MultiLayer_addLayerWithTopRoughness" "', argument " "3"" of type '" "LayerRoughness const &""'"); 
-  }
-  arg3 = reinterpret_cast< LayerRoughness * >(argp3);
-  (arg1)->addLayerWithTopRoughness((Layer const &)*arg2,(LayerRoughness const &)*arg3);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *Histogram1D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_Histogram1D, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
-
-SWIGINTERN PyObject *_wrap_MultiLayer_layer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  Layer *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_layer", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_layer" "', argument " "1"" of type '" "MultiLayer const *""'"); 
-  }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MultiLayer_layer" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = (Layer *)((MultiLayer const *)arg1)->layer(arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Layer, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *Histogram1D_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
 }
 
-
-SWIGINTERN PyObject *_wrap_MultiLayer_layerInterface(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Histogram2D__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
+  int arg1 ;
+  double arg2 ;
+  double arg3 ;
+  int arg4 ;
+  double arg5 ;
+  double arg6 ;
+  int val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
   int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  LayerInterface *result = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  int val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
+  double val6 ;
+  int ecode6 = 0 ;
+  Histogram2D *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_layerInterface", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_layerInterface" "', argument " "1"" of type '" "MultiLayer const *""'"); 
-  }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
+  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Histogram2D" "', argument " "1"" of type '" "int""'");
+  } 
+  arg1 = static_cast< int >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MultiLayer_layerInterface" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Histogram2D" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< size_t >(val2);
-  result = (LayerInterface *)((MultiLayer const *)arg1)->layerInterface(arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_LayerInterface, 0 |  0 );
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Histogram2D" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_int(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_Histogram2D" "', argument " "4"" of type '" "int""'");
+  } 
+  arg4 = static_cast< int >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_Histogram2D" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  ecode6 = SWIG_AsVal_double(swig_obj[5], &val6);
+  if (!SWIG_IsOK(ecode6)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "new_Histogram2D" "', argument " "6"" of type '" "double""'");
+  } 
+  arg6 = static_cast< double >(val6);
+  result = (Histogram2D *)new Histogram2D(arg1,arg2,arg3,arg4,arg5,arg6);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MultiLayer_setCrossCorrLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Histogram2D__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  int arg1 ;
+  std::vector< double,std::allocator< double > > *arg2 = 0 ;
+  int arg3 ;
+  std::vector< double,std::allocator< double > > *arg4 = 0 ;
+  int val1 ;
+  int ecode1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  int val3 ;
+  int ecode3 = 0 ;
+  int res4 = SWIG_OLDOBJ ;
+  Histogram2D *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_setCrossCorrLength", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_setCrossCorrLength" "', argument " "1"" of type '" "MultiLayer *""'"); 
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Histogram2D" "', argument " "1"" of type '" "int""'");
+  } 
+  arg1 = static_cast< int >(val1);
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res2 = swig::asptr(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Histogram2D" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram2D" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg2 = ptr;
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MultiLayer_setCrossCorrLength" "', argument " "2"" of type '" "double""'");
+  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Histogram2D" "', argument " "3"" of type '" "int""'");
   } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setCrossCorrLength(arg2);
-  resultobj = SWIG_Py_Void();
+  arg3 = static_cast< int >(val3);
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res4 = swig::asptr(swig_obj[3], &ptr);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_Histogram2D" "', argument " "4"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram2D" "', argument " "4"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg4 = ptr;
+  }
+  result = (Histogram2D *)new Histogram2D(arg1,(std::vector< double,std::allocator< double > > const &)*arg2,arg3,(std::vector< double,std::allocator< double > > const &)*arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_NEW |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  if (SWIG_IsNewObj(res4)) delete arg4;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MultiLayer_crossCorrLength(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Histogram2D__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  IAxis *arg1 = 0 ;
+  IAxis *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  Histogram2D *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IAxis,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_crossCorrLength" "', argument " "1"" of type '" "MultiLayer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Histogram2D" "', argument " "1"" of type '" "IAxis const &""'"); 
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  result = (double)((MultiLayer const *)arg1)->crossCorrLength();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram2D" "', argument " "1"" of type '" "IAxis const &""'"); 
+  }
+  arg1 = reinterpret_cast< IAxis * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAxis,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Histogram2D" "', argument " "2"" of type '" "IAxis const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram2D" "', argument " "2"" of type '" "IAxis const &""'"); 
+  }
+  arg2 = reinterpret_cast< IAxis * >(argp2);
+  result = (Histogram2D *)new Histogram2D((IAxis const &)*arg1,(IAxis const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MultiLayer_setExternalField(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Histogram2D__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
-  kvector_t arg2 ;
+  OutputData< double > *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  Histogram2D *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_setExternalField", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_setExternalField" "', argument " "1"" of type '" "MultiLayer *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Histogram2D" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MultiLayer_setExternalField" "', argument " "2"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MultiLayer_setExternalField" "', argument " "2"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Histogram2D" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
   }
-  (arg1)->setExternalField(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = (Histogram2D *)new Histogram2D((OutputData< double > const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MultiLayer_externalField(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Histogram2D__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  kvector_t result;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > arg1 ;
+  Histogram2D *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_externalField" "', argument " "1"" of type '" "MultiLayer const *""'"); 
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    int res = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res) || !ptr) {
+      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_Histogram2D" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >""'"); 
+    }
+    arg1 = *ptr;
+    if (SWIG_IsNewObj(res)) delete ptr;
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  result = ((MultiLayer const *)arg1)->externalField();
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  result = (Histogram2D *)new Histogram2D(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MultiLayer_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+SWIGINTERN PyObject *_wrap_new_Histogram2D(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[7] = {
+    0
+  };
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_getChildren" "', argument " "1"" of type '" "MultiLayer const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Histogram2D", 0, 6, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_Histogram2D__SWIG_3(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  result = ((MultiLayer const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
-  return resultobj;
+  if (argc == 1) {
+    int _v;
+    int res = swig::asptr(argv[0], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_Histogram2D__SWIG_4(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IAxis, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAxis, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_new_Histogram2D__SWIG_2(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    {
+      int res = SWIG_AsVal_int(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      int res = swig::asptr(argv[1], (std::vector< double,std::allocator< double > >**)(0));
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_int(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = swig::asptr(argv[3], (std::vector< double,std::allocator< double > >**)(0));
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_new_Histogram2D__SWIG_1(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  if (argc == 6) {
+    int _v;
+    {
+      int res = SWIG_AsVal_int(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_int(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              {
+                int res = SWIG_AsVal_double(argv[5], NULL);
+                _v = SWIG_CheckState(res);
+              }
+              if (_v) {
+                return _wrap_new_Histogram2D__SWIG_0(self, argc, argv);
+              }
+            }
+          }
+        }
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Histogram2D'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Histogram2D::Histogram2D(int,double,double,int,double,double)\n"
+    "    Histogram2D::Histogram2D(int,std::vector< double,std::allocator< double > > const &,int,std::vector< double,std::allocator< double > > const &)\n"
+    "    Histogram2D::Histogram2D(IAxis const &,IAxis const &)\n"
+    "    Histogram2D::Histogram2D(OutputData< double > const &)\n"
+    "    Histogram2D::Histogram2D(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_MultiLayer_setRoughnessModel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
-  RoughnessModel arg2 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  Histogram2D *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "MultiLayer_setRoughnessModel", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_setRoughnessModel" "', argument " "1"" of type '" "MultiLayer *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_clone" "', argument " "1"" of type '" "Histogram2D const *""'"); 
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MultiLayer_setRoughnessModel" "', argument " "2"" of type '" "RoughnessModel""'");
-  } 
-  arg2 = static_cast< RoughnessModel >(val2);
-  (arg1)->setRoughnessModel(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  result = (Histogram2D *)((Histogram2D const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_MultiLayer_roughnessModel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram2D_getRank(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = (MultiLayer *) 0 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  RoughnessModel result;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MultiLayer, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MultiLayer_roughnessModel" "', argument " "1"" of type '" "MultiLayer const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_getRank" "', argument " "1"" of type '" "Histogram2D const *""'"); 
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  result = (RoughnessModel)((MultiLayer const *)arg1)->roughnessModel();
-  resultobj = SWIG_From_int(static_cast< int >(result));
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  result = ((Histogram2D const *)arg1)->getRank();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *MultiLayer_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_MultiLayer, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *MultiLayer_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_MaterialProfile_cpp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram2D_fill__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = 0 ;
-  int arg2 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  double arg2 ;
   double arg3 ;
   double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int val2 ;
+  double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
   double val4 ;
   int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  std::vector< complex_t,std::allocator< complex_t > > result;
+  int result;
   
-  if (!SWIG_Python_UnpackTuple(args, "MaterialProfile_cpp", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_MultiLayer,  0  | 0);
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MaterialProfile_cpp" "', argument " "1"" of type '" "MultiLayer const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MaterialProfile_cpp" "', argument " "1"" of type '" "MultiLayer const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_fill" "', argument " "1"" of type '" "Histogram2D *""'"); 
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MaterialProfile_cpp" "', argument " "2"" of type '" "int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_fill" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< int >(val2);
+  arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "MaterialProfile_cpp" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram2D_fill" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
   ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "MaterialProfile_cpp" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Histogram2D_fill" "', argument " "4"" of type '" "double""'");
   } 
   arg4 = static_cast< double >(val4);
-  result = MaterialProfile((MultiLayer const &)*arg1,arg2,arg3,arg4);
-  resultobj = swig::from(static_cast< std::vector< std::complex< double >,std::allocator< std::complex< double > > > >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_DefaultMaterialProfileLimits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  MultiLayer *arg1 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::pair< double,double > result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_MultiLayer,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DefaultMaterialProfileLimits" "', argument " "1"" of type '" "MultiLayer const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DefaultMaterialProfileLimits" "', argument " "1"" of type '" "MultiLayer const &""'"); 
-  }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  result = DefaultMaterialProfileLimits((MultiLayer const &)*arg1);
-  resultobj = swig::from(static_cast< std::pair< double,double > >(result));
+  result = (int)(arg1)->fill(arg2,arg3,arg4);
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_GenerateZValues(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram2D_fill__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  int arg1 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
   double arg2 ;
   double arg3 ;
-  int val1 ;
-  int ecode1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  std::vector< double,std::allocator< double > > result;
+  int result;
   
-  if (!SWIG_Python_UnpackTuple(args, "GenerateZValues", 3, 3, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "GenerateZValues" "', argument " "1"" of type '" "int""'");
-  } 
-  arg1 = static_cast< int >(val1);
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_fill" "', argument " "1"" of type '" "Histogram2D *""'"); 
+  }
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "GenerateZValues" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_fill" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "GenerateZValues" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram2D_fill" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = GenerateZValues(arg1,arg2,arg3);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  result = (int)(arg1)->fill(arg2,arg3);
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_OffSpecSimulation__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_Histogram2D_fill(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Histogram2D_fill", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_Histogram2D_fill__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_Histogram2D_fill__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Histogram2D_fill'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Histogram2D::fill(double,double,double)\n"
+    "    Histogram2D::fill(double,double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_Histogram2D_projectionX__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OffSpecSimulation *result = 0 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  Histogram1D *result = 0 ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (OffSpecSimulation *)new OffSpecSimulation();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OffSpecSimulation, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_projectionX" "', argument " "1"" of type '" "Histogram2D *""'"); 
+  }
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  result = (Histogram1D *)(arg1)->projectionX();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_OffSpecSimulation__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Histogram2D_projectionX__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = 0 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  OffSpecSimulation *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  Histogram1D *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_MultiLayer,  0  | 0);
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_OffSpecSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_OffSpecSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_projectionX" "', argument " "1"" of type '" "Histogram2D *""'"); 
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  result = (OffSpecSimulation *)new OffSpecSimulation((MultiLayer const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OffSpecSimulation, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_projectionX" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (Histogram1D *)(arg1)->projectionX(arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_OffSpecSimulation__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Histogram2D_projectionX__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::shared_ptr< IMultiLayerBuilder > arg1 ;
-  void *argp1 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  void *argp1 = 0 ;
   int res1 = 0 ;
-  OffSpecSimulation *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  Histogram1D *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t,  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_OffSpecSimulation" "', argument " "1"" of type '" "std::shared_ptr< IMultiLayerBuilder > const""'");
-    }
-    if (argp1) arg1 = *(reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1));
-    if (newmem & SWIG_CAST_NEW_MEMORY) delete reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1);
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_projectionX" "', argument " "1"" of type '" "Histogram2D *""'"); 
   }
-  result = (OffSpecSimulation *)new OffSpecSimulation(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OffSpecSimulation, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_projectionX" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram2D_projectionX" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (Histogram1D *)(arg1)->projectionX(arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_OffSpecSimulation(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram2D_projectionX(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[2] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_OffSpecSimulation", 0, 1, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Histogram2D_projectionX", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_OffSpecSimulation__SWIG_0(self, argc, argv);
-  }
   if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_MultiLayer, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_OffSpecSimulation__SWIG_1(self, argc, argv);
+      return _wrap_Histogram2D_projectionX__SWIG_0(self, argc, argv);
     }
   }
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_OffSpecSimulation__SWIG_2(self, argc, argv);
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_Histogram2D_projectionX__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_Histogram2D_projectionX__SWIG_2(self, argc, argv);
+        }
+      }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_OffSpecSimulation'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Histogram2D_projectionX'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    OffSpecSimulation::OffSpecSimulation()\n"
-    "    OffSpecSimulation::OffSpecSimulation(MultiLayer const &)\n"
-    "    OffSpecSimulation::OffSpecSimulation(std::shared_ptr< IMultiLayerBuilder > const)\n");
+    "    Histogram2D::projectionX()\n"
+    "    Histogram2D::projectionX(double)\n"
+    "    Histogram2D::projectionX(double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_OffSpecSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram2D_projectionY__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  Histogram1D *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_OffSpecSimulation" "', argument " "1"" of type '" "OffSpecSimulation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_projectionY" "', argument " "1"" of type '" "Histogram2D *""'"); 
   }
-  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  result = (Histogram1D *)(arg1)->projectionY();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_OffSpecSimulation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram2D_projectionY__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  OffSpecSimulation *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  Histogram1D *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_clone" "', argument " "1"" of type '" "OffSpecSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_projectionY" "', argument " "1"" of type '" "Histogram2D *""'"); 
   }
-  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
-  result = (OffSpecSimulation *)((OffSpecSimulation const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_projectionY" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (Histogram1D *)(arg1)->projectionY(arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_OffSpecSimulation_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram2D_projectionY__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  Histogram1D *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "OffSpecSimulation_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_accept" "', argument " "1"" of type '" "OffSpecSimulation const *""'"); 
-  }
-  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "OffSpecSimulation_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_projectionY" "', argument " "1"" of type '" "Histogram2D *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((OffSpecSimulation const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_projectionY" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram2D_projectionY" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (Histogram1D *)(arg1)->projectionY(arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram1D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_OffSpecSimulation_prepareSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+SWIGINTERN PyObject *_wrap_Histogram2D_projectionY(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_prepareSimulation" "', argument " "1"" of type '" "OffSpecSimulation *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Histogram2D_projectionY", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_Histogram2D_projectionY__SWIG_0(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
-  (arg1)->prepareSimulation();
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_OffSpecSimulation_result(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SimulationResult result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_result" "', argument " "1"" of type '" "OffSpecSimulation const *""'"); 
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_Histogram2D_projectionY__SWIG_1(self, argc, argv);
+      }
+    }
   }
-  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
-  result = ((OffSpecSimulation const *)arg1)->result();
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
-  return resultobj;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Histogram2D, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_Histogram2D_projectionY__SWIG_2(self, argc, argv);
+        }
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Histogram2D_projectionY'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Histogram2D::projectionY()\n"
+    "    Histogram2D::projectionY(double)\n"
+    "    Histogram2D::projectionY(double,double)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_OffSpecSimulation_setBeamParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram2D_crop(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
   double arg2 ;
-  IAxis *arg3 = 0 ;
+  double arg3 ;
   double arg4 ;
+  double arg5 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
   double val4 ;
   int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
+  double val5 ;
+  int ecode5 = 0 ;
+  PyObject *swig_obj[5] ;
+  Histogram2D *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "OffSpecSimulation_setBeamParameters", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Histogram2D_crop", 5, 5, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_setBeamParameters" "', argument " "1"" of type '" "OffSpecSimulation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_crop" "', argument " "1"" of type '" "Histogram2D *""'"); 
   }
-  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "OffSpecSimulation_setBeamParameters" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Histogram2D_crop" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IAxis,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "OffSpecSimulation_setBeamParameters" "', argument " "3"" of type '" "IAxis const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "OffSpecSimulation_setBeamParameters" "', argument " "3"" of type '" "IAxis const &""'"); 
-  }
-  arg3 = reinterpret_cast< IAxis * >(argp3);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Histogram2D_crop" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
   ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "OffSpecSimulation_setBeamParameters" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Histogram2D_crop" "', argument " "4"" of type '" "double""'");
   } 
   arg4 = static_cast< double >(val4);
-  (arg1)->setBeamParameters(arg2,(IAxis const &)*arg3,arg4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "Histogram2D_crop" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  result = (Histogram2D *)(arg1)->crop(arg2,arg3,arg4,arg5);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Histogram2D_setContent(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "Histogram2D_setContent", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_setContent" "', argument " "1"" of type '" "Histogram2D *""'"); 
+  }
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res2 = swig::asptr(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Histogram2D_setContent" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Histogram2D_setContent" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  (arg1)->setContent((std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg2);
   resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_OffSpecSimulation_beamAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Histogram2D_addContent(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IAxis *result = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Histogram2D_addContent", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_beamAxis" "', argument " "1"" of type '" "OffSpecSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Histogram2D_addContent" "', argument " "1"" of type '" "Histogram2D *""'"); 
   }
-  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
-  result = (IAxis *)((OffSpecSimulation const *)arg1)->beamAxis();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res2 = swig::asptr(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Histogram2D_addContent" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Histogram2D_addContent" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  (arg1)->addContent((std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg2);
+  resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_OffSpecSimulation_intensityMapSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_Histogram2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OffSpecSimulation *arg1 = (OffSpecSimulation *) 0 ;
+  Histogram2D *arg1 = (Histogram2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OffSpecSimulation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Histogram2D, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "OffSpecSimulation_intensityMapSize" "', argument " "1"" of type '" "OffSpecSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Histogram2D" "', argument " "1"" of type '" "Histogram2D *""'"); 
   }
-  arg1 = reinterpret_cast< OffSpecSimulation * >(argp1);
-  result = ((OffSpecSimulation const *)arg1)->intensityMapSize();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< Histogram2D * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *OffSpecSimulation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Histogram2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_OffSpecSimulation, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_Histogram2D, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *OffSpecSimulation_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Histogram2D_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_IntensityData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_AxisInfo_m_name_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *result = 0 ;
+  AxisInfo *arg1 = (AxisInfo *) 0 ;
+  std::string *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_IntensityData", 0, 0, 0)) SWIG_fail;
-  result = (OutputData< double > *)new OutputData< double >();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "AxisInfo_m_name_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "AxisInfo_m_name_set" "', argument " "1"" of type '" "AxisInfo *""'"); 
+  }
+  arg1 = reinterpret_cast< AxisInfo * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "AxisInfo_m_name_set" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "AxisInfo_m_name_set" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  if (arg1) (arg1)->m_name = *arg2;
+  resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IntensityData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_AxisInfo_m_name_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  AxisInfo *arg1 = (AxisInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::string *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IntensityData" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "AxisInfo_m_name_get" "', argument " "1"" of type '" "AxisInfo *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< AxisInfo * >(argp1);
+  result = (std::string *) & ((arg1)->m_name);
+  resultobj = SWIG_From_std_string(static_cast< std::string >(*result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_AxisInfo_m_min_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  AxisInfo *arg1 = (AxisInfo *) 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "AxisInfo_m_min_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "AxisInfo_m_min_set" "', argument " "1"" of type '" "AxisInfo *""'"); 
+  }
+  arg1 = reinterpret_cast< AxisInfo * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "AxisInfo_m_min_set" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  if (arg1) (arg1)->m_min = arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -106178,54 +105569,51 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_AxisInfo_m_min_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  AxisInfo *arg1 = (AxisInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  OutputData< double > *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_clone" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "AxisInfo_m_min_get" "', argument " "1"" of type '" "AxisInfo *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = (OutputData< double > *)((OutputData< double > const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  arg1 = reinterpret_cast< AxisInfo * >(argp1);
+  result = (double) ((arg1)->m_min);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_copyFrom(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_AxisInfo_m_max_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  OutputData< double > *arg2 = 0 ;
+  AxisInfo *arg1 = (AxisInfo *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData_copyFrom", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "AxisInfo_m_max_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_copyFrom" "', argument " "1"" of type '" "OutputData< double > *""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_copyFrom" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_copyFrom" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "AxisInfo_m_max_set" "', argument " "1"" of type '" "AxisInfo *""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  (arg1)->copyFrom((OutputData< double > const &)*arg2);
+  arg1 = reinterpret_cast< AxisInfo * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "AxisInfo_m_max_set" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  if (arg1) (arg1)->m_max = arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -106233,686 +105621,697 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_meanValues(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_AxisInfo_m_max_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  AxisInfo *arg1 = (AxisInfo *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "AxisInfo_m_max_get" "', argument " "1"" of type '" "AxisInfo *""'"); 
+  }
+  arg1 = reinterpret_cast< AxisInfo * >(argp1);
+  result = (double) ((arg1)->m_max);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_AxisInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  AxisInfo *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_AxisInfo", 0, 0, 0)) SWIG_fail;
+  result = (AxisInfo *)new AxisInfo();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_AxisInfo, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_AxisInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  AxisInfo *arg1 = (AxisInfo *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  OutputData< double > *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxisInfo, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_meanValues" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_AxisInfo" "', argument " "1"" of type '" "AxisInfo *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = (OutputData< double > *)((OutputData< double > const *)arg1)->meanValues();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  arg1 = reinterpret_cast< AxisInfo * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_addAxis__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *AxisInfo_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_AxisInfo, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *AxisInfo_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_SimulationResult__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  IAxis *arg2 = 0 ;
+  SimulationResult *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (SimulationResult *)new SimulationResult();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationResult, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_SimulationResult__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  OutputData< double > *arg1 = 0 ;
+  IUnitConverter *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  SimulationResult *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_addAxis" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SimulationResult" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SimulationResult" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
   }
   arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAxis,  0  | 0);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IUnitConverter,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_addAxis" "', argument " "2"" of type '" "IAxis const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_SimulationResult" "', argument " "2"" of type '" "IUnitConverter const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_addAxis" "', argument " "2"" of type '" "IAxis const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SimulationResult" "', argument " "2"" of type '" "IUnitConverter const &""'"); 
   }
-  arg2 = reinterpret_cast< IAxis * >(argp2);
-  (arg1)->addAxis((IAxis const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = reinterpret_cast< IUnitConverter * >(argp2);
+  result = (SimulationResult *)new SimulationResult((OutputData< double > const &)*arg1,(IUnitConverter const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationResult, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_addAxis__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_SimulationResult__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  std::string *arg2 = 0 ;
-  size_t arg3 ;
-  double arg4 ;
-  double arg5 ;
+  SimulationResult *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
+  SimulationResult *result = 0 ;
   
-  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_SimulationResult,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_addAxis" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SimulationResult" "', argument " "1"" of type '" "SimulationResult const &""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_addAxis" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_addAxis" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SimulationResult" "', argument " "1"" of type '" "SimulationResult const &""'"); 
   }
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IntensityData_addAxis" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IntensityData_addAxis" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "IntensityData_addAxis" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  (arg1)->addAxis((std::string const &)*arg2,arg3,arg4,arg5);
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  result = (SimulationResult *)new SimulationResult((SimulationResult const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationResult, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_addAxis(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_SimulationResult__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  SimulationResult *arg1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  SimulationResult *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_SimulationResult,  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SimulationResult" "', argument " "1"" of type '" "SimulationResult &&""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SimulationResult" "', argument " "1"" of type '" "SimulationResult &&""'"); 
+  }
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  result = (SimulationResult *)new SimulationResult((SimulationResult &&)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationResult, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_SimulationResult(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[6] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_addAxis", 0, 5, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_SimulationResult", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 2) {
+  if (argc == 0) {
+    return _wrap_new_SimulationResult__SWIG_0(self, argc, argv);
+  }
+  if (argc == 1) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_SimulationResult, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAxis, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_IntensityData_addAxis__SWIG_0(self, argc, argv);
-      }
+      return _wrap_new_SimulationResult__SWIG_2(self, argc, argv);
     }
   }
-  if (argc == 5) {
+  if (argc == 1) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, SWIG_POINTER_NO_NULL);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
+      return _wrap_new_SimulationResult__SWIG_3(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IUnitConverter, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              return _wrap_IntensityData_addAxis__SWIG_1(self, argc, argv);
-            }
-          }
-        }
+        return _wrap_new_SimulationResult__SWIG_1(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_addAxis'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_SimulationResult'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    OutputData< double >::addAxis(IAxis const &)\n"
-    "    OutputData< double >::addAxis(std::string const &,size_t,double,double)\n");
+    "    SimulationResult::SimulationResult()\n"
+    "    SimulationResult::SimulationResult(OutputData< double > const &,IUnitConverter const &)\n"
+    "    SimulationResult::SimulationResult(SimulationResult const &)\n"
+    "    SimulationResult::SimulationResult(SimulationResult &&)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxis__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationResult_histogram2d__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  size_t arg2 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
+  AxesUnits arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
+  int val2 ;
   int ecode2 = 0 ;
-  IAxis *result = 0 ;
+  Histogram2D *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxis" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_histogram2d" "', argument " "1"" of type '" "SimulationResult const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxis" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult_histogram2d" "', argument " "2"" of type '" "AxesUnits""'");
   } 
-  arg2 = static_cast< size_t >(val2);
-  result = (IAxis *) &((OutputData< double > const *)arg1)->getAxis(arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
+  arg2 = static_cast< AxesUnits >(val2);
+  result = (Histogram2D *)((SimulationResult const *)arg1)->histogram2d(arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxis__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationResult_histogram2d__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  std::string *arg2 = 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  IAxis *result = 0 ;
+  Histogram2D *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxis" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_getAxis" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_getAxis" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_histogram2d" "', argument " "1"" of type '" "SimulationResult const *""'"); 
   }
-  result = (IAxis *) &((OutputData< double > const *)arg1)->getAxis((std::string const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  result = (Histogram2D *)((SimulationResult const *)arg1)->histogram2d();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxis(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationResult_histogram2d(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_getAxis", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "SimulationResult_histogram2d", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 2) {
+  if (argc == 1) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_IntensityData_getAxis__SWIG_0(self, argc, argv);
-      }
+      return _wrap_SimulationResult_histogram2d__SWIG_1(self, argc, argv);
     }
   }
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
-      _v = SWIG_CheckState(res);
+      {
+        int res = SWIG_AsVal_int(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
-        return _wrap_IntensityData_getAxis__SWIG_1(self, argc, argv);
+        return _wrap_SimulationResult_histogram2d__SWIG_0(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_getAxis'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'SimulationResult_histogram2d'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    OutputData< double >::getAxis(size_t) const\n"
-    "    OutputData< double >::getAxis(std::string const &) const\n");
+    "    SimulationResult::histogram2d(AxesUnits) const\n"
+    "    SimulationResult::histogram2d() const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getRank(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationResult_axisInfo__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
+  AxesUnits arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
+  int val2 ;
+  int ecode2 = 0 ;
+  std::vector< AxisInfo,std::allocator< AxisInfo > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getRank" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_axisInfo" "', argument " "1"" of type '" "SimulationResult const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = ((OutputData< double > const *)arg1)->getRank();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult_axisInfo" "', argument " "2"" of type '" "AxesUnits""'");
+  } 
+  arg2 = static_cast< AxesUnits >(val2);
+  result = ((SimulationResult const *)arg1)->axisInfo(arg2);
+  resultobj = swig::from(static_cast< std::vector< AxisInfo,std::allocator< AxisInfo > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAllocatedSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationResult_axisInfo__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
+  std::vector< AxisInfo,std::allocator< AxisInfo > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAllocatedSize" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_axisInfo" "', argument " "1"" of type '" "SimulationResult const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = ((OutputData< double > const *)arg1)->getAllocatedSize();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  result = ((SimulationResult const *)arg1)->axisInfo();
+  resultobj = swig::from(static_cast< std::vector< AxisInfo,std::allocator< AxisInfo > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAllSizes(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SwigValueWrapper< std::vector< size_t,std::allocator< size_t > > > result;
+SWIGINTERN PyObject *_wrap_SimulationResult_axisInfo(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAllSizes" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "SimulationResult_axisInfo", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_SimulationResult_axisInfo__SWIG_1(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = ((OutputData< double > const *)arg1)->getAllSizes();
-  resultobj = SWIG_NewPointerObj((new std::vector< size_t,std::allocator< size_t > >(static_cast< const std::vector< size_t,std::allocator< size_t > >& >(result))), SWIGTYPE_p_std__vectorT_size_t_std__allocatorT_size_t_t_t, SWIG_POINTER_OWN |  0 );
-  return resultobj;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_int(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_SimulationResult_axisInfo__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'SimulationResult_axisInfo'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    SimulationResult::axisInfo(AxesUnits) const\n"
+    "    SimulationResult::axisInfo() const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getRawDataVector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationResult_converter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< double,std::allocator< double > > result;
+  IUnitConverter *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getRawDataVector" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_converter" "', argument " "1"" of type '" "SimulationResult const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = ((OutputData< double > const *)arg1)->getRawDataVector();
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  result = (IUnitConverter *) &((SimulationResult const *)arg1)->converter();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IUnitConverter, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_totalSum(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationResult_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_totalSum" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_size" "', argument " "1"" of type '" "SimulationResult const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = (double)((OutputData< double > const *)arg1)->totalSum();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  result = ((SimulationResult const *)arg1)->size();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_begin__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationResult_array__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
+  AxesUnits arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  SwigValueWrapper< OutputDataIterator< double,OutputData< double > > > result;
+  int val2 ;
+  int ecode2 = 0 ;
+  PyObject *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_begin" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_array" "', argument " "1"" of type '" "SimulationResult const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = (arg1)->begin();
-  resultobj = SWIG_NewPointerObj((new OutputData< double >::iterator(static_cast< const OutputData< double >::iterator& >(result))), SWIGTYPE_p_OutputDataIteratorT_double_OutputDataT_double_t_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult_array" "', argument " "2"" of type '" "AxesUnits""'");
+  } 
+  arg2 = static_cast< AxesUnits >(val2);
+  result = (PyObject *)((SimulationResult const *)arg1)->array(arg2);
+  resultobj = result;
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_begin__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationResult_array__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  SwigValueWrapper< OutputDataIterator< double const,OutputData< double > const > > result;
+  PyObject *result = 0 ;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_begin" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_array" "', argument " "1"" of type '" "SimulationResult const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = ((OutputData< double > const *)arg1)->begin();
-  resultobj = SWIG_NewPointerObj((new OutputData< double >::const_iterator(static_cast< const OutputData< double >::const_iterator& >(result))), SWIGTYPE_p_OutputDataIteratorT_double_const_OutputDataT_double_t_const_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  result = (PyObject *)((SimulationResult const *)arg1)->array();
+  resultobj = result;
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_begin(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationResult_array(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[2] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_begin", 0, 1, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "SimulationResult_array", 0, 2, argv))) SWIG_fail;
   --argc;
   if (argc == 1) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_IntensityData_begin__SWIG_0(self, argc, argv);
+      return _wrap_SimulationResult_array__SWIG_1(self, argc, argv);
     }
   }
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_IntensityData_begin__SWIG_1(self, argc, argv);
+      {
+        int res = SWIG_AsVal_int(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_SimulationResult_array__SWIG_0(self, argc, argv);
+      }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_begin'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'SimulationResult_array'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    OutputData< double >::begin()\n"
-    "    OutputData< double >::begin() const\n");
+    "    SimulationResult::array(AxesUnits) const\n"
+    "    SimulationResult::array() const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_end__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationResult_axis__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
+  AxesUnits arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  SwigValueWrapper< OutputDataIterator< double,OutputData< double > > > result;
+  int val2 ;
+  int ecode2 = 0 ;
+  std::vector< double,std::allocator< double > > result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_end" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_axis" "', argument " "1"" of type '" "SimulationResult const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = (arg1)->end();
-  resultobj = SWIG_NewPointerObj((new OutputData< double >::iterator(static_cast< const OutputData< double >::iterator& >(result))), SWIGTYPE_p_OutputDataIteratorT_double_OutputDataT_double_t_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult_axis" "', argument " "2"" of type '" "AxesUnits""'");
+  } 
+  arg2 = static_cast< AxesUnits >(val2);
+  result = ((SimulationResult const *)arg1)->axis(arg2);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_end__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationResult_axis__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  SwigValueWrapper< OutputDataIterator< double const,OutputData< double > const > > result;
+  std::vector< double,std::allocator< double > > result;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_end" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = ((OutputData< double > const *)arg1)->end();
-  resultobj = SWIG_NewPointerObj((new OutputData< double >::const_iterator(static_cast< const OutputData< double >::const_iterator& >(result))), SWIGTYPE_p_OutputDataIteratorT_double_const_OutputDataT_double_t_const_t, SWIG_POINTER_OWN |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_IntensityData_end(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_end", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_IntensityData_end__SWIG_0(self, argc, argv);
-    }
-  }
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_IntensityData_end__SWIG_1(self, argc, argv);
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_end'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    OutputData< double >::end()\n"
-    "    OutputData< double >::end() const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IntensityData_getAxesBinIndices(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  std::vector< int,std::allocator< int > > result;
-  
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData_getAxesBinIndices", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxesBinIndices" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_axis" "', argument " "1"" of type '" "SimulationResult const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxesBinIndices" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((OutputData< double > const *)arg1)->getAxesBinIndices(arg2);
-  resultobj = swig::from(static_cast< std::vector< int,std::allocator< int > > >(result));
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  result = ((SimulationResult const *)arg1)->axis();
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxisBinIndex__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationResult_axis__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
   size_t arg2 ;
-  size_t arg3 ;
+  AxesUnits arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   size_t val2 ;
   int ecode2 = 0 ;
-  size_t val3 ;
+  int val3 ;
   int ecode3 = 0 ;
-  size_t result;
+  std::vector< double,std::allocator< double > > result;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxisBinIndex" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_axis" "', argument " "1"" of type '" "SimulationResult const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
   ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxisBinIndex" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult_axis" "', argument " "2"" of type '" "size_t""'");
   } 
   arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IntensityData_getAxisBinIndex" "', argument " "3"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "SimulationResult_axis" "', argument " "3"" of type '" "AxesUnits""'");
   } 
-  arg3 = static_cast< size_t >(val3);
-  result = ((OutputData< double > const *)arg1)->getAxisBinIndex(arg2,arg3);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg3 = static_cast< AxesUnits >(val3);
+  result = ((SimulationResult const *)arg1)->axis(arg2,arg3);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxisBinIndex__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationResult_axis__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
   size_t arg2 ;
-  std::string *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   size_t val2 ;
   int ecode2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  size_t result;
+  std::vector< double,std::allocator< double > > result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxisBinIndex" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult_axis" "', argument " "1"" of type '" "SimulationResult const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
   ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxisBinIndex" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult_axis" "', argument " "2"" of type '" "size_t""'");
   } 
   arg2 = static_cast< size_t >(val2);
-  {
-    std::string *ptr = (std::string *)0;
-    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IntensityData_getAxisBinIndex" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_getAxisBinIndex" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    arg3 = ptr;
-  }
-  result = ((OutputData< double > const *)arg1)->getAxisBinIndex(arg2,(std::string const &)*arg3);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  if (SWIG_IsNewObj(res3)) delete arg3;
+  result = ((SimulationResult const *)arg1)->axis(arg2);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxisBinIndex(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationResult_axis(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_getAxisBinIndex", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "SimulationResult_axis", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 3) {
+  if (argc == 1) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_SimulationResult_axis__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_int(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_SimulationResult_axis__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
       {
@@ -106920,20 +106319,14 @@ SWIGINTERN PyObject *_wrap_IntensityData_getAxisBinIndex(PyObject *self, PyObjec
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IntensityData_getAxisBinIndex__SWIG_0(self, argc, argv);
-        }
+        return _wrap_SimulationResult_axis__SWIG_3(self, argc, argv);
       }
     }
   }
   if (argc == 3) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_SimulationResult, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
       {
@@ -106941,266 +106334,316 @@ SWIGINTERN PyObject *_wrap_IntensityData_getAxisBinIndex(PyObject *self, PyObjec
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
-        _v = SWIG_CheckState(res);
+        {
+          int res = SWIG_AsVal_int(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
         if (_v) {
-          return _wrap_IntensityData_getAxisBinIndex__SWIG_1(self, argc, argv);
+          return _wrap_SimulationResult_axis__SWIG_2(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_getAxisBinIndex'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'SimulationResult_axis'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    OutputData< double >::getAxisBinIndex(size_t,size_t) const\n"
-    "    OutputData< double >::getAxisBinIndex(size_t,std::string const &) const\n");
+    "    SimulationResult::axis(AxesUnits) const\n"
+    "    SimulationResult::axis() const\n"
+    "    SimulationResult::axis(size_t,AxesUnits) const\n"
+    "    SimulationResult::axis(size_t) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_toGlobalIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationResult___getitem__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  std::vector< unsigned int,std::allocator< unsigned int > > *arg2 = 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
+  unsigned int arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  unsigned int val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  size_t result;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData_toGlobalIndex", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SimulationResult___getitem__", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_toGlobalIndex" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__vectorT_unsigned_int_std__allocatorT_unsigned_int_t_t,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_toGlobalIndex" "', argument " "2"" of type '" "std::vector< unsigned int,std::allocator< unsigned int > > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult___getitem__" "', argument " "1"" of type '" "SimulationResult *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_toGlobalIndex" "', argument " "2"" of type '" "std::vector< unsigned int,std::allocator< unsigned int > > const &""'"); 
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult___getitem__" "', argument " "2"" of type '" "unsigned int""'");
+  } 
+  arg2 = static_cast< unsigned int >(val2);
+  result = (double)SimulationResult___getitem__(arg1,arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_SimulationResult___setitem__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
+  unsigned int arg2 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  unsigned int val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "SimulationResult___setitem__", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationResult___setitem__" "', argument " "1"" of type '" "SimulationResult *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< unsigned int,std::allocator< unsigned int > > * >(argp2);
-  result = ((OutputData< double > const *)arg1)->toGlobalIndex((std::vector< unsigned int,std::allocator< unsigned int > > const &)*arg2);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SimulationResult___setitem__" "', argument " "2"" of type '" "unsigned int""'");
+  } 
+  arg2 = static_cast< unsigned int >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "SimulationResult___setitem__" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)SimulationResult___setitem__(arg1,arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_findGlobalIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_SimulationResult(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  std::vector< double,std::allocator< double > > *arg2 = 0 ;
+  SimulationResult *arg1 = (SimulationResult *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[2] ;
-  size_t result;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData_findGlobalIndex", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationResult, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_findGlobalIndex" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SimulationResult" "', argument " "1"" of type '" "SimulationResult *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res2 = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_findGlobalIndex" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_findGlobalIndex" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg2 = ptr;
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *SimulationResult_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_SimulationResult, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *SimulationResult_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_IDetector_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IDetector *arg1 = (IDetector *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IDetector *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_clone" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  result = ((OutputData< double > const *)arg1)->findGlobalIndex((std::vector< double,std::allocator< double > > const &)*arg2);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  result = (IDetector *)((IDetector const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDetector, 0 |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxisValue__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_IDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  size_t arg2 ;
-  size_t arg3 ;
+  IDetector *arg1 = (IDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  double result;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxisValue" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IDetector" "', argument " "1"" of type '" "IDetector *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxisValue" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IntensityData_getAxisValue" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  result = (double)((OutputData< double > const *)arg1)->getAxisValue(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxisValue__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IDetector_init(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  size_t arg2 ;
-  std::string *arg3 = 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
+  Beam *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDetector_init", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxisValue" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_init" "', argument " "1"" of type '" "IDetector *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxisValue" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  {
-    std::string *ptr = (std::string *)0;
-    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IntensityData_getAxisValue" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_getAxisValue" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    arg3 = ptr;
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Beam,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_init" "', argument " "2"" of type '" "Beam const &""'"); 
   }
-  result = (double)((OutputData< double > const *)arg1)->getAxisValue(arg2,(std::string const &)*arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  if (SWIG_IsNewObj(res3)) delete arg3;
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_init" "', argument " "2"" of type '" "Beam const &""'"); 
+  }
+  arg2 = reinterpret_cast< Beam * >(argp2);
+  (arg1)->init((Beam const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxisValue(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_IDetector_clear(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IDetector *arg1 = (IDetector *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_getAxisValue", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IntensityData_getAxisValue__SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_IntensityData_getAxisValue__SWIG_1(self, argc, argv);
-        }
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_clear" "', argument " "1"" of type '" "IDetector *""'"); 
   }
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  (arg1)->clear();
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IDetector_addAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IDetector *arg1 = (IDetector *) 0 ;
+  IAxis *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
+  if (!SWIG_Python_UnpackTuple(args, "IDetector_addAxis", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_addAxis" "', argument " "1"" of type '" "IDetector *""'"); 
+  }
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAxis,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_addAxis" "', argument " "2"" of type '" "IAxis const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_addAxis" "', argument " "2"" of type '" "IAxis const &""'"); 
+  }
+  arg2 = reinterpret_cast< IAxis * >(argp2);
+  (arg1)->addAxis((IAxis const &)*arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_getAxisValue'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    OutputData< double >::getAxisValue(size_t,size_t) const\n"
-    "    OutputData< double >::getAxisValue(size_t,std::string const &) const\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxesValues(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_getAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
   size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   size_t val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  std::vector< double,std::allocator< double > > result;
+  IAxis *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData_getAxesValues", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDetector_getAxis", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxesValues" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_getAxis" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  arg1 = reinterpret_cast< IDetector * >(argp1);
   ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxesValues" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDetector_getAxis" "', argument " "2"" of type '" "size_t""'");
   } 
   arg2 = static_cast< size_t >(val2);
-  result = ((OutputData< double > const *)arg1)->getAxesValues(arg2);
-  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
+  result = (IAxis *) &((IDetector const *)arg1)->getAxis(arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxisBin__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IDetector_dimension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  size_t result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_dimension" "', argument " "1"" of type '" "IDetector const *""'"); 
+  }
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  result = ((IDetector const *)arg1)->dimension();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IDetector_axisBinIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IDetector *arg1 = (IDetector *) 0 ;
   size_t arg2 ;
   size_t arg3 ;
   void *argp1 = 0 ;
@@ -107209,180 +106652,125 @@ SWIGINTERN PyObject *_wrap_IntensityData_getAxisBin__SWIG_0(PyObject *SWIGUNUSED
   int ecode2 = 0 ;
   size_t val3 ;
   int ecode3 = 0 ;
-  Bin1D result;
+  PyObject *swig_obj[3] ;
+  size_t result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDetector_axisBinIndex", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxisBin" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_axisBinIndex" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  arg1 = reinterpret_cast< IDetector * >(argp1);
   ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxisBin" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDetector_axisBinIndex" "', argument " "2"" of type '" "size_t""'");
   } 
   arg2 = static_cast< size_t >(val2);
   ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IntensityData_getAxisBin" "', argument " "3"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDetector_axisBinIndex" "', argument " "3"" of type '" "size_t""'");
   } 
   arg3 = static_cast< size_t >(val3);
-  result = ((OutputData< double > const *)arg1)->getAxisBin(arg2,arg3);
-  resultobj = SWIG_NewPointerObj((new Bin1D(static_cast< const Bin1D& >(result))), SWIGTYPE_p_Bin1D, SWIG_POINTER_OWN |  0 );
+  result = ((IDetector const *)arg1)->axisBinIndex(arg2,arg3);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxisBin__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IDetector_totalSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  size_t arg2 ;
-  std::string *arg3 = 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  Bin1D result;
+  PyObject *swig_obj[1] ;
+  size_t result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxisBin" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxisBin" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  {
-    std::string *ptr = (std::string *)0;
-    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IntensityData_getAxisBin" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_getAxisBin" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    arg3 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_totalSize" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  result = ((OutputData< double > const *)arg1)->getAxisBin(arg2,(std::string const &)*arg3);
-  resultobj = SWIG_NewPointerObj((new Bin1D(static_cast< const Bin1D& >(result))), SWIGTYPE_p_Bin1D, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res3)) delete arg3;
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  result = ((IDetector const *)arg1)->totalSize();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getAxisBin(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_getAxisBin", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_IntensityData_getAxisBin__SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_IntensityData_getAxisBin__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_getAxisBin'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    OutputData< double >::getAxisBin(size_t,size_t) const\n"
-    "    OutputData< double >::getAxisBin(size_t,std::string const &) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_IntensityData_clear(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_detectorMask(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  DetectorMask *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_clear" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_detectorMask" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  (arg1)->clear();
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  result = (DetectorMask *)((IDetector const *)arg1)->detectorMask();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DetectorMask, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_setAllTo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_setAnalyzerProperties(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  double *arg2 = 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
+  kvector_t arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double temp2 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  void *argp2 ;
+  int res2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData_setAllTo", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDetector_setAnalyzerProperties", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_setAllTo" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_setAnalyzerProperties" "', argument " "1"" of type '" "IDetector *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_setAllTo" "', argument " "2"" of type '" "double""'");
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_setAnalyzerProperties" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_setAnalyzerProperties" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDetector_setAnalyzerProperties" "', argument " "3"" of type '" "double""'");
   } 
-  temp2 = static_cast< double >(val2);
-  arg2 = &temp2;
-  (arg1)->setAllTo((double const &)*arg2);
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IDetector_setAnalyzerProperties" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setAnalyzerProperties(arg2,arg3,arg4);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -107390,30 +106778,31 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_scaleAll(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_setDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  double *arg2 = 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
+  IDetectorResolution *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double temp2 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData_scaleAll", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDetector_setDetectorResolution", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_scaleAll" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_setDetectorResolution" "', argument " "1"" of type '" "IDetector *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_scaleAll" "', argument " "2"" of type '" "double""'");
-  } 
-  temp2 = static_cast< double >(val2);
-  arg2 = &temp2;
-  (arg1)->scaleAll((double const &)*arg2);
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDetectorResolution,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_setDetectorResolution" "', argument " "2"" of type '" "IDetectorResolution const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_setDetectorResolution" "', argument " "2"" of type '" "IDetectorResolution const &""'"); 
+  }
+  arg2 = reinterpret_cast< IDetectorResolution * >(argp2);
+  (arg1)->setDetectorResolution((IDetectorResolution const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -107421,36 +106810,31 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_setAxisSizes(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_setResolutionFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  size_t arg2 ;
-  int *arg3 = (int *) 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
+  IResolutionFunction2D *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData_setAxisSizes", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDetector_setResolutionFunction", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_setAxisSizes" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_setResolutionFunction" "', argument " "1"" of type '" "IDetector *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_setAxisSizes" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_int, 0 |  0 );
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IntensityData_setAxisSizes" "', argument " "3"" of type '" "int *""'"); 
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IResolutionFunction2D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_setResolutionFunction" "', argument " "2"" of type '" "IResolutionFunction2D const &""'"); 
   }
-  arg3 = reinterpret_cast< int * >(argp3);
-  (arg1)->setAxisSizes(arg2,arg3);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_setResolutionFunction" "', argument " "2"" of type '" "IResolutionFunction2D const &""'"); 
+  }
+  arg2 = reinterpret_cast< IResolutionFunction2D * >(argp2);
+  (arg1)->setResolutionFunction((IResolutionFunction2D const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -107458,64 +106842,50 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_setRawDataVector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_applyDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  std::vector< double,std::allocator< double > > *arg2 = 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
+  OutputData< double > *arg2 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData_setRawDataVector", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDetector_applyDetectorResolution", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_setRawDataVector" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_applyDetectorResolution" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res2 = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_setRawDataVector" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_setRawDataVector" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg2 = ptr;
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_applyDetectorResolution" "', argument " "2"" of type '" "OutputData< double > *""'"); 
   }
-  (arg1)->setRawDataVector((std::vector< double,std::allocator< double > > const &)*arg2);
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  ((IDetector const *)arg1)->applyDetectorResolution(arg2);
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_setRawDataArray(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_removeDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  double *arg2 = (double *) 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData_setRawDataArray", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_setRawDataArray" "', argument " "1"" of type '" "OutputData< double > *""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_double, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_setRawDataArray" "', argument " "2"" of type '" "double const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_removeDetectorResolution" "', argument " "1"" of type '" "IDetector *""'"); 
   }
-  arg2 = reinterpret_cast< double * >(argp2);
-  (arg1)->setRawDataArray((double const *)arg2);
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  (arg1)->removeDetectorResolution();
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -107523,109 +106893,101 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData___iadd__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_detectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  OutputData< double > *arg2 = 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  OutputData< double > *result = 0 ;
+  PyObject *swig_obj[1] ;
+  IDetectorResolution *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData___iadd__", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_DISOWN |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData___iadd__" "', argument " "1"" of type '" "OutputData< double > *""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData___iadd__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData___iadd__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_detectorResolution" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  result = (OutputData< double > *) &(arg1)->operator +=((OutputData< double > const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  result = (IDetectorResolution *)((IDetector const *)arg1)->detectorResolution();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDetectorResolution, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData___isub__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_regionOfInterest(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  OutputData< double > *arg2 = 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  OutputData< double > *result = 0 ;
+  PyObject *swig_obj[1] ;
+  RegionOfInterest *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData___isub__", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_DISOWN |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData___isub__" "', argument " "1"" of type '" "OutputData< double > *""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData___isub__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData___isub__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_regionOfInterest" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  result = (OutputData< double > *) &(arg1)->operator -=((OutputData< double > const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  result = (RegionOfInterest *)((IDetector const *)arg1)->regionOfInterest();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RegionOfInterest, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData___itruediv__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_resetRegionOfInterest(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  OutputData< double > *arg2 = 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  OutputData< double > *result = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData___itruediv__", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_DISOWN |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData___itruediv__" "', argument " "1"" of type '" "OutputData< double > *""'"); 
-  }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData___itruediv__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_resetRegionOfInterest" "', argument " "1"" of type '" "IDetector *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData___itruediv__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  (arg1)->resetRegionOfInterest();
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IDetector_detectionProperties(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IDetector *arg1 = (IDetector *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  DetectionProperties *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_detectionProperties" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  result = (OutputData< double > *) &(arg1)->operator /=((OutputData< double > const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  result = (DetectionProperties *) &((IDetector const *)arg1)->detectionProperties();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DetectionProperties, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData___imul__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_createDetectorIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  OutputData< double > *arg2 = 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
+  std::vector< SimulationElement,std::allocator< SimulationElement > > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
@@ -107633,604 +106995,571 @@ SWIGINTERN PyObject *_wrap_IntensityData___imul__(PyObject *SWIGUNUSEDPARM(self)
   PyObject *swig_obj[2] ;
   OutputData< double > *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData___imul__", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDetector_createDetectorIntensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData___imul__" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_createDetectorIntensity" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__vectorT_SimulationElement_std__allocatorT_SimulationElement_t_t,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData___imul__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_createDetectorIntensity" "', argument " "2"" of type '" "std::vector< SimulationElement,std::allocator< SimulationElement > > const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData___imul__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_createDetectorIntensity" "', argument " "2"" of type '" "std::vector< SimulationElement,std::allocator< SimulationElement > > const &""'"); 
   }
-  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
-  result = (OutputData< double > *) &(arg1)->operator *=((OutputData< double > const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
+  arg2 = reinterpret_cast< std::vector< SimulationElement,std::allocator< SimulationElement > > * >(argp2);
+  result = (OutputData< double > *)((IDetector const *)arg1)->createDetectorIntensity((std::vector< SimulationElement,std::allocator< SimulationElement > > const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_defaultAxesUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  size_t arg2 ;
+  IDetector *arg1 = (IDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  PyObject *swig_obj[1] ;
+  AxesUnits result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData_getValue", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getValue" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_defaultAxesUnits" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getValue" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = (double)((OutputData< double > const *)arg1)->getValue(arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  result = (AxesUnits)((IDetector const *)arg1)->defaultAxesUnits();
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_getArray(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_numberOfSimulationElements(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  PyObject *result = 0 ;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getArray" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_numberOfSimulationElements" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = (PyObject *)((OutputData< double > const *)arg1)->getArray();
-  resultobj = result;
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  result = ((IDetector const *)arg1)->numberOfSimulationElements();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_isInitialized(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_isInitialized" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_getChildren" "', argument " "1"" of type '" "IDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  result = (bool)((OutputData< double > const *)arg1)->isInitialized();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  result = ((IDetector const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData_allocate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector_iterate__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  IDetector *arg1 = (IDetector *) 0 ;
+  std::function< void (IDetector::const_iterator) > arg2 ;
+  bool arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  bool val3 ;
+  int ecode3 = 0 ;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_iterate" "', argument " "1"" of type '" "IDetector const *""'"); 
+  }
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__functionT_void_fSimulationAreaIterator_const_RF_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_iterate" "', argument " "2"" of type '" "std::function< void (IDetector::const_iterator) >""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_iterate" "', argument " "2"" of type '" "std::function< void (IDetector::const_iterator) >""'");
+    } else {
+      std::function< void (IDetector::const_iterator) > * temp = reinterpret_cast< std::function< void (IDetector::const_iterator) > * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDetector_iterate" "', argument " "3"" of type '" "bool""'");
+  } 
+  arg3 = static_cast< bool >(val3);
+  ((IDetector const *)arg1)->iterate(arg2,arg3);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IDetector_iterate__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IDetector *arg1 = (IDetector *) 0 ;
+  std::function< void (IDetector::const_iterator) > arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector_iterate" "', argument " "1"" of type '" "IDetector const *""'"); 
+  }
+  arg1 = reinterpret_cast< IDetector * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__functionT_void_fSimulationAreaIterator_const_RF_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector_iterate" "', argument " "2"" of type '" "std::function< void (IDetector::const_iterator) >""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector_iterate" "', argument " "2"" of type '" "std::function< void (IDetector::const_iterator) >""'");
+    } else {
+      std::function< void (IDetector::const_iterator) > * temp = reinterpret_cast< std::function< void (IDetector::const_iterator) > * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  ((IDetector const *)arg1)->iterate(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IDetector_iterate(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IDetector_iterate", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDetector, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_std__functionT_void_fSimulationAreaIterator_const_RF_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_IDetector_iterate__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDetector, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_std__functionT_void_fSimulationAreaIterator_const_RF_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_bool(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_IDetector_iterate__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IDetector_iterate'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IDetector::iterate(std::function< void (IDetector::const_iterator) >,bool) const\n"
+    "    IDetector::iterate(std::function< void (IDetector::const_iterator) >) const\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *IDetector_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IDetector, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_IDetector2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  IDetector2D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_allocate" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_clone" "', argument " "1"" of type '" "IDetector2D const *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  (arg1)->allocate();
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  result = (IDetector2D *)((IDetector2D const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDetector2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData___getitem__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IDetector2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  unsigned int arg2 ;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  unsigned int val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  double result;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData___getitem__", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData___getitem__" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IDetector2D" "', argument " "1"" of type '" "IDetector2D *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData___getitem__" "', argument " "2"" of type '" "unsigned int""'");
-  } 
-  arg2 = static_cast< unsigned int >(val2);
-  result = (double)OutputData_Sl_double_Sg____getitem__(arg1,arg2);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IntensityData___setitem__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector2D_setDetectorParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
-  unsigned int arg2 ;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  size_t arg2 ;
   double arg3 ;
+  double arg4 ;
+  size_t arg5 ;
+  double arg6 ;
+  double arg7 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  unsigned int val2 ;
+  size_t val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  double val4 ;
+  int ecode4 = 0 ;
+  size_t val5 ;
+  int ecode5 = 0 ;
+  double val6 ;
+  int ecode6 = 0 ;
+  double val7 ;
+  int ecode7 = 0 ;
+  PyObject *swig_obj[7] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "IntensityData___setitem__", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDetector2D_setDetectorParameters", 7, 7, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData___setitem__" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_setDetectorParameters" "', argument " "1"" of type '" "IDetector2D *""'"); 
   }
-  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
-  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData___setitem__" "', argument " "2"" of type '" "unsigned int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDetector2D_setDetectorParameters" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< unsigned int >(val2);
+  arg2 = static_cast< size_t >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IntensityData___setitem__" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDetector2D_setDetectorParameters" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (double)OutputData_Sl_double_Sg____setitem__(arg1,arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IDetector2D_setDetectorParameters" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  ecode5 = SWIG_AsVal_size_t(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "IDetector2D_setDetectorParameters" "', argument " "5"" of type '" "size_t""'");
+  } 
+  arg5 = static_cast< size_t >(val5);
+  ecode6 = SWIG_AsVal_double(swig_obj[5], &val6);
+  if (!SWIG_IsOK(ecode6)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "IDetector2D_setDetectorParameters" "', argument " "6"" of type '" "double""'");
+  } 
+  arg6 = static_cast< double >(val6);
+  ecode7 = SWIG_AsVal_double(swig_obj[6], &val7);
+  if (!SWIG_IsOK(ecode7)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode7), "in method '" "IDetector2D_setDetectorParameters" "', argument " "7"" of type '" "double""'");
+  } 
+  arg7 = static_cast< double >(val7);
+  (arg1)->setDetectorParameters(arg2,arg3,arg4,arg5,arg6,arg7);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *IntensityData_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_OutputDataT_double_t, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *IntensityData_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_ParameterDistribution__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IDetector2D_setDetectorAxes(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  IDistribution1D *arg2 = 0 ;
-  size_t arg3 ;
-  double arg4 ;
-  RealLimits *arg5 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  IAxis *arg2 = 0 ;
+  IAxis *arg3 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  void *argp5 = 0 ;
-  int res5 = 0 ;
-  ParameterDistribution *result = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
+  if (!SWIG_Python_UnpackTuple(args, "IDetector2D_setDetectorAxes", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_setDetectorAxes" "', argument " "1"" of type '" "IDetector2D *""'"); 
   }
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDistribution1D,  0  | 0);
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAxis,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector2D_setDetectorAxes" "', argument " "2"" of type '" "IAxis const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector2D_setDetectorAxes" "', argument " "2"" of type '" "IAxis const &""'"); 
   }
-  arg2 = reinterpret_cast< IDistribution1D * >(argp2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_ParameterDistribution" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_ParameterDistribution" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  res5 = SWIG_ConvertPtr(swig_obj[4], &argp5, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res5)) {
-    SWIG_exception_fail(SWIG_ArgError(res5), "in method '" "new_ParameterDistribution" "', argument " "5"" of type '" "RealLimits const &""'"); 
+  arg2 = reinterpret_cast< IAxis * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IAxis,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IDetector2D_setDetectorAxes" "', argument " "3"" of type '" "IAxis const &""'"); 
   }
-  if (!argp5) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "5"" of type '" "RealLimits const &""'"); 
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector2D_setDetectorAxes" "', argument " "3"" of type '" "IAxis const &""'"); 
   }
-  arg5 = reinterpret_cast< RealLimits * >(argp5);
-  result = (ParameterDistribution *)new ParameterDistribution((std::string const &)*arg1,(IDistribution1D const &)*arg2,arg3,arg4,(RealLimits const &)*arg5);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  arg3 = reinterpret_cast< IAxis * >(argp3);
+  (arg1)->setDetectorAxes((IAxis const &)*arg2,(IAxis const &)*arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParameterDistribution__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IDetector2D_removeMasks(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  IDistribution1D *arg2 = 0 ;
-  size_t arg3 ;
-  double arg4 ;
-  int res1 = SWIG_OLDOBJ ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  ParameterDistribution *result = 0 ;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
-  }
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDistribution1D,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_removeMasks" "', argument " "1"" of type '" "IDetector2D *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  (arg1)->removeMasks();
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IDetector2D_detectorMask(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  DetectorMask *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_detectorMask" "', argument " "1"" of type '" "IDetector2D const *""'"); 
   }
-  arg2 = reinterpret_cast< IDistribution1D * >(argp2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_ParameterDistribution" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_ParameterDistribution" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (ParameterDistribution *)new ParameterDistribution((std::string const &)*arg1,(IDistribution1D const &)*arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  result = (DetectorMask *)((IDetector2D const *)arg1)->detectorMask();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DetectorMask, 0 |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParameterDistribution__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IDetector2D_addMask__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  IDistribution1D *arg2 = 0 ;
-  size_t arg3 ;
-  int res1 = SWIG_OLDOBJ ;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  IShape2D *arg2 = 0 ;
+  bool arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  size_t val3 ;
+  bool val3 ;
   int ecode3 = 0 ;
-  ParameterDistribution *result = 0 ;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_addMask" "', argument " "1"" of type '" "IDetector2D *""'"); 
   }
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDistribution1D,  0  | 0);
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IShape2D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
   }
-  arg2 = reinterpret_cast< IDistribution1D * >(argp2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  arg2 = reinterpret_cast< IShape2D * >(argp2);
+  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_ParameterDistribution" "', argument " "3"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDetector2D_addMask" "', argument " "3"" of type '" "bool""'");
   } 
-  arg3 = static_cast< size_t >(val3);
-  result = (ParameterDistribution *)new ParameterDistribution((std::string const &)*arg1,(IDistribution1D const &)*arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  arg3 = static_cast< bool >(val3);
+  (arg1)->addMask((IShape2D const &)*arg2,arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParameterDistribution__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IDetector2D_addMask__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  IDistribution1D *arg2 = 0 ;
-  size_t arg3 ;
-  double arg4 ;
-  double arg5 ;
-  int res1 = SWIG_OLDOBJ ;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  IShape2D *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  ParameterDistribution *result = 0 ;
   
-  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_addMask" "', argument " "1"" of type '" "IDetector2D *""'"); 
   }
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDistribution1D,  0  | 0);
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IShape2D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "2"" of type '" "IDistribution1D const &""'"); 
-  }
-  arg2 = reinterpret_cast< IDistribution1D * >(argp2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_ParameterDistribution" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_ParameterDistribution" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_ParameterDistribution" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  result = (ParameterDistribution *)new ParameterDistribution((std::string const &)*arg1,(IDistribution1D const &)*arg2,arg3,arg4,arg5);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_ParameterDistribution__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  ParameterDistribution *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_ParameterDistribution,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "ParameterDistribution const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterDistribution" "', argument " "1"" of type '" "ParameterDistribution const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector2D_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  result = (ParameterDistribution *)new ParameterDistribution((ParameterDistribution const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NEW |  0 );
+  arg2 = reinterpret_cast< IShape2D * >(argp2);
+  (arg1)->addMask((IShape2D const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParameterDistribution(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector2D_addMask(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[6] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ParameterDistribution", 0, 5, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IDetector2D_addMask", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_ParameterDistribution__SWIG_4(self, argc, argv);
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_new_ParameterDistribution__SWIG_2(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_ParameterDistribution__SWIG_1(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  if (argc == 5) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDetector2D, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IShape2D, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            int res = SWIG_ConvertPtr(argv[4], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-            _v = SWIG_CheckState(res);
-            if (_v) {
-              return _wrap_new_ParameterDistribution__SWIG_0(self, argc, argv);
-            }
-          }
-        }
+        return _wrap_IDetector2D_addMask__SWIG_1(self, argc, argv);
       }
     }
   }
-  if (argc == 5) {
+  if (argc == 3) {
     int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IDetector2D, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IDistribution1D, SWIG_POINTER_NO_NULL | 0);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IShape2D, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
       if (_v) {
         {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
+          int res = SWIG_AsVal_bool(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              return _wrap_new_ParameterDistribution__SWIG_3(self, argc, argv);
-            }
-          }
+          return _wrap_IDetector2D_addMask__SWIG_0(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ParameterDistribution'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IDetector2D_addMask'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    ParameterDistribution::ParameterDistribution(std::string const &,IDistribution1D const &,size_t,double,RealLimits const &)\n"
-    "    ParameterDistribution::ParameterDistribution(std::string const &,IDistribution1D const &,size_t,double)\n"
-    "    ParameterDistribution::ParameterDistribution(std::string const &,IDistribution1D const &,size_t)\n"
-    "    ParameterDistribution::ParameterDistribution(std::string const &,IDistribution1D const &,size_t,double,double)\n"
-    "    ParameterDistribution::ParameterDistribution(ParameterDistribution const &)\n");
+    "    IDetector2D::addMask(IShape2D const &,bool)\n"
+    "    IDetector2D::addMask(IShape2D const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ParameterDistribution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector2D_maskAll(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParameterDistribution" "', argument " "1"" of type '" "ParameterDistribution *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_maskAll" "', argument " "1"" of type '" "IDetector2D *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  (arg1)->maskAll();
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -108238,77 +107567,183 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterDistribution_linkParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector2D_regionOfInterest(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
-  std::string arg2 ;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[2] ;
-  ParameterDistribution *result = 0 ;
+  PyObject *swig_obj[1] ;
+  RegionOfInterest *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterDistribution_linkParameter", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_linkParameter" "', argument " "1"" of type '" "ParameterDistribution *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_regionOfInterest" "', argument " "1"" of type '" "IDetector2D const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    int res = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "ParameterDistribution_linkParameter" "', argument " "2"" of type '" "std::string""'"); 
-    }
-    arg2 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  result = (RegionOfInterest *)((IDetector2D const *)arg1)->regionOfInterest();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RegionOfInterest, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IDetector2D_setRegionOfInterest(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
+  double arg5 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
+  PyObject *swig_obj[5] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IDetector2D_setRegionOfInterest", 5, 5, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_setRegionOfInterest" "', argument " "1"" of type '" "IDetector2D *""'"); 
   }
-  result = (ParameterDistribution *) &(arg1)->linkParameter(arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDetector2D_setRegionOfInterest" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IDetector2D_setRegionOfInterest" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IDetector2D_setRegionOfInterest" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "IDetector2D_setRegionOfInterest" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  (arg1)->setRegionOfInterest(arg2,arg3,arg4,arg5);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterDistribution_getMainParameterName(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector2D_resetRegionOfInterest(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::string result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getMainParameterName" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_resetRegionOfInterest" "', argument " "1"" of type '" "IDetector2D *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  result = ((ParameterDistribution const *)arg1)->getMainParameterName();
-  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  (arg1)->resetRegionOfInterest();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterDistribution_getNbrSamples(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IDetector2D_active_indices(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
+  SwigValueWrapper< std::vector< size_t,std::allocator< size_t > > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getNbrSamples" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_active_indices" "', argument " "1"" of type '" "IDetector2D const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  result = ((ParameterDistribution const *)arg1)->getNbrSamples();
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  result = ((IDetector2D const *)arg1)->active_indices();
+  resultobj = SWIG_NewPointerObj((new std::vector< size_t,std::allocator< size_t > >(static_cast< const std::vector< size_t,std::allocator< size_t > >& >(result))), SWIGTYPE_p_std__vectorT_size_t_std__allocatorT_size_t_t_t, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IDetector2D_createPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  size_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  IPixel *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IDetector2D_createPixel", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_createPixel" "', argument " "1"" of type '" "IDetector2D const *""'"); 
+  }
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IDetector2D_createPixel" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (IPixel *)((IDetector2D const *)arg1)->createPixel(arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IPixel, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IDetector2D_getIndexOfSpecular(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IDetector2D *arg1 = (IDetector2D *) 0 ;
+  Beam *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  size_t result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IDetector2D_getIndexOfSpecular", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetector2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetector2D_getIndexOfSpecular" "', argument " "1"" of type '" "IDetector2D const *""'"); 
+  }
+  arg1 = reinterpret_cast< IDetector2D * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Beam,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetector2D_getIndexOfSpecular" "', argument " "2"" of type '" "Beam const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IDetector2D_getIndexOfSpecular" "', argument " "2"" of type '" "Beam const &""'"); 
+  }
+  arg2 = reinterpret_cast< Beam * >(argp2);
+  result = ((IDetector2D const *)arg1)->getIndexOfSpecular((Beam const &)*arg2);
   resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
@@ -108316,179 +107751,278 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterDistribution_getSigmaFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IDetector2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IDetector2D, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_delete_IDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  IDetectorResolution *arg1 = (IDetectorResolution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetectorResolution, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getSigmaFactor" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IDetectorResolution" "', argument " "1"" of type '" "IDetectorResolution *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  result = (double)((ParameterDistribution const *)arg1)->getSigmaFactor();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IDetectorResolution * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterDistribution_getDistribution__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IDetectorResolution_applyDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  IDetectorResolution *arg1 = (IDetectorResolution *) 0 ;
+  OutputData< double > *arg2 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  IDistribution1D *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IDetectorResolution_applyDetectorResolution", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetectorResolution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getDistribution" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetectorResolution_applyDetectorResolution" "', argument " "1"" of type '" "IDetectorResolution const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  result = (IDistribution1D *)((ParameterDistribution const *)arg1)->getDistribution();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  arg1 = reinterpret_cast< IDetectorResolution * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IDetectorResolution_applyDetectorResolution" "', argument " "2"" of type '" "OutputData< double > *""'"); 
+  }
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  ((IDetectorResolution const *)arg1)->applyDetectorResolution(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterDistribution_getDistribution__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IDetectorResolution_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  IDetectorResolution *arg1 = (IDetectorResolution *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  IDistribution1D *result = 0 ;
+  PyObject *swig_obj[1] ;
+  IDetectorResolution *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IDetectorResolution, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getDistribution" "', argument " "1"" of type '" "ParameterDistribution *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IDetectorResolution_clone" "', argument " "1"" of type '" "IDetectorResolution const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  result = (IDistribution1D *)(arg1)->getDistribution();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDistribution1D, 0 |  0 );
+  arg1 = reinterpret_cast< IDetectorResolution * >(argp1);
+  result = (IDetectorResolution *)((IDetectorResolution const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDetectorResolution, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterDistribution_getDistribution(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
+SWIGINTERN PyObject *IDetectorResolution_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IDetectorResolution, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_new_SphericalPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Bin1D *arg1 = 0 ;
+  Bin1D *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  SphericalPixel *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterDistribution_getDistribution", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParameterDistribution, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_ParameterDistribution_getDistribution__SWIG_1(self, argc, argv);
-    }
+  if (!SWIG_Python_UnpackTuple(args, "new_SphericalPixel", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SphericalPixel" "', argument " "1"" of type '" "Bin1D const &""'"); 
   }
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParameterDistribution, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_ParameterDistribution_getDistribution__SWIG_0(self, argc, argv);
-    }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SphericalPixel" "', argument " "1"" of type '" "Bin1D const &""'"); 
   }
-  
+  arg1 = reinterpret_cast< Bin1D * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_SphericalPixel" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SphericalPixel" "', argument " "2"" of type '" "Bin1D const &""'"); 
+  }
+  arg2 = reinterpret_cast< Bin1D * >(argp2);
+  result = (SphericalPixel *)new SphericalPixel((Bin1D const &)*arg1,(Bin1D const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalPixel, SWIG_POINTER_NEW |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterDistribution_getDistribution'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    ParameterDistribution::getDistribution() const\n"
-    "    ParameterDistribution::getDistribution()\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterDistribution_generateSamples(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SphericalPixel_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  SphericalPixel *arg1 = (SphericalPixel *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< ParameterSample,std::allocator< ParameterSample > > result;
+  SphericalPixel *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_generateSamples" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalPixel_clone" "', argument " "1"" of type '" "SphericalPixel const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  result = ((ParameterDistribution const *)arg1)->generateSamples();
-  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample,std::allocator< ParameterSample > >(static_cast< const std::vector< ParameterSample,std::allocator< ParameterSample > >& >(result))), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< SphericalPixel * >(argp1);
+  result = (SphericalPixel *)((SphericalPixel const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalPixel, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterDistribution_getLinkedParameterNames(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SphericalPixel_createZeroSizePixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  SphericalPixel *arg1 = (SphericalPixel *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< std::string,std::allocator< std::string > > result;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  SphericalPixel *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SphericalPixel_createZeroSizePixel", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getLinkedParameterNames" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalPixel_createZeroSizePixel" "', argument " "1"" of type '" "SphericalPixel const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  result = ((ParameterDistribution const *)arg1)->getLinkedParameterNames();
-  resultobj = swig::from(static_cast< std::vector< std::string,std::allocator< std::string > > >(result));
+  arg1 = reinterpret_cast< SphericalPixel * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SphericalPixel_createZeroSizePixel" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "SphericalPixel_createZeroSizePixel" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (SphericalPixel *)((SphericalPixel const *)arg1)->createZeroSizePixel(arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalPixel, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterDistribution_getLimits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SphericalPixel_getK(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  SphericalPixel *arg1 = (SphericalPixel *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RealLimits result;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  kvector_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SphericalPixel_getK", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getLimits" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalPixel_getK" "', argument " "1"" of type '" "SphericalPixel const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  result = ((ParameterDistribution const *)arg1)->getLimits();
-  resultobj = SWIG_NewPointerObj((new RealLimits(static_cast< const RealLimits& >(result))), SWIGTYPE_p_RealLimits, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< SphericalPixel * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SphericalPixel_getK" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "SphericalPixel_getK" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "SphericalPixel_getK" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = ((SphericalPixel const *)arg1)->getK(arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterDistribution_getMinValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SphericalPixel_getIntegrationFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  SphericalPixel *arg1 = (SphericalPixel *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "SphericalPixel_getIntegrationFactor", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalPixel, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalPixel_getIntegrationFactor" "', argument " "1"" of type '" "SphericalPixel const *""'"); 
+  }
+  arg1 = reinterpret_cast< SphericalPixel * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "SphericalPixel_getIntegrationFactor" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "SphericalPixel_getIntegrationFactor" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)((SphericalPixel const *)arg1)->getIntegrationFactor(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_SphericalPixel_getSolidAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  SphericalPixel *arg1 = (SphericalPixel *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -108496,12 +108030,12 @@ SWIGINTERN PyObject *_wrap_ParameterDistribution_getMinValue(PyObject *SWIGUNUSE
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getMinValue" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalPixel_getSolidAngle" "', argument " "1"" of type '" "SphericalPixel const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  result = (double)((ParameterDistribution const *)arg1)->getMinValue();
+  arg1 = reinterpret_cast< SphericalPixel * >(argp1);
+  result = (double)((SphericalPixel const *)arg1)->getSolidAngle();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -108509,157 +108043,274 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterDistribution_getMaxValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_SphericalPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterDistribution *arg1 = (ParameterDistribution *) 0 ;
+  SphericalPixel *arg1 = (SphericalPixel *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterDistribution, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalPixel, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterDistribution_getMaxValue" "', argument " "1"" of type '" "ParameterDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SphericalPixel" "', argument " "1"" of type '" "SphericalPixel *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterDistribution * >(argp1);
-  result = (double)((ParameterDistribution const *)arg1)->getMaxValue();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< SphericalPixel * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *ParameterDistribution_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *SphericalPixel_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ParameterDistribution, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_SphericalPixel, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *ParameterDistribution_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *SphericalPixel_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_ParameterPool(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_SphericalDetector__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  ParameterPool *result = 0 ;
+  SphericalDetector *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_ParameterPool", 0, 0, 0)) SWIG_fail;
-  result = (ParameterPool *)new ParameterPool();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterPool, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (SphericalDetector *)new SphericalDetector();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalDetector, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ParameterPool(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_SphericalDetector__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  size_t arg1 ;
+  double arg2 ;
+  double arg3 ;
+  size_t arg4 ;
+  double arg5 ;
+  double arg6 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  size_t val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
+  double val6 ;
+  int ecode6 = 0 ;
+  SphericalDetector *result = 0 ;
+  
+  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_SphericalDetector" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_SphericalDetector" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_SphericalDetector" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_size_t(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_SphericalDetector" "', argument " "4"" of type '" "size_t""'");
+  } 
+  arg4 = static_cast< size_t >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_SphericalDetector" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  ecode6 = SWIG_AsVal_double(swig_obj[5], &val6);
+  if (!SWIG_IsOK(ecode6)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "new_SphericalDetector" "', argument " "6"" of type '" "double""'");
+  } 
+  arg6 = static_cast< double >(val6);
+  result = (SphericalDetector *)new SphericalDetector(arg1,arg2,arg3,arg4,arg5,arg6);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalDetector, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_SphericalDetector__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  SphericalDetector *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  SphericalDetector *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_SphericalDetector,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParameterPool" "', argument " "1"" of type '" "ParameterPool *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SphericalDetector" "', argument " "1"" of type '" "SphericalDetector const &""'"); 
   }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SphericalDetector" "', argument " "1"" of type '" "SphericalDetector const &""'"); 
+  }
+  arg1 = reinterpret_cast< SphericalDetector * >(argp1);
+  result = (SphericalDetector *)new SphericalDetector((SphericalDetector const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalDetector, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_SphericalDetector(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[7] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_SphericalDetector", 0, 6, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_SphericalDetector__SWIG_0(self, argc, argv);
+  }
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_SphericalDetector, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_SphericalDetector__SWIG_2(self, argc, argv);
+    }
+  }
+  if (argc == 6) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_size_t(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              {
+                int res = SWIG_AsVal_double(argv[5], NULL);
+                _v = SWIG_CheckState(res);
+              }
+              if (_v) {
+                return _wrap_new_SphericalDetector__SWIG_1(self, argc, argv);
+              }
+            }
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_SphericalDetector'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    SphericalDetector::SphericalDetector()\n"
+    "    SphericalDetector::SphericalDetector(size_t,double,double,size_t,double,double)\n"
+    "    SphericalDetector::SphericalDetector(SphericalDetector const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_SphericalDetector_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  SphericalDetector *arg1 = (SphericalDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  ParameterPool *result = 0 ;
+  SphericalDetector *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_clone" "', argument " "1"" of type '" "ParameterPool const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalDetector_clone" "', argument " "1"" of type '" "SphericalDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  result = (ParameterPool *)((ParameterPool const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterPool, 0 |  0 );
+  arg1 = reinterpret_cast< SphericalDetector * >(argp1);
+  result = (SphericalDetector *)((SphericalDetector const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SphericalDetector, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_copyToExternalPool(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SphericalDetector_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
-  std::string *arg2 = 0 ;
-  ParameterPool *arg3 = (ParameterPool *) 0 ;
+  SphericalDetector *arg1 = (SphericalDetector *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_copyToExternalPool", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SphericalDetector_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_copyToExternalPool" "', argument " "1"" of type '" "ParameterPool const *""'"); 
-  }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_copyToExternalPool" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_copyToExternalPool" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalDetector_accept" "', argument " "1"" of type '" "SphericalDetector const *""'"); 
   }
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_ParameterPool, 0 |  0 );
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParameterPool_copyToExternalPool" "', argument " "3"" of type '" "ParameterPool *""'"); 
+  arg1 = reinterpret_cast< SphericalDetector * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SphericalDetector_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg3 = reinterpret_cast< ParameterPool * >(argp3);
-  ((ParameterPool const *)arg1)->copyToExternalPool((std::string const &)*arg2,arg3);
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((SphericalDetector const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_clear(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_SphericalDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  SphericalDetector *arg1 = (SphericalDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalDetector, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_clear" "', argument " "1"" of type '" "ParameterPool *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SphericalDetector" "', argument " "1"" of type '" "SphericalDetector *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  (arg1)->clear();
+  arg1 = reinterpret_cast< SphericalDetector * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -108667,506 +108318,395 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SphericalDetector_defaultAxesUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  SphericalDetector *arg1 = (SphericalDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
+  AxesUnits result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SphericalDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_size" "', argument " "1"" of type '" "ParameterPool const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SphericalDetector_defaultAxesUnits" "', argument " "1"" of type '" "SphericalDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  result = ((ParameterPool const *)arg1)->size();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< SphericalDetector * >(argp1);
+  result = (AxesUnits)((SphericalDetector const *)arg1)->defaultAxesUnits();
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_addParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
-  RealParameter *arg2 = (RealParameter *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  RealParameter *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_addParameter", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_addParameter" "', argument " "1"" of type '" "ParameterPool *""'"); 
-  }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_RealParameter, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_addParameter" "', argument " "2"" of type '" "RealParameter *""'"); 
-  }
-  arg2 = reinterpret_cast< RealParameter * >(argp2);
-  result = (RealParameter *) &(arg1)->addParameter(arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *SphericalDetector_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_SphericalDetector, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *SphericalDetector_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_ParameterPool_parameter__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_IChiSquaredModule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
-  std::string *arg2 = 0 ;
+  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  RealParameter *result = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_parameter" "', argument " "1"" of type '" "ParameterPool *""'"); 
-  }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_parameter" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_parameter" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IChiSquaredModule" "', argument " "1"" of type '" "IChiSquaredModule *""'"); 
   }
-  result = (RealParameter *)(arg1)->parameter((std::string const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_parameter__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IChiSquaredModule_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
-  std::string *arg2 = 0 ;
+  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  RealParameter *result = 0 ;
+  PyObject *swig_obj[1] ;
+  IChiSquaredModule *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_parameter" "', argument " "1"" of type '" "ParameterPool const *""'"); 
-  }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_parameter" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_parameter" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IChiSquaredModule_clone" "', argument " "1"" of type '" "IChiSquaredModule const *""'"); 
   }
-  result = (RealParameter *)((ParameterPool const *)arg1)->parameter((std::string const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
+  result = (IChiSquaredModule *)((IChiSquaredModule const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_parameter(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterPool_parameter", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParameterPool, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_ParameterPool_parameter__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParameterPool, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_ParameterPool_parameter__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterPool_parameter'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    ParameterPool::parameter(std::string const &)\n"
-    "    ParameterPool::parameter(std::string const &) const\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_ParameterPool_parameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IChiSquaredModule_varianceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SwigValueWrapper< std::vector< RealParameter *,std::allocator< RealParameter * > > > result;
+  IVarianceFunction *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_parameters" "', argument " "1"" of type '" "ParameterPool const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IChiSquaredModule_varianceFunction" "', argument " "1"" of type '" "IChiSquaredModule const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  result = ((ParameterPool const *)arg1)->parameters();
-  resultobj = SWIG_NewPointerObj((new std::vector< RealParameter *,std::allocator< RealParameter * > >(static_cast< const std::vector< RealParameter *,std::allocator< RealParameter * > >& >(result))), SWIGTYPE_p_std__vectorT_RealParameter_p_std__allocatorT_RealParameter_p_t_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
+  result = (IVarianceFunction *)((IChiSquaredModule const *)arg1)->varianceFunction();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IVarianceFunction, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_getMatchedParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IChiSquaredModule_setVarianceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
-  std::string *arg2 = 0 ;
+  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
+  IVarianceFunction *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  SwigValueWrapper< std::vector< RealParameter *,std::allocator< RealParameter * > > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_getMatchedParameters", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IChiSquaredModule_setVarianceFunction", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_getMatchedParameters" "', argument " "1"" of type '" "ParameterPool const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IChiSquaredModule_setVarianceFunction" "', argument " "1"" of type '" "IChiSquaredModule *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_getMatchedParameters" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_getMatchedParameters" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IVarianceFunction,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IChiSquaredModule_setVarianceFunction" "', argument " "2"" of type '" "IVarianceFunction const &""'"); 
   }
-  result = ((ParameterPool const *)arg1)->getMatchedParameters((std::string const &)*arg2);
-  resultobj = SWIG_NewPointerObj((new std::vector< RealParameter *,std::allocator< RealParameter * > >(static_cast< const std::vector< RealParameter *,std::allocator< RealParameter * > >& >(result))), SWIGTYPE_p_std__vectorT_RealParameter_p_std__allocatorT_RealParameter_p_t_t, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IChiSquaredModule_setVarianceFunction" "', argument " "2"" of type '" "IVarianceFunction const &""'"); 
+  }
+  arg2 = reinterpret_cast< IVarianceFunction * >(argp2);
+  (arg1)->setVarianceFunction((IVarianceFunction const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_getUniqueMatch(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IChiSquaredModule_getIntensityFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
-  std::string *arg2 = 0 ;
+  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[2] ;
-  RealParameter *result = 0 ;
+  PyObject *swig_obj[1] ;
+  IIntensityFunction *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_getUniqueMatch", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_getUniqueMatch" "', argument " "1"" of type '" "ParameterPool const *""'"); 
-  }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_getUniqueMatch" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_getUniqueMatch" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IChiSquaredModule_getIntensityFunction" "', argument " "1"" of type '" "IChiSquaredModule const *""'"); 
   }
-  result = (RealParameter *)((ParameterPool const *)arg1)->getUniqueMatch((std::string const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
+  result = (IIntensityFunction *)((IChiSquaredModule const *)arg1)->getIntensityFunction();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IIntensityFunction, 0 |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_setParameterValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IChiSquaredModule_setIntensityFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
-  std::string *arg2 = 0 ;
-  double arg3 ;
+  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
+  IIntensityFunction *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_setParameterValue", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IChiSquaredModule_setIntensityFunction", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_setParameterValue" "', argument " "1"" of type '" "ParameterPool *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IChiSquaredModule_setIntensityFunction" "', argument " "1"" of type '" "IChiSquaredModule *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_setParameterValue" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_setParameterValue" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IIntensityFunction,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IChiSquaredModule_setIntensityFunction" "', argument " "2"" of type '" "IIntensityFunction const &""'"); 
   }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterPool_setParameterValue" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  (arg1)->setParameterValue((std::string const &)*arg2,arg3);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IChiSquaredModule_setIntensityFunction" "', argument " "2"" of type '" "IIntensityFunction const &""'"); 
+  }
+  arg2 = reinterpret_cast< IIntensityFunction * >(argp2);
+  (arg1)->setIntensityFunction((IIntensityFunction const &)*arg2);
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_setMatchedParametersValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IChiSquaredModule_residual(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
-  std::string *arg2 = 0 ;
+  IChiSquaredModule *arg1 = (IChiSquaredModule *) 0 ;
+  double arg2 ;
   double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
+  double val2 ;
+  int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  int result;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_setMatchedParametersValue", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IChiSquaredModule_residual", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IChiSquaredModule, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_setMatchedParametersValue" "', argument " "1"" of type '" "ParameterPool *""'"); 
-  }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_setMatchedParametersValue" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_setMatchedParametersValue" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IChiSquaredModule_residual" "', argument " "1"" of type '" "IChiSquaredModule *""'"); 
   }
+  arg1 = reinterpret_cast< IChiSquaredModule * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IChiSquaredModule_residual" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterPool_setMatchedParametersValue" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IChiSquaredModule_residual" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (int)(arg1)->setMatchedParametersValue((std::string const &)*arg2,arg3);
-  resultobj = SWIG_From_int(static_cast< int >(result));
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IChiSquaredModule_residual" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (double)(arg1)->residual(arg2,arg3,arg4);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_setUniqueMatchValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IChiSquaredModule_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IChiSquaredModule, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_delete_IIntensityNormalizer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
-  std::string *arg2 = 0 ;
-  double arg3 ;
+  IIntensityNormalizer *arg1 = (IIntensityNormalizer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_setUniqueMatchValue", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityNormalizer, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_setUniqueMatchValue" "', argument " "1"" of type '" "ParameterPool *""'"); 
-  }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_setUniqueMatchValue" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_setUniqueMatchValue" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IIntensityNormalizer" "', argument " "1"" of type '" "IIntensityNormalizer *""'"); 
   }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterPool_setUniqueMatchValue" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  (arg1)->setUniqueMatchValue((std::string const &)*arg2,arg3);
+  arg1 = reinterpret_cast< IIntensityNormalizer * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_parameterNames(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IIntensityNormalizer_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
+  IIntensityNormalizer *arg1 = (IIntensityNormalizer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< std::string,std::allocator< std::string > > result;
+  IIntensityNormalizer *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityNormalizer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_parameterNames" "', argument " "1"" of type '" "ParameterPool const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IIntensityNormalizer_clone" "', argument " "1"" of type '" "IIntensityNormalizer const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  result = ((ParameterPool const *)arg1)->parameterNames();
-  resultobj = swig::from(static_cast< std::vector< std::string,std::allocator< std::string > > >(result));
+  arg1 = reinterpret_cast< IIntensityNormalizer * >(argp1);
+  result = (IIntensityNormalizer *)((IIntensityNormalizer const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IIntensityNormalizer, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool_removeParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IIntensityNormalizer_createNormalizedData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
-  std::string *arg2 = 0 ;
+  IIntensityNormalizer *arg1 = (IIntensityNormalizer *) 0 ;
+  OutputData< double > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  OutputData< double > *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterPool_removeParameter", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IIntensityNormalizer_createNormalizedData", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityNormalizer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool_removeParameter" "', argument " "1"" of type '" "ParameterPool *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IIntensityNormalizer_createNormalizedData" "', argument " "1"" of type '" "IIntensityNormalizer const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterPool_removeParameter" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterPool_removeParameter" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+  arg1 = reinterpret_cast< IIntensityNormalizer * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IIntensityNormalizer_createNormalizedData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
   }
-  (arg1)->removeParameter((std::string const &)*arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IIntensityNormalizer_createNormalizedData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  result = (OutputData< double > *)((IIntensityNormalizer const *)arg1)->createNormalizedData((OutputData< double > const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IIntensityNormalizer_apply(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IIntensityNormalizer *arg1 = (IIntensityNormalizer *) 0 ;
+  OutputData< double > *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IIntensityNormalizer_apply", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityNormalizer, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IIntensityNormalizer_apply" "', argument " "1"" of type '" "IIntensityNormalizer const *""'"); 
+  }
+  arg1 = reinterpret_cast< IIntensityNormalizer * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IIntensityNormalizer_apply" "', argument " "2"" of type '" "OutputData< double > &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IIntensityNormalizer_apply" "', argument " "2"" of type '" "OutputData< double > &""'"); 
+  }
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  ((IIntensityNormalizer const *)arg1)->apply(*arg2);
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterPool___getitem__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IIntensityNormalizer_setMaximumIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterPool *arg1 = (ParameterPool *) 0 ;
-  size_t arg2 ;
+  IIntensityNormalizer *arg1 = (IIntensityNormalizer *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
+  double val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  RealParameter *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterPool___getitem__", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterPool, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IIntensityNormalizer_setMaximumIntensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityNormalizer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterPool___getitem__" "', argument " "1"" of type '" "ParameterPool const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IIntensityNormalizer_setMaximumIntensity" "', argument " "1"" of type '" "IIntensityNormalizer *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterPool * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< IIntensityNormalizer * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterPool___getitem__" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IIntensityNormalizer_setMaximumIntensity" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< size_t >(val2);
-  result = (RealParameter *)ParameterPool___getitem__((ParameterPool const *)arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  arg2 = static_cast< double >(val2);
+  (arg1)->setMaximumIntensity(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *ParameterPool_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IIntensityNormalizer_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ParameterPool, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_IIntensityNormalizer, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *ParameterPool_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_ParameterSample__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_IntensityNormalizer__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -109174,71 +108714,71 @@ SWIGINTERN PyObject *_wrap_new_ParameterSample__SWIG_0(PyObject *SWIGUNUSEDPARM(
   int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  ParameterSample *result = 0 ;
+  IntensityNormalizer *result = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_ParameterSample" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IntensityNormalizer" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_ParameterSample" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_IntensityNormalizer" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (ParameterSample *)new ParameterSample(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterSample, SWIG_POINTER_NEW |  0 );
+  result = (IntensityNormalizer *)new IntensityNormalizer(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityNormalizer, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParameterSample__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_IntensityNormalizer__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
   double val1 ;
   int ecode1 = 0 ;
-  ParameterSample *result = 0 ;
+  IntensityNormalizer *result = 0 ;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_ParameterSample" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IntensityNormalizer" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
-  result = (ParameterSample *)new ParameterSample(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterSample, SWIG_POINTER_NEW |  0 );
+  result = (IntensityNormalizer *)new IntensityNormalizer(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityNormalizer, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParameterSample__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_new_IntensityNormalizer__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  ParameterSample *result = 0 ;
+  IntensityNormalizer *result = 0 ;
   
   if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (ParameterSample *)new ParameterSample();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterSample, SWIG_POINTER_NEW |  0 );
+  result = (IntensityNormalizer *)new IntensityNormalizer();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityNormalizer, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParameterSample(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IntensityNormalizer(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ParameterSample", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_IntensityNormalizer", 0, 2, argv))) SWIG_fail;
   --argc;
   if (argc == 0) {
-    return _wrap_new_ParameterSample__SWIG_2(self, argc, argv);
+    return _wrap_new_IntensityNormalizer__SWIG_2(self, argc, argv);
   }
   if (argc == 1) {
     int _v;
@@ -109247,7 +108787,7 @@ SWIGINTERN PyObject *_wrap_new_ParameterSample(PyObject *self, PyObject *args) {
       _v = SWIG_CheckState(res);
     }
     if (_v) {
-      return _wrap_new_ParameterSample__SWIG_1(self, argc, argv);
+      return _wrap_new_IntensityNormalizer__SWIG_1(self, argc, argv);
     }
   }
   if (argc == 2) {
@@ -109262,95 +108802,36 @@ SWIGINTERN PyObject *_wrap_new_ParameterSample(PyObject *self, PyObject *args) {
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_new_ParameterSample__SWIG_0(self, argc, argv);
+        return _wrap_new_IntensityNormalizer__SWIG_0(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ParameterSample'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_IntensityNormalizer'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    ParameterSample::ParameterSample(double,double)\n"
-    "    ParameterSample::ParameterSample(double)\n"
-    "    ParameterSample::ParameterSample()\n");
+    "    IntensityNormalizer::IntensityNormalizer(double,double)\n"
+    "    IntensityNormalizer::IntensityNormalizer(double)\n"
+    "    IntensityNormalizer::IntensityNormalizer()\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSample_value_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  ParameterSample *arg1 = (ParameterSample *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "ParameterSample_value_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterSample, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSample_value_set" "', argument " "1"" of type '" "ParameterSample *""'"); 
-  }
-  arg1 = reinterpret_cast< ParameterSample * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSample_value_set" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->value = arg2;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_ParameterSample_value_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IntensityNormalizer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterSample *arg1 = (ParameterSample *) 0 ;
+  IntensityNormalizer *arg1 = (IntensityNormalizer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterSample, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSample_value_get" "', argument " "1"" of type '" "ParameterSample *""'"); 
-  }
-  arg1 = reinterpret_cast< ParameterSample * >(argp1);
-  result = (double) ((arg1)->value);
-  resultobj = SWIG_From_double(static_cast< double >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_ParameterSample_weight_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  ParameterSample *arg1 = (ParameterSample *) 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "ParameterSample_weight_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterSample, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityNormalizer, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSample_weight_set" "', argument " "1"" of type '" "ParameterSample *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IntensityNormalizer" "', argument " "1"" of type '" "IntensityNormalizer *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterSample * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSample_weight_set" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  if (arg1) (arg1)->weight = arg2;
+  arg1 = reinterpret_cast< IntensityNormalizer * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -109358,44 +108839,51 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSample_weight_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityNormalizer_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterSample *arg1 = (ParameterSample *) 0 ;
+  IntensityNormalizer *arg1 = (IntensityNormalizer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  IntensityNormalizer *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterSample, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSample_weight_get" "', argument " "1"" of type '" "ParameterSample *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityNormalizer_clone" "', argument " "1"" of type '" "IntensityNormalizer const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterSample * >(argp1);
-  result = (double) ((arg1)->weight);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< IntensityNormalizer * >(argp1);
+  result = (IntensityNormalizer *)((IntensityNormalizer const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ParameterSample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityNormalizer_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParameterSample *arg1 = (ParameterSample *) 0 ;
+  IntensityNormalizer *arg1 = (IntensityNormalizer *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParameterSample, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityNormalizer_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParameterSample" "', argument " "1"" of type '" "ParameterSample *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityNormalizer_accept" "', argument " "1"" of type '" "IntensityNormalizer const *""'"); 
   }
-  arg1 = reinterpret_cast< ParameterSample * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< IntensityNormalizer * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityNormalizer_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((IntensityNormalizer const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -109403,386 +108891,237 @@ fail:
 }
 
 
-SWIGINTERN PyObject *ParameterSample_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ParameterSample, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *ParameterSample_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_iterator(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityNormalizer_createNormalizedData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  PyObject **arg2 = (PyObject **) 0 ;
+  IntensityNormalizer *arg1 = (IntensityNormalizer *) 0 ;
+  OutputData< double > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  swig::SwigPyIterator *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  OutputData< double > *result = 0 ;
   
-  arg2 = &swig_obj[0];
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityNormalizer_createNormalizedData", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_iterator" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityNormalizer_createNormalizedData" "', argument " "1"" of type '" "IntensityNormalizer const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = (swig::SwigPyIterator *)std_vector_Sl_ParameterSample_Sg__iterator(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_swig__SwigPyIterator, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IntensityNormalizer * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityNormalizer_createNormalizedData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityNormalizer_createNormalizedData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  result = (OutputData< double > *)((IntensityNormalizer const *)arg1)->createNormalizedData((OutputData< double > const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___nonzero__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityNormalizer_apply(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  IntensityNormalizer *arg1 = (IntensityNormalizer *) 0 ;
+  OutputData< double > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  bool result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityNormalizer_apply", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___nonzero__" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityNormalizer_apply" "', argument " "1"" of type '" "IntensityNormalizer const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = (bool)std_vector_Sl_ParameterSample_Sg____nonzero__((std::vector< ParameterSample > const *)arg1);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< IntensityNormalizer * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityNormalizer_apply" "', argument " "2"" of type '" "OutputData< double > &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityNormalizer_apply" "', argument " "2"" of type '" "OutputData< double > &""'"); 
+  }
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  ((IntensityNormalizer const *)arg1)->apply(*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___bool__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityNormalizer_setMaximumIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  IntensityNormalizer *arg1 = (IntensityNormalizer *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  bool result;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityNormalizer_setMaximumIntensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityNormalizer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___bool__" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityNormalizer_setMaximumIntensity" "', argument " "1"" of type '" "IntensityNormalizer *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = (bool)std_vector_Sl_ParameterSample_Sg____bool__((std::vector< ParameterSample > const *)arg1);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< IntensityNormalizer * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityNormalizer_setMaximumIntensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setMaximumIntensity(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___len__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< ParameterSample >::size_type result;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___len__" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = std_vector_Sl_ParameterSample_Sg____len__((std::vector< ParameterSample > const *)arg1);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *IntensityNormalizer_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IntensityNormalizer, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *IntensityNormalizer_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___getslice__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IntensityScaleAndShiftNormalizer__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::difference_type arg2 ;
-  std::vector< ParameterSample >::difference_type arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  ptrdiff_t val2 ;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
   int ecode2 = 0 ;
-  ptrdiff_t val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  std::vector< ParameterSample,std::allocator< ParameterSample > > *result = 0 ;
+  IntensityScaleAndShiftNormalizer *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector___getslice__", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___getslice__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___getslice__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IntensityScaleAndShiftNormalizer" "', argument " "1"" of type '" "double""'");
   } 
-  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
-  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterSampleVector___getslice__" "', argument " "3"" of type '" "std::vector< ParameterSample >::difference_type""'");
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_IntensityScaleAndShiftNormalizer" "', argument " "2"" of type '" "double""'");
   } 
-  arg3 = static_cast< std::vector< ParameterSample >::difference_type >(val3);
-  try {
-    result = (std::vector< ParameterSample,std::allocator< ParameterSample > > *)std_vector_Sl_ParameterSample_Sg____getslice__(arg1,arg2,arg3);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
-  }
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
+  arg2 = static_cast< double >(val2);
+  result = (IntensityScaleAndShiftNormalizer *)new IntensityScaleAndShiftNormalizer(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityScaleAndShiftNormalizer, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___setslice____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_IntensityScaleAndShiftNormalizer__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::difference_type arg2 ;
-  std::vector< ParameterSample >::difference_type arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  ptrdiff_t val2 ;
-  int ecode2 = 0 ;
-  ptrdiff_t val3 ;
-  int ecode3 = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  IntensityScaleAndShiftNormalizer *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___setslice__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___setslice__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
-  } 
-  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
-  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterSampleVector___setslice__" "', argument " "3"" of type '" "std::vector< ParameterSample >::difference_type""'");
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IntensityScaleAndShiftNormalizer" "', argument " "1"" of type '" "double""'");
   } 
-  arg3 = static_cast< std::vector< ParameterSample >::difference_type >(val3);
-  try {
-    std_vector_Sl_ParameterSample_Sg____setslice____SWIG_0(arg1,arg2,arg3);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
-  }
-  resultobj = SWIG_Py_Void();
+  arg1 = static_cast< double >(val1);
+  result = (IntensityScaleAndShiftNormalizer *)new IntensityScaleAndShiftNormalizer(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityScaleAndShiftNormalizer, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___setslice____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_IntensityScaleAndShiftNormalizer__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::difference_type arg2 ;
-  std::vector< ParameterSample >::difference_type arg3 ;
-  std::vector< ParameterSample,std::allocator< ParameterSample > > *arg4 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  ptrdiff_t val2 ;
-  int ecode2 = 0 ;
-  ptrdiff_t val3 ;
-  int ecode3 = 0 ;
-  int res4 = SWIG_OLDOBJ ;
+  IntensityScaleAndShiftNormalizer *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___setslice__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___setslice__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
-  } 
-  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
-  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterSampleVector___setslice__" "', argument " "3"" of type '" "std::vector< ParameterSample >::difference_type""'");
-  } 
-  arg3 = static_cast< std::vector< ParameterSample >::difference_type >(val3);
-  {
-    std::vector< ParameterSample,std::allocator< ParameterSample > > *ptr = (std::vector< ParameterSample,std::allocator< ParameterSample > > *)0;
-    res4 = swig::asptr(swig_obj[3], &ptr);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "ParameterSampleVector___setslice__" "', argument " "4"" of type '" "std::vector< ParameterSample,std::allocator< ParameterSample > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector___setslice__" "', argument " "4"" of type '" "std::vector< ParameterSample,std::allocator< ParameterSample > > const &""'"); 
-    }
-    arg4 = ptr;
-  }
-  try {
-    std_vector_Sl_ParameterSample_Sg____setslice____SWIG_1(arg1,arg2,arg3,(std::vector< ParameterSample,std::allocator< ParameterSample > > const &)*arg4);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
-  }
-  resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res4)) delete arg4;
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (IntensityScaleAndShiftNormalizer *)new IntensityScaleAndShiftNormalizer();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityScaleAndShiftNormalizer, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res4)) delete arg4;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___setslice__(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IntensityScaleAndShiftNormalizer(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector___setslice__", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_IntensityScaleAndShiftNormalizer", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 3) {
+  if (argc == 0) {
+    return _wrap_new_IntensityScaleAndShiftNormalizer__SWIG_2(self, argc, argv);
+  }
+  if (argc == 1) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
-      {
-        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_ptrdiff_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_ParameterSampleVector___setslice____SWIG_0(self, argc, argv);
-        }
-      }
+      return _wrap_new_IntensityScaleAndShiftNormalizer__SWIG_1(self, argc, argv);
     }
   }
-  if (argc == 4) {
+  if (argc == 2) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
       {
-        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
+        int res = SWIG_AsVal_double(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        {
-          int res = SWIG_AsVal_ptrdiff_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          int res = swig::asptr(argv[3], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_ParameterSampleVector___setslice____SWIG_1(self, argc, argv);
-          }
-        }
+        return _wrap_new_IntensityScaleAndShiftNormalizer__SWIG_0(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector___setslice__'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_IntensityScaleAndShiftNormalizer'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    std::vector< ParameterSample >::__setslice__(std::vector< ParameterSample >::difference_type,std::vector< ParameterSample >::difference_type)\n"
-    "    std::vector< ParameterSample >::__setslice__(std::vector< ParameterSample >::difference_type,std::vector< ParameterSample >::difference_type,std::vector< ParameterSample,std::allocator< ParameterSample > > const &)\n");
+    "    IntensityScaleAndShiftNormalizer::IntensityScaleAndShiftNormalizer(double,double)\n"
+    "    IntensityScaleAndShiftNormalizer::IntensityScaleAndShiftNormalizer(double)\n"
+    "    IntensityScaleAndShiftNormalizer::IntensityScaleAndShiftNormalizer()\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___delslice__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::difference_type arg2 ;
-  std::vector< ParameterSample >::difference_type arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  ptrdiff_t val2 ;
-  int ecode2 = 0 ;
-  ptrdiff_t val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector___delslice__", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___delslice__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___delslice__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
-  } 
-  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
-  ecode3 = SWIG_AsVal_ptrdiff_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterSampleVector___delslice__" "', argument " "3"" of type '" "std::vector< ParameterSample >::difference_type""'");
-  } 
-  arg3 = static_cast< std::vector< ParameterSample >::difference_type >(val3);
-  try {
-    std_vector_Sl_ParameterSample_Sg____delslice__(arg1,arg2,arg3);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
-  }
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___delitem____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_IntensityScaleAndShiftNormalizer(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::difference_type arg2 ;
+  IntensityScaleAndShiftNormalizer *arg1 = (IntensityScaleAndShiftNormalizer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  ptrdiff_t val2 ;
-  int ecode2 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityScaleAndShiftNormalizer, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___delitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___delitem__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
-  } 
-  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
-  try {
-    std_vector_Sl_ParameterSample_Sg____delitem____SWIG_0(arg1,arg2);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IntensityScaleAndShiftNormalizer" "', argument " "1"" of type '" "IntensityScaleAndShiftNormalizer *""'"); 
   }
+  arg1 = reinterpret_cast< IntensityScaleAndShiftNormalizer * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -109790,147 +109129,113 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___getitem____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityScaleAndShiftNormalizer_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  PySliceObject *arg2 = (PySliceObject *) 0 ;
+  IntensityScaleAndShiftNormalizer *arg1 = (IntensityScaleAndShiftNormalizer *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::vector< ParameterSample,std::allocator< ParameterSample > > *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityScaleAndShiftNormalizer_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityScaleAndShiftNormalizer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___getitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  {
-    if (!PySlice_Check(swig_obj[1])) {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector___getitem__" "', argument " "2"" of type '" "PySliceObject *""'");
-    }
-    arg2 = (PySliceObject *) swig_obj[1];
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityScaleAndShiftNormalizer_accept" "', argument " "1"" of type '" "IntensityScaleAndShiftNormalizer const *""'"); 
   }
-  try {
-    result = (std::vector< ParameterSample,std::allocator< ParameterSample > > *)std_vector_Sl_ParameterSample_Sg____getitem____SWIG_0(arg1,arg2);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+  arg1 = reinterpret_cast< IntensityScaleAndShiftNormalizer * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityScaleAndShiftNormalizer_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_OWN |  0 );
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((IntensityScaleAndShiftNormalizer const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___setitem____SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityScaleAndShiftNormalizer_setMaximumIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  PySliceObject *arg2 = (PySliceObject *) 0 ;
-  std::vector< ParameterSample,std::allocator< ParameterSample > > *arg3 = 0 ;
+  IntensityScaleAndShiftNormalizer *arg1 = (IntensityScaleAndShiftNormalizer *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityScaleAndShiftNormalizer_setMaximumIntensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityScaleAndShiftNormalizer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___setitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  {
-    if (!PySlice_Check(swig_obj[1])) {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector___setitem__" "', argument " "2"" of type '" "PySliceObject *""'");
-    }
-    arg2 = (PySliceObject *) swig_obj[1];
-  }
-  {
-    std::vector< ParameterSample,std::allocator< ParameterSample > > *ptr = (std::vector< ParameterSample,std::allocator< ParameterSample > > *)0;
-    res3 = swig::asptr(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParameterSampleVector___setitem__" "', argument " "3"" of type '" "std::vector< ParameterSample,std::allocator< ParameterSample > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector___setitem__" "', argument " "3"" of type '" "std::vector< ParameterSample,std::allocator< ParameterSample > > const &""'"); 
-    }
-    arg3 = ptr;
-  }
-  try {
-    std_vector_Sl_ParameterSample_Sg____setitem____SWIG_0(arg1,arg2,(std::vector< ParameterSample,std::allocator< ParameterSample > > const &)*arg3);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityScaleAndShiftNormalizer_setMaximumIntensity" "', argument " "1"" of type '" "IntensityScaleAndShiftNormalizer *""'"); 
   }
+  arg1 = reinterpret_cast< IntensityScaleAndShiftNormalizer * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityScaleAndShiftNormalizer_setMaximumIntensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setMaximumIntensity(arg2);
   resultobj = SWIG_Py_Void();
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___setitem____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityScaleAndShiftNormalizer_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  PySliceObject *arg2 = (PySliceObject *) 0 ;
+  IntensityScaleAndShiftNormalizer *arg1 = (IntensityScaleAndShiftNormalizer *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IntensityScaleAndShiftNormalizer *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityScaleAndShiftNormalizer, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___setitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  {
-    if (!PySlice_Check(swig_obj[1])) {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector___setitem__" "', argument " "2"" of type '" "PySliceObject *""'");
-    }
-    arg2 = (PySliceObject *) swig_obj[1];
-  }
-  try {
-    std_vector_Sl_ParameterSample_Sg____setitem____SWIG_1(arg1,arg2);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityScaleAndShiftNormalizer_clone" "', argument " "1"" of type '" "IntensityScaleAndShiftNormalizer const *""'"); 
   }
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IntensityScaleAndShiftNormalizer * >(argp1);
+  result = (IntensityScaleAndShiftNormalizer *)((IntensityScaleAndShiftNormalizer const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityScaleAndShiftNormalizer, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___delitem____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *IntensityScaleAndShiftNormalizer_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IntensityScaleAndShiftNormalizer, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *IntensityScaleAndShiftNormalizer_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_delete_IIntensityFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  PySliceObject *arg2 = (PySliceObject *) 0 ;
+  IIntensityFunction *arg1 = (IIntensityFunction *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityFunction, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___delitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  {
-    if (!PySlice_Check(swig_obj[1])) {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector___delitem__" "', argument " "2"" of type '" "PySliceObject *""'");
-    }
-    arg2 = (PySliceObject *) swig_obj[1];
-  }
-  try {
-    std_vector_Sl_ParameterSample_Sg____delitem____SWIG_1(arg1,arg2);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  } catch(std::invalid_argument &_e) {
-    SWIG_exception_fail(SWIG_ValueError, (&_e)->what());
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IIntensityFunction" "', argument " "1"" of type '" "IIntensityFunction *""'"); 
   }
+  arg1 = reinterpret_cast< IIntensityFunction * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -109938,623 +109243,621 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___delitem__(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_IIntensityFunction_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IIntensityFunction *arg1 = (IIntensityFunction *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IIntensityFunction *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector___delitem__", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        _v = PySlice_Check(argv[1]);
-      }
-      if (_v) {
-        return _wrap_ParameterSampleVector___delitem____SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_ParameterSampleVector___delitem____SWIG_0(self, argc, argv);
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityFunction, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IIntensityFunction_clone" "', argument " "1"" of type '" "IIntensityFunction const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< IIntensityFunction * >(argp1);
+  result = (IIntensityFunction *)((IIntensityFunction const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IIntensityFunction, 0 |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector___delitem__'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    std::vector< ParameterSample >::__delitem__(std::vector< ParameterSample >::difference_type)\n"
-    "    std::vector< ParameterSample >::__delitem__(PySliceObject *)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___getitem____SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IIntensityFunction_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::difference_type arg2 ;
+  IIntensityFunction *arg1 = (IIntensityFunction *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  ptrdiff_t val2 ;
+  double val2 ;
   int ecode2 = 0 ;
-  std::vector< ParameterSample >::value_type *result = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IIntensityFunction_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IIntensityFunction, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___getitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IIntensityFunction_evaluate" "', argument " "1"" of type '" "IIntensityFunction const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< IIntensityFunction * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___getitem__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IIntensityFunction_evaluate" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
-  try {
-    result = (std::vector< ParameterSample >::value_type *) &std_vector_Sl_ParameterSample_Sg____getitem____SWIG_1((std::vector< ParameterSample > const *)arg1,arg2);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  }
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterSample, 0 |  0 );
-  (void)swig::container_owner<swig::traits<std::vector< ParameterSample >::value_type>::category>::back_reference(resultobj, swig_obj[0]);
+  arg2 = static_cast< double >(val2);
+  result = (double)((IIntensityFunction const *)arg1)->evaluate(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___getitem__(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *IIntensityFunction_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IIntensityFunction, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_IntensityFunctionLog_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IntensityFunctionLog *arg1 = (IntensityFunctionLog *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IntensityFunctionLog *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector___getitem__", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        _v = PySlice_Check(argv[1]);
-      }
-      if (_v) {
-        return _wrap_ParameterSampleVector___getitem____SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_ParameterSampleVector___getitem____SWIG_1(self, argc, argv);
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityFunctionLog, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityFunctionLog_clone" "', argument " "1"" of type '" "IntensityFunctionLog const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< IntensityFunctionLog * >(argp1);
+  result = (IntensityFunctionLog *)((IntensityFunctionLog const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityFunctionLog, 0 |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector___getitem__'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    std::vector< ParameterSample >::__getitem__(PySliceObject *)\n"
-    "    std::vector< ParameterSample >::__getitem__(std::vector< ParameterSample >::difference_type) const\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___setitem____SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityFunctionLog_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::difference_type arg2 ;
-  std::vector< ParameterSample >::value_type *arg3 = 0 ;
+  IntensityFunctionLog *arg1 = (IntensityFunctionLog *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  ptrdiff_t val2 ;
+  double val2 ;
   int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityFunctionLog_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityFunctionLog, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector___setitem__" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityFunctionLog_evaluate" "', argument " "1"" of type '" "IntensityFunctionLog const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  ecode2 = SWIG_AsVal_ptrdiff_t(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< IntensityFunctionLog * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector___setitem__" "', argument " "2"" of type '" "std::vector< ParameterSample >::difference_type""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityFunctionLog_evaluate" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< std::vector< ParameterSample >::difference_type >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_ParameterSample,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParameterSampleVector___setitem__" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector___setitem__" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
-  }
-  arg3 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp3);
-  try {
-    std_vector_Sl_ParameterSample_Sg____setitem____SWIG_2(arg1,arg2,(ParameterSample const &)*arg3);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
-  }
-  resultobj = SWIG_Py_Void();
+  arg2 = static_cast< double >(val2);
+  result = (double)((IntensityFunctionLog const *)arg1)->evaluate(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector___setitem__(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector___setitem__", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        _v = PySlice_Check(argv[1]);
-      }
-      if (_v) {
-        return _wrap_ParameterSampleVector___setitem____SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        _v = PySlice_Check(argv[1]);
-      }
-      if (_v) {
-        int res = swig::asptr(argv[2], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_ParameterSampleVector___setitem____SWIG_0(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_ptrdiff_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_ParameterSample, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_ParameterSampleVector___setitem____SWIG_2(self, argc, argv);
-        }
-      }
-    }
-  }
+SWIGINTERN PyObject *_wrap_new_IntensityFunctionLog(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IntensityFunctionLog *result = 0 ;
   
+  if (!SWIG_Python_UnpackTuple(args, "new_IntensityFunctionLog", 0, 0, 0)) SWIG_fail;
+  result = (IntensityFunctionLog *)new IntensityFunctionLog();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityFunctionLog, SWIG_POINTER_NEW |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector___setitem__'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    std::vector< ParameterSample >::__setitem__(PySliceObject *,std::vector< ParameterSample,std::allocator< ParameterSample > > const &)\n"
-    "    std::vector< ParameterSample >::__setitem__(PySliceObject *)\n"
-    "    std::vector< ParameterSample >::__setitem__(std::vector< ParameterSample >::difference_type,std::vector< ParameterSample >::value_type const &)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_pop(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IntensityFunctionLog(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  IntensityFunctionLog *arg1 = (IntensityFunctionLog *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< ParameterSample >::value_type result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityFunctionLog, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_pop" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  try {
-    result = std_vector_Sl_ParameterSample_Sg__pop(arg1);
-  } catch(std::out_of_range &_e) {
-    SWIG_exception_fail(SWIG_IndexError, (&_e)->what());
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IntensityFunctionLog" "', argument " "1"" of type '" "IntensityFunctionLog *""'"); 
   }
-  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample >::value_type(static_cast< const std::vector< ParameterSample >::value_type& >(result))), SWIGTYPE_p_ParameterSample, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IntensityFunctionLog * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_append(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IntensityFunctionLog_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IntensityFunctionLog, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *IntensityFunctionLog_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_IntensityFunctionSqrt_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::value_type *arg2 = 0 ;
+  IntensityFunctionSqrt *arg1 = (IntensityFunctionSqrt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  IntensityFunctionSqrt *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector_append", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityFunctionSqrt, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_append" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ParameterSample,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterSampleVector_append" "', argument " "2"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_append" "', argument " "2"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityFunctionSqrt_clone" "', argument " "1"" of type '" "IntensityFunctionSqrt const *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp2);
-  std_vector_Sl_ParameterSample_Sg__append(arg1,(ParameterSample const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IntensityFunctionSqrt * >(argp1);
+  result = (IntensityFunctionSqrt *)((IntensityFunctionSqrt const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityFunctionSqrt, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParameterSampleVector__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_IntensityFunctionSqrt_evaluate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *result = 0 ;
+  IntensityFunctionSqrt *arg1 = (IntensityFunctionSqrt *) 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (std::vector< ParameterSample > *)new std::vector< ParameterSample >();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityFunctionSqrt_evaluate", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityFunctionSqrt, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityFunctionSqrt_evaluate" "', argument " "1"" of type '" "IntensityFunctionSqrt const *""'"); 
+  }
+  arg1 = reinterpret_cast< IntensityFunctionSqrt * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityFunctionSqrt_evaluate" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (double)((IntensityFunctionSqrt const *)arg1)->evaluate(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParameterSampleVector__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_IntensityFunctionSqrt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  std::vector< ParameterSample > *result = 0 ;
+  IntensityFunctionSqrt *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    std::vector< ParameterSample,std::allocator< ParameterSample > > *ptr = (std::vector< ParameterSample,std::allocator< ParameterSample > > *)0;
-    res1 = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParameterSampleVector" "', argument " "1"" of type '" "std::vector< ParameterSample > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterSampleVector" "', argument " "1"" of type '" "std::vector< ParameterSample > const &""'"); 
-    }
-    arg1 = ptr;
-  }
-  result = (std::vector< ParameterSample > *)new std::vector< ParameterSample >((std::vector< ParameterSample > const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (!SWIG_Python_UnpackTuple(args, "new_IntensityFunctionSqrt", 0, 0, 0)) SWIG_fail;
+  result = (IntensityFunctionSqrt *)new IntensityFunctionSqrt();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IntensityFunctionSqrt, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_empty(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IntensityFunctionSqrt(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  IntensityFunctionSqrt *arg1 = (IntensityFunctionSqrt *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IntensityFunctionSqrt, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_empty" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IntensityFunctionSqrt" "', argument " "1"" of type '" "IntensityFunctionSqrt *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = (bool)((std::vector< ParameterSample > const *)arg1)->empty();
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< IntensityFunctionSqrt * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IntensityFunctionSqrt_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IntensityFunctionSqrt, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *IntensityFunctionSqrt_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_delete_IResolutionFunction2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  IResolutionFunction2D *arg1 = (IResolutionFunction2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< ParameterSample >::size_type result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IResolutionFunction2D, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_size" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IResolutionFunction2D" "', argument " "1"" of type '" "IResolutionFunction2D *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = ((std::vector< ParameterSample > const *)arg1)->size();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< IResolutionFunction2D * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_swap(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IResolutionFunction2D_evaluateCDF(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample > *arg2 = 0 ;
+  IResolutionFunction2D *arg1 = (IResolutionFunction2D *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector_swap", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IResolutionFunction2D_evaluateCDF", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IResolutionFunction2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_swap" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterSampleVector_swap" "', argument " "2"" of type '" "std::vector< ParameterSample > &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_swap" "', argument " "2"" of type '" "std::vector< ParameterSample > &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IResolutionFunction2D_evaluateCDF" "', argument " "1"" of type '" "IResolutionFunction2D const *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< ParameterSample > * >(argp2);
-  (arg1)->swap(*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IResolutionFunction2D * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IResolutionFunction2D_evaluateCDF" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IResolutionFunction2D_evaluateCDF" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)((IResolutionFunction2D const *)arg1)->evaluateCDF(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_begin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IResolutionFunction2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  IResolutionFunction2D *arg1 = (IResolutionFunction2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< ParameterSample >::iterator result;
+  IResolutionFunction2D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IResolutionFunction2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_begin" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IResolutionFunction2D_clone" "', argument " "1"" of type '" "IResolutionFunction2D const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = (arg1)->begin();
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  arg1 = reinterpret_cast< IResolutionFunction2D * >(argp1);
+  result = (IResolutionFunction2D *)((IResolutionFunction2D const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IResolutionFunction2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_end(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IResolutionFunction2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IResolutionFunction2D, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_new_ChiSquaredModule__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< ParameterSample >::iterator result;
+  ChiSquaredModule *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_end" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = (arg1)->end();
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (ChiSquaredModule *)new ChiSquaredModule();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ChiSquaredModule, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_rbegin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ChiSquaredModule__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  ChiSquaredModule *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< ParameterSample >::reverse_iterator result;
+  ChiSquaredModule *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_ChiSquaredModule,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_rbegin" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ChiSquaredModule" "', argument " "1"" of type '" "ChiSquaredModule const &""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = (arg1)->rbegin();
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::reverse_iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ChiSquaredModule" "', argument " "1"" of type '" "ChiSquaredModule const &""'"); 
+  }
+  arg1 = reinterpret_cast< ChiSquaredModule * >(argp1);
+  result = (ChiSquaredModule *)new ChiSquaredModule((ChiSquaredModule const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ChiSquaredModule, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_rend(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_ChiSquaredModule(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ChiSquaredModule", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_ChiSquaredModule__SWIG_0(self, argc, argv);
+  }
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_ChiSquaredModule, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_ChiSquaredModule__SWIG_1(self, argc, argv);
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ChiSquaredModule'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    ChiSquaredModule::ChiSquaredModule()\n"
+    "    ChiSquaredModule::ChiSquaredModule(ChiSquaredModule const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_delete_ChiSquaredModule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  ChiSquaredModule *arg1 = (ChiSquaredModule *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< ParameterSample >::reverse_iterator result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ChiSquaredModule, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_rend" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ChiSquaredModule" "', argument " "1"" of type '" "ChiSquaredModule *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = (arg1)->rend();
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::reverse_iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  arg1 = reinterpret_cast< ChiSquaredModule * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_clear(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ChiSquaredModule_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  ChiSquaredModule *arg1 = (ChiSquaredModule *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  ChiSquaredModule *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ChiSquaredModule, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_clear" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ChiSquaredModule_clone" "', argument " "1"" of type '" "ChiSquaredModule const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  (arg1)->clear();
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ChiSquaredModule * >(argp1);
+  result = (ChiSquaredModule *)((ChiSquaredModule const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ChiSquaredModule, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_get_allocator(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ChiSquaredModule_residual(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  ChiSquaredModule *arg1 = (ChiSquaredModule *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SwigValueWrapper< std::allocator< ParameterSample > > result;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ChiSquaredModule_residual", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ChiSquaredModule, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_get_allocator" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ChiSquaredModule_residual" "', argument " "1"" of type '" "ChiSquaredModule *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = ((std::vector< ParameterSample > const *)arg1)->get_allocator();
-  resultobj = SWIG_NewPointerObj((new std::vector< ParameterSample >::allocator_type(static_cast< const std::vector< ParameterSample >::allocator_type& >(result))), SWIGTYPE_p_std__allocatorT_ParameterSample_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< ChiSquaredModule * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ChiSquaredModule_residual" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ChiSquaredModule_residual" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "ChiSquaredModule_residual" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (double)(arg1)->residual(arg2,arg3,arg4);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParameterSampleVector__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *ChiSquaredModule_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_ChiSquaredModule, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *ChiSquaredModule_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_DetectorMask__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample >::size_type arg1 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  std::vector< ParameterSample > *result = 0 ;
+  DetectorMask *result = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_ParameterSampleVector" "', argument " "1"" of type '" "std::vector< ParameterSample >::size_type""'");
-  } 
-  arg1 = static_cast< std::vector< ParameterSample >::size_type >(val1);
-  result = (std::vector< ParameterSample > *)new std::vector< ParameterSample >(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (DetectorMask *)new DetectorMask();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DetectorMask, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_pop_back(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_DetectorMask__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  DetectorMask *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  DetectorMask *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_DetectorMask,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_pop_back" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_DetectorMask" "', argument " "1"" of type '" "DetectorMask const &""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  (arg1)->pop_back();
-  resultobj = SWIG_Py_Void();
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_DetectorMask" "', argument " "1"" of type '" "DetectorMask const &""'"); 
+  }
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  result = (DetectorMask *)new DetectorMask((DetectorMask const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DetectorMask, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_resize__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_DetectorMask(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DetectorMask", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_DetectorMask__SWIG_0(self, argc, argv);
+  }
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_DetectorMask, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_DetectorMask__SWIG_1(self, argc, argv);
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DetectorMask'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    DetectorMask::DetectorMask()\n"
+    "    DetectorMask::DetectorMask(DetectorMask const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_DetectorMask_addMask(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::size_type arg2 ;
+  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  IShape2D *arg2 = 0 ;
+  bool arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  bool val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "DetectorMask_addMask", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_resize" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_addMask" "', argument " "1"" of type '" "DetectorMask *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector_resize" "', argument " "2"" of type '" "std::vector< ParameterSample >::size_type""'");
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IShape2D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DetectorMask_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DetectorMask_addMask" "', argument " "2"" of type '" "IShape2D const &""'"); 
+  }
+  arg2 = reinterpret_cast< IShape2D * >(argp2);
+  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DetectorMask_addMask" "', argument " "3"" of type '" "bool""'");
   } 
-  arg2 = static_cast< std::vector< ParameterSample >::size_type >(val2);
-  (arg1)->resize(arg2);
+  arg3 = static_cast< bool >(val3);
+  (arg1)->addMask((IShape2D const &)*arg2,arg3);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -110562,253 +109865,203 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_erase__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_DetectorMask_initMaskData__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::iterator arg2 ;
+  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  IDetector2D *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  swig::SwigPyIterator *iter2 = 0 ;
-  int res2 ;
-  std::vector< ParameterSample >::iterator result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_erase" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_initMaskData" "', argument " "1"" of type '" "DetectorMask *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
-  if (!SWIG_IsOK(res2) || !iter2) {
-    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_erase" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
-  } else {
-    swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter2);
-    if (iter_t) {
-      arg2 = iter_t->get_current();
-    } else {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_erase" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
-    }
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDetector2D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DetectorMask_initMaskData" "', argument " "2"" of type '" "IDetector2D const &""'"); 
   }
-  result = std_vector_Sl_ParameterSample_Sg__erase__SWIG_0(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DetectorMask_initMaskData" "', argument " "2"" of type '" "IDetector2D const &""'"); 
+  }
+  arg2 = reinterpret_cast< IDetector2D * >(argp2);
+  (arg1)->initMaskData((IDetector2D const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_erase__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_DetectorMask_initMaskData__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::iterator arg2 ;
-  std::vector< ParameterSample >::iterator arg3 ;
+  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  OutputData< double > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  swig::SwigPyIterator *iter2 = 0 ;
-  int res2 ;
-  swig::SwigPyIterator *iter3 = 0 ;
-  int res3 ;
-  std::vector< ParameterSample >::iterator result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_erase" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_initMaskData" "', argument " "1"" of type '" "DetectorMask *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
-  if (!SWIG_IsOK(res2) || !iter2) {
-    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_erase" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
-  } else {
-    swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter2);
-    if (iter_t) {
-      arg2 = iter_t->get_current();
-    } else {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_erase" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
-    }
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DetectorMask_initMaskData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
   }
-  res3 = SWIG_ConvertPtr(swig_obj[2], SWIG_as_voidptrptr(&iter3), swig::SwigPyIterator::descriptor(), 0);
-  if (!SWIG_IsOK(res3) || !iter3) {
-    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_erase" "', argument " "3"" of type '" "std::vector< ParameterSample >::iterator""'");
-  } else {
-    swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter3);
-    if (iter_t) {
-      arg3 = iter_t->get_current();
-    } else {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_erase" "', argument " "3"" of type '" "std::vector< ParameterSample >::iterator""'");
-    }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DetectorMask_initMaskData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
   }
-  result = std_vector_Sl_ParameterSample_Sg__erase__SWIG_1(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  (arg1)->initMaskData((OutputData< double > const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_erase(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_DetectorMask_initMaskData(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector_erase", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "DetectorMask_initMaskData", 0, 2, argv))) SWIG_fail;
   --argc;
   if (argc == 2) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DetectorMask, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      swig::SwigPyIterator *iter = 0;
-      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
-      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter) != 0));
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IDetector2D, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_ParameterSampleVector_erase__SWIG_0(self, argc, argv);
+        return _wrap_DetectorMask_initMaskData__SWIG_0(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DetectorMask, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      swig::SwigPyIterator *iter = 0;
-      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
-      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter) != 0));
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        swig::SwigPyIterator *iter = 0;
-        int res = SWIG_ConvertPtr(argv[2], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
-        _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter) != 0));
-        if (_v) {
-          return _wrap_ParameterSampleVector_erase__SWIG_1(self, argc, argv);
-        }
+        return _wrap_DetectorMask_initMaskData__SWIG_1(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector_erase'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DetectorMask_initMaskData'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    std::vector< ParameterSample >::erase(std::vector< ParameterSample >::iterator)\n"
-    "    std::vector< ParameterSample >::erase(std::vector< ParameterSample >::iterator,std::vector< ParameterSample >::iterator)\n");
+    "    DetectorMask::initMaskData(IDetector2D const &)\n"
+    "    DetectorMask::initMaskData(OutputData< double > const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParameterSampleVector__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_DetectorMask_isMasked(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample >::size_type arg1 ;
-  std::vector< ParameterSample >::value_type *arg2 = 0 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  std::vector< ParameterSample > *result = 0 ;
+  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  size_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  bool result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_ParameterSampleVector" "', argument " "1"" of type '" "std::vector< ParameterSample >::size_type""'");
-  } 
-  arg1 = static_cast< std::vector< ParameterSample >::size_type >(val1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ParameterSample,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParameterSampleVector" "', argument " "2"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParameterSampleVector" "', argument " "2"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  if (!SWIG_Python_UnpackTuple(args, "DetectorMask_isMasked", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_isMasked" "', argument " "1"" of type '" "DetectorMask const *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp2);
-  result = (std::vector< ParameterSample > *)new std::vector< ParameterSample >(arg1,(std::vector< ParameterSample >::value_type const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DetectorMask_isMasked" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (bool)((DetectorMask const *)arg1)->isMasked(arg2);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParameterSampleVector(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_DetectorMask_getMaskData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  OutputData< bool > *result = 0 ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ParameterSampleVector", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_ParameterSampleVector__SWIG_0(self, argc, argv);
-  }
-  if (argc == 1) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      return _wrap_new_ParameterSampleVector__SWIG_2(self, argc, argv);
-    }
-  }
-  if (argc == 1) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_ParameterSampleVector__SWIG_1(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_ParameterSample, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_new_ParameterSampleVector__SWIG_3(self, argc, argv);
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_getMaskData" "', argument " "1"" of type '" "DetectorMask const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  result = (OutputData< bool > *)((DetectorMask const *)arg1)->getMaskData();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_bool_t, 0 |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ParameterSampleVector'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    std::vector< ParameterSample >::vector()\n"
-    "    std::vector< ParameterSample >::vector(std::vector< ParameterSample > const &)\n"
-    "    std::vector< ParameterSample >::vector(std::vector< ParameterSample >::size_type)\n"
-    "    std::vector< ParameterSample >::vector(std::vector< ParameterSample >::size_type,std::vector< ParameterSample >::value_type const &)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_push_back(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DetectorMask_createHistogram(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::value_type *arg2 = 0 ;
+  DetectorMask *arg1 = (DetectorMask *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  Histogram2D *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector_push_back", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_push_back" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ParameterSample,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParameterSampleVector_push_back" "', argument " "2"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_createHistogram" "', argument " "1"" of type '" "DetectorMask const *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_push_back" "', argument " "2"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  result = (Histogram2D *)((DetectorMask const *)arg1)->createHistogram();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Histogram2D, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_DetectorMask_removeMasks(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_removeMasks" "', argument " "1"" of type '" "DetectorMask *""'"); 
   }
-  arg2 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp2);
-  (arg1)->push_back((std::vector< ParameterSample >::value_type const &)*arg2);
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  (arg1)->removeMasks();
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -110816,59 +110069,80 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_front(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DetectorMask_hasMasks(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  DetectorMask *arg1 = (DetectorMask *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< ParameterSample >::value_type *result = 0 ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_front" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_hasMasks" "', argument " "1"" of type '" "DetectorMask const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = (std::vector< ParameterSample >::value_type *) &((std::vector< ParameterSample > const *)arg1)->front();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterSample, 0 |  0 );
-  (void)swig::container_owner<swig::traits<std::vector< ParameterSample >::value_type>::category>::back_reference(resultobj, swig_obj[0]);
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  result = (bool)((DetectorMask const *)arg1)->hasMasks();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_back(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DetectorMask_numberOfMaskedChannels(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  DetectorMask *arg1 = (DetectorMask *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< ParameterSample >::value_type *result = 0 ;
+  int result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_back" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_numberOfMaskedChannels" "', argument " "1"" of type '" "DetectorMask const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = (std::vector< ParameterSample >::value_type *) &((std::vector< ParameterSample > const *)arg1)->back();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParameterSample, 0 |  0 );
-  (void)swig::container_owner<swig::traits<std::vector< ParameterSample >::value_type>::category>::back_reference(resultobj, swig_obj[0]);
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  result = (int)((DetectorMask const *)arg1)->numberOfMaskedChannels();
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_assign(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_DetectorMask_numberOfMasks(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::size_type arg2 ;
-  std::vector< ParameterSample >::value_type *arg3 = 0 ;
+  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  size_t result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_numberOfMasks" "', argument " "1"" of type '" "DetectorMask const *""'"); 
+  }
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  result = ((DetectorMask const *)arg1)->numberOfMasks();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_DetectorMask_getMaskShape(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  DetectorMask *arg1 = (DetectorMask *) 0 ;
+  size_t arg2 ;
+  bool *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   size_t val2 ;
@@ -110876,303 +110150,288 @@ SWIGINTERN PyObject *_wrap_ParameterSampleVector_assign(PyObject *SWIGUNUSEDPARM
   void *argp3 = 0 ;
   int res3 = 0 ;
   PyObject *swig_obj[3] ;
+  IShape2D *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector_assign", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "DetectorMask_getMaskShape", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_assign" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DetectorMask_getMaskShape" "', argument " "1"" of type '" "DetectorMask const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
   ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector_assign" "', argument " "2"" of type '" "std::vector< ParameterSample >::size_type""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DetectorMask_getMaskShape" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< std::vector< ParameterSample >::size_type >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_ParameterSample,  0  | 0);
+  arg2 = static_cast< size_t >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_bool,  0 );
   if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParameterSampleVector_assign" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "DetectorMask_getMaskShape" "', argument " "3"" of type '" "bool &""'"); 
   }
   if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_assign" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "DetectorMask_getMaskShape" "', argument " "3"" of type '" "bool &""'"); 
   }
-  arg3 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp3);
-  (arg1)->assign(arg2,(std::vector< ParameterSample >::value_type const &)*arg3);
-  resultobj = SWIG_Py_Void();
+  arg3 = reinterpret_cast< bool * >(argp3);
+  result = (IShape2D *)((DetectorMask const *)arg1)->getMaskShape(arg2,*arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IShape2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_resize__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_DetectorMask(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::size_type arg2 ;
-  std::vector< ParameterSample >::value_type *arg3 = 0 ;
+  DetectorMask *arg1 = (DetectorMask *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DetectorMask, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_resize" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DetectorMask" "', argument " "1"" of type '" "DetectorMask *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector_resize" "', argument " "2"" of type '" "std::vector< ParameterSample >::size_type""'");
-  } 
-  arg2 = static_cast< std::vector< ParameterSample >::size_type >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_ParameterSample,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParameterSampleVector_resize" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  arg1 = reinterpret_cast< DetectorMask * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *DetectorMask_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_DetectorMask, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *DetectorMask_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_Instrument__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+  PyObject *resultobj = 0;
+  Instrument *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (Instrument *)new Instrument();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Instrument, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_Instrument__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  Instrument *arg1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  Instrument *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Instrument,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Instrument" "', argument " "1"" of type '" "Instrument const &""'"); 
   }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_resize" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Instrument" "', argument " "1"" of type '" "Instrument const &""'"); 
   }
-  arg3 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp3);
-  (arg1)->resize(arg2,(std::vector< ParameterSample >::value_type const &)*arg3);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  result = (Instrument *)new Instrument((Instrument const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Instrument, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_resize(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Instrument(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[2] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector_resize", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Instrument", 0, 1, argv))) SWIG_fail;
   --argc;
-  if (argc == 2) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_ParameterSampleVector_resize__SWIG_0(self, argc, argv);
-      }
-    }
+  if (argc == 0) {
+    return _wrap_new_Instrument__SWIG_0(self, argc, argv);
   }
-  if (argc == 3) {
+  if (argc == 1) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Instrument, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_ParameterSample, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_ParameterSampleVector_resize__SWIG_1(self, argc, argv);
-        }
-      }
+      return _wrap_new_Instrument__SWIG_1(self, argc, argv);
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector_resize'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Instrument'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    std::vector< ParameterSample >::resize(std::vector< ParameterSample >::size_type)\n"
-    "    std::vector< ParameterSample >::resize(std::vector< ParameterSample >::size_type,std::vector< ParameterSample >::value_type const &)\n");
+    "    Instrument::Instrument()\n"
+    "    Instrument::Instrument(Instrument const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_insert__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_Instrument(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::iterator arg2 ;
-  std::vector< ParameterSample >::value_type *arg3 = 0 ;
+  Instrument *arg1 = (Instrument *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  swig::SwigPyIterator *iter2 = 0 ;
-  int res2 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  std::vector< ParameterSample >::iterator result;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_insert" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
-  }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
-  if (!SWIG_IsOK(res2) || !iter2) {
-    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_insert" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
-  } else {
-    swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter2);
-    if (iter_t) {
-      arg2 = iter_t->get_current();
-    } else {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_insert" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
-    }
-  }
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_ParameterSample,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParameterSampleVector_insert" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_insert" "', argument " "3"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Instrument" "', argument " "1"" of type '" "Instrument *""'"); 
   }
-  arg3 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp3);
-  result = std_vector_Sl_ParameterSample_Sg__insert__SWIG_0(arg1,arg2,(ParameterSample const &)*arg3);
-  resultobj = SWIG_NewPointerObj(swig::make_output_iterator(static_cast< const std::vector< ParameterSample >::iterator & >(result)),
-    swig::SwigPyIterator::descriptor(),SWIG_POINTER_OWN);
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_insert__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Instrument_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::iterator arg2 ;
-  std::vector< ParameterSample >::size_type arg3 ;
-  std::vector< ParameterSample >::value_type *arg4 = 0 ;
+  Instrument *arg1 = (Instrument *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  swig::SwigPyIterator *iter2 = 0 ;
-  int res2 ;
-  size_t val3 ;
-  int ecode3 = 0 ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Instrument_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_insert" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_accept" "', argument " "1"" of type '" "Instrument const *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], SWIG_as_voidptrptr(&iter2), swig::SwigPyIterator::descriptor(), 0);
-  if (!SWIG_IsOK(res2) || !iter2) {
-    SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_insert" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
-  } else {
-    swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *iter_t = dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter2);
-    if (iter_t) {
-      arg2 = iter_t->get_current();
-    } else {
-      SWIG_exception_fail(SWIG_ArgError(SWIG_TypeError), "in method '" "ParameterSampleVector_insert" "', argument " "2"" of type '" "std::vector< ParameterSample >::iterator""'");
-    }
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParameterSampleVector_insert" "', argument " "3"" of type '" "std::vector< ParameterSample >::size_type""'");
-  } 
-  arg3 = static_cast< std::vector< ParameterSample >::size_type >(val3);
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_ParameterSample,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "ParameterSampleVector_insert" "', argument " "4"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((Instrument const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Instrument_getBeam__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  Instrument *arg1 = (Instrument *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  Beam *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getBeam" "', argument " "1"" of type '" "Instrument *""'"); 
   }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParameterSampleVector_insert" "', argument " "4"" of type '" "std::vector< ParameterSample >::value_type const &""'"); 
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  result = (Beam *) &(arg1)->getBeam();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Beam, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Instrument_getBeam__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  Instrument *arg1 = (Instrument *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  Beam *result = 0 ;
+  
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getBeam" "', argument " "1"" of type '" "Instrument const *""'"); 
   }
-  arg4 = reinterpret_cast< std::vector< ParameterSample >::value_type * >(argp4);
-  std_vector_Sl_ParameterSample_Sg__insert__SWIG_1(arg1,arg2,arg3,(ParameterSample const &)*arg4);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  result = (Beam *) &((Instrument const *)arg1)->getBeam();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Beam, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_insert(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_getBeam(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[2] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ParameterSampleVector_insert", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Instrument_getBeam", 0, 1, argv))) SWIG_fail;
   --argc;
-  if (argc == 3) {
+  if (argc == 1) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Instrument, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      swig::SwigPyIterator *iter = 0;
-      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
-      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter) != 0));
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_ParameterSample, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_ParameterSampleVector_insert__SWIG_0(self, argc, argv);
-        }
-      }
+      return _wrap_Instrument_getBeam__SWIG_0(self, argc, argv);
     }
   }
-  if (argc == 4) {
+  if (argc == 1) {
     int _v;
-    int res = swig::asptr(argv[0], (std::vector< ParameterSample,std::allocator< ParameterSample > >**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Instrument, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      swig::SwigPyIterator *iter = 0;
-      int res = SWIG_ConvertPtr(argv[1], SWIG_as_voidptrptr(&iter), swig::SwigPyIterator::descriptor(), 0);
-      _v = (SWIG_IsOK(res) && iter && (dynamic_cast<swig::SwigPyIterator_T<std::vector< ParameterSample >::iterator > *>(iter) != 0));
-      if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_ParameterSample, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_ParameterSampleVector_insert__SWIG_1(self, argc, argv);
-          }
-        }
-      }
+      return _wrap_Instrument_getBeam__SWIG_1(self, argc, argv);
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParameterSampleVector_insert'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Instrument_getBeam'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    std::vector< ParameterSample >::insert(std::vector< ParameterSample >::iterator,std::vector< ParameterSample >::value_type const &)\n"
-    "    std::vector< ParameterSample >::insert(std::vector< ParameterSample >::iterator,std::vector< ParameterSample >::size_type,std::vector< ParameterSample >::value_type const &)\n");
+    "    Instrument::getBeam()\n"
+    "    Instrument::getBeam() const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_reserve(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_setBeam(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
-  std::vector< ParameterSample >::size_type arg2 ;
+  Instrument *arg1 = (Instrument *) 0 ;
+  Beam *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParameterSampleVector_reserve", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Instrument_setBeam", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_reserve" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setBeam" "', argument " "1"" of type '" "Instrument *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParameterSampleVector_reserve" "', argument " "2"" of type '" "std::vector< ParameterSample >::size_type""'");
-  } 
-  arg2 = static_cast< std::vector< ParameterSample >::size_type >(val2);
-  (arg1)->reserve(arg2);
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Beam,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_setBeam" "', argument " "2"" of type '" "Beam const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Instrument_setBeam" "', argument " "2"" of type '" "Beam const &""'"); 
+  }
+  arg2 = reinterpret_cast< Beam * >(argp2);
+  (arg1)->setBeam((Beam const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -111180,44 +110439,73 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParameterSampleVector_capacity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_setBeamParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  Instrument *arg1 = (Instrument *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::vector< ParameterSample >::size_type result;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Instrument_setBeamParameters", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParameterSampleVector_capacity" "', argument " "1"" of type '" "std::vector< ParameterSample > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setBeamParameters" "', argument " "1"" of type '" "Instrument *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  result = ((std::vector< ParameterSample > const *)arg1)->capacity();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Instrument_setBeamParameters" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Instrument_setBeamParameters" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Instrument_setBeamParameters" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setBeamParameters(arg2,arg3,arg4);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ParameterSampleVector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_setBeamIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< ParameterSample > *arg1 = (std::vector< ParameterSample > *) 0 ;
+  Instrument *arg1 = (Instrument *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Instrument_setBeamIntensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParameterSampleVector" "', argument " "1"" of type '" "std::vector< ParameterSample > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setBeamIntensity" "', argument " "1"" of type '" "Instrument *""'"); 
   }
-  arg1 = reinterpret_cast< std::vector< ParameterSample > * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Instrument_setBeamIntensity" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setBeamIntensity(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -111225,254 +110513,277 @@ fail:
 }
 
 
-SWIGINTERN PyObject *ParameterSampleVector_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_std__vectorT_ParameterSample_std__allocatorT_ParameterSample_t_t, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *ParameterSampleVector_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_Particle__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_Instrument_setBeamPolarization(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Particle *result = 0 ;
+  Instrument *arg1 = (Instrument *) 0 ;
+  kvector_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (Particle *)new Particle();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Instrument_setBeamPolarization", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setBeamPolarization" "', argument " "1"" of type '" "Instrument *""'"); 
+  }
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_setBeamPolarization" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Instrument_setBeamPolarization" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  (arg1)->setBeamPolarization(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Particle__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Instrument_getBeamIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SwigValueWrapper< Material > arg1 ;
-  void *argp1 ;
+  Instrument *arg1 = (Instrument *) 0 ;
+  void *argp1 = 0 ;
   int res1 = 0 ;
-  Particle *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0  | 0);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Particle" "', argument " "1"" of type '" "Material""'"); 
-    }  
-    if (!argp1) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Particle" "', argument " "1"" of type '" "Material""'");
-    } else {
-      Material * temp = reinterpret_cast< Material * >(argp1);
-      arg1 = *temp;
-      if (SWIG_IsNewObj(res1)) delete temp;
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getBeamIntensity" "', argument " "1"" of type '" "Instrument const *""'"); 
   }
-  result = (Particle *)new Particle(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  result = (double)((Instrument const *)arg1)->getBeamIntensity();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Particle__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Instrument_getDetector__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SwigValueWrapper< Material > arg1 ;
-  IFormFactor *arg2 = 0 ;
-  void *argp1 ;
+  Instrument *arg1 = (Instrument *) 0 ;
+  void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  Particle *result = 0 ;
+  IDetector *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  {
-    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0  | 0);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Particle" "', argument " "1"" of type '" "Material""'"); 
-    }  
-    if (!argp1) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Particle" "', argument " "1"" of type '" "Material""'");
-    } else {
-      Material * temp = reinterpret_cast< Material * >(argp1);
-      arg1 = *temp;
-      if (SWIG_IsNewObj(res1)) delete temp;
-    }
-  }
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Particle" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Particle" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getDetector" "', argument " "1"" of type '" "Instrument const *""'"); 
   }
-  arg2 = reinterpret_cast< IFormFactor * >(argp2);
-  result = (Particle *)new Particle(arg1,(IFormFactor const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  result = (IDetector *)((Instrument const *)arg1)->getDetector();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDetector, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Particle__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Instrument_getDetector__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  SwigValueWrapper< Material > arg1 ;
-  IFormFactor *arg2 = 0 ;
-  IRotation *arg3 = 0 ;
-  void *argp1 ;
+  Instrument *arg1 = (Instrument *) 0 ;
+  void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  Particle *result = 0 ;
+  IDetector *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  {
-    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0  | 0);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Particle" "', argument " "1"" of type '" "Material""'"); 
-    }  
-    if (!argp1) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Particle" "', argument " "1"" of type '" "Material""'");
-    } else {
-      Material * temp = reinterpret_cast< Material * >(argp1);
-      arg1 = *temp;
-      if (SWIG_IsNewObj(res1)) delete temp;
-    }
-  }
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Particle" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Particle" "', argument " "2"" of type '" "IFormFactor const &""'"); 
-  }
-  arg2 = reinterpret_cast< IFormFactor * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_Particle" "', argument " "3"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Particle" "', argument " "3"" of type '" "IRotation const &""'"); 
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getDetector" "', argument " "1"" of type '" "Instrument *""'"); 
   }
-  arg3 = reinterpret_cast< IRotation * >(argp3);
-  result = (Particle *)new Particle(arg1,(IFormFactor const &)*arg2,(IRotation const &)*arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  result = (IDetector *)(arg1)->getDetector();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IDetector, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Particle(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_getDetector(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[2] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Particle", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "Instrument_getDetector", 0, 1, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_Particle__SWIG_0(self, argc, argv);
-  }
   if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_Particle__SWIG_1(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Instrument, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_new_Particle__SWIG_2(self, argc, argv);
-      }
+      return _wrap_Instrument_getDetector__SWIG_1(self, argc, argv);
     }
   }
-  if (argc == 3) {
+  if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Instrument, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IFormFactor, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_IRotation, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_new_Particle__SWIG_3(self, argc, argv);
-        }
-      }
+      return _wrap_Instrument_getDetector__SWIG_0(self, argc, argv);
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Particle'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Instrument_getDetector'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    Particle::Particle()\n"
-    "    Particle::Particle(Material)\n"
-    "    Particle::Particle(Material,IFormFactor const &)\n"
-    "    Particle::Particle(Material,IFormFactor const &,IRotation const &)\n");
+    "    Instrument::getDetector() const\n"
+    "    Instrument::getDetector()\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_Particle_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_getDetectorMask(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Particle *arg1 = (Particle *) 0 ;
+  Instrument *arg1 = (Instrument *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Particle *result = 0 ;
+  DetectorMask *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getDetectorMask" "', argument " "1"" of type '" "Instrument const *""'"); 
+  }
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  result = (DetectorMask *)((Instrument const *)arg1)->getDetectorMask();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DetectorMask, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Instrument_getDetectorAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Instrument *arg1 = (Instrument *) 0 ;
+  size_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  IAxis *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "Instrument_getDetectorAxis", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getDetectorAxis" "', argument " "1"" of type '" "Instrument const *""'"); 
+  }
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Instrument_getDetectorAxis" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (IAxis *) &((Instrument const *)arg1)->getDetectorAxis(arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Instrument_getDetectorDimension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Instrument *arg1 = (Instrument *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  size_t result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getDetectorDimension" "', argument " "1"" of type '" "Instrument const *""'"); 
+  }
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  result = ((Instrument const *)arg1)->getDetectorDimension();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Instrument_setDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Instrument *arg1 = (Instrument *) 0 ;
+  IDetector *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Instrument_setDetector", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_clone" "', argument " "1"" of type '" "Particle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setDetector" "', argument " "1"" of type '" "Instrument *""'"); 
   }
-  arg1 = reinterpret_cast< Particle * >(argp1);
-  result = (Particle *)((Particle const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, 0 |  0 );
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IDetector,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_setDetector" "', argument " "2"" of type '" "IDetector const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Instrument_setDetector" "', argument " "2"" of type '" "IDetector const &""'"); 
+  }
+  arg2 = reinterpret_cast< IDetector * >(argp2);
+  (arg1)->setDetector((IDetector const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Particle_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_setDetectorResolutionFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Particle *arg1 = (Particle *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  Instrument *arg1 = (Instrument *) 0 ;
+  IResolutionFunction2D *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Particle_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Instrument_setDetectorResolutionFunction", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_accept" "', argument " "1"" of type '" "Particle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setDetectorResolutionFunction" "', argument " "1"" of type '" "Instrument *""'"); 
   }
-  arg1 = reinterpret_cast< Particle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IResolutionFunction2D,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Particle_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_setDetectorResolutionFunction" "', argument " "2"" of type '" "IResolutionFunction2D const &""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((Particle const *)arg1)->accept(arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Instrument_setDetectorResolutionFunction" "', argument " "2"" of type '" "IResolutionFunction2D const &""'"); 
+  }
+  arg2 = reinterpret_cast< IResolutionFunction2D * >(argp2);
+  (arg1)->setDetectorResolutionFunction((IResolutionFunction2D const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -111480,76 +110791,74 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Particle_createSlicedParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_removeDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Particle *arg1 = (Particle *) 0 ;
-  ZLimits arg2 ;
+  Instrument *arg1 = (Instrument *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  SlicedParticle result;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Particle_createSlicedParticle", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_createSlicedParticle" "', argument " "1"" of type '" "Particle const *""'"); 
-  }
-  arg1 = reinterpret_cast< Particle * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Particle_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Particle_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'");
-    } else {
-      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_removeDetectorResolution" "', argument " "1"" of type '" "Instrument *""'"); 
   }
-  result = ((Particle const *)arg1)->createSlicedParticle(arg2);
-  
-  resultobj = SWIG_NewPointerObj(new SlicedParticle(std::move(result)), SWIGTYPE_p_SlicedParticle, SWIG_POINTER_OWN);
-  
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  (arg1)->removeDetectorResolution();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Particle_setMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_setAnalyzerProperties(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Particle *arg1 = (Particle *) 0 ;
-  SwigValueWrapper< Material > arg2 ;
+  Instrument *arg1 = (Instrument *) 0 ;
+  kvector_t arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Particle_setMaterial", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Instrument_setAnalyzerProperties", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_setMaterial" "', argument " "1"" of type '" "Particle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_setAnalyzerProperties" "', argument " "1"" of type '" "Instrument *""'"); 
   }
-  arg1 = reinterpret_cast< Particle * >(argp1);
+  arg1 = reinterpret_cast< Instrument * >(argp1);
   {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Material,  0  | 0);
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Particle_setMaterial" "', argument " "2"" of type '" "Material""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_setAnalyzerProperties" "', argument " "2"" of type '" "kvector_t const""'"); 
     }  
     if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Particle_setMaterial" "', argument " "2"" of type '" "Material""'");
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Instrument_setAnalyzerProperties" "', argument " "2"" of type '" "kvector_t const""'");
     } else {
-      Material * temp = reinterpret_cast< Material * >(argp2);
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
       arg2 = *temp;
       if (SWIG_IsNewObj(res2)) delete temp;
     }
   }
-  (arg1)->setMaterial(arg2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Instrument_setAnalyzerProperties" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Instrument_setAnalyzerProperties" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setAnalyzerProperties(arg2,arg3,arg4);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -111557,264 +110866,513 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Particle_material(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_applyDetectorResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Particle *arg1 = (Particle *) 0 ;
+  Instrument *arg1 = (Instrument *) 0 ;
+  OutputData< double > *arg2 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Material *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Instrument_applyDetectorResolution", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_material" "', argument " "1"" of type '" "Particle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_applyDetectorResolution" "', argument " "1"" of type '" "Instrument const *""'"); 
   }
-  arg1 = reinterpret_cast< Particle * >(argp1);
-  result = (Material *)((Particle const *)arg1)->material();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Material, 0 |  0 );
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_applyDetectorResolution" "', argument " "2"" of type '" "OutputData< double > *""'"); 
+  }
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  ((Instrument const *)arg1)->applyDetectorResolution(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Particle_setFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_createDetectorIntensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Particle *arg1 = (Particle *) 0 ;
-  IFormFactor *arg2 = 0 ;
+  Instrument *arg1 = (Instrument *) 0 ;
+  std::vector< SimulationElement,std::allocator< SimulationElement > > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
+  OutputData< double > *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Particle_setFormFactor", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Instrument_createDetectorIntensity", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_setFormFactor" "', argument " "1"" of type '" "Particle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_createDetectorIntensity" "', argument " "1"" of type '" "Instrument const *""'"); 
   }
-  arg1 = reinterpret_cast< Particle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IFormFactor,  0  | 0);
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__vectorT_SimulationElement_std__allocatorT_SimulationElement_t_t,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Particle_setFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Instrument_createDetectorIntensity" "', argument " "2"" of type '" "std::vector< SimulationElement,std::allocator< SimulationElement > > const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Particle_setFormFactor" "', argument " "2"" of type '" "IFormFactor const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Instrument_createDetectorIntensity" "', argument " "2"" of type '" "std::vector< SimulationElement,std::allocator< SimulationElement > > const &""'"); 
   }
-  arg2 = reinterpret_cast< IFormFactor * >(argp2);
-  (arg1)->setFormFactor((IFormFactor const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = reinterpret_cast< std::vector< SimulationElement,std::allocator< SimulationElement > > * >(argp2);
+  result = (OutputData< double > *)((Instrument const *)arg1)->createDetectorIntensity((std::vector< SimulationElement,std::allocator< SimulationElement > > const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Particle_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_initDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Particle *arg1 = (Particle *) 0 ;
+  Instrument *arg1 = (Instrument *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Particle_getChildren" "', argument " "1"" of type '" "Particle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_initDetector" "', argument " "1"" of type '" "Instrument *""'"); 
   }
-  arg1 = reinterpret_cast< Particle * >(argp1);
-  result = ((Particle const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  (arg1)->initDetector();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Particle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Instrument_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Particle *arg1 = (Particle *) 0 ;
+  Instrument *arg1 = (Instrument *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Particle, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Instrument, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Particle" "', argument " "1"" of type '" "Particle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Instrument_getChildren" "', argument " "1"" of type '" "Instrument const *""'"); 
   }
-  arg1 = reinterpret_cast< Particle * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Instrument * >(argp1);
+  result = ((Instrument const *)arg1)->getChildren();
+  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *Particle_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Instrument_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Particle, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_Instrument, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *Particle_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Instrument_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_ParticleComposition__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_RelativeDifference(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleComposition *result = 0 ;
+  SimulationResult *arg1 = 0 ;
+  SimulationResult *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (ParticleComposition *)new ParticleComposition();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleComposition, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RelativeDifference", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_SimulationResult,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RelativeDifference" "', argument " "1"" of type '" "SimulationResult const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RelativeDifference" "', argument " "1"" of type '" "SimulationResult const &""'"); 
+  }
+  arg1 = reinterpret_cast< SimulationResult * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_SimulationResult,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RelativeDifference" "', argument " "2"" of type '" "SimulationResult const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RelativeDifference" "', argument " "2"" of type '" "SimulationResult const &""'"); 
+  }
+  arg2 = reinterpret_cast< SimulationResult * >(argp2);
+  result = (double)IntensityDataFunctions::RelativeDifference((SimulationResult const &)*arg1,(SimulationResult const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParticleComposition__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_getRelativeDifference__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IParticle *arg1 = 0 ;
-  std::vector< kvector_t,std::allocator< kvector_t > > arg2 ;
+  OutputData< double > *arg1 = 0 ;
+  OutputData< double > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  ParticleComposition *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  double result;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IParticle,  0  | 0);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParticleComposition" "', argument " "1"" of type '" "IParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "getRelativeDifference" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
   }
   if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleComposition" "', argument " "1"" of type '" "IParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "getRelativeDifference" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
   }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  {
-    std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *ptr = (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *)0;
-    int res = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_ParticleComposition" "', argument " "2"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > >""'"); 
-    }
-    arg2 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "getRelativeDifference" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
   }
-  result = (ParticleComposition *)new ParticleComposition((IParticle const &)*arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleComposition, SWIG_POINTER_NEW |  0 );
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "getRelativeDifference" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  result = (double)IntensityDataFunctions::getRelativeDifference((OutputData< double > const &)*arg1,(OutputData< double > const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParticleComposition(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_checkRelativeDifference(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  OutputData< double > *arg1 = 0 ;
+  OutputData< double > *arg2 = 0 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  bool result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "checkRelativeDifference", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "checkRelativeDifference" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "checkRelativeDifference" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "checkRelativeDifference" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "checkRelativeDifference" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "checkRelativeDifference" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (bool)IntensityDataFunctions::checkRelativeDifference((OutputData< double > const &)*arg1,(OutputData< double > const &)*arg2,arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_getRelativeDifference__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IHistogram *arg1 = 0 ;
+  IHistogram *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  double result;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IHistogram,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "getRelativeDifference" "', argument " "1"" of type '" "IHistogram const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "getRelativeDifference" "', argument " "1"" of type '" "IHistogram const &""'"); 
+  }
+  arg1 = reinterpret_cast< IHistogram * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IHistogram,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "getRelativeDifference" "', argument " "2"" of type '" "IHistogram const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "getRelativeDifference" "', argument " "2"" of type '" "IHistogram const &""'"); 
+  }
+  arg2 = reinterpret_cast< IHistogram * >(argp2);
+  result = (double)IntensityDataFunctions::getRelativeDifference((IHistogram const &)*arg1,(IHistogram const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_getRelativeDifference(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ParticleComposition", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "getRelativeDifference", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_ParticleComposition__SWIG_0(self, argc, argv);
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_getRelativeDifference__SWIG_0(self, argc, argv);
+      }
+    }
   }
   if (argc == 2) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IParticle, SWIG_POINTER_NO_NULL | 0);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IHistogram, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = swig::asptr(argv[1], (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > >**)(0));
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IHistogram, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_new_ParticleComposition__SWIG_1(self, argc, argv);
+        return _wrap_getRelativeDifference__SWIG_1(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ParticleComposition'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'getRelativeDifference'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    ParticleComposition::ParticleComposition()\n"
-    "    ParticleComposition::ParticleComposition(IParticle const &,std::vector< kvector_t,std::allocator< kvector_t > >)\n");
+    "    IntensityDataFunctions::getRelativeDifference(OutputData< double > const &,OutputData< double > const &)\n"
+    "    IntensityDataFunctions::getRelativeDifference(IHistogram const &,IHistogram const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ParticleComposition(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_coordinateToBinf__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double arg1 ;
+  IAxis *arg2 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParticleComposition" "', argument " "1"" of type '" "ParticleComposition *""'"); 
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "coordinateToBinf" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAxis,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "coordinateToBinf" "', argument " "2"" of type '" "IAxis const &""'"); 
   }
-  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateToBinf" "', argument " "2"" of type '" "IAxis const &""'"); 
+  }
+  arg2 = reinterpret_cast< IAxis * >(argp2);
+  result = (double)IntensityDataFunctions::coordinateToBinf(arg1,(IAxis const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleComposition_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_coordinateFromBinf__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
+  double arg1 ;
+  IAxis *arg2 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  double result;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "coordinateFromBinf" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAxis,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "coordinateFromBinf" "', argument " "2"" of type '" "IAxis const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateFromBinf" "', argument " "2"" of type '" "IAxis const &""'"); 
+  }
+  arg2 = reinterpret_cast< IAxis * >(argp2);
+  result = (double)IntensityDataFunctions::coordinateFromBinf(arg1,(IAxis const &)*arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_coordinateToBinf__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double *arg1 = 0 ;
+  double *arg2 = 0 ;
+  OutputData< double > *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  ParticleComposition *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_double,  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_clone" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "coordinateToBinf" "', argument " "1"" of type '" "double &""'"); 
   }
-  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
-  result = (ParticleComposition *)((ParticleComposition const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleComposition, 0 |  0 );
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateToBinf" "', argument " "1"" of type '" "double &""'"); 
+  }
+  arg1 = reinterpret_cast< double * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_double,  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "coordinateToBinf" "', argument " "2"" of type '" "double &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateToBinf" "', argument " "2"" of type '" "double &""'"); 
+  }
+  arg2 = reinterpret_cast< double * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "coordinateToBinf" "', argument " "3"" of type '" "OutputData< double > const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateToBinf" "', argument " "3"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg3 = reinterpret_cast< OutputData< double > * >(argp3);
+  IntensityDataFunctions::coordinateToBinf(*arg1,*arg2,(OutputData< double > const &)*arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleComposition_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_coordinateToBinf(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "coordinateToBinf", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAxis, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_coordinateToBinf__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_double, SWIG_POINTER_NO_NULL);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, SWIG_POINTER_NO_NULL);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_coordinateToBinf__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'coordinateToBinf'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IntensityDataFunctions::coordinateToBinf(double,IAxis const &)\n"
+    "    IntensityDataFunctions::coordinateToBinf(double &,double &,OutputData< double > const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_coordinateFromBinf__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  double *arg1 = 0 ;
+  double *arg2 = 0 ;
+  OutputData< double > *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParticleComposition_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_double,  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_accept" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "coordinateFromBinf" "', argument " "1"" of type '" "double &""'"); 
   }
-  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateFromBinf" "', argument " "1"" of type '" "double &""'"); 
+  }
+  arg1 = reinterpret_cast< double * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_double,  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleComposition_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "coordinateFromBinf" "', argument " "2"" of type '" "double &""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((ParticleComposition const *)arg1)->accept(arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateFromBinf" "', argument " "2"" of type '" "double &""'"); 
+  }
+  arg2 = reinterpret_cast< double * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "coordinateFromBinf" "', argument " "3"" of type '" "OutputData< double > const &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "coordinateFromBinf" "', argument " "3"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg3 = reinterpret_cast< OutputData< double > * >(argp3);
+  IntensityDataFunctions::coordinateFromBinf(*arg1,*arg2,(OutputData< double > const &)*arg3);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -111822,897 +111380,1222 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleComposition_createFormFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_coordinateFromBinf(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "coordinateFromBinf", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAxis, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_coordinateFromBinf__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_double, SWIG_POINTER_NO_NULL);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      void *vptr = 0;
+      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, SWIG_POINTER_NO_NULL);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_coordinateFromBinf__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'coordinateFromBinf'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IntensityDataFunctions::coordinateFromBinf(double,IAxis const &)\n"
+    "    IntensityDataFunctions::coordinateFromBinf(double &,double &,OutputData< double > const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_create2DArrayfromOutputData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
+  OutputData< double > *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  IFormFactor *result = 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_createFormFactor" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "create2DArrayfromOutputData" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
   }
-  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
-  result = (IFormFactor *)((ParticleComposition const *)arg1)->createFormFactor();
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFormFactor, 0 |  0 );
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "create2DArrayfromOutputData" "', argument " "1"" of type '" "OutputData< double > const &""'"); 
   }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = IntensityDataFunctions::create2DArrayfromOutputData((OutputData< double > const &)*arg1);
+  resultobj = swig::from(static_cast< std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleComposition_addParticle__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_FT2DArray(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
-  IParticle *arg2 = 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg1 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[1] ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res1 = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FT2DArray" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FT2DArray" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    arg1 = ptr;
+  }
+  result = IntensityDataFunctions::FT2DArray((std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg1);
+  resultobj = swig::from(static_cast< std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > >(result));
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ConvertData__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  Simulation *arg1 = 0 ;
+  OutputData< double > *arg2 = 0 ;
+  bool arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
+  bool val3 ;
+  int ecode3 = 0 ;
+  SimulationResult result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Simulation,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_addParticle" "', argument " "1"" of type '" "ParticleComposition *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
   }
-  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IParticle,  0  | 0);
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
+  }
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleComposition_addParticle" "', argument " "2"" of type '" "IParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ConvertData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleComposition_addParticle" "', argument " "2"" of type '" "IParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
   }
-  arg2 = reinterpret_cast< IParticle * >(argp2);
-  (arg1)->addParticle((IParticle const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ConvertData" "', argument " "3"" of type '" "bool""'");
+  } 
+  arg3 = static_cast< bool >(val3);
+  result = IntensityDataFunctions::ConvertData((Simulation const &)*arg1,(OutputData< double > const &)*arg2,arg3);
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleComposition_addParticle__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ConvertData__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
-  IParticle *arg2 = 0 ;
-  kvector_t arg3 ;
+  Simulation *arg1 = 0 ;
+  OutputData< double > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
+  SimulationResult result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Simulation,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_addParticle" "', argument " "1"" of type '" "ParticleComposition *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
   }
-  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IParticle,  0  | 0);
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
+  }
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleComposition_addParticle" "', argument " "2"" of type '" "IParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ConvertData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleComposition_addParticle" "', argument " "2"" of type '" "IParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
   }
-  arg2 = reinterpret_cast< IParticle * >(argp2);
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  result = IntensityDataFunctions::ConvertData((Simulation const &)*arg1,(OutputData< double > const &)*arg2);
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ConvertData__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  Simulation *arg1 = 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg2 = 0 ;
+  bool arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  bool val3 ;
+  int ecode3 = 0 ;
+  SimulationResult result;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Simulation,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
+  }
+  arg1 = reinterpret_cast< Simulation * >(argp1);
   {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "ParticleComposition_addParticle" "', argument " "3"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleComposition_addParticle" "', argument " "3"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res2 = swig::asptr(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ConvertData" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
     }
+    arg2 = ptr;
   }
-  (arg1)->addParticle((IParticle const &)*arg2,arg3);
-  resultobj = SWIG_Py_Void();
+  ecode3 = SWIG_AsVal_bool(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ConvertData" "', argument " "3"" of type '" "bool""'");
+  } 
+  arg3 = static_cast< bool >(val3);
+  result = IntensityDataFunctions::ConvertData((Simulation const &)*arg1,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg2,arg3);
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleComposition_addParticle(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_ConvertData__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  Simulation *arg1 = 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  SimulationResult result;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Simulation,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "1"" of type '" "Simulation const &""'"); 
+  }
+  arg1 = reinterpret_cast< Simulation * >(argp1);
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res2 = swig::asptr(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ConvertData" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ConvertData" "', argument " "2"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  result = IntensityDataFunctions::ConvertData((Simulation const &)*arg1,(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg2);
+  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ConvertData(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
   PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ParticleComposition_addParticle", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ConvertData", 0, 3, argv))) SWIG_fail;
   --argc;
   if (argc == 2) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParticleComposition, 0);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Simulation, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IParticle, SWIG_POINTER_NO_NULL | 0);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_ParticleComposition_addParticle__SWIG_0(self, argc, argv);
+        return _wrap_ConvertData__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Simulation, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = swig::asptr(argv[1], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_ConvertData__SWIG_3(self, argc, argv);
       }
     }
   }
   if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParticleComposition, 0);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Simulation, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IParticle, SWIG_POINTER_NO_NULL | 0);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
       if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
+        {
+          int res = SWIG_AsVal_bool(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
         if (_v) {
-          return _wrap_ParticleComposition_addParticle__SWIG_1(self, argc, argv);
+          return _wrap_ConvertData__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Simulation, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = swig::asptr(argv[1], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_bool(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_ConvertData__SWIG_2(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParticleComposition_addParticle'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ConvertData'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    ParticleComposition::addParticle(IParticle const &)\n"
-    "    ParticleComposition::addParticle(IParticle const &,kvector_t)\n");
+    "    IntensityDataFunctions::ConvertData(Simulation const &,OutputData< double > const &,bool)\n"
+    "    IntensityDataFunctions::ConvertData(Simulation const &,OutputData< double > const &)\n"
+    "    IntensityDataFunctions::ConvertData(Simulation const &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &,bool)\n"
+    "    IntensityDataFunctions::ConvertData(Simulation const &,std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleComposition_addParticles(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IsGISAXSDetector__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
-  IParticle *arg2 = 0 ;
-  std::vector< kvector_t,std::allocator< kvector_t > > arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[3] ;
+  IsGISAXSDetector *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParticleComposition_addParticles", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_addParticles" "', argument " "1"" of type '" "ParticleComposition *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IParticle,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleComposition_addParticles" "', argument " "2"" of type '" "IParticle const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleComposition_addParticles" "', argument " "2"" of type '" "IParticle const &""'"); 
-  }
-  arg2 = reinterpret_cast< IParticle * >(argp2);
-  {
-    std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *ptr = (std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > *)0;
-    int res = swig::asptr(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "ParticleComposition_addParticles" "', argument " "3"" of type '" "std::vector< kvector_t,std::allocator< kvector_t > >""'"); 
-    }
-    arg3 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
-  }
-  (arg1)->addParticles((IParticle const &)*arg2,arg3);
-  resultobj = SWIG_Py_Void();
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (IsGISAXSDetector *)new IsGISAXSDetector();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsGISAXSDetector, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_IsGISAXSDetector__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  size_t arg1 ;
+  double arg2 ;
+  double arg3 ;
+  size_t arg4 ;
+  double arg5 ;
+  double arg6 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  size_t val4 ;
+  int ecode4 = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
+  double val6 ;
+  int ecode6 = 0 ;
+  IsGISAXSDetector *result = 0 ;
+  
+  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_IsGISAXSDetector" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_IsGISAXSDetector" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_IsGISAXSDetector" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_size_t(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_IsGISAXSDetector" "', argument " "4"" of type '" "size_t""'");
+  } 
+  arg4 = static_cast< size_t >(val4);
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "new_IsGISAXSDetector" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  ecode6 = SWIG_AsVal_double(swig_obj[5], &val6);
+  if (!SWIG_IsOK(ecode6)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode6), "in method '" "new_IsGISAXSDetector" "', argument " "6"" of type '" "double""'");
+  } 
+  arg6 = static_cast< double >(val6);
+  result = (IsGISAXSDetector *)new IsGISAXSDetector(arg1,arg2,arg3,arg4,arg5,arg6);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsGISAXSDetector, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleComposition_nbrParticles(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IsGISAXSDetector__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
+  IsGISAXSDetector *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
+  IsGISAXSDetector *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IsGISAXSDetector,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_nbrParticles" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_IsGISAXSDetector" "', argument " "1"" of type '" "IsGISAXSDetector const &""'"); 
   }
-  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
-  result = ((ParticleComposition const *)arg1)->nbrParticles();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_IsGISAXSDetector" "', argument " "1"" of type '" "IsGISAXSDetector const &""'"); 
+  }
+  arg1 = reinterpret_cast< IsGISAXSDetector * >(argp1);
+  result = (IsGISAXSDetector *)new IsGISAXSDetector((IsGISAXSDetector const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsGISAXSDetector, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleComposition_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_IsGISAXSDetector(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[7] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_IsGISAXSDetector", 0, 6, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_IsGISAXSDetector__SWIG_0(self, argc, argv);
+  }
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IsGISAXSDetector, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_IsGISAXSDetector__SWIG_2(self, argc, argv);
+    }
+  }
+  if (argc == 6) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_size_t(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              {
+                int res = SWIG_AsVal_double(argv[5], NULL);
+                _v = SWIG_CheckState(res);
+              }
+              if (_v) {
+                return _wrap_new_IsGISAXSDetector__SWIG_1(self, argc, argv);
+              }
+            }
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_IsGISAXSDetector'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IsGISAXSDetector::IsGISAXSDetector()\n"
+    "    IsGISAXSDetector::IsGISAXSDetector(size_t,double,double,size_t,double,double)\n"
+    "    IsGISAXSDetector::IsGISAXSDetector(IsGISAXSDetector const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_IsGISAXSDetector_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
+  IsGISAXSDetector *arg1 = (IsGISAXSDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  IsGISAXSDetector *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsGISAXSDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_getChildren" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsGISAXSDetector_clone" "', argument " "1"" of type '" "IsGISAXSDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
-  result = ((ParticleComposition const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< IsGISAXSDetector * >(argp1);
+  result = (IsGISAXSDetector *)((IsGISAXSDetector const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IsGISAXSDetector, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleComposition_decompose(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IsGISAXSDetector_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
+  IsGISAXSDetector *arg1 = (IsGISAXSDetector *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SwigValueWrapper< SafePointerVector< IParticle > > result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IsGISAXSDetector_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsGISAXSDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_decompose" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IsGISAXSDetector_accept" "', argument " "1"" of type '" "IsGISAXSDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
-  result = ((ParticleComposition const *)arg1)->decompose();
-  resultobj = SWIG_NewPointerObj((new SafePointerVector< IParticle >(static_cast< const SafePointerVector< IParticle >& >(result))), SWIGTYPE_p_SafePointerVectorT_IParticle_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IsGISAXSDetector * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IsGISAXSDetector_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((IsGISAXSDetector const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleComposition_bottomTopZ(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IsGISAXSDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleComposition *arg1 = (ParticleComposition *) 0 ;
+  IsGISAXSDetector *arg1 = (IsGISAXSDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  ParticleLimits result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleComposition, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IsGISAXSDetector, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleComposition_bottomTopZ" "', argument " "1"" of type '" "ParticleComposition const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IsGISAXSDetector" "', argument " "1"" of type '" "IsGISAXSDetector *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleComposition * >(argp1);
-  result = ((ParticleComposition const *)arg1)->bottomTopZ();
-  resultobj = SWIG_NewPointerObj((new ParticleLimits(static_cast< const ParticleLimits& >(result))), SWIGTYPE_p_ParticleLimits, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IsGISAXSDetector * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *ParticleComposition_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IsGISAXSDetector_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ParticleComposition, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_IsGISAXSDetector, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *ParticleComposition_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IsGISAXSDetector_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_ParticleCoreShell__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_importArrayToOutputData__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Particle *arg1 = 0 ;
-  Particle *arg2 = 0 ;
-  kvector_t arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  ParticleCoreShell *result = 0 ;
+  std::vector< double,std::allocator< double > > *arg1 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  OutputData< double > *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Particle,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParticleCoreShell" "', argument " "1"" of type '" "Particle const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleCoreShell" "', argument " "1"" of type '" "Particle const &""'"); 
-  }
-  arg1 = reinterpret_cast< Particle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Particle,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParticleCoreShell" "', argument " "2"" of type '" "Particle const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleCoreShell" "', argument " "2"" of type '" "Particle const &""'"); 
-  }
-  arg2 = reinterpret_cast< Particle * >(argp2);
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
   {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_ParticleCoreShell" "', argument " "3"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleCoreShell" "', argument " "3"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res1 = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "importArrayToOutputData" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
     }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "importArrayToOutputData" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg1 = ptr;
   }
-  result = (ParticleCoreShell *)new ParticleCoreShell((Particle const &)*arg1,(Particle const &)*arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleCoreShell, SWIG_POINTER_NEW |  0 );
+  result = (OutputData< double > *)PyArrayImport::importArrayToOutputData((std::vector< double,std::allocator< double > > const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParticleCoreShell__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_importArrayToOutputData__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  Particle *arg1 = 0 ;
-  Particle *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  ParticleCoreShell *result = 0 ;
+  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg1 = 0 ;
+  int res1 = SWIG_OLDOBJ ;
+  OutputData< double > *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Particle,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParticleCoreShell" "', argument " "1"" of type '" "Particle const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleCoreShell" "', argument " "1"" of type '" "Particle const &""'"); 
-  }
-  arg1 = reinterpret_cast< Particle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Particle,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParticleCoreShell" "', argument " "2"" of type '" "Particle const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleCoreShell" "', argument " "2"" of type '" "Particle const &""'"); 
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  {
+    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
+    res1 = swig::asptr(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "importArrayToOutputData" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "importArrayToOutputData" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg2 = reinterpret_cast< Particle * >(argp2);
-  result = (ParticleCoreShell *)new ParticleCoreShell((Particle const &)*arg1,(Particle const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleCoreShell, SWIG_POINTER_NEW |  0 );
+  result = (OutputData< double > *)PyArrayImport::importArrayToOutputData((std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParticleCoreShell(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_importArrayToOutputData(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[2] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ParticleCoreShell", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "importArrayToOutputData", 0, 1, argv))) SWIG_fail;
   --argc;
-  if (argc == 2) {
+  if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Particle, SWIG_POINTER_NO_NULL | 0);
+    int res = swig::asptr(argv[0], (std::vector< double,std::allocator< double > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Particle, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_new_ParticleCoreShell__SWIG_1(self, argc, argv);
-      }
+      return _wrap_importArrayToOutputData__SWIG_0(self, argc, argv);
     }
   }
-  if (argc == 3) {
+  if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Particle, SWIG_POINTER_NO_NULL | 0);
+    int res = swig::asptr(argv[0], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Particle, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_new_ParticleCoreShell__SWIG_0(self, argc, argv);
-        }
-      }
+      return _wrap_importArrayToOutputData__SWIG_1(self, argc, argv);
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ParticleCoreShell'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'importArrayToOutputData'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    ParticleCoreShell::ParticleCoreShell(Particle const &,Particle const &,kvector_t)\n"
-    "    ParticleCoreShell::ParticleCoreShell(Particle const &,Particle const &)\n");
+    "    PyArrayImport::importArrayToOutputData(std::vector< double,std::allocator< double > > const &)\n"
+    "    PyArrayImport::importArrayToOutputData(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ParticleCoreShell(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RectangularPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
-  void *argp1 = 0 ;
+  kvector_t arg1 ;
+  kvector_t arg2 ;
+  kvector_t arg3 ;
+  void *argp1 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
+  RectangularPixel *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParticleCoreShell" "', argument " "1"" of type '" "ParticleCoreShell *""'"); 
+  if (!SWIG_Python_UnpackTuple(args, "new_RectangularPixel", 3, 3, swig_obj)) SWIG_fail;
+  {
+    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RectangularPixel" "', argument " "1"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp1) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RectangularPixel" "', argument " "1"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp1);
+      arg1 = *temp;
+      if (SWIG_IsNewObj(res1)) delete temp;
+    }
   }
-  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_RectangularPixel" "', argument " "2"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RectangularPixel" "', argument " "2"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RectangularPixel" "', argument " "3"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RectangularPixel" "', argument " "3"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = (RectangularPixel *)new RectangularPixel(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularPixel, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleCoreShell_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularPixel_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
+  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  ParticleCoreShell *result = 0 ;
+  RectangularPixel *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleCoreShell_clone" "', argument " "1"" of type '" "ParticleCoreShell const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularPixel_clone" "', argument " "1"" of type '" "RectangularPixel const *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
-  result = (ParticleCoreShell *)((ParticleCoreShell const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
+  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
+  result = (RectangularPixel *)((RectangularPixel const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularPixel, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleCoreShell_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularPixel_createZeroSizePixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  RectangularPixel *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParticleCoreShell_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RectangularPixel_createZeroSizePixel", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleCoreShell_accept" "', argument " "1"" of type '" "ParticleCoreShell const *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleCoreShell_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularPixel_createZeroSizePixel" "', argument " "1"" of type '" "RectangularPixel const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((ParticleCoreShell const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularPixel_createZeroSizePixel" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularPixel_createZeroSizePixel" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (RectangularPixel *)((RectangularPixel const *)arg1)->createZeroSizePixel(arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularPixel, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleCoreShell_createSlicedParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularPixel_getK(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
-  ZLimits arg2 ;
+  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  SlicedParticle result;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
+  kvector_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParticleCoreShell_createSlicedParticle", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RectangularPixel_getK", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleCoreShell_createSlicedParticle" "', argument " "1"" of type '" "ParticleCoreShell const *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ZLimits,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleCoreShell_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleCoreShell_createSlicedParticle" "', argument " "2"" of type '" "ZLimits""'");
-    } else {
-      ZLimits * temp = reinterpret_cast< ZLimits * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularPixel_getK" "', argument " "1"" of type '" "RectangularPixel const *""'"); 
   }
-  result = ((ParticleCoreShell const *)arg1)->createSlicedParticle(arg2);
-  
-  resultobj = SWIG_NewPointerObj(new SlicedParticle(std::move(result)), SWIGTYPE_p_SlicedParticle, SWIG_POINTER_OWN);
-  
+  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularPixel_getK" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularPixel_getK" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "RectangularPixel_getK" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = ((RectangularPixel const *)arg1)->getK(arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleCoreShell_coreParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularPixel_getPosition(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
+  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Particle *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  kvector_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RectangularPixel_getPosition", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleCoreShell_coreParticle" "', argument " "1"" of type '" "ParticleCoreShell const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularPixel_getPosition" "', argument " "1"" of type '" "RectangularPixel const *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
-  result = (Particle *)((ParticleCoreShell const *)arg1)->coreParticle();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, 0 |  0 );
+  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularPixel_getPosition" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularPixel_getPosition" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = ((RectangularPixel const *)arg1)->getPosition(arg2,arg3);
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleCoreShell_shellParticle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularPixel_getIntegrationFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
+  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Particle *result = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RectangularPixel_getIntegrationFactor", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleCoreShell_shellParticle" "', argument " "1"" of type '" "ParticleCoreShell const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularPixel_getIntegrationFactor" "', argument " "1"" of type '" "RectangularPixel const *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
-  result = (Particle *)((ParticleCoreShell const *)arg1)->shellParticle();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Particle, 0 |  0 );
+  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularPixel_getIntegrationFactor" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularPixel_getIntegrationFactor" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)((RectangularPixel const *)arg1)->getIntegrationFactor(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleCoreShell_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularPixel_getSolidAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleCoreShell *arg1 = (ParticleCoreShell *) 0 ;
+  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleCoreShell, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleCoreShell_getChildren" "', argument " "1"" of type '" "ParticleCoreShell const *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleCoreShell * >(argp1);
-  result = ((ParticleCoreShell const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *ParticleCoreShell_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ParticleCoreShell, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *ParticleCoreShell_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_ParticleDistribution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IParticle *arg1 = 0 ;
-  ParameterDistribution *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  ParticleDistribution *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_ParticleDistribution", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IParticle,  0  | 0);
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParticleDistribution" "', argument " "1"" of type '" "IParticle const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleDistribution" "', argument " "1"" of type '" "IParticle const &""'"); 
-  }
-  arg1 = reinterpret_cast< IParticle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ParameterDistribution,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_ParticleDistribution" "', argument " "2"" of type '" "ParameterDistribution const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleDistribution" "', argument " "2"" of type '" "ParameterDistribution const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularPixel_getSolidAngle" "', argument " "1"" of type '" "RectangularPixel const *""'"); 
   }
-  arg2 = reinterpret_cast< ParameterDistribution * >(argp2);
-  result = (ParticleDistribution *)new ParticleDistribution((IParticle const &)*arg1,(ParameterDistribution const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleDistribution, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
+  result = (double)((RectangularPixel const *)arg1)->getSolidAngle();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleDistribution_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_RectangularPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
+  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  ParticleDistribution *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_clone" "', argument " "1"" of type '" "ParticleDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RectangularPixel" "', argument " "1"" of type '" "RectangularPixel *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
-  result = (ParticleDistribution *)((ParticleDistribution const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleDistribution, 0 |  0 );
+  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleDistribution_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "ParticleDistribution_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_accept" "', argument " "1"" of type '" "ParticleDistribution const *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleDistribution_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
-  }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((ParticleDistribution const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
+SWIGINTERN PyObject *RectangularPixel_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_RectangularPixel, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *RectangularPixel_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_ParticleDistribution_translate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RectangularDetector__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
-  kvector_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  size_t arg1 ;
+  double arg2 ;
+  size_t arg3 ;
+  double arg4 ;
+  size_t val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  size_t val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  RectangularDetector *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParticleDistribution_translate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_translate" "', argument " "1"" of type '" "ParticleDistribution *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleDistribution_translate" "', argument " "2"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleDistribution_translate" "', argument " "2"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  (arg1)->translate(arg2);
-  resultobj = SWIG_Py_Void();
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RectangularDetector" "', argument " "1"" of type '" "size_t""'");
+  } 
+  arg1 = static_cast< size_t >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RectangularDetector" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RectangularDetector" "', argument " "3"" of type '" "size_t""'");
+  } 
+  arg3 = static_cast< size_t >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_RectangularDetector" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = (RectangularDetector *)new RectangularDetector(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularDetector, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleDistribution_rotate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_RectangularDetector__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
-  IRotation *arg2 = 0 ;
+  RectangularDetector *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  RectangularDetector *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParticleDistribution_rotate", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_RectangularDetector,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_rotate" "', argument " "1"" of type '" "ParticleDistribution *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleDistribution_rotate" "', argument " "2"" of type '" "IRotation const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RectangularDetector" "', argument " "1"" of type '" "RectangularDetector const &""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleDistribution_rotate" "', argument " "2"" of type '" "IRotation const &""'"); 
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RectangularDetector" "', argument " "1"" of type '" "RectangularDetector const &""'"); 
   }
-  arg2 = reinterpret_cast< IRotation * >(argp2);
-  (arg1)->rotate((IRotation const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = (RectangularDetector *)new RectangularDetector((RectangularDetector const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularDetector, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleDistribution_generateParticles(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SwigValueWrapper< SafePointerVector< IParticle > > result;
+SWIGINTERN PyObject *_wrap_new_RectangularDetector(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_generateParticles" "', argument " "1"" of type '" "ParticleDistribution const *""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RectangularDetector", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_RectangularDetector, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_RectangularDetector__SWIG_1(self, argc, argv);
+    }
   }
-  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
-  result = ((ParticleDistribution const *)arg1)->generateParticles();
-  resultobj = SWIG_NewPointerObj((new SafePointerVector< IParticle >(static_cast< const SafePointerVector< IParticle >& >(result))), SWIGTYPE_p_SafePointerVectorT_IParticle_t, SWIG_POINTER_OWN |  0 );
-  return resultobj;
+  if (argc == 4) {
+    int _v;
+    {
+      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_new_RectangularDetector__SWIG_0(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RectangularDetector'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    RectangularDetector::RectangularDetector(size_t,double,size_t,double)\n"
+    "    RectangularDetector::RectangularDetector(RectangularDetector const &)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleDistribution_prototype(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IParticle *result = 0 ;
+  RectangularDetector *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_prototype" "', argument " "1"" of type '" "ParticleDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_clone" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
-  result = (IParticle *) &((ParticleDistribution const *)arg1)->prototype();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IParticle, 0 |  0 );
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = (RectangularDetector *)((RectangularDetector const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularDetector, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleDistribution_parameterDistribution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SwigValueWrapper< ParameterDistribution > result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RectangularDetector_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_parameterDistribution" "', argument " "1"" of type '" "ParticleDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_accept" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
-  result = ((ParticleDistribution const *)arg1)->parameterDistribution();
-  resultobj = SWIG_NewPointerObj((new ParameterDistribution(static_cast< const ParameterDistribution& >(result))), SWIGTYPE_p_ParameterDistribution, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RectangularDetector_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((RectangularDetector const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleDistribution_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_RectangularDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleDistribution_getChildren" "', argument " "1"" of type '" "ParticleDistribution const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RectangularDetector" "', argument " "1"" of type '" "RectangularDetector *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
-  result = ((ParticleDistribution const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ParticleDistribution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_init(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleDistribution *arg1 = (ParticleDistribution *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Beam *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleDistribution, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RectangularDetector_init", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParticleDistribution" "', argument " "1"" of type '" "ParticleDistribution *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_init" "', argument " "1"" of type '" "RectangularDetector *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleDistribution * >(argp1);
-  delete arg1;
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Beam,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RectangularDetector_init" "', argument " "2"" of type '" "Beam const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RectangularDetector_init" "', argument " "2"" of type '" "Beam const &""'"); 
+  }
+  arg2 = reinterpret_cast< Beam * >(argp2);
+  (arg1)->init((Beam const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -112720,197 +112603,236 @@ fail:
 }
 
 
-SWIGINTERN PyObject *ParticleDistribution_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ParticleDistribution, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *ParticleDistribution_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_ParticleLayout__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  ParticleLayout *result = 0 ;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (ParticleLayout *)new ParticleLayout();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleLayout, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_ParticleLayout__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_setPosition__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IAbstractParticle *arg1 = 0 ;
-  double arg2 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  kvector_t arg2 ;
+  double arg3 ;
+  double arg4 ;
+  kvector_t arg5 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  ParticleLayout *result = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  void *argp5 ;
+  int res5 = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IAbstractParticle,  0  | 0);
+  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParticleLayout" "', argument " "1"" of type '" "IAbstractParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPosition" "', argument " "1"" of type '" "RectangularDetector *""'"); 
   }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleLayout" "', argument " "1"" of type '" "IAbstractParticle const &""'"); 
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RectangularDetector_setPosition" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RectangularDetector_setPosition" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_ParticleLayout" "', argument " "2"" of type '" "double""'");
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setPosition" "', argument " "3"" of type '" "double""'");
   } 
-  arg2 = static_cast< double >(val2);
-  result = (ParticleLayout *)new ParticleLayout((IAbstractParticle const &)*arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleLayout, SWIG_POINTER_NEW |  0 );
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "RectangularDetector_setPosition" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  {
+    res5 = SWIG_ConvertPtr(swig_obj[4], &argp5, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res5)) {
+      SWIG_exception_fail(SWIG_ArgError(res5), "in method '" "RectangularDetector_setPosition" "', argument " "5"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp5) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RectangularDetector_setPosition" "', argument " "5"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp5);
+      arg5 = *temp;
+      if (SWIG_IsNewObj(res5)) delete temp;
+    }
+  }
+  (arg1)->setPosition(arg2,arg3,arg4,arg5);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParticleLayout__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_setPosition__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IAbstractParticle *arg1 = 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  kvector_t arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  ParticleLayout *result = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_IAbstractParticle,  0  | 0);
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_ParticleLayout" "', argument " "1"" of type '" "IAbstractParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPosition" "', argument " "1"" of type '" "RectangularDetector *""'"); 
   }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_ParticleLayout" "', argument " "1"" of type '" "IAbstractParticle const &""'"); 
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RectangularDetector_setPosition" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RectangularDetector_setPosition" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
   }
-  arg1 = reinterpret_cast< IAbstractParticle * >(argp1);
-  result = (ParticleLayout *)new ParticleLayout((IAbstractParticle const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleLayout, SWIG_POINTER_NEW |  0 );
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setPosition" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "RectangularDetector_setPosition" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setPosition(arg2,arg3,arg4);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_ParticleLayout(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_setPosition(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[6] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_ParticleLayout", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "RectangularDetector_setPosition", 0, 5, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_ParticleLayout__SWIG_0(self, argc, argv);
-  }
-  if (argc == 1) {
+  if (argc == 4) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RectangularDetector, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_new_ParticleLayout__SWIG_2(self, argc, argv);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            return _wrap_RectangularDetector_setPosition__SWIG_1(self, argc, argv);
+          }
+        }
+      }
     }
   }
-  if (argc == 2) {
+  if (argc == 5) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_NO_NULL | 0);
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RectangularDetector, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        return _wrap_new_ParticleLayout__SWIG_1(self, argc, argv);
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
+            _v = SWIG_CheckState(res);
+          }
+          if (_v) {
+            int res = SWIG_ConvertPtr(argv[4], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+            _v = SWIG_CheckState(res);
+            if (_v) {
+              return _wrap_RectangularDetector_setPosition__SWIG_0(self, argc, argv);
+            }
+          }
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_ParticleLayout'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'RectangularDetector_setPosition'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    ParticleLayout::ParticleLayout()\n"
-    "    ParticleLayout::ParticleLayout(IAbstractParticle const &,double)\n"
-    "    ParticleLayout::ParticleLayout(IAbstractParticle const &)\n");
+    "    RectangularDetector::setPosition(kvector_t const,double,double,kvector_t const)\n"
+    "    RectangularDetector::setPosition(kvector_t const,double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ParticleLayout(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ParticleLayout" "', argument " "1"" of type '" "ParticleLayout *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_ParticleLayout_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  ParticleLayout *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_clone" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  result = (ParticleLayout *)((ParticleLayout const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ParticleLayout, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_ParticleLayout_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_setPerpendicularToSampleX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParticleLayout_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RectangularDetector_setPerpendicularToSampleX", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_accept" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleLayout_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPerpendicularToSampleX" "', argument " "1"" of type '" "RectangularDetector *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((ParticleLayout const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularDetector_setPerpendicularToSampleX" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setPerpendicularToSampleX" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "RectangularDetector_setPerpendicularToSampleX" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setPerpendicularToSampleX(arg2,arg3,arg4);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -112918,65 +112840,44 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLayout_addParticle__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_setPerpendicularToDirectBeam(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
-  IAbstractParticle *arg2 = 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  double arg2 ;
   double arg3 ;
-  kvector_t arg4 ;
-  IRotation *arg5 = 0 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  void *argp4 ;
-  int res4 = 0 ;
-  void *argp5 = 0 ;
-  int res5 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
   
-  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RectangularDetector_setPerpendicularToDirectBeam", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_addParticle" "', argument " "1"" of type '" "ParticleLayout *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAbstractParticle,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPerpendicularToDirectBeam" "', argument " "1"" of type '" "RectangularDetector *""'"); 
   }
-  arg2 = reinterpret_cast< IAbstractParticle * >(argp2);
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularDetector_setPerpendicularToDirectBeam" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParticleLayout_addParticle" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setPerpendicularToDirectBeam" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  {
-    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "ParticleLayout_addParticle" "', argument " "4"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp4) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "4"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
-      arg4 = *temp;
-      if (SWIG_IsNewObj(res4)) delete temp;
-    }
-  }
-  res5 = SWIG_ConvertPtr(swig_obj[4], &argp5, SWIGTYPE_p_IRotation,  0  | 0);
-  if (!SWIG_IsOK(res5)) {
-    SWIG_exception_fail(SWIG_ArgError(res5), "in method '" "ParticleLayout_addParticle" "', argument " "5"" of type '" "IRotation const &""'"); 
-  }
-  if (!argp5) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "5"" of type '" "IRotation const &""'"); 
-  }
-  arg5 = reinterpret_cast< IRotation * >(argp5);
-  (arg1)->addParticle((IAbstractParticle const &)*arg2,arg3,arg4,(IRotation const &)*arg5);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "RectangularDetector_setPerpendicularToDirectBeam" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setPerpendicularToDirectBeam(arg2,arg3,arg4);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -112984,54 +112885,43 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLayout_addParticle__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_setPerpendicularToReflectedBeam__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
-  IAbstractParticle *arg2 = 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  double arg2 ;
   double arg3 ;
-  kvector_t arg4 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  void *argp4 ;
-  int res4 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
   
   if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_addParticle" "', argument " "1"" of type '" "ParticleLayout *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAbstractParticle,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "1"" of type '" "RectangularDetector *""'"); 
   }
-  arg2 = reinterpret_cast< IAbstractParticle * >(argp2);
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParticleLayout_addParticle" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  {
-    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res4)) {
-      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "ParticleLayout_addParticle" "', argument " "4"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp4) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "4"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
-      arg4 = *temp;
-      if (SWIG_IsNewObj(res4)) delete temp;
-    }
-  }
-  (arg1)->addParticle((IAbstractParticle const &)*arg2,arg3,arg4);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  (arg1)->setPerpendicularToReflectedBeam(arg2,arg3,arg4);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -113039,38 +112929,35 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLayout_addParticle__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_setPerpendicularToReflectedBeam__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
-  IAbstractParticle *arg2 = 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  double arg2 ;
   double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_addParticle" "', argument " "1"" of type '" "ParticleLayout *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAbstractParticle,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "1"" of type '" "RectangularDetector *""'"); 
   }
-  arg2 = reinterpret_cast< IAbstractParticle * >(argp2);
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ParticleLayout_addParticle" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  (arg1)->addParticle((IAbstractParticle const &)*arg2,arg3);
+  (arg1)->setPerpendicularToReflectedBeam(arg2,arg3);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -113078,30 +112965,27 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLayout_addParticle__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_setPerpendicularToReflectedBeam__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
-  IAbstractParticle *arg2 = 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_addParticle" "', argument " "1"" of type '" "ParticleLayout *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAbstractParticle,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_addParticle" "', argument " "2"" of type '" "IAbstractParticle const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "1"" of type '" "RectangularDetector *""'"); 
   }
-  arg2 = reinterpret_cast< IAbstractParticle * >(argp2);
-  (arg1)->addParticle((IAbstractParticle const &)*arg2);
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  (arg1)->setPerpendicularToReflectedBeam(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -113109,42 +112993,46 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLayout_addParticle(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_setPerpendicularToReflectedBeam(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[6] = {
+  PyObject *argv[5] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ParticleLayout_addParticle", 0, 5, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "RectangularDetector_setPerpendicularToReflectedBeam", 0, 4, argv))) SWIG_fail;
   --argc;
   if (argc == 2) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParticleLayout, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RectangularDetector, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
-        return _wrap_ParticleLayout_addParticle__SWIG_3(self, argc, argv);
+        return _wrap_RectangularDetector_setPerpendicularToReflectedBeam__SWIG_2(self, argc, argv);
       }
     }
   }
   if (argc == 3) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParticleLayout, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RectangularDetector, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
         {
           int res = SWIG_AsVal_double(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_ParticleLayout_addParticle__SWIG_2(self, argc, argv);
+          return _wrap_RectangularDetector_setPerpendicularToReflectedBeam__SWIG_1(self, argc, argv);
         }
       }
     }
@@ -113152,48 +113040,25 @@ SWIGINTERN PyObject *_wrap_ParticleLayout_addParticle(PyObject *self, PyObject *
   if (argc == 4) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParticleLayout, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RectangularDetector, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_ParticleLayout_addParticle__SWIG_1(self, argc, argv);
-          }
-        }
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
       }
-    }
-  }
-  if (argc == 5) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_ParticleLayout, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAbstractParticle, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
       if (_v) {
         {
           int res = SWIG_AsVal_double(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            int res = SWIG_ConvertPtr(argv[4], 0, SWIGTYPE_p_IRotation, SWIG_POINTER_NO_NULL | 0);
+          {
+            int res = SWIG_AsVal_double(argv[3], NULL);
             _v = SWIG_CheckState(res);
-            if (_v) {
-              return _wrap_ParticleLayout_addParticle__SWIG_0(self, argc, argv);
-            }
+          }
+          if (_v) {
+            return _wrap_RectangularDetector_setPerpendicularToReflectedBeam__SWIG_0(self, argc, argv);
           }
         }
       }
@@ -113201,72 +113066,78 @@ SWIGINTERN PyObject *_wrap_ParticleLayout_addParticle(PyObject *self, PyObject *
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ParticleLayout_addParticle'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'RectangularDetector_setPerpendicularToReflectedBeam'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    ParticleLayout::addParticle(IAbstractParticle const &,double,kvector_t const,IRotation const &)\n"
-    "    ParticleLayout::addParticle(IAbstractParticle const &,double,kvector_t const)\n"
-    "    ParticleLayout::addParticle(IAbstractParticle const &,double)\n"
-    "    ParticleLayout::addParticle(IAbstractParticle const &)\n");
+    "    RectangularDetector::setPerpendicularToReflectedBeam(double,double,double)\n"
+    "    RectangularDetector::setPerpendicularToReflectedBeam(double,double)\n"
+    "    RectangularDetector::setPerpendicularToReflectedBeam(double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLayout_particles(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_setDirectBeamPosition(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  double arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SwigValueWrapper< SafePointerVector< IParticle > > result;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "RectangularDetector_setDirectBeamPosition", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_particles" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setDirectBeamPosition" "', argument " "1"" of type '" "RectangularDetector *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  result = ((ParticleLayout const *)arg1)->particles();
-  resultobj = SWIG_NewPointerObj((new SafePointerVector< IParticle >(static_cast< const SafePointerVector< IParticle >& >(result))), SWIGTYPE_p_SafePointerVectorT_IParticle_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularDetector_setDirectBeamPosition" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setDirectBeamPosition" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  (arg1)->setDirectBeamPosition(arg2,arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLayout_interferenceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Swig::Director *director = 0;
-  IInterferenceFunction *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_interferenceFunction" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  result = (IInterferenceFunction *)((ParticleLayout const *)arg1)->interferenceFunction();
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IInterferenceFunction, 0 |  0 );
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getWidth" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = (double)((RectangularDetector const *)arg1)->getWidth();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLayout_getTotalAbundance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -113274,12 +113145,12 @@ SWIGINTERN PyObject *_wrap_ParticleLayout_getTotalAbundance(PyObject *SWIGUNUSED
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_getTotalAbundance" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getHeight" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  result = (double)((ParticleLayout const *)arg1)->getTotalAbundance();
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = (double)((RectangularDetector const *)arg1)->getHeight();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -113287,324 +113158,183 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLayout_setInterferenceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_getNbinsX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
-  IInterferenceFunction *arg2 = 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  size_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParticleLayout_setInterferenceFunction", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_setInterferenceFunction" "', argument " "1"" of type '" "ParticleLayout *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IInterferenceFunction,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ParticleLayout_setInterferenceFunction" "', argument " "2"" of type '" "IInterferenceFunction const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ParticleLayout_setInterferenceFunction" "', argument " "2"" of type '" "IInterferenceFunction const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getNbinsX" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  arg2 = reinterpret_cast< IInterferenceFunction * >(argp2);
-  (arg1)->setInterferenceFunction((IInterferenceFunction const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = ((RectangularDetector const *)arg1)->getNbinsX();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLayout_totalParticleSurfaceDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_getNbinsY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_totalParticleSurfaceDensity" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getNbinsY" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  result = (double)((ParticleLayout const *)arg1)->totalParticleSurfaceDensity();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = ((RectangularDetector const *)arg1)->getNbinsY();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLayout_setTotalParticleSurfaceDensity(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_getNormalVector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
-  double arg2 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  kvector_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ParticleLayout_setTotalParticleSurfaceDensity", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_setTotalParticleSurfaceDensity" "', argument " "1"" of type '" "ParticleLayout *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getNormalVector" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ParticleLayout_setTotalParticleSurfaceDensity" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setTotalParticleSurfaceDensity(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = ((RectangularDetector const *)arg1)->getNormalVector();
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ParticleLayout_getChildren(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_getU0(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ParticleLayout *arg1 = (ParticleLayout *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  std::vector< INode const *,std::allocator< INode const * > > result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ParticleLayout, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ParticleLayout_getChildren" "', argument " "1"" of type '" "ParticleLayout const *""'"); 
-  }
-  arg1 = reinterpret_cast< ParticleLayout * >(argp1);
-  result = ((ParticleLayout const *)arg1)->getChildren();
-  resultobj = swig::from(static_cast< std::vector< INode const*,std::allocator< INode const * > > >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *ParticleLayout_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ParticleLayout, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *ParticleLayout_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_importArrayToOutputData__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  std::vector< double,std::allocator< double > > *arg1 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  OutputData< double > *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res1 = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "importArrayToOutputData" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "importArrayToOutputData" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg1 = ptr;
-  }
-  result = (OutputData< double > *)PyArrayImport::importArrayToOutputData((std::vector< double,std::allocator< double > > const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_importArrayToOutputData__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *arg1 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  OutputData< double > *result = 0 ;
-  
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    res1 = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "importArrayToOutputData" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "importArrayToOutputData" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &""'"); 
-    }
-    arg1 = ptr;
-  }
-  result = (OutputData< double > *)PyArrayImport::importArrayToOutputData((std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_importArrayToOutputData(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "importArrayToOutputData", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< double,std::allocator< double > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_importArrayToOutputData__SWIG_0(self, argc, argv);
-    }
-  }
-  if (argc == 1) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_importArrayToOutputData__SWIG_1(self, argc, argv);
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getU0" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'importArrayToOutputData'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    PyArrayImport::importArrayToOutputData(std::vector< double,std::allocator< double > > const &)\n"
-    "    PyArrayImport::importArrayToOutputData(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_PoissonNoiseBackground(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  PoissonNoiseBackground *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_PoissonNoiseBackground", 0, 0, 0)) SWIG_fail;
-  result = (PoissonNoiseBackground *)new PoissonNoiseBackground();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PoissonNoiseBackground, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = (double)((RectangularDetector const *)arg1)->getU0();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_PoissonNoiseBackground(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_getV0(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PoissonNoiseBackground *arg1 = (PoissonNoiseBackground *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PoissonNoiseBackground, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_PoissonNoiseBackground" "', argument " "1"" of type '" "PoissonNoiseBackground *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getV0" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< PoissonNoiseBackground * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = (double)((RectangularDetector const *)arg1)->getV0();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PoissonNoiseBackground_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_getDirectionVector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PoissonNoiseBackground *arg1 = (PoissonNoiseBackground *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  PoissonNoiseBackground *result = 0 ;
+  kvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PoissonNoiseBackground, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PoissonNoiseBackground_clone" "', argument " "1"" of type '" "PoissonNoiseBackground const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getDirectionVector" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< PoissonNoiseBackground * >(argp1);
-  result = (PoissonNoiseBackground *)((PoissonNoiseBackground const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_PoissonNoiseBackground, 0 |  0 );
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = ((RectangularDetector const *)arg1)->getDirectionVector();
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PoissonNoiseBackground_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_getDistance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PoissonNoiseBackground *arg1 = (PoissonNoiseBackground *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "PoissonNoiseBackground_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PoissonNoiseBackground, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PoissonNoiseBackground_accept" "', argument " "1"" of type '" "PoissonNoiseBackground const *""'"); 
-  }
-  arg1 = reinterpret_cast< PoissonNoiseBackground * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "PoissonNoiseBackground_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getDistance" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((PoissonNoiseBackground const *)arg1)->accept(arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = (double)((RectangularDetector const *)arg1)->getDistance();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_PoissonNoiseBackground_addBackGround(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_getDirectBeamU0(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PoissonNoiseBackground *arg1 = (PoissonNoiseBackground *) 0 ;
-  double arg2 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "PoissonNoiseBackground_addBackGround", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PoissonNoiseBackground, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "PoissonNoiseBackground_addBackGround" "', argument " "1"" of type '" "PoissonNoiseBackground const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getDirectBeamU0" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< PoissonNoiseBackground * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "PoissonNoiseBackground_addBackGround" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (double)((PoissonNoiseBackground const *)arg1)->addBackGround(arg2);
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = (double)((RectangularDetector const *)arg1)->getDirectBeamU0();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -113612,190 +113342,142 @@ fail:
 }
 
 
-SWIGINTERN PyObject *PoissonNoiseBackground_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_PoissonNoiseBackground, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *PoissonNoiseBackground_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_Polygon__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_getDirectBeamV0(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< double,std::allocator< double > > arg1 ;
-  std::vector< double,std::allocator< double > > arg2 ;
-  Polygon *result = 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_Polygon" "', argument " "1"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
-    }
-    arg1 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
-  }
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    int res = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_Polygon" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const""'"); 
-    }
-    arg2 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getDirectBeamV0" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  result = (Polygon *)new Polygon(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Polygon, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = (double)((RectangularDetector const *)arg1)->getDirectBeamV0();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Polygon__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_getDetectorArrangment(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > arg1 ;
-  Polygon *result = 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  RectangularDetector::EDetectorArrangement result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *ptr = (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > *)0;
-    int res = swig::asptr(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res) || !ptr) {
-      SWIG_exception_fail(SWIG_ArgError((ptr ? res : SWIG_TypeError)), "in method '" "new_Polygon" "', argument " "1"" of type '" "std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const""'"); 
-    }
-    arg1 = *ptr;
-    if (SWIG_IsNewObj(res)) delete ptr;
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getDetectorArrangment" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  result = (Polygon *)new Polygon(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Polygon, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = (RectangularDetector::EDetectorArrangement)((RectangularDetector const *)arg1)->getDetectorArrangment();
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Polygon__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_defaultAxesUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  PolygonPrivate *arg1 = (PolygonPrivate *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  Polygon *result = 0 ;
+  PyObject *swig_obj[1] ;
+  AxesUnits result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_PolygonPrivate, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Polygon" "', argument " "1"" of type '" "PolygonPrivate const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_defaultAxesUnits" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< PolygonPrivate * >(argp1);
-  result = (Polygon *)new Polygon((PolygonPrivate const *)arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Polygon, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = (AxesUnits)((RectangularDetector const *)arg1)->defaultAxesUnits();
+  resultobj = SWIG_From_int(static_cast< int >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_Polygon(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Polygon", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_PolygonPrivate, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_Polygon__SWIG_2(self, argc, argv);
-    }
-  }
-  if (argc == 1) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_Polygon__SWIG_1(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    int res = swig::asptr(argv[0], (std::vector< double,std::allocator< double > >**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = swig::asptr(argv[1], (std::vector< double,std::allocator< double > >**)(0));
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_new_Polygon__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Polygon'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Polygon::Polygon(std::vector< double,std::allocator< double > > const,std::vector< double,std::allocator< double > > const)\n"
-    "    Polygon::Polygon(std::vector< std::vector< double,std::allocator< double > >,std::allocator< std::vector< double,std::allocator< double > > > > const)\n"
-    "    Polygon::Polygon(PolygonPrivate const *)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_delete_Polygon(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_RectangularDetector_regionOfInterestPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Polygon *arg1 = (Polygon *) 0 ;
+  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  RectangularPixel *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Polygon, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Polygon" "', argument " "1"" of type '" "Polygon *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_regionOfInterestPixel" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
   }
-  arg1 = reinterpret_cast< Polygon * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
+  result = (RectangularPixel *)((RectangularDetector const *)arg1)->regionOfInterestPixel();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularPixel, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Polygon_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *RectangularDetector_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_RectangularDetector, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *RectangularDetector_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_ResolutionFunction2DGaussian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Polygon *arg1 = (Polygon *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Polygon *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Polygon, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Polygon_clone" "', argument " "1"" of type '" "Polygon const *""'"); 
-  }
-  arg1 = reinterpret_cast< Polygon * >(argp1);
-  result = (Polygon *)((Polygon const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Polygon, 0 |  0 );
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  ResolutionFunction2DGaussian *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_ResolutionFunction2DGaussian", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_ResolutionFunction2DGaussian" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_ResolutionFunction2DGaussian" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (ResolutionFunction2DGaussian *)new ResolutionFunction2DGaussian(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ResolutionFunction2DGaussian, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Polygon_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ResolutionFunction2DGaussian_evaluateCDF(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Polygon *arg1 = (Polygon *) 0 ;
+  ResolutionFunction2DGaussian *arg1 = (ResolutionFunction2DGaussian *) 0 ;
   double arg2 ;
   double arg3 ;
   void *argp1 = 0 ;
@@ -113804,134 +113486,111 @@ SWIGINTERN PyObject *_wrap_Polygon_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(sel
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  bool result;
+  PyObject *swig_obj[3] ;
+  double result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Polygon, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ResolutionFunction2DGaussian_evaluateCDF", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Polygon_contains" "', argument " "1"" of type '" "Polygon const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ResolutionFunction2DGaussian_evaluateCDF" "', argument " "1"" of type '" "ResolutionFunction2DGaussian const *""'"); 
   }
-  arg1 = reinterpret_cast< Polygon * >(argp1);
+  arg1 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Polygon_contains" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ResolutionFunction2DGaussian_evaluateCDF" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Polygon_contains" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ResolutionFunction2DGaussian_evaluateCDF" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (bool)((Polygon const *)arg1)->contains(arg2,arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  result = (double)((ResolutionFunction2DGaussian const *)arg1)->evaluateCDF(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Polygon_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ResolutionFunction2DGaussian_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Polygon *arg1 = (Polygon *) 0 ;
-  Bin1D *arg2 = 0 ;
-  Bin1D *arg3 = 0 ;
+  ResolutionFunction2DGaussian *arg1 = (ResolutionFunction2DGaussian *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  ResolutionFunction2DGaussian *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ResolutionFunction2DGaussian_clone" "', argument " "1"" of type '" "ResolutionFunction2DGaussian const *""'"); 
+  }
+  arg1 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp1);
+  result = (ResolutionFunction2DGaussian *)((ResolutionFunction2DGaussian const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ResolutionFunction2DGaussian_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ResolutionFunction2DGaussian *arg1 = (ResolutionFunction2DGaussian *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  bool result;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Polygon, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ResolutionFunction2DGaussian_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Polygon_contains" "', argument " "1"" of type '" "Polygon const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ResolutionFunction2DGaussian_accept" "', argument " "1"" of type '" "ResolutionFunction2DGaussian const *""'"); 
   }
-  arg1 = reinterpret_cast< Polygon * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
+  arg1 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Polygon_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Polygon_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
-  }
-  arg2 = reinterpret_cast< Bin1D * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Polygon_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Polygon_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ResolutionFunction2DGaussian_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
-  arg3 = reinterpret_cast< Bin1D * >(argp3);
-  result = (bool)((Polygon const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((ResolutionFunction2DGaussian const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Polygon_contains(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_ResolutionFunction2DGaussian_getSigmaX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ResolutionFunction2DGaussian *arg1 = (ResolutionFunction2DGaussian *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Polygon_contains", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Polygon, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_Polygon_contains__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Polygon, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_Polygon_contains__SWIG_0(self, argc, argv);
-        }
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ResolutionFunction2DGaussian_getSigmaX" "', argument " "1"" of type '" "ResolutionFunction2DGaussian const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp1);
+  result = (double)((ResolutionFunction2DGaussian const *)arg1)->getSigmaX();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Polygon_contains'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Polygon::contains(double,double) const\n"
-    "    Polygon::contains(Bin1D const &,Bin1D const &) const\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Polygon_getArea(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ResolutionFunction2DGaussian_getSigmaY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Polygon *arg1 = (Polygon *) 0 ;
+  ResolutionFunction2DGaussian *arg1 = (ResolutionFunction2DGaussian *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -113939,12 +113598,12 @@ SWIGINTERN PyObject *_wrap_Polygon_getArea(PyObject *SWIGUNUSEDPARM(self), PyObj
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Polygon, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Polygon_getArea" "', argument " "1"" of type '" "Polygon const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ResolutionFunction2DGaussian_getSigmaY" "', argument " "1"" of type '" "ResolutionFunction2DGaussian const *""'"); 
   }
-  arg1 = reinterpret_cast< Polygon * >(argp1);
-  result = (double)((Polygon const *)arg1)->getArea();
+  arg1 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp1);
+  result = (double)((ResolutionFunction2DGaussian const *)arg1)->getSigmaY();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -113952,42 +113611,21 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Polygon_getPoints(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_ResolutionFunction2DGaussian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Polygon *arg1 = (Polygon *) 0 ;
-  std::vector< double,std::allocator< double > > *arg2 = 0 ;
-  std::vector< double,std::allocator< double > > *arg3 = 0 ;
+  ResolutionFunction2DGaussian *arg1 = (ResolutionFunction2DGaussian *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "Polygon_getPoints", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Polygon, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ResolutionFunction2DGaussian, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Polygon_getPoints" "', argument " "1"" of type '" "Polygon const *""'"); 
-  }
-  arg1 = reinterpret_cast< Polygon * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__vectorT_double_std__allocatorT_double_t_t,  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Polygon_getPoints" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Polygon_getPoints" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > &""'"); 
-  }
-  arg2 = reinterpret_cast< std::vector< double,std::allocator< double > > * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_std__vectorT_double_std__allocatorT_double_t_t,  0 );
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Polygon_getPoints" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Polygon_getPoints" "', argument " "3"" of type '" "std::vector< double,std::allocator< double > > &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ResolutionFunction2DGaussian" "', argument " "1"" of type '" "ResolutionFunction2DGaussian *""'"); 
   }
-  arg3 = reinterpret_cast< std::vector< double,std::allocator< double > > * >(argp3);
-  ((Polygon const *)arg1)->getPoints(*arg2,*arg3);
+  arg1 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -113995,268 +113633,195 @@ fail:
 }
 
 
-SWIGINTERN PyObject *Polygon_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ResolutionFunction2DGaussian_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Polygon, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_ResolutionFunction2DGaussian, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *Polygon_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ResolutionFunction2DGaussian_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionGate__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_delete_IVarianceFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistributionGate *result = 0 ;
+  IVarianceFunction *arg1 = (IVarianceFunction *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (RangedDistributionGate *)new RangedDistributionGate();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGate, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IVarianceFunction, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IVarianceFunction" "', argument " "1"" of type '" "IVarianceFunction *""'"); 
+  }
+  arg1 = reinterpret_cast< IVarianceFunction * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionGate__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IVarianceFunction_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  RealLimits *arg3 = 0 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  RangedDistributionGate *result = 0 ;
+  IVarianceFunction *arg1 = (IVarianceFunction *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IVarianceFunction *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionGate" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionGate" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RangedDistributionGate" "', argument " "3"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RangedDistributionGate" "', argument " "3"" of type '" "RealLimits const &""'"); 
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IVarianceFunction, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IVarianceFunction_clone" "', argument " "1"" of type '" "IVarianceFunction const *""'"); 
   }
-  arg3 = reinterpret_cast< RealLimits * >(argp3);
-  result = (RangedDistributionGate *)new RangedDistributionGate(arg1,arg2,(RealLimits const &)*arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGate, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< IVarianceFunction * >(argp1);
+  result = (IVarianceFunction *)((IVarianceFunction const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IVarianceFunction, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionGate__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IVarianceFunction_variance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
+  IVarianceFunction *arg1 = (IVarianceFunction *) 0 ;
   double arg2 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
+  double arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  RangedDistributionGate *result = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionGate" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
+  if (!SWIG_Python_UnpackTuple(args, "IVarianceFunction_variance", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IVarianceFunction, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IVarianceFunction_variance" "', argument " "1"" of type '" "IVarianceFunction const *""'"); 
+  }
+  arg1 = reinterpret_cast< IVarianceFunction * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionGate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IVarianceFunction_variance" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (RangedDistributionGate *)new RangedDistributionGate(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGate, SWIG_POINTER_NEW |  0 );
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IVarianceFunction_variance" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)((IVarianceFunction const *)arg1)->variance(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionGate__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *IVarianceFunction_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IVarianceFunction, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_VarianceConstantFunction_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
+  VarianceConstantFunction *arg1 = (VarianceConstantFunction *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  VarianceConstantFunction *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VarianceConstantFunction, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VarianceConstantFunction_clone" "', argument " "1"" of type '" "VarianceConstantFunction const *""'"); 
+  }
+  arg1 = reinterpret_cast< VarianceConstantFunction * >(argp1);
+  result = (VarianceConstantFunction *)((VarianceConstantFunction const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VarianceConstantFunction, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_VarianceConstantFunction_variance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  VarianceConstantFunction *arg1 = (VarianceConstantFunction *) 0 ;
   double arg2 ;
   double arg3 ;
-  double arg4 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  RangedDistributionGate *result = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionGate" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
+  if (!SWIG_Python_UnpackTuple(args, "VarianceConstantFunction_variance", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VarianceConstantFunction, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VarianceConstantFunction_variance" "', argument " "1"" of type '" "VarianceConstantFunction const *""'"); 
+  }
+  arg1 = reinterpret_cast< VarianceConstantFunction * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionGate" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "VarianceConstantFunction_variance" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RangedDistributionGate" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "VarianceConstantFunction_variance" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_RangedDistributionGate" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (RangedDistributionGate *)new RangedDistributionGate(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGate, SWIG_POINTER_NEW |  0 );
+  result = (double)((VarianceConstantFunction const *)arg1)->variance(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionGate(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RangedDistributionGate", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_RangedDistributionGate__SWIG_0(self, argc, argv);
-  }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_RangedDistributionGate__SWIG_2(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_new_RangedDistributionGate__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_RangedDistributionGate__SWIG_3(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RangedDistributionGate'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    RangedDistributionGate::RangedDistributionGate()\n"
-    "    RangedDistributionGate::RangedDistributionGate(size_t,double,RealLimits const &)\n"
-    "    RangedDistributionGate::RangedDistributionGate(size_t,double)\n"
-    "    RangedDistributionGate::RangedDistributionGate(size_t,double,double,double)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_RangedDistributionGate_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_VarianceConstantFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistributionGate *arg1 = (RangedDistributionGate *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RangedDistributionGate *result = 0 ;
+  VarianceConstantFunction *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionGate, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RangedDistributionGate_clone" "', argument " "1"" of type '" "RangedDistributionGate const *""'"); 
-  }
-  arg1 = reinterpret_cast< RangedDistributionGate * >(argp1);
-  result = (RangedDistributionGate *)((RangedDistributionGate const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGate, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "new_VarianceConstantFunction", 0, 0, 0)) SWIG_fail;
+  result = (VarianceConstantFunction *)new VarianceConstantFunction();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VarianceConstantFunction, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_RangedDistributionGate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_VarianceConstantFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistributionGate *arg1 = (RangedDistributionGate *) 0 ;
+  VarianceConstantFunction *arg1 = (VarianceConstantFunction *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionGate, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VarianceConstantFunction, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RangedDistributionGate" "', argument " "1"" of type '" "RangedDistributionGate *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_VarianceConstantFunction" "', argument " "1"" of type '" "VarianceConstantFunction *""'"); 
   }
-  arg1 = reinterpret_cast< RangedDistributionGate * >(argp1);
+  arg1 = reinterpret_cast< VarianceConstantFunction * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -114265,475 +113830,411 @@ fail:
 }
 
 
-SWIGINTERN PyObject *RangedDistributionGate_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *VarianceConstantFunction_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RangedDistributionGate, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_VarianceConstantFunction, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *RangedDistributionGate_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *VarianceConstantFunction_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionLorentz__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_new_VarianceSimFunction__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  RangedDistributionLorentz *result = 0 ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  VarianceSimFunction *result = 0 ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (RangedDistributionLorentz *)new RangedDistributionLorentz();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLorentz, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_VarianceSimFunction" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (VarianceSimFunction *)new VarianceSimFunction(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VarianceSimFunction, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionLorentz__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_VarianceSimFunction__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  RealLimits *arg3 = 0 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  RangedDistributionLorentz *result = 0 ;
+  VarianceSimFunction *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionLorentz" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionLorentz" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RangedDistributionLorentz" "', argument " "3"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RangedDistributionLorentz" "', argument " "3"" of type '" "RealLimits const &""'"); 
-  }
-  arg3 = reinterpret_cast< RealLimits * >(argp3);
-  result = (RangedDistributionLorentz *)new RangedDistributionLorentz(arg1,arg2,(RealLimits const &)*arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLorentz, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (VarianceSimFunction *)new VarianceSimFunction();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VarianceSimFunction, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionLorentz__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_VarianceSimFunction(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_VarianceSimFunction", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_VarianceSimFunction__SWIG_1(self, argc, argv);
+  }
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_new_VarianceSimFunction__SWIG_0(self, argc, argv);
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_VarianceSimFunction'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    VarianceSimFunction::VarianceSimFunction(double)\n"
+    "    VarianceSimFunction::VarianceSimFunction()\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_VarianceSimFunction_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  RangedDistributionLorentz *result = 0 ;
+  VarianceSimFunction *arg1 = (VarianceSimFunction *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  VarianceSimFunction *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionLorentz" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionLorentz" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (RangedDistributionLorentz *)new RangedDistributionLorentz(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLorentz, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VarianceSimFunction, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VarianceSimFunction_clone" "', argument " "1"" of type '" "VarianceSimFunction const *""'"); 
+  }
+  arg1 = reinterpret_cast< VarianceSimFunction * >(argp1);
+  result = (VarianceSimFunction *)((VarianceSimFunction const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_VarianceSimFunction, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionLorentz__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_VarianceSimFunction_variance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
+  VarianceSimFunction *arg1 = (VarianceSimFunction *) 0 ;
   double arg2 ;
   double arg3 ;
-  double arg4 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  RangedDistributionLorentz *result = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionLorentz" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
+  if (!SWIG_Python_UnpackTuple(args, "VarianceSimFunction_variance", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VarianceSimFunction, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "VarianceSimFunction_variance" "', argument " "1"" of type '" "VarianceSimFunction const *""'"); 
+  }
+  arg1 = reinterpret_cast< VarianceSimFunction * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionLorentz" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "VarianceSimFunction_variance" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RangedDistributionLorentz" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "VarianceSimFunction_variance" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_RangedDistributionLorentz" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (RangedDistributionLorentz *)new RangedDistributionLorentz(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLorentz, SWIG_POINTER_NEW |  0 );
+  result = (double)((VarianceSimFunction const *)arg1)->variance(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionLorentz(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_delete_VarianceSimFunction(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  VarianceSimFunction *arg1 = (VarianceSimFunction *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RangedDistributionLorentz", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_RangedDistributionLorentz__SWIG_0(self, argc, argv);
-  }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_RangedDistributionLorentz__SWIG_2(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_new_RangedDistributionLorentz__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_RangedDistributionLorentz__SWIG_3(self, argc, argv);
-          }
-        }
-      }
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_VarianceSimFunction, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_VarianceSimFunction" "', argument " "1"" of type '" "VarianceSimFunction *""'"); 
   }
+  arg1 = reinterpret_cast< VarianceSimFunction * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *VarianceSimFunction_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_VarianceSimFunction, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *VarianceSimFunction_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_IntensityData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  OutputData< double > *result = 0 ;
   
+  if (!SWIG_Python_UnpackTuple(args, "new_IntensityData", 0, 0, 0)) SWIG_fail;
+  result = (OutputData< double > *)new OutputData< double >();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_NEW |  0 );
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RangedDistributionLorentz'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    RangedDistributionLorentz::RangedDistributionLorentz()\n"
-    "    RangedDistributionLorentz::RangedDistributionLorentz(size_t,double,RealLimits const &)\n"
-    "    RangedDistributionLorentz::RangedDistributionLorentz(size_t,double)\n"
-    "    RangedDistributionLorentz::RangedDistributionLorentz(size_t,double,double,double)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RangedDistributionLorentz_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_IntensityData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistributionLorentz *arg1 = (RangedDistributionLorentz *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  RangedDistributionLorentz *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionLorentz, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RangedDistributionLorentz_clone" "', argument " "1"" of type '" "RangedDistributionLorentz const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IntensityData" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< RangedDistributionLorentz * >(argp1);
-  result = (RangedDistributionLorentz *)((RangedDistributionLorentz const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLorentz, 0 |  0 );
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_RangedDistributionLorentz(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistributionLorentz *arg1 = (RangedDistributionLorentz *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  OutputData< double > *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionLorentz, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RangedDistributionLorentz" "', argument " "1"" of type '" "RangedDistributionLorentz *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_clone" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< RangedDistributionLorentz * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = (OutputData< double > *)((OutputData< double > const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *RangedDistributionLorentz_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RangedDistributionLorentz, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *RangedDistributionLorentz_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_RangedDistributionGaussian__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_IntensityData_copyFrom(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistributionGaussian *result = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  OutputData< double > *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (RangedDistributionGaussian *)new RangedDistributionGaussian();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGaussian, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData_copyFrom", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_copyFrom" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_copyFrom" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_copyFrom" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  (arg1)->copyFrom((OutputData< double > const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionGaussian__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData_meanValues(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  RealLimits *arg3 = 0 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  RangedDistributionGaussian *result = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  OutputData< double > *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionGaussian" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionGaussian" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RangedDistributionGaussian" "', argument " "3"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RangedDistributionGaussian" "', argument " "3"" of type '" "RealLimits const &""'"); 
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_meanValues" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg3 = reinterpret_cast< RealLimits * >(argp3);
-  result = (RangedDistributionGaussian *)new RangedDistributionGaussian(arg1,arg2,(RealLimits const &)*arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGaussian, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = (OutputData< double > *)((OutputData< double > const *)arg1)->meanValues();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionGaussian__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData_addAxis__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  RangedDistributionGaussian *result = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  IAxis *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   
   if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionGaussian" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionGaussian" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (RangedDistributionGaussian *)new RangedDistributionGaussian(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGaussian, SWIG_POINTER_NEW |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_addAxis" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_IAxis,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_addAxis" "', argument " "2"" of type '" "IAxis const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_addAxis" "', argument " "2"" of type '" "IAxis const &""'"); 
+  }
+  arg2 = reinterpret_cast< IAxis * >(argp2);
+  (arg1)->addAxis((IAxis const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionGaussian__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData_addAxis__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  double arg3 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  std::string *arg2 = 0 ;
+  size_t arg3 ;
   double arg4 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
+  double arg5 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  size_t val3 ;
   int ecode3 = 0 ;
   double val4 ;
   int ecode4 = 0 ;
-  RangedDistributionGaussian *result = 0 ;
+  double val5 ;
+  int ecode5 = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionGaussian" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionGaussian" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_addAxis" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_addAxis" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_addAxis" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RangedDistributionGaussian" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IntensityData_addAxis" "', argument " "3"" of type '" "size_t""'");
   } 
-  arg3 = static_cast< double >(val3);
+  arg3 = static_cast< size_t >(val3);
   ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_RangedDistributionGaussian" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "IntensityData_addAxis" "', argument " "4"" of type '" "double""'");
   } 
   arg4 = static_cast< double >(val4);
-  result = (RangedDistributionGaussian *)new RangedDistributionGaussian(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGaussian, SWIG_POINTER_NEW |  0 );
+  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
+  if (!SWIG_IsOK(ecode5)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "IntensityData_addAxis" "', argument " "5"" of type '" "double""'");
+  } 
+  arg5 = static_cast< double >(val5);
+  (arg1)->addAxis((std::string const &)*arg2,arg3,arg4,arg5);
+  resultobj = SWIG_Py_Void();
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionGaussian(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_addAxis(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[6] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RangedDistributionGaussian", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_addAxis", 0, 5, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_RangedDistributionGaussian__SWIG_0(self, argc, argv);
-  }
   if (argc == 2) {
     int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_RangedDistributionGaussian__SWIG_2(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_IAxis, SWIG_POINTER_NO_NULL | 0);
       _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
       if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_new_RangedDistributionGaussian__SWIG_1(self, argc, argv);
-        }
+        return _wrap_IntensityData_addAxis__SWIG_0(self, argc, argv);
       }
     }
   }
-  if (argc == 4) {
+  if (argc == 5) {
     int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
+      _v = SWIG_CheckState(res);
       if (_v) {
         {
-          int res = SWIG_AsVal_double(argv[2], NULL);
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
@@ -114742,7 +114243,13 @@ SWIGINTERN PyObject *_wrap_new_RangedDistributionGaussian(PyObject *self, PyObje
             _v = SWIG_CheckState(res);
           }
           if (_v) {
-            return _wrap_new_RangedDistributionGaussian__SWIG_3(self, argc, argv);
+            {
+              int res = SWIG_AsVal_double(argv[4], NULL);
+              _v = SWIG_CheckState(res);
+            }
+            if (_v) {
+              return _wrap_IntensityData_addAxis__SWIG_1(self, argc, argv);
+            }
           }
         }
       }
@@ -114750,1094 +114257,627 @@ SWIGINTERN PyObject *_wrap_new_RangedDistributionGaussian(PyObject *self, PyObje
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RangedDistributionGaussian'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_addAxis'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    RangedDistributionGaussian::RangedDistributionGaussian()\n"
-    "    RangedDistributionGaussian::RangedDistributionGaussian(size_t,double,RealLimits const &)\n"
-    "    RangedDistributionGaussian::RangedDistributionGaussian(size_t,double)\n"
-    "    RangedDistributionGaussian::RangedDistributionGaussian(size_t,double,double,double)\n");
+    "    OutputData< double >::addAxis(IAxis const &)\n"
+    "    OutputData< double >::addAxis(std::string const &,size_t,double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_RangedDistributionGaussian_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxis__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  RangedDistributionGaussian *arg1 = (RangedDistributionGaussian *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RangedDistributionGaussian *result = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  IAxis *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionGaussian, 0 |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RangedDistributionGaussian_clone" "', argument " "1"" of type '" "RangedDistributionGaussian const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxis" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< RangedDistributionGaussian * >(argp1);
-  result = (RangedDistributionGaussian *)((RangedDistributionGaussian const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionGaussian, 0 |  0 );
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxis" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (IAxis *) &((OutputData< double > const *)arg1)->getAxis(arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_RangedDistributionGaussian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxis__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  RangedDistributionGaussian *arg1 = (RangedDistributionGaussian *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  int res2 = SWIG_OLDOBJ ;
+  IAxis *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionGaussian, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RangedDistributionGaussian" "', argument " "1"" of type '" "RangedDistributionGaussian *""'"); 
-  }
-  arg1 = reinterpret_cast< RangedDistributionGaussian * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *RangedDistributionGaussian_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RangedDistributionGaussian, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *RangedDistributionGaussian_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_RangedDistributionLogNormal__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
-  PyObject *resultobj = 0;
-  RangedDistributionLogNormal *result = 0 ;
-  
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (RangedDistributionLogNormal *)new RangedDistributionLogNormal();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLogNormal, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_RangedDistributionLogNormal__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  RealLimits *arg3 = 0 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  RangedDistributionLogNormal *result = 0 ;
-  
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionLogNormal" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionLogNormal" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RangedDistributionLogNormal" "', argument " "3"" of type '" "RealLimits const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxis" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RangedDistributionLogNormal" "', argument " "3"" of type '" "RealLimits const &""'"); 
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_getAxis" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_getAxis" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
   }
-  arg3 = reinterpret_cast< RealLimits * >(argp3);
-  result = (RangedDistributionLogNormal *)new RangedDistributionLogNormal(arg1,arg2,(RealLimits const &)*arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLogNormal, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_RangedDistributionLogNormal__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  RangedDistributionLogNormal *result = 0 ;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionLogNormal" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionLogNormal" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (RangedDistributionLogNormal *)new RangedDistributionLogNormal(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLogNormal, SWIG_POINTER_NEW |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_RangedDistributionLogNormal__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  RangedDistributionLogNormal *result = 0 ;
-  
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionLogNormal" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionLogNormal" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RangedDistributionLogNormal" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_RangedDistributionLogNormal" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (RangedDistributionLogNormal *)new RangedDistributionLogNormal(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLogNormal, SWIG_POINTER_NEW |  0 );
+  result = (IAxis *) &((OutputData< double > const *)arg1)->getAxis((std::string const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionLogNormal(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxis(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RangedDistributionLogNormal", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_getAxis", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_RangedDistributionLogNormal__SWIG_0(self, argc, argv);
-  }
   if (argc == 2) {
     int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_double(argv[1], NULL);
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_new_RangedDistributionLogNormal__SWIG_2(self, argc, argv);
+        return _wrap_IntensityData_getAxis__SWIG_0(self, argc, argv);
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 2) {
     int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_new_RangedDistributionLogNormal__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
+      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
       _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
       if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_RangedDistributionLogNormal__SWIG_3(self, argc, argv);
-          }
-        }
+        return _wrap_IntensityData_getAxis__SWIG_1(self, argc, argv);
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RangedDistributionLogNormal'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_getAxis'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    RangedDistributionLogNormal::RangedDistributionLogNormal()\n"
-    "    RangedDistributionLogNormal::RangedDistributionLogNormal(size_t,double,RealLimits const &)\n"
-    "    RangedDistributionLogNormal::RangedDistributionLogNormal(size_t,double)\n"
-    "    RangedDistributionLogNormal::RangedDistributionLogNormal(size_t,double,double,double)\n");
+    "    OutputData< double >::getAxis(size_t) const\n"
+    "    OutputData< double >::getAxis(std::string const &) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_RangedDistributionLogNormal_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_getRank(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistributionLogNormal *arg1 = (RangedDistributionLogNormal *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  RangedDistributionLogNormal *result = 0 ;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionLogNormal, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RangedDistributionLogNormal_clone" "', argument " "1"" of type '" "RangedDistributionLogNormal const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getRank" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< RangedDistributionLogNormal * >(argp1);
-  result = (RangedDistributionLogNormal *)((RangedDistributionLogNormal const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionLogNormal, 0 |  0 );
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = ((OutputData< double > const *)arg1)->getRank();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_RangedDistributionLogNormal(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAllocatedSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistributionLogNormal *arg1 = (RangedDistributionLogNormal *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionLogNormal, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RangedDistributionLogNormal" "', argument " "1"" of type '" "RangedDistributionLogNormal *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAllocatedSize" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< RangedDistributionLogNormal * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = ((OutputData< double > const *)arg1)->getAllocatedSize();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *RangedDistributionLogNormal_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RangedDistributionLogNormal, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_IntensityData_getAllSizes(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  SwigValueWrapper< std::vector< size_t,std::allocator< size_t > > > result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAllSizes" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = ((OutputData< double > const *)arg1)->getAllSizes();
+  resultobj = SWIG_NewPointerObj((new std::vector< size_t,std::allocator< size_t > >(static_cast< const std::vector< size_t,std::allocator< size_t > >& >(result))), SWIGTYPE_p_std__vectorT_size_t_std__allocatorT_size_t_t_t, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *RangedDistributionLogNormal_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionCosine__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_IntensityData_getRawDataVector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistributionCosine *result = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  std::vector< double,std::allocator< double > > result;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (RangedDistributionCosine *)new RangedDistributionCosine();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionCosine, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getRawDataVector" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = ((OutputData< double > const *)arg1)->getRawDataVector();
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionCosine__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData_totalSum(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  RealLimits *arg3 = 0 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  RangedDistributionCosine *result = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionCosine" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionCosine" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RangedDistributionCosine" "', argument " "3"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RangedDistributionCosine" "', argument " "3"" of type '" "RealLimits const &""'"); 
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_totalSum" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg3 = reinterpret_cast< RealLimits * >(argp3);
-  result = (RangedDistributionCosine *)new RangedDistributionCosine(arg1,arg2,(RealLimits const &)*arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionCosine, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = (double)((OutputData< double > const *)arg1)->totalSum();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionCosine__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData_begin__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  RangedDistributionCosine *result = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  SwigValueWrapper< OutputDataIterator< double,OutputData< double > > > result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionCosine" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionCosine" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (RangedDistributionCosine *)new RangedDistributionCosine(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionCosine, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_begin" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = (arg1)->begin();
+  resultobj = SWIG_NewPointerObj((new OutputData< double >::iterator(static_cast< const OutputData< double >::iterator& >(result))), SWIGTYPE_p_OutputDataIteratorT_double_OutputDataT_double_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionCosine__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData_begin__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  size_t val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  RangedDistributionCosine *result = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  SwigValueWrapper< OutputDataIterator< double const,OutputData< double > const > > result;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RangedDistributionCosine" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RangedDistributionCosine" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RangedDistributionCosine" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_RangedDistributionCosine" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (RangedDistributionCosine *)new RangedDistributionCosine(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionCosine, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_begin" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = ((OutputData< double > const *)arg1)->begin();
+  resultobj = SWIG_NewPointerObj((new OutputData< double >::const_iterator(static_cast< const OutputData< double >::const_iterator& >(result))), SWIGTYPE_p_OutputDataIteratorT_double_const_OutputDataT_double_t_const_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RangedDistributionCosine(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_begin(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[2] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RangedDistributionCosine", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_begin", 0, 1, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_RangedDistributionCosine__SWIG_0(self, argc, argv);
-  }
-  if (argc == 2) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_new_RangedDistributionCosine__SWIG_2(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 3) {
+  if (argc == 1) {
     int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_new_RangedDistributionCosine__SWIG_1(self, argc, argv);
-        }
-      }
+      return _wrap_IntensityData_begin__SWIG_0(self, argc, argv);
     }
   }
-  if (argc == 4) {
+  if (argc == 1) {
     int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_RangedDistributionCosine__SWIG_3(self, argc, argv);
-          }
-        }
-      }
+      return _wrap_IntensityData_begin__SWIG_1(self, argc, argv);
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RangedDistributionCosine'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_begin'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    RangedDistributionCosine::RangedDistributionCosine()\n"
-    "    RangedDistributionCosine::RangedDistributionCosine(size_t,double,RealLimits const &)\n"
-    "    RangedDistributionCosine::RangedDistributionCosine(size_t,double)\n"
-    "    RangedDistributionCosine::RangedDistributionCosine(size_t,double,double,double)\n");
+    "    OutputData< double >::begin()\n"
+    "    OutputData< double >::begin() const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_RangedDistributionCosine_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_end__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  RangedDistributionCosine *arg1 = (RangedDistributionCosine *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RangedDistributionCosine *result = 0 ;
+  SwigValueWrapper< OutputDataIterator< double,OutputData< double > > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionCosine, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RangedDistributionCosine_clone" "', argument " "1"" of type '" "RangedDistributionCosine const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_end" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< RangedDistributionCosine * >(argp1);
-  result = (RangedDistributionCosine *)((RangedDistributionCosine const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RangedDistributionCosine, 0 |  0 );
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = (arg1)->end();
+  resultobj = SWIG_NewPointerObj((new OutputData< double >::iterator(static_cast< const OutputData< double >::iterator& >(result))), SWIGTYPE_p_OutputDataIteratorT_double_OutputDataT_double_t_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_RangedDistributionCosine(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_end__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  RangedDistributionCosine *arg1 = (RangedDistributionCosine *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  SwigValueWrapper< OutputDataIterator< double const,OutputData< double > const > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RangedDistributionCosine, SWIG_POINTER_DISOWN |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RangedDistributionCosine" "', argument " "1"" of type '" "RangedDistributionCosine *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_end" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< RangedDistributionCosine * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = ((OutputData< double > const *)arg1)->end();
+  resultobj = SWIG_NewPointerObj((new OutputData< double >::const_iterator(static_cast< const OutputData< double >::const_iterator& >(result))), SWIGTYPE_p_OutputDataIteratorT_double_const_OutputDataT_double_t_const_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *RangedDistributionCosine_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RangedDistributionCosine, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *RangedDistributionCosine_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_RealParameter__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  double *arg2 = (double *) 0 ;
-  std::string *arg3 = 0 ;
-  std::function< void () > *arg4 = 0 ;
-  RealLimits *arg5 = 0 ;
-  Attributes *arg6 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  void *argp5 = 0 ;
-  int res5 = 0 ;
-  void *argp6 = 0 ;
-  int res6 = 0 ;
-  RealParameter *result = 0 ;
+SWIGINTERN PyObject *_wrap_IntensityData_end(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
   
-  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_end", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_IntensityData_end__SWIG_0(self, argc, argv);
     }
-    arg1 = ptr;
-  }
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_double, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_RealParameter" "', argument " "2"" of type '" "double *""'"); 
   }
-  arg2 = reinterpret_cast< double * >(argp2);
-  {
-    std::string *ptr = (std::string *)0;
-    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_IntensityData_end__SWIG_1(self, argc, argv);
     }
-    arg3 = ptr;
-  }
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_std__functionT_void_fF_t,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_RealParameter" "', argument " "4"" of type '" "std::function< void () > const &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "4"" of type '" "std::function< void () > const &""'"); 
-  }
-  arg4 = reinterpret_cast< std::function< void () > * >(argp4);
-  res5 = SWIG_ConvertPtr(swig_obj[4], &argp5, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res5)) {
-    SWIG_exception_fail(SWIG_ArgError(res5), "in method '" "new_RealParameter" "', argument " "5"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp5) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "5"" of type '" "RealLimits const &""'"); 
-  }
-  arg5 = reinterpret_cast< RealLimits * >(argp5);
-  res6 = SWIG_ConvertPtr(swig_obj[5], &argp6, SWIGTYPE_p_Attributes,  0  | 0);
-  if (!SWIG_IsOK(res6)) {
-    SWIG_exception_fail(SWIG_ArgError(res6), "in method '" "new_RealParameter" "', argument " "6"" of type '" "Attributes const &""'"); 
   }
-  if (!argp6) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "6"" of type '" "Attributes const &""'"); 
-  }
-  arg6 = reinterpret_cast< Attributes * >(argp6);
-  result = (RealParameter *)new RealParameter((std::string const &)*arg1,arg2,(std::string const &)*arg3,(std::function< void () > const &)*arg4,(RealLimits const &)*arg5,(Attributes const &)*arg6);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  if (SWIG_IsNewObj(res3)) delete arg3;
-  return resultobj;
+  
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  if (SWIG_IsNewObj(res3)) delete arg3;
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_end'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    OutputData< double >::end()\n"
+    "    OutputData< double >::end() const\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RealParameter__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxesBinIndices(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  double *arg2 = (double *) 0 ;
-  std::string *arg3 = 0 ;
-  std::function< void () > *arg4 = 0 ;
-  RealLimits *arg5 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  void *argp5 = 0 ;
-  int res5 = 0 ;
-  RealParameter *result = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  size_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  std::vector< int,std::allocator< int > > result;
   
-  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
-  }
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_double, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_RealParameter" "', argument " "2"" of type '" "double *""'"); 
-  }
-  arg2 = reinterpret_cast< double * >(argp2);
-  {
-    std::string *ptr = (std::string *)0;
-    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    arg3 = ptr;
-  }
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_std__functionT_void_fF_t,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_RealParameter" "', argument " "4"" of type '" "std::function< void () > const &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "4"" of type '" "std::function< void () > const &""'"); 
-  }
-  arg4 = reinterpret_cast< std::function< void () > * >(argp4);
-  res5 = SWIG_ConvertPtr(swig_obj[4], &argp5, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res5)) {
-    SWIG_exception_fail(SWIG_ArgError(res5), "in method '" "new_RealParameter" "', argument " "5"" of type '" "RealLimits const &""'"); 
-  }
-  if (!argp5) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "5"" of type '" "RealLimits const &""'"); 
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData_getAxesBinIndices", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxesBinIndices" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg5 = reinterpret_cast< RealLimits * >(argp5);
-  result = (RealParameter *)new RealParameter((std::string const &)*arg1,arg2,(std::string const &)*arg3,(std::function< void () > const &)*arg4,(RealLimits const &)*arg5);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  if (SWIG_IsNewObj(res3)) delete arg3;
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxesBinIndices" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = ((OutputData< double > const *)arg1)->getAxesBinIndices(arg2);
+  resultobj = swig::from(static_cast< std::vector< int,std::allocator< int > > >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RealParameter__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxisBinIndex__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  double *arg2 = (double *) 0 ;
-  std::string *arg3 = 0 ;
-  std::function< void () > *arg4 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  void *argp4 = 0 ;
-  int res4 = 0 ;
-  RealParameter *result = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  size_t arg2 ;
+  size_t arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  size_t val3 ;
+  int ecode3 = 0 ;
+  size_t result;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
-  }
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_double, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_RealParameter" "', argument " "2"" of type '" "double *""'"); 
-  }
-  arg2 = reinterpret_cast< double * >(argp2);
-  {
-    std::string *ptr = (std::string *)0;
-    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    arg3 = ptr;
-  }
-  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_std__functionT_void_fF_t,  0  | 0);
-  if (!SWIG_IsOK(res4)) {
-    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_RealParameter" "', argument " "4"" of type '" "std::function< void () > const &""'"); 
-  }
-  if (!argp4) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "4"" of type '" "std::function< void () > const &""'"); 
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxisBinIndex" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg4 = reinterpret_cast< std::function< void () > * >(argp4);
-  result = (RealParameter *)new RealParameter((std::string const &)*arg1,arg2,(std::string const &)*arg3,(std::function< void () > const &)*arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  if (SWIG_IsNewObj(res3)) delete arg3;
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxisBinIndex" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IntensityData_getAxisBinIndex" "', argument " "3"" of type '" "size_t""'");
+  } 
+  arg3 = static_cast< size_t >(val3);
+  result = ((OutputData< double > const *)arg1)->getAxisBinIndex(arg2,arg3);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RealParameter__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxisBinIndex__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  double *arg2 = (double *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  size_t arg2 ;
   std::string *arg3 = 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
   int res3 = SWIG_OLDOBJ ;
-  RealParameter *result = 0 ;
+  size_t result;
   
   if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  {
-    std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
-    }
-    arg1 = ptr;
-  }
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_double, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_RealParameter" "', argument " "2"" of type '" "double *""'"); 
-  }
-  arg2 = reinterpret_cast< double * >(argp2);
-  {
-    std::string *ptr = (std::string *)0;
-    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "3"" of type '" "std::string const &""'"); 
-    }
-    arg3 = ptr;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxisBinIndex" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  result = (RealParameter *)new RealParameter((std::string const &)*arg1,arg2,(std::string const &)*arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  if (SWIG_IsNewObj(res3)) delete arg3;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
-  if (SWIG_IsNewObj(res3)) delete arg3;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_new_RealParameter__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  std::string *arg1 = 0 ;
-  double *arg2 = (double *) 0 ;
-  int res1 = SWIG_OLDOBJ ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  RealParameter *result = 0 ;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxisBinIndex" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
   {
     std::string *ptr = (std::string *)0;
-    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IntensityData_getAxisBinIndex" "', argument " "3"" of type '" "std::string const &""'"); 
     }
     if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RealParameter" "', argument " "1"" of type '" "std::string const &""'"); 
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_getAxisBinIndex" "', argument " "3"" of type '" "std::string const &""'"); 
     }
-    arg1 = ptr;
-  }
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_double, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_RealParameter" "', argument " "2"" of type '" "double *""'"); 
+    arg3 = ptr;
   }
-  arg2 = reinterpret_cast< double * >(argp2);
-  result = (RealParameter *)new RealParameter((std::string const &)*arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, SWIG_POINTER_NEW |  0 );
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  result = ((OutputData< double > const *)arg1)->getAxisBinIndex(arg2,(std::string const &)*arg3);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res1)) delete arg1;
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RealParameter(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxisBinIndex(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[7] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RealParameter", 0, 6, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_getAxisBinIndex", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_new_RealParameter__SWIG_4(self, argc, argv);
-      }
-    }
-  }
   if (argc == 3) {
     int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
         _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_new_RealParameter__SWIG_3(self, argc, argv);
-        }
       }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, 0);
-      _v = SWIG_CheckState(res);
       if (_v) {
-        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_std__functionT_void_fF_t, SWIG_POINTER_NO_NULL | 0);
+        {
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
           _v = SWIG_CheckState(res);
-          if (_v) {
-            return _wrap_new_RealParameter__SWIG_2(self, argc, argv);
-          }
         }
-      }
-    }
-  }
-  if (argc == 5) {
-    int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
-        _v = SWIG_CheckState(res);
         if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_std__functionT_void_fF_t, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            int res = SWIG_ConvertPtr(argv[4], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-            _v = SWIG_CheckState(res);
-            if (_v) {
-              return _wrap_new_RealParameter__SWIG_1(self, argc, argv);
-            }
-          }
+          return _wrap_IntensityData_getAxisBinIndex__SWIG_0(self, argc, argv);
         }
       }
     }
   }
-  if (argc == 6) {
+  if (argc == 3) {
     int _v;
-    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      void *vptr = 0;
-      int res = SWIG_ConvertPtr(argv[1], &vptr, SWIGTYPE_p_double, 0);
-      _v = SWIG_CheckState(res);
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
         int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
         _v = SWIG_CheckState(res);
         if (_v) {
-          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_std__functionT_void_fF_t, SWIG_POINTER_NO_NULL | 0);
-          _v = SWIG_CheckState(res);
-          if (_v) {
-            int res = SWIG_ConvertPtr(argv[4], 0, SWIGTYPE_p_RealLimits, SWIG_POINTER_NO_NULL | 0);
-            _v = SWIG_CheckState(res);
-            if (_v) {
-              int res = SWIG_ConvertPtr(argv[5], 0, SWIGTYPE_p_Attributes, SWIG_POINTER_NO_NULL | 0);
-              _v = SWIG_CheckState(res);
-              if (_v) {
-                return _wrap_new_RealParameter__SWIG_0(self, argc, argv);
-              }
-            }
-          }
+          return _wrap_IntensityData_getAxisBinIndex__SWIG_1(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RealParameter'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_getAxisBinIndex'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    RealParameter::RealParameter(std::string const &,double *,std::string const &,std::function< void () > const &,RealLimits const &,Attributes const &)\n"
-    "    RealParameter::RealParameter(std::string const &,double *,std::string const &,std::function< void () > const &,RealLimits const &)\n"
-    "    RealParameter::RealParameter(std::string const &,double *,std::string const &,std::function< void () > const &)\n"
-    "    RealParameter::RealParameter(std::string const &,double *,std::string const &)\n"
-    "    RealParameter::RealParameter(std::string const &,double *)\n");
+    "    OutputData< double >::getAxisBinIndex(size_t,size_t) const\n"
+    "    OutputData< double >::getAxisBinIndex(size_t,std::string const &) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_RealParameter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_toGlobalIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RealParameter *arg1 = (RealParameter *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  std::vector< unsigned int,std::allocator< unsigned int > > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  size_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData_toGlobalIndex", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RealParameter" "', argument " "1"" of type '" "RealParameter *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_toGlobalIndex" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< RealParameter * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_std__vectorT_unsigned_int_std__allocatorT_unsigned_int_t_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_toGlobalIndex" "', argument " "2"" of type '" "std::vector< unsigned int,std::allocator< unsigned int > > const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_toGlobalIndex" "', argument " "2"" of type '" "std::vector< unsigned int,std::allocator< unsigned int > > const &""'"); 
+  }
+  arg2 = reinterpret_cast< std::vector< unsigned int,std::allocator< unsigned int > > * >(argp2);
+  result = ((OutputData< double > const *)arg1)->toGlobalIndex((std::vector< unsigned int,std::allocator< unsigned int > > const &)*arg2);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RealParameter_clone__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData_findGlobalIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RealParameter *arg1 = (RealParameter *) 0 ;
-  std::string *arg2 = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  std::vector< double,std::allocator< double > > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   int res2 = SWIG_OLDOBJ ;
-  RealParameter *result = 0 ;
+  PyObject *swig_obj[2] ;
+  size_t result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData_findGlobalIndex", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_clone" "', argument " "1"" of type '" "RealParameter const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_findGlobalIndex" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< RealParameter * >(argp1);
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
   {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res2 = swig::asptr(swig_obj[1], &ptr);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RealParameter_clone" "', argument " "2"" of type '" "std::string const &""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_findGlobalIndex" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
     }
     if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RealParameter_clone" "', argument " "2"" of type '" "std::string const &""'"); 
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_findGlobalIndex" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
     }
     arg2 = ptr;
   }
-  result = (RealParameter *)((RealParameter const *)arg1)->clone((std::string const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  result = ((OutputData< double > const *)arg1)->findGlobalIndex((std::vector< double,std::allocator< double > > const &)*arg2);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
@@ -115846,288 +114886,463 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RealParameter_clone__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxisValue__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  RealParameter *arg1 = (RealParameter *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  size_t arg2 ;
+  size_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  RealParameter *result = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  size_t val3 ;
+  int ecode3 = 0 ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_clone" "', argument " "1"" of type '" "RealParameter const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxisValue" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< RealParameter * >(argp1);
-  result = (RealParameter *)((RealParameter const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxisValue" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IntensityData_getAxisValue" "', argument " "3"" of type '" "size_t""'");
+  } 
+  arg3 = static_cast< size_t >(val3);
+  result = (double)((OutputData< double > const *)arg1)->getAxisValue(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RealParameter_clone(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxisValue__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  size_t arg2 ;
+  std::string *arg3 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
+  double result;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxisValue" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxisValue" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  {
+    std::string *ptr = (std::string *)0;
+    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IntensityData_getAxisValue" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_getAxisValue" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    arg3 = ptr;
+  }
+  result = (double)((OutputData< double > const *)arg1)->getAxisValue(arg2,(std::string const &)*arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (SWIG_IsNewObj(res3)) delete arg3;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IntensityData_getAxisValue(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[3] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "RealParameter_clone", 0, 2, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_getAxisValue", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 1) {
+  if (argc == 3) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RealParameter, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      return _wrap_RealParameter_clone__SWIG_1(self, argc, argv);
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_IntensityData_getAxisValue__SWIG_0(self, argc, argv);
+        }
+      }
     }
   }
-  if (argc == 2) {
+  if (argc == 3) {
     int _v;
     void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RealParameter, 0);
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      int res = SWIG_AsPtr_std_string(argv[1], (std::string**)(0));
-      _v = SWIG_CheckState(res);
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
       if (_v) {
-        return _wrap_RealParameter_clone__SWIG_0(self, argc, argv);
+        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_IntensityData_getAxisValue__SWIG_1(self, argc, argv);
+        }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'RealParameter_clone'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_getAxisValue'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    RealParameter::clone(std::string const &) const\n"
-    "    RealParameter::clone() const\n");
+    "    OutputData< double >::getAxisValue(size_t,size_t) const\n"
+    "    OutputData< double >::getAxisValue(size_t,std::string const &) const\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_RealParameter_setValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxesValues(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RealParameter *arg1 = (RealParameter *) 0 ;
-  double arg2 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  size_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
+  size_t val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
+  std::vector< double,std::allocator< double > > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "RealParameter_setValue", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData_getAxesValues", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_setValue" "', argument " "1"" of type '" "RealParameter *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxesValues" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< RealParameter * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RealParameter_setValue" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxesValues" "', argument " "2"" of type '" "size_t""'");
   } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setValue(arg2);
-  resultobj = SWIG_Py_Void();
+  arg2 = static_cast< size_t >(val2);
+  result = ((OutputData< double > const *)arg1)->getAxesValues(arg2);
+  resultobj = swig::from(static_cast< std::vector< double,std::allocator< double > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RealParameter_value(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxisBin__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  RealParameter *arg1 = (RealParameter *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  size_t arg2 ;
+  size_t arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  size_t val3 ;
+  int ecode3 = 0 ;
+  Bin1D result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_value" "', argument " "1"" of type '" "RealParameter const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxisBin" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< RealParameter * >(argp1);
-  result = (double)((RealParameter const *)arg1)->value();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxisBin" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IntensityData_getAxisBin" "', argument " "3"" of type '" "size_t""'");
+  } 
+  arg3 = static_cast< size_t >(val3);
+  result = ((OutputData< double > const *)arg1)->getAxisBin(arg2,arg3);
+  resultobj = SWIG_NewPointerObj((new Bin1D(static_cast< const Bin1D& >(result))), SWIGTYPE_p_Bin1D, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RealParameter_setLimits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxisBin__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  RealParameter *arg1 = (RealParameter *) 0 ;
-  RealLimits *arg2 = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  size_t arg2 ;
+  std::string *arg3 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
-  RealParameter *result = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  int res3 = SWIG_OLDOBJ ;
+  Bin1D result;
   
-  if (!SWIG_Python_UnpackTuple(args, "RealParameter_setLimits", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_setLimits" "', argument " "1"" of type '" "RealParameter *""'"); 
-  }
-  arg1 = reinterpret_cast< RealParameter * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_RealLimits,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RealParameter_setLimits" "', argument " "2"" of type '" "RealLimits const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getAxisBin" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RealParameter_setLimits" "', argument " "2"" of type '" "RealLimits const &""'"); 
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getAxisBin" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  {
+    std::string *ptr = (std::string *)0;
+    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IntensityData_getAxisBin" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_getAxisBin" "', argument " "3"" of type '" "std::string const &""'"); 
+    }
+    arg3 = ptr;
   }
-  arg2 = reinterpret_cast< RealLimits * >(argp2);
-  result = (RealParameter *) &(arg1)->setLimits((RealLimits const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  result = ((OutputData< double > const *)arg1)->getAxisBin(arg2,(std::string const &)*arg3);
+  resultobj = SWIG_NewPointerObj((new Bin1D(static_cast< const Bin1D& >(result))), SWIGTYPE_p_Bin1D, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res3)) delete arg3;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RealParameter_limits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_getAxisBin(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IntensityData_getAxisBin", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_size_t(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_IntensityData_getAxisBin__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_OutputDataT_double_t, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_IntensityData_getAxisBin__SWIG_1(self, argc, argv);
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IntensityData_getAxisBin'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    OutputData< double >::getAxisBin(size_t,size_t) const\n"
+    "    OutputData< double >::getAxisBin(size_t,std::string const &) const\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_IntensityData_clear(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RealParameter *arg1 = (RealParameter *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  RealLimits result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_limits" "', argument " "1"" of type '" "RealParameter const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_clear" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< RealParameter * >(argp1);
-  result = ((RealParameter const *)arg1)->limits();
-  resultobj = SWIG_NewPointerObj((new RealLimits(static_cast< const RealLimits& >(result))), SWIGTYPE_p_RealLimits, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  (arg1)->clear();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RealParameter_setLimited(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_setAllTo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RealParameter *arg1 = (RealParameter *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  double *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  double temp2 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  RealParameter *result = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RealParameter_setLimited", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData_setAllTo", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_setLimited" "', argument " "1"" of type '" "RealParameter *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_setAllTo" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< RealParameter * >(argp1);
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RealParameter_setLimited" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RealParameter_setLimited" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_setAllTo" "', argument " "2"" of type '" "double""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (RealParameter *) &(arg1)->setLimited(arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  temp2 = static_cast< double >(val2);
+  arg2 = &temp2;
+  (arg1)->setAllTo((double const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RealParameter_setPositive(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_scaleAll(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RealParameter *arg1 = (RealParameter *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  double *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RealParameter *result = 0 ;
+  double temp2 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData_scaleAll", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_setPositive" "', argument " "1"" of type '" "RealParameter *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_scaleAll" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< RealParameter * >(argp1);
-  result = (RealParameter *) &(arg1)->setPositive();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_scaleAll" "', argument " "2"" of type '" "double""'");
+  } 
+  temp2 = static_cast< double >(val2);
+  arg2 = &temp2;
+  (arg1)->scaleAll((double const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RealParameter_setNonnegative(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_setAxisSizes(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RealParameter *arg1 = (RealParameter *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  size_t arg2 ;
+  int *arg3 = (int *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RealParameter *result = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData_setAxisSizes", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_setNonnegative" "', argument " "1"" of type '" "RealParameter *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_setAxisSizes" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< RealParameter * >(argp1);
-  result = (RealParameter *) &(arg1)->setNonnegative();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_setAxisSizes" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3,SWIGTYPE_p_int, 0 |  0 );
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "IntensityData_setAxisSizes" "', argument " "3"" of type '" "int *""'"); 
+  }
+  arg3 = reinterpret_cast< int * >(argp3);
+  (arg1)->setAxisSizes(arg2,arg3);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RealParameter_setUnit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_setRawDataVector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RealParameter *arg1 = (RealParameter *) 0 ;
-  std::string *arg2 = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  std::vector< double,std::allocator< double > > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   int res2 = SWIG_OLDOBJ ;
   PyObject *swig_obj[2] ;
-  RealParameter *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RealParameter_setUnit", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData_setRawDataVector", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_setUnit" "', argument " "1"" of type '" "RealParameter *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_setRawDataVector" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< RealParameter * >(argp1);
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
   {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res2 = swig::asptr(swig_obj[1], &ptr);
     if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RealParameter_setUnit" "', argument " "2"" of type '" "std::string const &""'"); 
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_setRawDataVector" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
     }
     if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RealParameter_setUnit" "', argument " "2"" of type '" "std::string const &""'"); 
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData_setRawDataVector" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
     }
     arg2 = ptr;
   }
-  result = (RealParameter *) &(arg1)->setUnit((std::string const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RealParameter, 0 |  0 );
+  (arg1)->setRawDataVector((std::vector< double,std::allocator< double > > const &)*arg2);
+  resultobj = SWIG_Py_Void();
   if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
@@ -116136,307 +115351,288 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RealParameter_unit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_setRawDataArray(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RealParameter *arg1 = (RealParameter *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  double *arg2 = (double *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::string result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RealParameter, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData_setRawDataArray", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RealParameter_unit" "', argument " "1"" of type '" "RealParameter const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_setRawDataArray" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< RealParameter * >(argp1);
-  result = ((RealParameter const *)arg1)->unit();
-  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_double, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData_setRawDataArray" "', argument " "2"" of type '" "double const *""'"); 
+  }
+  arg2 = reinterpret_cast< double * >(argp2);
+  (arg1)->setRawDataArray((double const *)arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *RealParameter_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RealParameter, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *RealParameter_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_Rectangle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData___iadd__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  double arg1 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  double val1 ;
-  int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  Rectangle *result = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  OutputData< double > *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  OutputData< double > *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_Rectangle", 4, 4, swig_obj)) SWIG_fail;
-  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
-  if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Rectangle" "', argument " "1"" of type '" "double""'");
-  } 
-  arg1 = static_cast< double >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Rectangle" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_Rectangle" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_Rectangle" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = (Rectangle *)new Rectangle(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Rectangle, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData___iadd__", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData___iadd__" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData___iadd__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData___iadd__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  result = (OutputData< double > *) &(arg1)->operator +=((OutputData< double > const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Rectangle_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData___isub__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Rectangle *arg1 = (Rectangle *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  OutputData< double > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  Rectangle *result = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  OutputData< double > *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData___isub__", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_clone" "', argument " "1"" of type '" "Rectangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData___isub__" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< Rectangle * >(argp1);
-  result = (Rectangle *)((Rectangle const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Rectangle, 0 |  0 );
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData___isub__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData___isub__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  result = (OutputData< double > *) &(arg1)->operator -=((OutputData< double > const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Rectangle_contains__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData___itruediv__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Rectangle *arg1 = (Rectangle *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  OutputData< double > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  bool result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  OutputData< double > *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData___itruediv__", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_contains" "', argument " "1"" of type '" "Rectangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData___itruediv__" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< Rectangle * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Rectangle_contains" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Rectangle_contains" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (bool)((Rectangle const *)arg1)->contains(arg2,arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData___itruediv__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData___itruediv__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
+  }
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  result = (OutputData< double > *) &(arg1)->operator /=((OutputData< double > const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Rectangle_contains__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_IntensityData___imul__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Rectangle *arg1 = (Rectangle *) 0 ;
-  Bin1D *arg2 = 0 ;
-  Bin1D *arg3 = 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  OutputData< double > *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
-  void *argp3 = 0 ;
-  int res3 = 0 ;
-  bool result;
+  PyObject *swig_obj[2] ;
+  OutputData< double > *result = 0 ;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData___imul__", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_contains" "', argument " "1"" of type '" "Rectangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData___imul__" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< Rectangle * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Bin1D,  0  | 0);
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_OutputDataT_double_t,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Rectangle_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IntensityData___imul__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
   }
   if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Rectangle_contains" "', argument " "2"" of type '" "Bin1D const &""'"); 
-  }
-  arg2 = reinterpret_cast< Bin1D * >(argp2);
-  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_Bin1D,  0  | 0);
-  if (!SWIG_IsOK(res3)) {
-    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Rectangle_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
-  }
-  if (!argp3) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Rectangle_contains" "', argument " "3"" of type '" "Bin1D const &""'"); 
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IntensityData___imul__" "', argument " "2"" of type '" "OutputData< double > const &""'"); 
   }
-  arg3 = reinterpret_cast< Bin1D * >(argp3);
-  result = (bool)((Rectangle const *)arg1)->contains((Bin1D const &)*arg2,(Bin1D const &)*arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  arg2 = reinterpret_cast< OutputData< double > * >(argp2);
+  result = (OutputData< double > *) &(arg1)->operator *=((OutputData< double > const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_OutputDataT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Rectangle_contains(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[4] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_IntensityData_getValue(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  size_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "Rectangle_contains", 0, 3, argv))) SWIG_fail;
-  --argc;
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Rectangle, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_Bin1D, SWIG_POINTER_NO_NULL | 0);
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_Rectangle_contains__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 3) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Rectangle, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_Rectangle_contains__SWIG_0(self, argc, argv);
-        }
-      }
-    }
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData_getValue", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getValue" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData_getValue" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = (double)((OutputData< double > const *)arg1)->getValue(arg2);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'Rectangle_contains'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    Rectangle::contains(double,double) const\n"
-    "    Rectangle::contains(Bin1D const &,Bin1D const &) const\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Rectangle_getArea(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_getArray(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Rectangle *arg1 = (Rectangle *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  PyObject *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_getArea" "', argument " "1"" of type '" "Rectangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_getArray" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< Rectangle * >(argp1);
-  result = (double)((Rectangle const *)arg1)->getArea();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = (PyObject *)((OutputData< double > const *)arg1)->getArray();
+  resultobj = result;
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Rectangle_getXlow(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_isInitialized(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Rectangle *arg1 = (Rectangle *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_getXlow" "', argument " "1"" of type '" "Rectangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_isInitialized" "', argument " "1"" of type '" "OutputData< double > const *""'"); 
   }
-  arg1 = reinterpret_cast< Rectangle * >(argp1);
-  result = (double)((Rectangle const *)arg1)->getXlow();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  result = (bool)((OutputData< double > const *)arg1)->isInitialized();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_Rectangle_getYlow(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData_allocate(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Rectangle *arg1 = (Rectangle *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_getYlow" "', argument " "1"" of type '" "Rectangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData_allocate" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< Rectangle * >(argp1);
-  result = (double)((Rectangle const *)arg1)->getYlow();
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  (arg1)->allocate();
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IntensityData___getitem__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  unsigned int arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  unsigned int val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  double result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData___getitem__", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData___getitem__" "', argument " "1"" of type '" "OutputData< double > *""'"); 
+  }
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData___getitem__" "', argument " "2"" of type '" "unsigned int""'");
+  } 
+  arg2 = static_cast< unsigned int >(val2);
+  result = (double)OutputData_Sl_double_Sg____getitem__(arg1,arg2);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -116444,22 +115640,37 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Rectangle_getXup(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_IntensityData___setitem__(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Rectangle *arg1 = (Rectangle *) 0 ;
+  OutputData< double > *arg1 = (OutputData< double > *) 0 ;
+  unsigned int arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  unsigned int val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
   double result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "IntensityData___setitem__", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_OutputDataT_double_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_getXup" "', argument " "1"" of type '" "Rectangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IntensityData___setitem__" "', argument " "1"" of type '" "OutputData< double > *""'"); 
   }
-  arg1 = reinterpret_cast< Rectangle * >(argp1);
-  result = (double)((Rectangle const *)arg1)->getXup();
+  arg1 = reinterpret_cast< OutputData< double > * >(argp1);
+  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IntensityData___setitem__" "', argument " "2"" of type '" "unsigned int""'");
+  } 
+  arg2 = static_cast< unsigned int >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IntensityData___setitem__" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = (double)OutputData_Sl_double_Sg____setitem__(arg1,arg2,arg3);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -116467,310 +115678,298 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_Rectangle_getYup(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *IntensityData_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_OutputDataT_double_t, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *IntensityData_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_delete_ILatticeOrientation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Rectangle *arg1 = (Rectangle *) 0 ;
+  ILatticeOrientation *arg1 = (ILatticeOrientation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILatticeOrientation, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Rectangle_getYup" "', argument " "1"" of type '" "Rectangle const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ILatticeOrientation" "', argument " "1"" of type '" "ILatticeOrientation *""'"); 
   }
-  arg1 = reinterpret_cast< Rectangle * >(argp1);
-  result = (double)((Rectangle const *)arg1)->getYup();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< ILatticeOrientation * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_Rectangle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ILatticeOrientation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Rectangle *arg1 = (Rectangle *) 0 ;
+  ILatticeOrientation *arg1 = (ILatticeOrientation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  ILatticeOrientation *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Rectangle, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILatticeOrientation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Rectangle" "', argument " "1"" of type '" "Rectangle *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILatticeOrientation_clone" "', argument " "1"" of type '" "ILatticeOrientation const *""'"); 
   }
-  arg1 = reinterpret_cast< Rectangle * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ILatticeOrientation * >(argp1);
+  result = (ILatticeOrientation *)((ILatticeOrientation const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ILatticeOrientation, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *Rectangle_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_Rectangle, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *Rectangle_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_RectangularPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ILatticeOrientation_usePrimitiveLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  kvector_t arg1 ;
-  kvector_t arg2 ;
-  kvector_t arg3 ;
-  void *argp1 ;
+  ILatticeOrientation *arg1 = (ILatticeOrientation *) 0 ;
+  Lattice *arg2 = 0 ;
+  void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  void *argp3 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  RectangularPixel *result = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_RectangularPixel", 3, 3, swig_obj)) SWIG_fail;
-  {
-    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RectangularPixel" "', argument " "1"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp1) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RectangularPixel" "', argument " "1"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp1);
-      arg1 = *temp;
-      if (SWIG_IsNewObj(res1)) delete temp;
-    }
+  if (!SWIG_Python_UnpackTuple(args, "ILatticeOrientation_usePrimitiveLattice", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILatticeOrientation, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILatticeOrientation_usePrimitiveLattice" "', argument " "1"" of type '" "ILatticeOrientation *""'"); 
   }
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_RectangularPixel" "', argument " "2"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RectangularPixel" "', argument " "2"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< ILatticeOrientation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Lattice,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ILatticeOrientation_usePrimitiveLattice" "', argument " "2"" of type '" "Lattice const &""'"); 
   }
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_RectangularPixel" "', argument " "3"" of type '" "kvector_t""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RectangularPixel" "', argument " "3"" of type '" "kvector_t""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ILatticeOrientation_usePrimitiveLattice" "', argument " "2"" of type '" "Lattice const &""'"); 
   }
-  result = (RectangularPixel *)new RectangularPixel(arg1,arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularPixel, SWIG_POINTER_NEW |  0 );
+  arg2 = reinterpret_cast< Lattice * >(argp2);
+  (arg1)->usePrimitiveLattice((Lattice const &)*arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularPixel_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_ILatticeOrientation_transformationMatrix(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
+  ILatticeOrientation *arg1 = (ILatticeOrientation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  RectangularPixel *result = 0 ;
+  Transform3D result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ILatticeOrientation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularPixel_clone" "', argument " "1"" of type '" "RectangularPixel const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ILatticeOrientation_transformationMatrix" "', argument " "1"" of type '" "ILatticeOrientation const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
-  result = (RectangularPixel *)((RectangularPixel const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularPixel, 0 |  0 );
+  arg1 = reinterpret_cast< ILatticeOrientation * >(argp1);
+  result = ((ILatticeOrientation const *)arg1)->transformationMatrix();
+  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularPixel_createZeroSizePixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *ILatticeOrientation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_ILatticeOrientation, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_new_MillerIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
+  double arg1 ;
   double arg2 ;
   double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
   double val3 ;
   int ecode3 = 0 ;
   PyObject *swig_obj[3] ;
-  RectangularPixel *result = 0 ;
+  MillerIndex *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RectangularPixel_createZeroSizePixel", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularPixel_createZeroSizePixel" "', argument " "1"" of type '" "RectangularPixel const *""'"); 
-  }
-  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
+  if (!SWIG_Python_UnpackTuple(args, "new_MillerIndex", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_MillerIndex" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularPixel_createZeroSizePixel" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_MillerIndex" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
   ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularPixel_createZeroSizePixel" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_MillerIndex" "', argument " "3"" of type '" "double""'");
   } 
   arg3 = static_cast< double >(val3);
-  result = (RectangularPixel *)((RectangularPixel const *)arg1)->createZeroSizePixel(arg2,arg3);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularPixel, 0 |  0 );
+  result = (MillerIndex *)new MillerIndex(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MillerIndex, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularPixel_getK(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MillerIndex_h_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
+  MillerIndex *arg1 = (MillerIndex *) 0 ;
   double arg2 ;
-  double arg3 ;
-  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
-  kvector_t result;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RectangularPixel_getK", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MillerIndex_h_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularPixel_getK" "', argument " "1"" of type '" "RectangularPixel const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndex_h_set" "', argument " "1"" of type '" "MillerIndex *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
+  arg1 = reinterpret_cast< MillerIndex * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularPixel_getK" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MillerIndex_h_set" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularPixel_getK" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "RectangularPixel_getK" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = ((RectangularPixel const *)arg1)->getK(arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  if (arg1) (arg1)->h = arg2;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularPixel_getPosition(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MillerIndex_h_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
+  MillerIndex *arg1 = (MillerIndex *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndex_h_get" "', argument " "1"" of type '" "MillerIndex *""'"); 
+  }
+  arg1 = reinterpret_cast< MillerIndex * >(argp1);
+  result = (double) ((arg1)->h);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_MillerIndex_k_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  MillerIndex *arg1 = (MillerIndex *) 0 ;
   double arg2 ;
-  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  kvector_t result;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RectangularPixel_getPosition", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MillerIndex_k_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularPixel_getPosition" "', argument " "1"" of type '" "RectangularPixel const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndex_k_set" "', argument " "1"" of type '" "MillerIndex *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
+  arg1 = reinterpret_cast< MillerIndex * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularPixel_getPosition" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MillerIndex_k_set" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularPixel_getPosition" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = ((RectangularPixel const *)arg1)->getPosition(arg2,arg3);
-  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
+  if (arg1) (arg1)->k = arg2;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularPixel_getIntegrationFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MillerIndex_k_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
+  MillerIndex *arg1 = (MillerIndex *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndex_k_get" "', argument " "1"" of type '" "MillerIndex *""'"); 
+  }
+  arg1 = reinterpret_cast< MillerIndex * >(argp1);
+  result = (double) ((arg1)->k);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_MillerIndex_l_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  MillerIndex *arg1 = (MillerIndex *) 0 ;
   double arg2 ;
-  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RectangularPixel_getIntegrationFactor", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MillerIndex_l_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularPixel_getIntegrationFactor" "', argument " "1"" of type '" "RectangularPixel const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndex_l_set" "', argument " "1"" of type '" "MillerIndex *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
+  arg1 = reinterpret_cast< MillerIndex * >(argp1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularPixel_getIntegrationFactor" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MillerIndex_l_set" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularPixel_getIntegrationFactor" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((RectangularPixel const *)arg1)->getIntegrationFactor(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (arg1) (arg1)->l = arg2;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularPixel_getSolidAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MillerIndex_l_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
+  MillerIndex *arg1 = (MillerIndex *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -116778,12 +115977,12 @@ SWIGINTERN PyObject *_wrap_RectangularPixel_getSolidAngle(PyObject *SWIGUNUSEDPA
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularPixel_getSolidAngle" "', argument " "1"" of type '" "RectangularPixel const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndex_l_get" "', argument " "1"" of type '" "MillerIndex *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
-  result = (double)((RectangularPixel const *)arg1)->getSolidAngle();
+  arg1 = reinterpret_cast< MillerIndex * >(argp1);
+  result = (double) ((arg1)->l);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -116791,20 +115990,20 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_RectangularPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_MillerIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularPixel *arg1 = (RectangularPixel *) 0 ;
+  MillerIndex *arg1 = (MillerIndex *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularPixel, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndex, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RectangularPixel" "', argument " "1"" of type '" "RectangularPixel *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_MillerIndex" "', argument " "1"" of type '" "MillerIndex *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularPixel * >(argp1);
+  arg1 = reinterpret_cast< MillerIndex * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -116813,185 +116012,149 @@ fail:
 }
 
 
-SWIGINTERN PyObject *RectangularPixel_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *MillerIndex_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RectangularPixel, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_MillerIndex, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *RectangularPixel_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *MillerIndex_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_RectangularDetector__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_MillerIndexOrientation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  size_t arg1 ;
-  double arg2 ;
-  size_t arg3 ;
-  double arg4 ;
-  size_t val1 ;
+  MillerIndexOrientation::QComponent arg1 ;
+  SwigValueWrapper< MillerIndex > arg2 ;
+  MillerIndexOrientation::QComponent arg3 ;
+  SwigValueWrapper< MillerIndex > arg4 ;
+  int val1 ;
   int ecode1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  size_t val3 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  int val3 ;
   int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  RectangularDetector *result = 0 ;
+  void *argp4 ;
+  int res4 = 0 ;
+  PyObject *swig_obj[4] ;
+  MillerIndexOrientation *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  ecode1 = SWIG_AsVal_size_t(swig_obj[0], &val1);
+  if (!SWIG_Python_UnpackTuple(args, "new_MillerIndexOrientation", 4, 4, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_RectangularDetector" "', argument " "1"" of type '" "size_t""'");
-  } 
-  arg1 = static_cast< size_t >(val1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_RectangularDetector" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_MillerIndexOrientation" "', argument " "1"" of type '" "MillerIndexOrientation::QComponent""'");
   } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_size_t(swig_obj[2], &val3);
+  arg1 = static_cast< MillerIndexOrientation::QComponent >(val1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_MillerIndex,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_MillerIndexOrientation" "', argument " "2"" of type '" "MillerIndex""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_MillerIndexOrientation" "', argument " "2"" of type '" "MillerIndex""'");
+    } else {
+      MillerIndex * temp = reinterpret_cast< MillerIndex * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_RectangularDetector" "', argument " "3"" of type '" "size_t""'");
-  } 
-  arg3 = static_cast< size_t >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_RectangularDetector" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_MillerIndexOrientation" "', argument " "3"" of type '" "MillerIndexOrientation::QComponent""'");
   } 
-  arg4 = static_cast< double >(val4);
-  result = (RectangularDetector *)new RectangularDetector(arg1,arg2,arg3,arg4);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularDetector, SWIG_POINTER_NEW |  0 );
+  arg3 = static_cast< MillerIndexOrientation::QComponent >(val3);
+  {
+    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_MillerIndex,  0  | 0);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "new_MillerIndexOrientation" "', argument " "4"" of type '" "MillerIndex""'"); 
+    }  
+    if (!argp4) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_MillerIndexOrientation" "', argument " "4"" of type '" "MillerIndex""'");
+    } else {
+      MillerIndex * temp = reinterpret_cast< MillerIndex * >(argp4);
+      arg4 = *temp;
+      if (SWIG_IsNewObj(res4)) delete temp;
+    }
+  }
+  result = (MillerIndexOrientation *)new MillerIndexOrientation(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MillerIndexOrientation, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RectangularDetector__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_MillerIndexOrientation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = 0 ;
+  MillerIndexOrientation *arg1 = (MillerIndexOrientation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  RectangularDetector *result = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_RectangularDetector,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndexOrientation, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_RectangularDetector" "', argument " "1"" of type '" "RectangularDetector const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_RectangularDetector" "', argument " "1"" of type '" "RectangularDetector const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_MillerIndexOrientation" "', argument " "1"" of type '" "MillerIndexOrientation *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = (RectangularDetector *)new RectangularDetector((RectangularDetector const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularDetector, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< MillerIndexOrientation * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_RectangularDetector(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_RectangularDetector", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_RectangularDetector, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_RectangularDetector__SWIG_1(self, argc, argv);
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    {
-      int res = SWIG_AsVal_size_t(argv[0], NULL);
-      _v = SWIG_CheckState(res);
-    }
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_size_t(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_new_RectangularDetector__SWIG_0(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_RectangularDetector'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    RectangularDetector::RectangularDetector(size_t,double,size_t,double)\n"
-    "    RectangularDetector::RectangularDetector(RectangularDetector const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *_wrap_RectangularDetector_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MillerIndexOrientation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  MillerIndexOrientation *arg1 = (MillerIndexOrientation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  RectangularDetector *result = 0 ;
+  MillerIndexOrientation *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndexOrientation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_clone" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndexOrientation_clone" "', argument " "1"" of type '" "MillerIndexOrientation const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = (RectangularDetector *)((RectangularDetector const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  arg1 = reinterpret_cast< MillerIndexOrientation * >(argp1);
+  result = (MillerIndexOrientation *)((MillerIndexOrientation const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MillerIndexOrientation, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MillerIndexOrientation_usePrimitiveLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  MillerIndexOrientation *arg1 = (MillerIndexOrientation *) 0 ;
+  Lattice *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   void *argp2 = 0 ;
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RectangularDetector_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "MillerIndexOrientation_usePrimitiveLattice", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndexOrientation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_accept" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndexOrientation_usePrimitiveLattice" "', argument " "1"" of type '" "MillerIndexOrientation *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  arg1 = reinterpret_cast< MillerIndexOrientation * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Lattice,  0  | 0);
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RectangularDetector_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "MillerIndexOrientation_usePrimitiveLattice" "', argument " "2"" of type '" "Lattice const &""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((RectangularDetector const *)arg1)->accept(arg2);
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MillerIndexOrientation_usePrimitiveLattice" "', argument " "2"" of type '" "Lattice const &""'"); 
+  }
+  arg2 = reinterpret_cast< Lattice * >(argp2);
+  (arg1)->usePrimitiveLattice((Lattice const &)*arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -116999,53 +116162,55 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_RectangularDetector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MillerIndexOrientation_transformationMatrix(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  MillerIndexOrientation *arg1 = (MillerIndexOrientation *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  Transform3D result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_MillerIndexOrientation, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RectangularDetector" "', argument " "1"" of type '" "RectangularDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MillerIndexOrientation_transformationMatrix" "', argument " "1"" of type '" "MillerIndexOrientation const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< MillerIndexOrientation * >(argp1);
+  result = ((MillerIndexOrientation const *)arg1)->transformationMatrix();
+  resultobj = SWIG_NewPointerObj((new Transform3D(static_cast< const Transform3D& >(result))), SWIGTYPE_p_Transform3D, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_init(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *MillerIndexOrientation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_MillerIndexOrientation, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *MillerIndexOrientation_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_delete_ISelectionRule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
-  Beam *arg2 = 0 ;
+  ISelectionRule *arg1 = (ISelectionRule *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RectangularDetector_init", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISelectionRule, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_init" "', argument " "1"" of type '" "RectangularDetector *""'"); 
-  }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Beam,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RectangularDetector_init" "', argument " "2"" of type '" "Beam const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RectangularDetector_init" "', argument " "2"" of type '" "Beam const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ISelectionRule" "', argument " "1"" of type '" "ISelectionRule *""'"); 
   }
-  arg2 = reinterpret_cast< Beam * >(argp2);
-  (arg1)->init((Beam const &)*arg2);
+  arg1 = reinterpret_cast< ISelectionRule * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -117053,281 +116218,130 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_setPosition__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ISelectionRule_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
-  kvector_t arg2 ;
-  double arg3 ;
-  double arg4 ;
-  kvector_t arg5 ;
+  ISelectionRule *arg1 = (ISelectionRule *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
-  int res2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  void *argp5 ;
-  int res5 = 0 ;
+  PyObject *swig_obj[1] ;
+  ISelectionRule *result = 0 ;
   
-  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISelectionRule, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPosition" "', argument " "1"" of type '" "RectangularDetector *""'"); 
-  }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RectangularDetector_setPosition" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RectangularDetector_setPosition" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
-  }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setPosition" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "RectangularDetector_setPosition" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  {
-    res5 = SWIG_ConvertPtr(swig_obj[4], &argp5, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res5)) {
-      SWIG_exception_fail(SWIG_ArgError(res5), "in method '" "RectangularDetector_setPosition" "', argument " "5"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp5) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RectangularDetector_setPosition" "', argument " "5"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp5);
-      arg5 = *temp;
-      if (SWIG_IsNewObj(res5)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ISelectionRule_clone" "', argument " "1"" of type '" "ISelectionRule const *""'"); 
   }
-  (arg1)->setPosition(arg2,arg3,arg4,arg5);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< ISelectionRule * >(argp1);
+  result = (ISelectionRule *)((ISelectionRule const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ISelectionRule, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_setPosition__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_ISelectionRule_coordinateSelected(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
-  kvector_t arg2 ;
-  double arg3 ;
-  double arg4 ;
+  ISelectionRule *arg1 = (ISelectionRule *) 0 ;
+  ivector_t *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 ;
+  void *argp2 = 0 ;
   int res2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
+  PyObject *swig_obj[2] ;
+  bool result;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "ISelectionRule_coordinateSelected", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ISelectionRule, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPosition" "', argument " "1"" of type '" "RectangularDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ISelectionRule_coordinateSelected" "', argument " "1"" of type '" "ISelectionRule const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  {
-    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "RectangularDetector_setPosition" "', argument " "2"" of type '" "kvector_t const""'"); 
-    }  
-    if (!argp2) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "RectangularDetector_setPosition" "', argument " "2"" of type '" "kvector_t const""'");
-    } else {
-      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
-      arg2 = *temp;
-      if (SWIG_IsNewObj(res2)) delete temp;
-    }
+  arg1 = reinterpret_cast< ISelectionRule * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_int_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ISelectionRule_coordinateSelected" "', argument " "2"" of type '" "ivector_t const &""'"); 
   }
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setPosition" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "RectangularDetector_setPosition" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->setPosition(arg2,arg3,arg4);
-  resultobj = SWIG_Py_Void();
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ISelectionRule_coordinateSelected" "', argument " "2"" of type '" "ivector_t const &""'"); 
+  }
+  arg2 = reinterpret_cast< ivector_t * >(argp2);
+  result = (bool)((ISelectionRule const *)arg1)->coordinateSelected((ivector_t const &)*arg2);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_setPosition(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[6] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "RectangularDetector_setPosition", 0, 5, argv))) SWIG_fail;
-  --argc;
-  if (argc == 4) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RectangularDetector, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_RectangularDetector_setPosition__SWIG_1(self, argc, argv);
-          }
-        }
-      }
-    }
-  }
-  if (argc == 5) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RectangularDetector, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            int res = SWIG_ConvertPtr(argv[4], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
-            _v = SWIG_CheckState(res);
-            if (_v) {
-              return _wrap_RectangularDetector_setPosition__SWIG_0(self, argc, argv);
-            }
-          }
-        }
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'RectangularDetector_setPosition'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    RectangularDetector::setPosition(kvector_t const,double,double,kvector_t const)\n"
-    "    RectangularDetector::setPosition(kvector_t const,double,double)\n");
-  return 0;
+SWIGINTERN PyObject *ISelectionRule_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_ISelectionRule, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
-
-SWIGINTERN PyObject *_wrap_RectangularDetector_setPerpendicularToSampleX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_SimpleSelectionRule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
+  int arg1 ;
+  int arg2 ;
+  int arg3 ;
+  int arg4 ;
+  int val1 ;
+  int ecode1 = 0 ;
+  int val2 ;
   int ecode2 = 0 ;
-  double val3 ;
+  int val3 ;
   int ecode3 = 0 ;
-  double val4 ;
+  int val4 ;
   int ecode4 = 0 ;
   PyObject *swig_obj[4] ;
+  SimpleSelectionRule *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RectangularDetector_setPerpendicularToSampleX", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPerpendicularToSampleX" "', argument " "1"" of type '" "RectangularDetector *""'"); 
-  }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_Python_UnpackTuple(args, "new_SimpleSelectionRule", 4, 4, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_int(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_SimpleSelectionRule" "', argument " "1"" of type '" "int""'");
+  } 
+  arg1 = static_cast< int >(val1);
+  ecode2 = SWIG_AsVal_int(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularDetector_setPerpendicularToSampleX" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_SimpleSelectionRule" "', argument " "2"" of type '" "int""'");
   } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  arg2 = static_cast< int >(val2);
+  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setPerpendicularToSampleX" "', argument " "3"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_SimpleSelectionRule" "', argument " "3"" of type '" "int""'");
   } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  arg3 = static_cast< int >(val3);
+  ecode4 = SWIG_AsVal_int(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "RectangularDetector_setPerpendicularToSampleX" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_SimpleSelectionRule" "', argument " "4"" of type '" "int""'");
   } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->setPerpendicularToSampleX(arg2,arg3,arg4);
-  resultobj = SWIG_Py_Void();
+  arg4 = static_cast< int >(val4);
+  result = (SimpleSelectionRule *)new SimpleSelectionRule(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimpleSelectionRule, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_setPerpendicularToDirectBeam(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_SimpleSelectionRule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
+  SimpleSelectionRule *arg1 = (SimpleSelectionRule *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RectangularDetector_setPerpendicularToDirectBeam", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimpleSelectionRule, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPerpendicularToDirectBeam" "', argument " "1"" of type '" "RectangularDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SimpleSelectionRule" "', argument " "1"" of type '" "SimpleSelectionRule *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularDetector_setPerpendicularToDirectBeam" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setPerpendicularToDirectBeam" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "RectangularDetector_setPerpendicularToDirectBeam" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->setPerpendicularToDirectBeam(arg2,arg3,arg4);
+  arg1 = reinterpret_cast< SimpleSelectionRule * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -117335,226 +116349,232 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_setPerpendicularToReflectedBeam__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimpleSelectionRule_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
-  double arg2 ;
-  double arg3 ;
-  double arg4 ;
+  SimpleSelectionRule *arg1 = (SimpleSelectionRule *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
+  PyObject *swig_obj[1] ;
+  SimpleSelectionRule *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimpleSelectionRule, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "1"" of type '" "RectangularDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimpleSelectionRule_clone" "', argument " "1"" of type '" "SimpleSelectionRule const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->setPerpendicularToReflectedBeam(arg2,arg3,arg4);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< SimpleSelectionRule * >(argp1);
+  result = (SimpleSelectionRule *)((SimpleSelectionRule const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimpleSelectionRule, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_setPerpendicularToReflectedBeam__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimpleSelectionRule_coordinateSelected(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  SimpleSelectionRule *arg1 = (SimpleSelectionRule *) 0 ;
+  ivector_t *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  bool result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SimpleSelectionRule_coordinateSelected", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimpleSelectionRule, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "1"" of type '" "RectangularDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimpleSelectionRule_coordinateSelected" "', argument " "1"" of type '" "SimpleSelectionRule const *""'"); 
+  }
+  arg1 = reinterpret_cast< SimpleSelectionRule * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_int_t,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SimpleSelectionRule_coordinateSelected" "', argument " "2"" of type '" "ivector_t const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SimpleSelectionRule_coordinateSelected" "', argument " "2"" of type '" "ivector_t const &""'"); 
+  }
+  arg2 = reinterpret_cast< ivector_t * >(argp2);
+  result = (bool)((SimpleSelectionRule const *)arg1)->coordinateSelected((ivector_t const &)*arg2);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *SimpleSelectionRule_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_SimpleSelectionRule, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *SimpleSelectionRule_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_Lattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+  PyObject *resultobj = 0;
+  Lattice *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (Lattice *)new Lattice();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_Lattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  kvector_t arg1 ;
+  kvector_t arg2 ;
+  kvector_t arg3 ;
+  void *argp1 ;
+  int res1 = 0 ;
+  void *argp2 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  Lattice *result = 0 ;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  {
+    res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Lattice" "', argument " "1"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp1) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Lattice" "', argument " "1"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp1);
+      arg1 = *temp;
+      if (SWIG_IsNewObj(res1)) delete temp;
+    }
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  (arg1)->setPerpendicularToReflectedBeam(arg2,arg3);
-  resultobj = SWIG_Py_Void();
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "new_Lattice" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Lattice" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "new_Lattice" "', argument " "3"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Lattice" "', argument " "3"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = (Lattice *)new Lattice(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_setPerpendicularToReflectedBeam__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_Lattice__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
-  double arg2 ;
+  Lattice *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
+  Lattice *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Lattice,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "1"" of type '" "RectangularDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Lattice" "', argument " "1"" of type '" "Lattice const &""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularDetector_setPerpendicularToReflectedBeam" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  (arg1)->setPerpendicularToReflectedBeam(arg2);
-  resultobj = SWIG_Py_Void();
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Lattice" "', argument " "1"" of type '" "Lattice const &""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  result = (Lattice *)new Lattice((Lattice const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_setPerpendicularToReflectedBeam(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Lattice(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[5] = {
+  PyObject *argv[4] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "RectangularDetector_setPerpendicularToReflectedBeam", 0, 4, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Lattice", 0, 3, argv))) SWIG_fail;
   --argc;
-  if (argc == 2) {
+  if (argc == 0) {
+    return _wrap_new_Lattice__SWIG_0(self, argc, argv);
+  }
+  if (argc == 1) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RectangularDetector, 0);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Lattice, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_RectangularDetector_setPerpendicularToReflectedBeam__SWIG_2(self, argc, argv);
-      }
+      return _wrap_new_Lattice__SWIG_2(self, argc, argv);
     }
   }
   if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RectangularDetector, 0);
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
     _v = SWIG_CheckState(res);
     if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
+      int res = SWIG_ConvertPtr(argv[1], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+      _v = SWIG_CheckState(res);
       if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
-        if (_v) {
-          return _wrap_RectangularDetector_setPerpendicularToReflectedBeam__SWIG_1(self, argc, argv);
-        }
-      }
-    }
-  }
-  if (argc == 4) {
-    int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_RectangularDetector, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
         _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        {
-          int res = SWIG_AsVal_double(argv[2], NULL);
-          _v = SWIG_CheckState(res);
-        }
         if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_RectangularDetector_setPerpendicularToReflectedBeam__SWIG_0(self, argc, argv);
-          }
+          return _wrap_new_Lattice__SWIG_1(self, argc, argv);
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'RectangularDetector_setPerpendicularToReflectedBeam'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Lattice'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    RectangularDetector::setPerpendicularToReflectedBeam(double,double,double)\n"
-    "    RectangularDetector::setPerpendicularToReflectedBeam(double,double)\n"
-    "    RectangularDetector::setPerpendicularToReflectedBeam(double)\n");
+    "    Lattice::Lattice()\n"
+    "    Lattice::Lattice(kvector_t const,kvector_t const,kvector_t const)\n"
+    "    Lattice::Lattice(Lattice const &)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_setDirectBeamPosition(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_Lattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
-  double arg2 ;
-  double arg3 ;
+  Lattice *arg1 = (Lattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
+  PyObject *swig_obj[1] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "RectangularDetector_setDirectBeamPosition", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_setDirectBeamPosition" "', argument " "1"" of type '" "RectangularDetector *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Lattice" "', argument " "1"" of type '" "Lattice *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "RectangularDetector_setDirectBeamPosition" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "RectangularDetector_setDirectBeamPosition" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  (arg1)->setDirectBeamPosition(arg2,arg3);
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -117562,101 +116582,116 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_getWidth(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getWidth" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_accept" "', argument " "1"" of type '" "Lattice const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = (double)((RectangularDetector const *)arg1)->getWidth();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((Lattice const *)arg1)->accept(arg2);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_getHeight(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_createTransformedLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
+  Transform3D *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  SwigValueWrapper< Lattice > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_createTransformedLattice", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getHeight" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_createTransformedLattice" "', argument " "1"" of type '" "Lattice const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = (double)((RectangularDetector const *)arg1)->getHeight();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Transform3D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_createTransformedLattice" "', argument " "2"" of type '" "Transform3D const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_createTransformedLattice" "', argument " "2"" of type '" "Transform3D const &""'"); 
+  }
+  arg2 = reinterpret_cast< Transform3D * >(argp2);
+  result = ((Lattice const *)arg1)->createTransformedLattice((Transform3D const &)*arg2);
+  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_getNbinsX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_initialize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getNbinsX" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_initialize" "', argument " "1"" of type '" "Lattice const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = ((RectangularDetector const *)arg1)->getNbinsX();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  ((Lattice const *)arg1)->initialize();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_getNbinsY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_getBasisVectorA(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
+  kvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getNbinsY" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getBasisVectorA" "', argument " "1"" of type '" "Lattice const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = ((RectangularDetector const *)arg1)->getNbinsY();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  result = ((Lattice const *)arg1)->getBasisVectorA();
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_getNormalVector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_getBasisVectorB(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -117664,12 +116699,12 @@ SWIGINTERN PyObject *_wrap_RectangularDetector_getNormalVector(PyObject *SWIGUNU
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getNormalVector" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getBasisVectorB" "', argument " "1"" of type '" "Lattice const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = ((RectangularDetector const *)arg1)->getNormalVector();
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  result = ((Lattice const *)arg1)->getBasisVectorB();
   resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
@@ -117677,68 +116712,137 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_getU0(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_getBasisVectorC(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  double result;
+  kvector_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getU0" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getBasisVectorC" "', argument " "1"" of type '" "Lattice const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = (double)((RectangularDetector const *)arg1)->getU0();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  result = ((Lattice const *)arg1)->getBasisVectorC();
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_getV0(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_resetBasis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
+  kvector_t arg2 ;
+  kvector_t arg3 ;
+  kvector_t arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 ;
+  int res2 = 0 ;
+  void *argp3 ;
+  int res3 = 0 ;
+  void *argp4 ;
+  int res4 = 0 ;
+  PyObject *swig_obj[4] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_resetBasis", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getV0" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_resetBasis" "', argument " "1"" of type '" "Lattice *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = (double)((RectangularDetector const *)arg1)->getV0();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_resetBasis" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_resetBasis" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Lattice_resetBasis" "', argument " "3"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_resetBasis" "', argument " "3"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  {
+    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "Lattice_resetBasis" "', argument " "4"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp4) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_resetBasis" "', argument " "4"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
+      arg4 = *temp;
+      if (SWIG_IsNewObj(res4)) delete temp;
+    }
+  }
+  (arg1)->resetBasis(arg2,arg3,arg4);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_getDirectionVector(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_getMillerDirection(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
+  double arg2 ;
+  double arg3 ;
+  double arg4 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  double val4 ;
+  int ecode4 = 0 ;
+  PyObject *swig_obj[4] ;
   kvector_t result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_getMillerDirection", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getDirectionVector" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getMillerDirection" "', argument " "1"" of type '" "Lattice const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = ((RectangularDetector const *)arg1)->getDirectionVector();
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice_getMillerDirection" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Lattice_getMillerDirection" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
+  if (!SWIG_IsOK(ecode4)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "Lattice_getMillerDirection" "', argument " "4"" of type '" "double""'");
+  } 
+  arg4 = static_cast< double >(val4);
+  result = ((Lattice const *)arg1)->getMillerDirection(arg2,arg3,arg4);
   resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
@@ -117746,9 +116850,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_getDistance(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_volume(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -117756,12 +116860,12 @@ SWIGINTERN PyObject *_wrap_RectangularDetector_getDistance(PyObject *SWIGUNUSEDP
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getDistance" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_volume" "', argument " "1"" of type '" "Lattice const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = (double)((RectangularDetector const *)arg1)->getDistance();
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  result = (double)((Lattice const *)arg1)->volume();
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -117769,133 +116873,291 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_getDirectBeamU0(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_getReciprocalLatticeBasis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
+  kvector_t *arg2 = 0 ;
+  kvector_t *arg3 = 0 ;
+  kvector_t *arg4 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  void *argp4 = 0 ;
+  int res4 = 0 ;
+  PyObject *swig_obj[4] ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_getReciprocalLatticeBasis", 4, 4, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getDirectBeamU0" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "1"" of type '" "Lattice const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = (double)((RectangularDetector const *)arg1)->getDirectBeamU0();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "2"" of type '" "kvector_t &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "2"" of type '" "kvector_t &""'"); 
+  }
+  arg2 = reinterpret_cast< kvector_t * >(argp2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0 );
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "3"" of type '" "kvector_t &""'"); 
+  }
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "3"" of type '" "kvector_t &""'"); 
+  }
+  arg3 = reinterpret_cast< kvector_t * >(argp3);
+  res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0 );
+  if (!SWIG_IsOK(res4)) {
+    SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "4"" of type '" "kvector_t &""'"); 
+  }
+  if (!argp4) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_getReciprocalLatticeBasis" "', argument " "4"" of type '" "kvector_t &""'"); 
+  }
+  arg4 = reinterpret_cast< kvector_t * >(argp4);
+  ((Lattice const *)arg1)->getReciprocalLatticeBasis(*arg2,*arg3,*arg4);
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_getDirectBeamV0(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_getNearestLatticeVectorCoordinates(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
+  kvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  SwigValueWrapper< BasicVector3D< int > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_getNearestLatticeVectorCoordinates", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getDirectBeamV0" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getNearestLatticeVectorCoordinates" "', argument " "1"" of type '" "Lattice const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = (double)((RectangularDetector const *)arg1)->getDirectBeamV0();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_getNearestLatticeVectorCoordinates" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_getNearestLatticeVectorCoordinates" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((Lattice const *)arg1)->getNearestLatticeVectorCoordinates(arg2);
+  resultobj = SWIG_NewPointerObj((new ivector_t(static_cast< const ivector_t& >(result))), SWIGTYPE_p_BasicVector3DT_int_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_getDetectorArrangment(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_getNearestReciprocalLatticeVectorCoordinates(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
+  kvector_t arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  RectangularDetector::EDetectorArrangement result;
+  void *argp2 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  SwigValueWrapper< BasicVector3D< int > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_getNearestReciprocalLatticeVectorCoordinates", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_getDetectorArrangment" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_getNearestReciprocalLatticeVectorCoordinates" "', argument " "1"" of type '" "Lattice const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = (RectangularDetector::EDetectorArrangement)((RectangularDetector const *)arg1)->getDetectorArrangment();
-  resultobj = SWIG_From_int(static_cast< int >(result));
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_getNearestReciprocalLatticeVectorCoordinates" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_getNearestReciprocalLatticeVectorCoordinates" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  result = ((Lattice const *)arg1)->getNearestReciprocalLatticeVectorCoordinates(arg2);
+  resultobj = SWIG_NewPointerObj((new ivector_t(static_cast< const ivector_t& >(result))), SWIGTYPE_p_BasicVector3DT_int_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_defaultAxesUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_reciprocalLatticeVectorsWithinRadius(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
+  kvector_t arg2 ;
+  double arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  AxesUnits result;
+  void *argp2 ;
+  int res2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  std::vector< kvector_t,std::allocator< kvector_t > > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_reciprocalLatticeVectorsWithinRadius", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_defaultAxesUnits" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_reciprocalLatticeVectorsWithinRadius" "', argument " "1"" of type '" "Lattice const *""'"); 
   }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = (AxesUnits)((RectangularDetector const *)arg1)->defaultAxesUnits();
-  resultobj = SWIG_From_int(static_cast< int >(result));
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  {
+    res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_reciprocalLatticeVectorsWithinRadius" "', argument " "2"" of type '" "kvector_t const""'"); 
+    }  
+    if (!argp2) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_reciprocalLatticeVectorsWithinRadius" "', argument " "2"" of type '" "kvector_t const""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp2);
+      arg2 = *temp;
+      if (SWIG_IsNewObj(res2)) delete temp;
+    }
+  }
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "Lattice_reciprocalLatticeVectorsWithinRadius" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = ((Lattice const *)arg1)->reciprocalLatticeVectorsWithinRadius(arg2,arg3);
+  resultobj = swig::from(static_cast< std::vector< BasicVector3D< double >,std::allocator< BasicVector3D< double > > > >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_RectangularDetector_regionOfInterestPixel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_setSelectionRule(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RectangularDetector *arg1 = (RectangularDetector *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
+  ISelectionRule *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_setSelectionRule", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_setSelectionRule" "', argument " "1"" of type '" "Lattice *""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ISelectionRule,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Lattice_setSelectionRule" "', argument " "2"" of type '" "ISelectionRule const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Lattice_setSelectionRule" "', argument " "2"" of type '" "ISelectionRule const &""'"); 
+  }
+  arg2 = reinterpret_cast< ISelectionRule * >(argp2);
+  (arg1)->setSelectionRule((ISelectionRule const &)*arg2);
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Lattice_createCubicLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
   PyObject *swig_obj[1] ;
-  RectangularPixel *result = 0 ;
+  SwigValueWrapper< Lattice > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RectangularDetector, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "RectangularDetector_regionOfInterestPixel" "', argument " "1"" of type '" "RectangularDetector const *""'"); 
-  }
-  arg1 = reinterpret_cast< RectangularDetector * >(argp1);
-  result = (RectangularPixel *)((RectangularDetector const *)arg1)->regionOfInterestPixel();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_RectangularPixel, 0 |  0 );
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Lattice_createCubicLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = Lattice::createCubicLattice(arg1);
+  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *RectangularDetector_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RectangularDetector, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
+SWIGINTERN PyObject *_wrap_Lattice_createFCCLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  PyObject *swig_obj[1] ;
+  SwigValueWrapper< Lattice > result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Lattice_createFCCLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = Lattice::createFCCLattice(arg1);
+  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *RectangularDetector_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
+
+SWIGINTERN PyObject *_wrap_Lattice_createHexagonalLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  SwigValueWrapper< Lattice > result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_createHexagonalLattice", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Lattice_createHexagonalLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice_createHexagonalLattice" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = Lattice::createHexagonalLattice(arg1,arg2);
+  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
 }
 
-SWIGINTERN PyObject *_wrap_new_ResolutionFunction2DGaussian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+
+SWIGINTERN PyObject *_wrap_Lattice_createHCPLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
   double arg1 ;
   double arg2 ;
@@ -117904,110 +117166,221 @@ SWIGINTERN PyObject *_wrap_new_ResolutionFunction2DGaussian(PyObject *SWIGUNUSED
   double val2 ;
   int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  ResolutionFunction2DGaussian *result = 0 ;
+  SwigValueWrapper< Lattice > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_ResolutionFunction2DGaussian", 2, 2, swig_obj)) SWIG_fail;
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_createHCPLattice", 2, 2, swig_obj)) SWIG_fail;
   ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
   if (!SWIG_IsOK(ecode1)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_ResolutionFunction2DGaussian" "', argument " "1"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Lattice_createHCPLattice" "', argument " "1"" of type '" "double""'");
   } 
   arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_ResolutionFunction2DGaussian" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice_createHCPLattice" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  result = (ResolutionFunction2DGaussian *)new ResolutionFunction2DGaussian(arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ResolutionFunction2DGaussian, SWIG_POINTER_NEW |  0 );
+  result = Lattice::createHCPLattice(arg1,arg2);
+  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ResolutionFunction2DGaussian_evaluateCDF(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_createTetragonalLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ResolutionFunction2DGaussian *arg1 = (ResolutionFunction2DGaussian *) 0 ;
+  double arg1 ;
   double arg2 ;
-  double arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  PyObject *swig_obj[2] ;
+  SwigValueWrapper< Lattice > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ResolutionFunction2DGaussian_evaluateCDF", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ResolutionFunction2DGaussian_evaluateCDF" "', argument " "1"" of type '" "ResolutionFunction2DGaussian const *""'"); 
-  }
-  arg1 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp1);
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_createTetragonalLattice", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Lattice_createTetragonalLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ResolutionFunction2DGaussian_evaluateCDF" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice_createTetragonalLattice" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "ResolutionFunction2DGaussian_evaluateCDF" "', argument " "3"" of type '" "double""'");
+  result = Lattice::createTetragonalLattice(arg1,arg2);
+  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Lattice_createBCTLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  SwigValueWrapper< Lattice > result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "Lattice_createBCTLattice", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "Lattice_createBCTLattice" "', argument " "1"" of type '" "double""'");
   } 
-  arg3 = static_cast< double >(val3);
-  result = (double)((ResolutionFunction2DGaussian const *)arg1)->evaluateCDF(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice_createBCTLattice" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = Lattice::createBCTLattice(arg1,arg2);
+  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ResolutionFunction2DGaussian_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice_onChange(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ResolutionFunction2DGaussian *arg1 = (ResolutionFunction2DGaussian *) 0 ;
+  Lattice *arg1 = (Lattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  ResolutionFunction2DGaussian *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ResolutionFunction2DGaussian_clone" "', argument " "1"" of type '" "ResolutionFunction2DGaussian const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice_onChange" "', argument " "1"" of type '" "Lattice *""'"); 
   }
-  arg1 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp1);
-  result = (ResolutionFunction2DGaussian *)((ResolutionFunction2DGaussian const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
+  arg1 = reinterpret_cast< Lattice * >(argp1);
+  (arg1)->onChange();
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ResolutionFunction2DGaussian_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Lattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_Lattice, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *Lattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_Lattice1DParameters__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  ResolutionFunction2DGaussian *arg1 = (ResolutionFunction2DGaussian *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  Lattice1DParameters *result = 0 ;
+  
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = (Lattice1DParameters *)new Lattice1DParameters();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice1DParameters, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_Lattice1DParameters__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  Lattice1DParameters *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_Lattice1DParameters" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_Lattice1DParameters" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (Lattice1DParameters *)new Lattice1DParameters(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice1DParameters, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_Lattice1DParameters(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Lattice1DParameters", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_new_Lattice1DParameters__SWIG_0(self, argc, argv);
+  }
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_Lattice1DParameters__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Lattice1DParameters'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Lattice1DParameters::Lattice1DParameters()\n"
+    "    Lattice1DParameters::Lattice1DParameters(double,double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_Lattice1DParameters_m_length_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Lattice1DParameters *arg1 = (Lattice1DParameters *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ResolutionFunction2DGaussian_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Lattice1DParameters_m_length_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice1DParameters, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ResolutionFunction2DGaussian_accept" "', argument " "1"" of type '" "ResolutionFunction2DGaussian const *""'"); 
-  }
-  arg1 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ResolutionFunction2DGaussian_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice1DParameters_m_length_set" "', argument " "1"" of type '" "Lattice1DParameters *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((ResolutionFunction2DGaussian const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< Lattice1DParameters * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice1DParameters_m_length_set" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  if (arg1) (arg1)->m_length = arg2;
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -118015,9 +117388,9 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ResolutionFunction2DGaussian_getSigmaX(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice1DParameters_m_length_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ResolutionFunction2DGaussian *arg1 = (ResolutionFunction2DGaussian *) 0 ;
+  Lattice1DParameters *arg1 = (Lattice1DParameters *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -118025,12 +117398,12 @@ SWIGINTERN PyObject *_wrap_ResolutionFunction2DGaussian_getSigmaX(PyObject *SWIG
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice1DParameters, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ResolutionFunction2DGaussian_getSigmaX" "', argument " "1"" of type '" "ResolutionFunction2DGaussian const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice1DParameters_m_length_get" "', argument " "1"" of type '" "Lattice1DParameters *""'"); 
   }
-  arg1 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp1);
-  result = (double)((ResolutionFunction2DGaussian const *)arg1)->getSigmaX();
+  arg1 = reinterpret_cast< Lattice1DParameters * >(argp1);
+  result = (double) ((arg1)->m_length);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -118038,9 +117411,38 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ResolutionFunction2DGaussian_getSigmaY(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice1DParameters_m_xi_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ResolutionFunction2DGaussian *arg1 = (ResolutionFunction2DGaussian *) 0 ;
+  Lattice1DParameters *arg1 = (Lattice1DParameters *) 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "Lattice1DParameters_m_xi_set", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice1DParameters, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice1DParameters_m_xi_set" "', argument " "1"" of type '" "Lattice1DParameters *""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice1DParameters * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice1DParameters_m_xi_set" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  if (arg1) (arg1)->m_xi = arg2;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_Lattice1DParameters_m_xi_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Lattice1DParameters *arg1 = (Lattice1DParameters *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
@@ -118048,12 +117450,12 @@ SWIGINTERN PyObject *_wrap_ResolutionFunction2DGaussian_getSigmaY(PyObject *SWIG
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ResolutionFunction2DGaussian, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice1DParameters, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ResolutionFunction2DGaussian_getSigmaY" "', argument " "1"" of type '" "ResolutionFunction2DGaussian const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice1DParameters_m_xi_get" "', argument " "1"" of type '" "Lattice1DParameters *""'"); 
   }
-  arg1 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp1);
-  result = (double)((ResolutionFunction2DGaussian const *)arg1)->getSigmaY();
+  arg1 = reinterpret_cast< Lattice1DParameters * >(argp1);
+  result = (double) ((arg1)->m_xi);
   resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
@@ -118061,20 +117463,20 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ResolutionFunction2DGaussian(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_Lattice1DParameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ResolutionFunction2DGaussian *arg1 = (ResolutionFunction2DGaussian *) 0 ;
+  Lattice1DParameters *arg1 = (Lattice1DParameters *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ResolutionFunction2DGaussian, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice1DParameters, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ResolutionFunction2DGaussian" "', argument " "1"" of type '" "ResolutionFunction2DGaussian *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Lattice1DParameters" "', argument " "1"" of type '" "Lattice1DParameters *""'"); 
   }
-  arg1 = reinterpret_cast< ResolutionFunction2DGaussian * >(argp1);
+  arg1 = reinterpret_cast< Lattice1DParameters * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -118083,213 +117485,200 @@ fail:
 }
 
 
-SWIGINTERN PyObject *ResolutionFunction2DGaussian_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Lattice1DParameters_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ResolutionFunction2DGaussian, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_Lattice1DParameters, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *ResolutionFunction2DGaussian_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Lattice1DParameters_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_delete_RoughnessModel(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice2D_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RoughnessModelWrap *arg1 = (RoughnessModelWrap *) 0 ;
+  Lattice2D *arg1 = (Lattice2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  Lattice2D *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_RoughnessModelWrap, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_RoughnessModel" "', argument " "1"" of type '" "RoughnessModelWrap *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_clone" "', argument " "1"" of type '" "Lattice2D const *""'"); 
   }
-  arg1 = reinterpret_cast< RoughnessModelWrap * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  result = (Lattice2D *)((Lattice2D const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Lattice2D, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *RoughnessModel_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_RoughnessModelWrap, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_new_DepthProbeSimulation__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_Lattice2D_length1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DepthProbeSimulation *result = 0 ;
+  Lattice2D *arg1 = (Lattice2D *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (DepthProbeSimulation *)new DepthProbeSimulation();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DepthProbeSimulation, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_length1" "', argument " "1"" of type '" "Lattice2D const *""'"); 
+  }
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  result = (double)((Lattice2D const *)arg1)->length1();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_DepthProbeSimulation__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Lattice2D_length2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = 0 ;
+  Lattice2D *arg1 = (Lattice2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  DepthProbeSimulation *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_MultiLayer,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_DepthProbeSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_DepthProbeSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_length2" "', argument " "1"" of type '" "Lattice2D const *""'"); 
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  result = (DepthProbeSimulation *)new DepthProbeSimulation((MultiLayer const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DepthProbeSimulation, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  result = (double)((Lattice2D const *)arg1)->length2();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_DepthProbeSimulation__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_Lattice2D_latticeAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  std::shared_ptr< IMultiLayerBuilder > arg1 ;
-  void *argp1 ;
+  Lattice2D *arg1 = (Lattice2D *) 0 ;
+  void *argp1 = 0 ;
   int res1 = 0 ;
-  DepthProbeSimulation *result = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t,  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_DepthProbeSimulation" "', argument " "1"" of type '" "std::shared_ptr< IMultiLayerBuilder > const""'");
-    }
-    if (argp1) arg1 = *(reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1));
-    if (newmem & SWIG_CAST_NEW_MEMORY) delete reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_latticeAngle" "', argument " "1"" of type '" "Lattice2D const *""'"); 
   }
-  result = (DepthProbeSimulation *)new DepthProbeSimulation(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DepthProbeSimulation, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  result = (double)((Lattice2D const *)arg1)->latticeAngle();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_DepthProbeSimulation(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[2] = {
-    0
-  };
+SWIGINTERN PyObject *_wrap_Lattice2D_unitCellArea(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  Lattice2D *arg1 = (Lattice2D *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_DepthProbeSimulation", 0, 1, argv))) SWIG_fail;
-  --argc;
-  if (argc == 0) {
-    return _wrap_new_DepthProbeSimulation__SWIG_0(self, argc, argv);
-  }
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_MultiLayer, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_DepthProbeSimulation__SWIG_1(self, argc, argv);
-    }
-  }
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_new_DepthProbeSimulation__SWIG_2(self, argc, argv);
-    }
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_unitCellArea" "', argument " "1"" of type '" "Lattice2D const *""'"); 
   }
-  
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  result = (double)((Lattice2D const *)arg1)->unitCellArea();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_DepthProbeSimulation'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    DepthProbeSimulation::DepthProbeSimulation()\n"
-    "    DepthProbeSimulation::DepthProbeSimulation(MultiLayer const &)\n"
-    "    DepthProbeSimulation::DepthProbeSimulation(std::shared_ptr< IMultiLayerBuilder > const)\n");
-  return 0;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_DepthProbeSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice2D_rotationAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
+  Lattice2D *arg1 = (Lattice2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_DepthProbeSimulation" "', argument " "1"" of type '" "DepthProbeSimulation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_rotationAngle" "', argument " "1"" of type '" "Lattice2D const *""'"); 
   }
-  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  result = (double)((Lattice2D const *)arg1)->rotationAngle();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DepthProbeSimulation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice2D_reciprocalBases(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
+  Lattice2D *arg1 = (Lattice2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  DepthProbeSimulation *result = 0 ;
+  Lattice2D::ReciprocalBases result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_clone" "', argument " "1"" of type '" "DepthProbeSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_reciprocalBases" "', argument " "1"" of type '" "Lattice2D const *""'"); 
   }
-  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
-  result = (DepthProbeSimulation *)((DepthProbeSimulation const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  result = ((Lattice2D const *)arg1)->reciprocalBases();
+  resultobj = SWIG_NewPointerObj((new Lattice2D::ReciprocalBases(static_cast< const Lattice2D::ReciprocalBases& >(result))), SWIGTYPE_p_Lattice2D__ReciprocalBases, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DepthProbeSimulation_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Lattice2D_setRotationEnabled(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
-  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  Lattice2D *arg1 = (Lattice2D *) 0 ;
+  bool arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
+  bool val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "DepthProbeSimulation_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Lattice2D_setRotationEnabled", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_accept" "', argument " "1"" of type '" "DepthProbeSimulation const *""'"); 
-  }
-  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "DepthProbeSimulation_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Lattice2D_setRotationEnabled" "', argument " "1"" of type '" "Lattice2D *""'"); 
   }
-  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((DepthProbeSimulation const *)arg1)->accept(arg2);
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  ecode2 = SWIG_AsVal_bool(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Lattice2D_setRotationEnabled" "', argument " "2"" of type '" "bool""'");
+  } 
+  arg2 = static_cast< bool >(val2);
+  (arg1)->setRotationEnabled(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -118297,154 +117686,131 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DepthProbeSimulation_result(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_Lattice2D(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
+  Lattice2D *arg1 = (Lattice2D *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SimulationResult result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Lattice2D, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_result" "', argument " "1"" of type '" "DepthProbeSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Lattice2D" "', argument " "1"" of type '" "Lattice2D *""'"); 
   }
-  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
-  result = ((DepthProbeSimulation const *)arg1)->result();
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< Lattice2D * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DepthProbeSimulation_setBeamParameters__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *Lattice2D_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_Lattice2D, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_new_BasicLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
+  double arg1 ;
   double arg2 ;
-  int arg3 ;
+  double arg3 ;
   double arg4 ;
-  double arg5 ;
-  IFootprintFactor *arg6 = (IFootprintFactor *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  int val3 ;
+  double val3 ;
   int ecode3 = 0 ;
   double val4 ;
   int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
-  void *argp6 = 0 ;
-  int res6 = 0 ;
+  BasicLattice *result = 0 ;
   
-  if ((nobjs < 6) || (nobjs > 6)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "1"" of type '" "DepthProbeSimulation *""'"); 
-  }
-  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_BasicLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_BasicLattice" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "3"" of type '" "int""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_BasicLattice" "', argument " "3"" of type '" "double""'");
   } 
-  arg3 = static_cast< int >(val3);
+  arg3 = static_cast< double >(val3);
   ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
   if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "4"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "new_BasicLattice" "', argument " "4"" of type '" "double""'");
   } 
   arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "5"" of type '" "double""'");
-  } 
-  arg5 = static_cast< double >(val5);
-  res6 = SWIG_ConvertPtr(swig_obj[5], &argp6,SWIGTYPE_p_IFootprintFactor, 0 |  0 );
-  if (!SWIG_IsOK(res6)) {
-    SWIG_exception_fail(SWIG_ArgError(res6), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "6"" of type '" "IFootprintFactor const *""'"); 
-  }
-  arg6 = reinterpret_cast< IFootprintFactor * >(argp6);
-  (arg1)->setBeamParameters(arg2,arg3,arg4,arg5,(IFootprintFactor const *)arg6);
-  resultobj = SWIG_Py_Void();
+  result = (BasicLattice *)new BasicLattice(arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_BasicLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DepthProbeSimulation_setBeamParameters__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_BasicLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
+  double arg1 ;
   double arg2 ;
-  int arg3 ;
-  double arg4 ;
-  double arg5 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
+  double arg3 ;
+  double val1 ;
+  int ecode1 = 0 ;
   double val2 ;
   int ecode2 = 0 ;
-  int val3 ;
+  double val3 ;
   int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  double val5 ;
-  int ecode5 = 0 ;
+  BasicLattice *result = 0 ;
   
-  if ((nobjs < 5) || (nobjs > 5)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "1"" of type '" "DepthProbeSimulation *""'"); 
-  }
-  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_BasicLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
   ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "2"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_BasicLattice" "', argument " "2"" of type '" "double""'");
   } 
   arg2 = static_cast< double >(val2);
-  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "3"" of type '" "int""'");
-  } 
-  arg3 = static_cast< int >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  ecode5 = SWIG_AsVal_double(swig_obj[4], &val5);
-  if (!SWIG_IsOK(ecode5)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode5), "in method '" "DepthProbeSimulation_setBeamParameters" "', argument " "5"" of type '" "double""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "new_BasicLattice" "', argument " "3"" of type '" "double""'");
   } 
-  arg5 = static_cast< double >(val5);
-  (arg1)->setBeamParameters(arg2,arg3,arg4,arg5);
-  resultobj = SWIG_Py_Void();
+  arg3 = static_cast< double >(val3);
+  result = (BasicLattice *)new BasicLattice(arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_BasicLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DepthProbeSimulation_setBeamParameters(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_BasicLattice(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[7] = {
+  PyObject *argv[5] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "DepthProbeSimulation_setBeamParameters", 0, 6, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_BasicLattice", 0, 4, argv))) SWIG_fail;
   --argc;
-  if (argc == 5) {
+  if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DepthProbeSimulation, 0);
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
       {
         int res = SWIG_AsVal_double(argv[1], NULL);
@@ -118452,32 +117818,21 @@ SWIGINTERN PyObject *_wrap_DepthProbeSimulation_setBeamParameters(PyObject *self
       }
       if (_v) {
         {
-          int res = SWIG_AsVal_int(argv[2], NULL);
+          int res = SWIG_AsVal_double(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              return _wrap_DepthProbeSimulation_setBeamParameters__SWIG_1(self, argc, argv);
-            }
-          }
+          return _wrap_new_BasicLattice__SWIG_1(self, argc, argv);
         }
       }
     }
   }
-  if (argc == 6) {
+  if (argc == 4) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_DepthProbeSimulation, 0);
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
       {
         int res = SWIG_AsVal_double(argv[1], NULL);
@@ -118485,7 +117840,7 @@ SWIGINTERN PyObject *_wrap_DepthProbeSimulation_setBeamParameters(PyObject *self
       }
       if (_v) {
         {
-          int res = SWIG_AsVal_int(argv[2], NULL);
+          int res = SWIG_AsVal_double(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
@@ -118494,18 +117849,7 @@ SWIGINTERN PyObject *_wrap_DepthProbeSimulation_setBeamParameters(PyObject *self
             _v = SWIG_CheckState(res);
           }
           if (_v) {
-            {
-              int res = SWIG_AsVal_double(argv[4], NULL);
-              _v = SWIG_CheckState(res);
-            }
-            if (_v) {
-              void *vptr = 0;
-              int res = SWIG_ConvertPtr(argv[5], &vptr, SWIGTYPE_p_IFootprintFactor, 0);
-              _v = SWIG_CheckState(res);
-              if (_v) {
-                return _wrap_DepthProbeSimulation_setBeamParameters__SWIG_0(self, argc, argv);
-              }
-            }
+            return _wrap_new_BasicLattice__SWIG_0(self, argc, argv);
           }
         }
       }
@@ -118513,52 +117857,59 @@ SWIGINTERN PyObject *_wrap_DepthProbeSimulation_setBeamParameters(PyObject *self
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'DepthProbeSimulation_setBeamParameters'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_BasicLattice'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    DepthProbeSimulation::setBeamParameters(double,int,double,double,IFootprintFactor const *)\n"
-    "    DepthProbeSimulation::setBeamParameters(double,int,double,double)\n");
+    "    BasicLattice::BasicLattice(double,double,double,double)\n"
+    "    BasicLattice::BasicLattice(double,double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_DepthProbeSimulation_setZSpan(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_BasicLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
-  size_t arg2 ;
-  double arg3 ;
-  double arg4 ;
+  BasicLattice *arg1 = (BasicLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  double val4 ;
-  int ecode4 = 0 ;
-  PyObject *swig_obj[4] ;
+  PyObject *swig_obj[1] ;
+  BasicLattice *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "DepthProbeSimulation_setZSpan", 4, 4, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_setZSpan" "', argument " "1"" of type '" "DepthProbeSimulation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "BasicLattice_clone" "', argument " "1"" of type '" "BasicLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "DepthProbeSimulation_setZSpan" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "DepthProbeSimulation_setZSpan" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "DepthProbeSimulation_setZSpan" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  (arg1)->setZSpan(arg2,arg3,arg4);
+  arg1 = reinterpret_cast< BasicLattice * >(argp1);
+  result = (BasicLattice *)((BasicLattice const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_BasicLattice, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_BasicLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  BasicLattice *arg1 = (BasicLattice *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "BasicLattice_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "BasicLattice_accept" "', argument " "1"" of type '" "BasicLattice const *""'"); 
+  }
+  arg1 = reinterpret_cast< BasicLattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "BasicLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((BasicLattice const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -118566,256 +117917,251 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_DepthProbeSimulation_getAlphaAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_BasicLattice_length1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
+  BasicLattice *arg1 = (BasicLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IAxis *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_getAlphaAxis" "', argument " "1"" of type '" "DepthProbeSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "BasicLattice_length1" "', argument " "1"" of type '" "BasicLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
-  result = (IAxis *)((DepthProbeSimulation const *)arg1)->getAlphaAxis();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
+  arg1 = reinterpret_cast< BasicLattice * >(argp1);
+  result = (double)((BasicLattice const *)arg1)->length1();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DepthProbeSimulation_getZAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_BasicLattice_length2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
+  BasicLattice *arg1 = (BasicLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IAxis *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_getZAxis" "', argument " "1"" of type '" "DepthProbeSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "BasicLattice_length2" "', argument " "1"" of type '" "BasicLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
-  result = (IAxis *)((DepthProbeSimulation const *)arg1)->getZAxis();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
+  arg1 = reinterpret_cast< BasicLattice * >(argp1);
+  result = (double)((BasicLattice const *)arg1)->length2();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_DepthProbeSimulation_intensityMapSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_BasicLattice_latticeAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  DepthProbeSimulation *arg1 = (DepthProbeSimulation *) 0 ;
+  BasicLattice *arg1 = (BasicLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_DepthProbeSimulation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "DepthProbeSimulation_intensityMapSize" "', argument " "1"" of type '" "DepthProbeSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "BasicLattice_latticeAngle" "', argument " "1"" of type '" "BasicLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< DepthProbeSimulation * >(argp1);
-  result = ((DepthProbeSimulation const *)arg1)->intensityMapSize();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< BasicLattice * >(argp1);
+  result = (double)((BasicLattice const *)arg1)->latticeAngle();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *DepthProbeSimulation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_DepthProbeSimulation, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *DepthProbeSimulation_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_SpecularSimulation__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
+SWIGINTERN PyObject *_wrap_BasicLattice_unitCellArea(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SpecularSimulation *result = 0 ;
+  BasicLattice *arg1 = (BasicLattice *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
-  result = (SpecularSimulation *)new SpecularSimulation();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SpecularSimulation, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "BasicLattice_unitCellArea" "', argument " "1"" of type '" "BasicLattice const *""'"); 
+  }
+  arg1 = reinterpret_cast< BasicLattice * >(argp1);
+  result = (double)((BasicLattice const *)arg1)->unitCellArea();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SpecularSimulation__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_BasicLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  MultiLayer *arg1 = 0 ;
+  BasicLattice *arg1 = (BasicLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  SpecularSimulation *result = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_MultiLayer,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_BasicLattice, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SpecularSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_SpecularSimulation" "', argument " "1"" of type '" "MultiLayer const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_BasicLattice" "', argument " "1"" of type '" "BasicLattice *""'"); 
   }
-  arg1 = reinterpret_cast< MultiLayer * >(argp1);
-  result = (SpecularSimulation *)new SpecularSimulation((MultiLayer const &)*arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SpecularSimulation, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< BasicLattice * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SpecularSimulation__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *BasicLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_BasicLattice, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *BasicLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_SquareLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  std::shared_ptr< IMultiLayerBuilder > arg1 ;
-  void *argp1 ;
-  int res1 = 0 ;
-  SpecularSimulation *result = 0 ;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  SquareLattice *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_SquareLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_SquareLattice" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (SquareLattice *)new SquareLattice(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SquareLattice, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_new_SquareLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  SquareLattice *result = 0 ;
   
   if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  {
-    int newmem = 0;
-    res1 = SWIG_ConvertPtrAndOwn(swig_obj[0], &argp1, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t,  0 , &newmem);
-    if (!SWIG_IsOK(res1)) {
-      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_SpecularSimulation" "', argument " "1"" of type '" "std::shared_ptr< IMultiLayerBuilder > const""'");
-    }
-    if (argp1) arg1 = *(reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1));
-    if (newmem & SWIG_CAST_NEW_MEMORY) delete reinterpret_cast< std::shared_ptr< IMultiLayerBuilder > * >(argp1);
-  }
-  result = (SpecularSimulation *)new SpecularSimulation(arg1);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SpecularSimulation, SWIG_POINTER_NEW |  0 );
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_SquareLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  result = (SquareLattice *)new SquareLattice(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SquareLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SpecularSimulation(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_SquareLattice(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[2] = {
+  PyObject *argv[3] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "new_SpecularSimulation", 0, 1, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_SquareLattice", 0, 2, argv))) SWIG_fail;
   --argc;
-  if (argc == 0) {
-    return _wrap_new_SpecularSimulation__SWIG_0(self, argc, argv);
-  }
   if (argc == 1) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_MultiLayer, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
-      return _wrap_new_SpecularSimulation__SWIG_1(self, argc, argv);
+      return _wrap_new_SquareLattice__SWIG_1(self, argc, argv);
     }
   }
-  if (argc == 1) {
+  if (argc == 2) {
     int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0);
-    _v = SWIG_CheckState(res);
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
     if (_v) {
-      return _wrap_new_SpecularSimulation__SWIG_2(self, argc, argv);
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_SquareLattice__SWIG_0(self, argc, argv);
+      }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_SpecularSimulation'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_SquareLattice'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    SpecularSimulation::SpecularSimulation()\n"
-    "    SpecularSimulation::SpecularSimulation(MultiLayer const &)\n"
-    "    SpecularSimulation::SpecularSimulation(std::shared_ptr< IMultiLayerBuilder > const)\n");
+    "    SquareLattice::SquareLattice(double,double)\n"
+    "    SquareLattice::SquareLattice(double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_SpecularSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SpecularSimulation" "', argument " "1"" of type '" "SpecularSimulation *""'"); 
-  }
-  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SpecularSimulation_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SpecularSimulation *result = 0 ;
-  
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_clone" "', argument " "1"" of type '" "SpecularSimulation const *""'"); 
-  }
-  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
-  result = (SpecularSimulation *)((SpecularSimulation const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SpecularSimulation, 0 |  0 );
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_SpecularSimulation_prepareSimulation(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SquareLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
+  SquareLattice *arg1 = (SquareLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  SquareLattice *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_prepareSimulation" "', argument " "1"" of type '" "SpecularSimulation *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SquareLattice_clone" "', argument " "1"" of type '" "SquareLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
-  (arg1)->prepareSimulation();
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< SquareLattice * >(argp1);
+  result = (SquareLattice *)((SquareLattice const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SquareLattice, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SpecularSimulation_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SquareLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
+  SquareLattice *arg1 = (SquareLattice *) 0 ;
   INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
@@ -118823,18 +118169,18 @@ SWIGINTERN PyObject *_wrap_SpecularSimulation_accept(PyObject *SWIGUNUSEDPARM(se
   int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "SpecularSimulation_accept", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SquareLattice_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_accept" "', argument " "1"" of type '" "SpecularSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SquareLattice_accept" "', argument " "1"" of type '" "SquareLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
+  arg1 = reinterpret_cast< SquareLattice * >(argp1);
   res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
   if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SpecularSimulation_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SquareLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
   }
   arg2 = reinterpret_cast< INodeVisitor * >(argp2);
-  ((SpecularSimulation const *)arg1)->accept(arg2);
+  ((SquareLattice const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -118842,228 +118188,270 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_SpecularSimulation_result(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SquareLattice_length1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
+  SquareLattice *arg1 = (SquareLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  SimulationResult result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_result" "', argument " "1"" of type '" "SpecularSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SquareLattice_length1" "', argument " "1"" of type '" "SquareLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
-  result = ((SpecularSimulation const *)arg1)->result();
-  resultobj = SWIG_NewPointerObj((new SimulationResult(static_cast< const SimulationResult& >(result))), SWIGTYPE_p_SimulationResult, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< SquareLattice * >(argp1);
+  result = (double)((SquareLattice const *)arg1)->length1();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SpecularSimulation_setScan(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SquareLattice_length2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
-  ISpecularScan *arg2 = 0 ;
+  SquareLattice *arg1 = (SquareLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "SpecularSimulation_setScan", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_setScan" "', argument " "1"" of type '" "SpecularSimulation *""'"); 
-  }
-  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ISpecularScan,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SpecularSimulation_setScan" "', argument " "2"" of type '" "ISpecularScan const &""'"); 
-  }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SpecularSimulation_setScan" "', argument " "2"" of type '" "ISpecularScan const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SquareLattice_length2" "', argument " "1"" of type '" "SquareLattice const *""'"); 
   }
-  arg2 = reinterpret_cast< ISpecularScan * >(argp2);
-  (arg1)->setScan((ISpecularScan const &)*arg2);
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< SquareLattice * >(argp1);
+  result = (double)((SquareLattice const *)arg1)->length2();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SpecularSimulation_coordinateAxis(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SquareLattice_latticeAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
+  SquareLattice *arg1 = (SquareLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IAxis *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_coordinateAxis" "', argument " "1"" of type '" "SpecularSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SquareLattice_latticeAngle" "', argument " "1"" of type '" "SquareLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
-  result = (IAxis *)((SpecularSimulation const *)arg1)->coordinateAxis();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IAxis, 0 |  0 );
+  arg1 = reinterpret_cast< SquareLattice * >(argp1);
+  result = (double)((SquareLattice const *)arg1)->latticeAngle();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SpecularSimulation_footprintFactor(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SquareLattice_unitCellArea(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
+  SquareLattice *arg1 = (SquareLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  IFootprintFactor *result = 0 ;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_footprintFactor" "', argument " "1"" of type '" "SpecularSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SquareLattice_unitCellArea" "', argument " "1"" of type '" "SquareLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
-  result = (IFootprintFactor *)((SpecularSimulation const *)arg1)->footprintFactor();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFootprintFactor, 0 |  0 );
+  arg1 = reinterpret_cast< SquareLattice * >(argp1);
+  result = (double)((SquareLattice const *)arg1)->unitCellArea();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SpecularSimulation_intensityMapSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_SquareLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SpecularSimulation *arg1 = (SpecularSimulation *) 0 ;
+  SquareLattice *arg1 = (SquareLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SpecularSimulation, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SquareLattice, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SpecularSimulation_intensityMapSize" "', argument " "1"" of type '" "SpecularSimulation const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SquareLattice" "', argument " "1"" of type '" "SquareLattice *""'"); 
   }
-  arg1 = reinterpret_cast< SpecularSimulation * >(argp1);
-  result = ((SpecularSimulation const *)arg1)->intensityMapSize();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< SquareLattice * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *SpecularSimulation_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *SquareLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_SpecularSimulation, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_SquareLattice, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *SpecularSimulation_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *SquareLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_new_ThreadInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_HexagonalLattice__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ThreadInfo *result = 0 ;
+  double arg1 ;
+  double arg2 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  HexagonalLattice *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_ThreadInfo", 0, 0, 0)) SWIG_fail;
-  result = (ThreadInfo *)new ThreadInfo();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ThreadInfo, SWIG_POINTER_NEW |  0 );
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_HexagonalLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "new_HexagonalLattice" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (HexagonalLattice *)new HexagonalLattice(arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_HexagonalLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ThreadInfo_n_threads_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_HexagonalLattice__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
-  unsigned int arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  unsigned int val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  double arg1 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  HexagonalLattice *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ThreadInfo_n_threads_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ThreadInfo_n_threads_set" "', argument " "1"" of type '" "ThreadInfo *""'"); 
-  }
-  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
-  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ThreadInfo_n_threads_set" "', argument " "2"" of type '" "unsigned int""'");
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "new_HexagonalLattice" "', argument " "1"" of type '" "double""'");
   } 
-  arg2 = static_cast< unsigned int >(val2);
-  if (arg1) (arg1)->n_threads = arg2;
-  resultobj = SWIG_Py_Void();
+  arg1 = static_cast< double >(val1);
+  result = (HexagonalLattice *)new HexagonalLattice(arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_HexagonalLattice, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ThreadInfo_n_threads_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_HexagonalLattice(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_HexagonalLattice", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      return _wrap_new_HexagonalLattice__SWIG_1(self, argc, argv);
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    {
+      int res = SWIG_AsVal_double(argv[0], NULL);
+      _v = SWIG_CheckState(res);
+    }
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_new_HexagonalLattice__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_HexagonalLattice'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    HexagonalLattice::HexagonalLattice(double,double)\n"
+    "    HexagonalLattice::HexagonalLattice(double)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_HexagonalLattice_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
+  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  unsigned int result;
+  HexagonalLattice *result = 0 ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ThreadInfo_n_threads_get" "', argument " "1"" of type '" "ThreadInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HexagonalLattice_clone" "', argument " "1"" of type '" "HexagonalLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
-  result = (unsigned int) ((arg1)->n_threads);
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
+  result = (HexagonalLattice *)((HexagonalLattice const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_HexagonalLattice, 0 |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ThreadInfo_n_batches_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_HexagonalLattice_accept(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
-  unsigned int arg2 ;
+  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
+  INodeVisitor *arg2 = (INodeVisitor *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  unsigned int val2 ;
-  int ecode2 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
   
-  if (!SWIG_Python_UnpackTuple(args, "ThreadInfo_n_batches_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "HexagonalLattice_accept", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ThreadInfo_n_batches_set" "', argument " "1"" of type '" "ThreadInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HexagonalLattice_accept" "', argument " "1"" of type '" "HexagonalLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
-  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ThreadInfo_n_batches_set" "', argument " "2"" of type '" "unsigned int""'");
-  } 
-  arg2 = static_cast< unsigned int >(val2);
-  if (arg1) (arg1)->n_batches = arg2;
+  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2,SWIGTYPE_p_INodeVisitor, 0 |  0 );
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "HexagonalLattice_accept" "', argument " "2"" of type '" "INodeVisitor *""'"); 
+  }
+  arg2 = reinterpret_cast< INodeVisitor * >(argp2);
+  ((HexagonalLattice const *)arg1)->accept(arg2);
   resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
@@ -119071,95 +118459,112 @@ fail:
 }
 
 
-SWIGINTERN PyObject *_wrap_ThreadInfo_n_batches_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_HexagonalLattice_length1(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
+  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  unsigned int result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ThreadInfo_n_batches_get" "', argument " "1"" of type '" "ThreadInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HexagonalLattice_length1" "', argument " "1"" of type '" "HexagonalLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
-  result = (unsigned int) ((arg1)->n_batches);
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
+  result = (double)((HexagonalLattice const *)arg1)->length1();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ThreadInfo_current_batch_set(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_HexagonalLattice_length2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
-  unsigned int arg2 ;
+  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  unsigned int val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
+  PyObject *swig_obj[1] ;
+  double result;
   
-  if (!SWIG_Python_UnpackTuple(args, "ThreadInfo_current_batch_set", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ThreadInfo_current_batch_set" "', argument " "1"" of type '" "ThreadInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HexagonalLattice_length2" "', argument " "1"" of type '" "HexagonalLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
-  ecode2 = SWIG_AsVal_unsigned_SS_int(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ThreadInfo_current_batch_set" "', argument " "2"" of type '" "unsigned int""'");
-  } 
-  arg2 = static_cast< unsigned int >(val2);
-  if (arg1) (arg1)->current_batch = arg2;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
+  result = (double)((HexagonalLattice const *)arg1)->length2();
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_HexagonalLattice_latticeAngle(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  double result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HexagonalLattice_latticeAngle" "', argument " "1"" of type '" "HexagonalLattice const *""'"); 
+  }
+  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
+  result = (double)((HexagonalLattice const *)arg1)->latticeAngle();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ThreadInfo_current_batch_get(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_HexagonalLattice_unitCellArea(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
+  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  unsigned int result;
+  double result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ThreadInfo_current_batch_get" "', argument " "1"" of type '" "ThreadInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HexagonalLattice_unitCellArea" "', argument " "1"" of type '" "HexagonalLattice const *""'"); 
   }
-  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
-  result = (unsigned int) ((arg1)->current_batch);
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
+  result = (double)((HexagonalLattice const *)arg1)->unitCellArea();
+  resultobj = SWIG_From_double(static_cast< double >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ThreadInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_HexagonalLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ThreadInfo *arg1 = (ThreadInfo *) 0 ;
+  HexagonalLattice *arg1 = (HexagonalLattice *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ThreadInfo, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_HexagonalLattice, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ThreadInfo" "', argument " "1"" of type '" "ThreadInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_HexagonalLattice" "', argument " "1"" of type '" "HexagonalLattice *""'"); 
   }
-  arg1 = reinterpret_cast< ThreadInfo * >(argp1);
+  arg1 = reinterpret_cast< HexagonalLattice * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -119168,562 +118573,539 @@ fail:
 }
 
 
-SWIGINTERN PyObject *ThreadInfo_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *HexagonalLattice_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ThreadInfo, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_HexagonalLattice, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *ThreadInfo_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *HexagonalLattice_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_SampleBuilderFactoryTemp_createItem(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_CreateFCCLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFactory< std::string,IMultiLayerBuilder > *arg1 = (IFactory< std::string,IMultiLayerBuilder > *) 0 ;
-  std::string *arg2 = 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
+  double arg1 ;
+  ILatticeOrientation *arg2 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
   PyObject *swig_obj[2] ;
-  Swig::Director *director = 0;
-  IMultiLayerBuilder *result = 0 ;
+  SwigValueWrapper< Lattice > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "SampleBuilderFactoryTemp_createItem", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SampleBuilderFactoryTemp_createItem" "', argument " "1"" of type '" "IFactory< std::string,IMultiLayerBuilder > const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFactory< std::string,IMultiLayerBuilder > * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SampleBuilderFactoryTemp_createItem" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SampleBuilderFactoryTemp_createItem" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+  if (!SWIG_Python_UnpackTuple(args, "CreateFCCLattice", 2, 2, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "CreateFCCLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_ILatticeOrientation,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "CreateFCCLattice" "', argument " "2"" of type '" "ILatticeOrientation const &""'"); 
   }
-  result = (IMultiLayerBuilder *)((IFactory< std::string,IMultiLayerBuilder > const *)arg1)->createItem((std::string const &)*arg2);
-  director = SWIG_DIRECTOR_CAST(result);
-  if (director) {
-    resultobj = director->swig_get_self();
-    Py_INCREF(resultobj);
-  } else {
-    {
-      std::shared_ptr<  IMultiLayerBuilder > *smartresult = result ? new std::shared_ptr<  IMultiLayerBuilder >(result SWIG_NO_NULL_DELETER_0) : 0;
-      resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(smartresult), SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 | SWIG_POINTER_OWN);
-    }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "CreateFCCLattice" "', argument " "2"" of type '" "ILatticeOrientation const &""'"); 
   }
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg2 = reinterpret_cast< ILatticeOrientation * >(argp2);
+  result = LatticeUtils::CreateFCCLattice(arg1,(ILatticeOrientation const &)*arg2);
+  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SampleBuilderFactoryTemp_registerItem(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_CreateHCPLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFactory< std::string,IMultiLayerBuilder > *arg1 = (IFactory< std::string,IMultiLayerBuilder > *) 0 ;
-  std::string *arg2 = 0 ;
-  SwigValueWrapper< std::function< IMultiLayerBuilder *() > > arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  void *argp3 ;
+  double arg1 ;
+  double arg2 ;
+  ILatticeOrientation *arg3 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
   int res3 = 0 ;
   PyObject *swig_obj[3] ;
-  bool result;
+  SwigValueWrapper< Lattice > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "SampleBuilderFactoryTemp_registerItem", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SampleBuilderFactoryTemp_registerItem" "', argument " "1"" of type '" "IFactory< std::string,IMultiLayerBuilder > *""'"); 
+  if (!SWIG_Python_UnpackTuple(args, "CreateHCPLattice", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "CreateHCPLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "CreateHCPLattice" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_ILatticeOrientation,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "CreateHCPLattice" "', argument " "3"" of type '" "ILatticeOrientation const &""'"); 
   }
-  arg1 = reinterpret_cast< IFactory< std::string,IMultiLayerBuilder > * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SampleBuilderFactoryTemp_registerItem" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SampleBuilderFactoryTemp_registerItem" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "CreateHCPLattice" "', argument " "3"" of type '" "ILatticeOrientation const &""'"); 
   }
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_std__functionT_IMultiLayerBuilder_pfF_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "SampleBuilderFactoryTemp_registerItem" "', argument " "3"" of type '" "IFactory< std::string,IMultiLayerBuilder >::CreateItemCallback""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SampleBuilderFactoryTemp_registerItem" "', argument " "3"" of type '" "IFactory< std::string,IMultiLayerBuilder >::CreateItemCallback""'");
-    } else {
-      IFactory< std::string,IMultiLayerBuilder >::CreateItemCallback * temp = reinterpret_cast< IFactory< std::string,IMultiLayerBuilder >::CreateItemCallback * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
+  arg3 = reinterpret_cast< ILatticeOrientation * >(argp3);
+  result = LatticeUtils::CreateHCPLattice(arg1,arg2,(ILatticeOrientation const &)*arg3);
+  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_CreateBCTLattice(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  double arg1 ;
+  double arg2 ;
+  ILatticeOrientation *arg3 = 0 ;
+  double val1 ;
+  int ecode1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  void *argp3 = 0 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
+  SwigValueWrapper< Lattice > result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "CreateBCTLattice", 3, 3, swig_obj)) SWIG_fail;
+  ecode1 = SWIG_AsVal_double(swig_obj[0], &val1);
+  if (!SWIG_IsOK(ecode1)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode1), "in method '" "CreateBCTLattice" "', argument " "1"" of type '" "double""'");
+  } 
+  arg1 = static_cast< double >(val1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "CreateBCTLattice" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_ILatticeOrientation,  0  | 0);
+  if (!SWIG_IsOK(res3)) {
+    SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "CreateBCTLattice" "', argument " "3"" of type '" "ILatticeOrientation const &""'"); 
   }
-  result = (bool)(arg1)->registerItem((std::string const &)*arg2,arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  if (!argp3) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "CreateBCTLattice" "', argument " "3"" of type '" "ILatticeOrientation const &""'"); 
+  }
+  arg3 = reinterpret_cast< ILatticeOrientation * >(argp3);
+  result = LatticeUtils::CreateBCTLattice(arg1,arg2,(ILatticeOrientation const &)*arg3);
+  resultobj = SWIG_NewPointerObj((new Lattice(static_cast< const Lattice& >(result))), SWIGTYPE_p_Lattice, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SampleBuilderFactoryTemp_contains(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Material__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IFactory< std::string,IMultiLayerBuilder > *arg1 = (IFactory< std::string,IMultiLayerBuilder > *) 0 ;
-  std::string *arg2 = 0 ;
+  Material *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[2] ;
-  bool result;
+  Material *result = 0 ;
   
-  if (!SWIG_Python_UnpackTuple(args, "SampleBuilderFactoryTemp_contains", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0  | 0);
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SampleBuilderFactoryTemp_contains" "', argument " "1"" of type '" "IFactory< std::string,IMultiLayerBuilder > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Material" "', argument " "1"" of type '" "Material const &""'"); 
   }
-  arg1 = reinterpret_cast< IFactory< std::string,IMultiLayerBuilder > * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SampleBuilderFactoryTemp_contains" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SampleBuilderFactoryTemp_contains" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Material" "', argument " "1"" of type '" "Material const &""'"); 
   }
-  result = (bool)((IFactory< std::string,IMultiLayerBuilder > const *)arg1)->contains((std::string const &)*arg2);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< Material * >(argp1);
+  result = (Material *)new Material((Material const &)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Material, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SampleBuilderFactoryTemp_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_Material__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IFactory< std::string,IMultiLayerBuilder > *arg1 = (IFactory< std::string,IMultiLayerBuilder > *) 0 ;
+  Material *arg1 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
+  Material *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, 0 |  0 );
+  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Material,  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SampleBuilderFactoryTemp_size" "', argument " "1"" of type '" "IFactory< std::string,IMultiLayerBuilder > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "new_Material" "', argument " "1"" of type '" "Material &&""'"); 
   }
-  arg1 = reinterpret_cast< IFactory< std::string,IMultiLayerBuilder > * >(argp1);
-  result = ((IFactory< std::string,IMultiLayerBuilder > const *)arg1)->size();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "new_Material" "', argument " "1"" of type '" "Material &&""'"); 
+  }
+  arg1 = reinterpret_cast< Material * >(argp1);
+  result = (Material *)new Material((Material &&)*arg1);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Material, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SampleBuilderFactoryTemp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IFactory< std::string,IMultiLayerBuilder > *result = 0 ;
+SWIGINTERN PyObject *_wrap_new_Material(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[2] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "new_Material", 0, 1, argv))) SWIG_fail;
+  --argc;
+  if (argc == 1) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_Material__SWIG_0(self, argc, argv);
+    }
+  }
+  if (argc == 1) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_Material, SWIG_POINTER_NO_NULL);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      return _wrap_new_Material__SWIG_1(self, argc, argv);
+    }
+  }
   
-  if (!SWIG_Python_UnpackTuple(args, "new_SampleBuilderFactoryTemp", 0, 0, 0)) SWIG_fail;
-  result = (IFactory< std::string,IMultiLayerBuilder > *)new IFactory< std::string,IMultiLayerBuilder >();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, SWIG_POINTER_NEW |  0 );
-  return resultobj;
 fail:
-  return NULL;
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'new_Material'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    Material::Material(Material const &)\n"
+    "    Material::Material(Material &&)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_SampleBuilderFactoryTemp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Material_inverted(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFactory< std::string,IMultiLayerBuilder > *arg1 = (IFactory< std::string,IMultiLayerBuilder > *) 0 ;
+  Material *arg1 = (Material *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  SwigValueWrapper< Material > result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SampleBuilderFactoryTemp" "', argument " "1"" of type '" "IFactory< std::string,IMultiLayerBuilder > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_inverted" "', argument " "1"" of type '" "Material const *""'"); 
   }
-  arg1 = reinterpret_cast< IFactory< std::string,IMultiLayerBuilder > * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Material * >(argp1);
+  result = ((Material const *)arg1)->inverted();
+  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *SampleBuilderFactoryTemp_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *SampleBuilderFactoryTemp_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_SampleBuilderFactory(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Material_refractiveIndex(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SampleBuilderFactory *result = 0 ;
+  Material *arg1 = (Material *) 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_SampleBuilderFactory", 0, 0, 0)) SWIG_fail;
-  result = (SampleBuilderFactory *)new SampleBuilderFactory();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SampleBuilderFactory, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Material_refractiveIndex", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_refractiveIndex" "', argument " "1"" of type '" "Material const *""'"); 
+  }
+  arg1 = reinterpret_cast< Material * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Material_refractiveIndex" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = ((Material const *)arg1)->refractiveIndex(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SampleBuilderFactory_createSample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Material_refractiveIndex2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SampleBuilderFactory *arg1 = (SampleBuilderFactory *) 0 ;
-  std::string *arg2 = 0 ;
+  Material *arg1 = (Material *) 0 ;
+  double arg2 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
+  double val2 ;
+  int ecode2 = 0 ;
   PyObject *swig_obj[2] ;
-  MultiLayer *result = 0 ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "SampleBuilderFactory_createSample", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SampleBuilderFactory, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Material_refractiveIndex2", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SampleBuilderFactory_createSample" "', argument " "1"" of type '" "SampleBuilderFactory *""'"); 
-  }
-  arg1 = reinterpret_cast< SampleBuilderFactory * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SampleBuilderFactory_createSample" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SampleBuilderFactory_createSample" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_refractiveIndex2" "', argument " "1"" of type '" "Material const *""'"); 
   }
-  result = (MultiLayer *)(arg1)->createSample((std::string const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, 0 |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< Material * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "Material_refractiveIndex2" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = ((Material const *)arg1)->refractiveIndex2(arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_SampleBuilderFactory(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Material_isScalarMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SampleBuilderFactory *arg1 = (SampleBuilderFactory *) 0 ;
+  Material *arg1 = (Material *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SampleBuilderFactory, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SampleBuilderFactory" "', argument " "1"" of type '" "SampleBuilderFactory *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_isScalarMaterial" "', argument " "1"" of type '" "Material const *""'"); 
   }
-  arg1 = reinterpret_cast< SampleBuilderFactory * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Material * >(argp1);
+  result = (bool)((Material const *)arg1)->isScalarMaterial();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *SampleBuilderFactory_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_SampleBuilderFactory, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *SampleBuilderFactory_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_SimulationFactoryTemp_createItem(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Material_isMagneticMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFactory< std::string,Simulation > *arg1 = (IFactory< std::string,Simulation > *) 0 ;
-  std::string *arg2 = 0 ;
+  Material *arg1 = (Material *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[2] ;
-  Simulation *result = 0 ;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "SimulationFactoryTemp_createItem", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_Simulation_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationFactoryTemp_createItem" "', argument " "1"" of type '" "IFactory< std::string,Simulation > const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFactory< std::string,Simulation > * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SimulationFactoryTemp_createItem" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SimulationFactoryTemp_createItem" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_isMagneticMaterial" "', argument " "1"" of type '" "Material const *""'"); 
   }
-  result = (Simulation *)((IFactory< std::string,Simulation > const *)arg1)->createItem((std::string const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Simulation, 0 |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< Material * >(argp1);
+  result = (bool)((Material const *)arg1)->isMagneticMaterial();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationFactoryTemp_registerItem(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Material_getName(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFactory< std::string,Simulation > *arg1 = (IFactory< std::string,Simulation > *) 0 ;
-  std::string *arg2 = 0 ;
-  SwigValueWrapper< std::function< Simulation *() > > arg3 ;
+  Material *arg1 = (Material *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  void *argp3 ;
-  int res3 = 0 ;
-  PyObject *swig_obj[3] ;
-  bool result;
+  PyObject *swig_obj[1] ;
+  std::string result;
   
-  if (!SWIG_Python_UnpackTuple(args, "SimulationFactoryTemp_registerItem", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_Simulation_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationFactoryTemp_registerItem" "', argument " "1"" of type '" "IFactory< std::string,Simulation > *""'"); 
-  }
-  arg1 = reinterpret_cast< IFactory< std::string,Simulation > * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SimulationFactoryTemp_registerItem" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SimulationFactoryTemp_registerItem" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
-  }
-  {
-    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_std__functionT_Simulation_pfF_t,  0  | 0);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "SimulationFactoryTemp_registerItem" "', argument " "3"" of type '" "IFactory< std::string,Simulation >::CreateItemCallback""'"); 
-    }  
-    if (!argp3) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SimulationFactoryTemp_registerItem" "', argument " "3"" of type '" "IFactory< std::string,Simulation >::CreateItemCallback""'");
-    } else {
-      IFactory< std::string,Simulation >::CreateItemCallback * temp = reinterpret_cast< IFactory< std::string,Simulation >::CreateItemCallback * >(argp3);
-      arg3 = *temp;
-      if (SWIG_IsNewObj(res3)) delete temp;
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_getName" "', argument " "1"" of type '" "Material const *""'"); 
   }
-  result = (bool)(arg1)->registerItem((std::string const &)*arg2,arg3);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< Material * >(argp1);
+  result = ((Material const *)arg1)->getName();
+  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationFactoryTemp_contains(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Material_magnetization(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFactory< std::string,Simulation > *arg1 = (IFactory< std::string,Simulation > *) 0 ;
-  std::string *arg2 = 0 ;
+  Material *arg1 = (Material *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  PyObject *swig_obj[2] ;
-  bool result;
+  PyObject *swig_obj[1] ;
+  kvector_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "SimulationFactoryTemp_contains", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_Simulation_t, 0 |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationFactoryTemp_contains" "', argument " "1"" of type '" "IFactory< std::string,Simulation > const *""'"); 
-  }
-  arg1 = reinterpret_cast< IFactory< std::string,Simulation > * >(argp1);
-  {
-    std::string *ptr = (std::string *)0;
-    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SimulationFactoryTemp_contains" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SimulationFactoryTemp_contains" "', argument " "2"" of type '" "std::string const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_magnetization" "', argument " "1"" of type '" "Material const *""'"); 
   }
-  result = (bool)((IFactory< std::string,Simulation > const *)arg1)->contains((std::string const &)*arg2);
-  resultobj = SWIG_From_bool(static_cast< bool >(result));
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< Material * >(argp1);
+  result = ((Material const *)arg1)->magnetization();
+  resultobj = SWIG_NewPointerObj((new kvector_t(static_cast< const kvector_t& >(result))), SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_SimulationFactoryTemp_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Material_materialData(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFactory< std::string,Simulation > *arg1 = (IFactory< std::string,Simulation > *) 0 ;
+  Material *arg1 = (Material *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  size_t result;
+  complex_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_Simulation_t, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationFactoryTemp_size" "', argument " "1"" of type '" "IFactory< std::string,Simulation > const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_materialData" "', argument " "1"" of type '" "Material const *""'"); 
   }
-  arg1 = reinterpret_cast< IFactory< std::string,Simulation > * >(argp1);
-  result = ((IFactory< std::string,Simulation > const *)arg1)->size();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  arg1 = reinterpret_cast< Material * >(argp1);
+  result = ((Material const *)arg1)->materialData();
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_new_SimulationFactoryTemp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Material_isEmpty(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFactory< std::string,Simulation > *result = 0 ;
+  Material *arg1 = (Material *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_SimulationFactoryTemp", 0, 0, 0)) SWIG_fail;
-  result = (IFactory< std::string,Simulation > *)new IFactory< std::string,Simulation >();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFactoryT_std__string_Simulation_t, SWIG_POINTER_NEW |  0 );
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_isEmpty" "', argument " "1"" of type '" "Material const *""'"); 
+  }
+  arg1 = reinterpret_cast< Material * >(argp1);
+  result = (bool)((Material const *)arg1)->isEmpty();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_SimulationFactoryTemp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Material_isDefaultMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IFactory< std::string,Simulation > *arg1 = (IFactory< std::string,Simulation > *) 0 ;
+  Material *arg1 = (Material *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  bool result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_Simulation_t, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SimulationFactoryTemp" "', argument " "1"" of type '" "IFactory< std::string,Simulation > *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_isDefaultMaterial" "', argument " "1"" of type '" "Material const *""'"); 
   }
-  arg1 = reinterpret_cast< IFactory< std::string,Simulation > * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Material * >(argp1);
+  result = (bool)((Material const *)arg1)->isDefaultMaterial();
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *SimulationFactoryTemp_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IFactoryT_std__string_Simulation_t, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *SimulationFactoryTemp_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_new_SimulationFactory(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Material_scalarSubtrSLD(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimulationFactory *result = 0 ;
+  Material *arg1 = (Material *) 0 ;
+  WavevectorInfo *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  complex_t result;
   
-  if (!SWIG_Python_UnpackTuple(args, "new_SimulationFactory", 0, 0, 0)) SWIG_fail;
-  result = (SimulationFactory *)new SimulationFactory();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationFactory, SWIG_POINTER_NEW |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Material_scalarSubtrSLD", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_scalarSubtrSLD" "', argument " "1"" of type '" "Material const *""'"); 
+  }
+  arg1 = reinterpret_cast< Material * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_WavevectorInfo,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Material_scalarSubtrSLD" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Material_scalarSubtrSLD" "', argument " "2"" of type '" "WavevectorInfo const &""'"); 
+  }
+  arg2 = reinterpret_cast< WavevectorInfo * >(argp2);
+  result = ((Material const *)arg1)->scalarSubtrSLD((WavevectorInfo const &)*arg2);
+  resultobj = SWIG_From_std_complex_Sl_double_Sg_(static_cast< std::complex<double> >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_SimulationFactory(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_Material_transformedMaterial(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  SimulationFactory *arg1 = (SimulationFactory *) 0 ;
+  Material *arg1 = (Material *) 0 ;
+  Transform3D *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  void *argp2 = 0 ;
+  int res2 = 0 ;
+  PyObject *swig_obj[2] ;
+  SwigValueWrapper< Material > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationFactory, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "Material_transformedMaterial", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SimulationFactory" "', argument " "1"" of type '" "SimulationFactory *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "Material_transformedMaterial" "', argument " "1"" of type '" "Material const *""'"); 
   }
-  arg1 = reinterpret_cast< SimulationFactory * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< Material * >(argp1);
+  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Transform3D,  0  | 0);
+  if (!SWIG_IsOK(res2)) {
+    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "Material_transformedMaterial" "', argument " "2"" of type '" "Transform3D const &""'"); 
+  }
+  if (!argp2) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "Material_transformedMaterial" "', argument " "2"" of type '" "Transform3D const &""'"); 
+  }
+  arg2 = reinterpret_cast< Transform3D * >(argp2);
+  result = ((Material const *)arg1)->transformedMaterial((Transform3D const &)*arg2);
+  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *SimulationFactory_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_SimulationFactory, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *SimulationFactory_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  return SWIG_Python_InitShadowInstance(args);
-}
-
-SWIGINTERN PyObject *_wrap_delete_AxesUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_Material(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  AxesUnitsWrap *arg1 = (AxesUnitsWrap *) 0 ;
+  Material *arg1 = (Material *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxesUnitsWrap, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_Material, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_AxesUnits" "', argument " "1"" of type '" "AxesUnitsWrap *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_Material" "', argument " "1"" of type '" "Material *""'"); 
   }
-  arg1 = reinterpret_cast< AxesUnitsWrap * >(argp1);
+  arg1 = reinterpret_cast< Material * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -119732,519 +119114,775 @@ fail:
 }
 
 
-SWIGINTERN PyObject *AxesUnits_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Material_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_AxesUnitsWrap, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_Material, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *_wrap_delete_IUnitConverter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *Material_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_HomogeneousMaterial__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
+  SwigValueWrapper< Material > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, SWIG_POINTER_DISOWN |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IUnitConverter" "', argument " "1"" of type '" "IUnitConverter *""'"); 
-  }
-  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = HomogeneousMaterial();
+  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IUnitConverter_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_HomogeneousMaterial__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  IUnitConverter *result = 0 ;
+  std::string *arg1 = 0 ;
+  double arg2 ;
+  double arg3 ;
+  kvector_t arg4 ;
+  int res1 = SWIG_OLDOBJ ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  void *argp4 ;
+  int res4 = 0 ;
+  SwigValueWrapper< Material > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_clone" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
-  result = (IUnitConverter *)((IUnitConverter const *)arg1)->clone();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "HomogeneousMaterial" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "HomogeneousMaterial" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  {
+    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "HomogeneousMaterial" "', argument " "4"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp4) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HomogeneousMaterial" "', argument " "4"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
+      arg4 = *temp;
+      if (SWIG_IsNewObj(res4)) delete temp;
+    }
+  }
+  result = HomogeneousMaterial((std::string const &)*arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IUnitConverter_dimension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_HomogeneousMaterial__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  size_t result;
+  std::string *arg1 = 0 ;
+  double arg2 ;
+  double arg3 ;
+  int res1 = SWIG_OLDOBJ ;
+  double val2 ;
+  int ecode2 = 0 ;
+  double val3 ;
+  int ecode3 = 0 ;
+  SwigValueWrapper< Material > result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_dimension" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
-  result = ((IUnitConverter const *)arg1)->dimension();
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "HomogeneousMaterial" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "HomogeneousMaterial" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = HomogeneousMaterial((std::string const &)*arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IUnitConverter_calculateMin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_HomogeneousMaterial__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
-  size_t arg2 ;
-  AxesUnits arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
+  std::string *arg1 = 0 ;
+  complex_t arg2 ;
+  kvector_t arg3 ;
+  int res1 = SWIG_OLDOBJ ;
+  std::complex< double > val2 ;
   int ecode2 = 0 ;
-  int val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  void *argp3 ;
+  int res3 = 0 ;
+  SwigValueWrapper< Material > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IUnitConverter_calculateMin", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_calculateMin" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  ecode2 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IUnitConverter_calculateMin" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IUnitConverter_calculateMin" "', argument " "3"" of type '" "AxesUnits""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "HomogeneousMaterial" "', argument " "2"" of type '" "complex_t""'");
   } 
-  arg3 = static_cast< AxesUnits >(val3);
-  result = (double)((IUnitConverter const *)arg1)->calculateMin(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = static_cast< complex_t >(val2);
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "HomogeneousMaterial" "', argument " "3"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HomogeneousMaterial" "', argument " "3"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = HomogeneousMaterial((std::string const &)*arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IUnitConverter_calculateMax(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_HomogeneousMaterial__SWIG_4(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
-  size_t arg2 ;
-  AxesUnits arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
+  std::string *arg1 = 0 ;
+  complex_t arg2 ;
+  int res1 = SWIG_OLDOBJ ;
+  std::complex< double > val2 ;
   int ecode2 = 0 ;
-  int val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
-  double result;
+  SwigValueWrapper< Material > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IUnitConverter_calculateMax", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_calculateMax" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "HomogeneousMaterial" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  ecode2 = SWIG_AsVal_std_complex_Sl_double_Sg_(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IUnitConverter_calculateMax" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IUnitConverter_calculateMax" "', argument " "3"" of type '" "AxesUnits""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "HomogeneousMaterial" "', argument " "2"" of type '" "complex_t""'");
   } 
-  arg3 = static_cast< AxesUnits >(val3);
-  result = (double)((IUnitConverter const *)arg1)->calculateMax(arg2,arg3);
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  arg2 = static_cast< complex_t >(val2);
+  result = HomogeneousMaterial((std::string const &)*arg1,arg2);
+  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
-  return NULL;
+  if (SWIG_IsNewObj(res1)) delete arg1;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_HomogeneousMaterial(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[5] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "HomogeneousMaterial", 0, 4, argv))) SWIG_fail;
+  --argc;
+  if (argc == 0) {
+    return _wrap_HomogeneousMaterial__SWIG_0(self, argc, argv);
+  }
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_std_complex_Sl_double_Sg_(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_HomogeneousMaterial__SWIG_4(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_HomogeneousMaterial__SWIG_2(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_std_complex_Sl_double_Sg_(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        int res = SWIG_ConvertPtr(argv[2], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+        _v = SWIG_CheckState(res);
+        if (_v) {
+          return _wrap_HomogeneousMaterial__SWIG_3(self, argc, argv);
+        }
+      }
+    }
+  }
+  if (argc == 4) {
+    int _v;
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_HomogeneousMaterial__SWIG_1(self, argc, argv);
+          }
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'HomogeneousMaterial'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    HomogeneousMaterial()\n"
+    "    HomogeneousMaterial(std::string const &,double,double,kvector_t)\n"
+    "    HomogeneousMaterial(std::string const &,double,double)\n"
+    "    HomogeneousMaterial(std::string const &,complex_t,kvector_t)\n"
+    "    HomogeneousMaterial(std::string const &,complex_t)\n");
+  return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IUnitConverter_axisSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_MaterialBySLD__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **SWIGUNUSEDPARM(swig_obj)) {
   PyObject *resultobj = 0;
-  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
-  int ecode2 = 0 ;
-  PyObject *swig_obj[2] ;
-  size_t result;
+  SwigValueWrapper< Material > result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IUnitConverter_axisSize", 2, 2, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_axisSize" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
-  }
-  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IUnitConverter_axisSize" "', argument " "2"" of type '" "size_t""'");
-  } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((IUnitConverter const *)arg1)->axisSize(arg2);
-  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  if ((nobjs < 0) || (nobjs > 0)) SWIG_fail;
+  result = MaterialBySLD();
+  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IUnitConverter_axisName__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_MaterialBySLD__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
-  size_t arg2 ;
-  AxesUnits arg3 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
+  std::string *arg1 = 0 ;
+  double arg2 ;
+  double arg3 ;
+  kvector_t arg4 ;
+  int res1 = SWIG_OLDOBJ ;
+  double val2 ;
   int ecode2 = 0 ;
-  int val3 ;
+  double val3 ;
   int ecode3 = 0 ;
-  std::string result;
+  void *argp4 ;
+  int res4 = 0 ;
+  SwigValueWrapper< Material > result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_axisName" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MaterialBySLD" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MaterialBySLD" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IUnitConverter_axisName" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MaterialBySLD" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< size_t >(val2);
-  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
   if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IUnitConverter_axisName" "', argument " "3"" of type '" "AxesUnits""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "MaterialBySLD" "', argument " "3"" of type '" "double""'");
   } 
-  arg3 = static_cast< AxesUnits >(val3);
-  result = ((IUnitConverter const *)arg1)->axisName(arg2,arg3);
-  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
+  arg3 = static_cast< double >(val3);
+  {
+    res4 = SWIG_ConvertPtr(swig_obj[3], &argp4, SWIGTYPE_p_BasicVector3DT_double_t,  0  | 0);
+    if (!SWIG_IsOK(res4)) {
+      SWIG_exception_fail(SWIG_ArgError(res4), "in method '" "MaterialBySLD" "', argument " "4"" of type '" "kvector_t""'"); 
+    }  
+    if (!argp4) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MaterialBySLD" "', argument " "4"" of type '" "kvector_t""'");
+    } else {
+      kvector_t * temp = reinterpret_cast< kvector_t * >(argp4);
+      arg4 = *temp;
+      if (SWIG_IsNewObj(res4)) delete temp;
+    }
+  }
+  result = MaterialBySLD((std::string const &)*arg1,arg2,arg3,arg4);
+  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IUnitConverter_axisName__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_MaterialBySLD__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
-  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
-  size_t arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  size_t val2 ;
+  std::string *arg1 = 0 ;
+  double arg2 ;
+  double arg3 ;
+  int res1 = SWIG_OLDOBJ ;
+  double val2 ;
   int ecode2 = 0 ;
-  std::string result;
+  double val3 ;
+  int ecode3 = 0 ;
+  SwigValueWrapper< Material > result;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_axisName" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  {
+    std::string *ptr = (std::string *)0;
+    res1 = SWIG_AsPtr_std_string(swig_obj[0], &ptr);
+    if (!SWIG_IsOK(res1)) {
+      SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "MaterialBySLD" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "MaterialBySLD" "', argument " "1"" of type '" "std::string const &""'"); 
+    }
+    arg1 = ptr;
   }
-  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
-  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
   if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IUnitConverter_axisName" "', argument " "2"" of type '" "size_t""'");
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "MaterialBySLD" "', argument " "2"" of type '" "double""'");
   } 
-  arg2 = static_cast< size_t >(val2);
-  result = ((IUnitConverter const *)arg1)->axisName(arg2);
-  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
+  arg2 = static_cast< double >(val2);
+  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "MaterialBySLD" "', argument " "3"" of type '" "double""'");
+  } 
+  arg3 = static_cast< double >(val3);
+  result = MaterialBySLD((std::string const &)*arg1,arg2,arg3);
+  resultobj = SWIG_NewPointerObj((new Material(static_cast< const Material& >(result))), SWIGTYPE_p_Material, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res1)) delete arg1;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IUnitConverter_axisName(PyObject *self, PyObject *args) {
+SWIGINTERN PyObject *_wrap_MaterialBySLD(PyObject *self, PyObject *args) {
   Py_ssize_t argc;
-  PyObject *argv[4] = {
+  PyObject *argv[5] = {
     0
   };
   
-  if (!(argc = SWIG_Python_UnpackTuple(args, "IUnitConverter_axisName", 0, 3, argv))) SWIG_fail;
+  if (!(argc = SWIG_Python_UnpackTuple(args, "MaterialBySLD", 0, 4, argv))) SWIG_fail;
   --argc;
-  if (argc == 2) {
+  if (argc == 0) {
+    return _wrap_MaterialBySLD__SWIG_0(self, argc, argv);
+  }
+  if (argc == 3) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IUnitConverter, 0);
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        int res = SWIG_AsVal_double(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
-        return _wrap_IUnitConverter_axisName__SWIG_1(self, argc, argv);
+        {
+          int res = SWIG_AsVal_double(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_MaterialBySLD__SWIG_2(self, argc, argv);
+        }
       }
     }
   }
-  if (argc == 3) {
+  if (argc == 4) {
     int _v;
-    void *vptr = 0;
-    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IUnitConverter, 0);
+    int res = SWIG_AsPtr_std_string(argv[0], (std::string**)(0));
     _v = SWIG_CheckState(res);
     if (_v) {
       {
-        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        int res = SWIG_AsVal_double(argv[1], NULL);
         _v = SWIG_CheckState(res);
       }
       if (_v) {
         {
-          int res = SWIG_AsVal_int(argv[2], NULL);
+          int res = SWIG_AsVal_double(argv[2], NULL);
           _v = SWIG_CheckState(res);
         }
         if (_v) {
-          return _wrap_IUnitConverter_axisName__SWIG_0(self, argc, argv);
+          int res = SWIG_ConvertPtr(argv[3], 0, SWIGTYPE_p_BasicVector3DT_double_t, SWIG_POINTER_NO_NULL | 0);
+          _v = SWIG_CheckState(res);
+          if (_v) {
+            return _wrap_MaterialBySLD__SWIG_1(self, argc, argv);
+          }
         }
       }
     }
   }
   
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IUnitConverter_axisName'.\n"
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'MaterialBySLD'.\n"
     "  Possible C/C++ prototypes are:\n"
-    "    IUnitConverter::axisName(size_t,AxesUnits) const\n"
-    "    IUnitConverter::axisName(size_t) const\n");
+    "    MaterialBySLD()\n"
+    "    MaterialBySLD(std::string const &,double,double,kvector_t)\n"
+    "    MaterialBySLD(std::string const &,double,double)\n");
   return 0;
 }
 
 
-SWIGINTERN PyObject *_wrap_IUnitConverter_availableUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SampleBuilderFactoryTemp_createItem(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
+  IFactory< std::string,IMultiLayerBuilder > *arg1 = (IFactory< std::string,IMultiLayerBuilder > *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  SwigValueWrapper< std::vector< enum AxesUnitsWrap::AxesUnits,std::allocator< enum AxesUnitsWrap::AxesUnits > > > result;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
+  Swig::Director *director = 0;
+  IMultiLayerBuilder *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SampleBuilderFactoryTemp_createItem", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_availableUnits" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SampleBuilderFactoryTemp_createItem" "', argument " "1"" of type '" "IFactory< std::string,IMultiLayerBuilder > const *""'"); 
   }
-  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
-  result = ((IUnitConverter const *)arg1)->availableUnits();
-  resultobj = SWIG_NewPointerObj((new std::vector< AxesUnits,std::allocator< AxesUnits > >(static_cast< const std::vector< AxesUnits,std::allocator< AxesUnits > >& >(result))), SWIGTYPE_p_std__vectorT_AxesUnitsWrap__AxesUnits_std__allocatorT_AxesUnitsWrap__AxesUnits_t_t, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IFactory< std::string,IMultiLayerBuilder > * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SampleBuilderFactoryTemp_createItem" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SampleBuilderFactoryTemp_createItem" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  result = (IMultiLayerBuilder *)((IFactory< std::string,IMultiLayerBuilder > const *)arg1)->createItem((std::string const &)*arg2);
+  director = SWIG_DIRECTOR_CAST(result);
+  if (director) {
+    resultobj = director->swig_get_self();
+    Py_INCREF(resultobj);
+  } else {
+    {
+      std::shared_ptr<  IMultiLayerBuilder > *smartresult = result ? new std::shared_ptr<  IMultiLayerBuilder >(result SWIG_NO_NULL_DELETER_0) : 0;
+      resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(smartresult), SWIGTYPE_p_std__shared_ptrT_IMultiLayerBuilder_t, 0 | SWIG_POINTER_OWN);
+    }
+  }
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IUnitConverter_defaultUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SampleBuilderFactoryTemp_registerItem(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
+  IFactory< std::string,IMultiLayerBuilder > *arg1 = (IFactory< std::string,IMultiLayerBuilder > *) 0 ;
+  std::string *arg2 = 0 ;
+  SwigValueWrapper< std::function< IMultiLayerBuilder *() > > arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  AxesUnits result;
+  int res2 = SWIG_OLDOBJ ;
+  void *argp3 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
+  bool result;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SampleBuilderFactoryTemp_registerItem", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_defaultUnits" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SampleBuilderFactoryTemp_registerItem" "', argument " "1"" of type '" "IFactory< std::string,IMultiLayerBuilder > *""'"); 
   }
-  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
-  result = (AxesUnits)((IUnitConverter const *)arg1)->defaultUnits();
-  resultobj = SWIG_From_int(static_cast< int >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *IUnitConverter_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *obj;
-  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IUnitConverter, SWIG_NewClientData(obj));
-  return SWIG_Py_Void();
-}
-
-SWIGINTERN PyObject *_wrap_new_IterationInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
-  PyObject *resultobj = 0;
-  IterationInfo *result = 0 ;
-  
-  if (!SWIG_Python_UnpackTuple(args, "new_IterationInfo", 0, 0, 0)) SWIG_fail;
-  result = (IterationInfo *)new IterationInfo();
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IterationInfo, SWIG_POINTER_NEW |  0 );
+  arg1 = reinterpret_cast< IFactory< std::string,IMultiLayerBuilder > * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SampleBuilderFactoryTemp_registerItem" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SampleBuilderFactoryTemp_registerItem" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_std__functionT_IMultiLayerBuilder_pfF_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "SampleBuilderFactoryTemp_registerItem" "', argument " "3"" of type '" "IFactory< std::string,IMultiLayerBuilder >::CreateItemCallback""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SampleBuilderFactoryTemp_registerItem" "', argument " "3"" of type '" "IFactory< std::string,IMultiLayerBuilder >::CreateItemCallback""'");
+    } else {
+      IFactory< std::string,IMultiLayerBuilder >::CreateItemCallback * temp = reinterpret_cast< IFactory< std::string,IMultiLayerBuilder >::CreateItemCallback * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
+  }
+  result = (bool)(arg1)->registerItem((std::string const &)*arg2,arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IterationInfo_update(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SampleBuilderFactoryTemp_contains(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IterationInfo *arg1 = (IterationInfo *) 0 ;
-  Fit::Parameters *arg2 = 0 ;
-  double arg3 ;
+  IFactory< std::string,IMultiLayerBuilder > *arg1 = (IFactory< std::string,IMultiLayerBuilder > *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  void *argp2 = 0 ;
-  int res2 = 0 ;
-  double val3 ;
-  int ecode3 = 0 ;
-  PyObject *swig_obj[3] ;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
+  bool result;
   
-  if (!SWIG_Python_UnpackTuple(args, "IterationInfo_update", 3, 3, swig_obj)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IterationInfo, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SampleBuilderFactoryTemp_contains", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IterationInfo_update" "', argument " "1"" of type '" "IterationInfo *""'"); 
-  }
-  arg1 = reinterpret_cast< IterationInfo * >(argp1);
-  res2 = SWIG_ConvertPtr(swig_obj[1], &argp2, SWIGTYPE_p_Fit__Parameters,  0  | 0);
-  if (!SWIG_IsOK(res2)) {
-    SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "IterationInfo_update" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SampleBuilderFactoryTemp_contains" "', argument " "1"" of type '" "IFactory< std::string,IMultiLayerBuilder > const *""'"); 
   }
-  if (!argp2) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "IterationInfo_update" "', argument " "2"" of type '" "Fit::Parameters const &""'"); 
+  arg1 = reinterpret_cast< IFactory< std::string,IMultiLayerBuilder > * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SampleBuilderFactoryTemp_contains" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SampleBuilderFactoryTemp_contains" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
   }
-  arg2 = reinterpret_cast< Fit::Parameters * >(argp2);
-  ecode3 = SWIG_AsVal_double(swig_obj[2], &val3);
-  if (!SWIG_IsOK(ecode3)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IterationInfo_update" "', argument " "3"" of type '" "double""'");
-  } 
-  arg3 = static_cast< double >(val3);
-  (arg1)->update((Fit::Parameters const &)*arg2,arg3);
-  resultobj = SWIG_Py_Void();
+  result = (bool)((IFactory< std::string,IMultiLayerBuilder > const *)arg1)->contains((std::string const &)*arg2);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IterationInfo_iterationCount(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SampleBuilderFactoryTemp_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IterationInfo *arg1 = (IterationInfo *) 0 ;
+  IFactory< std::string,IMultiLayerBuilder > *arg1 = (IFactory< std::string,IMultiLayerBuilder > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  unsigned int result;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IterationInfo, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IterationInfo_iterationCount" "', argument " "1"" of type '" "IterationInfo const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SampleBuilderFactoryTemp_size" "', argument " "1"" of type '" "IFactory< std::string,IMultiLayerBuilder > const *""'"); 
   }
-  arg1 = reinterpret_cast< IterationInfo * >(argp1);
-  result = (unsigned int)((IterationInfo const *)arg1)->iterationCount();
-  resultobj = SWIG_From_unsigned_SS_int(static_cast< unsigned int >(result));
+  arg1 = reinterpret_cast< IFactory< std::string,IMultiLayerBuilder > * >(argp1);
+  result = ((IFactory< std::string,IMultiLayerBuilder > const *)arg1)->size();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IterationInfo_chi2(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_new_SampleBuilderFactoryTemp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IterationInfo *arg1 = (IterationInfo *) 0 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  double result;
+  IFactory< std::string,IMultiLayerBuilder > *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IterationInfo, 0 |  0 );
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IterationInfo_chi2" "', argument " "1"" of type '" "IterationInfo const *""'"); 
-  }
-  arg1 = reinterpret_cast< IterationInfo * >(argp1);
-  result = (double)((IterationInfo const *)arg1)->chi2();
-  resultobj = SWIG_From_double(static_cast< double >(result));
+  if (!SWIG_Python_UnpackTuple(args, "new_SampleBuilderFactoryTemp", 0, 0, 0)) SWIG_fail;
+  result = (IFactory< std::string,IMultiLayerBuilder > *)new IFactory< std::string,IMultiLayerBuilder >();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IterationInfo_parameters(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_SampleBuilderFactoryTemp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IterationInfo *arg1 = (IterationInfo *) 0 ;
+  IFactory< std::string,IMultiLayerBuilder > *arg1 = (IFactory< std::string,IMultiLayerBuilder > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
-  Fit::Parameters result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IterationInfo, 0 |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IterationInfo_parameters" "', argument " "1"" of type '" "IterationInfo const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SampleBuilderFactoryTemp" "', argument " "1"" of type '" "IFactory< std::string,IMultiLayerBuilder > *""'"); 
   }
-  arg1 = reinterpret_cast< IterationInfo * >(argp1);
-  result = ((IterationInfo const *)arg1)->parameters();
-  resultobj = SWIG_NewPointerObj((new Fit::Parameters(static_cast< const Fit::Parameters& >(result))), SWIGTYPE_p_Fit__Parameters, SWIG_POINTER_OWN |  0 );
+  arg1 = reinterpret_cast< IFactory< std::string,IMultiLayerBuilder > * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_IterationInfo_parameterMap(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *SampleBuilderFactoryTemp_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IFactoryT_std__string_IMultiLayerBuilder_t, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *SampleBuilderFactoryTemp_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
+SWIGINTERN PyObject *_wrap_new_SampleBuilderFactory(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IterationInfo *arg1 = (IterationInfo *) 0 ;
+  SampleBuilderFactory *result = 0 ;
+  
+  if (!SWIG_Python_UnpackTuple(args, "new_SampleBuilderFactory", 0, 0, 0)) SWIG_fail;
+  result = (SampleBuilderFactory *)new SampleBuilderFactory();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SampleBuilderFactory, SWIG_POINTER_NEW |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_SampleBuilderFactory_createSample(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  SampleBuilderFactory *arg1 = (SampleBuilderFactory *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  PyObject *swig_obj[1] ;
-  std::map< std::string,double,std::less< std::string >,std::allocator< std::pair< std::string const,double > > > result;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
+  MultiLayer *result = 0 ;
   
-  if (!args) SWIG_fail;
-  swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IterationInfo, 0 |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "SampleBuilderFactory_createSample", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SampleBuilderFactory, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IterationInfo_parameterMap" "', argument " "1"" of type '" "IterationInfo const *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SampleBuilderFactory_createSample" "', argument " "1"" of type '" "SampleBuilderFactory *""'"); 
   }
-  arg1 = reinterpret_cast< IterationInfo * >(argp1);
-  result = ((IterationInfo const *)arg1)->parameterMap();
-  resultobj = swig::from(static_cast< std::map< std::string,double,std::less< std::string >,std::allocator< std::pair< std::string const,double > > > >(result));
+  arg1 = reinterpret_cast< SampleBuilderFactory * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SampleBuilderFactory_createSample" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SampleBuilderFactory_createSample" "', argument " "2"" of type '" "std::string const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  result = (MultiLayer *)(arg1)->createSample((std::string const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_MultiLayer, 0 |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_IterationInfo(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_delete_SampleBuilderFactory(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  IterationInfo *arg1 = (IterationInfo *) 0 ;
+  SampleBuilderFactory *arg1 = (SampleBuilderFactory *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IterationInfo, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SampleBuilderFactory, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IterationInfo" "', argument " "1"" of type '" "IterationInfo *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SampleBuilderFactory" "', argument " "1"" of type '" "SampleBuilderFactory *""'"); 
   }
-  arg1 = reinterpret_cast< IterationInfo * >(argp1);
+  arg1 = reinterpret_cast< SampleBuilderFactory * >(argp1);
   delete arg1;
   resultobj = SWIG_Py_Void();
   return resultobj;
@@ -120253,518 +119891,259 @@ fail:
 }
 
 
-SWIGINTERN PyObject *IterationInfo_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *SampleBuilderFactory_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_IterationInfo, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_SampleBuilderFactory, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
-SWIGINTERN PyObject *IterationInfo_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *SampleBuilderFactory_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   return SWIG_Python_InitShadowInstance(args);
 }
 
-SWIGINTERN PyObject *_wrap_FindPeaks__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationFactoryTemp_createItem(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = 0 ;
-  double arg2 ;
-  std::string *arg3 = 0 ;
-  double arg4 ;
+  IFactory< std::string,Simulation > *arg1 = (IFactory< std::string,Simulation > *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  double val4 ;
-  int ecode4 = 0 ;
-  std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > result;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
+  Simulation *result = 0 ;
   
-  if ((nobjs < 4) || (nobjs > 4)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Histogram2D,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "SimulationFactoryTemp_createItem", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_Simulation_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationFactoryTemp_createItem" "', argument " "1"" of type '" "IFactory< std::string,Simulation > const *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FindPeaks" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
+  arg1 = reinterpret_cast< IFactory< std::string,Simulation > * >(argp1);
   {
     std::string *ptr = (std::string *)0;
-    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FindPeaks" "', argument " "3"" of type '" "std::string const &""'"); 
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SimulationFactoryTemp_createItem" "', argument " "2"" of type '" "std::string const &""'"); 
     }
     if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FindPeaks" "', argument " "3"" of type '" "std::string const &""'"); 
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SimulationFactoryTemp_createItem" "', argument " "2"" of type '" "std::string const &""'"); 
     }
-    arg3 = ptr;
+    arg2 = ptr;
   }
-  ecode4 = SWIG_AsVal_double(swig_obj[3], &val4);
-  if (!SWIG_IsOK(ecode4)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode4), "in method '" "FindPeaks" "', argument " "4"" of type '" "double""'");
-  } 
-  arg4 = static_cast< double >(val4);
-  result = SpectrumUtils::FindPeaks((Histogram2D const &)*arg1,arg2,(std::string const &)*arg3,arg4);
-  resultobj = swig::from(static_cast< std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > >(result));
-  if (SWIG_IsNewObj(res3)) delete arg3;
+  result = (Simulation *)((IFactory< std::string,Simulation > const *)arg1)->createItem((std::string const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_Simulation, 0 |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FindPeaks__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationFactoryTemp_registerItem(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = 0 ;
-  double arg2 ;
-  std::string *arg3 = 0 ;
+  IFactory< std::string,Simulation > *arg1 = (IFactory< std::string,Simulation > *) 0 ;
+  std::string *arg2 = 0 ;
+  SwigValueWrapper< std::function< Simulation *() > > arg3 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  int res3 = SWIG_OLDOBJ ;
-  std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > result;
+  int res2 = SWIG_OLDOBJ ;
+  void *argp3 ;
+  int res3 = 0 ;
+  PyObject *swig_obj[3] ;
+  bool result;
   
-  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Histogram2D,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "SimulationFactoryTemp_registerItem", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_Simulation_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationFactoryTemp_registerItem" "', argument " "1"" of type '" "IFactory< std::string,Simulation > *""'"); 
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FindPeaks" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
+  arg1 = reinterpret_cast< IFactory< std::string,Simulation > * >(argp1);
   {
     std::string *ptr = (std::string *)0;
-    res3 = SWIG_AsPtr_std_string(swig_obj[2], &ptr);
-    if (!SWIG_IsOK(res3)) {
-      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "FindPeaks" "', argument " "3"" of type '" "std::string const &""'"); 
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SimulationFactoryTemp_registerItem" "', argument " "2"" of type '" "std::string const &""'"); 
     }
     if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FindPeaks" "', argument " "3"" of type '" "std::string const &""'"); 
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SimulationFactoryTemp_registerItem" "', argument " "2"" of type '" "std::string const &""'"); 
     }
-    arg3 = ptr;
-  }
-  result = SpectrumUtils::FindPeaks((Histogram2D const &)*arg1,arg2,(std::string const &)*arg3);
-  resultobj = swig::from(static_cast< std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > >(result));
-  if (SWIG_IsNewObj(res3)) delete arg3;
-  return resultobj;
-fail:
-  if (SWIG_IsNewObj(res3)) delete arg3;
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FindPeaks__SWIG_2(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
-  PyObject *resultobj = 0;
-  Histogram2D *arg1 = 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > result;
-  
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Histogram2D,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
+    arg2 = ptr;
   }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
+  {
+    res3 = SWIG_ConvertPtr(swig_obj[2], &argp3, SWIGTYPE_p_std__functionT_Simulation_pfF_t,  0  | 0);
+    if (!SWIG_IsOK(res3)) {
+      SWIG_exception_fail(SWIG_ArgError(res3), "in method '" "SimulationFactoryTemp_registerItem" "', argument " "3"" of type '" "IFactory< std::string,Simulation >::CreateItemCallback""'"); 
+    }  
+    if (!argp3) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SimulationFactoryTemp_registerItem" "', argument " "3"" of type '" "IFactory< std::string,Simulation >::CreateItemCallback""'");
+    } else {
+      IFactory< std::string,Simulation >::CreateItemCallback * temp = reinterpret_cast< IFactory< std::string,Simulation >::CreateItemCallback * >(argp3);
+      arg3 = *temp;
+      if (SWIG_IsNewObj(res3)) delete temp;
+    }
   }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "FindPeaks" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = SpectrumUtils::FindPeaks((Histogram2D const &)*arg1,arg2);
-  resultobj = swig::from(static_cast< std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > >(result));
+  result = (bool)(arg1)->registerItem((std::string const &)*arg2,arg3);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return resultobj;
 fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_FindPeaks__SWIG_3(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_SimulationFactoryTemp_contains(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  Histogram2D *arg1 = 0 ;
+  IFactory< std::string,Simulation > *arg1 = (IFactory< std::string,Simulation > *) 0 ;
+  std::string *arg2 = 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > result;
+  int res2 = SWIG_OLDOBJ ;
+  PyObject *swig_obj[2] ;
+  bool result;
   
-  if ((nobjs < 1) || (nobjs > 1)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_Histogram2D,  0  | 0);
+  if (!SWIG_Python_UnpackTuple(args, "SimulationFactoryTemp_contains", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_Simulation_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "FindPeaks" "', argument " "1"" of type '" "Histogram2D const &""'"); 
-  }
-  arg1 = reinterpret_cast< Histogram2D * >(argp1);
-  result = SpectrumUtils::FindPeaks((Histogram2D const &)*arg1);
-  resultobj = swig::from(static_cast< std::vector< std::pair< double,double >,std::allocator< std::pair< double,double > > > >(result));
-  return resultobj;
-fail:
-  return NULL;
-}
-
-
-SWIGINTERN PyObject *_wrap_FindPeaks(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[5] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "FindPeaks", 0, 4, argv))) SWIG_fail;
-  --argc;
-  if (argc == 1) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Histogram2D, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      return _wrap_FindPeaks__SWIG_3(self, argc, argv);
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Histogram2D, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_FindPeaks__SWIG_2(self, argc, argv);
-      }
-    }
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationFactoryTemp_contains" "', argument " "1"" of type '" "IFactory< std::string,Simulation > const *""'"); 
   }
-  if (argc == 3) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Histogram2D, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          return _wrap_FindPeaks__SWIG_1(self, argc, argv);
-        }
-      }
+  arg1 = reinterpret_cast< IFactory< std::string,Simulation > * >(argp1);
+  {
+    std::string *ptr = (std::string *)0;
+    res2 = SWIG_AsPtr_std_string(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "SimulationFactoryTemp_contains" "', argument " "2"" of type '" "std::string const &""'"); 
     }
-  }
-  if (argc == 4) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_Histogram2D, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        int res = SWIG_AsPtr_std_string(argv[2], (std::string**)(0));
-        _v = SWIG_CheckState(res);
-        if (_v) {
-          {
-            int res = SWIG_AsVal_double(argv[3], NULL);
-            _v = SWIG_CheckState(res);
-          }
-          if (_v) {
-            return _wrap_FindPeaks__SWIG_0(self, argc, argv);
-          }
-        }
-      }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "SimulationFactoryTemp_contains" "', argument " "2"" of type '" "std::string const &""'"); 
     }
+    arg2 = ptr;
   }
-  
+  result = (bool)((IFactory< std::string,Simulation > const *)arg1)->contains((std::string const &)*arg2);
+  resultobj = SWIG_From_bool(static_cast< bool >(result));
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return resultobj;
 fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'FindPeaks'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    SpectrumUtils::FindPeaks(Histogram2D const &,double,std::string const &,double)\n"
-    "    SpectrumUtils::FindPeaks(Histogram2D const &,double,std::string const &)\n"
-    "    SpectrumUtils::FindPeaks(Histogram2D const &,double)\n"
-    "    SpectrumUtils::FindPeaks(Histogram2D const &)\n");
-  return 0;
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_delete_ScanResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *_wrap_SimulationFactoryTemp_size(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  ScanResolution *arg1 = (ScanResolution *) 0 ;
+  IFactory< std::string,Simulation > *arg1 = (IFactory< std::string,Simulation > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
   PyObject *swig_obj[1] ;
+  size_t result;
   
   if (!args) SWIG_fail;
   swig_obj[0] = args;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ScanResolution, SWIG_POINTER_DISOWN |  0 );
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_Simulation_t, 0 |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ScanResolution" "', argument " "1"" of type '" "ScanResolution *""'"); 
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "SimulationFactoryTemp_size" "', argument " "1"" of type '" "IFactory< std::string,Simulation > const *""'"); 
   }
-  arg1 = reinterpret_cast< ScanResolution * >(argp1);
-  delete arg1;
-  resultobj = SWIG_Py_Void();
+  arg1 = reinterpret_cast< IFactory< std::string,Simulation > * >(argp1);
+  result = ((IFactory< std::string,Simulation > const *)arg1)->size();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ScanResolution_scanRelativeResolution__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_SimulationFactoryTemp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistribution *arg1 = 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  ScanResolution *result = 0 ;
+  IFactory< std::string,Simulation > *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_RangedDistribution,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ScanResolution_scanRelativeResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ScanResolution_scanRelativeResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
-  }
-  arg1 = reinterpret_cast< RangedDistribution * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ScanResolution_scanRelativeResolution" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (ScanResolution *)ScanResolution::scanRelativeResolution((RangedDistribution const &)*arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ScanResolution, SWIG_POINTER_OWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "new_SimulationFactoryTemp", 0, 0, 0)) SWIG_fail;
+  result = (IFactory< std::string,Simulation > *)new IFactory< std::string,Simulation >();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IFactoryT_std__string_Simulation_t, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ScanResolution_scanRelativeResolution__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_SimulationFactoryTemp(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistribution *arg1 = 0 ;
-  std::vector< double,std::allocator< double > > *arg2 = 0 ;
+  IFactory< std::string,Simulation > *arg1 = (IFactory< std::string,Simulation > *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  ScanResolution *result = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_RangedDistribution,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IFactoryT_std__string_Simulation_t, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ScanResolution_scanRelativeResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ScanResolution_scanRelativeResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
-  }
-  arg1 = reinterpret_cast< RangedDistribution * >(argp1);
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res2 = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ScanResolution_scanRelativeResolution" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ScanResolution_scanRelativeResolution" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SimulationFactoryTemp" "', argument " "1"" of type '" "IFactory< std::string,Simulation > *""'"); 
   }
-  result = (ScanResolution *)ScanResolution::scanRelativeResolution((RangedDistribution const &)*arg1,(std::vector< double,std::allocator< double > > const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ScanResolution, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< IFactory< std::string,Simulation > * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ScanResolution_scanRelativeResolution(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ScanResolution_scanRelativeResolution", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_RangedDistribution, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_ScanResolution_scanRelativeResolution__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_RangedDistribution, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = swig::asptr(argv[1], (std::vector< double,std::allocator< double > >**)(0));
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_ScanResolution_scanRelativeResolution__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ScanResolution_scanRelativeResolution'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    ScanResolution::scanRelativeResolution(RangedDistribution const &,double)\n"
-    "    ScanResolution::scanRelativeResolution(RangedDistribution const &,std::vector< double,std::allocator< double > > const &)\n");
-  return 0;
+SWIGINTERN PyObject *SimulationFactoryTemp_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IFactoryT_std__string_Simulation_t, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *SimulationFactoryTemp_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
 
-SWIGINTERN PyObject *_wrap_ScanResolution_scanAbsoluteResolution__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_new_SimulationFactory(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistribution *arg1 = 0 ;
-  double arg2 ;
-  void *argp1 = 0 ;
-  int res1 = 0 ;
-  double val2 ;
-  int ecode2 = 0 ;
-  ScanResolution *result = 0 ;
+  SimulationFactory *result = 0 ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_RangedDistribution,  0  | 0);
-  if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
-  }
-  arg1 = reinterpret_cast< RangedDistribution * >(argp1);
-  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
-  if (!SWIG_IsOK(ecode2)) {
-    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "2"" of type '" "double""'");
-  } 
-  arg2 = static_cast< double >(val2);
-  result = (ScanResolution *)ScanResolution::scanAbsoluteResolution((RangedDistribution const &)*arg1,arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ScanResolution, SWIG_POINTER_OWN |  0 );
+  if (!SWIG_Python_UnpackTuple(args, "new_SimulationFactory", 0, 0, 0)) SWIG_fail;
+  result = (SimulationFactory *)new SimulationFactory();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_SimulationFactory, SWIG_POINTER_NEW |  0 );
   return resultobj;
 fail:
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ScanResolution_scanAbsoluteResolution__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+SWIGINTERN PyObject *_wrap_delete_SimulationFactory(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *resultobj = 0;
-  RangedDistribution *arg1 = 0 ;
-  std::vector< double,std::allocator< double > > *arg2 = 0 ;
+  SimulationFactory *arg1 = (SimulationFactory *) 0 ;
   void *argp1 = 0 ;
   int res1 = 0 ;
-  int res2 = SWIG_OLDOBJ ;
-  ScanResolution *result = 0 ;
+  PyObject *swig_obj[1] ;
   
-  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
-  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_RangedDistribution,  0  | 0);
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_SimulationFactory, SWIG_POINTER_DISOWN |  0 );
   if (!SWIG_IsOK(res1)) {
-    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
-  }
-  if (!argp1) {
-    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
-  }
-  arg1 = reinterpret_cast< RangedDistribution * >(argp1);
-  {
-    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
-    res2 = swig::asptr(swig_obj[1], &ptr);
-    if (!SWIG_IsOK(res2)) {
-      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    if (!ptr) {
-      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
-    }
-    arg2 = ptr;
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_SimulationFactory" "', argument " "1"" of type '" "SimulationFactory *""'"); 
   }
-  result = (ScanResolution *)ScanResolution::scanAbsoluteResolution((RangedDistribution const &)*arg1,(std::vector< double,std::allocator< double > > const &)*arg2);
-  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ScanResolution, SWIG_POINTER_OWN |  0 );
-  if (SWIG_IsNewObj(res2)) delete arg2;
+  arg1 = reinterpret_cast< SimulationFactory * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
   return resultobj;
 fail:
-  if (SWIG_IsNewObj(res2)) delete arg2;
   return NULL;
 }
 
 
-SWIGINTERN PyObject *_wrap_ScanResolution_scanAbsoluteResolution(PyObject *self, PyObject *args) {
-  Py_ssize_t argc;
-  PyObject *argv[3] = {
-    0
-  };
-  
-  if (!(argc = SWIG_Python_UnpackTuple(args, "ScanResolution_scanAbsoluteResolution", 0, 2, argv))) SWIG_fail;
-  --argc;
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_RangedDistribution, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      {
-        int res = SWIG_AsVal_double(argv[1], NULL);
-        _v = SWIG_CheckState(res);
-      }
-      if (_v) {
-        return _wrap_ScanResolution_scanAbsoluteResolution__SWIG_0(self, argc, argv);
-      }
-    }
-  }
-  if (argc == 2) {
-    int _v;
-    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_RangedDistribution, SWIG_POINTER_NO_NULL | 0);
-    _v = SWIG_CheckState(res);
-    if (_v) {
-      int res = swig::asptr(argv[1], (std::vector< double,std::allocator< double > >**)(0));
-      _v = SWIG_CheckState(res);
-      if (_v) {
-        return _wrap_ScanResolution_scanAbsoluteResolution__SWIG_1(self, argc, argv);
-      }
-    }
-  }
-  
-fail:
-  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ScanResolution_scanAbsoluteResolution'.\n"
-    "  Possible C/C++ prototypes are:\n"
-    "    ScanResolution::scanAbsoluteResolution(RangedDistribution const &,double)\n"
-    "    ScanResolution::scanAbsoluteResolution(RangedDistribution const &,std::vector< double,std::allocator< double > > const &)\n");
-  return 0;
-}
-
-
-SWIGINTERN PyObject *ScanResolution_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+SWIGINTERN PyObject *SimulationFactory_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
   PyObject *obj;
   if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
-  SWIG_TypeNewClientData(SWIGTYPE_p_ScanResolution, SWIG_NewClientData(obj));
+  SWIG_TypeNewClientData(SWIGTYPE_p_SimulationFactory, SWIG_NewClientData(obj));
   return SWIG_Py_Void();
 }
 
+SWIGINTERN PyObject *SimulationFactory_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  return SWIG_Python_InitShadowInstance(args);
+}
+
 SWIGINTERN PyObject *_wrap_new_AngularSpecScan__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   double arg1 ;
@@ -121653,6 +121032,382 @@ SWIGINTERN PyObject *AngularSpecScan_swiginit(PyObject *SWIGUNUSEDPARM(self), Py
   return SWIG_Python_InitShadowInstance(args);
 }
 
+SWIGINTERN PyObject *_wrap_delete_AxesUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  AxesUnitsWrap *arg1 = (AxesUnitsWrap *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_AxesUnitsWrap, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_AxesUnits" "', argument " "1"" of type '" "AxesUnitsWrap *""'"); 
+  }
+  arg1 = reinterpret_cast< AxesUnitsWrap * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *AxesUnits_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_AxesUnitsWrap, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
+SWIGINTERN PyObject *_wrap_delete_IUnitConverter(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_IUnitConverter" "', argument " "1"" of type '" "IUnitConverter *""'"); 
+  }
+  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IUnitConverter_clone(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  IUnitConverter *result = 0 ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_clone" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  }
+  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
+  result = (IUnitConverter *)((IUnitConverter const *)arg1)->clone();
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IUnitConverter_dimension(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  size_t result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_dimension" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  }
+  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
+  result = ((IUnitConverter const *)arg1)->dimension();
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IUnitConverter_calculateMin(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
+  size_t arg2 ;
+  AxesUnits arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  int val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IUnitConverter_calculateMin", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_calculateMin" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  }
+  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IUnitConverter_calculateMin" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IUnitConverter_calculateMin" "', argument " "3"" of type '" "AxesUnits""'");
+  } 
+  arg3 = static_cast< AxesUnits >(val3);
+  result = (double)((IUnitConverter const *)arg1)->calculateMin(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IUnitConverter_calculateMax(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
+  size_t arg2 ;
+  AxesUnits arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  int val3 ;
+  int ecode3 = 0 ;
+  PyObject *swig_obj[3] ;
+  double result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IUnitConverter_calculateMax", 3, 3, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_calculateMax" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  }
+  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IUnitConverter_calculateMax" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IUnitConverter_calculateMax" "', argument " "3"" of type '" "AxesUnits""'");
+  } 
+  arg3 = static_cast< AxesUnits >(val3);
+  result = (double)((IUnitConverter const *)arg1)->calculateMax(arg2,arg3);
+  resultobj = SWIG_From_double(static_cast< double >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IUnitConverter_axisSize(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
+  size_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  PyObject *swig_obj[2] ;
+  size_t result;
+  
+  if (!SWIG_Python_UnpackTuple(args, "IUnitConverter_axisSize", 2, 2, swig_obj)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_axisSize" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  }
+  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IUnitConverter_axisSize" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = ((IUnitConverter const *)arg1)->axisSize(arg2);
+  resultobj = SWIG_From_size_t(static_cast< size_t >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IUnitConverter_axisName__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
+  size_t arg2 ;
+  AxesUnits arg3 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  int val3 ;
+  int ecode3 = 0 ;
+  std::string result;
+  
+  if ((nobjs < 3) || (nobjs > 3)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_axisName" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  }
+  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IUnitConverter_axisName" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  ecode3 = SWIG_AsVal_int(swig_obj[2], &val3);
+  if (!SWIG_IsOK(ecode3)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode3), "in method '" "IUnitConverter_axisName" "', argument " "3"" of type '" "AxesUnits""'");
+  } 
+  arg3 = static_cast< AxesUnits >(val3);
+  result = ((IUnitConverter const *)arg1)->axisName(arg2,arg3);
+  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IUnitConverter_axisName__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
+  size_t arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  size_t val2 ;
+  int ecode2 = 0 ;
+  std::string result;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_axisName" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  }
+  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
+  ecode2 = SWIG_AsVal_size_t(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "IUnitConverter_axisName" "', argument " "2"" of type '" "size_t""'");
+  } 
+  arg2 = static_cast< size_t >(val2);
+  result = ((IUnitConverter const *)arg1)->axisName(arg2);
+  resultobj = SWIG_From_std_string(static_cast< std::string >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IUnitConverter_axisName(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[4] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "IUnitConverter_axisName", 0, 3, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IUnitConverter, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_IUnitConverter_axisName__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 3) {
+    int _v;
+    void *vptr = 0;
+    int res = SWIG_ConvertPtr(argv[0], &vptr, SWIGTYPE_p_IUnitConverter, 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_size_t(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        {
+          int res = SWIG_AsVal_int(argv[2], NULL);
+          _v = SWIG_CheckState(res);
+        }
+        if (_v) {
+          return _wrap_IUnitConverter_axisName__SWIG_0(self, argc, argv);
+        }
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'IUnitConverter_axisName'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    IUnitConverter::axisName(size_t,AxesUnits) const\n"
+    "    IUnitConverter::axisName(size_t) const\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_IUnitConverter_availableUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  SwigValueWrapper< std::vector< enum AxesUnitsWrap::AxesUnits,std::allocator< enum AxesUnitsWrap::AxesUnits > > > result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_availableUnits" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  }
+  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
+  result = ((IUnitConverter const *)arg1)->availableUnits();
+  resultobj = SWIG_NewPointerObj((new std::vector< AxesUnits,std::allocator< AxesUnits > >(static_cast< const std::vector< AxesUnits,std::allocator< AxesUnits > >& >(result))), SWIGTYPE_p_std__vectorT_AxesUnitsWrap__AxesUnits_std__allocatorT_AxesUnitsWrap__AxesUnits_t_t, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_IUnitConverter_defaultUnits(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  IUnitConverter *arg1 = (IUnitConverter *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  AxesUnits result;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_IUnitConverter, 0 |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "IUnitConverter_defaultUnits" "', argument " "1"" of type '" "IUnitConverter const *""'"); 
+  }
+  arg1 = reinterpret_cast< IUnitConverter * >(argp1);
+  result = (AxesUnits)((IUnitConverter const *)arg1)->defaultUnits();
+  resultobj = SWIG_From_int(static_cast< int >(result));
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *IUnitConverter_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_IUnitConverter, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
 SWIGINTERN PyObject *_wrap_new_QSpecScan__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
   PyObject *resultobj = 0;
   std::vector< double,std::allocator< double > > arg1 ;
@@ -122160,6 +121915,265 @@ SWIGINTERN PyObject *QSpecScan_swiginit(PyObject *SWIGUNUSEDPARM(self), PyObject
   return SWIG_Python_InitShadowInstance(args);
 }
 
+SWIGINTERN PyObject *_wrap_delete_ScanResolution(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *resultobj = 0;
+  ScanResolution *arg1 = (ScanResolution *) 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  PyObject *swig_obj[1] ;
+  
+  if (!args) SWIG_fail;
+  swig_obj[0] = args;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1,SWIGTYPE_p_ScanResolution, SWIG_POINTER_DISOWN |  0 );
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "delete_ScanResolution" "', argument " "1"" of type '" "ScanResolution *""'"); 
+  }
+  arg1 = reinterpret_cast< ScanResolution * >(argp1);
+  delete arg1;
+  resultobj = SWIG_Py_Void();
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ScanResolution_scanRelativeResolution__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  RangedDistribution *arg1 = 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  ScanResolution *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_RangedDistribution,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ScanResolution_scanRelativeResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ScanResolution_scanRelativeResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
+  }
+  arg1 = reinterpret_cast< RangedDistribution * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ScanResolution_scanRelativeResolution" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (ScanResolution *)ScanResolution::scanRelativeResolution((RangedDistribution const &)*arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ScanResolution, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ScanResolution_scanRelativeResolution__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  RangedDistribution *arg1 = 0 ;
+  std::vector< double,std::allocator< double > > *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  ScanResolution *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_RangedDistribution,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ScanResolution_scanRelativeResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ScanResolution_scanRelativeResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
+  }
+  arg1 = reinterpret_cast< RangedDistribution * >(argp1);
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res2 = swig::asptr(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ScanResolution_scanRelativeResolution" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ScanResolution_scanRelativeResolution" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  result = (ScanResolution *)ScanResolution::scanRelativeResolution((RangedDistribution const &)*arg1,(std::vector< double,std::allocator< double > > const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ScanResolution, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ScanResolution_scanRelativeResolution(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ScanResolution_scanRelativeResolution", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_RangedDistribution, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_ScanResolution_scanRelativeResolution__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_RangedDistribution, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = swig::asptr(argv[1], (std::vector< double,std::allocator< double > >**)(0));
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_ScanResolution_scanRelativeResolution__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ScanResolution_scanRelativeResolution'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    ScanResolution::scanRelativeResolution(RangedDistribution const &,double)\n"
+    "    ScanResolution::scanRelativeResolution(RangedDistribution const &,std::vector< double,std::allocator< double > > const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *_wrap_ScanResolution_scanAbsoluteResolution__SWIG_0(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  RangedDistribution *arg1 = 0 ;
+  double arg2 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  double val2 ;
+  int ecode2 = 0 ;
+  ScanResolution *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_RangedDistribution,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
+  }
+  arg1 = reinterpret_cast< RangedDistribution * >(argp1);
+  ecode2 = SWIG_AsVal_double(swig_obj[1], &val2);
+  if (!SWIG_IsOK(ecode2)) {
+    SWIG_exception_fail(SWIG_ArgError(ecode2), "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "2"" of type '" "double""'");
+  } 
+  arg2 = static_cast< double >(val2);
+  result = (ScanResolution *)ScanResolution::scanAbsoluteResolution((RangedDistribution const &)*arg1,arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ScanResolution, SWIG_POINTER_OWN |  0 );
+  return resultobj;
+fail:
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ScanResolution_scanAbsoluteResolution__SWIG_1(PyObject *SWIGUNUSEDPARM(self), Py_ssize_t nobjs, PyObject **swig_obj) {
+  PyObject *resultobj = 0;
+  RangedDistribution *arg1 = 0 ;
+  std::vector< double,std::allocator< double > > *arg2 = 0 ;
+  void *argp1 = 0 ;
+  int res1 = 0 ;
+  int res2 = SWIG_OLDOBJ ;
+  ScanResolution *result = 0 ;
+  
+  if ((nobjs < 2) || (nobjs > 2)) SWIG_fail;
+  res1 = SWIG_ConvertPtr(swig_obj[0], &argp1, SWIGTYPE_p_RangedDistribution,  0  | 0);
+  if (!SWIG_IsOK(res1)) {
+    SWIG_exception_fail(SWIG_ArgError(res1), "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
+  }
+  if (!argp1) {
+    SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "1"" of type '" "RangedDistribution const &""'"); 
+  }
+  arg1 = reinterpret_cast< RangedDistribution * >(argp1);
+  {
+    std::vector< double,std::allocator< double > > *ptr = (std::vector< double,std::allocator< double > > *)0;
+    res2 = swig::asptr(swig_obj[1], &ptr);
+    if (!SWIG_IsOK(res2)) {
+      SWIG_exception_fail(SWIG_ArgError(res2), "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    if (!ptr) {
+      SWIG_exception_fail(SWIG_ValueError, "invalid null reference " "in method '" "ScanResolution_scanAbsoluteResolution" "', argument " "2"" of type '" "std::vector< double,std::allocator< double > > const &""'"); 
+    }
+    arg2 = ptr;
+  }
+  result = (ScanResolution *)ScanResolution::scanAbsoluteResolution((RangedDistribution const &)*arg1,(std::vector< double,std::allocator< double > > const &)*arg2);
+  resultobj = SWIG_NewPointerObj(SWIG_as_voidptr(result), SWIGTYPE_p_ScanResolution, SWIG_POINTER_OWN |  0 );
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return resultobj;
+fail:
+  if (SWIG_IsNewObj(res2)) delete arg2;
+  return NULL;
+}
+
+
+SWIGINTERN PyObject *_wrap_ScanResolution_scanAbsoluteResolution(PyObject *self, PyObject *args) {
+  Py_ssize_t argc;
+  PyObject *argv[3] = {
+    0
+  };
+  
+  if (!(argc = SWIG_Python_UnpackTuple(args, "ScanResolution_scanAbsoluteResolution", 0, 2, argv))) SWIG_fail;
+  --argc;
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_RangedDistribution, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      {
+        int res = SWIG_AsVal_double(argv[1], NULL);
+        _v = SWIG_CheckState(res);
+      }
+      if (_v) {
+        return _wrap_ScanResolution_scanAbsoluteResolution__SWIG_0(self, argc, argv);
+      }
+    }
+  }
+  if (argc == 2) {
+    int _v;
+    int res = SWIG_ConvertPtr(argv[0], 0, SWIGTYPE_p_RangedDistribution, SWIG_POINTER_NO_NULL | 0);
+    _v = SWIG_CheckState(res);
+    if (_v) {
+      int res = swig::asptr(argv[1], (std::vector< double,std::allocator< double > >**)(0));
+      _v = SWIG_CheckState(res);
+      if (_v) {
+        return _wrap_ScanResolution_scanAbsoluteResolution__SWIG_1(self, argc, argv);
+      }
+    }
+  }
+  
+fail:
+  SWIG_Python_RaiseOrModifyTypeError("Wrong number or type of arguments for overloaded function 'ScanResolution_scanAbsoluteResolution'.\n"
+    "  Possible C/C++ prototypes are:\n"
+    "    ScanResolution::scanAbsoluteResolution(RangedDistribution const &,double)\n"
+    "    ScanResolution::scanAbsoluteResolution(RangedDistribution const &,std::vector< double,std::allocator< double > > const &)\n");
+  return 0;
+}
+
+
+SWIGINTERN PyObject *ScanResolution_swigregister(PyObject *SWIGUNUSEDPARM(self), PyObject *args) {
+  PyObject *obj;
+  if (!SWIG_Python_UnpackTuple(args, "swigregister", 1, 1, &obj)) return NULL;
+  SWIG_TypeNewClientData(SWIGTYPE_p_ScanResolution, SWIG_NewClientData(obj));
+  return SWIG_Py_Void();
+}
+
 static PyMethodDef SwigMethods[] = {
 	 { "SWIG_PyInstanceMethod_New", SWIG_PyInstanceMethod_New, METH_O, NULL},
 	 { "delete_SwigPyIterator", _wrap_delete_SwigPyIterator, METH_O, "delete_SwigPyIterator(SwigPyIterator self)"},
@@ -123593,154 +123607,170 @@ static PyMethodDef SwigMethods[] = {
 		"Returns exp(I*z), where I is the imaginary unit. \n"
 		"\n"
 		""},
-	 { "rad2deg", _wrap_rad2deg, METH_O, "\n"
-		"rad2deg(double angle) -> double\n"
-		"double Units::rad2deg(double angle)\n"
+	 { "StandardNormal", _wrap_StandardNormal, METH_O, "\n"
+		"StandardNormal(double x) -> double\n"
+		"double MathFunctions::StandardNormal(double x)\n"
 		"\n"
 		""},
-	 { "deg2rad", _wrap_deg2rad, METH_O, "\n"
-		"deg2rad(double angle) -> double\n"
-		"double Units::deg2rad(double angle)\n"
+	 { "Gaussian", _wrap_Gaussian, METH_VARARGS, "\n"
+		"Gaussian(double x, double average, double std_dev) -> double\n"
+		"double MathFunctions::Gaussian(double x, double average, double std_dev)\n"
 		"\n"
 		""},
-	 { "WavevectorInfo_GetZeroQ", _wrap_WavevectorInfo_GetZeroQ, METH_NOARGS, "WavevectorInfo_GetZeroQ() -> WavevectorInfo"},
-	 { "new_WavevectorInfo", _wrap_new_WavevectorInfo, METH_VARARGS, "\n"
-		"WavevectorInfo(cvector_t ki, cvector_t kf, double wavelength)\n"
-		"new_WavevectorInfo(kvector_t ki, kvector_t kf, double wavelength) -> WavevectorInfo\n"
-		"WavevectorInfo::WavevectorInfo(kvector_t ki, kvector_t kf, double wavelength)\n"
+	 { "IntegratedGaussian", _wrap_IntegratedGaussian, METH_VARARGS, "\n"
+		"IntegratedGaussian(double x, double average, double std_dev) -> double\n"
+		"double MathFunctions::IntegratedGaussian(double x, double average, double std_dev)\n"
 		"\n"
 		""},
-	 { "WavevectorInfo_transformed", _wrap_WavevectorInfo_transformed, METH_VARARGS, "\n"
-		"WavevectorInfo_transformed(WavevectorInfo self, Transform3D const & transform) -> WavevectorInfo\n"
-		"WavevectorInfo WavevectorInfo::transformed(const Transform3D &transform) const\n"
+	 { "cot", _wrap_cot, METH_O, "\n"
+		"cot(double x) -> double\n"
+		"double MathFunctions::cot(double x)\n"
 		"\n"
-		""},
-	 { "WavevectorInfo_getKi", _wrap_WavevectorInfo_getKi, METH_O, "\n"
-		"WavevectorInfo_getKi(WavevectorInfo self) -> cvector_t\n"
-		"cvector_t WavevectorInfo::getKi() const\n"
+		"cotangent function:  $cot(x)\\\\equiv1/tan(x)$\n"
 		"\n"
 		""},
-	 { "WavevectorInfo_getKf", _wrap_WavevectorInfo_getKf, METH_O, "\n"
-		"WavevectorInfo_getKf(WavevectorInfo self) -> cvector_t\n"
-		"cvector_t WavevectorInfo::getKf() const\n"
+	 { "Si", _wrap_Si, METH_O, "\n"
+		"Si(double x) -> double\n"
+		"double MathFunctions::Si(double x)\n"
 		"\n"
-		""},
-	 { "WavevectorInfo_getQ", _wrap_WavevectorInfo_getQ, METH_O, "\n"
-		"WavevectorInfo_getQ(WavevectorInfo self) -> cvector_t\n"
-		"cvector_t WavevectorInfo::getQ() const\n"
+		"Sine integral function:  $Si(x)\\\\equiv\\\\int_0^x du \\\\sin(u)/u$. \n"
 		"\n"
 		""},
-	 { "WavevectorInfo_getWavelength", _wrap_WavevectorInfo_getWavelength, METH_O, "\n"
-		"WavevectorInfo_getWavelength(WavevectorInfo self) -> double\n"
-		"double WavevectorInfo::getWavelength() const\n"
+	 { "sinc", _wrap_sinc, METH_VARARGS, "\n"
+		"sinc(double x) -> double\n"
+		"sinc(complex_t const z) -> complex_t\n"
+		"complex_t MathFunctions::sinc(const complex_t z)\n"
+		"\n"
+		"Complex sinc function:  $sinc(x)\\\\equiv\\\\sin(x)/x$. \n"
 		"\n"
 		""},
-	 { "delete_WavevectorInfo", _wrap_delete_WavevectorInfo, METH_O, "delete_WavevectorInfo(WavevectorInfo self)"},
-	 { "WavevectorInfo_swigregister", WavevectorInfo_swigregister, METH_O, NULL},
-	 { "WavevectorInfo_swiginit", WavevectorInfo_swiginit, METH_VARARGS, NULL},
-	 { "new_Beam", _wrap_new_Beam, METH_VARARGS, "\n"
-		"Beam()\n"
-		"new_Beam(Beam other) -> Beam\n"
-		"Beam::Beam(const Beam &other)\n"
+	 { "tanhc", _wrap_tanhc, METH_O, "\n"
+		"tanhc(complex_t const z) -> complex_t\n"
+		"complex_t MathFunctions::tanhc(const complex_t z)\n"
+		"\n"
+		"Complex tanhc function:  $tanhc(x)\\\\equiv\\\\tanh(x)/x$. \n"
 		"\n"
 		""},
-	 { "delete_Beam", _wrap_delete_Beam, METH_O, "\n"
-		"delete_Beam(Beam self)\n"
-		"Beam::~Beam()\n"
+	 { "Laue", _wrap_Laue, METH_VARARGS, "\n"
+		"Laue(double const x, size_t N) -> double\n"
+		"double MathFunctions::Laue(const double x, size_t N)\n"
+		"\n"
+		"Real Laue function:  $Laue(x,N)\\\\equiv\\\\sin(Nx)/sin(x)$. \n"
 		"\n"
 		""},
-	 { "Beam_getCentralK", _wrap_Beam_getCentralK, METH_O, "\n"
-		"Beam_getCentralK(Beam self) -> kvector_t\n"
-		"kvector_t Beam::getCentralK() const\n"
+	 { "erf", _wrap_erf, METH_O, "\n"
+		"erf(double arg) -> double\n"
+		"double MathFunctions::erf(double arg)\n"
 		"\n"
-		"Returns the wavevector. \n"
+		"Error function of real-valued argument. \n"
 		"\n"
 		""},
-	 { "Beam_setCentralK", _wrap_Beam_setCentralK, METH_VARARGS, "\n"
-		"Beam_setCentralK(Beam self, double wavelength, double alpha_i, double phi_i)\n"
-		"void Beam::setCentralK(double wavelength, double alpha_i, double phi_i)\n"
+	 { "Bessel_I0", _wrap_Bessel_I0, METH_O, "\n"
+		"Bessel_I0(double x) -> double\n"
+		"double MathFunctions::Bessel_I0(double x)\n"
 		"\n"
-		"Sets the wavevector in terms of wavelength and incoming angles. \n"
+		"Modified Bessel function of the first kind and order 0. \n"
 		"\n"
 		""},
-	 { "Beam_getIntensity", _wrap_Beam_getIntensity, METH_O, "\n"
-		"Beam_getIntensity(Beam self) -> double\n"
-		"double Beam::getIntensity() const\n"
+	 { "Bessel_J0", _wrap_Bessel_J0, METH_VARARGS, "\n"
+		"Bessel_J0(double x) -> double\n"
+		"Bessel_J0(complex_t const z) -> complex_t\n"
+		"complex_t MathFunctions::Bessel_J0(const complex_t z)\n"
 		"\n"
-		"Returns the beam intensity in neutrons/sec. \n"
+		"Complex Bessel function of the first kind and order 0. \n"
 		"\n"
 		""},
-	 { "Beam_setIntensity", _wrap_Beam_setIntensity, METH_VARARGS, "\n"
-		"Beam_setIntensity(Beam self, double intensity)\n"
-		"void Beam::setIntensity(double intensity)\n"
+	 { "Bessel_J1", _wrap_Bessel_J1, METH_VARARGS, "\n"
+		"Bessel_J1(double x) -> double\n"
+		"Bessel_J1(complex_t const z) -> complex_t\n"
+		"complex_t MathFunctions::Bessel_J1(const complex_t z)\n"
 		"\n"
-		"Sets the beam intensity in neutrons/sec. \n"
+		"Complex Bessel function of the first kind and order 1. \n"
 		"\n"
 		""},
-	 { "Beam_footprintFactor", _wrap_Beam_footprintFactor, METH_O, "\n"
-		"Beam_footprintFactor(Beam self) -> IFootprintFactor\n"
-		"const IFootprintFactor * Beam::footprintFactor() const\n"
+	 { "Bessel_J1c", _wrap_Bessel_J1c, METH_VARARGS, "\n"
+		"Bessel_J1c(double x) -> double\n"
+		"Bessel_J1c(complex_t const z) -> complex_t\n"
+		"complex_t MathFunctions::Bessel_J1c(const complex_t z)\n"
 		"\n"
-		"Returns footprint factor. \n"
+		"Complex Bessel function Bessel_J1(x)/x. \n"
 		"\n"
 		""},
-	 { "Beam_setFootprintFactor", _wrap_Beam_setFootprintFactor, METH_VARARGS, "\n"
-		"Beam_setFootprintFactor(Beam self, IFootprintFactor shape_factor)\n"
-		"void Beam::setFootprintFactor(const IFootprintFactor &shape_factor)\n"
+	 { "FastFourierTransform", _wrap_FastFourierTransform, METH_VARARGS, "\n"
+		"FastFourierTransform(vector_complex_t data, MathFunctions::EFFTDirection tcase) -> vector_complex_t\n"
+		"FastFourierTransform(vdouble1d_t data, MathFunctions::EFFTDirection tcase) -> vector_complex_t\n"
+		"std::vector< complex_t > MathFunctions::FastFourierTransform(const std::vector< double > &data, EFFTDirection tcase)\n"
 		"\n"
-		"Sets footprint factor to the beam. \n"
+		"simple (and unoptimized) wrapper function for the discrete fast Fourier transformation library (fftw3); transforms real to complex \n"
 		"\n"
 		""},
-	 { "Beam_setWidthRatio", _wrap_Beam_setWidthRatio, METH_VARARGS, "\n"
-		"Beam_setWidthRatio(Beam self, double width_ratio)\n"
-		"void Beam::setWidthRatio(double width_ratio)\n"
+	 { "ConvolveFFT", _wrap_ConvolveFFT, METH_VARARGS, "\n"
+		"ConvolveFFT(vdouble1d_t signal, vdouble1d_t resfunc) -> vector_complex_t\n"
+		"std::vector< complex_t > MathFunctions::ConvolveFFT(const std::vector< double > &signal, const std::vector< double > &resfunc)\n"
 		"\n"
-		"Sets beam to sample width ratio in footprint factor. \n"
+		"convolution of two real vectors of equal size \n"
 		"\n"
 		""},
-	 { "Beam_setPolarization", _wrap_Beam_setPolarization, METH_VARARGS, "\n"
-		"Beam_setPolarization(Beam self, kvector_t bloch_vector)\n"
-		"void Beam::setPolarization(const kvector_t bloch_vector)\n"
+	 { "GenerateUniformRandom", _wrap_GenerateUniformRandom, METH_NOARGS, "\n"
+		"GenerateUniformRandom() -> double\n"
+		"double MathFunctions::GenerateUniformRandom()\n"
 		"\n"
-		"Sets the polarization density matrix according to the given Bloch vector. \n"
+		""},
+	 { "GenerateStandardNormalRandom", _wrap_GenerateStandardNormalRandom, METH_NOARGS, "\n"
+		"GenerateStandardNormalRandom() -> double\n"
+		"double MathFunctions::GenerateStandardNormalRandom()\n"
 		"\n"
 		""},
-	 { "Beam_getBlochVector", _wrap_Beam_getBlochVector, METH_O, "\n"
-		"Beam_getBlochVector(Beam self) -> kvector_t\n"
-		"kvector_t Beam::getBlochVector() const\n"
+	 { "GenerateNormalRandom", _wrap_GenerateNormalRandom, METH_VARARGS, "\n"
+		"GenerateNormalRandom(double average, double std_dev) -> double\n"
+		"double MathFunctions::GenerateNormalRandom(double average, double std_dev)\n"
 		"\n"
 		""},
-	 { "Beam_getWavelength", _wrap_Beam_getWavelength, METH_O, "\n"
-		"Beam_getWavelength(Beam self) -> double\n"
-		"double Beam::getWavelength() const\n"
+	 { "GeneratePoissonRandom", _wrap_GeneratePoissonRandom, METH_O, "\n"
+		"GeneratePoissonRandom(double average) -> double\n"
+		"double MathFunctions::GeneratePoissonRandom(double average)\n"
 		"\n"
 		""},
-	 { "Beam_getAlpha", _wrap_Beam_getAlpha, METH_O, "\n"
-		"Beam_getAlpha(Beam self) -> double\n"
-		"double Beam::getAlpha() const\n"
+	 { "FindPeaks", _wrap_FindPeaks, METH_VARARGS, "\n"
+		"FindPeaks(Histogram2D hist, double sigma=2, std::string const & option={}, double threshold=0.05) -> vector_pair_double_t\n"
+		"std::vector< std::pair< double, double > > SpectrumUtils::FindPeaks(const Histogram2D &hist, double sigma=2, const std::string &option={}, double threshold=0.05)\n"
 		"\n"
 		""},
-	 { "Beam_getPhi", _wrap_Beam_getPhi, METH_O, "\n"
-		"Beam_getPhi(Beam self) -> double\n"
-		"double Beam::getPhi() const\n"
+	 { "WavevectorInfo_GetZeroQ", _wrap_WavevectorInfo_GetZeroQ, METH_NOARGS, "WavevectorInfo_GetZeroQ() -> WavevectorInfo"},
+	 { "new_WavevectorInfo", _wrap_new_WavevectorInfo, METH_VARARGS, "\n"
+		"WavevectorInfo(cvector_t ki, cvector_t kf, double wavelength)\n"
+		"new_WavevectorInfo(kvector_t ki, kvector_t kf, double wavelength) -> WavevectorInfo\n"
+		"WavevectorInfo::WavevectorInfo(kvector_t ki, kvector_t kf, double wavelength)\n"
 		"\n"
 		""},
-	 { "Beam_accept", _wrap_Beam_accept, METH_VARARGS, "\n"
-		"Beam_accept(Beam self, INodeVisitor visitor)\n"
-		"void Beam::accept(INodeVisitor *visitor) const override\n"
+	 { "WavevectorInfo_transformed", _wrap_WavevectorInfo_transformed, METH_VARARGS, "\n"
+		"WavevectorInfo_transformed(WavevectorInfo self, Transform3D const & transform) -> WavevectorInfo\n"
+		"WavevectorInfo WavevectorInfo::transformed(const Transform3D &transform) const\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		""},
+	 { "WavevectorInfo_getKi", _wrap_WavevectorInfo_getKi, METH_O, "\n"
+		"WavevectorInfo_getKi(WavevectorInfo self) -> cvector_t\n"
+		"cvector_t WavevectorInfo::getKi() const\n"
 		"\n"
 		""},
-	 { "Beam_getChildren", _wrap_Beam_getChildren, METH_O, "\n"
-		"Beam_getChildren(Beam self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > Beam::getChildren() const override\n"
+	 { "WavevectorInfo_getKf", _wrap_WavevectorInfo_getKf, METH_O, "\n"
+		"WavevectorInfo_getKf(WavevectorInfo self) -> cvector_t\n"
+		"cvector_t WavevectorInfo::getKf() const\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		""},
+	 { "WavevectorInfo_getQ", _wrap_WavevectorInfo_getQ, METH_O, "\n"
+		"WavevectorInfo_getQ(WavevectorInfo self) -> cvector_t\n"
+		"cvector_t WavevectorInfo::getQ() const\n"
 		"\n"
 		""},
-	 { "Beam_swigregister", Beam_swigregister, METH_O, NULL},
-	 { "Beam_swiginit", Beam_swiginit, METH_VARARGS, NULL},
+	 { "WavevectorInfo_getWavelength", _wrap_WavevectorInfo_getWavelength, METH_O, "\n"
+		"WavevectorInfo_getWavelength(WavevectorInfo self) -> double\n"
+		"double WavevectorInfo::getWavelength() const\n"
+		"\n"
+		""},
+	 { "delete_WavevectorInfo", _wrap_delete_WavevectorInfo, METH_O, "delete_WavevectorInfo(WavevectorInfo self)"},
+	 { "WavevectorInfo_swigregister", WavevectorInfo_swigregister, METH_O, NULL},
+	 { "WavevectorInfo_swiginit", WavevectorInfo_swiginit, METH_VARARGS, NULL},
 	 { "new_Bin1D", _wrap_new_Bin1D, METH_VARARGS, "\n"
 		"Bin1D()\n"
 		"new_Bin1D(double lower, double upper) -> Bin1D\n"
@@ -123761,5278 +123791,4472 @@ static PyMethodDef SwigMethods[] = {
 		"double Bin1D::getBinSize() const\n"
 		"\n"
 		""},
-	 { "delete_Bin1D", _wrap_delete_Bin1D, METH_O, "delete_Bin1D(Bin1D self)"},
-	 { "Bin1D_swigregister", Bin1D_swigregister, METH_O, NULL},
-	 { "Bin1D_swiginit", Bin1D_swiginit, METH_VARARGS, NULL},
-	 { "BinContains", _wrap_BinContains, METH_VARARGS, "\n"
-		"BinContains(Bin1D bin, double value) -> bool\n"
-		"bool BinContains(const Bin1D &bin, double value)\n"
-		"\n"
-		"Checks if value is contained in bin: value in [m_lower, m_upper) \n"
-		"\n"
-		""},
-	 { "new_Bin1DKVector", _wrap_new_Bin1DKVector, METH_VARARGS, "\n"
-		"Bin1DKVector()\n"
-		"Bin1DKVector(kvector_t lower, kvector_t upper)\n"
-		"new_Bin1DKVector(double wavelength, Bin1D alpha_bin, Bin1D phi_bin) -> Bin1DKVector\n"
-		"Bin1DKVector::Bin1DKVector(double wavelength, const Bin1D &alpha_bin, const Bin1D &phi_bin)\n"
-		"\n"
-		"creation on  Bin1DKVector from alpha and phi bins \n"
-		"\n"
-		""},
-	 { "Bin1DKVector_getMidPoint", _wrap_Bin1DKVector_getMidPoint, METH_O, "\n"
-		"Bin1DKVector_getMidPoint(Bin1DKVector self) -> kvector_t\n"
-		"kvector_t Bin1DKVector::getMidPoint() const\n"
-		"\n"
-		""},
-	 { "Bin1DKVector_getDelta", _wrap_Bin1DKVector_getDelta, METH_O, "\n"
-		"Bin1DKVector_getDelta(Bin1DKVector self) -> kvector_t\n"
-		"kvector_t Bin1DKVector::getDelta() const\n"
-		"\n"
-		""},
-	 { "Bin1DKVector_m_q_lower_set", _wrap_Bin1DKVector_m_q_lower_set, METH_VARARGS, "Bin1DKVector_m_q_lower_set(Bin1DKVector self, kvector_t m_q_lower)"},
-	 { "Bin1DKVector_m_q_lower_get", _wrap_Bin1DKVector_m_q_lower_get, METH_O, "Bin1DKVector_m_q_lower_get(Bin1DKVector self) -> kvector_t"},
-	 { "Bin1DKVector_m_q_upper_set", _wrap_Bin1DKVector_m_q_upper_set, METH_VARARGS, "Bin1DKVector_m_q_upper_set(Bin1DKVector self, kvector_t m_q_upper)"},
-	 { "Bin1DKVector_m_q_upper_get", _wrap_Bin1DKVector_m_q_upper_get, METH_O, "Bin1DKVector_m_q_upper_get(Bin1DKVector self) -> kvector_t"},
-	 { "delete_Bin1DKVector", _wrap_delete_Bin1DKVector, METH_O, "delete_Bin1DKVector(Bin1DKVector self)"},
-	 { "Bin1DKVector_swigregister", Bin1DKVector_swigregister, METH_O, NULL},
-	 { "Bin1DKVector_swiginit", Bin1DKVector_swiginit, METH_VARARGS, NULL},
-	 { "new_Bin1DCVector", _wrap_new_Bin1DCVector, METH_VARARGS, "\n"
-		"Bin1DCVector()\n"
-		"Bin1DCVector(cvector_t lower, cvector_t upper)\n"
-		"new_Bin1DCVector(double wavelength, Bin1D alpha_bin, Bin1D phi_bin) -> Bin1DCVector\n"
-		"Bin1DCVector::Bin1DCVector(double wavelength, const Bin1D &alpha_bin, const Bin1D &phi_bin)\n"
-		"\n"
-		"creation on  Bin1DCVector from alpha and phi bins \n"
-		"\n"
-		""},
-	 { "Bin1DCVector_getMidPoint", _wrap_Bin1DCVector_getMidPoint, METH_O, "\n"
-		"Bin1DCVector_getMidPoint(Bin1DCVector self) -> cvector_t\n"
-		"cvector_t Bin1DCVector::getMidPoint() const\n"
-		"\n"
-		""},
-	 { "Bin1DCVector_getDelta", _wrap_Bin1DCVector_getDelta, METH_O, "\n"
-		"Bin1DCVector_getDelta(Bin1DCVector self) -> cvector_t\n"
-		"cvector_t Bin1DCVector::getDelta() const\n"
-		"\n"
-		""},
-	 { "Bin1DCVector_m_q_lower_set", _wrap_Bin1DCVector_m_q_lower_set, METH_VARARGS, "Bin1DCVector_m_q_lower_set(Bin1DCVector self, cvector_t m_q_lower)"},
-	 { "Bin1DCVector_m_q_lower_get", _wrap_Bin1DCVector_m_q_lower_get, METH_O, "Bin1DCVector_m_q_lower_get(Bin1DCVector self) -> cvector_t"},
-	 { "Bin1DCVector_m_q_upper_set", _wrap_Bin1DCVector_m_q_upper_set, METH_VARARGS, "Bin1DCVector_m_q_upper_set(Bin1DCVector self, cvector_t m_q_upper)"},
-	 { "Bin1DCVector_m_q_upper_get", _wrap_Bin1DCVector_m_q_upper_get, METH_O, "Bin1DCVector_m_q_upper_get(Bin1DCVector self) -> cvector_t"},
-	 { "delete_Bin1DCVector", _wrap_delete_Bin1DCVector, METH_O, "delete_Bin1DCVector(Bin1DCVector self)"},
-	 { "Bin1DCVector_swigregister", Bin1DCVector_swigregister, METH_O, NULL},
-	 { "Bin1DCVector_swiginit", Bin1DCVector_swiginit, METH_VARARGS, NULL},
-	 { "IAxis_clone", _wrap_IAxis_clone, METH_O, "\n"
-		"IAxis_clone(IAxis self) -> IAxis\n"
-		"virtual IAxis* IAxis::clone() const =0\n"
-		"\n"
-		"clone function \n"
-		"\n"
-		""},
-	 { "delete_IAxis", _wrap_delete_IAxis, METH_O, "\n"
-		"delete_IAxis(IAxis self)\n"
-		"virtual IAxis::~IAxis()\n"
-		"\n"
-		"destructor \n"
-		"\n"
-		""},
-	 { "IAxis_size", _wrap_IAxis_size, METH_O, "\n"
-		"IAxis_size(IAxis self) -> size_t\n"
-		"virtual size_t IAxis::size() const =0\n"
-		"\n"
-		"retrieve the number of bins \n"
-		"\n"
-		""},
-	 { "IAxis_getName", _wrap_IAxis_getName, METH_O, "\n"
-		"IAxis_getName(IAxis self) -> std::string\n"
-		"std::string IAxis::getName() const\n"
-		"\n"
-		"retrieve the label of the axis \n"
-		"\n"
-		""},
-	 { "IAxis_setName", _wrap_IAxis_setName, METH_VARARGS, "\n"
-		"IAxis_setName(IAxis self, std::string name)\n"
-		"void IAxis::setName(std::string name)\n"
-		"\n"
-		"Sets the axis label. \n"
-		"\n"
-		""},
-	 { "IAxis_getBin", _wrap_IAxis_getBin, METH_VARARGS, "\n"
-		"IAxis_getBin(IAxis self, size_t index) -> Bin1D\n"
-		"virtual Bin1D IAxis::getBin(size_t index) const =0\n"
-		"\n"
-		"retrieve a 1d bin for the given index \n"
-		"\n"
-		""},
-	 { "IAxis_getMin", _wrap_IAxis_getMin, METH_O, "\n"
-		"IAxis_getMin(IAxis self) -> double\n"
-		"virtual double IAxis::getMin() const =0\n"
-		"\n"
-		"Returns value of first point of axis. \n"
-		"\n"
-		""},
-	 { "IAxis_getMax", _wrap_IAxis_getMax, METH_O, "\n"
-		"IAxis_getMax(IAxis self) -> double\n"
-		"virtual double IAxis::getMax() const =0\n"
-		"\n"
-		"Returns value of last point of axis. \n"
-		"\n"
-		""},
-	 { "IAxis_getBinCenter", _wrap_IAxis_getBinCenter, METH_VARARGS, "\n"
-		"IAxis_getBinCenter(IAxis self, size_t index) -> double\n"
-		"virtual double IAxis::getBinCenter(size_t index) const =0\n"
-		"\n"
-		""},
-	 { "IAxis_findClosestIndex", _wrap_IAxis_findClosestIndex, METH_VARARGS, "\n"
-		"IAxis_findClosestIndex(IAxis self, double value) -> size_t\n"
-		"virtual size_t IAxis::findClosestIndex(double value) const =0\n"
-		"\n"
-		"find bin index which is best match for given value \n"
-		"\n"
-		""},
-	 { "IAxis___eq__", _wrap_IAxis___eq__, METH_VARARGS, "IAxis___eq__(IAxis self, IAxis right) -> bool"},
-	 { "IAxis___ne__", _wrap_IAxis___ne__, METH_VARARGS, "IAxis___ne__(IAxis self, IAxis right) -> bool"},
-	 { "IAxis_getBinCenters", _wrap_IAxis_getBinCenters, METH_O, "\n"
-		"IAxis_getBinCenters(IAxis self) -> vdouble1d_t\n"
-		"std::vector< double > IAxis::getBinCenters() const\n"
-		"\n"
-		""},
-	 { "IAxis_getBinBoundaries", _wrap_IAxis_getBinBoundaries, METH_O, "\n"
-		"IAxis_getBinBoundaries(IAxis self) -> vdouble1d_t\n"
-		"std::vector< double > IAxis::getBinBoundaries() const\n"
-		"\n"
-		""},
-	 { "IAxis_createClippedAxis", _wrap_IAxis_createClippedAxis, METH_VARARGS, "\n"
-		"IAxis_createClippedAxis(IAxis self, double left, double right) -> IAxis\n"
-		"IAxis * IAxis::createClippedAxis(double left, double right) const\n"
-		"\n"
-		"Creates a new clipped axis. \n"
-		"\n"
-		""},
-	 { "IAxis_contains", _wrap_IAxis_contains, METH_VARARGS, "\n"
-		"IAxis_contains(IAxis self, double value) -> bool\n"
-		"bool IAxis::contains(double value) const\n"
-		"\n"
-		"Returns true if axis contains given point. \n"
-		"\n"
-		""},
-	 { "IAxis_swigregister", IAxis_swigregister, METH_O, NULL},
-	 { "HaveSameNameAndShape", _wrap_HaveSameNameAndShape, METH_VARARGS, "\n"
-		"HaveSameNameAndShape(IAxis left, IAxis right) -> bool\n"
-		"bool HaveSameNameAndShape(const IAxis &left, const IAxis &right)\n"
-		"\n"
-		"global helper function for comparison of axes \n"
-		"\n"
-		""},
-	 { "new_VariableBinAxis", _wrap_new_VariableBinAxis, METH_VARARGS, "\n"
-		"new_VariableBinAxis(std::string const & name, size_t nbins, vdouble1d_t bin_boundaries) -> VariableBinAxis\n"
-		"VariableBinAxis::VariableBinAxis(const std::string &name, size_t nbins, const std::vector< double > &bin_boundaries)\n"
-		"\n"
-		"VariableBinAxis constructor.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
-		"\n"
-		"name: \n"
-		"Axis name\n"
-		"\n"
-		"nbins: \n"
-		"number of bins\n"
-		"\n"
-		"bin_boundaries: \n"
-		"Array of size nbins+1 containing low-edges for each bin and upper edge of last bin. \n"
-		"\n"
-		""},
-	 { "delete_VariableBinAxis", _wrap_delete_VariableBinAxis, METH_O, "\n"
-		"delete_VariableBinAxis(VariableBinAxis self)\n"
-		"virtual VariableBinAxis::~VariableBinAxis()\n"
-		"\n"
-		""},
-	 { "VariableBinAxis_clone", _wrap_VariableBinAxis_clone, METH_O, "\n"
-		"VariableBinAxis_clone(VariableBinAxis self) -> VariableBinAxis\n"
-		"VariableBinAxis * VariableBinAxis::clone() const\n"
-		"\n"
-		"clone function \n"
-		"\n"
-		""},
-	 { "VariableBinAxis_size", _wrap_VariableBinAxis_size, METH_O, "\n"
-		"VariableBinAxis_size(VariableBinAxis self) -> size_t\n"
-		"size_t VariableBinAxis::size() const\n"
-		"\n"
-		"retrieve the number of bins \n"
-		"\n"
-		""},
-	 { "VariableBinAxis_getBin", _wrap_VariableBinAxis_getBin, METH_VARARGS, "\n"
-		"VariableBinAxis_getBin(VariableBinAxis self, size_t index) -> Bin1D\n"
-		"Bin1D VariableBinAxis::getBin(size_t index) const\n"
-		"\n"
-		"retrieve a 1d bin for the given index \n"
-		"\n"
-		""},
-	 { "VariableBinAxis_getMin", _wrap_VariableBinAxis_getMin, METH_O, "\n"
-		"VariableBinAxis_getMin(VariableBinAxis self) -> double\n"
-		"double VariableBinAxis::getMin() const\n"
-		"\n"
-		"Returns value of first point of axis. \n"
-		"\n"
-		""},
-	 { "VariableBinAxis_getMax", _wrap_VariableBinAxis_getMax, METH_O, "\n"
-		"VariableBinAxis_getMax(VariableBinAxis self) -> double\n"
-		"double VariableBinAxis::getMax() const\n"
-		"\n"
-		"Returns value of last point of axis. \n"
-		"\n"
-		""},
-	 { "VariableBinAxis_getBinCenter", _wrap_VariableBinAxis_getBinCenter, METH_VARARGS, "\n"
-		"VariableBinAxis_getBinCenter(VariableBinAxis self, size_t index) -> double\n"
-		"double VariableBinAxis::getBinCenter(size_t index) const\n"
-		"\n"
-		""},
-	 { "VariableBinAxis_findClosestIndex", _wrap_VariableBinAxis_findClosestIndex, METH_VARARGS, "\n"
-		"VariableBinAxis_findClosestIndex(VariableBinAxis self, double value) -> size_t\n"
-		"size_t VariableBinAxis::findClosestIndex(double value) const\n"
-		"\n"
-		"find bin index which is best match for given value \n"
-		"\n"
-		""},
-	 { "VariableBinAxis_getBinCenters", _wrap_VariableBinAxis_getBinCenters, METH_O, "\n"
-		"VariableBinAxis_getBinCenters(VariableBinAxis self) -> vdouble1d_t\n"
-		"std::vector< double > VariableBinAxis::getBinCenters() const\n"
-		"\n"
-		""},
-	 { "VariableBinAxis_getBinBoundaries", _wrap_VariableBinAxis_getBinBoundaries, METH_O, "\n"
-		"VariableBinAxis_getBinBoundaries(VariableBinAxis self) -> vdouble1d_t\n"
-		"std::vector<double> VariableBinAxis::getBinBoundaries() const\n"
-		"\n"
-		""},
-	 { "VariableBinAxis_createClippedAxis", _wrap_VariableBinAxis_createClippedAxis, METH_VARARGS, "\n"
-		"VariableBinAxis_createClippedAxis(VariableBinAxis self, double left, double right) -> VariableBinAxis\n"
-		"VariableBinAxis * VariableBinAxis::createClippedAxis(double left, double right) const\n"
-		"\n"
-		"Creates a new clipped axis. \n"
-		"\n"
-		""},
-	 { "VariableBinAxis___getitem__", _wrap_VariableBinAxis___getitem__, METH_VARARGS, "VariableBinAxis___getitem__(VariableBinAxis self, unsigned int i) -> double"},
-	 { "VariableBinAxis_swigregister", VariableBinAxis_swigregister, METH_O, NULL},
-	 { "VariableBinAxis_swiginit", VariableBinAxis_swiginit, METH_VARARGS, NULL},
-	 { "new_ConstKBinAxis", _wrap_new_ConstKBinAxis, METH_VARARGS, "\n"
-		"new_ConstKBinAxis(std::string const & name, size_t nbins, double start, double end) -> ConstKBinAxis\n"
-		"ConstKBinAxis::ConstKBinAxis(const std::string &name, size_t nbins, double start, double end)\n"
-		"\n"
-		"ConstKBinAxis constructor.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
-		"\n"
-		"name: \n"
-		"Axis name\n"
-		"\n"
-		"nbins: \n"
-		"number of bins\n"
-		"\n"
-		"start: \n"
-		"low edge of first bin\n"
-		"\n"
-		"end: \n"
-		"upper edge of last bin \n"
-		"\n"
-		""},
-	 { "delete_ConstKBinAxis", _wrap_delete_ConstKBinAxis, METH_O, "\n"
-		"delete_ConstKBinAxis(ConstKBinAxis self)\n"
-		"ConstKBinAxis::~ConstKBinAxis() final\n"
-		"\n"
-		""},
-	 { "ConstKBinAxis_clone", _wrap_ConstKBinAxis_clone, METH_O, "\n"
-		"ConstKBinAxis_clone(ConstKBinAxis self) -> ConstKBinAxis\n"
-		"ConstKBinAxis * ConstKBinAxis::clone() const final\n"
-		"\n"
-		"clone function \n"
-		"\n"
-		""},
-	 { "ConstKBinAxis_createClippedAxis", _wrap_ConstKBinAxis_createClippedAxis, METH_VARARGS, "\n"
-		"ConstKBinAxis_createClippedAxis(ConstKBinAxis self, double left, double right) -> ConstKBinAxis\n"
-		"ConstKBinAxis * ConstKBinAxis::createClippedAxis(double left, double right) const final\n"
-		"\n"
-		"Creates a new clipped axis. \n"
-		"\n"
-		""},
-	 { "ConstKBinAxis_swigregister", ConstKBinAxis_swigregister, METH_O, NULL},
-	 { "ConstKBinAxis_swiginit", ConstKBinAxis_swiginit, METH_VARARGS, NULL},
-	 { "new_CustomBinAxis", _wrap_new_CustomBinAxis, METH_VARARGS, "\n"
-		"new_CustomBinAxis(std::string const & name, size_t nbins, double start, double end) -> CustomBinAxis\n"
-		"CustomBinAxis::CustomBinAxis(const std::string &name, size_t nbins, double start, double end)\n"
-		"\n"
-		"CustomBinAxis constructor.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
-		"\n"
-		"name: \n"
-		"Axis name\n"
-		"\n"
-		"nbins: \n"
-		"number of bins\n"
-		"\n"
-		"start: \n"
-		"center of first bin (IsGisaxs convention)\n"
-		"\n"
-		"end: \n"
-		"center of last bin (IsGisaxs convention) \n"
-		"\n"
-		""},
-	 { "delete_CustomBinAxis", _wrap_delete_CustomBinAxis, METH_O, "\n"
-		"delete_CustomBinAxis(CustomBinAxis self)\n"
-		"virtual CustomBinAxis::~CustomBinAxis()\n"
-		"\n"
-		""},
-	 { "CustomBinAxis_clone", _wrap_CustomBinAxis_clone, METH_O, "\n"
-		"CustomBinAxis_clone(CustomBinAxis self) -> CustomBinAxis\n"
-		"CustomBinAxis * CustomBinAxis::clone() const\n"
-		"\n"
-		"clone function \n"
-		"\n"
-		""},
-	 { "CustomBinAxis_getBin", _wrap_CustomBinAxis_getBin, METH_VARARGS, "\n"
-		"CustomBinAxis_getBin(CustomBinAxis self, size_t index) -> Bin1D\n"
-		"Bin1D CustomBinAxis::getBin(size_t index) const\n"
-		"\n"
-		"retrieve a 1d bin for the given index \n"
-		"\n"
-		""},
-	 { "CustomBinAxis_getBinCenters", _wrap_CustomBinAxis_getBinCenters, METH_O, "\n"
-		"CustomBinAxis_getBinCenters(CustomBinAxis self) -> vdouble1d_t\n"
-		"std::vector< double > CustomBinAxis::getBinCenters() const\n"
-		"\n"
-		""},
-	 { "CustomBinAxis_createClippedAxis", _wrap_CustomBinAxis_createClippedAxis, METH_VARARGS, "\n"
-		"CustomBinAxis_createClippedAxis(CustomBinAxis self, double left, double right) -> CustomBinAxis\n"
-		"CustomBinAxis * CustomBinAxis::createClippedAxis(double left, double right) const\n"
-		"\n"
-		"Creates a new clipped axis. \n"
-		"\n"
-		""},
-	 { "CustomBinAxis_swigregister", CustomBinAxis_swigregister, METH_O, NULL},
-	 { "CustomBinAxis_swiginit", CustomBinAxis_swiginit, METH_VARARGS, NULL},
-	 { "IShape2D_clone", _wrap_IShape2D_clone, METH_O, "\n"
-		"IShape2D_clone(IShape2D self) -> IShape2D\n"
-		"virtual IShape2D* IShape2D::clone() const =0\n"
-		"\n"
-		""},
-	 { "IShape2D_contains", _wrap_IShape2D_contains, METH_VARARGS, "\n"
-		"IShape2D_contains(IShape2D self, double x, double y) -> bool\n"
-		"IShape2D_contains(IShape2D self, Bin1D binx, Bin1D biny) -> bool\n"
-		"virtual bool IShape2D::contains(const Bin1D &binx, const Bin1D &biny) const =0\n"
-		"\n"
-		"Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). \n"
-		"\n"
-		""},
-	 { "delete_IShape2D", _wrap_delete_IShape2D, METH_O, "delete_IShape2D(IShape2D self)"},
-	 { "IShape2D_swigregister", IShape2D_swigregister, METH_O, NULL},
-	 { "new_ISample", _wrap_new_ISample, METH_VARARGS, "\n"
-		"ISample()\n"
-		"new_ISample(PyObject * _self, INode parent, std::vector< char const *,std::allocator< char const * > > const PName, std::vector< char const *,std::allocator< char const * > > const PUnit, vdouble1d_t PMin, vdouble1d_t PMax, vdouble1d_t PDefault, vdouble1d_t P) -> ISample\n"
-		"\n"
-		"\n"
-		"Pure virtual base class for sample components and properties related to scattering.\n"
-		"\n"
-		"C++ includes: ISample.h\n"
-		"\n"
-		""},
-	 { "ISample_clone", _wrap_ISample_clone, METH_O, "\n"
-		"ISample_clone(ISample self) -> ISample\n"
-		"ISample* ISample::clone() const override=0\n"
-		"\n"
-		"Returns a clone of this  ISample object. \n"
-		"\n"
-		""},
-	 { "ISample_material", _wrap_ISample_material, METH_O, "\n"
-		"ISample_material(ISample self) -> Material\n"
-		"virtual const Material* ISample::material() const\n"
-		"\n"
-		"Returns nullptr, unless overwritten to return a specific material. \n"
-		"\n"
-		""},
-	 { "ISample_containedMaterials", _wrap_ISample_containedMaterials, METH_O, "\n"
-		"ISample_containedMaterials(ISample self) -> std::vector< Material const *,std::allocator< Material const * > >\n"
-		"std::vector< const Material * > ISample::containedMaterials() const\n"
-		"\n"
-		"Returns set of unique materials contained in this  ISample. \n"
-		"\n"
-		""},
-	 { "delete_ISample", _wrap_delete_ISample, METH_O, "delete_ISample(ISample self)"},
-	 { "disown_ISample", _wrap_disown_ISample, METH_O, NULL},
-	 { "ISample_swigregister", ISample_swigregister, METH_O, NULL},
-	 { "ISample_swiginit", ISample_swiginit, METH_VARARGS, NULL},
-	 { "delete_IChiSquaredModule", _wrap_delete_IChiSquaredModule, METH_O, "\n"
-		"delete_IChiSquaredModule(IChiSquaredModule self)\n"
-		"IChiSquaredModule::~IChiSquaredModule()\n"
-		"\n"
-		""},
-	 { "IChiSquaredModule_clone", _wrap_IChiSquaredModule_clone, METH_O, "\n"
-		"IChiSquaredModule_clone(IChiSquaredModule self) -> IChiSquaredModule\n"
-		"virtual IChiSquaredModule* IChiSquaredModule::clone() const =0\n"
-		"\n"
-		"clone method \n"
-		"\n"
-		""},
-	 { "IChiSquaredModule_varianceFunction", _wrap_IChiSquaredModule_varianceFunction, METH_O, "\n"
-		"IChiSquaredModule_varianceFunction(IChiSquaredModule self) -> IVarianceFunction\n"
-		"const IVarianceFunction * IChiSquaredModule::varianceFunction() const\n"
-		"\n"
-		"Returns squared function. \n"
-		"\n"
-		""},
-	 { "IChiSquaredModule_setVarianceFunction", _wrap_IChiSquaredModule_setVarianceFunction, METH_VARARGS, "\n"
-		"IChiSquaredModule_setVarianceFunction(IChiSquaredModule self, IVarianceFunction variance_function)\n"
-		"void IChiSquaredModule::setVarianceFunction(const IVarianceFunction &variance_function)\n"
-		"\n"
-		"Sets squared function. \n"
-		"\n"
-		""},
-	 { "IChiSquaredModule_getIntensityFunction", _wrap_IChiSquaredModule_getIntensityFunction, METH_O, "\n"
-		"IChiSquaredModule_getIntensityFunction(IChiSquaredModule self) -> IIntensityFunction\n"
-		"const IIntensityFunction * IChiSquaredModule::getIntensityFunction() const\n"
-		"\n"
-		"Returns data rescaler. \n"
-		"\n"
-		""},
-	 { "IChiSquaredModule_setIntensityFunction", _wrap_IChiSquaredModule_setIntensityFunction, METH_VARARGS, "\n"
-		"IChiSquaredModule_setIntensityFunction(IChiSquaredModule self, IIntensityFunction intensity_function)\n"
-		"void IChiSquaredModule::setIntensityFunction(const IIntensityFunction &intensity_function)\n"
-		"\n"
-		"Sets data rescaler. \n"
-		"\n"
-		""},
-	 { "IChiSquaredModule_residual", _wrap_IChiSquaredModule_residual, METH_VARARGS, "\n"
-		"IChiSquaredModule_residual(IChiSquaredModule self, double a, double b, double weight) -> double\n"
-		"virtual double IChiSquaredModule::residual(double a, double b, double weight)=0\n"
-		"\n"
-		""},
-	 { "IChiSquaredModule_swigregister", IChiSquaredModule_swigregister, METH_O, NULL},
-	 { "delete_IObserver", _wrap_delete_IObserver, METH_O, "\n"
-		"delete_IObserver(IObserver self)\n"
-		"IObserver::~IObserver()\n"
-		"\n"
-		""},
-	 { "IObserver_notify", _wrap_IObserver_notify, METH_VARARGS, "\n"
-		"IObserver_notify(IObserver self, IObservable subject)\n"
-		"virtual void IObserver::notify(IObservable *subject)=0\n"
-		"\n"
-		"method which is used by observable subject to notify change in status \n"
-		"\n"
-		""},
-	 { "IObserver_swigregister", IObserver_swigregister, METH_O, NULL},
-	 { "delete_IObservable", _wrap_delete_IObservable, METH_O, "\n"
-		"delete_IObservable(IObservable self)\n"
-		"IObservable::~IObservable()\n"
-		"\n"
-		""},
-	 { "IObservable_attachObserver", _wrap_IObservable_attachObserver, METH_VARARGS, "\n"
-		"IObservable_attachObserver(IObservable self, IObservable::observer_t obj)\n"
-		"void IObservable::attachObserver(observer_t obj)\n"
-		"\n"
-		"attach observer to the list of observers \n"
-		"\n"
-		""},
-	 { "IObservable_notifyObservers", _wrap_IObservable_notifyObservers, METH_O, "\n"
-		"IObservable_notifyObservers(IObservable self)\n"
-		"void IObservable::notifyObservers()\n"
-		"\n"
-		"notify observers about change in status \n"
-		"\n"
-		""},
-	 { "new_IObservable", _wrap_new_IObservable, METH_NOARGS, "\n"
-		"new_IObservable() -> IObservable\n"
-		"\n"
-		"\n"
-		"Observable interface from Observer pattern\n"
-		"\n"
-		"C++ includes: IObserver.h\n"
-		"\n"
-		""},
-	 { "IObservable_swigregister", IObservable_swigregister, METH_O, NULL},
-	 { "IObservable_swiginit", IObservable_swiginit, METH_VARARGS, NULL},
-	 { "delete_IIntensityFunction", _wrap_delete_IIntensityFunction, METH_O, "\n"
-		"delete_IIntensityFunction(IIntensityFunction self)\n"
-		"IIntensityFunction::~IIntensityFunction()\n"
-		"\n"
-		""},
-	 { "IIntensityFunction_clone", _wrap_IIntensityFunction_clone, METH_O, "\n"
-		"IIntensityFunction_clone(IIntensityFunction self) -> IIntensityFunction\n"
-		"virtual IIntensityFunction* IIntensityFunction::clone() const =0\n"
-		"\n"
-		""},
-	 { "IIntensityFunction_evaluate", _wrap_IIntensityFunction_evaluate, METH_VARARGS, "\n"
-		"IIntensityFunction_evaluate(IIntensityFunction self, double value) -> double\n"
-		"virtual double IIntensityFunction::evaluate(double value) const =0\n"
-		"\n"
-		""},
-	 { "IIntensityFunction_swigregister", IIntensityFunction_swigregister, METH_O, NULL},
-	 { "IntensityFunctionLog_clone", _wrap_IntensityFunctionLog_clone, METH_O, "\n"
-		"IntensityFunctionLog_clone(IntensityFunctionLog self) -> IntensityFunctionLog\n"
-		"IntensityFunctionLog * IntensityFunctionLog::clone() const\n"
-		"\n"
-		""},
-	 { "IntensityFunctionLog_evaluate", _wrap_IntensityFunctionLog_evaluate, METH_VARARGS, "\n"
-		"IntensityFunctionLog_evaluate(IntensityFunctionLog self, double value) -> double\n"
-		"double IntensityFunctionLog::evaluate(double value) const\n"
-		"\n"
-		""},
-	 { "new_IntensityFunctionLog", _wrap_new_IntensityFunctionLog, METH_NOARGS, "\n"
-		"new_IntensityFunctionLog() -> IntensityFunctionLog\n"
-		"\n"
-		"\n"
-		"Algorithm for applying log function to the measured intensity.\n"
-		"\n"
-		"C++ includes: IIntensityFunction.h\n"
-		"\n"
-		""},
-	 { "delete_IntensityFunctionLog", _wrap_delete_IntensityFunctionLog, METH_O, "delete_IntensityFunctionLog(IntensityFunctionLog self)"},
-	 { "IntensityFunctionLog_swigregister", IntensityFunctionLog_swigregister, METH_O, NULL},
-	 { "IntensityFunctionLog_swiginit", IntensityFunctionLog_swiginit, METH_VARARGS, NULL},
-	 { "IntensityFunctionSqrt_clone", _wrap_IntensityFunctionSqrt_clone, METH_O, "\n"
-		"IntensityFunctionSqrt_clone(IntensityFunctionSqrt self) -> IntensityFunctionSqrt\n"
-		"IntensityFunctionSqrt * IntensityFunctionSqrt::clone() const\n"
-		"\n"
-		""},
-	 { "IntensityFunctionSqrt_evaluate", _wrap_IntensityFunctionSqrt_evaluate, METH_VARARGS, "\n"
-		"IntensityFunctionSqrt_evaluate(IntensityFunctionSqrt self, double value) -> double\n"
-		"double IntensityFunctionSqrt::evaluate(double value) const\n"
-		"\n"
-		""},
-	 { "new_IntensityFunctionSqrt", _wrap_new_IntensityFunctionSqrt, METH_NOARGS, "\n"
-		"new_IntensityFunctionSqrt() -> IntensityFunctionSqrt\n"
+	 { "delete_Bin1D", _wrap_delete_Bin1D, METH_O, "delete_Bin1D(Bin1D self)"},
+	 { "Bin1D_swigregister", Bin1D_swigregister, METH_O, NULL},
+	 { "Bin1D_swiginit", Bin1D_swiginit, METH_VARARGS, NULL},
+	 { "BinContains", _wrap_BinContains, METH_VARARGS, "\n"
+		"BinContains(Bin1D bin, double value) -> bool\n"
+		"bool BinContains(const Bin1D &bin, double value)\n"
 		"\n"
+		"Checks if value is contained in bin: value in [m_lower, m_upper) \n"
 		"\n"
-		"Algorithm for applying sqrt function to the measured intensity.\n"
+		""},
+	 { "new_Bin1DKVector", _wrap_new_Bin1DKVector, METH_VARARGS, "\n"
+		"Bin1DKVector()\n"
+		"Bin1DKVector(kvector_t lower, kvector_t upper)\n"
+		"new_Bin1DKVector(double wavelength, Bin1D alpha_bin, Bin1D phi_bin) -> Bin1DKVector\n"
+		"Bin1DKVector::Bin1DKVector(double wavelength, const Bin1D &alpha_bin, const Bin1D &phi_bin)\n"
 		"\n"
-		"C++ includes: IIntensityFunction.h\n"
+		"creation on  Bin1DKVector from alpha and phi bins \n"
 		"\n"
 		""},
-	 { "delete_IntensityFunctionSqrt", _wrap_delete_IntensityFunctionSqrt, METH_O, "delete_IntensityFunctionSqrt(IntensityFunctionSqrt self)"},
-	 { "IntensityFunctionSqrt_swigregister", IntensityFunctionSqrt_swigregister, METH_O, NULL},
-	 { "IntensityFunctionSqrt_swiginit", IntensityFunctionSqrt_swiginit, METH_VARARGS, NULL},
-	 { "delete_IIntensityNormalizer", _wrap_delete_IIntensityNormalizer, METH_O, "\n"
-		"delete_IIntensityNormalizer(IIntensityNormalizer self)\n"
-		"virtual IIntensityNormalizer::~IIntensityNormalizer()\n"
+	 { "Bin1DKVector_getMidPoint", _wrap_Bin1DKVector_getMidPoint, METH_O, "\n"
+		"Bin1DKVector_getMidPoint(Bin1DKVector self) -> kvector_t\n"
+		"kvector_t Bin1DKVector::getMidPoint() const\n"
 		"\n"
 		""},
-	 { "IIntensityNormalizer_clone", _wrap_IIntensityNormalizer_clone, METH_O, "\n"
-		"IIntensityNormalizer_clone(IIntensityNormalizer self) -> IIntensityNormalizer\n"
-		"virtual IIntensityNormalizer* IIntensityNormalizer::clone() const =0\n"
+	 { "Bin1DKVector_getDelta", _wrap_Bin1DKVector_getDelta, METH_O, "\n"
+		"Bin1DKVector_getDelta(Bin1DKVector self) -> kvector_t\n"
+		"kvector_t Bin1DKVector::getDelta() const\n"
 		"\n"
 		""},
-	 { "IIntensityNormalizer_createNormalizedData", _wrap_IIntensityNormalizer_createNormalizedData, METH_VARARGS, "\n"
-		"IIntensityNormalizer_createNormalizedData(IIntensityNormalizer self, IntensityData data) -> IntensityData\n"
-		"virtual OutputData<double>* IIntensityNormalizer::createNormalizedData(const OutputData< double > &data) const =0\n"
+	 { "Bin1DKVector_m_q_lower_set", _wrap_Bin1DKVector_m_q_lower_set, METH_VARARGS, "Bin1DKVector_m_q_lower_set(Bin1DKVector self, kvector_t m_q_lower)"},
+	 { "Bin1DKVector_m_q_lower_get", _wrap_Bin1DKVector_m_q_lower_get, METH_O, "Bin1DKVector_m_q_lower_get(Bin1DKVector self) -> kvector_t"},
+	 { "Bin1DKVector_m_q_upper_set", _wrap_Bin1DKVector_m_q_upper_set, METH_VARARGS, "Bin1DKVector_m_q_upper_set(Bin1DKVector self, kvector_t m_q_upper)"},
+	 { "Bin1DKVector_m_q_upper_get", _wrap_Bin1DKVector_m_q_upper_get, METH_O, "Bin1DKVector_m_q_upper_get(Bin1DKVector self) -> kvector_t"},
+	 { "delete_Bin1DKVector", _wrap_delete_Bin1DKVector, METH_O, "delete_Bin1DKVector(Bin1DKVector self)"},
+	 { "Bin1DKVector_swigregister", Bin1DKVector_swigregister, METH_O, NULL},
+	 { "Bin1DKVector_swiginit", Bin1DKVector_swiginit, METH_VARARGS, NULL},
+	 { "new_Bin1DCVector", _wrap_new_Bin1DCVector, METH_VARARGS, "\n"
+		"Bin1DCVector()\n"
+		"Bin1DCVector(cvector_t lower, cvector_t upper)\n"
+		"new_Bin1DCVector(double wavelength, Bin1D alpha_bin, Bin1D phi_bin) -> Bin1DCVector\n"
+		"Bin1DCVector::Bin1DCVector(double wavelength, const Bin1D &alpha_bin, const Bin1D &phi_bin)\n"
 		"\n"
-		""},
-	 { "IIntensityNormalizer_apply", _wrap_IIntensityNormalizer_apply, METH_VARARGS, "\n"
-		"IIntensityNormalizer_apply(IIntensityNormalizer self, IntensityData data)\n"
-		"virtual void IIntensityNormalizer::apply(OutputData< double > &data) const =0\n"
+		"creation on  Bin1DCVector from alpha and phi bins \n"
 		"\n"
 		""},
-	 { "IIntensityNormalizer_setMaximumIntensity", _wrap_IIntensityNormalizer_setMaximumIntensity, METH_VARARGS, "\n"
-		"IIntensityNormalizer_setMaximumIntensity(IIntensityNormalizer self, double arg2)\n"
-		"virtual void IIntensityNormalizer::setMaximumIntensity(double)=0\n"
+	 { "Bin1DCVector_getMidPoint", _wrap_Bin1DCVector_getMidPoint, METH_O, "\n"
+		"Bin1DCVector_getMidPoint(Bin1DCVector self) -> cvector_t\n"
+		"cvector_t Bin1DCVector::getMidPoint() const\n"
 		"\n"
 		""},
-	 { "IIntensityNormalizer_swigregister", IIntensityNormalizer_swigregister, METH_O, NULL},
-	 { "new_IntensityNormalizer", _wrap_new_IntensityNormalizer, METH_VARARGS, "\n"
-		"IntensityNormalizer(double scale=1.0, double shift=0.0)\n"
-		"IntensityNormalizer::IntensityNormalizer(double scale=1.0, double shift=0.0)\n"
+	 { "Bin1DCVector_getDelta", _wrap_Bin1DCVector_getDelta, METH_O, "\n"
+		"Bin1DCVector_getDelta(Bin1DCVector self) -> cvector_t\n"
+		"cvector_t Bin1DCVector::getDelta() const\n"
 		"\n"
 		""},
-	 { "delete_IntensityNormalizer", _wrap_delete_IntensityNormalizer, METH_O, "\n"
-		"delete_IntensityNormalizer(IntensityNormalizer self)\n"
-		"virtual IntensityNormalizer::~IntensityNormalizer()\n"
+	 { "Bin1DCVector_m_q_lower_set", _wrap_Bin1DCVector_m_q_lower_set, METH_VARARGS, "Bin1DCVector_m_q_lower_set(Bin1DCVector self, cvector_t m_q_lower)"},
+	 { "Bin1DCVector_m_q_lower_get", _wrap_Bin1DCVector_m_q_lower_get, METH_O, "Bin1DCVector_m_q_lower_get(Bin1DCVector self) -> cvector_t"},
+	 { "Bin1DCVector_m_q_upper_set", _wrap_Bin1DCVector_m_q_upper_set, METH_VARARGS, "Bin1DCVector_m_q_upper_set(Bin1DCVector self, cvector_t m_q_upper)"},
+	 { "Bin1DCVector_m_q_upper_get", _wrap_Bin1DCVector_m_q_upper_get, METH_O, "Bin1DCVector_m_q_upper_get(Bin1DCVector self) -> cvector_t"},
+	 { "delete_Bin1DCVector", _wrap_delete_Bin1DCVector, METH_O, "delete_Bin1DCVector(Bin1DCVector self)"},
+	 { "Bin1DCVector_swigregister", Bin1DCVector_swigregister, METH_O, NULL},
+	 { "Bin1DCVector_swiginit", Bin1DCVector_swiginit, METH_VARARGS, NULL},
+	 { "IAxis_clone", _wrap_IAxis_clone, METH_O, "\n"
+		"IAxis_clone(IAxis self) -> IAxis\n"
+		"virtual IAxis* IAxis::clone() const =0\n"
 		"\n"
-		""},
-	 { "IntensityNormalizer_clone", _wrap_IntensityNormalizer_clone, METH_O, "\n"
-		"IntensityNormalizer_clone(IntensityNormalizer self) -> IntensityNormalizer\n"
-		"IntensityNormalizer * IntensityNormalizer::clone() const\n"
+		"clone function \n"
 		"\n"
 		""},
-	 { "IntensityNormalizer_accept", _wrap_IntensityNormalizer_accept, METH_VARARGS, "\n"
-		"IntensityNormalizer_accept(IntensityNormalizer self, INodeVisitor visitor)\n"
-		"void IntensityNormalizer::accept(INodeVisitor *visitor) const\n"
+	 { "delete_IAxis", _wrap_delete_IAxis, METH_O, "\n"
+		"delete_IAxis(IAxis self)\n"
+		"virtual IAxis::~IAxis()\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"destructor \n"
 		"\n"
 		""},
-	 { "IntensityNormalizer_createNormalizedData", _wrap_IntensityNormalizer_createNormalizedData, METH_VARARGS, "\n"
-		"IntensityNormalizer_createNormalizedData(IntensityNormalizer self, IntensityData data) -> IntensityData\n"
-		"OutputData< double > * IntensityNormalizer::createNormalizedData(const OutputData< double > &data) const\n"
+	 { "IAxis_size", _wrap_IAxis_size, METH_O, "\n"
+		"IAxis_size(IAxis self) -> size_t\n"
+		"virtual size_t IAxis::size() const =0\n"
 		"\n"
-		""},
-	 { "IntensityNormalizer_apply", _wrap_IntensityNormalizer_apply, METH_VARARGS, "\n"
-		"IntensityNormalizer_apply(IntensityNormalizer self, IntensityData data)\n"
-		"void IntensityNormalizer::apply(OutputData< double > &data) const final\n"
+		"retrieve the number of bins \n"
 		"\n"
 		""},
-	 { "IntensityNormalizer_setMaximumIntensity", _wrap_IntensityNormalizer_setMaximumIntensity, METH_VARARGS, "\n"
-		"IntensityNormalizer_setMaximumIntensity(IntensityNormalizer self, double max_intensity)\n"
-		"virtual void IntensityNormalizer::setMaximumIntensity(double max_intensity)\n"
+	 { "IAxis_getName", _wrap_IAxis_getName, METH_O, "\n"
+		"IAxis_getName(IAxis self) -> std::string\n"
+		"std::string IAxis::getName() const\n"
 		"\n"
-		""},
-	 { "IntensityNormalizer_swigregister", IntensityNormalizer_swigregister, METH_O, NULL},
-	 { "IntensityNormalizer_swiginit", IntensityNormalizer_swiginit, METH_VARARGS, NULL},
-	 { "new_IntensityScaleAndShiftNormalizer", _wrap_new_IntensityScaleAndShiftNormalizer, METH_VARARGS, "\n"
-		"IntensityScaleAndShiftNormalizer(double scale=1.0, double shift=0.0)\n"
-		"IntensityScaleAndShiftNormalizer::IntensityScaleAndShiftNormalizer(double scale=1.0, double shift=0.0)\n"
+		"retrieve the label of the axis \n"
 		"\n"
 		""},
-	 { "delete_IntensityScaleAndShiftNormalizer", _wrap_delete_IntensityScaleAndShiftNormalizer, METH_O, "\n"
-		"delete_IntensityScaleAndShiftNormalizer(IntensityScaleAndShiftNormalizer self)\n"
-		"IntensityScaleAndShiftNormalizer::~IntensityScaleAndShiftNormalizer() final\n"
+	 { "IAxis_setName", _wrap_IAxis_setName, METH_VARARGS, "\n"
+		"IAxis_setName(IAxis self, std::string name)\n"
+		"void IAxis::setName(std::string name)\n"
+		"\n"
+		"Sets the axis label. \n"
 		"\n"
 		""},
-	 { "IntensityScaleAndShiftNormalizer_accept", _wrap_IntensityScaleAndShiftNormalizer_accept, METH_VARARGS, "\n"
-		"IntensityScaleAndShiftNormalizer_accept(IntensityScaleAndShiftNormalizer self, INodeVisitor visitor)\n"
-		"void IntensityScaleAndShiftNormalizer::accept(INodeVisitor *visitor) const final\n"
+	 { "IAxis_getBin", _wrap_IAxis_getBin, METH_VARARGS, "\n"
+		"IAxis_getBin(IAxis self, size_t index) -> Bin1D\n"
+		"virtual Bin1D IAxis::getBin(size_t index) const =0\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"retrieve a 1d bin for the given index \n"
 		"\n"
 		""},
-	 { "IntensityScaleAndShiftNormalizer_setMaximumIntensity", _wrap_IntensityScaleAndShiftNormalizer_setMaximumIntensity, METH_VARARGS, "\n"
-		"IntensityScaleAndShiftNormalizer_setMaximumIntensity(IntensityScaleAndShiftNormalizer self, double arg2)\n"
-		"void IntensityScaleAndShiftNormalizer::setMaximumIntensity(double) final\n"
+	 { "IAxis_getMin", _wrap_IAxis_getMin, METH_O, "\n"
+		"IAxis_getMin(IAxis self) -> double\n"
+		"virtual double IAxis::getMin() const =0\n"
 		"\n"
-		""},
-	 { "IntensityScaleAndShiftNormalizer_clone", _wrap_IntensityScaleAndShiftNormalizer_clone, METH_O, "\n"
-		"IntensityScaleAndShiftNormalizer_clone(IntensityScaleAndShiftNormalizer self) -> IntensityScaleAndShiftNormalizer\n"
-		"IntensityScaleAndShiftNormalizer* IntensityScaleAndShiftNormalizer::clone() const final\n"
+		"Returns value of first point of axis. \n"
 		"\n"
 		""},
-	 { "IntensityScaleAndShiftNormalizer_swigregister", IntensityScaleAndShiftNormalizer_swigregister, METH_O, NULL},
-	 { "IntensityScaleAndShiftNormalizer_swiginit", IntensityScaleAndShiftNormalizer_swiginit, METH_VARARGS, NULL},
-	 { "delete_IVarianceFunction", _wrap_delete_IVarianceFunction, METH_O, "\n"
-		"delete_IVarianceFunction(IVarianceFunction self)\n"
-		"IVarianceFunction::~IVarianceFunction()\n"
+	 { "IAxis_getMax", _wrap_IAxis_getMax, METH_O, "\n"
+		"IAxis_getMax(IAxis self) -> double\n"
+		"virtual double IAxis::getMax() const =0\n"
+		"\n"
+		"Returns value of last point of axis. \n"
 		"\n"
 		""},
-	 { "IVarianceFunction_clone", _wrap_IVarianceFunction_clone, METH_O, "\n"
-		"IVarianceFunction_clone(IVarianceFunction self) -> IVarianceFunction\n"
-		"virtual IVarianceFunction* IVarianceFunction::clone() const =0\n"
+	 { "IAxis_getBinCenter", _wrap_IAxis_getBinCenter, METH_VARARGS, "\n"
+		"IAxis_getBinCenter(IAxis self, size_t index) -> double\n"
+		"virtual double IAxis::getBinCenter(size_t index) const =0\n"
 		"\n"
 		""},
-	 { "IVarianceFunction_variance", _wrap_IVarianceFunction_variance, METH_VARARGS, "\n"
-		"IVarianceFunction_variance(IVarianceFunction self, double real_value, double simulated_value) -> double\n"
-		"virtual double IVarianceFunction::variance(double real_value, double simulated_value) const =0\n"
+	 { "IAxis_findClosestIndex", _wrap_IAxis_findClosestIndex, METH_VARARGS, "\n"
+		"IAxis_findClosestIndex(IAxis self, double value) -> size_t\n"
+		"virtual size_t IAxis::findClosestIndex(double value) const =0\n"
+		"\n"
+		"find bin index which is best match for given value \n"
 		"\n"
 		""},
-	 { "IVarianceFunction_swigregister", IVarianceFunction_swigregister, METH_O, NULL},
-	 { "VarianceConstantFunction_clone", _wrap_VarianceConstantFunction_clone, METH_O, "\n"
-		"VarianceConstantFunction_clone(VarianceConstantFunction self) -> VarianceConstantFunction\n"
-		"VarianceConstantFunction * VarianceConstantFunction::clone() const override\n"
+	 { "IAxis___eq__", _wrap_IAxis___eq__, METH_VARARGS, "IAxis___eq__(IAxis self, IAxis right) -> bool"},
+	 { "IAxis___ne__", _wrap_IAxis___ne__, METH_VARARGS, "IAxis___ne__(IAxis self, IAxis right) -> bool"},
+	 { "IAxis_getBinCenters", _wrap_IAxis_getBinCenters, METH_O, "\n"
+		"IAxis_getBinCenters(IAxis self) -> vdouble1d_t\n"
+		"std::vector< double > IAxis::getBinCenters() const\n"
 		"\n"
 		""},
-	 { "VarianceConstantFunction_variance", _wrap_VarianceConstantFunction_variance, METH_VARARGS, "\n"
-		"VarianceConstantFunction_variance(VarianceConstantFunction self, double arg2, double arg3) -> double\n"
-		"double VarianceConstantFunction::variance(double, double) const override\n"
+	 { "IAxis_getBinBoundaries", _wrap_IAxis_getBinBoundaries, METH_O, "\n"
+		"IAxis_getBinBoundaries(IAxis self) -> vdouble1d_t\n"
+		"std::vector< double > IAxis::getBinBoundaries() const\n"
 		"\n"
 		""},
-	 { "new_VarianceConstantFunction", _wrap_new_VarianceConstantFunction, METH_NOARGS, "\n"
-		"new_VarianceConstantFunction() -> VarianceConstantFunction\n"
+	 { "IAxis_createClippedAxis", _wrap_IAxis_createClippedAxis, METH_VARARGS, "\n"
+		"IAxis_createClippedAxis(IAxis self, double left, double right) -> IAxis\n"
+		"IAxis * IAxis::createClippedAxis(double left, double right) const\n"
 		"\n"
+		"Creates a new clipped axis. \n"
 		"\n"
-		"Returns 1.0 as variance value\n"
+		""},
+	 { "IAxis_contains", _wrap_IAxis_contains, METH_VARARGS, "\n"
+		"IAxis_contains(IAxis self, double value) -> bool\n"
+		"bool IAxis::contains(double value) const\n"
 		"\n"
-		"C++ includes: VarianceFunctions.h\n"
+		"Returns true if axis contains given point. \n"
 		"\n"
 		""},
-	 { "delete_VarianceConstantFunction", _wrap_delete_VarianceConstantFunction, METH_O, "delete_VarianceConstantFunction(VarianceConstantFunction self)"},
-	 { "VarianceConstantFunction_swigregister", VarianceConstantFunction_swigregister, METH_O, NULL},
-	 { "VarianceConstantFunction_swiginit", VarianceConstantFunction_swiginit, METH_VARARGS, NULL},
-	 { "new_VarianceSimFunction", _wrap_new_VarianceSimFunction, METH_VARARGS, "\n"
-		"VarianceSimFunction(double epsilon=1.0)\n"
-		"VarianceSimFunction::VarianceSimFunction(double epsilon=1.0)\n"
+	 { "IAxis_swigregister", IAxis_swigregister, METH_O, NULL},
+	 { "HaveSameNameAndShape", _wrap_HaveSameNameAndShape, METH_VARARGS, "\n"
+		"HaveSameNameAndShape(IAxis left, IAxis right) -> bool\n"
+		"bool HaveSameNameAndShape(const IAxis &left, const IAxis &right)\n"
 		"\n"
-		""},
-	 { "VarianceSimFunction_clone", _wrap_VarianceSimFunction_clone, METH_O, "\n"
-		"VarianceSimFunction_clone(VarianceSimFunction self) -> VarianceSimFunction\n"
-		"VarianceSimFunction * VarianceSimFunction::clone() const override\n"
+		"global helper function for comparison of axes \n"
 		"\n"
 		""},
-	 { "VarianceSimFunction_variance", _wrap_VarianceSimFunction_variance, METH_VARARGS, "\n"
-		"VarianceSimFunction_variance(VarianceSimFunction self, double exp, double sim) -> double\n"
-		"double VarianceSimFunction::variance(double exp, double sim) const override\n"
+	 { "new_VariableBinAxis", _wrap_new_VariableBinAxis, METH_VARARGS, "\n"
+		"new_VariableBinAxis(std::string const & name, size_t nbins, vdouble1d_t bin_boundaries) -> VariableBinAxis\n"
+		"VariableBinAxis::VariableBinAxis(const std::string &name, size_t nbins, const std::vector< double > &bin_boundaries)\n"
 		"\n"
-		""},
-	 { "delete_VarianceSimFunction", _wrap_delete_VarianceSimFunction, METH_O, "delete_VarianceSimFunction(VarianceSimFunction self)"},
-	 { "VarianceSimFunction_swigregister", VarianceSimFunction_swigregister, METH_O, NULL},
-	 { "VarianceSimFunction_swiginit", VarianceSimFunction_swiginit, METH_VARARGS, NULL},
-	 { "new_ChiSquaredModule", _wrap_new_ChiSquaredModule, METH_VARARGS, "\n"
-		"ChiSquaredModule()\n"
-		"new_ChiSquaredModule(ChiSquaredModule other) -> ChiSquaredModule\n"
-		"ChiSquaredModule::ChiSquaredModule(const ChiSquaredModule &other)\n"
+		"VariableBinAxis constructor.\n"
 		"\n"
-		""},
-	 { "delete_ChiSquaredModule", _wrap_delete_ChiSquaredModule, METH_O, "\n"
-		"delete_ChiSquaredModule(ChiSquaredModule self)\n"
-		"virtual ChiSquaredModule::~ChiSquaredModule()\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "ChiSquaredModule_clone", _wrap_ChiSquaredModule_clone, METH_O, "\n"
-		"ChiSquaredModule_clone(ChiSquaredModule self) -> ChiSquaredModule\n"
-		"virtual ChiSquaredModule* ChiSquaredModule::clone() const\n"
+		"name: \n"
+		"Axis name\n"
 		"\n"
-		"clone method \n"
+		"nbins: \n"
+		"number of bins\n"
 		"\n"
-		""},
-	 { "ChiSquaredModule_residual", _wrap_ChiSquaredModule_residual, METH_VARARGS, "\n"
-		"ChiSquaredModule_residual(ChiSquaredModule self, double a, double b, double weight) -> double\n"
-		"double ChiSquaredModule::residual(double a, double b, double weight)\n"
+		"bin_boundaries: \n"
+		"Array of size nbins+1 containing low-edges for each bin and upper edge of last bin. \n"
 		"\n"
 		""},
-	 { "ChiSquaredModule_swigregister", ChiSquaredModule_swigregister, METH_O, NULL},
-	 { "ChiSquaredModule_swiginit", ChiSquaredModule_swiginit, METH_VARARGS, NULL},
-	 { "new_FitOptions", _wrap_new_FitOptions, METH_NOARGS, "new_FitOptions() -> FitOptions"},
-	 { "FitOptions_derivEpsilon", _wrap_FitOptions_derivEpsilon, METH_O, "FitOptions_derivEpsilon(FitOptions self) -> double"},
-	 { "FitOptions_setDerivEpsilon", _wrap_FitOptions_setDerivEpsilon, METH_VARARGS, "FitOptions_setDerivEpsilon(FitOptions self, double deriv_epsilon)"},
-	 { "FitOptions_stepFactor", _wrap_FitOptions_stepFactor, METH_O, "FitOptions_stepFactor(FitOptions self) -> double"},
-	 { "FitOptions_setStepFactor", _wrap_FitOptions_setStepFactor, METH_VARARGS, "FitOptions_setStepFactor(FitOptions self, double step_factor)"},
-	 { "delete_FitOptions", _wrap_delete_FitOptions, METH_O, "delete_FitOptions(FitOptions self)"},
-	 { "FitOptions_swigregister", FitOptions_swigregister, METH_O, NULL},
-	 { "FitOptions_swiginit", FitOptions_swiginit, METH_VARARGS, NULL},
-	 { "new_PyBuilderCallback", _wrap_new_PyBuilderCallback, METH_O, "\n"
-		"new_PyBuilderCallback(PyObject * _self) -> PyBuilderCallback\n"
-		"PyBuilderCallback::PyBuilderCallback()\n"
+	 { "delete_VariableBinAxis", _wrap_delete_VariableBinAxis, METH_O, "\n"
+		"delete_VariableBinAxis(VariableBinAxis self)\n"
+		"virtual VariableBinAxis::~VariableBinAxis()\n"
 		"\n"
 		""},
-	 { "delete_PyBuilderCallback", _wrap_delete_PyBuilderCallback, METH_O, "\n"
-		"delete_PyBuilderCallback(PyBuilderCallback self)\n"
-		"PyBuilderCallback::~PyBuilderCallback()\n"
+	 { "VariableBinAxis_clone", _wrap_VariableBinAxis_clone, METH_O, "\n"
+		"VariableBinAxis_clone(VariableBinAxis self) -> VariableBinAxis\n"
+		"VariableBinAxis * VariableBinAxis::clone() const\n"
 		"\n"
-		""},
-	 { "PyBuilderCallback_build_simulation", _wrap_PyBuilderCallback_build_simulation, METH_VARARGS, "\n"
-		"PyBuilderCallback_build_simulation(PyBuilderCallback self, Parameters arg0) -> Simulation\n"
-		"Simulation * PyBuilderCallback::build_simulation(Fit::Parameters)\n"
+		"clone function \n"
 		"\n"
 		""},
-	 { "disown_PyBuilderCallback", _wrap_disown_PyBuilderCallback, METH_O, NULL},
-	 { "PyBuilderCallback_swigregister", PyBuilderCallback_swigregister, METH_O, NULL},
-	 { "PyBuilderCallback_swiginit", PyBuilderCallback_swiginit, METH_VARARGS, NULL},
-	 { "new_PyObserverCallback", _wrap_new_PyObserverCallback, METH_O, "\n"
-		"new_PyObserverCallback(PyObject * _self) -> PyObserverCallback\n"
-		"PyObserverCallback::PyObserverCallback()\n"
+	 { "VariableBinAxis_size", _wrap_VariableBinAxis_size, METH_O, "\n"
+		"VariableBinAxis_size(VariableBinAxis self) -> size_t\n"
+		"size_t VariableBinAxis::size() const\n"
 		"\n"
-		""},
-	 { "delete_PyObserverCallback", _wrap_delete_PyObserverCallback, METH_O, "\n"
-		"delete_PyObserverCallback(PyObserverCallback self)\n"
-		"PyObserverCallback::~PyObserverCallback()\n"
+		"retrieve the number of bins \n"
 		"\n"
 		""},
-	 { "PyObserverCallback_update", _wrap_PyObserverCallback_update, METH_VARARGS, "\n"
-		"PyObserverCallback_update(PyObserverCallback self, FitObjective arg0)\n"
-		"void PyObserverCallback::update(const FitObjective &)\n"
+	 { "VariableBinAxis_getBin", _wrap_VariableBinAxis_getBin, METH_VARARGS, "\n"
+		"VariableBinAxis_getBin(VariableBinAxis self, size_t index) -> Bin1D\n"
+		"Bin1D VariableBinAxis::getBin(size_t index) const\n"
 		"\n"
-		""},
-	 { "disown_PyObserverCallback", _wrap_disown_PyObserverCallback, METH_O, NULL},
-	 { "PyObserverCallback_swigregister", PyObserverCallback_swigregister, METH_O, NULL},
-	 { "PyObserverCallback_swiginit", PyObserverCallback_swiginit, METH_VARARGS, NULL},
-	 { "new_FitObjective", _wrap_new_FitObjective, METH_O, "\n"
-		"new_FitObjective(PyObject * _self) -> FitObjective\n"
-		"FitObjective::FitObjective()\n"
+		"retrieve a 1d bin for the given index \n"
 		"\n"
 		""},
-	 { "delete_FitObjective", _wrap_delete_FitObjective, METH_O, "\n"
-		"delete_FitObjective(FitObjective self)\n"
-		"FitObjective::~FitObjective()\n"
+	 { "VariableBinAxis_getMin", _wrap_VariableBinAxis_getMin, METH_O, "\n"
+		"VariableBinAxis_getMin(VariableBinAxis self) -> double\n"
+		"double VariableBinAxis::getMin() const\n"
 		"\n"
-		""},
-	 { "FitObjective_evaluate_cpp", _wrap_FitObjective_evaluate_cpp, METH_VARARGS, "\n"
-		"FitObjective_evaluate_cpp(FitObjective self, Parameters params) -> double\n"
-		"double FitObjective::evaluate(const Fit::Parameters &params)\n"
+		"Returns value of first point of axis. \n"
 		"\n"
 		""},
-	 { "FitObjective_evaluate_residuals_cpp", _wrap_FitObjective_evaluate_residuals_cpp, METH_VARARGS, "\n"
-		"FitObjective_evaluate_residuals_cpp(FitObjective self, Parameters params) -> vdouble1d_t\n"
-		"std::vector< double > FitObjective::evaluate_residuals(const Fit::Parameters &params)\n"
+	 { "VariableBinAxis_getMax", _wrap_VariableBinAxis_getMax, METH_O, "\n"
+		"VariableBinAxis_getMax(VariableBinAxis self) -> double\n"
+		"double VariableBinAxis::getMax() const\n"
+		"\n"
+		"Returns value of last point of axis. \n"
 		"\n"
 		""},
-	 { "FitObjective_numberOfFitElements", _wrap_FitObjective_numberOfFitElements, METH_O, "\n"
-		"FitObjective_numberOfFitElements(FitObjective self) -> size_t\n"
-		"size_t FitObjective::numberOfFitElements() const\n"
+	 { "VariableBinAxis_getBinCenter", _wrap_VariableBinAxis_getBinCenter, METH_VARARGS, "\n"
+		"VariableBinAxis_getBinCenter(VariableBinAxis self, size_t index) -> double\n"
+		"double VariableBinAxis::getBinCenter(size_t index) const\n"
 		"\n"
 		""},
-	 { "FitObjective_simulationResult", _wrap_FitObjective_simulationResult, METH_VARARGS, "\n"
-		"FitObjective_simulationResult(FitObjective self, size_t i_item=0) -> SimulationResult\n"
-		"SimulationResult FitObjective::simulationResult(size_t i_item=0) const\n"
+	 { "VariableBinAxis_findClosestIndex", _wrap_VariableBinAxis_findClosestIndex, METH_VARARGS, "\n"
+		"VariableBinAxis_findClosestIndex(VariableBinAxis self, double value) -> size_t\n"
+		"size_t VariableBinAxis::findClosestIndex(double value) const\n"
 		"\n"
-		"Returns simulation result in the form of  SimulationResult. \n"
+		"find bin index which is best match for given value \n"
 		"\n"
 		""},
-	 { "FitObjective_experimentalData", _wrap_FitObjective_experimentalData, METH_VARARGS, "\n"
-		"FitObjective_experimentalData(FitObjective self, size_t i_item=0) -> SimulationResult\n"
-		"SimulationResult FitObjective::experimentalData(size_t i_item=0) const\n"
+	 { "VariableBinAxis_getBinCenters", _wrap_VariableBinAxis_getBinCenters, METH_O, "\n"
+		"VariableBinAxis_getBinCenters(VariableBinAxis self) -> vdouble1d_t\n"
+		"std::vector< double > VariableBinAxis::getBinCenters() const\n"
 		"\n"
-		"Returns experimental data in the form of  SimulationResult. \n"
+		""},
+	 { "VariableBinAxis_getBinBoundaries", _wrap_VariableBinAxis_getBinBoundaries, METH_O, "\n"
+		"VariableBinAxis_getBinBoundaries(VariableBinAxis self) -> vdouble1d_t\n"
+		"std::vector<double> VariableBinAxis::getBinBoundaries() const\n"
 		"\n"
 		""},
-	 { "FitObjective_uncertaintyData_cpp", _wrap_FitObjective_uncertaintyData_cpp, METH_VARARGS, "\n"
-		"FitObjective_uncertaintyData_cpp(FitObjective self, size_t i_item=0) -> SimulationResult\n"
-		"SimulationResult FitObjective::uncertaintyData(size_t i_item=0) const\n"
+	 { "VariableBinAxis_createClippedAxis", _wrap_VariableBinAxis_createClippedAxis, METH_VARARGS, "\n"
+		"VariableBinAxis_createClippedAxis(VariableBinAxis self, double left, double right) -> VariableBinAxis\n"
+		"VariableBinAxis * VariableBinAxis::createClippedAxis(double left, double right) const\n"
 		"\n"
-		"Returns experimental data uncertainties in the form of  SimulationResult. \n"
+		"Creates a new clipped axis. \n"
 		"\n"
 		""},
-	 { "FitObjective_relativeDifference", _wrap_FitObjective_relativeDifference, METH_VARARGS, "\n"
-		"FitObjective_relativeDifference(FitObjective self, size_t i_item=0) -> SimulationResult\n"
-		"SimulationResult FitObjective::relativeDifference(size_t i_item=0) const\n"
+	 { "VariableBinAxis___getitem__", _wrap_VariableBinAxis___getitem__, METH_VARARGS, "VariableBinAxis___getitem__(VariableBinAxis self, unsigned int i) -> double"},
+	 { "VariableBinAxis_swigregister", VariableBinAxis_swigregister, METH_O, NULL},
+	 { "VariableBinAxis_swiginit", VariableBinAxis_swiginit, METH_VARARGS, NULL},
+	 { "new_ConstKBinAxis", _wrap_new_ConstKBinAxis, METH_VARARGS, "\n"
+		"new_ConstKBinAxis(std::string const & name, size_t nbins, double start, double end) -> ConstKBinAxis\n"
+		"ConstKBinAxis::ConstKBinAxis(const std::string &name, size_t nbins, double start, double end)\n"
 		"\n"
-		"Returns relative difference between simulation and experimental data in the form of  SimulationResult. \n"
+		"ConstKBinAxis constructor.\n"
 		"\n"
-		""},
-	 { "FitObjective_absoluteDifference", _wrap_FitObjective_absoluteDifference, METH_VARARGS, "\n"
-		"FitObjective_absoluteDifference(FitObjective self, size_t i_item=0) -> SimulationResult\n"
-		"SimulationResult FitObjective::absoluteDifference(size_t i_item=0) const\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns absolute value of difference between simulation and experimental data in the form of  SimulationResult. \n"
+		"name: \n"
+		"Axis name\n"
 		"\n"
-		""},
-	 { "FitObjective_experimental_array", _wrap_FitObjective_experimental_array, METH_O, "\n"
-		"FitObjective_experimental_array(FitObjective self) -> vdouble1d_t\n"
-		"std::vector< double > FitObjective::experimental_array() const\n"
+		"nbins: \n"
+		"number of bins\n"
 		"\n"
-		"Returns one dimensional array representing merged experimental data. The area outside of the region of interest is not included, masked data is nullified. \n"
+		"start: \n"
+		"low edge of first bin\n"
 		"\n"
-		""},
-	 { "FitObjective_simulation_array", _wrap_FitObjective_simulation_array, METH_O, "\n"
-		"FitObjective_simulation_array(FitObjective self) -> vdouble1d_t\n"
-		"std::vector< double > FitObjective::simulation_array() const\n"
+		"end: \n"
+		"upper edge of last bin \n"
 		"\n"
-		"Returns one dimensional array representing merged simulated intensities data. The area outside of the region of interest is not included, masked data is nullified. \n"
+		""},
+	 { "delete_ConstKBinAxis", _wrap_delete_ConstKBinAxis, METH_O, "\n"
+		"delete_ConstKBinAxis(ConstKBinAxis self)\n"
+		"ConstKBinAxis::~ConstKBinAxis() final\n"
 		"\n"
 		""},
-	 { "FitObjective_uncertainties_cpp", _wrap_FitObjective_uncertainties_cpp, METH_O, "\n"
-		"FitObjective_uncertainties_cpp(FitObjective self) -> vdouble1d_t\n"
-		"std::vector< double > FitObjective::uncertainties() const\n"
+	 { "ConstKBinAxis_clone", _wrap_ConstKBinAxis_clone, METH_O, "\n"
+		"ConstKBinAxis_clone(ConstKBinAxis self) -> ConstKBinAxis\n"
+		"ConstKBinAxis * ConstKBinAxis::clone() const final\n"
 		"\n"
-		"Returns one-dimensional array representing merged data uncertainties. The area outside of the region of interest is not included, masked data is nullified. \n"
+		"clone function \n"
 		"\n"
 		""},
-	 { "FitObjective_weights_array", _wrap_FitObjective_weights_array, METH_O, "\n"
-		"FitObjective_weights_array(FitObjective self) -> vdouble1d_t\n"
-		"std::vector< double > FitObjective::weights_array() const\n"
+	 { "ConstKBinAxis_createClippedAxis", _wrap_ConstKBinAxis_createClippedAxis, METH_VARARGS, "\n"
+		"ConstKBinAxis_createClippedAxis(ConstKBinAxis self, double left, double right) -> ConstKBinAxis\n"
+		"ConstKBinAxis * ConstKBinAxis::createClippedAxis(double left, double right) const final\n"
 		"\n"
-		"Returns one-dimensional array representing merged user weights. The area outside of the region of interest is not included, masked data is nullified. \n"
+		"Creates a new clipped axis. \n"
 		"\n"
 		""},
-	 { "FitObjective_initPrint", _wrap_FitObjective_initPrint, METH_VARARGS, "\n"
-		"FitObjective_initPrint(FitObjective self, int every_nth)\n"
-		"void FitObjective::initPrint(int every_nth)\n"
+	 { "ConstKBinAxis_swigregister", ConstKBinAxis_swigregister, METH_O, NULL},
+	 { "ConstKBinAxis_swiginit", ConstKBinAxis_swiginit, METH_VARARGS, NULL},
+	 { "new_CustomBinAxis", _wrap_new_CustomBinAxis, METH_VARARGS, "\n"
+		"new_CustomBinAxis(std::string const & name, size_t nbins, double start, double end) -> CustomBinAxis\n"
+		"CustomBinAxis::CustomBinAxis(const std::string &name, size_t nbins, double start, double end)\n"
 		"\n"
-		"Initializes printing to standard output during the fitting.\n"
+		"CustomBinAxis constructor.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"every_nth: \n"
-		"Print every n'th iteration. \n"
+		"name: \n"
+		"Axis name\n"
 		"\n"
-		""},
-	 { "FitObjective_initPlot_cpp", _wrap_FitObjective_initPlot_cpp, METH_VARARGS, "\n"
-		"FitObjective_initPlot_cpp(FitObjective self, int every_nth, PyObserverCallback callback)\n"
-		"void FitObjective::initPlot(int every_nth, fit_observer_t observer)\n"
+		"nbins: \n"
+		"number of bins\n"
 		"\n"
-		""},
-	 { "FitObjective_iterationInfo", _wrap_FitObjective_iterationInfo, METH_O, "\n"
-		"FitObjective_iterationInfo(FitObjective self) -> IterationInfo\n"
-		"IterationInfo FitObjective::iterationInfo() const\n"
+		"start: \n"
+		"center of first bin (IsGisaxs convention)\n"
 		"\n"
-		""},
-	 { "FitObjective_minimizerResult", _wrap_FitObjective_minimizerResult, METH_O, "\n"
-		"FitObjective_minimizerResult(FitObjective self) -> Fit::MinimizerResult\n"
-		"Fit::MinimizerResult FitObjective::minimizerResult() const\n"
+		"end: \n"
+		"center of last bin (IsGisaxs convention) \n"
 		"\n"
 		""},
-	 { "FitObjective_finalize_cpp", _wrap_FitObjective_finalize_cpp, METH_VARARGS, "\n"
-		"FitObjective_finalize_cpp(FitObjective self, Fit::MinimizerResult const & result)\n"
-		"void FitObjective::finalize(const Fit::MinimizerResult &result)\n"
-		"\n"
-		"Should be explicitely called on last iteration to notify all observers. \n"
+	 { "delete_CustomBinAxis", _wrap_delete_CustomBinAxis, METH_O, "\n"
+		"delete_CustomBinAxis(CustomBinAxis self)\n"
+		"virtual CustomBinAxis::~CustomBinAxis()\n"
 		"\n"
 		""},
-	 { "FitObjective_fitObjectCount", _wrap_FitObjective_fitObjectCount, METH_O, "\n"
-		"FitObjective_fitObjectCount(FitObjective self) -> unsigned int\n"
-		"unsigned FitObjective::fitObjectCount() const\n"
+	 { "CustomBinAxis_clone", _wrap_CustomBinAxis_clone, METH_O, "\n"
+		"CustomBinAxis_clone(CustomBinAxis self) -> CustomBinAxis\n"
+		"CustomBinAxis * CustomBinAxis::clone() const\n"
 		"\n"
-		""},
-	 { "FitObjective_run_simulations", _wrap_FitObjective_run_simulations, METH_VARARGS, "\n"
-		"FitObjective_run_simulations(FitObjective self, Parameters params)\n"
-		"void FitObjective::run_simulations(const Fit::Parameters &params)\n"
+		"clone function \n"
 		"\n"
 		""},
-	 { "FitObjective_setChiSquaredModule", _wrap_FitObjective_setChiSquaredModule, METH_VARARGS, "\n"
-		"FitObjective_setChiSquaredModule(FitObjective self, IChiSquaredModule module)\n"
-		"void FitObjective::setChiSquaredModule(const IChiSquaredModule &module)\n"
+	 { "CustomBinAxis_getBin", _wrap_CustomBinAxis_getBin, METH_VARARGS, "\n"
+		"CustomBinAxis_getBin(CustomBinAxis self, size_t index) -> Bin1D\n"
+		"Bin1D CustomBinAxis::getBin(size_t index) const\n"
 		"\n"
-		""},
-	 { "FitObjective_setObjectiveMetric", _wrap_FitObjective_setObjectiveMetric, METH_VARARGS, "\n"
-		"FitObjective_setObjectiveMetric(FitObjective self, std::string const & metric)\n"
-		"FitObjective_setObjectiveMetric(FitObjective self, std::string const & metric, std::string const & norm)\n"
-		"void FitObjective::setObjectiveMetric(std::unique_ptr< ObjectiveMetric > metric)\n"
+		"retrieve a 1d bin for the given index \n"
 		"\n"
 		""},
-	 { "FitObjective_containsUncertainties_cpp", _wrap_FitObjective_containsUncertainties_cpp, METH_VARARGS, "\n"
-		"FitObjective_containsUncertainties_cpp(FitObjective self, size_t i_item) -> bool\n"
-		"bool FitObjective::containsUncertainties(size_t i_item) const\n"
-		"\n"
-		"Returns true if the specified DataPair element contains uncertainties. \n"
+	 { "CustomBinAxis_getBinCenters", _wrap_CustomBinAxis_getBinCenters, METH_O, "\n"
+		"CustomBinAxis_getBinCenters(CustomBinAxis self) -> vdouble1d_t\n"
+		"std::vector< double > CustomBinAxis::getBinCenters() const\n"
 		"\n"
 		""},
-	 { "FitObjective_allPairsHaveUncertainties_cpp", _wrap_FitObjective_allPairsHaveUncertainties_cpp, METH_O, "\n"
-		"FitObjective_allPairsHaveUncertainties_cpp(FitObjective self) -> bool\n"
-		"bool FitObjective::allPairsHaveUncertainties() const\n"
+	 { "CustomBinAxis_createClippedAxis", _wrap_CustomBinAxis_createClippedAxis, METH_VARARGS, "\n"
+		"CustomBinAxis_createClippedAxis(CustomBinAxis self, double left, double right) -> CustomBinAxis\n"
+		"CustomBinAxis * CustomBinAxis::createClippedAxis(double left, double right) const\n"
 		"\n"
-		"Returns true if all the data pairs in  FitObjective instance contain uncertainties. \n"
+		"Creates a new clipped axis. \n"
 		"\n"
 		""},
-	 { "FitObjective_availableMetricOptions", _wrap_FitObjective_availableMetricOptions, METH_NOARGS, "FitObjective_availableMetricOptions() -> std::string"},
-	 { "FitObjective_addSimulationAndData_cpp", _wrap_FitObjective_addSimulationAndData_cpp, METH_VARARGS, "\n"
-		"FitObjective_addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble1d_t data, double weight=1.0)\n"
-		"FitObjective_addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble1d_t data, vdouble1d_t uncertainties, double weight=1.0)\n"
-		"FitObjective_addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble2d_t data, double weight=1.0)\n"
-		"FitObjective_addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble2d_t data, vdouble2d_t uncertainties, double weight=1.0)\n"
-		"void FitObjective::addSimulationAndData(PyBuilderCallback &callback, const T &data, const T &uncertainties, double weight=1.0)\n"
+	 { "CustomBinAxis_swigregister", CustomBinAxis_swigregister, METH_O, NULL},
+	 { "CustomBinAxis_swiginit", CustomBinAxis_swiginit, METH_VARARGS, NULL},
+	 { "new_FixedBinAxis", _wrap_new_FixedBinAxis, METH_VARARGS, "\n"
+		"new_FixedBinAxis(std::string const & name, size_t nbins, double start, double end) -> FixedBinAxis\n"
+		"FixedBinAxis::FixedBinAxis(const std::string &name, size_t nbins, double start, double end)\n"
 		"\n"
-		"Constructs simulation/data pair for later fit.\n"
+		"FixedBinAxis constructor.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"callback: \n"
-		"simulation builder capable of producing simulations\n"
+		"name: \n"
+		"Axis name\n"
 		"\n"
-		"data: \n"
-		"experimental data array\n"
+		"nbins: \n"
+		"number of bins\n"
 		"\n"
-		"uncertainties: \n"
-		"data uncertainties array\n"
+		"start: \n"
+		"low edge of first bin\n"
 		"\n"
-		"weight: \n"
-		"weight of dataset in metric calculations \n"
+		"end: \n"
+		"upper edge of last bin \n"
 		"\n"
 		""},
-	 { "disown_FitObjective", _wrap_disown_FitObjective, METH_O, NULL},
-	 { "FitObjective_swigregister", FitObjective_swigregister, METH_O, NULL},
-	 { "FitObjective_swiginit", FitObjective_swiginit, METH_VARARGS, NULL},
-	 { "StandardNormal", _wrap_StandardNormal, METH_O, "\n"
-		"StandardNormal(double x) -> double\n"
-		"double MathFunctions::StandardNormal(double x)\n"
+	 { "delete_FixedBinAxis", _wrap_delete_FixedBinAxis, METH_O, "\n"
+		"delete_FixedBinAxis(FixedBinAxis self)\n"
+		"virtual FixedBinAxis::~FixedBinAxis()\n"
 		"\n"
 		""},
-	 { "Gaussian", _wrap_Gaussian, METH_VARARGS, "\n"
-		"Gaussian(double x, double average, double std_dev) -> double\n"
-		"double MathFunctions::Gaussian(double x, double average, double std_dev)\n"
+	 { "FixedBinAxis_clone", _wrap_FixedBinAxis_clone, METH_O, "\n"
+		"FixedBinAxis_clone(FixedBinAxis self) -> FixedBinAxis\n"
+		"FixedBinAxis * FixedBinAxis::clone() const\n"
 		"\n"
-		""},
-	 { "IntegratedGaussian", _wrap_IntegratedGaussian, METH_VARARGS, "\n"
-		"IntegratedGaussian(double x, double average, double std_dev) -> double\n"
-		"double MathFunctions::IntegratedGaussian(double x, double average, double std_dev)\n"
+		"clone function \n"
 		"\n"
 		""},
-	 { "cot", _wrap_cot, METH_O, "\n"
-		"cot(double x) -> double\n"
-		"double MathFunctions::cot(double x)\n"
+	 { "FixedBinAxis_size", _wrap_FixedBinAxis_size, METH_O, "\n"
+		"FixedBinAxis_size(FixedBinAxis self) -> size_t\n"
+		"size_t FixedBinAxis::size() const\n"
 		"\n"
-		"cotangent function:  $cot(x)\\\\equiv1/tan(x)$\n"
+		"retrieve the number of bins \n"
 		"\n"
 		""},
-	 { "Si", _wrap_Si, METH_O, "\n"
-		"Si(double x) -> double\n"
-		"double MathFunctions::Si(double x)\n"
+	 { "FixedBinAxis_getBin", _wrap_FixedBinAxis_getBin, METH_VARARGS, "\n"
+		"FixedBinAxis_getBin(FixedBinAxis self, size_t index) -> Bin1D\n"
+		"Bin1D FixedBinAxis::getBin(size_t index) const\n"
 		"\n"
-		"Sine integral function:  $Si(x)\\\\equiv\\\\int_0^x du \\\\sin(u)/u$. \n"
+		"retrieve a 1d bin for the given index \n"
 		"\n"
 		""},
-	 { "sinc", _wrap_sinc, METH_VARARGS, "\n"
-		"sinc(double x) -> double\n"
-		"sinc(complex_t const z) -> complex_t\n"
-		"complex_t MathFunctions::sinc(const complex_t z)\n"
+	 { "FixedBinAxis_getMin", _wrap_FixedBinAxis_getMin, METH_O, "\n"
+		"FixedBinAxis_getMin(FixedBinAxis self) -> double\n"
+		"double FixedBinAxis::getMin() const\n"
 		"\n"
-		"Complex sinc function:  $sinc(x)\\\\equiv\\\\sin(x)/x$. \n"
+		"Returns value of first point of axis. \n"
 		"\n"
 		""},
-	 { "tanhc", _wrap_tanhc, METH_O, "\n"
-		"tanhc(complex_t const z) -> complex_t\n"
-		"complex_t MathFunctions::tanhc(const complex_t z)\n"
+	 { "FixedBinAxis_getMax", _wrap_FixedBinAxis_getMax, METH_O, "\n"
+		"FixedBinAxis_getMax(FixedBinAxis self) -> double\n"
+		"double FixedBinAxis::getMax() const\n"
 		"\n"
-		"Complex tanhc function:  $tanhc(x)\\\\equiv\\\\tanh(x)/x$. \n"
+		"Returns value of last point of axis. \n"
 		"\n"
 		""},
-	 { "Laue", _wrap_Laue, METH_VARARGS, "\n"
-		"Laue(double const x, size_t N) -> double\n"
-		"double MathFunctions::Laue(const double x, size_t N)\n"
-		"\n"
-		"Real Laue function:  $Laue(x,N)\\\\equiv\\\\sin(Nx)/sin(x)$. \n"
+	 { "FixedBinAxis_getBinCenter", _wrap_FixedBinAxis_getBinCenter, METH_VARARGS, "\n"
+		"FixedBinAxis_getBinCenter(FixedBinAxis self, size_t index) -> double\n"
+		"double FixedBinAxis::getBinCenter(size_t index) const\n"
 		"\n"
 		""},
-	 { "erf", _wrap_erf, METH_O, "\n"
-		"erf(double arg) -> double\n"
-		"double MathFunctions::erf(double arg)\n"
+	 { "FixedBinAxis_findClosestIndex", _wrap_FixedBinAxis_findClosestIndex, METH_VARARGS, "\n"
+		"FixedBinAxis_findClosestIndex(FixedBinAxis self, double value) -> size_t\n"
+		"size_t FixedBinAxis::findClosestIndex(double value) const\n"
 		"\n"
-		"Error function of real-valued argument. \n"
+		"find bin index which is best match for given value \n"
 		"\n"
 		""},
-	 { "Bessel_I0", _wrap_Bessel_I0, METH_O, "\n"
-		"Bessel_I0(double x) -> double\n"
-		"double MathFunctions::Bessel_I0(double x)\n"
-		"\n"
-		"Modified Bessel function of the first kind and order 0. \n"
+	 { "FixedBinAxis_getBinCenters", _wrap_FixedBinAxis_getBinCenters, METH_O, "\n"
+		"FixedBinAxis_getBinCenters(FixedBinAxis self) -> vdouble1d_t\n"
+		"std::vector< double > FixedBinAxis::getBinCenters() const\n"
 		"\n"
 		""},
-	 { "Bessel_J0", _wrap_Bessel_J0, METH_VARARGS, "\n"
-		"Bessel_J0(double x) -> double\n"
-		"Bessel_J0(complex_t const z) -> complex_t\n"
-		"complex_t MathFunctions::Bessel_J0(const complex_t z)\n"
-		"\n"
-		"Complex Bessel function of the first kind and order 0. \n"
+	 { "FixedBinAxis_getBinBoundaries", _wrap_FixedBinAxis_getBinBoundaries, METH_O, "\n"
+		"FixedBinAxis_getBinBoundaries(FixedBinAxis self) -> vdouble1d_t\n"
+		"std::vector< double > FixedBinAxis::getBinBoundaries() const\n"
 		"\n"
 		""},
-	 { "Bessel_J1", _wrap_Bessel_J1, METH_VARARGS, "\n"
-		"Bessel_J1(double x) -> double\n"
-		"Bessel_J1(complex_t const z) -> complex_t\n"
-		"complex_t MathFunctions::Bessel_J1(const complex_t z)\n"
+	 { "FixedBinAxis_createClippedAxis", _wrap_FixedBinAxis_createClippedAxis, METH_VARARGS, "\n"
+		"FixedBinAxis_createClippedAxis(FixedBinAxis self, double left, double right) -> FixedBinAxis\n"
+		"FixedBinAxis * FixedBinAxis::createClippedAxis(double left, double right) const\n"
 		"\n"
-		"Complex Bessel function of the first kind and order 1. \n"
+		"Creates a new clipped axis. \n"
 		"\n"
 		""},
-	 { "Bessel_J1c", _wrap_Bessel_J1c, METH_VARARGS, "\n"
-		"Bessel_J1c(double x) -> double\n"
-		"Bessel_J1c(complex_t const z) -> complex_t\n"
-		"complex_t MathFunctions::Bessel_J1c(const complex_t z)\n"
-		"\n"
-		"Complex Bessel function Bessel_J1(x)/x. \n"
+	 { "FixedBinAxis___getitem__", _wrap_FixedBinAxis___getitem__, METH_VARARGS, "FixedBinAxis___getitem__(FixedBinAxis self, unsigned int i) -> double"},
+	 { "FixedBinAxis_swigregister", FixedBinAxis_swigregister, METH_O, NULL},
+	 { "FixedBinAxis_swiginit", FixedBinAxis_swiginit, METH_VARARGS, NULL},
+	 { "delete_IPixel", _wrap_delete_IPixel, METH_O, "\n"
+		"delete_IPixel(IPixel self)\n"
+		"virtual IPixel::~IPixel()\n"
 		"\n"
 		""},
-	 { "FastFourierTransform", _wrap_FastFourierTransform, METH_VARARGS, "\n"
-		"FastFourierTransform(vector_complex_t data, MathFunctions::EFFTDirection tcase) -> vector_complex_t\n"
-		"FastFourierTransform(vdouble1d_t data, MathFunctions::EFFTDirection tcase) -> vector_complex_t\n"
-		"std::vector< complex_t > MathFunctions::FastFourierTransform(const std::vector< double > &data, EFFTDirection tcase)\n"
-		"\n"
-		"simple (and unoptimized) wrapper function for the discrete fast Fourier transformation library (fftw3); transforms real to complex \n"
+	 { "IPixel_clone", _wrap_IPixel_clone, METH_O, "\n"
+		"IPixel_clone(IPixel self) -> IPixel\n"
+		"virtual IPixel* IPixel::clone() const =0\n"
 		"\n"
 		""},
-	 { "ConvolveFFT", _wrap_ConvolveFFT, METH_VARARGS, "\n"
-		"ConvolveFFT(vdouble1d_t signal, vdouble1d_t resfunc) -> vector_complex_t\n"
-		"std::vector< complex_t > MathFunctions::ConvolveFFT(const std::vector< double > &signal, const std::vector< double > &resfunc)\n"
-		"\n"
-		"convolution of two real vectors of equal size \n"
+	 { "IPixel_createZeroSizePixel", _wrap_IPixel_createZeroSizePixel, METH_VARARGS, "\n"
+		"IPixel_createZeroSizePixel(IPixel self, double x, double y) -> IPixel\n"
+		"virtual IPixel* IPixel::createZeroSizePixel(double x, double y) const =0\n"
 		"\n"
 		""},
-	 { "GenerateUniformRandom", _wrap_GenerateUniformRandom, METH_NOARGS, "\n"
-		"GenerateUniformRandom() -> double\n"
-		"double MathFunctions::GenerateUniformRandom()\n"
+	 { "IPixel_getK", _wrap_IPixel_getK, METH_VARARGS, "\n"
+		"IPixel_getK(IPixel self, double x, double y, double wavelength) -> kvector_t\n"
+		"virtual kvector_t IPixel::getK(double x, double y, double wavelength) const =0\n"
 		"\n"
 		""},
-	 { "GenerateStandardNormalRandom", _wrap_GenerateStandardNormalRandom, METH_NOARGS, "\n"
-		"GenerateStandardNormalRandom() -> double\n"
-		"double MathFunctions::GenerateStandardNormalRandom()\n"
+	 { "IPixel_getIntegrationFactor", _wrap_IPixel_getIntegrationFactor, METH_VARARGS, "\n"
+		"IPixel_getIntegrationFactor(IPixel self, double x, double y) -> double\n"
+		"virtual double IPixel::getIntegrationFactor(double x, double y) const =0\n"
 		"\n"
 		""},
-	 { "GenerateNormalRandom", _wrap_GenerateNormalRandom, METH_VARARGS, "\n"
-		"GenerateNormalRandom(double average, double std_dev) -> double\n"
-		"double MathFunctions::GenerateNormalRandom(double average, double std_dev)\n"
+	 { "IPixel_getSolidAngle", _wrap_IPixel_getSolidAngle, METH_O, "\n"
+		"IPixel_getSolidAngle(IPixel self) -> double\n"
+		"virtual double IPixel::getSolidAngle() const =0\n"
 		"\n"
 		""},
-	 { "GeneratePoissonRandom", _wrap_GeneratePoissonRandom, METH_O, "\n"
-		"GeneratePoissonRandom(double average) -> double\n"
-		"double MathFunctions::GeneratePoissonRandom(double average)\n"
+	 { "IPixel_swigregister", IPixel_swigregister, METH_O, NULL},
+	 { "IShape2D_clone", _wrap_IShape2D_clone, METH_O, "\n"
+		"IShape2D_clone(IShape2D self) -> IShape2D\n"
+		"virtual IShape2D* IShape2D::clone() const =0\n"
 		"\n"
 		""},
-	 { "new_IMultiLayerBuilder", _wrap_new_IMultiLayerBuilder, METH_O, "\n"
-		"new_IMultiLayerBuilder(PyObject * _self) -> IMultiLayerBuilder\n"
-		"IMultiLayerBuilder::IMultiLayerBuilder()\n"
+	 { "IShape2D_contains", _wrap_IShape2D_contains, METH_VARARGS, "\n"
+		"IShape2D_contains(IShape2D self, double x, double y) -> bool\n"
+		"IShape2D_contains(IShape2D self, Bin1D binx, Bin1D biny) -> bool\n"
+		"virtual bool IShape2D::contains(const Bin1D &binx, const Bin1D &biny) const =0\n"
+		"\n"
+		"Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). \n"
 		"\n"
 		""},
-	 { "delete_IMultiLayerBuilder", _wrap_delete_IMultiLayerBuilder, METH_O, "\n"
-		"delete_IMultiLayerBuilder(IMultiLayerBuilder self)\n"
-		"virtual IMultiLayerBuilder::~IMultiLayerBuilder()=default\n"
+	 { "delete_IShape2D", _wrap_delete_IShape2D, METH_O, "delete_IShape2D(IShape2D self)"},
+	 { "IShape2D_swigregister", IShape2D_swigregister, METH_O, NULL},
+	 { "new_Ellipse", _wrap_new_Ellipse, METH_VARARGS, "\n"
+		"Ellipse(double xcenter, double ycenter, double xradius, double yradius, double theta=0.0)\n"
+		"Ellipse::Ellipse(double xcenter, double ycenter, double xradius, double yradius, double theta=0.0)\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"xcenter: \n"
+		"x-coordinate of  Ellipse's center\n"
+		"\n"
+		"ycenter: \n"
+		"y-coordinate of  Ellipse's center\n"
+		"\n"
+		"xradius: \n"
+		"Radius along x-axis\n"
+		"\n"
+		"yradius: \n"
+		"Radius along y-axis\n"
+		"\n"
+		"theta: \n"
+		"Angle of  Ellipse rotation in radians \n"
 		"\n"
 		""},
-	 { "IMultiLayerBuilder_buildSample", _wrap_IMultiLayerBuilder_buildSample, METH_O, "\n"
-		"IMultiLayerBuilder_buildSample(IMultiLayerBuilder self) -> MultiLayer\n"
-		"virtual MultiLayer* IMultiLayerBuilder::buildSample() const =0\n"
+	 { "Ellipse_clone", _wrap_Ellipse_clone, METH_O, "\n"
+		"Ellipse_clone(Ellipse self) -> Ellipse\n"
+		"Ellipse* Ellipse::clone() const\n"
 		"\n"
 		""},
-	 { "IMultiLayerBuilder_createSample", _wrap_IMultiLayerBuilder_createSample, METH_VARARGS, "\n"
-		"IMultiLayerBuilder_createSample(IMultiLayerBuilder self, size_t index=0) -> MultiLayer\n"
-		"virtual MultiLayer* IMultiLayerBuilder::createSample(size_t index=0)\n"
+	 { "Ellipse_contains", _wrap_Ellipse_contains, METH_VARARGS, "\n"
+		"Ellipse_contains(Ellipse self, double x, double y) -> bool\n"
+		"Ellipse_contains(Ellipse self, Bin1D binx, Bin1D biny) -> bool\n"
+		"bool Ellipse::contains(const Bin1D &binx, const Bin1D &biny) const\n"
+		"\n"
+		"Returns true if area defined by two bins is inside or on border of ellipse; more precisely, if mid point of two bins satisfy this condition. \n"
 		"\n"
 		""},
-	 { "IMultiLayerBuilder_size", _wrap_IMultiLayerBuilder_size, METH_O, "\n"
-		"IMultiLayerBuilder_size(IMultiLayerBuilder self) -> size_t\n"
-		"virtual size_t IMultiLayerBuilder::size()\n"
+	 { "Ellipse_getCenterX", _wrap_Ellipse_getCenterX, METH_O, "\n"
+		"Ellipse_getCenterX(Ellipse self) -> double\n"
+		"double Ellipse::getCenterX() const\n"
 		"\n"
 		""},
-	 { "IMultiLayerBuilder_registerParameter", _wrap_IMultiLayerBuilder_registerParameter, METH_VARARGS, "\n"
-		"IMultiLayerBuilder_registerParameter(IMultiLayerBuilder self, std::string const & name, int64_t parpointer) -> RealParameter\n"
-		"RealParameter & IParameterized::registerParameter(const std::string &name, double *parpointer)\n"
+	 { "Ellipse_getCenterY", _wrap_Ellipse_getCenterY, METH_O, "\n"
+		"Ellipse_getCenterY(Ellipse self) -> double\n"
+		"double Ellipse::getCenterY() const\n"
 		"\n"
 		""},
-	 { "IMultiLayerBuilder_setParameterValue", _wrap_IMultiLayerBuilder_setParameterValue, METH_VARARGS, "\n"
-		"IMultiLayerBuilder_setParameterValue(IMultiLayerBuilder self, std::string const & name, double value)\n"
-		"void IParameterized::setParameterValue(const std::string &name, double value)\n"
+	 { "Ellipse_getRadiusX", _wrap_Ellipse_getRadiusX, METH_O, "\n"
+		"Ellipse_getRadiusX(Ellipse self) -> double\n"
+		"double Ellipse::getRadiusX() const\n"
 		"\n"
 		""},
-	 { "IMultiLayerBuilder_parametersToString", _wrap_IMultiLayerBuilder_parametersToString, METH_O, "\n"
-		"IMultiLayerBuilder_parametersToString(IMultiLayerBuilder self) -> std::string\n"
-		"std::string IParameterized::parametersToString() const\n"
+	 { "Ellipse_getRadiusY", _wrap_Ellipse_getRadiusY, METH_O, "\n"
+		"Ellipse_getRadiusY(Ellipse self) -> double\n"
+		"double Ellipse::getRadiusY() const\n"
 		"\n"
-		"Returns multiline string representing available parameters. \n"
+		""},
+	 { "Ellipse_getTheta", _wrap_Ellipse_getTheta, METH_O, "\n"
+		"Ellipse_getTheta(Ellipse self) -> double\n"
+		"double Ellipse::getTheta() const\n"
 		"\n"
 		""},
-	 { "IMultiLayerBuilder_createParameterTree", _wrap_IMultiLayerBuilder_createParameterTree, METH_O, "\n"
-		"IMultiLayerBuilder_createParameterTree(IMultiLayerBuilder self) -> ParameterPool\n"
-		"ParameterPool * IParameterized::createParameterTree() const\n"
+	 { "delete_Ellipse", _wrap_delete_Ellipse, METH_O, "delete_Ellipse(Ellipse self)"},
+	 { "Ellipse_swigregister", Ellipse_swigregister, METH_O, NULL},
+	 { "Ellipse_swiginit", Ellipse_swiginit, METH_VARARGS, NULL},
+	 { "new_Line", _wrap_new_Line, METH_VARARGS, "\n"
+		"new_Line(double x1, double y1, double x2, double y2) -> Line\n"
+		"Line::Line(double x1, double y1, double x2, double y2)\n"
 		"\n"
-		"Creates new parameter pool, with all local parameters and those of its children. \n"
+		""},
+	 { "Line_clone", _wrap_Line_clone, METH_O, "\n"
+		"Line_clone(Line self) -> Line\n"
+		"Line* Line::clone() const\n"
 		"\n"
 		""},
-	 { "IMultiLayerBuilder_parameterPool", _wrap_IMultiLayerBuilder_parameterPool, METH_O, "\n"
-		"IMultiLayerBuilder_parameterPool(IMultiLayerBuilder self) -> ParameterPool\n"
-		"ParameterPool* IParameterized::parameterPool() const\n"
+	 { "Line_contains", _wrap_Line_contains, METH_VARARGS, "\n"
+		"Line_contains(Line self, double x, double y) -> bool\n"
+		"Line_contains(Line self, Bin1D binx, Bin1D biny) -> bool\n"
+		"bool Line::contains(const Bin1D &binx, const Bin1D &biny) const\n"
 		"\n"
-		"Returns pointer to the parameter pool. \n"
+		"Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). \n"
 		"\n"
 		""},
-	 { "IMultiLayerBuilder_onChange", _wrap_IMultiLayerBuilder_onChange, METH_O, "\n"
-		"IMultiLayerBuilder_onChange(IMultiLayerBuilder self)\n"
-		"virtual void IParameterized::onChange()\n"
+	 { "delete_Line", _wrap_delete_Line, METH_O, "delete_Line(Line self)"},
+	 { "Line_swigregister", Line_swigregister, METH_O, NULL},
+	 { "Line_swiginit", Line_swiginit, METH_VARARGS, NULL},
+	 { "new_VerticalLine", _wrap_new_VerticalLine, METH_O, "\n"
+		"new_VerticalLine(double x) -> VerticalLine\n"
+		"VerticalLine::VerticalLine(double x)\n"
 		"\n"
-		"Action to be taken in inherited class when a parameter has changed. \n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "disown_IMultiLayerBuilder", _wrap_disown_IMultiLayerBuilder, METH_O, NULL},
-	 { "IMultiLayerBuilder_swigregister", IMultiLayerBuilder_swigregister, METH_O, NULL},
-	 { "IMultiLayerBuilder_swiginit", IMultiLayerBuilder_swiginit, METH_VARARGS, NULL},
-	 { "new_INodeVisitor", _wrap_new_INodeVisitor, METH_NOARGS, "\n"
-		"new_INodeVisitor() -> INodeVisitor\n"
-		"INodeVisitor::INodeVisitor()\n"
+		"x: \n"
+		"The value at which it crosses x-axes \n"
 		"\n"
 		""},
-	 { "delete_INodeVisitor", _wrap_delete_INodeVisitor, METH_O, "\n"
-		"delete_INodeVisitor(INodeVisitor self)\n"
-		"virtual INodeVisitor::~INodeVisitor()\n"
+	 { "VerticalLine_clone", _wrap_VerticalLine_clone, METH_O, "\n"
+		"VerticalLine_clone(VerticalLine self) -> VerticalLine\n"
+		"VerticalLine* VerticalLine::clone() const\n"
 		"\n"
 		""},
-	 { "INodeVisitor_visit", _wrap_INodeVisitor_visit, METH_VARARGS, "\n"
-		"INodeVisitor_visit(INodeVisitor self, BasicLattice arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, Beam arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, ConstantBackground arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, ConvolutionDetectorResolution const * arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, Crystal arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, DistributionCosine arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, DistributionGate arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, DistributionGaussian arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, DistributionLogNormal arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, DistributionLorentz arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, DistributionTrapezoid arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FootprintGauss arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FootprintSquare arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorAnisoPyramid arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorBarGauss const * arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorBarLorentz const * arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorBox arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorCantellatedCube arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorCone arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorCone6 arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorCoreShell const * arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorCrystal arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorCuboctahedron arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorCylinder arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorDWBA const * arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorDWBAPol const * arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorDecoratorMaterial const * arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorDecoratorPositionFactor const * arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorDecoratorRotation const * arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorDodecahedron arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorDot arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorEllipsoidalCylinder arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorFullSphere arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorFullSpheroid arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorGauss arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorHemiEllipsoid arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorIcosahedron arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorLongBoxGauss arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorLongBoxLorentz arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorLorentz arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorPrism3 arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorPrism6 arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorPyramid arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorRipple1Box arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorRipple1Gauss arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorRipple1Lorentz arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorRipple2Box arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorRipple2Gauss arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorRipple2Lorentz arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorSphereGaussianRadius arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorSphereLogNormalRadius arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorTetrahedron arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorTruncatedCube arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorTruncatedSphere arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorTruncatedSpheroid arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FormFactorWeighted arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction1DCauchy arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction1DGauss arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction1DTriangle arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction1DVoigt arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction2DCauchy arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction2DGauss arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction2DVoigt arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDistribution1DCauchy arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDistribution1DCosine arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDistribution1DGate arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDistribution1DGauss arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDistribution1DTriangle arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDistribution1DVoigt arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDistribution2DCauchy arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDistribution2DCone arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDistribution2DGate arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDistribution2DGauss arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, FTDistribution2DVoigt arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, GISASSimulation arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, HexagonalLattice arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IAbstractParticle arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IClusteredParticles arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IdentityRotation arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IFormFactor arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IFormFactorBorn arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IFormFactorDecorator arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IInterferenceFunction arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, ILayout arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, INode arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, Instrument arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IntensityNormalizer arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IntensityScaleAndShiftNormalizer arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, InterferenceFunction1DLattice arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, InterferenceFunction2DLattice arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, InterferenceFunction2DParaCrystal arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, InterferenceFunction2DSuperLattice arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, InterferenceFunction3DLattice arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, InterferenceFunctionFinite2DLattice arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, InterferenceFunctionFinite3DLattice arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, InterferenceFunctionHardDisk arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, InterferenceFunctionRadialParaCrystal arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, InterferenceFunctionTwin arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, InterferenceFunctionNone arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IParticle arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IPeakShape arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IRotation arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, ISample arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, IsGISAXSDetector arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, Layer arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, LayerInterface const * arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, LayerRoughness arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, MesoCrystal arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, MultiLayer arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, OffSpecSimulation arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, Particle arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, ParticleComposition arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, ParticleCoreShell arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, ParticleDistribution arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, ParticleLayout arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, PoissonNoiseBackground arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, RectangularDetector arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, ResolutionFunction2DGaussian arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, RotationEuler arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, RotationX arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, RotationY arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, RotationZ arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, SpecularDetector1D const * arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, SpecularSimulation arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, SphericalDetector arg2)\n"
-		"INodeVisitor_visit(INodeVisitor self, SquareLattice arg2)\n"
-		"virtual void INodeVisitor::visit(const SquareLattice *)\n"
+	 { "VerticalLine_contains", _wrap_VerticalLine_contains, METH_VARARGS, "\n"
+		"VerticalLine_contains(VerticalLine self, double x, double y) -> bool\n"
+		"VerticalLine_contains(VerticalLine self, Bin1D binx, Bin1D biny) -> bool\n"
+		"bool VerticalLine::contains(const Bin1D &binx, const Bin1D &biny) const\n"
 		"\n"
-		""},
-	 { "INodeVisitor_depth", _wrap_INodeVisitor_depth, METH_O, "\n"
-		"INodeVisitor_depth(INodeVisitor self) -> int\n"
-		"int INodeVisitor::depth() const\n"
+		"Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). \n"
 		"\n"
-		"Returns depth of the visitor in the composite hierarchy. \n"
+		""},
+	 { "VerticalLine_getXpos", _wrap_VerticalLine_getXpos, METH_O, "\n"
+		"VerticalLine_getXpos(VerticalLine self) -> double\n"
+		"double VerticalLine::getXpos() const\n"
 		"\n"
 		""},
-	 { "INodeVisitor_setDepth", _wrap_INodeVisitor_setDepth, METH_VARARGS, "\n"
-		"INodeVisitor_setDepth(INodeVisitor self, int depth)\n"
-		"void INodeVisitor::setDepth(int depth)\n"
+	 { "delete_VerticalLine", _wrap_delete_VerticalLine, METH_O, "delete_VerticalLine(VerticalLine self)"},
+	 { "VerticalLine_swigregister", VerticalLine_swigregister, METH_O, NULL},
+	 { "VerticalLine_swiginit", VerticalLine_swiginit, METH_VARARGS, NULL},
+	 { "new_HorizontalLine", _wrap_new_HorizontalLine, METH_O, "\n"
+		"new_HorizontalLine(double y) -> HorizontalLine\n"
+		"HorizontalLine::HorizontalLine(double y)\n"
 		"\n"
-		"Sets depth of the visitor in the composite hierarchy. \n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "INodeVisitor_swigregister", INodeVisitor_swigregister, METH_O, NULL},
-	 { "INodeVisitor_swiginit", INodeVisitor_swiginit, METH_VARARGS, NULL},
-	 { "VisitNodesPreorder", _wrap_VisitNodesPreorder, METH_VARARGS, "\n"
-		"VisitNodesPreorder(INode node, INodeVisitor visitor)\n"
-		"BA_CORE_API_ void VisitNodesPreorder(const INode &node, INodeVisitor &visitor)\n"
+		"y: \n"
+		"The value at which it crosses y-axes \n"
 		"\n"
 		""},
-	 { "VisitNodesPostorder", _wrap_VisitNodesPostorder, METH_VARARGS, "\n"
-		"VisitNodesPostorder(INode node, INodeVisitor visitor)\n"
-		"BA_CORE_API_ void VisitNodesPostorder(const INode &node, INodeVisitor &visitor)\n"
+	 { "HorizontalLine_clone", _wrap_HorizontalLine_clone, METH_O, "\n"
+		"HorizontalLine_clone(HorizontalLine self) -> HorizontalLine\n"
+		"HorizontalLine* HorizontalLine::clone() const\n"
 		"\n"
 		""},
-	 { "IClusteredParticles_clone", _wrap_IClusteredParticles_clone, METH_O, "\n"
-		"IClusteredParticles_clone(IClusteredParticles self) -> IClusteredParticles\n"
-		"IClusteredParticles* IClusteredParticles::clone() const override=0\n"
+	 { "HorizontalLine_contains", _wrap_HorizontalLine_contains, METH_VARARGS, "\n"
+		"HorizontalLine_contains(HorizontalLine self, double x, double y) -> bool\n"
+		"HorizontalLine_contains(HorizontalLine self, Bin1D binx, Bin1D biny) -> bool\n"
+		"bool HorizontalLine::contains(const Bin1D &binx, const Bin1D &biny) const\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). \n"
 		"\n"
 		""},
-	 { "IClusteredParticles_createTotalFormFactor", _wrap_IClusteredParticles_createTotalFormFactor, METH_VARARGS, "\n"
-		"IClusteredParticles_createTotalFormFactor(IClusteredParticles self, IFormFactor arg2, IRotation arg3, kvector_t arg4) -> IFormFactor\n"
-		"virtual IFormFactor* IClusteredParticles::createTotalFormFactor(const IFormFactor &, const IRotation *, const kvector_t &) const =0\n"
-		"\n"
-		"Creates a total form factor for the mesocrystal with a specific shape and content The bulk content of the mesocrystal is encapsulated by the  IClusteredParticles object itself \n"
+	 { "HorizontalLine_getYpos", _wrap_HorizontalLine_getYpos, METH_O, "\n"
+		"HorizontalLine_getYpos(HorizontalLine self) -> double\n"
+		"double HorizontalLine::getYpos() const\n"
 		"\n"
 		""},
-	 { "IClusteredParticles_homogeneousRegions", _wrap_IClusteredParticles_homogeneousRegions, METH_O, "\n"
-		"IClusteredParticles_homogeneousRegions(IClusteredParticles self) -> std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >\n"
-		"virtual std::vector<HomogeneousRegion> IClusteredParticles::homogeneousRegions() const =0\n"
-		"\n"
-		"Creates region information with volumetric densities instead of absolute volume These densities need to be multiplied by the total mesocrystal volume \n"
+	 { "delete_HorizontalLine", _wrap_delete_HorizontalLine, METH_O, "delete_HorizontalLine(HorizontalLine self)"},
+	 { "HorizontalLine_swigregister", HorizontalLine_swigregister, METH_O, NULL},
+	 { "HorizontalLine_swiginit", HorizontalLine_swiginit, METH_VARARGS, NULL},
+	 { "new_Polygon", _wrap_new_Polygon, METH_VARARGS, "\n"
+		"Polygon(vdouble1d_t x, vdouble1d_t y)\n"
+		"Polygon(vdouble2d_t points)\n"
+		"new_Polygon(PolygonPrivate const * d) -> Polygon\n"
+		"Polygon::Polygon(const PolygonPrivate *d)\n"
 		"\n"
 		""},
-	 { "delete_IClusteredParticles", _wrap_delete_IClusteredParticles, METH_O, "delete_IClusteredParticles(IClusteredParticles self)"},
-	 { "IClusteredParticles_swigregister", IClusteredParticles_swigregister, METH_O, NULL},
-	 { "new_Crystal", _wrap_new_Crystal, METH_VARARGS, "\n"
-		"new_Crystal(IParticle lattice_basis, Lattice lattice) -> Crystal\n"
-		"Crystal::Crystal(const IParticle &lattice_basis, const Lattice &lattice)\n"
+	 { "delete_Polygon", _wrap_delete_Polygon, METH_O, "\n"
+		"delete_Polygon(Polygon self)\n"
+		"Polygon::~Polygon()\n"
 		"\n"
 		""},
-	 { "delete_Crystal", _wrap_delete_Crystal, METH_O, "\n"
-		"delete_Crystal(Crystal self)\n"
-		"Crystal::~Crystal()\n"
+	 { "Polygon_clone", _wrap_Polygon_clone, METH_O, "\n"
+		"Polygon_clone(Polygon self) -> Polygon\n"
+		"virtual Polygon* Polygon::clone() const\n"
 		"\n"
 		""},
-	 { "Crystal_clone", _wrap_Crystal_clone, METH_O, "\n"
-		"Crystal_clone(Crystal self) -> Crystal\n"
-		"Crystal * Crystal::clone() const override final\n"
+	 { "Polygon_contains", _wrap_Polygon_contains, METH_VARARGS, "\n"
+		"Polygon_contains(Polygon self, double x, double y) -> bool\n"
+		"Polygon_contains(Polygon self, Bin1D binx, Bin1D biny) -> bool\n"
+		"bool Polygon::contains(const Bin1D &binx, const Bin1D &biny) const\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). \n"
 		"\n"
 		""},
-	 { "Crystal_accept", _wrap_Crystal_accept, METH_VARARGS, "\n"
-		"Crystal_accept(Crystal self, INodeVisitor visitor)\n"
-		"void Crystal::accept(INodeVisitor *visitor) const override final\n"
+	 { "Polygon_getArea", _wrap_Polygon_getArea, METH_O, "\n"
+		"Polygon_getArea(Polygon self) -> double\n"
+		"double Polygon::getArea() const\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		""},
+	 { "Polygon_getPoints", _wrap_Polygon_getPoints, METH_VARARGS, "\n"
+		"Polygon_getPoints(Polygon self, vdouble1d_t xpos, vdouble1d_t ypos)\n"
+		"void Polygon::getPoints(std::vector< double > &xpos, std::vector< double > &ypos) const\n"
 		"\n"
 		""},
-	 { "Crystal_createTotalFormFactor", _wrap_Crystal_createTotalFormFactor, METH_VARARGS, "\n"
-		"Crystal_createTotalFormFactor(Crystal self, IFormFactor meso_crystal_form_factor, IRotation p_rotation, kvector_t translation) -> IFormFactor\n"
-		"IFormFactor * Crystal::createTotalFormFactor(const IFormFactor &meso_crystal_form_factor, const IRotation *p_rotation, const kvector_t &translation) const override final\n"
+	 { "Polygon_swigregister", Polygon_swigregister, METH_O, NULL},
+	 { "Polygon_swiginit", Polygon_swiginit, METH_VARARGS, NULL},
+	 { "new_Rectangle", _wrap_new_Rectangle, METH_VARARGS, "\n"
+		"new_Rectangle(double xlow, double ylow, double xup, double yup) -> Rectangle\n"
+		"Rectangle::Rectangle(double xlow, double ylow, double xup, double yup)\n"
 		"\n"
-		"Creates a total form factor for the mesocrystal with a specific shape and content The bulk content of the mesocrystal is encapsulated by the  IClusteredParticles object itself \n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "Crystal_homogeneousRegions", _wrap_Crystal_homogeneousRegions, METH_O, "\n"
-		"Crystal_homogeneousRegions(Crystal self) -> std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >\n"
-		"std::vector< HomogeneousRegion > Crystal::homogeneousRegions() const override final\n"
+		"xlow: \n"
+		"x-coordinate of lower left corner\n"
 		"\n"
-		"Creates region information with volumetric densities instead of absolute volume These densities need to be multiplied by the total mesocrystal volume \n"
+		"ylow: \n"
+		"y-coordinate of lower left corner\n"
 		"\n"
-		""},
-	 { "Crystal_transformedLattice", _wrap_Crystal_transformedLattice, METH_VARARGS, "\n"
-		"Crystal_transformedLattice(Crystal self, IRotation p_rotation=None) -> Lattice\n"
-		"Lattice Crystal::transformedLattice(const IRotation *p_rotation=nullptr) const\n"
+		"xup: \n"
+		"x-coordinate of upper right corner\n"
+		"\n"
+		"yup: \n"
+		"y-coordinate of upper right corner \n"
 		"\n"
 		""},
-	 { "Crystal_setPositionVariance", _wrap_Crystal_setPositionVariance, METH_VARARGS, "\n"
-		"Crystal_setPositionVariance(Crystal self, double position_variance)\n"
-		"void Crystal::setPositionVariance(double position_variance)\n"
+	 { "Rectangle_clone", _wrap_Rectangle_clone, METH_O, "\n"
+		"Rectangle_clone(Rectangle self) -> Rectangle\n"
+		"Rectangle* Rectangle::clone() const\n"
 		"\n"
 		""},
-	 { "Crystal_getChildren", _wrap_Crystal_getChildren, METH_O, "\n"
-		"Crystal_getChildren(Crystal self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > Crystal::getChildren() const override final\n"
+	 { "Rectangle_contains", _wrap_Rectangle_contains, METH_VARARGS, "\n"
+		"Rectangle_contains(Rectangle self, double x, double y) -> bool\n"
+		"Rectangle_contains(Rectangle self, Bin1D binx, Bin1D biny) -> bool\n"
+		"bool Rectangle::contains(const Bin1D &binx, const Bin1D &biny) const\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). \n"
 		"\n"
 		""},
-	 { "Crystal_swigregister", Crystal_swigregister, METH_O, NULL},
-	 { "Crystal_swiginit", Crystal_swiginit, METH_VARARGS, NULL},
-	 { "delete_IDistribution1D", _wrap_delete_IDistribution1D, METH_O, "\n"
-		"delete_IDistribution1D(IDistribution1D self)\n"
-		"virtual IDistribution1D::~IDistribution1D()\n"
+	 { "Rectangle_getArea", _wrap_Rectangle_getArea, METH_O, "\n"
+		"Rectangle_getArea(Rectangle self) -> double\n"
+		"double Rectangle::getArea() const\n"
 		"\n"
 		""},
-	 { "IDistribution1D_clone", _wrap_IDistribution1D_clone, METH_O, "\n"
-		"IDistribution1D_clone(IDistribution1D self) -> IDistribution1D\n"
-		"virtual IDistribution1D* IDistribution1D::clone() const =0\n"
+	 { "Rectangle_getXlow", _wrap_Rectangle_getXlow, METH_O, "\n"
+		"Rectangle_getXlow(Rectangle self) -> double\n"
+		"double Rectangle::getXlow() const\n"
 		"\n"
 		""},
-	 { "IDistribution1D_probabilityDensity", _wrap_IDistribution1D_probabilityDensity, METH_VARARGS, "\n"
-		"IDistribution1D_probabilityDensity(IDistribution1D self, double x) -> double\n"
-		"virtual double IDistribution1D::probabilityDensity(double x) const =0\n"
-		"\n"
-		"Returns the distribution-specific probability density for value x. \n"
+	 { "Rectangle_getYlow", _wrap_Rectangle_getYlow, METH_O, "\n"
+		"Rectangle_getYlow(Rectangle self) -> double\n"
+		"double Rectangle::getYlow() const\n"
 		"\n"
 		""},
-	 { "IDistribution1D_getMean", _wrap_IDistribution1D_getMean, METH_O, "\n"
-		"IDistribution1D_getMean(IDistribution1D self) -> double\n"
-		"virtual double IDistribution1D::getMean() const =0\n"
-		"\n"
-		"Returns the distribution-specific mean. \n"
+	 { "Rectangle_getXup", _wrap_Rectangle_getXup, METH_O, "\n"
+		"Rectangle_getXup(Rectangle self) -> double\n"
+		"double Rectangle::getXup() const\n"
 		"\n"
 		""},
-	 { "IDistribution1D_equidistantSamples", _wrap_IDistribution1D_equidistantSamples, METH_VARARGS, "\n"
-		"IDistribution1D_equidistantSamples(IDistribution1D self, size_t nbr_samples, double sigma_factor=0., RealLimits limits=RealLimits()) -> ParameterSampleVector\n"
-		"std::vector< ParameterSample > IDistribution1D::equidistantSamples(size_t nbr_samples, double sigma_factor=0., const RealLimits &limits=RealLimits()) const\n"
-		"\n"
-		"Returns equidistant samples, using intrinsic parameters, weighted with  probabilityDensity(). \n"
+	 { "Rectangle_getYup", _wrap_Rectangle_getYup, METH_O, "\n"
+		"Rectangle_getYup(Rectangle self) -> double\n"
+		"double Rectangle::getYup() const\n"
 		"\n"
 		""},
-	 { "IDistribution1D_equidistantSamplesInRange", _wrap_IDistribution1D_equidistantSamplesInRange, METH_VARARGS, "\n"
-		"IDistribution1D_equidistantSamplesInRange(IDistribution1D self, size_t nbr_samples, double xmin, double xmax) -> ParameterSampleVector\n"
-		"std::vector< ParameterSample > IDistribution1D::equidistantSamplesInRange(size_t nbr_samples, double xmin, double xmax) const\n"
+	 { "delete_Rectangle", _wrap_delete_Rectangle, METH_O, "delete_Rectangle(Rectangle self)"},
+	 { "Rectangle_swigregister", Rectangle_swigregister, METH_O, NULL},
+	 { "Rectangle_swiginit", Rectangle_swiginit, METH_VARARGS, NULL},
+	 { "new_ISample", _wrap_new_ISample, METH_VARARGS, "\n"
+		"ISample()\n"
+		"new_ISample(PyObject * _self, INode parent, std::vector< char const *,std::allocator< char const * > > const PName, std::vector< char const *,std::allocator< char const * > > const PUnit, vdouble1d_t PMin, vdouble1d_t PMax, vdouble1d_t PDefault, vdouble1d_t P) -> ISample\n"
 		"\n"
-		"Returns equidistant samples from xmin to xmax, weighted with  probabilityDensity(). \n"
 		"\n"
-		""},
-	 { "IDistribution1D_equidistantPoints", _wrap_IDistribution1D_equidistantPoints, METH_VARARGS, "\n"
-		"IDistribution1D_equidistantPoints(IDistribution1D self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
-		"virtual std::vector<double> IDistribution1D::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const =0\n"
+		"Pure virtual base class for sample components and properties related to scattering.\n"
 		"\n"
-		"Returns equidistant interpolation points, with range computed in distribution-specific way from mean and width parameter, taking into account limits and sigma_factor. \n"
+		"C++ includes: ISample.h\n"
 		"\n"
 		""},
-	 { "IDistribution1D_equidistantPointsInRange", _wrap_IDistribution1D_equidistantPointsInRange, METH_VARARGS, "\n"
-		"IDistribution1D_equidistantPointsInRange(IDistribution1D self, size_t nbr_samples, double xmin, double xmax) -> vdouble1d_t\n"
-		"std::vector< double > IDistribution1D::equidistantPointsInRange(size_t nbr_samples, double xmin, double xmax) const\n"
+	 { "ISample_clone", _wrap_ISample_clone, METH_O, "\n"
+		"ISample_clone(ISample self) -> ISample\n"
+		"ISample* ISample::clone() const override=0\n"
 		"\n"
-		"Returns equidistant interpolation points from xmin to xmax. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "IDistribution1D_isDelta", _wrap_IDistribution1D_isDelta, METH_O, "\n"
-		"IDistribution1D_isDelta(IDistribution1D self) -> bool\n"
-		"virtual bool IDistribution1D::isDelta() const =0\n"
+	 { "ISample_material", _wrap_ISample_material, METH_O, "\n"
+		"ISample_material(ISample self) -> Material\n"
+		"virtual const Material* ISample::material() const\n"
 		"\n"
-		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
+		"Returns nullptr, unless overwritten to return a specific material. \n"
 		"\n"
 		""},
-	 { "IDistribution1D_setUnits", _wrap_IDistribution1D_setUnits, METH_VARARGS, "\n"
-		"IDistribution1D_setUnits(IDistribution1D self, std::string const & units)\n"
-		"void IDistribution1D::setUnits(const std::string &units)\n"
+	 { "ISample_containedMaterials", _wrap_ISample_containedMaterials, METH_O, "\n"
+		"ISample_containedMaterials(ISample self) -> std::vector< Material const *,std::allocator< Material const * > >\n"
+		"std::vector< const Material * > ISample::containedMaterials() const\n"
 		"\n"
-		"Sets distribution units. \n"
+		"Returns set of unique materials contained in this  ISample. \n"
 		"\n"
 		""},
-	 { "IDistribution1D_swigregister", IDistribution1D_swigregister, METH_O, NULL},
-	 { "new_DistributionGate", _wrap_new_DistributionGate, METH_VARARGS, "\n"
-		"DistributionGate()\n"
-		"new_DistributionGate(double min, double max) -> DistributionGate\n"
-		"DistributionGate::DistributionGate(double min, double max)\n"
+	 { "delete_ISample", _wrap_delete_ISample, METH_O, "delete_ISample(ISample self)"},
+	 { "disown_ISample", _wrap_disown_ISample, METH_O, NULL},
+	 { "ISample_swigregister", ISample_swigregister, METH_O, NULL},
+	 { "ISample_swiginit", ISample_swiginit, METH_VARARGS, NULL},
+	 { "new_IFormFactor", _wrap_new_IFormFactor, METH_VARARGS, "\n"
+		"IFormFactor()\n"
+		"new_IFormFactor(PyObject * _self, INode parent, std::vector< char const *,std::allocator< char const * > > const PName, std::vector< char const *,std::allocator< char const * > > const PUnit, vdouble1d_t PMin, vdouble1d_t PMax, vdouble1d_t PDefault, vdouble1d_t P) -> IFormFactor\n"
+		"IFormFactor::IFormFactor()\n"
 		"\n"
 		""},
-	 { "delete_DistributionGate", _wrap_delete_DistributionGate, METH_O, "\n"
-		"delete_DistributionGate(DistributionGate self)\n"
-		"virtual DistributionGate::~DistributionGate()\n"
+	 { "delete_IFormFactor", _wrap_delete_IFormFactor, METH_O, "\n"
+		"delete_IFormFactor(IFormFactor self)\n"
+		"IFormFactor::~IFormFactor() override\n"
 		"\n"
 		""},
-	 { "DistributionGate_clone", _wrap_DistributionGate_clone, METH_O, "\n"
-		"DistributionGate_clone(DistributionGate self) -> DistributionGate\n"
-		"DistributionGate* DistributionGate::clone() const final\n"
+	 { "IFormFactor_clone", _wrap_IFormFactor_clone, METH_O, "\n"
+		"IFormFactor_clone(IFormFactor self) -> IFormFactor\n"
+		"IFormFactor* IFormFactor::clone() const override=0\n"
+		"\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "DistributionGate_probabilityDensity", _wrap_DistributionGate_probabilityDensity, METH_VARARGS, "\n"
-		"DistributionGate_probabilityDensity(DistributionGate self, double x) -> double\n"
-		"double DistributionGate::probabilityDensity(double x) const final\n"
+	 { "IFormFactor_createSlicedFormFactor", _wrap_IFormFactor_createSlicedFormFactor, METH_VARARGS, "\n"
+		"IFormFactor_createSlicedFormFactor(IFormFactor self, ZLimits limits, IRotation rot, kvector_t translation) -> IFormFactor\n"
+		"IFormFactor * IFormFactor::createSlicedFormFactor(ZLimits limits, const IRotation &rot, kvector_t translation) const\n"
 		"\n"
-		"Returns the distribution-specific probability density for value x. \n"
+		"Creates a (possibly sliced) form factor with the given rotation and translation. \n"
 		"\n"
 		""},
-	 { "DistributionGate_getMean", _wrap_DistributionGate_getMean, METH_O, "\n"
-		"DistributionGate_getMean(DistributionGate self) -> double\n"
-		"double DistributionGate::getMean() const final\n"
+	 { "IFormFactor_setAmbientMaterial", _wrap_IFormFactor_setAmbientMaterial, METH_VARARGS, "\n"
+		"IFormFactor_setAmbientMaterial(IFormFactor self, Material arg0)\n"
+		"virtual void IFormFactor::setAmbientMaterial(Material)=0\n"
 		"\n"
-		"Returns the distribution-specific mean. \n"
+		"Passes the material in which this particle is embedded. \n"
 		"\n"
 		""},
-	 { "DistributionGate_getMin", _wrap_DistributionGate_getMin, METH_O, "\n"
-		"DistributionGate_getMin(DistributionGate self) -> double\n"
-		"double DistributionGate::getMin() const\n"
+	 { "IFormFactor_evaluate", _wrap_IFormFactor_evaluate, METH_VARARGS, "\n"
+		"IFormFactor_evaluate(IFormFactor self, WavevectorInfo wavevectors) -> complex_t\n"
+		"virtual complex_t IFormFactor::evaluate(const WavevectorInfo &wavevectors) const =0\n"
 		"\n"
-		""},
-	 { "DistributionGate_getMax", _wrap_DistributionGate_getMax, METH_O, "\n"
-		"DistributionGate_getMax(DistributionGate self) -> double\n"
-		"double DistributionGate::getMax() const\n"
+		"Returns scattering amplitude for complex wavevectors ki, kf. \n"
 		"\n"
 		""},
-	 { "DistributionGate_equidistantPoints", _wrap_DistributionGate_equidistantPoints, METH_VARARGS, "\n"
-		"DistributionGate_equidistantPoints(DistributionGate self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
-		"std::vector< double > DistributionGate::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const\n"
+	 { "IFormFactor_volume", _wrap_IFormFactor_volume, METH_O, "\n"
+		"IFormFactor_volume(IFormFactor self) -> double\n"
+		"double IFormFactor::volume() const\n"
 		"\n"
-		"Returns list of sample values. \n"
+		"Returns the total volume of the particle of this form factor's shape. \n"
 		"\n"
 		""},
-	 { "DistributionGate_isDelta", _wrap_DistributionGate_isDelta, METH_O, "\n"
-		"DistributionGate_isDelta(DistributionGate self) -> bool\n"
-		"bool DistributionGate::isDelta() const final\n"
+	 { "IFormFactor_radialExtension", _wrap_IFormFactor_radialExtension, METH_O, "\n"
+		"IFormFactor_radialExtension(IFormFactor self) -> double\n"
+		"virtual double IFormFactor::radialExtension() const =0\n"
 		"\n"
-		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "DistributionGate_accept", _wrap_DistributionGate_accept, METH_VARARGS, "\n"
-		"DistributionGate_accept(DistributionGate self, INodeVisitor visitor)\n"
-		"void DistributionGate::accept(INodeVisitor *visitor) const final\n"
+	 { "IFormFactor_bottomZ", _wrap_IFormFactor_bottomZ, METH_VARARGS, "\n"
+		"IFormFactor_bottomZ(IFormFactor self, IRotation rotation) -> double\n"
+		"virtual double IFormFactor::bottomZ(const IRotation &rotation) const =0\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "DistributionGate_swigregister", DistributionGate_swigregister, METH_O, NULL},
-	 { "DistributionGate_swiginit", DistributionGate_swiginit, METH_VARARGS, NULL},
-	 { "new_DistributionLorentz", _wrap_new_DistributionLorentz, METH_VARARGS, "\n"
-		"DistributionLorentz()\n"
-		"new_DistributionLorentz(double mean, double hwhm) -> DistributionLorentz\n"
-		"DistributionLorentz::DistributionLorentz(double mean, double hwhm)\n"
+	 { "IFormFactor_topZ", _wrap_IFormFactor_topZ, METH_VARARGS, "\n"
+		"IFormFactor_topZ(IFormFactor self, IRotation rotation) -> double\n"
+		"virtual double IFormFactor::topZ(const IRotation &rotation) const =0\n"
+		"\n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "delete_DistributionLorentz", _wrap_delete_DistributionLorentz, METH_O, "\n"
-		"delete_DistributionLorentz(DistributionLorentz self)\n"
-		"virtual DistributionLorentz::~DistributionLorentz()\n"
+	 { "IFormFactor_canSliceAnalytically", _wrap_IFormFactor_canSliceAnalytically, METH_VARARGS, "IFormFactor_canSliceAnalytically(IFormFactor self, IRotation rot) -> bool"},
+	 { "IFormFactor_sliceFormFactor", _wrap_IFormFactor_sliceFormFactor, METH_VARARGS, "IFormFactor_sliceFormFactor(IFormFactor self, ZLimits limits, IRotation rot, kvector_t translation) -> IFormFactor"},
+	 { "disown_IFormFactor", _wrap_disown_IFormFactor, METH_O, NULL},
+	 { "IFormFactor_swigregister", IFormFactor_swigregister, METH_O, NULL},
+	 { "IFormFactor_swiginit", IFormFactor_swiginit, METH_VARARGS, NULL},
+	 { "CreateTransformedFormFactor", _wrap_CreateTransformedFormFactor, METH_VARARGS, "\n"
+		"CreateTransformedFormFactor(IFormFactor formfactor, IRotation rot, kvector_t translation) -> IFormFactor\n"
+		"IFormFactor* CreateTransformedFormFactor(const IFormFactor &formfactor, const IRotation &rot, kvector_t translation)\n"
 		"\n"
 		""},
-	 { "DistributionLorentz_clone", _wrap_DistributionLorentz_clone, METH_O, "\n"
-		"DistributionLorentz_clone(DistributionLorentz self) -> DistributionLorentz\n"
-		"DistributionLorentz* DistributionLorentz::clone() const final\n"
+	 { "new_IFormFactorBorn", _wrap_new_IFormFactorBorn, METH_VARARGS, "\n"
+		"IFormFactorBorn()\n"
+		"new_IFormFactorBorn(PyObject * _self, INode parent, std::vector< char const *,std::allocator< char const * > > const PName, std::vector< char const *,std::allocator< char const * > > const PUnit, vdouble1d_t PMin, vdouble1d_t PMax, vdouble1d_t PDefault, vdouble1d_t P) -> IFormFactorBorn\n"
+		"IFormFactorBorn::IFormFactorBorn()=default\n"
 		"\n"
 		""},
-	 { "DistributionLorentz_probabilityDensity", _wrap_DistributionLorentz_probabilityDensity, METH_VARARGS, "\n"
-		"DistributionLorentz_probabilityDensity(DistributionLorentz self, double x) -> double\n"
-		"double DistributionLorentz::probabilityDensity(double x) const final\n"
+	 { "IFormFactorBorn_clone", _wrap_IFormFactorBorn_clone, METH_O, "\n"
+		"IFormFactorBorn_clone(IFormFactorBorn self) -> IFormFactorBorn\n"
+		"IFormFactorBorn* IFormFactorBorn::clone() const override=0\n"
 		"\n"
-		"Returns the distribution-specific probability density for value x. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "DistributionLorentz_getMean", _wrap_DistributionLorentz_getMean, METH_O, "\n"
-		"DistributionLorentz_getMean(DistributionLorentz self) -> double\n"
-		"double DistributionLorentz::getMean() const final\n"
+	 { "IFormFactorBorn_setAmbientMaterial", _wrap_IFormFactorBorn_setAmbientMaterial, METH_VARARGS, "\n"
+		"IFormFactorBorn_setAmbientMaterial(IFormFactorBorn self, Material arg0)\n"
+		"void IFormFactorBorn::setAmbientMaterial(Material) override\n"
 		"\n"
-		"Returns the distribution-specific mean. \n"
+		"Passes the material in which this particle is embedded. \n"
 		"\n"
 		""},
-	 { "DistributionLorentz_getHWHM", _wrap_DistributionLorentz_getHWHM, METH_O, "\n"
-		"DistributionLorentz_getHWHM(DistributionLorentz self) -> double\n"
-		"double DistributionLorentz::getHWHM() const\n"
+	 { "IFormFactorBorn_evaluate", _wrap_IFormFactorBorn_evaluate, METH_VARARGS, "\n"
+		"IFormFactorBorn_evaluate(IFormFactorBorn self, WavevectorInfo wavevectors) -> complex_t\n"
+		"complex_t IFormFactorBorn::evaluate(const WavevectorInfo &wavevectors) const override\n"
+		"\n"
+		"Returns scattering amplitude for complex wavevectors ki, kf. \n"
 		"\n"
 		""},
-	 { "DistributionLorentz_equidistantPoints", _wrap_DistributionLorentz_equidistantPoints, METH_VARARGS, "\n"
-		"DistributionLorentz_equidistantPoints(DistributionLorentz self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
-		"std::vector< double > DistributionLorentz::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const\n"
+	 { "IFormFactorBorn_bottomZ", _wrap_IFormFactorBorn_bottomZ, METH_VARARGS, "\n"
+		"IFormFactorBorn_bottomZ(IFormFactorBorn self, IRotation rotation) -> double\n"
+		"double IFormFactorBorn::bottomZ(const IRotation &rotation) const override\n"
 		"\n"
-		"generate list of sample values \n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "DistributionLorentz_isDelta", _wrap_DistributionLorentz_isDelta, METH_O, "\n"
-		"DistributionLorentz_isDelta(DistributionLorentz self) -> bool\n"
-		"bool DistributionLorentz::isDelta() const final\n"
+	 { "IFormFactorBorn_topZ", _wrap_IFormFactorBorn_topZ, METH_VARARGS, "\n"
+		"IFormFactorBorn_topZ(IFormFactorBorn self, IRotation rotation) -> double\n"
+		"double IFormFactorBorn::topZ(const IRotation &rotation) const override\n"
 		"\n"
-		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "DistributionLorentz_accept", _wrap_DistributionLorentz_accept, METH_VARARGS, "\n"
-		"DistributionLorentz_accept(DistributionLorentz self, INodeVisitor visitor)\n"
-		"void DistributionLorentz::accept(INodeVisitor *visitor) const final\n"
+	 { "IFormFactorBorn_evaluate_for_q", _wrap_IFormFactorBorn_evaluate_for_q, METH_VARARGS, "\n"
+		"IFormFactorBorn_evaluate_for_q(IFormFactorBorn self, cvector_t q) -> complex_t\n"
+		"virtual complex_t IFormFactorBorn::evaluate_for_q(cvector_t q) const =0\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "DistributionLorentz_swigregister", DistributionLorentz_swigregister, METH_O, NULL},
-	 { "DistributionLorentz_swiginit", DistributionLorentz_swiginit, METH_VARARGS, NULL},
-	 { "new_DistributionGaussian", _wrap_new_DistributionGaussian, METH_VARARGS, "\n"
-		"DistributionGaussian()\n"
-		"new_DistributionGaussian(double mean, double std_dev) -> DistributionGaussian\n"
-		"DistributionGaussian::DistributionGaussian(double mean, double std_dev)\n"
+	 { "IFormFactorBorn_canSliceAnalytically", _wrap_IFormFactorBorn_canSliceAnalytically, METH_VARARGS, "IFormFactorBorn_canSliceAnalytically(IFormFactorBorn self, IRotation rot) -> bool"},
+	 { "delete_IFormFactorBorn", _wrap_delete_IFormFactorBorn, METH_O, "\n"
+		"delete_IFormFactorBorn(IFormFactorBorn self)\n"
+		"IFormFactorBorn::~IFormFactorBorn() override\n"
 		"\n"
 		""},
-	 { "delete_DistributionGaussian", _wrap_delete_DistributionGaussian, METH_O, "\n"
-		"delete_DistributionGaussian(DistributionGaussian self)\n"
-		"virtual DistributionGaussian::~DistributionGaussian()\n"
+	 { "disown_IFormFactorBorn", _wrap_disown_IFormFactorBorn, METH_O, NULL},
+	 { "IFormFactorBorn_sliceFormFactor", _wrap_IFormFactorBorn_sliceFormFactor, METH_VARARGS, "IFormFactorBorn_sliceFormFactor(IFormFactorBorn self, ZLimits limits, IRotation rot, kvector_t translation) -> IFormFactor"},
+	 { "IFormFactorBorn_swigregister", IFormFactorBorn_swigregister, METH_O, NULL},
+	 { "IFormFactorBorn_swiginit", IFormFactorBorn_swiginit, METH_VARARGS, NULL},
+	 { "SlicingEffects_position_set", _wrap_SlicingEffects_position_set, METH_VARARGS, "SlicingEffects_position_set(SlicingEffects self, kvector_t position)"},
+	 { "SlicingEffects_position_get", _wrap_SlicingEffects_position_get, METH_O, "SlicingEffects_position_get(SlicingEffects self) -> kvector_t"},
+	 { "SlicingEffects_dz_bottom_set", _wrap_SlicingEffects_dz_bottom_set, METH_VARARGS, "SlicingEffects_dz_bottom_set(SlicingEffects self, double dz_bottom)"},
+	 { "SlicingEffects_dz_bottom_get", _wrap_SlicingEffects_dz_bottom_get, METH_O, "SlicingEffects_dz_bottom_get(SlicingEffects self) -> double"},
+	 { "SlicingEffects_dz_top_set", _wrap_SlicingEffects_dz_top_set, METH_VARARGS, "SlicingEffects_dz_top_set(SlicingEffects self, double dz_top)"},
+	 { "SlicingEffects_dz_top_get", _wrap_SlicingEffects_dz_top_get, METH_O, "SlicingEffects_dz_top_get(SlicingEffects self) -> double"},
+	 { "new_SlicingEffects", _wrap_new_SlicingEffects, METH_NOARGS, "\n"
+		"new_SlicingEffects() -> SlicingEffects\n"
 		"\n"
-		""},
-	 { "DistributionGaussian_clone", _wrap_DistributionGaussian_clone, METH_O, "\n"
-		"DistributionGaussian_clone(DistributionGaussian self) -> DistributionGaussian\n"
-		"DistributionGaussian* DistributionGaussian::clone() const final\n"
 		"\n"
-		""},
-	 { "DistributionGaussian_probabilityDensity", _wrap_DistributionGaussian_probabilityDensity, METH_VARARGS, "\n"
-		"DistributionGaussian_probabilityDensity(DistributionGaussian self, double x) -> double\n"
-		"double DistributionGaussian::probabilityDensity(double x) const final\n"
+		"Nested structure that holds slicing effects on position and removed parts.\n"
 		"\n"
-		"Returns the distribution-specific probability density for value x. \n"
+		"C++ includes: IFormFactorBorn.h\n"
 		"\n"
 		""},
-	 { "DistributionGaussian_getMean", _wrap_DistributionGaussian_getMean, METH_O, "\n"
-		"DistributionGaussian_getMean(DistributionGaussian self) -> double\n"
-		"double DistributionGaussian::getMean() const final\n"
+	 { "delete_SlicingEffects", _wrap_delete_SlicingEffects, METH_O, "delete_SlicingEffects(SlicingEffects self)"},
+	 { "SlicingEffects_swigregister", SlicingEffects_swigregister, METH_O, NULL},
+	 { "SlicingEffects_swiginit", SlicingEffects_swiginit, METH_VARARGS, NULL},
+	 { "vector_IFormFactorPtr_t_iterator", _wrap_vector_IFormFactorPtr_t_iterator, METH_O, "vector_IFormFactorPtr_t_iterator(vector_IFormFactorPtr_t self) -> SwigPyIterator"},
+	 { "vector_IFormFactorPtr_t___nonzero__", _wrap_vector_IFormFactorPtr_t___nonzero__, METH_O, "vector_IFormFactorPtr_t___nonzero__(vector_IFormFactorPtr_t self) -> bool"},
+	 { "vector_IFormFactorPtr_t___bool__", _wrap_vector_IFormFactorPtr_t___bool__, METH_O, "vector_IFormFactorPtr_t___bool__(vector_IFormFactorPtr_t self) -> bool"},
+	 { "vector_IFormFactorPtr_t___len__", _wrap_vector_IFormFactorPtr_t___len__, METH_O, "vector_IFormFactorPtr_t___len__(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::size_type"},
+	 { "vector_IFormFactorPtr_t___getslice__", _wrap_vector_IFormFactorPtr_t___getslice__, METH_VARARGS, "vector_IFormFactorPtr_t___getslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j) -> vector_IFormFactorPtr_t"},
+	 { "vector_IFormFactorPtr_t___setslice__", _wrap_vector_IFormFactorPtr_t___setslice__, METH_VARARGS, "\n"
+		"vector_IFormFactorPtr_t___setslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j)\n"
+		"vector_IFormFactorPtr_t___setslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j, vector_IFormFactorPtr_t v)\n"
+		""},
+	 { "vector_IFormFactorPtr_t___delslice__", _wrap_vector_IFormFactorPtr_t___delslice__, METH_VARARGS, "vector_IFormFactorPtr_t___delslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j)"},
+	 { "vector_IFormFactorPtr_t___delitem__", _wrap_vector_IFormFactorPtr_t___delitem__, METH_VARARGS, "\n"
+		"vector_IFormFactorPtr_t___delitem__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i)\n"
+		"vector_IFormFactorPtr_t___delitem__(vector_IFormFactorPtr_t self, PySliceObject * slice)\n"
+		""},
+	 { "vector_IFormFactorPtr_t___getitem__", _wrap_vector_IFormFactorPtr_t___getitem__, METH_VARARGS, "\n"
+		"vector_IFormFactorPtr_t___getitem__(vector_IFormFactorPtr_t self, PySliceObject * slice) -> vector_IFormFactorPtr_t\n"
+		"vector_IFormFactorPtr_t___getitem__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i) -> IFormFactor\n"
+		""},
+	 { "vector_IFormFactorPtr_t___setitem__", _wrap_vector_IFormFactorPtr_t___setitem__, METH_VARARGS, "\n"
+		"vector_IFormFactorPtr_t___setitem__(vector_IFormFactorPtr_t self, PySliceObject * slice, vector_IFormFactorPtr_t v)\n"
+		"vector_IFormFactorPtr_t___setitem__(vector_IFormFactorPtr_t self, PySliceObject * slice)\n"
+		"vector_IFormFactorPtr_t___setitem__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, IFormFactor x)\n"
+		""},
+	 { "vector_IFormFactorPtr_t_pop", _wrap_vector_IFormFactorPtr_t_pop, METH_O, "vector_IFormFactorPtr_t_pop(vector_IFormFactorPtr_t self) -> IFormFactor"},
+	 { "vector_IFormFactorPtr_t_append", _wrap_vector_IFormFactorPtr_t_append, METH_VARARGS, "vector_IFormFactorPtr_t_append(vector_IFormFactorPtr_t self, IFormFactor x)"},
+	 { "vector_IFormFactorPtr_t_empty", _wrap_vector_IFormFactorPtr_t_empty, METH_O, "vector_IFormFactorPtr_t_empty(vector_IFormFactorPtr_t self) -> bool"},
+	 { "vector_IFormFactorPtr_t_size", _wrap_vector_IFormFactorPtr_t_size, METH_O, "vector_IFormFactorPtr_t_size(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::size_type"},
+	 { "vector_IFormFactorPtr_t_swap", _wrap_vector_IFormFactorPtr_t_swap, METH_VARARGS, "\n"
+		"vector_IFormFactorPtr_t_swap(vector_IFormFactorPtr_t self, vector_IFormFactorPtr_t v)\n"
+		"void swap(OutputDataIterator< TValue, TContainer > &left, OutputDataIterator< TValue, TContainer > &right)\n"
 		"\n"
-		"Returns the distribution-specific mean. \n"
+		"make Swappable \n"
 		"\n"
 		""},
-	 { "DistributionGaussian_getStdDev", _wrap_DistributionGaussian_getStdDev, METH_O, "\n"
-		"DistributionGaussian_getStdDev(DistributionGaussian self) -> double\n"
-		"double DistributionGaussian::getStdDev() const\n"
+	 { "vector_IFormFactorPtr_t_begin", _wrap_vector_IFormFactorPtr_t_begin, METH_O, "vector_IFormFactorPtr_t_begin(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::iterator"},
+	 { "vector_IFormFactorPtr_t_end", _wrap_vector_IFormFactorPtr_t_end, METH_O, "vector_IFormFactorPtr_t_end(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::iterator"},
+	 { "vector_IFormFactorPtr_t_rbegin", _wrap_vector_IFormFactorPtr_t_rbegin, METH_O, "vector_IFormFactorPtr_t_rbegin(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::reverse_iterator"},
+	 { "vector_IFormFactorPtr_t_rend", _wrap_vector_IFormFactorPtr_t_rend, METH_O, "vector_IFormFactorPtr_t_rend(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::reverse_iterator"},
+	 { "vector_IFormFactorPtr_t_clear", _wrap_vector_IFormFactorPtr_t_clear, METH_O, "vector_IFormFactorPtr_t_clear(vector_IFormFactorPtr_t self)"},
+	 { "vector_IFormFactorPtr_t_get_allocator", _wrap_vector_IFormFactorPtr_t_get_allocator, METH_O, "vector_IFormFactorPtr_t_get_allocator(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::allocator_type"},
+	 { "vector_IFormFactorPtr_t_pop_back", _wrap_vector_IFormFactorPtr_t_pop_back, METH_O, "vector_IFormFactorPtr_t_pop_back(vector_IFormFactorPtr_t self)"},
+	 { "vector_IFormFactorPtr_t_erase", _wrap_vector_IFormFactorPtr_t_erase, METH_VARARGS, "\n"
+		"vector_IFormFactorPtr_t_erase(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator pos) -> std::vector< IFormFactor * >::iterator\n"
+		"vector_IFormFactorPtr_t_erase(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator first, std::vector< IFormFactor * >::iterator last) -> std::vector< IFormFactor * >::iterator\n"
+		""},
+	 { "new_vector_IFormFactorPtr_t", _wrap_new_vector_IFormFactorPtr_t, METH_VARARGS, "\n"
+		"vector_IFormFactorPtr_t()\n"
+		"vector_IFormFactorPtr_t(vector_IFormFactorPtr_t other)\n"
+		"vector_IFormFactorPtr_t(std::vector< IFormFactor * >::size_type size)\n"
+		"new_vector_IFormFactorPtr_t(std::vector< IFormFactor * >::size_type size, IFormFactor value) -> vector_IFormFactorPtr_t\n"
+		""},
+	 { "vector_IFormFactorPtr_t_push_back", _wrap_vector_IFormFactorPtr_t_push_back, METH_VARARGS, "vector_IFormFactorPtr_t_push_back(vector_IFormFactorPtr_t self, IFormFactor x)"},
+	 { "vector_IFormFactorPtr_t_front", _wrap_vector_IFormFactorPtr_t_front, METH_O, "vector_IFormFactorPtr_t_front(vector_IFormFactorPtr_t self) -> IFormFactor"},
+	 { "vector_IFormFactorPtr_t_back", _wrap_vector_IFormFactorPtr_t_back, METH_O, "vector_IFormFactorPtr_t_back(vector_IFormFactorPtr_t self) -> IFormFactor"},
+	 { "vector_IFormFactorPtr_t_assign", _wrap_vector_IFormFactorPtr_t_assign, METH_VARARGS, "vector_IFormFactorPtr_t_assign(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type n, IFormFactor x)"},
+	 { "vector_IFormFactorPtr_t_resize", _wrap_vector_IFormFactorPtr_t_resize, METH_VARARGS, "\n"
+		"vector_IFormFactorPtr_t_resize(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type new_size)\n"
+		"vector_IFormFactorPtr_t_resize(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type new_size, IFormFactor x)\n"
+		""},
+	 { "vector_IFormFactorPtr_t_insert", _wrap_vector_IFormFactorPtr_t_insert, METH_VARARGS, "\n"
+		"vector_IFormFactorPtr_t_insert(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator pos, IFormFactor x) -> std::vector< IFormFactor * >::iterator\n"
+		"vector_IFormFactorPtr_t_insert(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator pos, std::vector< IFormFactor * >::size_type n, IFormFactor x)\n"
+		""},
+	 { "vector_IFormFactorPtr_t_reserve", _wrap_vector_IFormFactorPtr_t_reserve, METH_VARARGS, "vector_IFormFactorPtr_t_reserve(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type n)"},
+	 { "vector_IFormFactorPtr_t_capacity", _wrap_vector_IFormFactorPtr_t_capacity, METH_O, "vector_IFormFactorPtr_t_capacity(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::size_type"},
+	 { "delete_vector_IFormFactorPtr_t", _wrap_delete_vector_IFormFactorPtr_t, METH_O, "delete_vector_IFormFactorPtr_t(vector_IFormFactorPtr_t self)"},
+	 { "vector_IFormFactorPtr_t_swigregister", vector_IFormFactorPtr_t_swigregister, METH_O, NULL},
+	 { "vector_IFormFactorPtr_t_swiginit", vector_IFormFactorPtr_t_swiginit, METH_VARARGS, NULL},
+	 { "IRotation_createRotation", _wrap_IRotation_createRotation, METH_O, "IRotation_createRotation(Transform3D const & transform) -> IRotation"},
+	 { "IRotation_createIdentity", _wrap_IRotation_createIdentity, METH_NOARGS, "IRotation_createIdentity() -> IRotation"},
+	 { "delete_IRotation", _wrap_delete_IRotation, METH_O, "\n"
+		"delete_IRotation(IRotation self)\n"
+		"virtual IRotation::~IRotation()\n"
 		"\n"
 		""},
-	 { "DistributionGaussian_equidistantPoints", _wrap_DistributionGaussian_equidistantPoints, METH_VARARGS, "\n"
-		"DistributionGaussian_equidistantPoints(DistributionGaussian self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
-		"std::vector< double > DistributionGaussian::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const\n"
+	 { "IRotation_clone", _wrap_IRotation_clone, METH_O, "\n"
+		"IRotation_clone(IRotation self) -> IRotation\n"
+		"virtual IRotation* IRotation::clone() const =0\n"
 		"\n"
-		"generate list of sample values \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "DistributionGaussian_isDelta", _wrap_DistributionGaussian_isDelta, METH_O, "\n"
-		"DistributionGaussian_isDelta(DistributionGaussian self) -> bool\n"
-		"bool DistributionGaussian::isDelta() const final\n"
+	 { "IRotation_createInverse", _wrap_IRotation_createInverse, METH_O, "\n"
+		"IRotation_createInverse(IRotation self) -> IRotation\n"
+		"virtual IRotation* IRotation::createInverse() const =0\n"
 		"\n"
-		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
+		"Returns a new  IRotation object that is the current object's inverse. \n"
 		"\n"
 		""},
-	 { "DistributionGaussian_accept", _wrap_DistributionGaussian_accept, METH_VARARGS, "\n"
-		"DistributionGaussian_accept(DistributionGaussian self, INodeVisitor visitor)\n"
-		"void DistributionGaussian::accept(INodeVisitor *visitor) const final\n"
+	 { "IRotation_accept", _wrap_IRotation_accept, METH_VARARGS, "\n"
+		"IRotation_accept(IRotation self, INodeVisitor visitor)\n"
+		"void IRotation::accept(INodeVisitor *visitor) const\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "DistributionGaussian_swigregister", DistributionGaussian_swigregister, METH_O, NULL},
-	 { "DistributionGaussian_swiginit", DistributionGaussian_swiginit, METH_VARARGS, NULL},
-	 { "new_DistributionLogNormal", _wrap_new_DistributionLogNormal, METH_VARARGS, "\n"
-		"DistributionLogNormal(double scale_param)\n"
-		"new_DistributionLogNormal(double median, double scale_param) -> DistributionLogNormal\n"
-		"DistributionLogNormal::DistributionLogNormal(double median, double scale_param)\n"
-		"\n"
-		""},
-	 { "delete_DistributionLogNormal", _wrap_delete_DistributionLogNormal, METH_O, "\n"
-		"delete_DistributionLogNormal(DistributionLogNormal self)\n"
-		"virtual DistributionLogNormal::~DistributionLogNormal()\n"
+	 { "IRotation_getTransform3D", _wrap_IRotation_getTransform3D, METH_O, "\n"
+		"IRotation_getTransform3D(IRotation self) -> Transform3D\n"
+		"virtual Transform3D IRotation::getTransform3D() const =0\n"
 		"\n"
-		""},
-	 { "DistributionLogNormal_clone", _wrap_DistributionLogNormal_clone, METH_O, "\n"
-		"DistributionLogNormal_clone(DistributionLogNormal self) -> DistributionLogNormal\n"
-		"DistributionLogNormal* DistributionLogNormal::clone() const final\n"
+		"Returns transformation. \n"
 		"\n"
 		""},
-	 { "DistributionLogNormal_probabilityDensity", _wrap_DistributionLogNormal_probabilityDensity, METH_VARARGS, "\n"
-		"DistributionLogNormal_probabilityDensity(DistributionLogNormal self, double x) -> double\n"
-		"double DistributionLogNormal::probabilityDensity(double x) const final\n"
+	 { "IRotation_isIdentity", _wrap_IRotation_isIdentity, METH_O, "\n"
+		"IRotation_isIdentity(IRotation self) -> bool\n"
+		"bool IRotation::isIdentity() const\n"
 		"\n"
-		"Returns the distribution-specific probability density for value x. \n"
+		"Returns true if rotation matrix is identity matrix (no rotations) \n"
 		"\n"
 		""},
-	 { "DistributionLogNormal_getMean", _wrap_DistributionLogNormal_getMean, METH_O, "\n"
-		"DistributionLogNormal_getMean(DistributionLogNormal self) -> double\n"
-		"double DistributionLogNormal::getMean() const final\n"
+	 { "IRotation_swigregister", IRotation_swigregister, METH_O, NULL},
+	 { "createProduct", _wrap_createProduct, METH_VARARGS, "\n"
+		"createProduct(IRotation left, IRotation right) -> IRotation\n"
+		"BA_CORE_API_ IRotation* createProduct(const IRotation &left, const IRotation &right)\n"
 		"\n"
-		"Returns the distribution-specific mean. \n"
+		"Returns concatenated rotation (first right, then left). \n"
 		"\n"
 		""},
-	 { "DistributionLogNormal_getMedian", _wrap_DistributionLogNormal_getMedian, METH_O, "\n"
-		"DistributionLogNormal_getMedian(DistributionLogNormal self) -> double\n"
-		"double DistributionLogNormal::getMedian() const\n"
+	 { "IsZRotation", _wrap_IsZRotation, METH_O, "\n"
+		"IsZRotation(IRotation rot) -> bool\n"
+		"bool IsZRotation(const IRotation &rot)\n"
 		"\n"
 		""},
-	 { "DistributionLogNormal_getScalePar", _wrap_DistributionLogNormal_getScalePar, METH_O, "\n"
-		"DistributionLogNormal_getScalePar(DistributionLogNormal self) -> double\n"
-		"double DistributionLogNormal::getScalePar() const\n"
+	 { "new_IdentityRotation", _wrap_new_IdentityRotation, METH_NOARGS, "\n"
+		"new_IdentityRotation() -> IdentityRotation\n"
+		"IdentityRotation::IdentityRotation()=default\n"
 		"\n"
 		""},
-	 { "DistributionLogNormal_equidistantPoints", _wrap_DistributionLogNormal_equidistantPoints, METH_VARARGS, "\n"
-		"DistributionLogNormal_equidistantPoints(DistributionLogNormal self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
-		"std::vector< double > DistributionLogNormal::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const\n"
+	 { "IdentityRotation_clone", _wrap_IdentityRotation_clone, METH_O, "\n"
+		"IdentityRotation_clone(IdentityRotation self) -> IdentityRotation\n"
+		"IdentityRotation* IdentityRotation::clone() const\n"
 		"\n"
-		"generate list of sample values \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "DistributionLogNormal_isDelta", _wrap_DistributionLogNormal_isDelta, METH_O, "\n"
-		"DistributionLogNormal_isDelta(DistributionLogNormal self) -> bool\n"
-		"bool DistributionLogNormal::isDelta() const final\n"
+	 { "IdentityRotation_createInverse", _wrap_IdentityRotation_createInverse, METH_O, "\n"
+		"IdentityRotation_createInverse(IdentityRotation self) -> IdentityRotation\n"
+		"IdentityRotation* IdentityRotation::createInverse() const\n"
 		"\n"
-		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
+		"Returns a new  IRotation object that is the current object's inverse. \n"
 		"\n"
 		""},
-	 { "DistributionLogNormal_accept", _wrap_DistributionLogNormal_accept, METH_VARARGS, "\n"
-		"DistributionLogNormal_accept(DistributionLogNormal self, INodeVisitor visitor)\n"
-		"void DistributionLogNormal::accept(INodeVisitor *visitor) const final\n"
+	 { "IdentityRotation_accept", _wrap_IdentityRotation_accept, METH_VARARGS, "\n"
+		"IdentityRotation_accept(IdentityRotation self, INodeVisitor visitor)\n"
+		"void IdentityRotation::accept(INodeVisitor *visitor) const\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "DistributionLogNormal_setUnits", _wrap_DistributionLogNormal_setUnits, METH_VARARGS, "\n"
-		"DistributionLogNormal_setUnits(DistributionLogNormal self, std::string const & units)\n"
-		"void DistributionLogNormal::setUnits(const std::string &units)\n"
-		"\n"
-		"Sets distribution units. \n"
+	 { "IdentityRotation_getTransform3D", _wrap_IdentityRotation_getTransform3D, METH_O, "\n"
+		"IdentityRotation_getTransform3D(IdentityRotation self) -> Transform3D\n"
+		"Transform3D IdentityRotation::getTransform3D() const\n"
 		"\n"
-		""},
-	 { "DistributionLogNormal_swigregister", DistributionLogNormal_swigregister, METH_O, NULL},
-	 { "DistributionLogNormal_swiginit", DistributionLogNormal_swiginit, METH_VARARGS, NULL},
-	 { "new_DistributionCosine", _wrap_new_DistributionCosine, METH_VARARGS, "\n"
-		"DistributionCosine()\n"
-		"new_DistributionCosine(double mean, double sigma) -> DistributionCosine\n"
-		"DistributionCosine::DistributionCosine(double mean, double sigma)\n"
+		"Returns transformation. \n"
 		"\n"
 		""},
-	 { "delete_DistributionCosine", _wrap_delete_DistributionCosine, METH_O, "\n"
-		"delete_DistributionCosine(DistributionCosine self)\n"
-		"virtual DistributionCosine::~DistributionCosine()\n"
+	 { "IdentityRotation_isIdentity", _wrap_IdentityRotation_isIdentity, METH_O, "\n"
+		"IdentityRotation_isIdentity(IdentityRotation self) -> bool\n"
+		"bool IdentityRotation::isIdentity() const\n"
 		"\n"
-		""},
-	 { "DistributionCosine_clone", _wrap_DistributionCosine_clone, METH_O, "\n"
-		"DistributionCosine_clone(DistributionCosine self) -> DistributionCosine\n"
-		"DistributionCosine* DistributionCosine::clone() const final\n"
+		"Returns true if rotation matrix is identity matrix (no rotations) \n"
 		"\n"
 		""},
-	 { "DistributionCosine_probabilityDensity", _wrap_DistributionCosine_probabilityDensity, METH_VARARGS, "\n"
-		"DistributionCosine_probabilityDensity(DistributionCosine self, double x) -> double\n"
-		"double DistributionCosine::probabilityDensity(double x) const final\n"
-		"\n"
-		"Returns the distribution-specific probability density for value x. \n"
+	 { "delete_IdentityRotation", _wrap_delete_IdentityRotation, METH_O, "delete_IdentityRotation(IdentityRotation self)"},
+	 { "IdentityRotation_swigregister", IdentityRotation_swigregister, METH_O, NULL},
+	 { "IdentityRotation_swiginit", IdentityRotation_swiginit, METH_VARARGS, NULL},
+	 { "new_RotationX", _wrap_new_RotationX, METH_O, "\n"
+		"new_RotationX(double angle) -> RotationX\n"
+		"RotationX::RotationX(double angle)\n"
 		"\n"
-		""},
-	 { "DistributionCosine_getMean", _wrap_DistributionCosine_getMean, METH_O, "\n"
-		"DistributionCosine_getMean(DistributionCosine self) -> double\n"
-		"double DistributionCosine::getMean() const final\n"
+		"Constructor of rotation around x-axis\n"
 		"\n"
-		"Returns the distribution-specific mean. \n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "DistributionCosine_getSigma", _wrap_DistributionCosine_getSigma, METH_O, "\n"
-		"DistributionCosine_getSigma(DistributionCosine self) -> double\n"
-		"double DistributionCosine::getSigma() const\n"
+		"angle: \n"
+		"rotation angle around x-axis in radians \n"
 		"\n"
 		""},
-	 { "DistributionCosine_equidistantPoints", _wrap_DistributionCosine_equidistantPoints, METH_VARARGS, "\n"
-		"DistributionCosine_equidistantPoints(DistributionCosine self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
-		"std::vector< double > DistributionCosine::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const\n"
+	 { "RotationX_clone", _wrap_RotationX_clone, METH_O, "\n"
+		"RotationX_clone(RotationX self) -> RotationX\n"
+		"RotationX* RotationX::clone() const\n"
 		"\n"
-		"generate list of sample values \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "DistributionCosine_isDelta", _wrap_DistributionCosine_isDelta, METH_O, "\n"
-		"DistributionCosine_isDelta(DistributionCosine self) -> bool\n"
-		"bool DistributionCosine::isDelta() const final\n"
+	 { "RotationX_createInverse", _wrap_RotationX_createInverse, METH_O, "\n"
+		"RotationX_createInverse(RotationX self) -> RotationX\n"
+		"RotationX* RotationX::createInverse() const\n"
 		"\n"
-		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
+		"Returns a new  IRotation object that is the current object's inverse. \n"
 		"\n"
 		""},
-	 { "DistributionCosine_accept", _wrap_DistributionCosine_accept, METH_VARARGS, "\n"
-		"DistributionCosine_accept(DistributionCosine self, INodeVisitor visitor)\n"
-		"void DistributionCosine::accept(INodeVisitor *visitor) const final\n"
+	 { "RotationX_accept", _wrap_RotationX_accept, METH_VARARGS, "\n"
+		"RotationX_accept(RotationX self, INodeVisitor visitor)\n"
+		"void RotationX::accept(INodeVisitor *visitor) const\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "DistributionCosine_swigregister", DistributionCosine_swigregister, METH_O, NULL},
-	 { "DistributionCosine_swiginit", DistributionCosine_swiginit, METH_VARARGS, NULL},
-	 { "new_DistributionTrapezoid", _wrap_new_DistributionTrapezoid, METH_VARARGS, "\n"
-		"DistributionTrapezoid()\n"
-		"new_DistributionTrapezoid(double center, double left_width, double middle_width, double right_width) -> DistributionTrapezoid\n"
-		"DistributionTrapezoid::DistributionTrapezoid(double center, double left_width, double middle_width, double right_width)\n"
+	 { "RotationX_getAngle", _wrap_RotationX_getAngle, METH_O, "\n"
+		"RotationX_getAngle(RotationX self) -> double\n"
+		"double RotationX::getAngle() const\n"
 		"\n"
 		""},
-	 { "delete_DistributionTrapezoid", _wrap_delete_DistributionTrapezoid, METH_O, "\n"
-		"delete_DistributionTrapezoid(DistributionTrapezoid self)\n"
-		"virtual DistributionTrapezoid::~DistributionTrapezoid()\n"
+	 { "RotationX_getTransform3D", _wrap_RotationX_getTransform3D, METH_O, "\n"
+		"RotationX_getTransform3D(RotationX self) -> Transform3D\n"
+		"Transform3D RotationX::getTransform3D() const\n"
 		"\n"
-		""},
-	 { "DistributionTrapezoid_clone", _wrap_DistributionTrapezoid_clone, METH_O, "\n"
-		"DistributionTrapezoid_clone(DistributionTrapezoid self) -> DistributionTrapezoid\n"
-		"DistributionTrapezoid* DistributionTrapezoid::clone() const final\n"
+		"Returns transformation. \n"
 		"\n"
 		""},
-	 { "DistributionTrapezoid_probabilityDensity", _wrap_DistributionTrapezoid_probabilityDensity, METH_VARARGS, "\n"
-		"DistributionTrapezoid_probabilityDensity(DistributionTrapezoid self, double x) -> double\n"
-		"double DistributionTrapezoid::probabilityDensity(double x) const final\n"
-		"\n"
-		"Returns the distribution-specific probability density for value x. \n"
+	 { "delete_RotationX", _wrap_delete_RotationX, METH_O, "delete_RotationX(RotationX self)"},
+	 { "RotationX_swigregister", RotationX_swigregister, METH_O, NULL},
+	 { "RotationX_swiginit", RotationX_swiginit, METH_VARARGS, NULL},
+	 { "new_RotationY", _wrap_new_RotationY, METH_O, "\n"
+		"new_RotationY(double angle) -> RotationY\n"
+		"RotationY::RotationY(double angle)\n"
 		"\n"
-		""},
-	 { "DistributionTrapezoid_getMean", _wrap_DistributionTrapezoid_getMean, METH_O, "\n"
-		"DistributionTrapezoid_getMean(DistributionTrapezoid self) -> double\n"
-		"double DistributionTrapezoid::getMean() const final\n"
+		"Constructor of rotation around y-axis\n"
 		"\n"
-		"Returns the distribution-specific mean. \n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "DistributionTrapezoid_getLeftWidth", _wrap_DistributionTrapezoid_getLeftWidth, METH_O, "\n"
-		"DistributionTrapezoid_getLeftWidth(DistributionTrapezoid self) -> double\n"
-		"double DistributionTrapezoid::getLeftWidth() const\n"
+		"angle: \n"
+		"rotation angle around y-axis in radians \n"
 		"\n"
 		""},
-	 { "DistributionTrapezoid_getMiddleWidth", _wrap_DistributionTrapezoid_getMiddleWidth, METH_O, "\n"
-		"DistributionTrapezoid_getMiddleWidth(DistributionTrapezoid self) -> double\n"
-		"double DistributionTrapezoid::getMiddleWidth() const\n"
+	 { "RotationY_clone", _wrap_RotationY_clone, METH_O, "\n"
+		"RotationY_clone(RotationY self) -> RotationY\n"
+		"RotationY* RotationY::clone() const\n"
 		"\n"
-		""},
-	 { "DistributionTrapezoid_getRightWidth", _wrap_DistributionTrapezoid_getRightWidth, METH_O, "\n"
-		"DistributionTrapezoid_getRightWidth(DistributionTrapezoid self) -> double\n"
-		"double DistributionTrapezoid::getRightWidth() const\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "DistributionTrapezoid_equidistantPoints", _wrap_DistributionTrapezoid_equidistantPoints, METH_VARARGS, "\n"
-		"DistributionTrapezoid_equidistantPoints(DistributionTrapezoid self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
-		"std::vector< double > DistributionTrapezoid::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const\n"
+	 { "RotationY_createInverse", _wrap_RotationY_createInverse, METH_O, "\n"
+		"RotationY_createInverse(RotationY self) -> RotationY\n"
+		"RotationY* RotationY::createInverse() const\n"
 		"\n"
-		"generate list of sample values \n"
+		"Returns a new  IRotation object that is the current object's inverse. \n"
 		"\n"
 		""},
-	 { "DistributionTrapezoid_isDelta", _wrap_DistributionTrapezoid_isDelta, METH_O, "\n"
-		"DistributionTrapezoid_isDelta(DistributionTrapezoid self) -> bool\n"
-		"bool DistributionTrapezoid::isDelta() const final\n"
+	 { "RotationY_accept", _wrap_RotationY_accept, METH_VARARGS, "\n"
+		"RotationY_accept(RotationY self, INodeVisitor visitor)\n"
+		"void RotationY::accept(INodeVisitor *visitor) const\n"
 		"\n"
-		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "DistributionTrapezoid_accept", _wrap_DistributionTrapezoid_accept, METH_VARARGS, "\n"
-		"DistributionTrapezoid_accept(DistributionTrapezoid self, INodeVisitor visitor)\n"
-		"void DistributionTrapezoid::accept(INodeVisitor *visitor) const final\n"
-		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+	 { "RotationY_getAngle", _wrap_RotationY_getAngle, METH_O, "\n"
+		"RotationY_getAngle(RotationY self) -> double\n"
+		"double RotationY::getAngle() const\n"
 		"\n"
 		""},
-	 { "DistributionTrapezoid_swigregister", DistributionTrapezoid_swigregister, METH_O, NULL},
-	 { "DistributionTrapezoid_swiginit", DistributionTrapezoid_swiginit, METH_VARARGS, NULL},
-	 { "new_DetectorMask", _wrap_new_DetectorMask, METH_VARARGS, "\n"
-		"DetectorMask()\n"
-		"new_DetectorMask(DetectorMask other) -> DetectorMask\n"
-		"DetectorMask::DetectorMask(const DetectorMask &other)\n"
+	 { "RotationY_getTransform3D", _wrap_RotationY_getTransform3D, METH_O, "\n"
+		"RotationY_getTransform3D(RotationY self) -> Transform3D\n"
+		"Transform3D RotationY::getTransform3D() const\n"
+		"\n"
+		"Returns transformation. \n"
 		"\n"
 		""},
-	 { "DetectorMask_addMask", _wrap_DetectorMask_addMask, METH_VARARGS, "\n"
-		"DetectorMask_addMask(DetectorMask self, IShape2D shape, bool mask_value)\n"
-		"void DetectorMask::addMask(const IShape2D &shape, bool mask_value)\n"
+	 { "delete_RotationY", _wrap_delete_RotationY, METH_O, "delete_RotationY(RotationY self)"},
+	 { "RotationY_swigregister", RotationY_swigregister, METH_O, NULL},
+	 { "RotationY_swiginit", RotationY_swiginit, METH_VARARGS, NULL},
+	 { "new_RotationZ", _wrap_new_RotationZ, METH_VARARGS, "\n"
+		"RotationZ(double angle=0.0)\n"
+		"RotationZ::RotationZ(double angle=0.0)\n"
 		"\n"
-		"Add mask to the stack of detector masks. The value \"true\" means that the area will be excluded from the analysis.\n"
+		"Constructor of rotation around z-axis\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"shape: \n"
-		"The shape of mask.\n"
-		"\n"
-		"mask_value: \n"
-		"The value of mask \n"
+		"angle: \n"
+		"rotation angle around z-axis in radians \n"
 		"\n"
 		""},
-	 { "DetectorMask_initMaskData", _wrap_DetectorMask_initMaskData, METH_VARARGS, "\n"
-		"DetectorMask_initMaskData(DetectorMask self, IDetector2D detector)\n"
-		"DetectorMask_initMaskData(DetectorMask self, IntensityData data)\n"
-		"void DetectorMask::initMaskData(const OutputData< double > &data)\n"
+	 { "RotationZ_clone", _wrap_RotationZ_clone, METH_O, "\n"
+		"RotationZ_clone(RotationZ self) -> RotationZ\n"
+		"RotationZ* RotationZ::clone() const\n"
 		"\n"
-		""},
-	 { "DetectorMask_isMasked", _wrap_DetectorMask_isMasked, METH_VARARGS, "\n"
-		"DetectorMask_isMasked(DetectorMask self, size_t index) -> bool\n"
-		"bool DetectorMask::isMasked(size_t index) const\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "DetectorMask_getMaskData", _wrap_DetectorMask_getMaskData, METH_O, "\n"
-		"DetectorMask_getMaskData(DetectorMask self) -> OutputData< bool > const *\n"
-		"const OutputData<bool>* DetectorMask::getMaskData() const\n"
+	 { "RotationZ_createInverse", _wrap_RotationZ_createInverse, METH_O, "\n"
+		"RotationZ_createInverse(RotationZ self) -> RotationZ\n"
+		"RotationZ* RotationZ::createInverse() const\n"
 		"\n"
-		""},
-	 { "DetectorMask_createHistogram", _wrap_DetectorMask_createHistogram, METH_O, "\n"
-		"DetectorMask_createHistogram(DetectorMask self) -> Histogram2D\n"
-		"Histogram2D * DetectorMask::createHistogram() const\n"
+		"Returns a new  IRotation object that is the current object's inverse. \n"
 		"\n"
 		""},
-	 { "DetectorMask_removeMasks", _wrap_DetectorMask_removeMasks, METH_O, "\n"
-		"DetectorMask_removeMasks(DetectorMask self)\n"
-		"void DetectorMask::removeMasks()\n"
+	 { "RotationZ_accept", _wrap_RotationZ_accept, METH_VARARGS, "\n"
+		"RotationZ_accept(RotationZ self, INodeVisitor visitor)\n"
+		"void RotationZ::accept(INodeVisitor *visitor) const\n"
 		"\n"
-		"remove all masks and return object to initial state \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "DetectorMask_hasMasks", _wrap_DetectorMask_hasMasks, METH_O, "\n"
-		"DetectorMask_hasMasks(DetectorMask self) -> bool\n"
-		"bool DetectorMask::hasMasks() const\n"
-		"\n"
-		"returns true if has masks \n"
+	 { "RotationZ_getAngle", _wrap_RotationZ_getAngle, METH_O, "\n"
+		"RotationZ_getAngle(RotationZ self) -> double\n"
+		"double RotationZ::getAngle() const\n"
 		"\n"
 		""},
-	 { "DetectorMask_numberOfMaskedChannels", _wrap_DetectorMask_numberOfMaskedChannels, METH_O, "\n"
-		"DetectorMask_numberOfMaskedChannels(DetectorMask self) -> int\n"
-		"int DetectorMask::numberOfMaskedChannels() const\n"
+	 { "RotationZ_getTransform3D", _wrap_RotationZ_getTransform3D, METH_O, "\n"
+		"RotationZ_getTransform3D(RotationZ self) -> Transform3D\n"
+		"Transform3D RotationZ::getTransform3D() const\n"
 		"\n"
-		""},
-	 { "DetectorMask_numberOfMasks", _wrap_DetectorMask_numberOfMasks, METH_O, "\n"
-		"DetectorMask_numberOfMasks(DetectorMask self) -> size_t\n"
-		"size_t DetectorMask::numberOfMasks() const\n"
+		"Returns transformation. \n"
 		"\n"
 		""},
-	 { "DetectorMask_getMaskShape", _wrap_DetectorMask_getMaskShape, METH_VARARGS, "\n"
-		"DetectorMask_getMaskShape(DetectorMask self, size_t mask_index, bool & mask_value) -> IShape2D\n"
-		"const IShape2D * DetectorMask::getMaskShape(size_t mask_index, bool &mask_value) const\n"
+	 { "delete_RotationZ", _wrap_delete_RotationZ, METH_O, "delete_RotationZ(RotationZ self)"},
+	 { "RotationZ_swigregister", RotationZ_swigregister, METH_O, NULL},
+	 { "RotationZ_swiginit", RotationZ_swiginit, METH_VARARGS, NULL},
+	 { "new_RotationEuler", _wrap_new_RotationEuler, METH_VARARGS, "\n"
+		"new_RotationEuler(double alpha, double beta, double gamma) -> RotationEuler\n"
+		"RotationEuler::RotationEuler(double alpha, double beta, double gamma)\n"
 		"\n"
-		""},
-	 { "delete_DetectorMask", _wrap_delete_DetectorMask, METH_O, "delete_DetectorMask(DetectorMask self)"},
-	 { "DetectorMask_swigregister", DetectorMask_swigregister, METH_O, NULL},
-	 { "DetectorMask_swiginit", DetectorMask_swiginit, METH_VARARGS, NULL},
-	 { "new_Ellipse", _wrap_new_Ellipse, METH_VARARGS, "\n"
-		"Ellipse(double xcenter, double ycenter, double xradius, double yradius, double theta=0.0)\n"
-		"Ellipse::Ellipse(double xcenter, double ycenter, double xradius, double yradius, double theta=0.0)\n"
+		"Constructor of Euler rotation (sequence of three rotations following Euler angles notation z-x'-z').\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"xcenter: \n"
-		"x-coordinate of  Ellipse's center\n"
-		"\n"
-		"ycenter: \n"
-		"y-coordinate of  Ellipse's center\n"
-		"\n"
-		"xradius: \n"
-		"Radius along x-axis\n"
+		"alpha: \n"
+		"first Euler angle in radians\n"
 		"\n"
-		"yradius: \n"
-		"Radius along y-axis\n"
+		"beta: \n"
+		"second Euler angle in radians\n"
 		"\n"
-		"theta: \n"
-		"Angle of  Ellipse rotation in radians \n"
+		"gamma: \n"
+		"third Euler angle in radians \n"
 		"\n"
 		""},
-	 { "Ellipse_clone", _wrap_Ellipse_clone, METH_O, "\n"
-		"Ellipse_clone(Ellipse self) -> Ellipse\n"
-		"Ellipse* Ellipse::clone() const\n"
+	 { "RotationEuler_clone", _wrap_RotationEuler_clone, METH_O, "\n"
+		"RotationEuler_clone(RotationEuler self) -> RotationEuler\n"
+		"RotationEuler* RotationEuler::clone() const\n"
+		"\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "Ellipse_contains", _wrap_Ellipse_contains, METH_VARARGS, "\n"
-		"Ellipse_contains(Ellipse self, double x, double y) -> bool\n"
-		"Ellipse_contains(Ellipse self, Bin1D binx, Bin1D biny) -> bool\n"
-		"bool Ellipse::contains(const Bin1D &binx, const Bin1D &biny) const\n"
+	 { "RotationEuler_createInverse", _wrap_RotationEuler_createInverse, METH_O, "\n"
+		"RotationEuler_createInverse(RotationEuler self) -> IRotation\n"
+		"IRotation * RotationEuler::createInverse() const\n"
 		"\n"
-		"Returns true if area defined by two bins is inside or on border of ellipse; more precisely, if mid point of two bins satisfy this condition. \n"
+		"Returns a new  IRotation object that is the current object's inverse. \n"
 		"\n"
 		""},
-	 { "Ellipse_getCenterX", _wrap_Ellipse_getCenterX, METH_O, "\n"
-		"Ellipse_getCenterX(Ellipse self) -> double\n"
-		"double Ellipse::getCenterX() const\n"
+	 { "RotationEuler_accept", _wrap_RotationEuler_accept, METH_VARARGS, "\n"
+		"RotationEuler_accept(RotationEuler self, INodeVisitor visitor)\n"
+		"void RotationEuler::accept(INodeVisitor *visitor) const\n"
 		"\n"
-		""},
-	 { "Ellipse_getCenterY", _wrap_Ellipse_getCenterY, METH_O, "\n"
-		"Ellipse_getCenterY(Ellipse self) -> double\n"
-		"double Ellipse::getCenterY() const\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "Ellipse_getRadiusX", _wrap_Ellipse_getRadiusX, METH_O, "\n"
-		"Ellipse_getRadiusX(Ellipse self) -> double\n"
-		"double Ellipse::getRadiusX() const\n"
+	 { "RotationEuler_getAlpha", _wrap_RotationEuler_getAlpha, METH_O, "\n"
+		"RotationEuler_getAlpha(RotationEuler self) -> double\n"
+		"double RotationEuler::getAlpha() const\n"
 		"\n"
 		""},
-	 { "Ellipse_getRadiusY", _wrap_Ellipse_getRadiusY, METH_O, "\n"
-		"Ellipse_getRadiusY(Ellipse self) -> double\n"
-		"double Ellipse::getRadiusY() const\n"
+	 { "RotationEuler_getBeta", _wrap_RotationEuler_getBeta, METH_O, "\n"
+		"RotationEuler_getBeta(RotationEuler self) -> double\n"
+		"double RotationEuler::getBeta() const\n"
 		"\n"
 		""},
-	 { "Ellipse_getTheta", _wrap_Ellipse_getTheta, METH_O, "\n"
-		"Ellipse_getTheta(Ellipse self) -> double\n"
-		"double Ellipse::getTheta() const\n"
+	 { "RotationEuler_getGamma", _wrap_RotationEuler_getGamma, METH_O, "\n"
+		"RotationEuler_getGamma(RotationEuler self) -> double\n"
+		"double RotationEuler::getGamma() const\n"
 		"\n"
 		""},
-	 { "delete_Ellipse", _wrap_delete_Ellipse, METH_O, "delete_Ellipse(Ellipse self)"},
-	 { "Ellipse_swigregister", Ellipse_swigregister, METH_O, NULL},
-	 { "Ellipse_swiginit", Ellipse_swiginit, METH_VARARGS, NULL},
-	 { "IFTDecayFunction1D_clone", _wrap_IFTDecayFunction1D_clone, METH_O, "\n"
-		"IFTDecayFunction1D_clone(IFTDecayFunction1D self) -> IFTDecayFunction1D\n"
-		"virtual IFTDecayFunction1D* IFTDecayFunction1D::clone() const =0\n"
+	 { "RotationEuler_getTransform3D", _wrap_RotationEuler_getTransform3D, METH_O, "\n"
+		"RotationEuler_getTransform3D(RotationEuler self) -> Transform3D\n"
+		"Transform3D RotationEuler::getTransform3D() const\n"
 		"\n"
-		""},
-	 { "IFTDecayFunction1D_evaluate", _wrap_IFTDecayFunction1D_evaluate, METH_VARARGS, "\n"
-		"IFTDecayFunction1D_evaluate(IFTDecayFunction1D self, double q) -> double\n"
-		"virtual double IFTDecayFunction1D::evaluate(double q) const =0\n"
+		"Returns transformation. \n"
 		"\n"
 		""},
-	 { "IFTDecayFunction1D_decayLength", _wrap_IFTDecayFunction1D_decayLength, METH_O, "\n"
-		"IFTDecayFunction1D_decayLength(IFTDecayFunction1D self) -> double\n"
-		"double IFTDecayFunction1D::decayLength() const\n"
+	 { "delete_RotationEuler", _wrap_delete_RotationEuler, METH_O, "delete_RotationEuler(RotationEuler self)"},
+	 { "RotationEuler_swigregister", RotationEuler_swigregister, METH_O, NULL},
+	 { "RotationEuler_swiginit", RotationEuler_swiginit, METH_VARARGS, NULL},
+	 { "new_FitOptions", _wrap_new_FitOptions, METH_NOARGS, "new_FitOptions() -> FitOptions"},
+	 { "FitOptions_derivEpsilon", _wrap_FitOptions_derivEpsilon, METH_O, "FitOptions_derivEpsilon(FitOptions self) -> double"},
+	 { "FitOptions_setDerivEpsilon", _wrap_FitOptions_setDerivEpsilon, METH_VARARGS, "FitOptions_setDerivEpsilon(FitOptions self, double deriv_epsilon)"},
+	 { "FitOptions_stepFactor", _wrap_FitOptions_stepFactor, METH_O, "FitOptions_stepFactor(FitOptions self) -> double"},
+	 { "FitOptions_setStepFactor", _wrap_FitOptions_setStepFactor, METH_VARARGS, "FitOptions_setStepFactor(FitOptions self, double step_factor)"},
+	 { "delete_FitOptions", _wrap_delete_FitOptions, METH_O, "delete_FitOptions(FitOptions self)"},
+	 { "FitOptions_swigregister", FitOptions_swigregister, METH_O, NULL},
+	 { "FitOptions_swiginit", FitOptions_swiginit, METH_VARARGS, NULL},
+	 { "delete_IObserver", _wrap_delete_IObserver, METH_O, "\n"
+		"delete_IObserver(IObserver self)\n"
+		"IObserver::~IObserver()\n"
 		"\n"
 		""},
-	 { "delete_IFTDecayFunction1D", _wrap_delete_IFTDecayFunction1D, METH_O, "delete_IFTDecayFunction1D(IFTDecayFunction1D self)"},
-	 { "IFTDecayFunction1D_swigregister", IFTDecayFunction1D_swigregister, METH_O, NULL},
-	 { "new_FTDecayFunction1DCauchy", _wrap_new_FTDecayFunction1DCauchy, METH_O, "\n"
-		"new_FTDecayFunction1DCauchy(double decay_length) -> FTDecayFunction1DCauchy\n"
-		"FTDecayFunction1DCauchy::FTDecayFunction1DCauchy(double decay_length)\n"
+	 { "IObserver_notify", _wrap_IObserver_notify, METH_VARARGS, "\n"
+		"IObserver_notify(IObserver self, IObservable subject)\n"
+		"virtual void IObserver::notify(IObservable *subject)=0\n"
+		"\n"
+		"method which is used by observable subject to notify change in status \n"
 		"\n"
 		""},
-	 { "FTDecayFunction1DCauchy_clone", _wrap_FTDecayFunction1DCauchy_clone, METH_O, "\n"
-		"FTDecayFunction1DCauchy_clone(FTDecayFunction1DCauchy self) -> FTDecayFunction1DCauchy\n"
-		"FTDecayFunction1DCauchy * FTDecayFunction1DCauchy::clone() const\n"
+	 { "IObserver_swigregister", IObserver_swigregister, METH_O, NULL},
+	 { "delete_IObservable", _wrap_delete_IObservable, METH_O, "\n"
+		"delete_IObservable(IObservable self)\n"
+		"IObservable::~IObservable()\n"
 		"\n"
 		""},
-	 { "FTDecayFunction1DCauchy_accept", _wrap_FTDecayFunction1DCauchy_accept, METH_VARARGS, "\n"
-		"FTDecayFunction1DCauchy_accept(FTDecayFunction1DCauchy self, INodeVisitor visitor)\n"
-		"void FTDecayFunction1DCauchy::accept(INodeVisitor *visitor) const final\n"
+	 { "IObservable_attachObserver", _wrap_IObservable_attachObserver, METH_VARARGS, "\n"
+		"IObservable_attachObserver(IObservable self, IObservable::observer_t obj)\n"
+		"void IObservable::attachObserver(observer_t obj)\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"attach observer to the list of observers \n"
 		"\n"
 		""},
-	 { "FTDecayFunction1DCauchy_evaluate", _wrap_FTDecayFunction1DCauchy_evaluate, METH_VARARGS, "\n"
-		"FTDecayFunction1DCauchy_evaluate(FTDecayFunction1DCauchy self, double q) -> double\n"
-		"double FTDecayFunction1DCauchy::evaluate(double q) const final\n"
+	 { "IObservable_notifyObservers", _wrap_IObservable_notifyObservers, METH_O, "\n"
+		"IObservable_notifyObservers(IObservable self)\n"
+		"void IObservable::notifyObservers()\n"
 		"\n"
-		""},
-	 { "delete_FTDecayFunction1DCauchy", _wrap_delete_FTDecayFunction1DCauchy, METH_O, "delete_FTDecayFunction1DCauchy(FTDecayFunction1DCauchy self)"},
-	 { "FTDecayFunction1DCauchy_swigregister", FTDecayFunction1DCauchy_swigregister, METH_O, NULL},
-	 { "FTDecayFunction1DCauchy_swiginit", FTDecayFunction1DCauchy_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDecayFunction1DGauss", _wrap_new_FTDecayFunction1DGauss, METH_O, "\n"
-		"new_FTDecayFunction1DGauss(double decay_length) -> FTDecayFunction1DGauss\n"
-		"FTDecayFunction1DGauss::FTDecayFunction1DGauss(double decay_length)\n"
+		"notify observers about change in status \n"
 		"\n"
 		""},
-	 { "FTDecayFunction1DGauss_clone", _wrap_FTDecayFunction1DGauss_clone, METH_O, "\n"
-		"FTDecayFunction1DGauss_clone(FTDecayFunction1DGauss self) -> FTDecayFunction1DGauss\n"
-		"FTDecayFunction1DGauss * FTDecayFunction1DGauss::clone() const\n"
+	 { "new_IObservable", _wrap_new_IObservable, METH_NOARGS, "\n"
+		"new_IObservable() -> IObservable\n"
 		"\n"
-		""},
-	 { "FTDecayFunction1DGauss_accept", _wrap_FTDecayFunction1DGauss_accept, METH_VARARGS, "\n"
-		"FTDecayFunction1DGauss_accept(FTDecayFunction1DGauss self, INodeVisitor visitor)\n"
-		"void FTDecayFunction1DGauss::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Observable interface from Observer pattern\n"
 		"\n"
-		""},
-	 { "FTDecayFunction1DGauss_evaluate", _wrap_FTDecayFunction1DGauss_evaluate, METH_VARARGS, "\n"
-		"FTDecayFunction1DGauss_evaluate(FTDecayFunction1DGauss self, double q) -> double\n"
-		"double FTDecayFunction1DGauss::evaluate(double q) const final\n"
+		"C++ includes: IObserver.h\n"
 		"\n"
 		""},
-	 { "delete_FTDecayFunction1DGauss", _wrap_delete_FTDecayFunction1DGauss, METH_O, "delete_FTDecayFunction1DGauss(FTDecayFunction1DGauss self)"},
-	 { "FTDecayFunction1DGauss_swigregister", FTDecayFunction1DGauss_swigregister, METH_O, NULL},
-	 { "FTDecayFunction1DGauss_swiginit", FTDecayFunction1DGauss_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDecayFunction1DTriangle", _wrap_new_FTDecayFunction1DTriangle, METH_O, "\n"
-		"new_FTDecayFunction1DTriangle(double decay_length) -> FTDecayFunction1DTriangle\n"
-		"FTDecayFunction1DTriangle::FTDecayFunction1DTriangle(double decay_length)\n"
+	 { "IObservable_swigregister", IObservable_swigregister, METH_O, NULL},
+	 { "IObservable_swiginit", IObservable_swiginit, METH_VARARGS, NULL},
+	 { "new_IterationInfo", _wrap_new_IterationInfo, METH_NOARGS, "\n"
+		"new_IterationInfo() -> IterationInfo\n"
+		"IterationInfo::IterationInfo()\n"
 		"\n"
 		""},
-	 { "FTDecayFunction1DTriangle_clone", _wrap_FTDecayFunction1DTriangle_clone, METH_O, "\n"
-		"FTDecayFunction1DTriangle_clone(FTDecayFunction1DTriangle self) -> FTDecayFunction1DTriangle\n"
-		"FTDecayFunction1DTriangle * FTDecayFunction1DTriangle::clone() const\n"
+	 { "IterationInfo_update", _wrap_IterationInfo_update, METH_VARARGS, "\n"
+		"IterationInfo_update(IterationInfo self, Parameters params, double chi2)\n"
+		"void IterationInfo::update(const Fit::Parameters &params, double chi2)\n"
 		"\n"
 		""},
-	 { "FTDecayFunction1DTriangle_accept", _wrap_FTDecayFunction1DTriangle_accept, METH_VARARGS, "\n"
-		"FTDecayFunction1DTriangle_accept(FTDecayFunction1DTriangle self, INodeVisitor visitor)\n"
-		"void FTDecayFunction1DTriangle::accept(INodeVisitor *visitor) const final\n"
+	 { "IterationInfo_iterationCount", _wrap_IterationInfo_iterationCount, METH_O, "\n"
+		"IterationInfo_iterationCount(IterationInfo self) -> unsigned int\n"
+		"unsigned IterationInfo::iterationCount() const\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns current number of minimizer iterations. \n"
 		"\n"
 		""},
-	 { "FTDecayFunction1DTriangle_evaluate", _wrap_FTDecayFunction1DTriangle_evaluate, METH_VARARGS, "\n"
-		"FTDecayFunction1DTriangle_evaluate(FTDecayFunction1DTriangle self, double q) -> double\n"
-		"double FTDecayFunction1DTriangle::evaluate(double q) const final\n"
+	 { "IterationInfo_chi2", _wrap_IterationInfo_chi2, METH_O, "\n"
+		"IterationInfo_chi2(IterationInfo self) -> double\n"
+		"double IterationInfo::chi2() const\n"
 		"\n"
 		""},
-	 { "delete_FTDecayFunction1DTriangle", _wrap_delete_FTDecayFunction1DTriangle, METH_O, "delete_FTDecayFunction1DTriangle(FTDecayFunction1DTriangle self)"},
-	 { "FTDecayFunction1DTriangle_swigregister", FTDecayFunction1DTriangle_swigregister, METH_O, NULL},
-	 { "FTDecayFunction1DTriangle_swiginit", FTDecayFunction1DTriangle_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDecayFunction1DVoigt", _wrap_new_FTDecayFunction1DVoigt, METH_VARARGS, "\n"
-		"new_FTDecayFunction1DVoigt(double decay_length, double eta) -> FTDecayFunction1DVoigt\n"
-		"FTDecayFunction1DVoigt::FTDecayFunction1DVoigt(double decay_length, double eta)\n"
-		"\n"
-		"Constructor of pseudo-Voigt decay function.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
+	 { "IterationInfo_parameters", _wrap_IterationInfo_parameters, METH_O, "\n"
+		"IterationInfo_parameters(IterationInfo self) -> Parameters\n"
+		"Fit::Parameters IterationInfo::parameters() const\n"
 		"\n"
-		"decay_length: \n"
-		"half-width of the distribution in nanometers\n"
+		""},
+	 { "IterationInfo_parameterMap", _wrap_IterationInfo_parameterMap, METH_O, "\n"
+		"IterationInfo_parameterMap(IterationInfo self) -> map_string_double_t\n"
+		"std::map< std::string, double > IterationInfo::parameterMap() const\n"
 		"\n"
-		"eta: \n"
-		"parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0) \n"
+		"Returns map of fit parameter names and its current values. \n"
 		"\n"
 		""},
-	 { "FTDecayFunction1DVoigt_clone", _wrap_FTDecayFunction1DVoigt_clone, METH_O, "\n"
-		"FTDecayFunction1DVoigt_clone(FTDecayFunction1DVoigt self) -> FTDecayFunction1DVoigt\n"
-		"FTDecayFunction1DVoigt * FTDecayFunction1DVoigt::clone() const\n"
+	 { "delete_IterationInfo", _wrap_delete_IterationInfo, METH_O, "delete_IterationInfo(IterationInfo self)"},
+	 { "IterationInfo_swigregister", IterationInfo_swigregister, METH_O, NULL},
+	 { "IterationInfo_swiginit", IterationInfo_swiginit, METH_VARARGS, NULL},
+	 { "new_PyBuilderCallback", _wrap_new_PyBuilderCallback, METH_O, "\n"
+		"new_PyBuilderCallback(PyObject * _self) -> PyBuilderCallback\n"
+		"PyBuilderCallback::PyBuilderCallback()\n"
 		"\n"
 		""},
-	 { "FTDecayFunction1DVoigt_accept", _wrap_FTDecayFunction1DVoigt_accept, METH_VARARGS, "\n"
-		"FTDecayFunction1DVoigt_accept(FTDecayFunction1DVoigt self, INodeVisitor visitor)\n"
-		"void FTDecayFunction1DVoigt::accept(INodeVisitor *visitor) const final\n"
-		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+	 { "delete_PyBuilderCallback", _wrap_delete_PyBuilderCallback, METH_O, "\n"
+		"delete_PyBuilderCallback(PyBuilderCallback self)\n"
+		"PyBuilderCallback::~PyBuilderCallback()\n"
 		"\n"
 		""},
-	 { "FTDecayFunction1DVoigt_evaluate", _wrap_FTDecayFunction1DVoigt_evaluate, METH_VARARGS, "\n"
-		"FTDecayFunction1DVoigt_evaluate(FTDecayFunction1DVoigt self, double q) -> double\n"
-		"double FTDecayFunction1DVoigt::evaluate(double q) const final\n"
+	 { "PyBuilderCallback_build_simulation", _wrap_PyBuilderCallback_build_simulation, METH_VARARGS, "\n"
+		"PyBuilderCallback_build_simulation(PyBuilderCallback self, Parameters arg0) -> Simulation\n"
+		"Simulation * PyBuilderCallback::build_simulation(Fit::Parameters)\n"
 		"\n"
 		""},
-	 { "FTDecayFunction1DVoigt_eEta", _wrap_FTDecayFunction1DVoigt_eEta, METH_O, "\n"
-		"FTDecayFunction1DVoigt_eEta(FTDecayFunction1DVoigt self) -> double\n"
-		"double FTDecayFunction1DVoigt::eEta() const\n"
+	 { "disown_PyBuilderCallback", _wrap_disown_PyBuilderCallback, METH_O, NULL},
+	 { "PyBuilderCallback_swigregister", PyBuilderCallback_swigregister, METH_O, NULL},
+	 { "PyBuilderCallback_swiginit", PyBuilderCallback_swiginit, METH_VARARGS, NULL},
+	 { "new_PyObserverCallback", _wrap_new_PyObserverCallback, METH_O, "\n"
+		"new_PyObserverCallback(PyObject * _self) -> PyObserverCallback\n"
+		"PyObserverCallback::PyObserverCallback()\n"
 		"\n"
 		""},
-	 { "delete_FTDecayFunction1DVoigt", _wrap_delete_FTDecayFunction1DVoigt, METH_O, "delete_FTDecayFunction1DVoigt(FTDecayFunction1DVoigt self)"},
-	 { "FTDecayFunction1DVoigt_swigregister", FTDecayFunction1DVoigt_swigregister, METH_O, NULL},
-	 { "FTDecayFunction1DVoigt_swiginit", FTDecayFunction1DVoigt_swiginit, METH_VARARGS, NULL},
-	 { "IFTDecayFunction2D_clone", _wrap_IFTDecayFunction2D_clone, METH_O, "\n"
-		"IFTDecayFunction2D_clone(IFTDecayFunction2D self) -> IFTDecayFunction2D\n"
-		"virtual IFTDecayFunction2D* IFTDecayFunction2D::clone() const =0\n"
+	 { "delete_PyObserverCallback", _wrap_delete_PyObserverCallback, METH_O, "\n"
+		"delete_PyObserverCallback(PyObserverCallback self)\n"
+		"PyObserverCallback::~PyObserverCallback()\n"
 		"\n"
 		""},
-	 { "IFTDecayFunction2D_setGamma", _wrap_IFTDecayFunction2D_setGamma, METH_VARARGS, "\n"
-		"IFTDecayFunction2D_setGamma(IFTDecayFunction2D self, double gamma)\n"
-		"void IFTDecayFunction2D::setGamma(double gamma)\n"
+	 { "PyObserverCallback_update", _wrap_PyObserverCallback_update, METH_VARARGS, "\n"
+		"PyObserverCallback_update(PyObserverCallback self, FitObjective arg0)\n"
+		"void PyObserverCallback::update(const FitObjective &)\n"
 		"\n"
-		"set angle between first lattice vector and X-axis of distribution (both in direct space) \n"
+		""},
+	 { "disown_PyObserverCallback", _wrap_disown_PyObserverCallback, METH_O, NULL},
+	 { "PyObserverCallback_swigregister", PyObserverCallback_swigregister, METH_O, NULL},
+	 { "PyObserverCallback_swiginit", PyObserverCallback_swiginit, METH_VARARGS, NULL},
+	 { "new_FitObjective", _wrap_new_FitObjective, METH_O, "\n"
+		"new_FitObjective(PyObject * _self) -> FitObjective\n"
+		"FitObjective::FitObjective()\n"
 		"\n"
 		""},
-	 { "IFTDecayFunction2D_gamma", _wrap_IFTDecayFunction2D_gamma, METH_O, "\n"
-		"IFTDecayFunction2D_gamma(IFTDecayFunction2D self) -> double\n"
-		"double IFTDecayFunction2D::gamma() const\n"
+	 { "delete_FitObjective", _wrap_delete_FitObjective, METH_O, "\n"
+		"delete_FitObjective(FitObjective self)\n"
+		"FitObjective::~FitObjective()\n"
 		"\n"
-		"get angle between first lattice vector and X-axis of distribution (both in direct space) \n"
+		""},
+	 { "FitObjective_evaluate_cpp", _wrap_FitObjective_evaluate_cpp, METH_VARARGS, "\n"
+		"FitObjective_evaluate_cpp(FitObjective self, Parameters params) -> double\n"
+		"double FitObjective::evaluate(const Fit::Parameters &params)\n"
 		"\n"
 		""},
-	 { "IFTDecayFunction2D_decayLengthX", _wrap_IFTDecayFunction2D_decayLengthX, METH_O, "\n"
-		"IFTDecayFunction2D_decayLengthX(IFTDecayFunction2D self) -> double\n"
-		"double IFTDecayFunction2D::decayLengthX() const\n"
+	 { "FitObjective_evaluate_residuals_cpp", _wrap_FitObjective_evaluate_residuals_cpp, METH_VARARGS, "\n"
+		"FitObjective_evaluate_residuals_cpp(FitObjective self, Parameters params) -> vdouble1d_t\n"
+		"std::vector< double > FitObjective::evaluate_residuals(const Fit::Parameters &params)\n"
 		"\n"
-		"get decay length in distribution's X-direction \n"
+		""},
+	 { "FitObjective_numberOfFitElements", _wrap_FitObjective_numberOfFitElements, METH_O, "\n"
+		"FitObjective_numberOfFitElements(FitObjective self) -> size_t\n"
+		"size_t FitObjective::numberOfFitElements() const\n"
 		"\n"
 		""},
-	 { "IFTDecayFunction2D_decayLengthY", _wrap_IFTDecayFunction2D_decayLengthY, METH_O, "\n"
-		"IFTDecayFunction2D_decayLengthY(IFTDecayFunction2D self) -> double\n"
-		"double IFTDecayFunction2D::decayLengthY() const\n"
+	 { "FitObjective_simulationResult", _wrap_FitObjective_simulationResult, METH_VARARGS, "\n"
+		"FitObjective_simulationResult(FitObjective self, size_t i_item=0) -> SimulationResult\n"
+		"SimulationResult FitObjective::simulationResult(size_t i_item=0) const\n"
 		"\n"
-		"get decay length in distribution's Y-direction \n"
+		"Returns simulation result in the form of  SimulationResult. \n"
 		"\n"
 		""},
-	 { "IFTDecayFunction2D_evaluate", _wrap_IFTDecayFunction2D_evaluate, METH_VARARGS, "\n"
-		"IFTDecayFunction2D_evaluate(IFTDecayFunction2D self, double qx, double qy) -> double\n"
-		"virtual double IFTDecayFunction2D::evaluate(double qx, double qy) const =0\n"
+	 { "FitObjective_experimentalData", _wrap_FitObjective_experimentalData, METH_VARARGS, "\n"
+		"FitObjective_experimentalData(FitObjective self, size_t i_item=0) -> SimulationResult\n"
+		"SimulationResult FitObjective::experimentalData(size_t i_item=0) const\n"
 		"\n"
-		"evaluate Fourier transformed decay function for q in X,Y coordinates \n"
+		"Returns experimental data in the form of  SimulationResult. \n"
 		"\n"
 		""},
-	 { "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates", _wrap_IFTDecayFunction2D_boundingReciprocalLatticeCoordinates, METH_VARARGS, "\n"
-		"IFTDecayFunction2D_boundingReciprocalLatticeCoordinates(IFTDecayFunction2D self, double qX, double qY, double a, double b, double alpha) -> pair_double_t\n"
-		"std::pair< double, double > IFTDecayFunction2D::boundingReciprocalLatticeCoordinates(double qX, double qY, double a, double b, double alpha) const\n"
-		"\n"
-		"transform back to a*, b* basis:\n"
+	 { "FitObjective_uncertaintyData_cpp", _wrap_FitObjective_uncertaintyData_cpp, METH_VARARGS, "\n"
+		"FitObjective_uncertaintyData_cpp(FitObjective self, size_t i_item=0) -> SimulationResult\n"
+		"SimulationResult FitObjective::uncertaintyData(size_t i_item=0) const\n"
 		"\n"
-		"Calculates bounding values of reciprocal lattice coordinates that contain the centered rectangle with a corner defined by qX and qY \n"
+		"Returns experimental data uncertainties in the form of  SimulationResult. \n"
 		"\n"
 		""},
-	 { "delete_IFTDecayFunction2D", _wrap_delete_IFTDecayFunction2D, METH_O, "delete_IFTDecayFunction2D(IFTDecayFunction2D self)"},
-	 { "IFTDecayFunction2D_swigregister", IFTDecayFunction2D_swigregister, METH_O, NULL},
-	 { "new_FTDecayFunction2DCauchy", _wrap_new_FTDecayFunction2DCauchy, METH_VARARGS, "\n"
-		"FTDecayFunction2DCauchy(double decay_length_x, double decay_length_y, double gamma=0)\n"
-		"FTDecayFunction2DCauchy::FTDecayFunction2DCauchy(double decay_length_x, double decay_length_y, double gamma=0)\n"
+	 { "FitObjective_relativeDifference", _wrap_FitObjective_relativeDifference, METH_VARARGS, "\n"
+		"FitObjective_relativeDifference(FitObjective self, size_t i_item=0) -> SimulationResult\n"
+		"SimulationResult FitObjective::relativeDifference(size_t i_item=0) const\n"
 		"\n"
-		""},
-	 { "FTDecayFunction2DCauchy_clone", _wrap_FTDecayFunction2DCauchy_clone, METH_O, "\n"
-		"FTDecayFunction2DCauchy_clone(FTDecayFunction2DCauchy self) -> FTDecayFunction2DCauchy\n"
-		"FTDecayFunction2DCauchy * FTDecayFunction2DCauchy::clone() const\n"
+		"Returns relative difference between simulation and experimental data in the form of  SimulationResult. \n"
 		"\n"
 		""},
-	 { "FTDecayFunction2DCauchy_accept", _wrap_FTDecayFunction2DCauchy_accept, METH_VARARGS, "\n"
-		"FTDecayFunction2DCauchy_accept(FTDecayFunction2DCauchy self, INodeVisitor visitor)\n"
-		"void FTDecayFunction2DCauchy::accept(INodeVisitor *visitor) const final\n"
+	 { "FitObjective_absoluteDifference", _wrap_FitObjective_absoluteDifference, METH_VARARGS, "\n"
+		"FitObjective_absoluteDifference(FitObjective self, size_t i_item=0) -> SimulationResult\n"
+		"SimulationResult FitObjective::absoluteDifference(size_t i_item=0) const\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns absolute value of difference between simulation and experimental data in the form of  SimulationResult. \n"
 		"\n"
 		""},
-	 { "FTDecayFunction2DCauchy_evaluate", _wrap_FTDecayFunction2DCauchy_evaluate, METH_VARARGS, "\n"
-		"FTDecayFunction2DCauchy_evaluate(FTDecayFunction2DCauchy self, double qx, double qy) -> double\n"
-		"double FTDecayFunction2DCauchy::evaluate(double qx, double qy) const final\n"
+	 { "FitObjective_experimental_array", _wrap_FitObjective_experimental_array, METH_O, "\n"
+		"FitObjective_experimental_array(FitObjective self) -> vdouble1d_t\n"
+		"std::vector< double > FitObjective::experimental_array() const\n"
 		"\n"
-		"evaluate Fourier transformed decay function for q in X,Y coordinates \n"
+		"Returns one dimensional array representing merged experimental data. The area outside of the region of interest is not included, masked data is nullified. \n"
 		"\n"
 		""},
-	 { "delete_FTDecayFunction2DCauchy", _wrap_delete_FTDecayFunction2DCauchy, METH_O, "delete_FTDecayFunction2DCauchy(FTDecayFunction2DCauchy self)"},
-	 { "FTDecayFunction2DCauchy_swigregister", FTDecayFunction2DCauchy_swigregister, METH_O, NULL},
-	 { "FTDecayFunction2DCauchy_swiginit", FTDecayFunction2DCauchy_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDecayFunction2DGauss", _wrap_new_FTDecayFunction2DGauss, METH_VARARGS, "\n"
-		"FTDecayFunction2DGauss(double decay_length_x, double decay_length_y, double gamma=0)\n"
-		"FTDecayFunction2DGauss::FTDecayFunction2DGauss(double decay_length_x, double decay_length_y, double gamma=0)\n"
+	 { "FitObjective_simulation_array", _wrap_FitObjective_simulation_array, METH_O, "\n"
+		"FitObjective_simulation_array(FitObjective self) -> vdouble1d_t\n"
+		"std::vector< double > FitObjective::simulation_array() const\n"
 		"\n"
-		""},
-	 { "FTDecayFunction2DGauss_clone", _wrap_FTDecayFunction2DGauss_clone, METH_O, "\n"
-		"FTDecayFunction2DGauss_clone(FTDecayFunction2DGauss self) -> FTDecayFunction2DGauss\n"
-		"FTDecayFunction2DGauss * FTDecayFunction2DGauss::clone() const\n"
+		"Returns one dimensional array representing merged simulated intensities data. The area outside of the region of interest is not included, masked data is nullified. \n"
 		"\n"
 		""},
-	 { "FTDecayFunction2DGauss_accept", _wrap_FTDecayFunction2DGauss_accept, METH_VARARGS, "\n"
-		"FTDecayFunction2DGauss_accept(FTDecayFunction2DGauss self, INodeVisitor visitor)\n"
-		"void FTDecayFunction2DGauss::accept(INodeVisitor *visitor) const final\n"
+	 { "FitObjective_uncertainties_cpp", _wrap_FitObjective_uncertainties_cpp, METH_O, "\n"
+		"FitObjective_uncertainties_cpp(FitObjective self) -> vdouble1d_t\n"
+		"std::vector< double > FitObjective::uncertainties() const\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns one-dimensional array representing merged data uncertainties. The area outside of the region of interest is not included, masked data is nullified. \n"
 		"\n"
 		""},
-	 { "FTDecayFunction2DGauss_evaluate", _wrap_FTDecayFunction2DGauss_evaluate, METH_VARARGS, "\n"
-		"FTDecayFunction2DGauss_evaluate(FTDecayFunction2DGauss self, double qx, double qy) -> double\n"
-		"double FTDecayFunction2DGauss::evaluate(double qx, double qy) const final\n"
+	 { "FitObjective_weights_array", _wrap_FitObjective_weights_array, METH_O, "\n"
+		"FitObjective_weights_array(FitObjective self) -> vdouble1d_t\n"
+		"std::vector< double > FitObjective::weights_array() const\n"
 		"\n"
-		"evaluate Fourier transformed decay function for q in X,Y coordinates \n"
+		"Returns one-dimensional array representing merged user weights. The area outside of the region of interest is not included, masked data is nullified. \n"
 		"\n"
 		""},
-	 { "delete_FTDecayFunction2DGauss", _wrap_delete_FTDecayFunction2DGauss, METH_O, "delete_FTDecayFunction2DGauss(FTDecayFunction2DGauss self)"},
-	 { "FTDecayFunction2DGauss_swigregister", FTDecayFunction2DGauss_swigregister, METH_O, NULL},
-	 { "FTDecayFunction2DGauss_swiginit", FTDecayFunction2DGauss_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDecayFunction2DVoigt", _wrap_new_FTDecayFunction2DVoigt, METH_VARARGS, "\n"
-		"FTDecayFunction2DVoigt(double decay_length_x, double decay_length_y, double eta, double gamma=0)\n"
-		"FTDecayFunction2DVoigt::FTDecayFunction2DVoigt(double decay_length_x, double decay_length_y, double eta, double gamma=0)\n"
+	 { "FitObjective_initPrint", _wrap_FitObjective_initPrint, METH_VARARGS, "\n"
+		"FitObjective_initPrint(FitObjective self, int every_nth)\n"
+		"void FitObjective::initPrint(int every_nth)\n"
 		"\n"
-		"Constructor of two-dimensional pseudo-Voigt decay function in reciprocal space.\n"
+		"Initializes printing to standard output during the fitting.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"decay_length_x: \n"
-		"the decay length in nanometers along x-axis of the distribution\n"
-		"\n"
-		"decay_length_y: \n"
-		"the decay length in nanometers along y-axis of the distribution\n"
-		"\n"
-		"eta: \n"
-		"parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0)\n"
-		"\n"
-		"gamma: \n"
-		"distribution orientation with respect to the first lattice vector in radians \n"
+		"every_nth: \n"
+		"Print every n'th iteration. \n"
 		"\n"
 		""},
-	 { "FTDecayFunction2DVoigt_clone", _wrap_FTDecayFunction2DVoigt_clone, METH_O, "\n"
-		"FTDecayFunction2DVoigt_clone(FTDecayFunction2DVoigt self) -> FTDecayFunction2DVoigt\n"
-		"FTDecayFunction2DVoigt * FTDecayFunction2DVoigt::clone() const\n"
+	 { "FitObjective_initPlot_cpp", _wrap_FitObjective_initPlot_cpp, METH_VARARGS, "\n"
+		"FitObjective_initPlot_cpp(FitObjective self, int every_nth, PyObserverCallback callback)\n"
+		"void FitObjective::initPlot(int every_nth, fit_observer_t observer)\n"
 		"\n"
 		""},
-	 { "FTDecayFunction2DVoigt_accept", _wrap_FTDecayFunction2DVoigt_accept, METH_VARARGS, "\n"
-		"FTDecayFunction2DVoigt_accept(FTDecayFunction2DVoigt self, INodeVisitor visitor)\n"
-		"void FTDecayFunction2DVoigt::accept(INodeVisitor *visitor) const final\n"
-		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+	 { "FitObjective_iterationInfo", _wrap_FitObjective_iterationInfo, METH_O, "\n"
+		"FitObjective_iterationInfo(FitObjective self) -> IterationInfo\n"
+		"IterationInfo FitObjective::iterationInfo() const\n"
 		"\n"
 		""},
-	 { "FTDecayFunction2DVoigt_evaluate", _wrap_FTDecayFunction2DVoigt_evaluate, METH_VARARGS, "\n"
-		"FTDecayFunction2DVoigt_evaluate(FTDecayFunction2DVoigt self, double qx, double qy) -> double\n"
-		"double FTDecayFunction2DVoigt::evaluate(double qx, double qy) const final\n"
-		"\n"
-		"evaluate Fourier transformed decay function for q in X,Y coordinates \n"
+	 { "FitObjective_minimizerResult", _wrap_FitObjective_minimizerResult, METH_O, "\n"
+		"FitObjective_minimizerResult(FitObjective self) -> Fit::MinimizerResult\n"
+		"Fit::MinimizerResult FitObjective::minimizerResult() const\n"
 		"\n"
 		""},
-	 { "FTDecayFunction2DVoigt_eta", _wrap_FTDecayFunction2DVoigt_eta, METH_O, "\n"
-		"FTDecayFunction2DVoigt_eta(FTDecayFunction2DVoigt self) -> double\n"
-		"double FTDecayFunction2DVoigt::eta() const\n"
+	 { "FitObjective_finalize_cpp", _wrap_FitObjective_finalize_cpp, METH_VARARGS, "\n"
+		"FitObjective_finalize_cpp(FitObjective self, Fit::MinimizerResult const & result)\n"
+		"void FitObjective::finalize(const Fit::MinimizerResult &result)\n"
 		"\n"
-		""},
-	 { "delete_FTDecayFunction2DVoigt", _wrap_delete_FTDecayFunction2DVoigt, METH_O, "delete_FTDecayFunction2DVoigt(FTDecayFunction2DVoigt self)"},
-	 { "FTDecayFunction2DVoigt_swigregister", FTDecayFunction2DVoigt_swigregister, METH_O, NULL},
-	 { "FTDecayFunction2DVoigt_swiginit", FTDecayFunction2DVoigt_swiginit, METH_VARARGS, NULL},
-	 { "delete_IFTDistribution1D", _wrap_delete_IFTDistribution1D, METH_O, "\n"
-		"delete_IFTDistribution1D(IFTDistribution1D self)\n"
-		"IFTDistribution1D::~IFTDistribution1D()\n"
+		"Should be explicitely called on last iteration to notify all observers. \n"
 		"\n"
 		""},
-	 { "IFTDistribution1D_clone", _wrap_IFTDistribution1D_clone, METH_O, "\n"
-		"IFTDistribution1D_clone(IFTDistribution1D self) -> IFTDistribution1D\n"
-		"virtual IFTDistribution1D* IFTDistribution1D::clone() const =0\n"
+	 { "FitObjective_fitObjectCount", _wrap_FitObjective_fitObjectCount, METH_O, "\n"
+		"FitObjective_fitObjectCount(FitObjective self) -> unsigned int\n"
+		"unsigned FitObjective::fitObjectCount() const\n"
 		"\n"
 		""},
-	 { "IFTDistribution1D_evaluate", _wrap_IFTDistribution1D_evaluate, METH_VARARGS, "\n"
-		"IFTDistribution1D_evaluate(IFTDistribution1D self, double q) -> double\n"
-		"virtual double IFTDistribution1D::evaluate(double q) const =0\n"
-		"\n"
-		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
+	 { "FitObjective_run_simulations", _wrap_FitObjective_run_simulations, METH_VARARGS, "\n"
+		"FitObjective_run_simulations(FitObjective self, Parameters params)\n"
+		"void FitObjective::run_simulations(const Fit::Parameters &params)\n"
 		"\n"
 		""},
-	 { "IFTDistribution1D_setOmega", _wrap_IFTDistribution1D_setOmega, METH_VARARGS, "\n"
-		"IFTDistribution1D_setOmega(IFTDistribution1D self, double omega)\n"
-		"void IFTDistribution1D::setOmega(double omega)\n"
+	 { "FitObjective_setChiSquaredModule", _wrap_FitObjective_setChiSquaredModule, METH_VARARGS, "\n"
+		"FitObjective_setChiSquaredModule(FitObjective self, IChiSquaredModule module)\n"
+		"void FitObjective::setChiSquaredModule(const IChiSquaredModule &module)\n"
 		"\n"
 		""},
-	 { "IFTDistribution1D_omega", _wrap_IFTDistribution1D_omega, METH_O, "\n"
-		"IFTDistribution1D_omega(IFTDistribution1D self) -> double\n"
-		"double IFTDistribution1D::omega() const\n"
+	 { "FitObjective_setObjectiveMetric", _wrap_FitObjective_setObjectiveMetric, METH_VARARGS, "\n"
+		"FitObjective_setObjectiveMetric(FitObjective self, std::string const & metric)\n"
+		"FitObjective_setObjectiveMetric(FitObjective self, std::string const & metric, std::string const & norm)\n"
+		"void FitObjective::setObjectiveMetric(std::unique_ptr< ObjectiveMetric > metric)\n"
 		"\n"
 		""},
-	 { "IFTDistribution1D_qSecondDerivative", _wrap_IFTDistribution1D_qSecondDerivative, METH_O, "\n"
-		"IFTDistribution1D_qSecondDerivative(IFTDistribution1D self) -> double\n"
-		"virtual double IFTDistribution1D::qSecondDerivative() const =0\n"
+	 { "FitObjective_containsUncertainties_cpp", _wrap_FitObjective_containsUncertainties_cpp, METH_VARARGS, "\n"
+		"FitObjective_containsUncertainties_cpp(FitObjective self, size_t i_item) -> bool\n"
+		"bool FitObjective::containsUncertainties(size_t i_item) const\n"
 		"\n"
-		"Returns the negative of the second order derivative in q space around q=0. \n"
+		"Returns true if the specified DataPair element contains uncertainties. \n"
 		"\n"
 		""},
-	 { "IFTDistribution1D_swigregister", IFTDistribution1D_swigregister, METH_O, NULL},
-	 { "new_FTDistribution1DCauchy", _wrap_new_FTDistribution1DCauchy, METH_O, "\n"
-		"new_FTDistribution1DCauchy(double omega) -> FTDistribution1DCauchy\n"
-		"FTDistribution1DCauchy::FTDistribution1DCauchy(double omega)\n"
+	 { "FitObjective_allPairsHaveUncertainties_cpp", _wrap_FitObjective_allPairsHaveUncertainties_cpp, METH_O, "\n"
+		"FitObjective_allPairsHaveUncertainties_cpp(FitObjective self) -> bool\n"
+		"bool FitObjective::allPairsHaveUncertainties() const\n"
 		"\n"
-		""},
-	 { "FTDistribution1DCauchy_clone", _wrap_FTDistribution1DCauchy_clone, METH_O, "\n"
-		"FTDistribution1DCauchy_clone(FTDistribution1DCauchy self) -> FTDistribution1DCauchy\n"
-		"FTDistribution1DCauchy * FTDistribution1DCauchy::clone() const override final\n"
+		"Returns true if all the data pairs in  FitObjective instance contain uncertainties. \n"
 		"\n"
 		""},
-	 { "FTDistribution1DCauchy_accept", _wrap_FTDistribution1DCauchy_accept, METH_VARARGS, "\n"
-		"FTDistribution1DCauchy_accept(FTDistribution1DCauchy self, INodeVisitor visitor)\n"
-		"void FTDistribution1DCauchy::accept(INodeVisitor *visitor) const override final\n"
+	 { "FitObjective_availableMetricOptions", _wrap_FitObjective_availableMetricOptions, METH_NOARGS, "FitObjective_availableMetricOptions() -> std::string"},
+	 { "FitObjective_addSimulationAndData_cpp", _wrap_FitObjective_addSimulationAndData_cpp, METH_VARARGS, "\n"
+		"FitObjective_addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble1d_t data, double weight=1.0)\n"
+		"FitObjective_addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble1d_t data, vdouble1d_t uncertainties, double weight=1.0)\n"
+		"FitObjective_addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble2d_t data, double weight=1.0)\n"
+		"FitObjective_addSimulationAndData_cpp(FitObjective self, PyBuilderCallback callback, vdouble2d_t data, vdouble2d_t uncertainties, double weight=1.0)\n"
+		"void FitObjective::addSimulationAndData(PyBuilderCallback &callback, const T &data, const T &uncertainties, double weight=1.0)\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Constructs simulation/data pair for later fit.\n"
 		"\n"
-		""},
-	 { "FTDistribution1DCauchy_evaluate", _wrap_FTDistribution1DCauchy_evaluate, METH_VARARGS, "\n"
-		"FTDistribution1DCauchy_evaluate(FTDistribution1DCauchy self, double q) -> double\n"
-		"double FTDistribution1DCauchy::evaluate(double q) const override final\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
+		"callback: \n"
+		"simulation builder capable of producing simulations\n"
 		"\n"
-		""},
-	 { "FTDistribution1DCauchy_qSecondDerivative", _wrap_FTDistribution1DCauchy_qSecondDerivative, METH_O, "\n"
-		"FTDistribution1DCauchy_qSecondDerivative(FTDistribution1DCauchy self) -> double\n"
-		"double FTDistribution1DCauchy::qSecondDerivative() const override final\n"
+		"data: \n"
+		"experimental data array\n"
 		"\n"
-		"Returns the negative of the second order derivative in q space around q=0. \n"
+		"uncertainties: \n"
+		"data uncertainties array\n"
 		"\n"
-		""},
-	 { "delete_FTDistribution1DCauchy", _wrap_delete_FTDistribution1DCauchy, METH_O, "delete_FTDistribution1DCauchy(FTDistribution1DCauchy self)"},
-	 { "FTDistribution1DCauchy_swigregister", FTDistribution1DCauchy_swigregister, METH_O, NULL},
-	 { "FTDistribution1DCauchy_swiginit", FTDistribution1DCauchy_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDistribution1DGauss", _wrap_new_FTDistribution1DGauss, METH_O, "\n"
-		"new_FTDistribution1DGauss(double omega) -> FTDistribution1DGauss\n"
-		"FTDistribution1DGauss::FTDistribution1DGauss(double omega)\n"
+		"weight: \n"
+		"weight of dataset in metric calculations \n"
 		"\n"
 		""},
-	 { "FTDistribution1DGauss_clone", _wrap_FTDistribution1DGauss_clone, METH_O, "\n"
-		"FTDistribution1DGauss_clone(FTDistribution1DGauss self) -> FTDistribution1DGauss\n"
-		"FTDistribution1DGauss * FTDistribution1DGauss::clone() const override final\n"
+	 { "disown_FitObjective", _wrap_disown_FitObjective, METH_O, NULL},
+	 { "FitObjective_swigregister", FitObjective_swigregister, METH_O, NULL},
+	 { "FitObjective_swiginit", FitObjective_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorCrystal", _wrap_new_FormFactorCrystal, METH_VARARGS, "\n"
+		"FormFactorCrystal(Lattice lattice, IFormFactor basis_form_factor, IFormFactor meso_form_factor, double position_variance=0.0)\n"
+		"FormFactorCrystal::FormFactorCrystal(const Lattice &lattice, const IFormFactor &basis_form_factor, const IFormFactor &meso_form_factor, double position_variance=0.0)\n"
 		"\n"
 		""},
-	 { "FTDistribution1DGauss_accept", _wrap_FTDistribution1DGauss_accept, METH_VARARGS, "\n"
-		"FTDistribution1DGauss_accept(FTDistribution1DGauss self, INodeVisitor visitor)\n"
-		"void FTDistribution1DGauss::accept(INodeVisitor *visitor) const override final\n"
-		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+	 { "delete_FormFactorCrystal", _wrap_delete_FormFactorCrystal, METH_O, "\n"
+		"delete_FormFactorCrystal(FormFactorCrystal self)\n"
+		"FormFactorCrystal::~FormFactorCrystal() override final\n"
 		"\n"
 		""},
-	 { "FTDistribution1DGauss_evaluate", _wrap_FTDistribution1DGauss_evaluate, METH_VARARGS, "\n"
-		"FTDistribution1DGauss_evaluate(FTDistribution1DGauss self, double q) -> double\n"
-		"double FTDistribution1DGauss::evaluate(double q) const override final\n"
+	 { "FormFactorCrystal_clone", _wrap_FormFactorCrystal_clone, METH_O, "\n"
+		"FormFactorCrystal_clone(FormFactorCrystal self) -> FormFactorCrystal\n"
+		"FormFactorCrystal* FormFactorCrystal::clone() const override final\n"
 		"\n"
-		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FTDistribution1DGauss_qSecondDerivative", _wrap_FTDistribution1DGauss_qSecondDerivative, METH_O, "\n"
-		"FTDistribution1DGauss_qSecondDerivative(FTDistribution1DGauss self) -> double\n"
-		"double FTDistribution1DGauss::qSecondDerivative() const override final\n"
+	 { "FormFactorCrystal_accept", _wrap_FormFactorCrystal_accept, METH_VARARGS, "\n"
+		"FormFactorCrystal_accept(FormFactorCrystal self, INodeVisitor visitor)\n"
+		"void FormFactorCrystal::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Returns the negative of the second order derivative in q space around q=0. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_FTDistribution1DGauss", _wrap_delete_FTDistribution1DGauss, METH_O, "delete_FTDistribution1DGauss(FTDistribution1DGauss self)"},
-	 { "FTDistribution1DGauss_swigregister", FTDistribution1DGauss_swigregister, METH_O, NULL},
-	 { "FTDistribution1DGauss_swiginit", FTDistribution1DGauss_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDistribution1DGate", _wrap_new_FTDistribution1DGate, METH_O, "\n"
-		"new_FTDistribution1DGate(double omega) -> FTDistribution1DGate\n"
-		"FTDistribution1DGate::FTDistribution1DGate(double omega)\n"
+	 { "FormFactorCrystal_setAmbientMaterial", _wrap_FormFactorCrystal_setAmbientMaterial, METH_VARARGS, "\n"
+		"FormFactorCrystal_setAmbientMaterial(FormFactorCrystal self, Material material)\n"
+		"void FormFactorCrystal::setAmbientMaterial(Material material) override\n"
 		"\n"
-		""},
-	 { "FTDistribution1DGate_clone", _wrap_FTDistribution1DGate_clone, METH_O, "\n"
-		"FTDistribution1DGate_clone(FTDistribution1DGate self) -> FTDistribution1DGate\n"
-		"FTDistribution1DGate * FTDistribution1DGate::clone() const override final\n"
+		"Passes the material in which this particle is embedded. \n"
 		"\n"
 		""},
-	 { "FTDistribution1DGate_accept", _wrap_FTDistribution1DGate_accept, METH_VARARGS, "\n"
-		"FTDistribution1DGate_accept(FTDistribution1DGate self, INodeVisitor visitor)\n"
-		"void FTDistribution1DGate::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorCrystal_volume", _wrap_FormFactorCrystal_volume, METH_O, "\n"
+		"FormFactorCrystal_volume(FormFactorCrystal self) -> double\n"
+		"double FormFactorCrystal::volume() const override final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns the total volume of the particle of this form factor's shape. \n"
 		"\n"
 		""},
-	 { "FTDistribution1DGate_evaluate", _wrap_FTDistribution1DGate_evaluate, METH_VARARGS, "\n"
-		"FTDistribution1DGate_evaluate(FTDistribution1DGate self, double q) -> double\n"
-		"double FTDistribution1DGate::evaluate(double q) const override final\n"
+	 { "FormFactorCrystal_radialExtension", _wrap_FormFactorCrystal_radialExtension, METH_O, "\n"
+		"FormFactorCrystal_radialExtension(FormFactorCrystal self) -> double\n"
+		"double FormFactorCrystal::radialExtension() const override final\n"
 		"\n"
-		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "FTDistribution1DGate_qSecondDerivative", _wrap_FTDistribution1DGate_qSecondDerivative, METH_O, "\n"
-		"FTDistribution1DGate_qSecondDerivative(FTDistribution1DGate self) -> double\n"
-		"double FTDistribution1DGate::qSecondDerivative() const override final\n"
+	 { "FormFactorCrystal_bottomZ", _wrap_FormFactorCrystal_bottomZ, METH_VARARGS, "\n"
+		"FormFactorCrystal_bottomZ(FormFactorCrystal self, IRotation rotation) -> double\n"
+		"double FormFactorCrystal::bottomZ(const IRotation &rotation) const override\n"
 		"\n"
-		"Returns the negative of the second order derivative in q space around q=0. \n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "delete_FTDistribution1DGate", _wrap_delete_FTDistribution1DGate, METH_O, "delete_FTDistribution1DGate(FTDistribution1DGate self)"},
-	 { "FTDistribution1DGate_swigregister", FTDistribution1DGate_swigregister, METH_O, NULL},
-	 { "FTDistribution1DGate_swiginit", FTDistribution1DGate_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDistribution1DTriangle", _wrap_new_FTDistribution1DTriangle, METH_O, "\n"
-		"new_FTDistribution1DTriangle(double omega) -> FTDistribution1DTriangle\n"
-		"FTDistribution1DTriangle::FTDistribution1DTriangle(double omega)\n"
+	 { "FormFactorCrystal_topZ", _wrap_FormFactorCrystal_topZ, METH_VARARGS, "\n"
+		"FormFactorCrystal_topZ(FormFactorCrystal self, IRotation rotation) -> double\n"
+		"double FormFactorCrystal::topZ(const IRotation &rotation) const override final\n"
 		"\n"
-		""},
-	 { "FTDistribution1DTriangle_clone", _wrap_FTDistribution1DTriangle_clone, METH_O, "\n"
-		"FTDistribution1DTriangle_clone(FTDistribution1DTriangle self) -> FTDistribution1DTriangle\n"
-		"FTDistribution1DTriangle * FTDistribution1DTriangle::clone() const override final\n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "FTDistribution1DTriangle_accept", _wrap_FTDistribution1DTriangle_accept, METH_VARARGS, "\n"
-		"FTDistribution1DTriangle_accept(FTDistribution1DTriangle self, INodeVisitor visitor)\n"
-		"void FTDistribution1DTriangle::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorCrystal_evaluate", _wrap_FormFactorCrystal_evaluate, METH_VARARGS, "\n"
+		"FormFactorCrystal_evaluate(FormFactorCrystal self, WavevectorInfo wavevectors) -> complex_t\n"
+		"complex_t FormFactorCrystal::evaluate(const WavevectorInfo &wavevectors) const override final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns scattering amplitude for complex wavevectors ki, kf. \n"
 		"\n"
 		""},
-	 { "FTDistribution1DTriangle_evaluate", _wrap_FTDistribution1DTriangle_evaluate, METH_VARARGS, "\n"
-		"FTDistribution1DTriangle_evaluate(FTDistribution1DTriangle self, double q) -> double\n"
-		"double FTDistribution1DTriangle::evaluate(double q) const override final\n"
-		"\n"
-		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
+	 { "FormFactorCrystal_swigregister", FormFactorCrystal_swigregister, METH_O, NULL},
+	 { "FormFactorCrystal_swiginit", FormFactorCrystal_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorWeighted", _wrap_new_FormFactorWeighted, METH_NOARGS, "\n"
+		"new_FormFactorWeighted() -> FormFactorWeighted\n"
+		"FormFactorWeighted::FormFactorWeighted()\n"
 		"\n"
 		""},
-	 { "FTDistribution1DTriangle_qSecondDerivative", _wrap_FTDistribution1DTriangle_qSecondDerivative, METH_O, "\n"
-		"FTDistribution1DTriangle_qSecondDerivative(FTDistribution1DTriangle self) -> double\n"
-		"double FTDistribution1DTriangle::qSecondDerivative() const override final\n"
-		"\n"
-		"Returns the negative of the second order derivative in q space around q=0. \n"
+	 { "delete_FormFactorWeighted", _wrap_delete_FormFactorWeighted, METH_O, "\n"
+		"delete_FormFactorWeighted(FormFactorWeighted self)\n"
+		"FormFactorWeighted::~FormFactorWeighted() override final\n"
 		"\n"
 		""},
-	 { "delete_FTDistribution1DTriangle", _wrap_delete_FTDistribution1DTriangle, METH_O, "delete_FTDistribution1DTriangle(FTDistribution1DTriangle self)"},
-	 { "FTDistribution1DTriangle_swigregister", FTDistribution1DTriangle_swigregister, METH_O, NULL},
-	 { "FTDistribution1DTriangle_swiginit", FTDistribution1DTriangle_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDistribution1DCosine", _wrap_new_FTDistribution1DCosine, METH_O, "\n"
-		"new_FTDistribution1DCosine(double omega) -> FTDistribution1DCosine\n"
-		"FTDistribution1DCosine::FTDistribution1DCosine(double omega)\n"
+	 { "FormFactorWeighted_clone", _wrap_FormFactorWeighted_clone, METH_O, "\n"
+		"FormFactorWeighted_clone(FormFactorWeighted self) -> FormFactorWeighted\n"
+		"FormFactorWeighted * FormFactorWeighted::clone() const override final\n"
 		"\n"
-		""},
-	 { "FTDistribution1DCosine_clone", _wrap_FTDistribution1DCosine_clone, METH_O, "\n"
-		"FTDistribution1DCosine_clone(FTDistribution1DCosine self) -> FTDistribution1DCosine\n"
-		"FTDistribution1DCosine * FTDistribution1DCosine::clone() const override final\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FTDistribution1DCosine_accept", _wrap_FTDistribution1DCosine_accept, METH_VARARGS, "\n"
-		"FTDistribution1DCosine_accept(FTDistribution1DCosine self, INodeVisitor visitor)\n"
-		"void FTDistribution1DCosine::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorWeighted_accept", _wrap_FormFactorWeighted_accept, METH_VARARGS, "\n"
+		"FormFactorWeighted_accept(FormFactorWeighted self, INodeVisitor visitor)\n"
+		"void FormFactorWeighted::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FTDistribution1DCosine_evaluate", _wrap_FTDistribution1DCosine_evaluate, METH_VARARGS, "\n"
-		"FTDistribution1DCosine_evaluate(FTDistribution1DCosine self, double q) -> double\n"
-		"double FTDistribution1DCosine::evaluate(double q) const override final\n"
+	 { "FormFactorWeighted_radialExtension", _wrap_FormFactorWeighted_radialExtension, METH_O, "\n"
+		"FormFactorWeighted_radialExtension(FormFactorWeighted self) -> double\n"
+		"double FormFactorWeighted::radialExtension() const override final\n"
 		"\n"
-		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "FTDistribution1DCosine_qSecondDerivative", _wrap_FTDistribution1DCosine_qSecondDerivative, METH_O, "\n"
-		"FTDistribution1DCosine_qSecondDerivative(FTDistribution1DCosine self) -> double\n"
-		"double FTDistribution1DCosine::qSecondDerivative() const override final\n"
+	 { "FormFactorWeighted_bottomZ", _wrap_FormFactorWeighted_bottomZ, METH_VARARGS, "\n"
+		"FormFactorWeighted_bottomZ(FormFactorWeighted self, IRotation rotation) -> double\n"
+		"double FormFactorWeighted::bottomZ(const IRotation &rotation) const override final\n"
 		"\n"
-		"Returns the negative of the second order derivative in q space around q=0. \n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "delete_FTDistribution1DCosine", _wrap_delete_FTDistribution1DCosine, METH_O, "delete_FTDistribution1DCosine(FTDistribution1DCosine self)"},
-	 { "FTDistribution1DCosine_swigregister", FTDistribution1DCosine_swigregister, METH_O, NULL},
-	 { "FTDistribution1DCosine_swiginit", FTDistribution1DCosine_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDistribution1DVoigt", _wrap_new_FTDistribution1DVoigt, METH_VARARGS, "\n"
-		"new_FTDistribution1DVoigt(double omega, double eta) -> FTDistribution1DVoigt\n"
-		"FTDistribution1DVoigt::FTDistribution1DVoigt(double omega, double eta)\n"
-		"\n"
-		"Constructor of one-dimensional pseudo-Voigt probability distribution.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
-		"\n"
-		"omega: \n"
-		"half-width of the distribution in nanometers\n"
+	 { "FormFactorWeighted_topZ", _wrap_FormFactorWeighted_topZ, METH_VARARGS, "\n"
+		"FormFactorWeighted_topZ(FormFactorWeighted self, IRotation rotation) -> double\n"
+		"double FormFactorWeighted::topZ(const IRotation &rotation) const override final\n"
 		"\n"
-		"eta: \n"
-		"parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0) \n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "FTDistribution1DVoigt_clone", _wrap_FTDistribution1DVoigt_clone, METH_O, "\n"
-		"FTDistribution1DVoigt_clone(FTDistribution1DVoigt self) -> FTDistribution1DVoigt\n"
-		"FTDistribution1DVoigt * FTDistribution1DVoigt::clone() const override final\n"
+	 { "FormFactorWeighted_addFormFactor", _wrap_FormFactorWeighted_addFormFactor, METH_VARARGS, "\n"
+		"FormFactorWeighted_addFormFactor(FormFactorWeighted self, IFormFactor form_factor, double weight=1.0)\n"
+		"void FormFactorWeighted::addFormFactor(const IFormFactor &form_factor, double weight=1.0)\n"
 		"\n"
 		""},
-	 { "FTDistribution1DVoigt_accept", _wrap_FTDistribution1DVoigt_accept, METH_VARARGS, "\n"
-		"FTDistribution1DVoigt_accept(FTDistribution1DVoigt self, INodeVisitor visitor)\n"
-		"void FTDistribution1DVoigt::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorWeighted_setAmbientMaterial", _wrap_FormFactorWeighted_setAmbientMaterial, METH_VARARGS, "\n"
+		"FormFactorWeighted_setAmbientMaterial(FormFactorWeighted self, Material material)\n"
+		"void FormFactorWeighted::setAmbientMaterial(Material material) override final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Passes the material in which this particle is embedded. \n"
 		"\n"
 		""},
-	 { "FTDistribution1DVoigt_evaluate", _wrap_FTDistribution1DVoigt_evaluate, METH_VARARGS, "\n"
-		"FTDistribution1DVoigt_evaluate(FTDistribution1DVoigt self, double q) -> double\n"
-		"double FTDistribution1DVoigt::evaluate(double q) const override final\n"
+	 { "FormFactorWeighted_evaluate", _wrap_FormFactorWeighted_evaluate, METH_VARARGS, "\n"
+		"FormFactorWeighted_evaluate(FormFactorWeighted self, WavevectorInfo wavevectors) -> complex_t\n"
+		"complex_t FormFactorWeighted::evaluate(const WavevectorInfo &wavevectors) const override final\n"
 		"\n"
-		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
+		"Returns scattering amplitude for complex wavevectors ki, kf. \n"
 		"\n"
 		""},
-	 { "FTDistribution1DVoigt_eta", _wrap_FTDistribution1DVoigt_eta, METH_O, "\n"
-		"FTDistribution1DVoigt_eta(FTDistribution1DVoigt self) -> double\n"
-		"double FTDistribution1DVoigt::eta() const\n"
+	 { "FormFactorWeighted_swigregister", FormFactorWeighted_swigregister, METH_O, NULL},
+	 { "FormFactorWeighted_swiginit", FormFactorWeighted_swiginit, METH_VARARGS, NULL},
+	 { "delete_IAbstractParticle", _wrap_delete_IAbstractParticle, METH_O, "\n"
+		"delete_IAbstractParticle(IAbstractParticle self)\n"
+		"IAbstractParticle::~IAbstractParticle()\n"
 		"\n"
 		""},
-	 { "FTDistribution1DVoigt_qSecondDerivative", _wrap_FTDistribution1DVoigt_qSecondDerivative, METH_O, "\n"
-		"FTDistribution1DVoigt_qSecondDerivative(FTDistribution1DVoigt self) -> double\n"
-		"double FTDistribution1DVoigt::qSecondDerivative() const override final\n"
-		"\n"
-		"Returns the negative of the second order derivative in q space around q=0. \n"
+	 { "IAbstractParticle_clone", _wrap_IAbstractParticle_clone, METH_O, "\n"
+		"IAbstractParticle_clone(IAbstractParticle self) -> IAbstractParticle\n"
+		"virtual IAbstractParticle* IAbstractParticle::clone() const =0\n"
 		"\n"
-		""},
-	 { "delete_FTDistribution1DVoigt", _wrap_delete_FTDistribution1DVoigt, METH_O, "delete_FTDistribution1DVoigt(FTDistribution1DVoigt self)"},
-	 { "FTDistribution1DVoigt_swigregister", FTDistribution1DVoigt_swigregister, METH_O, NULL},
-	 { "FTDistribution1DVoigt_swiginit", FTDistribution1DVoigt_swiginit, METH_VARARGS, NULL},
-	 { "IFTDistribution2D_clone", _wrap_IFTDistribution2D_clone, METH_O, "\n"
-		"IFTDistribution2D_clone(IFTDistribution2D self) -> IFTDistribution2D\n"
-		"IFTDistribution2D* IFTDistribution2D::clone() const =0\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "IFTDistribution2D_setGamma", _wrap_IFTDistribution2D_setGamma, METH_VARARGS, "\n"
-		"IFTDistribution2D_setGamma(IFTDistribution2D self, double gamma)\n"
-		"void IFTDistribution2D::setGamma(double gamma)\n"
+	 { "IAbstractParticle_accept", _wrap_IAbstractParticle_accept, METH_VARARGS, "\n"
+		"IAbstractParticle_accept(IAbstractParticle self, INodeVisitor visitor)\n"
+		"void IAbstractParticle::accept(INodeVisitor *visitor) const\n"
 		"\n"
-		""},
-	 { "IFTDistribution2D_gamma", _wrap_IFTDistribution2D_gamma, METH_O, "\n"
-		"IFTDistribution2D_gamma(IFTDistribution2D self) -> double\n"
-		"double IFTDistribution2D::gamma() const\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "IFTDistribution2D_delta", _wrap_IFTDistribution2D_delta, METH_O, "\n"
-		"IFTDistribution2D_delta(IFTDistribution2D self) -> double\n"
-		"double IFTDistribution2D::delta() const\n"
+	 { "IAbstractParticle_abundance", _wrap_IAbstractParticle_abundance, METH_O, "\n"
+		"IAbstractParticle_abundance(IAbstractParticle self) -> double\n"
+		"double IAbstractParticle::abundance() const\n"
 		"\n"
 		""},
-	 { "IFTDistribution2D_omegaX", _wrap_IFTDistribution2D_omegaX, METH_O, "\n"
-		"IFTDistribution2D_omegaX(IFTDistribution2D self) -> double\n"
-		"double IFTDistribution2D::omegaX() const\n"
+	 { "IAbstractParticle_setAbundance", _wrap_IAbstractParticle_setAbundance, METH_VARARGS, "\n"
+		"IAbstractParticle_setAbundance(IAbstractParticle self, double abundance)\n"
+		"void IAbstractParticle::setAbundance(double abundance)\n"
 		"\n"
-		""},
-	 { "IFTDistribution2D_omegaY", _wrap_IFTDistribution2D_omegaY, METH_O, "\n"
-		"IFTDistribution2D_omegaY(IFTDistribution2D self) -> double\n"
-		"double IFTDistribution2D::omegaY() const\n"
+		"Sets particle abundance.\n"
 		"\n"
-		""},
-	 { "IFTDistribution2D_evaluate", _wrap_IFTDistribution2D_evaluate, METH_VARARGS, "\n"
-		"IFTDistribution2D_evaluate(IFTDistribution2D self, double qx, double qy) -> double\n"
-		"virtual double IFTDistribution2D::evaluate(double qx, double qy) const =0\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 \n"
+		"abundance: \n"
+		"proportion of this type of particles normalized to the total number of particles in the layout. \n"
 		"\n"
 		""},
-	 { "delete_IFTDistribution2D", _wrap_delete_IFTDistribution2D, METH_O, "delete_IFTDistribution2D(IFTDistribution2D self)"},
-	 { "IFTDistribution2D_swigregister", IFTDistribution2D_swigregister, METH_O, NULL},
-	 { "new_FTDistribution2DCauchy", _wrap_new_FTDistribution2DCauchy, METH_VARARGS, "\n"
-		"FTDistribution2DCauchy(double omega_x, double omega_y, double gamma=0)\n"
-		"FTDistribution2DCauchy::FTDistribution2DCauchy(double omega_x, double omega_y, double gamma=0)\n"
+	 { "IAbstractParticle_translate", _wrap_IAbstractParticle_translate, METH_VARARGS, "\n"
+		"IAbstractParticle_translate(IAbstractParticle self, kvector_t translation)\n"
+		"virtual void IAbstractParticle::translate(kvector_t translation)=0\n"
 		"\n"
-		""},
-	 { "FTDistribution2DCauchy_clone", _wrap_FTDistribution2DCauchy_clone, METH_O, "\n"
-		"FTDistribution2DCauchy_clone(FTDistribution2DCauchy self) -> FTDistribution2DCauchy\n"
-		"FTDistribution2DCauchy * FTDistribution2DCauchy::clone() const final\n"
+		"Translates the particle with the given vector. \n"
 		"\n"
 		""},
-	 { "FTDistribution2DCauchy_accept", _wrap_FTDistribution2DCauchy_accept, METH_VARARGS, "\n"
-		"FTDistribution2DCauchy_accept(FTDistribution2DCauchy self, INodeVisitor visitor)\n"
-		"void FTDistribution2DCauchy::accept(INodeVisitor *visitor) const final\n"
+	 { "IAbstractParticle_rotate", _wrap_IAbstractParticle_rotate, METH_VARARGS, "\n"
+		"IAbstractParticle_rotate(IAbstractParticle self, IRotation rotation)\n"
+		"virtual void IAbstractParticle::rotate(const IRotation &rotation)=0\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Applies the given rotation to the particle. \n"
 		"\n"
 		""},
-	 { "FTDistribution2DCauchy_evaluate", _wrap_FTDistribution2DCauchy_evaluate, METH_VARARGS, "\n"
-		"FTDistribution2DCauchy_evaluate(FTDistribution2DCauchy self, double qx, double qy) -> double\n"
-		"double FTDistribution2DCauchy::evaluate(double qx, double qy) const final\n"
+	 { "IAbstractParticle_swigregister", IAbstractParticle_swigregister, METH_O, NULL},
+	 { "IClusteredParticles_clone", _wrap_IClusteredParticles_clone, METH_O, "\n"
+		"IClusteredParticles_clone(IClusteredParticles self) -> IClusteredParticles\n"
+		"IClusteredParticles* IClusteredParticles::clone() const override=0\n"
 		"\n"
-		"evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "delete_FTDistribution2DCauchy", _wrap_delete_FTDistribution2DCauchy, METH_O, "delete_FTDistribution2DCauchy(FTDistribution2DCauchy self)"},
-	 { "FTDistribution2DCauchy_swigregister", FTDistribution2DCauchy_swigregister, METH_O, NULL},
-	 { "FTDistribution2DCauchy_swiginit", FTDistribution2DCauchy_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDistribution2DGauss", _wrap_new_FTDistribution2DGauss, METH_VARARGS, "\n"
-		"FTDistribution2DGauss(double omega_x, double omega_y, double gamma=0)\n"
-		"FTDistribution2DGauss::FTDistribution2DGauss(double omega_x, double omega_y, double gamma=0)\n"
+	 { "IClusteredParticles_createTotalFormFactor", _wrap_IClusteredParticles_createTotalFormFactor, METH_VARARGS, "\n"
+		"IClusteredParticles_createTotalFormFactor(IClusteredParticles self, IFormFactor arg2, IRotation arg3, kvector_t arg4) -> IFormFactor\n"
+		"virtual IFormFactor* IClusteredParticles::createTotalFormFactor(const IFormFactor &, const IRotation *, const kvector_t &) const =0\n"
 		"\n"
-		""},
-	 { "FTDistribution2DGauss_clone", _wrap_FTDistribution2DGauss_clone, METH_O, "\n"
-		"FTDistribution2DGauss_clone(FTDistribution2DGauss self) -> FTDistribution2DGauss\n"
-		"FTDistribution2DGauss * FTDistribution2DGauss::clone() const final\n"
+		"Creates a total form factor for the mesocrystal with a specific shape and content The bulk content of the mesocrystal is encapsulated by the  IClusteredParticles object itself \n"
 		"\n"
 		""},
-	 { "FTDistribution2DGauss_accept", _wrap_FTDistribution2DGauss_accept, METH_VARARGS, "\n"
-		"FTDistribution2DGauss_accept(FTDistribution2DGauss self, INodeVisitor visitor)\n"
-		"void FTDistribution2DGauss::accept(INodeVisitor *visitor) const final\n"
+	 { "IClusteredParticles_homogeneousRegions", _wrap_IClusteredParticles_homogeneousRegions, METH_O, "\n"
+		"IClusteredParticles_homogeneousRegions(IClusteredParticles self) -> std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >\n"
+		"virtual std::vector<HomogeneousRegion> IClusteredParticles::homogeneousRegions() const =0\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Creates region information with volumetric densities instead of absolute volume These densities need to be multiplied by the total mesocrystal volume \n"
 		"\n"
 		""},
-	 { "FTDistribution2DGauss_evaluate", _wrap_FTDistribution2DGauss_evaluate, METH_VARARGS, "\n"
-		"FTDistribution2DGauss_evaluate(FTDistribution2DGauss self, double qx, double qy) -> double\n"
-		"double FTDistribution2DGauss::evaluate(double qx, double qy) const final\n"
-		"\n"
-		"evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 \n"
+	 { "delete_IClusteredParticles", _wrap_delete_IClusteredParticles, METH_O, "delete_IClusteredParticles(IClusteredParticles self)"},
+	 { "IClusteredParticles_swigregister", IClusteredParticles_swigregister, METH_O, NULL},
+	 { "new_Crystal", _wrap_new_Crystal, METH_VARARGS, "\n"
+		"new_Crystal(IParticle lattice_basis, Lattice lattice) -> Crystal\n"
+		"Crystal::Crystal(const IParticle &lattice_basis, const Lattice &lattice)\n"
 		"\n"
 		""},
-	 { "delete_FTDistribution2DGauss", _wrap_delete_FTDistribution2DGauss, METH_O, "delete_FTDistribution2DGauss(FTDistribution2DGauss self)"},
-	 { "FTDistribution2DGauss_swigregister", FTDistribution2DGauss_swigregister, METH_O, NULL},
-	 { "FTDistribution2DGauss_swiginit", FTDistribution2DGauss_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDistribution2DGate", _wrap_new_FTDistribution2DGate, METH_VARARGS, "\n"
-		"FTDistribution2DGate(double omega_x, double omega_y, double gamma=0)\n"
-		"FTDistribution2DGate::FTDistribution2DGate(double omega_x, double omega_y, double gamma=0)\n"
+	 { "delete_Crystal", _wrap_delete_Crystal, METH_O, "\n"
+		"delete_Crystal(Crystal self)\n"
+		"Crystal::~Crystal()\n"
 		"\n"
 		""},
-	 { "FTDistribution2DGate_clone", _wrap_FTDistribution2DGate_clone, METH_O, "\n"
-		"FTDistribution2DGate_clone(FTDistribution2DGate self) -> FTDistribution2DGate\n"
-		"FTDistribution2DGate * FTDistribution2DGate::clone() const final\n"
+	 { "Crystal_clone", _wrap_Crystal_clone, METH_O, "\n"
+		"Crystal_clone(Crystal self) -> Crystal\n"
+		"Crystal * Crystal::clone() const override final\n"
+		"\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FTDistribution2DGate_accept", _wrap_FTDistribution2DGate_accept, METH_VARARGS, "\n"
-		"FTDistribution2DGate_accept(FTDistribution2DGate self, INodeVisitor visitor)\n"
-		"void FTDistribution2DGate::accept(INodeVisitor *visitor) const final\n"
+	 { "Crystal_accept", _wrap_Crystal_accept, METH_VARARGS, "\n"
+		"Crystal_accept(Crystal self, INodeVisitor visitor)\n"
+		"void Crystal::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FTDistribution2DGate_evaluate", _wrap_FTDistribution2DGate_evaluate, METH_VARARGS, "\n"
-		"FTDistribution2DGate_evaluate(FTDistribution2DGate self, double qx, double qy) -> double\n"
-		"double FTDistribution2DGate::evaluate(double qx, double qy) const final\n"
+	 { "Crystal_createTotalFormFactor", _wrap_Crystal_createTotalFormFactor, METH_VARARGS, "\n"
+		"Crystal_createTotalFormFactor(Crystal self, IFormFactor meso_crystal_form_factor, IRotation p_rotation, kvector_t translation) -> IFormFactor\n"
+		"IFormFactor * Crystal::createTotalFormFactor(const IFormFactor &meso_crystal_form_factor, const IRotation *p_rotation, const kvector_t &translation) const override final\n"
 		"\n"
-		"evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 \n"
+		"Creates a total form factor for the mesocrystal with a specific shape and content The bulk content of the mesocrystal is encapsulated by the  IClusteredParticles object itself \n"
 		"\n"
 		""},
-	 { "delete_FTDistribution2DGate", _wrap_delete_FTDistribution2DGate, METH_O, "delete_FTDistribution2DGate(FTDistribution2DGate self)"},
-	 { "FTDistribution2DGate_swigregister", FTDistribution2DGate_swigregister, METH_O, NULL},
-	 { "FTDistribution2DGate_swiginit", FTDistribution2DGate_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDistribution2DCone", _wrap_new_FTDistribution2DCone, METH_VARARGS, "\n"
-		"FTDistribution2DCone(double omega_x, double omega_y, double gamma=0)\n"
-		"FTDistribution2DCone::FTDistribution2DCone(double omega_x, double omega_y, double gamma=0)\n"
+	 { "Crystal_homogeneousRegions", _wrap_Crystal_homogeneousRegions, METH_O, "\n"
+		"Crystal_homogeneousRegions(Crystal self) -> std::vector< HomogeneousRegion,std::allocator< HomogeneousRegion > >\n"
+		"std::vector< HomogeneousRegion > Crystal::homogeneousRegions() const override final\n"
 		"\n"
-		""},
-	 { "FTDistribution2DCone_clone", _wrap_FTDistribution2DCone_clone, METH_O, "\n"
-		"FTDistribution2DCone_clone(FTDistribution2DCone self) -> FTDistribution2DCone\n"
-		"FTDistribution2DCone * FTDistribution2DCone::clone() const final\n"
+		"Creates region information with volumetric densities instead of absolute volume These densities need to be multiplied by the total mesocrystal volume \n"
 		"\n"
 		""},
-	 { "FTDistribution2DCone_accept", _wrap_FTDistribution2DCone_accept, METH_VARARGS, "\n"
-		"FTDistribution2DCone_accept(FTDistribution2DCone self, INodeVisitor visitor)\n"
-		"void FTDistribution2DCone::accept(INodeVisitor *visitor) const final\n"
-		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+	 { "Crystal_transformedLattice", _wrap_Crystal_transformedLattice, METH_VARARGS, "\n"
+		"Crystal_transformedLattice(Crystal self, IRotation p_rotation=None) -> Lattice\n"
+		"Lattice Crystal::transformedLattice(const IRotation *p_rotation=nullptr) const\n"
 		"\n"
 		""},
-	 { "FTDistribution2DCone_evaluate", _wrap_FTDistribution2DCone_evaluate, METH_VARARGS, "\n"
-		"FTDistribution2DCone_evaluate(FTDistribution2DCone self, double qx, double qy) -> double\n"
-		"double FTDistribution2DCone::evaluate(double qx, double qy) const final\n"
-		"\n"
-		"evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 \n"
+	 { "Crystal_setPositionVariance", _wrap_Crystal_setPositionVariance, METH_VARARGS, "\n"
+		"Crystal_setPositionVariance(Crystal self, double position_variance)\n"
+		"void Crystal::setPositionVariance(double position_variance)\n"
 		"\n"
 		""},
-	 { "delete_FTDistribution2DCone", _wrap_delete_FTDistribution2DCone, METH_O, "delete_FTDistribution2DCone(FTDistribution2DCone self)"},
-	 { "FTDistribution2DCone_swigregister", FTDistribution2DCone_swigregister, METH_O, NULL},
-	 { "FTDistribution2DCone_swiginit", FTDistribution2DCone_swiginit, METH_VARARGS, NULL},
-	 { "new_FTDistribution2DVoigt", _wrap_new_FTDistribution2DVoigt, METH_VARARGS, "\n"
-		"FTDistribution2DVoigt(double omega_x, double omega_y, double eta, double gamma=0)\n"
-		"FTDistribution2DVoigt::FTDistribution2DVoigt(double omega_x, double omega_y, double eta, double gamma=0)\n"
+	 { "Crystal_getChildren", _wrap_Crystal_getChildren, METH_O, "\n"
+		"Crystal_getChildren(Crystal self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > Crystal::getChildren() const override final\n"
 		"\n"
-		"Constructor of two-dimensional pseudo-Voigt probability distribution.\n"
+		"Returns a vector of children (const). \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "Crystal_swigregister", Crystal_swigregister, METH_O, NULL},
+	 { "Crystal_swiginit", Crystal_swiginit, METH_VARARGS, NULL},
+	 { "ParticleLimits_m_bottom_set", _wrap_ParticleLimits_m_bottom_set, METH_VARARGS, "ParticleLimits_m_bottom_set(ParticleLimits self, double m_bottom)"},
+	 { "ParticleLimits_m_bottom_get", _wrap_ParticleLimits_m_bottom_get, METH_O, "ParticleLimits_m_bottom_get(ParticleLimits self) -> double"},
+	 { "ParticleLimits_m_top_set", _wrap_ParticleLimits_m_top_set, METH_VARARGS, "ParticleLimits_m_top_set(ParticleLimits self, double m_top)"},
+	 { "ParticleLimits_m_top_get", _wrap_ParticleLimits_m_top_get, METH_O, "ParticleLimits_m_top_get(ParticleLimits self) -> double"},
+	 { "new_ParticleLimits", _wrap_new_ParticleLimits, METH_NOARGS, "\n"
+		"new_ParticleLimits() -> ParticleLimits\n"
 		"\n"
-		"omega_x: \n"
-		"half-width of the distribution along its x-axis in nanometers\n"
 		"\n"
-		"omega_y: \n"
-		"half-width of the distribution along its y-axis in nanometers\n"
+		"Vertical extension of a particle, specified by bottom and top z coordinate.\n"
 		"\n"
-		"eta: \n"
-		"parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0)\n"
+		"C++ includes: IParticle.h\n"
 		"\n"
-		"gamma: \n"
-		"angle in direct space between first lattice vector and x-axis of the distribution in radians \n"
+		""},
+	 { "delete_ParticleLimits", _wrap_delete_ParticleLimits, METH_O, "delete_ParticleLimits(ParticleLimits self)"},
+	 { "ParticleLimits_swigregister", ParticleLimits_swigregister, METH_O, NULL},
+	 { "ParticleLimits_swiginit", ParticleLimits_swiginit, METH_VARARGS, NULL},
+	 { "delete_IParticle", _wrap_delete_IParticle, METH_O, "\n"
+		"delete_IParticle(IParticle self)\n"
+		"IParticle::~IParticle()\n"
 		"\n"
 		""},
-	 { "FTDistribution2DVoigt_clone", _wrap_FTDistribution2DVoigt_clone, METH_O, "\n"
-		"FTDistribution2DVoigt_clone(FTDistribution2DVoigt self) -> FTDistribution2DVoigt\n"
-		"FTDistribution2DVoigt * FTDistribution2DVoigt::clone() const final\n"
+	 { "IParticle_clone", _wrap_IParticle_clone, METH_O, "\n"
+		"IParticle_clone(IParticle self) -> IParticle\n"
+		"IParticle* IParticle::clone() const override=0\n"
+		"\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FTDistribution2DVoigt_accept", _wrap_FTDistribution2DVoigt_accept, METH_VARARGS, "\n"
-		"FTDistribution2DVoigt_accept(FTDistribution2DVoigt self, INodeVisitor visitor)\n"
-		"void FTDistribution2DVoigt::accept(INodeVisitor *visitor) const final\n"
+	 { "IParticle_createFormFactor", _wrap_IParticle_createFormFactor, METH_O, "\n"
+		"IParticle_createFormFactor(IParticle self) -> IFormFactor\n"
+		"IFormFactor * IParticle::createFormFactor() const\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Create a form factor for this particle. \n"
 		"\n"
 		""},
-	 { "FTDistribution2DVoigt_evaluate", _wrap_FTDistribution2DVoigt_evaluate, METH_VARARGS, "\n"
-		"FTDistribution2DVoigt_evaluate(FTDistribution2DVoigt self, double qx, double qy) -> double\n"
-		"double FTDistribution2DVoigt::evaluate(double qx, double qy) const final\n"
+	 { "IParticle_createSlicedParticle", _wrap_IParticle_createSlicedParticle, METH_VARARGS, "\n"
+		"IParticle_createSlicedParticle(IParticle self, ZLimits limits) -> SlicedParticle\n"
+		"SlicedParticle IParticle::createSlicedParticle(ZLimits limits) const\n"
 		"\n"
-		"evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 \n"
+		"Create a sliced form factor for this particle. \n"
 		"\n"
 		""},
-	 { "FTDistribution2DVoigt_eta", _wrap_FTDistribution2DVoigt_eta, METH_O, "\n"
-		"FTDistribution2DVoigt_eta(FTDistribution2DVoigt self) -> double\n"
-		"double FTDistribution2DVoigt::eta() const\n"
+	 { "IParticle_position", _wrap_IParticle_position, METH_O, "\n"
+		"IParticle_position(IParticle self) -> kvector_t\n"
+		"kvector_t IParticle::position() const\n"
+		"\n"
+		"Returns particle position. \n"
 		"\n"
 		""},
-	 { "delete_FTDistribution2DVoigt", _wrap_delete_FTDistribution2DVoigt, METH_O, "delete_FTDistribution2DVoigt(FTDistribution2DVoigt self)"},
-	 { "FTDistribution2DVoigt_swigregister", FTDistribution2DVoigt_swigregister, METH_O, NULL},
-	 { "FTDistribution2DVoigt_swiginit", FTDistribution2DVoigt_swiginit, METH_VARARGS, NULL},
-	 { "new_FixedBinAxis", _wrap_new_FixedBinAxis, METH_VARARGS, "\n"
-		"new_FixedBinAxis(std::string const & name, size_t nbins, double start, double end) -> FixedBinAxis\n"
-		"FixedBinAxis::FixedBinAxis(const std::string &name, size_t nbins, double start, double end)\n"
+	 { "IParticle_setPosition", _wrap_IParticle_setPosition, METH_VARARGS, "\n"
+		"IParticle_setPosition(IParticle self, kvector_t position)\n"
+		"IParticle_setPosition(IParticle self, double x, double y, double z)\n"
+		"void IParticle::setPosition(double x, double y, double z)\n"
 		"\n"
-		"FixedBinAxis constructor.\n"
+		"Sets relative position of the particle's reference point in the coordinate system of parent.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"name: \n"
-		"Axis name\n"
-		"\n"
-		"nbins: \n"
-		"number of bins\n"
-		"\n"
-		"start: \n"
-		"low edge of first bin\n"
+		"x: \n"
+		"x-coordinate in nanometers\n"
 		"\n"
-		"end: \n"
-		"upper edge of last bin \n"
+		"y: \n"
+		"y-coordinate in nanometers\n"
 		"\n"
-		""},
-	 { "delete_FixedBinAxis", _wrap_delete_FixedBinAxis, METH_O, "\n"
-		"delete_FixedBinAxis(FixedBinAxis self)\n"
-		"virtual FixedBinAxis::~FixedBinAxis()\n"
+		"z: \n"
+		"z-coordinate in nanometers \n"
 		"\n"
 		""},
-	 { "FixedBinAxis_clone", _wrap_FixedBinAxis_clone, METH_O, "\n"
-		"FixedBinAxis_clone(FixedBinAxis self) -> FixedBinAxis\n"
-		"FixedBinAxis * FixedBinAxis::clone() const\n"
+	 { "IParticle_translate", _wrap_IParticle_translate, METH_VARARGS, "\n"
+		"IParticle_translate(IParticle self, kvector_t translation)\n"
+		"void IParticle::translate(kvector_t translation) override final\n"
 		"\n"
-		"clone function \n"
+		"Translates the particle. \n"
 		"\n"
 		""},
-	 { "FixedBinAxis_size", _wrap_FixedBinAxis_size, METH_O, "\n"
-		"FixedBinAxis_size(FixedBinAxis self) -> size_t\n"
-		"size_t FixedBinAxis::size() const\n"
+	 { "IParticle_rotation", _wrap_IParticle_rotation, METH_O, "\n"
+		"IParticle_rotation(IParticle self) -> IRotation\n"
+		"const IRotation * IParticle::rotation() const\n"
 		"\n"
-		"retrieve the number of bins \n"
+		"Returns rotation object. \n"
 		"\n"
 		""},
-	 { "FixedBinAxis_getBin", _wrap_FixedBinAxis_getBin, METH_VARARGS, "\n"
-		"FixedBinAxis_getBin(FixedBinAxis self, size_t index) -> Bin1D\n"
-		"Bin1D FixedBinAxis::getBin(size_t index) const\n"
+	 { "IParticle_setRotation", _wrap_IParticle_setRotation, METH_VARARGS, "\n"
+		"IParticle_setRotation(IParticle self, IRotation rotation)\n"
+		"void IParticle::setRotation(const IRotation &rotation)\n"
 		"\n"
-		"retrieve a 1d bin for the given index \n"
+		"Sets transformation. \n"
 		"\n"
 		""},
-	 { "FixedBinAxis_getMin", _wrap_FixedBinAxis_getMin, METH_O, "\n"
-		"FixedBinAxis_getMin(FixedBinAxis self) -> double\n"
-		"double FixedBinAxis::getMin() const\n"
+	 { "IParticle_rotate", _wrap_IParticle_rotate, METH_VARARGS, "\n"
+		"IParticle_rotate(IParticle self, IRotation rotation)\n"
+		"void IParticle::rotate(const IRotation &rotation) override final\n"
 		"\n"
-		"Returns value of first point of axis. \n"
+		"Rotates the particle. \n"
 		"\n"
 		""},
-	 { "FixedBinAxis_getMax", _wrap_FixedBinAxis_getMax, METH_O, "\n"
-		"FixedBinAxis_getMax(FixedBinAxis self) -> double\n"
-		"double FixedBinAxis::getMax() const\n"
+	 { "IParticle_getChildren", _wrap_IParticle_getChildren, METH_O, "\n"
+		"IParticle_getChildren(IParticle self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > IParticle::getChildren() const override\n"
 		"\n"
-		"Returns value of last point of axis. \n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "FixedBinAxis_getBinCenter", _wrap_FixedBinAxis_getBinCenter, METH_VARARGS, "\n"
-		"FixedBinAxis_getBinCenter(FixedBinAxis self, size_t index) -> double\n"
-		"double FixedBinAxis::getBinCenter(size_t index) const\n"
+	 { "IParticle_registerAbundance", _wrap_IParticle_registerAbundance, METH_VARARGS, "\n"
+		"IParticle_registerAbundance(IParticle self, bool make_registered=True)\n"
+		"void IParticle::registerAbundance(bool make_registered=true)\n"
 		"\n"
 		""},
-	 { "FixedBinAxis_findClosestIndex", _wrap_FixedBinAxis_findClosestIndex, METH_VARARGS, "\n"
-		"FixedBinAxis_findClosestIndex(FixedBinAxis self, double value) -> size_t\n"
-		"size_t FixedBinAxis::findClosestIndex(double value) const\n"
+	 { "IParticle_registerPosition", _wrap_IParticle_registerPosition, METH_VARARGS, "\n"
+		"IParticle_registerPosition(IParticle self, bool make_registered=True)\n"
+		"void IParticle::registerPosition(bool make_registered=true)\n"
 		"\n"
-		"find bin index which is best match for given value \n"
+		"Registers the three components of its position. \n"
 		"\n"
 		""},
-	 { "FixedBinAxis_getBinCenters", _wrap_FixedBinAxis_getBinCenters, METH_O, "\n"
-		"FixedBinAxis_getBinCenters(FixedBinAxis self) -> vdouble1d_t\n"
-		"std::vector< double > FixedBinAxis::getBinCenters() const\n"
+	 { "IParticle_decompose", _wrap_IParticle_decompose, METH_O, "\n"
+		"IParticle_decompose(IParticle self) -> SafePointerVector< IParticle >\n"
+		"SafePointerVector< IParticle > IParticle::decompose() const\n"
 		"\n"
-		""},
-	 { "FixedBinAxis_getBinBoundaries", _wrap_FixedBinAxis_getBinBoundaries, METH_O, "\n"
-		"FixedBinAxis_getBinBoundaries(FixedBinAxis self) -> vdouble1d_t\n"
-		"std::vector< double > FixedBinAxis::getBinBoundaries() const\n"
+		"Decompose in constituent  IParticle objects. \n"
 		"\n"
 		""},
-	 { "FixedBinAxis_createClippedAxis", _wrap_FixedBinAxis_createClippedAxis, METH_VARARGS, "\n"
-		"FixedBinAxis_createClippedAxis(FixedBinAxis self, double left, double right) -> FixedBinAxis\n"
-		"FixedBinAxis * FixedBinAxis::createClippedAxis(double left, double right) const\n"
+	 { "IParticle_bottomTopZ", _wrap_IParticle_bottomTopZ, METH_O, "\n"
+		"IParticle_bottomTopZ(IParticle self) -> ParticleLimits\n"
+		"ParticleLimits IParticle::bottomTopZ() const\n"
 		"\n"
-		"Creates a new clipped axis. \n"
+		"Top and bottom z-coordinate. \n"
 		"\n"
 		""},
-	 { "FixedBinAxis___getitem__", _wrap_FixedBinAxis___getitem__, METH_VARARGS, "FixedBinAxis___getitem__(FixedBinAxis self, unsigned int i) -> double"},
-	 { "FixedBinAxis_swigregister", FixedBinAxis_swigregister, METH_O, NULL},
-	 { "FixedBinAxis_swiginit", FixedBinAxis_swiginit, METH_VARARGS, NULL},
-	 { "new_IFormFactor", _wrap_new_IFormFactor, METH_VARARGS, "\n"
-		"IFormFactor()\n"
-		"new_IFormFactor(PyObject * _self, INode parent, std::vector< char const *,std::allocator< char const * > > const PName, std::vector< char const *,std::allocator< char const * > > const PUnit, vdouble1d_t PMin, vdouble1d_t PMax, vdouble1d_t PDefault, vdouble1d_t P) -> IFormFactor\n"
-		"IFormFactor::IFormFactor()\n"
+	 { "IParticle_swigregister", IParticle_swigregister, METH_O, NULL},
+	 { "new_MesoCrystal", _wrap_new_MesoCrystal, METH_VARARGS, "\n"
+		"new_MesoCrystal(IClusteredParticles particle_structure, IFormFactor form_factor) -> MesoCrystal\n"
+		"MesoCrystal::MesoCrystal(const IClusteredParticles &particle_structure, const IFormFactor &form_factor)\n"
 		"\n"
 		""},
-	 { "delete_IFormFactor", _wrap_delete_IFormFactor, METH_O, "\n"
-		"delete_IFormFactor(IFormFactor self)\n"
-		"IFormFactor::~IFormFactor() override\n"
+	 { "delete_MesoCrystal", _wrap_delete_MesoCrystal, METH_O, "\n"
+		"delete_MesoCrystal(MesoCrystal self)\n"
+		"MesoCrystal::~MesoCrystal()\n"
 		"\n"
 		""},
-	 { "IFormFactor_clone", _wrap_IFormFactor_clone, METH_O, "\n"
-		"IFormFactor_clone(IFormFactor self) -> IFormFactor\n"
-		"IFormFactor* IFormFactor::clone() const override=0\n"
+	 { "MesoCrystal_clone", _wrap_MesoCrystal_clone, METH_O, "\n"
+		"MesoCrystal_clone(MesoCrystal self) -> MesoCrystal\n"
+		"MesoCrystal * MesoCrystal::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "IFormFactor_createSlicedFormFactor", _wrap_IFormFactor_createSlicedFormFactor, METH_VARARGS, "\n"
-		"IFormFactor_createSlicedFormFactor(IFormFactor self, ZLimits limits, IRotation rot, kvector_t translation) -> IFormFactor\n"
-		"IFormFactor * IFormFactor::createSlicedFormFactor(ZLimits limits, const IRotation &rot, kvector_t translation) const\n"
+	 { "MesoCrystal_accept", _wrap_MesoCrystal_accept, METH_VARARGS, "\n"
+		"MesoCrystal_accept(MesoCrystal self, INodeVisitor visitor)\n"
+		"void MesoCrystal::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Creates a (possibly sliced) form factor with the given rotation and translation. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "IFormFactor_setAmbientMaterial", _wrap_IFormFactor_setAmbientMaterial, METH_VARARGS, "\n"
-		"IFormFactor_setAmbientMaterial(IFormFactor self, Material arg0)\n"
-		"virtual void IFormFactor::setAmbientMaterial(Material)=0\n"
+	 { "MesoCrystal_createSlicedParticle", _wrap_MesoCrystal_createSlicedParticle, METH_VARARGS, "\n"
+		"MesoCrystal_createSlicedParticle(MesoCrystal self, ZLimits limits) -> SlicedParticle\n"
+		"SlicedParticle MesoCrystal::createSlicedParticle(ZLimits limits) const override final\n"
 		"\n"
-		"Passes the material in which this particle is embedded. \n"
+		"Create a sliced form factor for this particle. \n"
 		"\n"
 		""},
-	 { "IFormFactor_evaluate", _wrap_IFormFactor_evaluate, METH_VARARGS, "\n"
-		"IFormFactor_evaluate(IFormFactor self, WavevectorInfo wavevectors) -> complex_t\n"
-		"virtual complex_t IFormFactor::evaluate(const WavevectorInfo &wavevectors) const =0\n"
+	 { "MesoCrystal_getChildren", _wrap_MesoCrystal_getChildren, METH_O, "\n"
+		"MesoCrystal_getChildren(MesoCrystal self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > MesoCrystal::getChildren() const override final\n"
 		"\n"
-		"Returns scattering amplitude for complex wavevectors ki, kf. \n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "IFormFactor_volume", _wrap_IFormFactor_volume, METH_O, "\n"
-		"IFormFactor_volume(IFormFactor self) -> double\n"
-		"double IFormFactor::volume() const\n"
-		"\n"
-		"Returns the total volume of the particle of this form factor's shape. \n"
+	 { "MesoCrystal_swigregister", MesoCrystal_swigregister, METH_O, NULL},
+	 { "MesoCrystal_swiginit", MesoCrystal_swiginit, METH_VARARGS, NULL},
+	 { "new_Particle", _wrap_new_Particle, METH_VARARGS, "\n"
+		"Particle()\n"
+		"Particle(Material material)\n"
+		"Particle(Material material, IFormFactor form_factor)\n"
+		"new_Particle(Material material, IFormFactor form_factor, IRotation rotation) -> Particle\n"
+		"Particle::Particle(Material material, const IFormFactor &form_factor, const IRotation &rotation)\n"
 		"\n"
 		""},
-	 { "IFormFactor_radialExtension", _wrap_IFormFactor_radialExtension, METH_O, "\n"
-		"IFormFactor_radialExtension(IFormFactor self) -> double\n"
-		"virtual double IFormFactor::radialExtension() const =0\n"
+	 { "Particle_clone", _wrap_Particle_clone, METH_O, "\n"
+		"Particle_clone(Particle self) -> Particle\n"
+		"Particle * Particle::clone() const override final\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "IFormFactor_bottomZ", _wrap_IFormFactor_bottomZ, METH_VARARGS, "\n"
-		"IFormFactor_bottomZ(IFormFactor self, IRotation rotation) -> double\n"
-		"virtual double IFormFactor::bottomZ(const IRotation &rotation) const =0\n"
+	 { "Particle_accept", _wrap_Particle_accept, METH_VARARGS, "\n"
+		"Particle_accept(Particle self, INodeVisitor visitor)\n"
+		"void Particle::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "IFormFactor_topZ", _wrap_IFormFactor_topZ, METH_VARARGS, "\n"
-		"IFormFactor_topZ(IFormFactor self, IRotation rotation) -> double\n"
-		"virtual double IFormFactor::topZ(const IRotation &rotation) const =0\n"
+	 { "Particle_createSlicedParticle", _wrap_Particle_createSlicedParticle, METH_VARARGS, "\n"
+		"Particle_createSlicedParticle(Particle self, ZLimits limits) -> SlicedParticle\n"
+		"SlicedParticle Particle::createSlicedParticle(ZLimits limits) const override final\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		"Create a sliced form factor for this particle. \n"
 		"\n"
 		""},
-	 { "IFormFactor_canSliceAnalytically", _wrap_IFormFactor_canSliceAnalytically, METH_VARARGS, "IFormFactor_canSliceAnalytically(IFormFactor self, IRotation rot) -> bool"},
-	 { "IFormFactor_sliceFormFactor", _wrap_IFormFactor_sliceFormFactor, METH_VARARGS, "IFormFactor_sliceFormFactor(IFormFactor self, ZLimits limits, IRotation rot, kvector_t translation) -> IFormFactor"},
-	 { "disown_IFormFactor", _wrap_disown_IFormFactor, METH_O, NULL},
-	 { "IFormFactor_swigregister", IFormFactor_swigregister, METH_O, NULL},
-	 { "IFormFactor_swiginit", IFormFactor_swiginit, METH_VARARGS, NULL},
-	 { "CreateTransformedFormFactor", _wrap_CreateTransformedFormFactor, METH_VARARGS, "\n"
-		"CreateTransformedFormFactor(IFormFactor formfactor, IRotation rot, kvector_t translation) -> IFormFactor\n"
-		"IFormFactor* CreateTransformedFormFactor(const IFormFactor &formfactor, const IRotation &rot, kvector_t translation)\n"
+	 { "Particle_setMaterial", _wrap_Particle_setMaterial, METH_VARARGS, "\n"
+		"Particle_setMaterial(Particle self, Material material)\n"
+		"void Particle::setMaterial(Material material)\n"
 		"\n"
 		""},
-	 { "vector_IFormFactorPtr_t_iterator", _wrap_vector_IFormFactorPtr_t_iterator, METH_O, "vector_IFormFactorPtr_t_iterator(vector_IFormFactorPtr_t self) -> SwigPyIterator"},
-	 { "vector_IFormFactorPtr_t___nonzero__", _wrap_vector_IFormFactorPtr_t___nonzero__, METH_O, "vector_IFormFactorPtr_t___nonzero__(vector_IFormFactorPtr_t self) -> bool"},
-	 { "vector_IFormFactorPtr_t___bool__", _wrap_vector_IFormFactorPtr_t___bool__, METH_O, "vector_IFormFactorPtr_t___bool__(vector_IFormFactorPtr_t self) -> bool"},
-	 { "vector_IFormFactorPtr_t___len__", _wrap_vector_IFormFactorPtr_t___len__, METH_O, "vector_IFormFactorPtr_t___len__(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::size_type"},
-	 { "vector_IFormFactorPtr_t___getslice__", _wrap_vector_IFormFactorPtr_t___getslice__, METH_VARARGS, "vector_IFormFactorPtr_t___getslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j) -> vector_IFormFactorPtr_t"},
-	 { "vector_IFormFactorPtr_t___setslice__", _wrap_vector_IFormFactorPtr_t___setslice__, METH_VARARGS, "\n"
-		"vector_IFormFactorPtr_t___setslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j)\n"
-		"vector_IFormFactorPtr_t___setslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j, vector_IFormFactorPtr_t v)\n"
-		""},
-	 { "vector_IFormFactorPtr_t___delslice__", _wrap_vector_IFormFactorPtr_t___delslice__, METH_VARARGS, "vector_IFormFactorPtr_t___delslice__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, std::vector< IFormFactor * >::difference_type j)"},
-	 { "vector_IFormFactorPtr_t___delitem__", _wrap_vector_IFormFactorPtr_t___delitem__, METH_VARARGS, "\n"
-		"vector_IFormFactorPtr_t___delitem__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i)\n"
-		"vector_IFormFactorPtr_t___delitem__(vector_IFormFactorPtr_t self, PySliceObject * slice)\n"
-		""},
-	 { "vector_IFormFactorPtr_t___getitem__", _wrap_vector_IFormFactorPtr_t___getitem__, METH_VARARGS, "\n"
-		"vector_IFormFactorPtr_t___getitem__(vector_IFormFactorPtr_t self, PySliceObject * slice) -> vector_IFormFactorPtr_t\n"
-		"vector_IFormFactorPtr_t___getitem__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i) -> IFormFactor\n"
-		""},
-	 { "vector_IFormFactorPtr_t___setitem__", _wrap_vector_IFormFactorPtr_t___setitem__, METH_VARARGS, "\n"
-		"vector_IFormFactorPtr_t___setitem__(vector_IFormFactorPtr_t self, PySliceObject * slice, vector_IFormFactorPtr_t v)\n"
-		"vector_IFormFactorPtr_t___setitem__(vector_IFormFactorPtr_t self, PySliceObject * slice)\n"
-		"vector_IFormFactorPtr_t___setitem__(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::difference_type i, IFormFactor x)\n"
-		""},
-	 { "vector_IFormFactorPtr_t_pop", _wrap_vector_IFormFactorPtr_t_pop, METH_O, "vector_IFormFactorPtr_t_pop(vector_IFormFactorPtr_t self) -> IFormFactor"},
-	 { "vector_IFormFactorPtr_t_append", _wrap_vector_IFormFactorPtr_t_append, METH_VARARGS, "vector_IFormFactorPtr_t_append(vector_IFormFactorPtr_t self, IFormFactor x)"},
-	 { "vector_IFormFactorPtr_t_empty", _wrap_vector_IFormFactorPtr_t_empty, METH_O, "vector_IFormFactorPtr_t_empty(vector_IFormFactorPtr_t self) -> bool"},
-	 { "vector_IFormFactorPtr_t_size", _wrap_vector_IFormFactorPtr_t_size, METH_O, "vector_IFormFactorPtr_t_size(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::size_type"},
-	 { "vector_IFormFactorPtr_t_swap", _wrap_vector_IFormFactorPtr_t_swap, METH_VARARGS, "\n"
-		"vector_IFormFactorPtr_t_swap(vector_IFormFactorPtr_t self, vector_IFormFactorPtr_t v)\n"
-		"void swap(OutputDataIterator< TValue, TContainer > &left, OutputDataIterator< TValue, TContainer > &right)\n"
+	 { "Particle_material", _wrap_Particle_material, METH_O, "\n"
+		"Particle_material(Particle self) -> Material\n"
+		"const Material* Particle::material() const override final\n"
 		"\n"
-		"make Swappable \n"
+		"Returns nullptr, unless overwritten to return a specific material. \n"
 		"\n"
 		""},
-	 { "vector_IFormFactorPtr_t_begin", _wrap_vector_IFormFactorPtr_t_begin, METH_O, "vector_IFormFactorPtr_t_begin(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::iterator"},
-	 { "vector_IFormFactorPtr_t_end", _wrap_vector_IFormFactorPtr_t_end, METH_O, "vector_IFormFactorPtr_t_end(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::iterator"},
-	 { "vector_IFormFactorPtr_t_rbegin", _wrap_vector_IFormFactorPtr_t_rbegin, METH_O, "vector_IFormFactorPtr_t_rbegin(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::reverse_iterator"},
-	 { "vector_IFormFactorPtr_t_rend", _wrap_vector_IFormFactorPtr_t_rend, METH_O, "vector_IFormFactorPtr_t_rend(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::reverse_iterator"},
-	 { "vector_IFormFactorPtr_t_clear", _wrap_vector_IFormFactorPtr_t_clear, METH_O, "vector_IFormFactorPtr_t_clear(vector_IFormFactorPtr_t self)"},
-	 { "vector_IFormFactorPtr_t_get_allocator", _wrap_vector_IFormFactorPtr_t_get_allocator, METH_O, "vector_IFormFactorPtr_t_get_allocator(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::allocator_type"},
-	 { "vector_IFormFactorPtr_t_pop_back", _wrap_vector_IFormFactorPtr_t_pop_back, METH_O, "vector_IFormFactorPtr_t_pop_back(vector_IFormFactorPtr_t self)"},
-	 { "vector_IFormFactorPtr_t_erase", _wrap_vector_IFormFactorPtr_t_erase, METH_VARARGS, "\n"
-		"vector_IFormFactorPtr_t_erase(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator pos) -> std::vector< IFormFactor * >::iterator\n"
-		"vector_IFormFactorPtr_t_erase(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator first, std::vector< IFormFactor * >::iterator last) -> std::vector< IFormFactor * >::iterator\n"
-		""},
-	 { "new_vector_IFormFactorPtr_t", _wrap_new_vector_IFormFactorPtr_t, METH_VARARGS, "\n"
-		"vector_IFormFactorPtr_t()\n"
-		"vector_IFormFactorPtr_t(vector_IFormFactorPtr_t other)\n"
-		"vector_IFormFactorPtr_t(std::vector< IFormFactor * >::size_type size)\n"
-		"new_vector_IFormFactorPtr_t(std::vector< IFormFactor * >::size_type size, IFormFactor value) -> vector_IFormFactorPtr_t\n"
-		""},
-	 { "vector_IFormFactorPtr_t_push_back", _wrap_vector_IFormFactorPtr_t_push_back, METH_VARARGS, "vector_IFormFactorPtr_t_push_back(vector_IFormFactorPtr_t self, IFormFactor x)"},
-	 { "vector_IFormFactorPtr_t_front", _wrap_vector_IFormFactorPtr_t_front, METH_O, "vector_IFormFactorPtr_t_front(vector_IFormFactorPtr_t self) -> IFormFactor"},
-	 { "vector_IFormFactorPtr_t_back", _wrap_vector_IFormFactorPtr_t_back, METH_O, "vector_IFormFactorPtr_t_back(vector_IFormFactorPtr_t self) -> IFormFactor"},
-	 { "vector_IFormFactorPtr_t_assign", _wrap_vector_IFormFactorPtr_t_assign, METH_VARARGS, "vector_IFormFactorPtr_t_assign(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type n, IFormFactor x)"},
-	 { "vector_IFormFactorPtr_t_resize", _wrap_vector_IFormFactorPtr_t_resize, METH_VARARGS, "\n"
-		"vector_IFormFactorPtr_t_resize(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type new_size)\n"
-		"vector_IFormFactorPtr_t_resize(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type new_size, IFormFactor x)\n"
-		""},
-	 { "vector_IFormFactorPtr_t_insert", _wrap_vector_IFormFactorPtr_t_insert, METH_VARARGS, "\n"
-		"vector_IFormFactorPtr_t_insert(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator pos, IFormFactor x) -> std::vector< IFormFactor * >::iterator\n"
-		"vector_IFormFactorPtr_t_insert(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::iterator pos, std::vector< IFormFactor * >::size_type n, IFormFactor x)\n"
-		""},
-	 { "vector_IFormFactorPtr_t_reserve", _wrap_vector_IFormFactorPtr_t_reserve, METH_VARARGS, "vector_IFormFactorPtr_t_reserve(vector_IFormFactorPtr_t self, std::vector< IFormFactor * >::size_type n)"},
-	 { "vector_IFormFactorPtr_t_capacity", _wrap_vector_IFormFactorPtr_t_capacity, METH_O, "vector_IFormFactorPtr_t_capacity(vector_IFormFactorPtr_t self) -> std::vector< IFormFactor * >::size_type"},
-	 { "delete_vector_IFormFactorPtr_t", _wrap_delete_vector_IFormFactorPtr_t, METH_O, "delete_vector_IFormFactorPtr_t(vector_IFormFactorPtr_t self)"},
-	 { "vector_IFormFactorPtr_t_swigregister", vector_IFormFactorPtr_t_swigregister, METH_O, NULL},
-	 { "vector_IFormFactorPtr_t_swiginit", vector_IFormFactorPtr_t_swiginit, METH_VARARGS, NULL},
-	 { "new_IFormFactorBorn", _wrap_new_IFormFactorBorn, METH_VARARGS, "\n"
-		"IFormFactorBorn()\n"
-		"new_IFormFactorBorn(PyObject * _self, INode parent, std::vector< char const *,std::allocator< char const * > > const PName, std::vector< char const *,std::allocator< char const * > > const PUnit, vdouble1d_t PMin, vdouble1d_t PMax, vdouble1d_t PDefault, vdouble1d_t P) -> IFormFactorBorn\n"
-		"IFormFactorBorn::IFormFactorBorn()=default\n"
+	 { "Particle_setFormFactor", _wrap_Particle_setFormFactor, METH_VARARGS, "\n"
+		"Particle_setFormFactor(Particle self, IFormFactor form_factor)\n"
+		"void Particle::setFormFactor(const IFormFactor &form_factor)\n"
 		"\n"
 		""},
-	 { "IFormFactorBorn_clone", _wrap_IFormFactorBorn_clone, METH_O, "\n"
-		"IFormFactorBorn_clone(IFormFactorBorn self) -> IFormFactorBorn\n"
-		"IFormFactorBorn* IFormFactorBorn::clone() const override=0\n"
+	 { "Particle_getChildren", _wrap_Particle_getChildren, METH_O, "\n"
+		"Particle_getChildren(Particle self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > Particle::getChildren() const override final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "IFormFactorBorn_setAmbientMaterial", _wrap_IFormFactorBorn_setAmbientMaterial, METH_VARARGS, "\n"
-		"IFormFactorBorn_setAmbientMaterial(IFormFactorBorn self, Material arg0)\n"
-		"void IFormFactorBorn::setAmbientMaterial(Material) override\n"
-		"\n"
-		"Passes the material in which this particle is embedded. \n"
+	 { "delete_Particle", _wrap_delete_Particle, METH_O, "delete_Particle(Particle self)"},
+	 { "Particle_swigregister", Particle_swigregister, METH_O, NULL},
+	 { "Particle_swiginit", Particle_swiginit, METH_VARARGS, NULL},
+	 { "new_ParticleComposition", _wrap_new_ParticleComposition, METH_VARARGS, "\n"
+		"ParticleComposition()\n"
+		"new_ParticleComposition(IParticle particle, vector_kvector_t positions) -> ParticleComposition\n"
+		"ParticleComposition::ParticleComposition(const IParticle &particle, std::vector< kvector_t > positions)\n"
 		"\n"
 		""},
-	 { "IFormFactorBorn_evaluate", _wrap_IFormFactorBorn_evaluate, METH_VARARGS, "\n"
-		"IFormFactorBorn_evaluate(IFormFactorBorn self, WavevectorInfo wavevectors) -> complex_t\n"
-		"complex_t IFormFactorBorn::evaluate(const WavevectorInfo &wavevectors) const override\n"
-		"\n"
-		"Returns scattering amplitude for complex wavevectors ki, kf. \n"
+	 { "delete_ParticleComposition", _wrap_delete_ParticleComposition, METH_O, "\n"
+		"delete_ParticleComposition(ParticleComposition self)\n"
+		"ParticleComposition::~ParticleComposition()\n"
 		"\n"
 		""},
-	 { "IFormFactorBorn_bottomZ", _wrap_IFormFactorBorn_bottomZ, METH_VARARGS, "\n"
-		"IFormFactorBorn_bottomZ(IFormFactorBorn self, IRotation rotation) -> double\n"
-		"double IFormFactorBorn::bottomZ(const IRotation &rotation) const override\n"
+	 { "ParticleComposition_clone", _wrap_ParticleComposition_clone, METH_O, "\n"
+		"ParticleComposition_clone(ParticleComposition self) -> ParticleComposition\n"
+		"ParticleComposition * ParticleComposition::clone() const override final\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "IFormFactorBorn_topZ", _wrap_IFormFactorBorn_topZ, METH_VARARGS, "\n"
-		"IFormFactorBorn_topZ(IFormFactorBorn self, IRotation rotation) -> double\n"
-		"double IFormFactorBorn::topZ(const IRotation &rotation) const override\n"
+	 { "ParticleComposition_accept", _wrap_ParticleComposition_accept, METH_VARARGS, "\n"
+		"ParticleComposition_accept(ParticleComposition self, INodeVisitor visitor)\n"
+		"void ParticleComposition::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "IFormFactorBorn_evaluate_for_q", _wrap_IFormFactorBorn_evaluate_for_q, METH_VARARGS, "\n"
-		"IFormFactorBorn_evaluate_for_q(IFormFactorBorn self, cvector_t q) -> complex_t\n"
-		"virtual complex_t IFormFactorBorn::evaluate_for_q(cvector_t q) const =0\n"
+	 { "ParticleComposition_createFormFactor", _wrap_ParticleComposition_createFormFactor, METH_O, "\n"
+		"ParticleComposition_createFormFactor(ParticleComposition self) -> IFormFactor\n"
+		"IFormFactor * ParticleComposition::createFormFactor() const override final\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"Create a form factor for this particle. \n"
 		"\n"
 		""},
-	 { "IFormFactorBorn_canSliceAnalytically", _wrap_IFormFactorBorn_canSliceAnalytically, METH_VARARGS, "IFormFactorBorn_canSliceAnalytically(IFormFactorBorn self, IRotation rot) -> bool"},
-	 { "delete_IFormFactorBorn", _wrap_delete_IFormFactorBorn, METH_O, "\n"
-		"delete_IFormFactorBorn(IFormFactorBorn self)\n"
-		"IFormFactorBorn::~IFormFactorBorn() override\n"
+	 { "ParticleComposition_addParticle", _wrap_ParticleComposition_addParticle, METH_VARARGS, "\n"
+		"ParticleComposition_addParticle(ParticleComposition self, IParticle particle)\n"
+		"ParticleComposition_addParticle(ParticleComposition self, IParticle particle, kvector_t position)\n"
+		"void ParticleComposition::addParticle(const IParticle &particle, kvector_t position)\n"
 		"\n"
 		""},
-	 { "disown_IFormFactorBorn", _wrap_disown_IFormFactorBorn, METH_O, NULL},
-	 { "IFormFactorBorn_sliceFormFactor", _wrap_IFormFactorBorn_sliceFormFactor, METH_VARARGS, "IFormFactorBorn_sliceFormFactor(IFormFactorBorn self, ZLimits limits, IRotation rot, kvector_t translation) -> IFormFactor"},
-	 { "IFormFactorBorn_swigregister", IFormFactorBorn_swigregister, METH_O, NULL},
-	 { "IFormFactorBorn_swiginit", IFormFactorBorn_swiginit, METH_VARARGS, NULL},
-	 { "SlicingEffects_position_set", _wrap_SlicingEffects_position_set, METH_VARARGS, "SlicingEffects_position_set(SlicingEffects self, kvector_t position)"},
-	 { "SlicingEffects_position_get", _wrap_SlicingEffects_position_get, METH_O, "SlicingEffects_position_get(SlicingEffects self) -> kvector_t"},
-	 { "SlicingEffects_dz_bottom_set", _wrap_SlicingEffects_dz_bottom_set, METH_VARARGS, "SlicingEffects_dz_bottom_set(SlicingEffects self, double dz_bottom)"},
-	 { "SlicingEffects_dz_bottom_get", _wrap_SlicingEffects_dz_bottom_get, METH_O, "SlicingEffects_dz_bottom_get(SlicingEffects self) -> double"},
-	 { "SlicingEffects_dz_top_set", _wrap_SlicingEffects_dz_top_set, METH_VARARGS, "SlicingEffects_dz_top_set(SlicingEffects self, double dz_top)"},
-	 { "SlicingEffects_dz_top_get", _wrap_SlicingEffects_dz_top_get, METH_O, "SlicingEffects_dz_top_get(SlicingEffects self) -> double"},
-	 { "new_SlicingEffects", _wrap_new_SlicingEffects, METH_NOARGS, "\n"
-		"new_SlicingEffects() -> SlicingEffects\n"
-		"\n"
+	 { "ParticleComposition_addParticles", _wrap_ParticleComposition_addParticles, METH_VARARGS, "\n"
+		"ParticleComposition_addParticles(ParticleComposition self, IParticle particle, vector_kvector_t positions)\n"
+		"void ParticleComposition::addParticles(const IParticle &particle, std::vector< kvector_t > positions)\n"
 		"\n"
-		"Nested structure that holds slicing effects on position and removed parts.\n"
+		""},
+	 { "ParticleComposition_nbrParticles", _wrap_ParticleComposition_nbrParticles, METH_O, "\n"
+		"ParticleComposition_nbrParticles(ParticleComposition self) -> size_t\n"
+		"size_t ParticleComposition::nbrParticles() const\n"
 		"\n"
-		"C++ includes: IFormFactorBorn.h\n"
+		"Returns number of different particles. \n"
 		"\n"
 		""},
-	 { "delete_SlicingEffects", _wrap_delete_SlicingEffects, METH_O, "delete_SlicingEffects(SlicingEffects self)"},
-	 { "SlicingEffects_swigregister", SlicingEffects_swigregister, METH_O, NULL},
-	 { "SlicingEffects_swiginit", SlicingEffects_swiginit, METH_VARARGS, NULL},
-	 { "delete_IFormFactorDecorator", _wrap_delete_IFormFactorDecorator, METH_O, "\n"
-		"delete_IFormFactorDecorator(IFormFactorDecorator self)\n"
-		"IFormFactorDecorator::~IFormFactorDecorator() override\n"
+	 { "ParticleComposition_getChildren", _wrap_ParticleComposition_getChildren, METH_O, "\n"
+		"ParticleComposition_getChildren(ParticleComposition self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > ParticleComposition::getChildren() const override final\n"
+		"\n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "IFormFactorDecorator_clone", _wrap_IFormFactorDecorator_clone, METH_O, "\n"
-		"IFormFactorDecorator_clone(IFormFactorDecorator self) -> IFormFactorDecorator\n"
-		"IFormFactorDecorator* IFormFactorDecorator::clone() const override=0\n"
+	 { "ParticleComposition_decompose", _wrap_ParticleComposition_decompose, METH_O, "\n"
+		"ParticleComposition_decompose(ParticleComposition self) -> SafePointerVector< IParticle >\n"
+		"SafePointerVector< IParticle > ParticleComposition::decompose() const override final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Decompose in constituent  IParticle objects. \n"
 		"\n"
 		""},
-	 { "IFormFactorDecorator_setAmbientMaterial", _wrap_IFormFactorDecorator_setAmbientMaterial, METH_VARARGS, "\n"
-		"IFormFactorDecorator_setAmbientMaterial(IFormFactorDecorator self, Material material)\n"
-		"void IFormFactorDecorator::setAmbientMaterial(Material material) override\n"
+	 { "ParticleComposition_bottomTopZ", _wrap_ParticleComposition_bottomTopZ, METH_O, "\n"
+		"ParticleComposition_bottomTopZ(ParticleComposition self) -> ParticleLimits\n"
+		"ParticleLimits ParticleComposition::bottomTopZ() const override final\n"
 		"\n"
-		"Passes the material in which this particle is embedded. \n"
+		"Top and bottom z-coordinate. \n"
 		"\n"
 		""},
-	 { "IFormFactorDecorator_volume", _wrap_IFormFactorDecorator_volume, METH_O, "\n"
-		"IFormFactorDecorator_volume(IFormFactorDecorator self) -> double\n"
-		"double IFormFactorDecorator::volume() const override\n"
+	 { "ParticleComposition_swigregister", ParticleComposition_swigregister, METH_O, NULL},
+	 { "ParticleComposition_swiginit", ParticleComposition_swiginit, METH_VARARGS, NULL},
+	 { "new_ParticleCoreShell", _wrap_new_ParticleCoreShell, METH_VARARGS, "\n"
+		"ParticleCoreShell(Particle shell, Particle core, kvector_t relative_core_position=kvector_t(0.0, 0.0, 0.0))\n"
+		"ParticleCoreShell::ParticleCoreShell(const Particle &shell, const Particle &core, kvector_t relative_core_position=kvector_t(0.0, 0.0, 0.0))\n"
 		"\n"
-		"Returns the total volume of the particle of this form factor's shape. \n"
+		""},
+	 { "delete_ParticleCoreShell", _wrap_delete_ParticleCoreShell, METH_O, "\n"
+		"delete_ParticleCoreShell(ParticleCoreShell self)\n"
+		"ParticleCoreShell::~ParticleCoreShell()\n"
 		"\n"
 		""},
-	 { "IFormFactorDecorator_radialExtension", _wrap_IFormFactorDecorator_radialExtension, METH_O, "\n"
-		"IFormFactorDecorator_radialExtension(IFormFactorDecorator self) -> double\n"
-		"double IFormFactorDecorator::radialExtension() const override\n"
+	 { "ParticleCoreShell_clone", _wrap_ParticleCoreShell_clone, METH_O, "\n"
+		"ParticleCoreShell_clone(ParticleCoreShell self) -> ParticleCoreShell\n"
+		"ParticleCoreShell * ParticleCoreShell::clone() const override final\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "IFormFactorDecorator_bottomZ", _wrap_IFormFactorDecorator_bottomZ, METH_VARARGS, "\n"
-		"IFormFactorDecorator_bottomZ(IFormFactorDecorator self, IRotation rotation) -> double\n"
-		"double IFormFactorDecorator::bottomZ(const IRotation &rotation) const override\n"
+	 { "ParticleCoreShell_accept", _wrap_ParticleCoreShell_accept, METH_VARARGS, "\n"
+		"ParticleCoreShell_accept(ParticleCoreShell self, INodeVisitor visitor)\n"
+		"void ParticleCoreShell::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "IFormFactorDecorator_topZ", _wrap_IFormFactorDecorator_topZ, METH_VARARGS, "\n"
-		"IFormFactorDecorator_topZ(IFormFactorDecorator self, IRotation rotation) -> double\n"
-		"double IFormFactorDecorator::topZ(const IRotation &rotation) const override\n"
+	 { "ParticleCoreShell_createSlicedParticle", _wrap_ParticleCoreShell_createSlicedParticle, METH_VARARGS, "\n"
+		"ParticleCoreShell_createSlicedParticle(ParticleCoreShell self, ZLimits limits) -> SlicedParticle\n"
+		"SlicedParticle ParticleCoreShell::createSlicedParticle(ZLimits limits) const override final\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		"Create a sliced form factor for this particle. \n"
 		"\n"
 		""},
-	 { "IFormFactorDecorator_getFormFactor", _wrap_IFormFactorDecorator_getFormFactor, METH_O, "\n"
-		"IFormFactorDecorator_getFormFactor(IFormFactorDecorator self) -> IFormFactor\n"
-		"const IFormFactor* IFormFactorDecorator::getFormFactor() const\n"
+	 { "ParticleCoreShell_coreParticle", _wrap_ParticleCoreShell_coreParticle, METH_O, "\n"
+		"ParticleCoreShell_coreParticle(ParticleCoreShell self) -> Particle\n"
+		"const Particle * ParticleCoreShell::coreParticle() const\n"
 		"\n"
 		""},
-	 { "IFormFactorDecorator_swigregister", IFormFactorDecorator_swigregister, METH_O, NULL},
-	 { "PolygonalTopology_vertexIndices_set", _wrap_PolygonalTopology_vertexIndices_set, METH_VARARGS, "PolygonalTopology_vertexIndices_set(PolygonalTopology self, vector_integer_t vertexIndices)"},
-	 { "PolygonalTopology_vertexIndices_get", _wrap_PolygonalTopology_vertexIndices_get, METH_O, "PolygonalTopology_vertexIndices_get(PolygonalTopology self) -> vector_integer_t"},
-	 { "PolygonalTopology_symmetry_S2_set", _wrap_PolygonalTopology_symmetry_S2_set, METH_VARARGS, "PolygonalTopology_symmetry_S2_set(PolygonalTopology self, bool symmetry_S2)"},
-	 { "PolygonalTopology_symmetry_S2_get", _wrap_PolygonalTopology_symmetry_S2_get, METH_O, "PolygonalTopology_symmetry_S2_get(PolygonalTopology self) -> bool"},
-	 { "new_PolygonalTopology", _wrap_new_PolygonalTopology, METH_NOARGS, "\n"
-		"new_PolygonalTopology() -> PolygonalTopology\n"
+	 { "ParticleCoreShell_shellParticle", _wrap_ParticleCoreShell_shellParticle, METH_O, "\n"
+		"ParticleCoreShell_shellParticle(ParticleCoreShell self) -> Particle\n"
+		"const Particle * ParticleCoreShell::shellParticle() const\n"
 		"\n"
+		""},
+	 { "ParticleCoreShell_getChildren", _wrap_ParticleCoreShell_getChildren, METH_O, "\n"
+		"ParticleCoreShell_getChildren(ParticleCoreShell self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > ParticleCoreShell::getChildren() const override final\n"
 		"\n"
-		"For internal use in  PolyhedralFace.\n"
+		"Returns a vector of children (const). \n"
 		"\n"
-		"C++ includes: FormFactorPolyhedron.h\n"
+		""},
+	 { "ParticleCoreShell_swigregister", ParticleCoreShell_swigregister, METH_O, NULL},
+	 { "ParticleCoreShell_swiginit", ParticleCoreShell_swiginit, METH_VARARGS, NULL},
+	 { "new_ParticleDistribution", _wrap_new_ParticleDistribution, METH_VARARGS, "\n"
+		"new_ParticleDistribution(IParticle prototype, ParameterDistribution par_distr) -> ParticleDistribution\n"
+		"ParticleDistribution::ParticleDistribution(const IParticle &prototype, const ParameterDistribution &par_distr)\n"
 		"\n"
 		""},
-	 { "delete_PolygonalTopology", _wrap_delete_PolygonalTopology, METH_O, "delete_PolygonalTopology(PolygonalTopology self)"},
-	 { "PolygonalTopology_swigregister", PolygonalTopology_swigregister, METH_O, NULL},
-	 { "PolygonalTopology_swiginit", PolygonalTopology_swiginit, METH_VARARGS, NULL},
-	 { "PolyhedralTopology_faces_set", _wrap_PolyhedralTopology_faces_set, METH_VARARGS, "PolyhedralTopology_faces_set(PolyhedralTopology self, std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > * faces)"},
-	 { "PolyhedralTopology_faces_get", _wrap_PolyhedralTopology_faces_get, METH_O, "PolyhedralTopology_faces_get(PolyhedralTopology self) -> std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > *"},
-	 { "PolyhedralTopology_symmetry_Ci_set", _wrap_PolyhedralTopology_symmetry_Ci_set, METH_VARARGS, "PolyhedralTopology_symmetry_Ci_set(PolyhedralTopology self, bool symmetry_Ci)"},
-	 { "PolyhedralTopology_symmetry_Ci_get", _wrap_PolyhedralTopology_symmetry_Ci_get, METH_O, "PolyhedralTopology_symmetry_Ci_get(PolyhedralTopology self) -> bool"},
-	 { "new_PolyhedralTopology", _wrap_new_PolyhedralTopology, METH_NOARGS, "\n"
-		"new_PolyhedralTopology() -> PolyhedralTopology\n"
+	 { "ParticleDistribution_clone", _wrap_ParticleDistribution_clone, METH_O, "\n"
+		"ParticleDistribution_clone(ParticleDistribution self) -> ParticleDistribution\n"
+		"ParticleDistribution * ParticleDistribution::clone() const override final\n"
 		"\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
-		"For internal use in  FormFactorPolyhedron.\n"
+		""},
+	 { "ParticleDistribution_accept", _wrap_ParticleDistribution_accept, METH_VARARGS, "\n"
+		"ParticleDistribution_accept(ParticleDistribution self, INodeVisitor visitor)\n"
+		"void ParticleDistribution::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"C++ includes: FormFactorPolyhedron.h\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_PolyhedralTopology", _wrap_delete_PolyhedralTopology, METH_O, "delete_PolyhedralTopology(PolyhedralTopology self)"},
-	 { "PolyhedralTopology_swigregister", PolyhedralTopology_swigregister, METH_O, NULL},
-	 { "PolyhedralTopology_swiginit", PolyhedralTopology_swiginit, METH_VARARGS, NULL},
-	 { "new_PolyhedralEdge", _wrap_new_PolyhedralEdge, METH_VARARGS, "\n"
-		"new_PolyhedralEdge(kvector_t _Vlow, kvector_t _Vhig) -> PolyhedralEdge\n"
-		"PolyhedralEdge::PolyhedralEdge(const kvector_t _Vlow, const kvector_t _Vhig)\n"
+	 { "ParticleDistribution_translate", _wrap_ParticleDistribution_translate, METH_VARARGS, "\n"
+		"ParticleDistribution_translate(ParticleDistribution self, kvector_t translation)\n"
+		"void ParticleDistribution::translate(kvector_t translation) override final\n"
 		"\n"
-		""},
-	 { "PolyhedralEdge_E", _wrap_PolyhedralEdge_E, METH_O, "\n"
-		"PolyhedralEdge_E(PolyhedralEdge self) -> kvector_t\n"
-		"kvector_t PolyhedralEdge::E() const\n"
+		"Translates the particle with the given vector. \n"
 		"\n"
 		""},
-	 { "PolyhedralEdge_R", _wrap_PolyhedralEdge_R, METH_O, "\n"
-		"PolyhedralEdge_R(PolyhedralEdge self) -> kvector_t\n"
-		"kvector_t PolyhedralEdge::R() const\n"
+	 { "ParticleDistribution_rotate", _wrap_ParticleDistribution_rotate, METH_VARARGS, "\n"
+		"ParticleDistribution_rotate(ParticleDistribution self, IRotation rotation)\n"
+		"void ParticleDistribution::rotate(const IRotation &rotation) override final\n"
 		"\n"
-		""},
-	 { "PolyhedralEdge_qE", _wrap_PolyhedralEdge_qE, METH_VARARGS, "\n"
-		"PolyhedralEdge_qE(PolyhedralEdge self, cvector_t q) -> complex_t\n"
-		"complex_t PolyhedralEdge::qE(cvector_t q) const\n"
+		"Applies the given rotation to the particle. \n"
 		"\n"
 		""},
-	 { "PolyhedralEdge_qR", _wrap_PolyhedralEdge_qR, METH_VARARGS, "\n"
-		"PolyhedralEdge_qR(PolyhedralEdge self, cvector_t q) -> complex_t\n"
-		"complex_t PolyhedralEdge::qR(cvector_t q) const\n"
+	 { "ParticleDistribution_generateParticles", _wrap_ParticleDistribution_generateParticles, METH_O, "\n"
+		"ParticleDistribution_generateParticles(ParticleDistribution self) -> SafePointerVector< IParticle >\n"
+		"SafePointerVector< IParticle > ParticleDistribution::generateParticles() const\n"
 		"\n"
-		""},
-	 { "PolyhedralEdge_contrib", _wrap_PolyhedralEdge_contrib, METH_VARARGS, "\n"
-		"PolyhedralEdge_contrib(PolyhedralEdge self, int m, cvector_t qpa, complex_t qrperp) -> complex_t\n"
-		"complex_t PolyhedralEdge::contrib(int m, cvector_t qpa, complex_t qrperp) const\n"
+		"Returns list of new particles generated according to a distribution.\n"
 		"\n"
-		"Returns sum_l=0^M/2 u^2l v^(M-2l) / (2l+1)!(M-2l)! - vperp^M/M! \n"
+		"Returns particle clones with parameter values drawn from distribution. \n"
 		"\n"
 		""},
-	 { "delete_PolyhedralEdge", _wrap_delete_PolyhedralEdge, METH_O, "delete_PolyhedralEdge(PolyhedralEdge self)"},
-	 { "PolyhedralEdge_swigregister", PolyhedralEdge_swigregister, METH_O, NULL},
-	 { "PolyhedralEdge_swiginit", PolyhedralEdge_swiginit, METH_VARARGS, NULL},
-	 { "PolyhedralFace_diameter", _wrap_PolyhedralFace_diameter, METH_O, "PolyhedralFace_diameter(vector_kvector_t V) -> double"},
-	 { "new_PolyhedralFace", _wrap_new_PolyhedralFace, METH_VARARGS, "\n"
-		"PolyhedralFace(vector_kvector_t _V=std::vector< kvector_t >(), bool _sym_S2=False)\n"
-		"PolyhedralFace::PolyhedralFace(const std::vector< kvector_t > &_V=std::vector< kvector_t >(), bool _sym_S2=false)\n"
+	 { "ParticleDistribution_prototype", _wrap_ParticleDistribution_prototype, METH_O, "\n"
+		"ParticleDistribution_prototype(ParticleDistribution self) -> IParticle\n"
+		"const IParticle& ParticleDistribution::prototype() const\n"
 		"\n"
-		"Sets internal variables for given vertex chain.\n"
+		"Returns the prototype particle, used for generating multiple ones. \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "ParticleDistribution_parameterDistribution", _wrap_ParticleDistribution_parameterDistribution, METH_O, "\n"
+		"ParticleDistribution_parameterDistribution(ParticleDistribution self) -> ParameterDistribution\n"
+		"ParameterDistribution ParticleDistribution::parameterDistribution() const\n"
 		"\n"
-		"V: \n"
-		"oriented vertex list\n"
+		"Returns the distributed parameter data. \n"
 		"\n"
-		"_sym_S2: \n"
-		"true if face has a perpedicular two-fold symmetry axis \n"
+		""},
+	 { "ParticleDistribution_getChildren", _wrap_ParticleDistribution_getChildren, METH_O, "\n"
+		"ParticleDistribution_getChildren(ParticleDistribution self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > ParticleDistribution::getChildren() const override final\n"
+		"\n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "PolyhedralFace_area", _wrap_PolyhedralFace_area, METH_O, "\n"
-		"PolyhedralFace_area(PolyhedralFace self) -> double\n"
-		"double PolyhedralFace::area() const\n"
+	 { "delete_ParticleDistribution", _wrap_delete_ParticleDistribution, METH_O, "delete_ParticleDistribution(ParticleDistribution self)"},
+	 { "ParticleDistribution_swigregister", ParticleDistribution_swigregister, METH_O, NULL},
+	 { "ParticleDistribution_swiginit", ParticleDistribution_swiginit, METH_VARARGS, NULL},
+	 { "IFTDecayFunction1D_clone", _wrap_IFTDecayFunction1D_clone, METH_O, "\n"
+		"IFTDecayFunction1D_clone(IFTDecayFunction1D self) -> IFTDecayFunction1D\n"
+		"virtual IFTDecayFunction1D* IFTDecayFunction1D::clone() const =0\n"
 		"\n"
 		""},
-	 { "PolyhedralFace_pyramidalVolume", _wrap_PolyhedralFace_pyramidalVolume, METH_O, "\n"
-		"PolyhedralFace_pyramidalVolume(PolyhedralFace self) -> double\n"
-		"double PolyhedralFace::pyramidalVolume() const\n"
+	 { "IFTDecayFunction1D_evaluate", _wrap_IFTDecayFunction1D_evaluate, METH_VARARGS, "\n"
+		"IFTDecayFunction1D_evaluate(IFTDecayFunction1D self, double q) -> double\n"
+		"virtual double IFTDecayFunction1D::evaluate(double q) const =0\n"
 		"\n"
 		""},
-	 { "PolyhedralFace_radius3d", _wrap_PolyhedralFace_radius3d, METH_O, "\n"
-		"PolyhedralFace_radius3d(PolyhedralFace self) -> double\n"
-		"double PolyhedralFace::radius3d() const\n"
+	 { "IFTDecayFunction1D_decayLength", _wrap_IFTDecayFunction1D_decayLength, METH_O, "\n"
+		"IFTDecayFunction1D_decayLength(IFTDecayFunction1D self) -> double\n"
+		"double IFTDecayFunction1D::decayLength() const\n"
 		"\n"
 		""},
-	 { "PolyhedralFace_normalProjectionConj", _wrap_PolyhedralFace_normalProjectionConj, METH_VARARGS, "\n"
-		"PolyhedralFace_normalProjectionConj(PolyhedralFace self, cvector_t q) -> complex_t\n"
-		"complex_t PolyhedralFace::normalProjectionConj(cvector_t q) const\n"
+	 { "delete_IFTDecayFunction1D", _wrap_delete_IFTDecayFunction1D, METH_O, "delete_IFTDecayFunction1D(IFTDecayFunction1D self)"},
+	 { "IFTDecayFunction1D_swigregister", IFTDecayFunction1D_swigregister, METH_O, NULL},
+	 { "new_FTDecayFunction1DCauchy", _wrap_new_FTDecayFunction1DCauchy, METH_O, "\n"
+		"new_FTDecayFunction1DCauchy(double decay_length) -> FTDecayFunction1DCauchy\n"
+		"FTDecayFunction1DCauchy::FTDecayFunction1DCauchy(double decay_length)\n"
 		"\n"
-		"Returns conj(q)*normal [ BasicVector3D::dot is antilinear in 'this' argument]. \n"
+		""},
+	 { "FTDecayFunction1DCauchy_clone", _wrap_FTDecayFunction1DCauchy_clone, METH_O, "\n"
+		"FTDecayFunction1DCauchy_clone(FTDecayFunction1DCauchy self) -> FTDecayFunction1DCauchy\n"
+		"FTDecayFunction1DCauchy * FTDecayFunction1DCauchy::clone() const\n"
 		"\n"
 		""},
-	 { "PolyhedralFace_ff_n", _wrap_PolyhedralFace_ff_n, METH_VARARGS, "\n"
-		"PolyhedralFace_ff_n(PolyhedralFace self, int m, cvector_t q) -> complex_t\n"
-		"complex_t PolyhedralFace::ff_n(int m, cvector_t q) const\n"
+	 { "FTDecayFunction1DCauchy_accept", _wrap_FTDecayFunction1DCauchy_accept, METH_VARARGS, "\n"
+		"FTDecayFunction1DCauchy_accept(FTDecayFunction1DCauchy self, INodeVisitor visitor)\n"
+		"void FTDecayFunction1DCauchy::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Returns contribution qn*f_n [of order q^(n+1)] from this face to the polyhedral form factor. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "PolyhedralFace_ff", _wrap_PolyhedralFace_ff, METH_VARARGS, "\n"
-		"PolyhedralFace_ff(PolyhedralFace self, cvector_t q, bool sym_Ci) -> complex_t\n"
-		"complex_t PolyhedralFace::ff(cvector_t q, bool sym_Ci) const\n"
-		"\n"
-		"Returns the contribution ff(q) of this face to the polyhedral form factor. \n"
+	 { "FTDecayFunction1DCauchy_evaluate", _wrap_FTDecayFunction1DCauchy_evaluate, METH_VARARGS, "\n"
+		"FTDecayFunction1DCauchy_evaluate(FTDecayFunction1DCauchy self, double q) -> double\n"
+		"double FTDecayFunction1DCauchy::evaluate(double q) const final\n"
 		"\n"
 		""},
-	 { "PolyhedralFace_ff_2D", _wrap_PolyhedralFace_ff_2D, METH_VARARGS, "\n"
-		"PolyhedralFace_ff_2D(PolyhedralFace self, cvector_t qpa) -> complex_t\n"
-		"complex_t PolyhedralFace::ff_2D(cvector_t qpa) const\n"
+	 { "delete_FTDecayFunction1DCauchy", _wrap_delete_FTDecayFunction1DCauchy, METH_O, "delete_FTDecayFunction1DCauchy(FTDecayFunction1DCauchy self)"},
+	 { "FTDecayFunction1DCauchy_swigregister", FTDecayFunction1DCauchy_swigregister, METH_O, NULL},
+	 { "FTDecayFunction1DCauchy_swiginit", FTDecayFunction1DCauchy_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDecayFunction1DGauss", _wrap_new_FTDecayFunction1DGauss, METH_O, "\n"
+		"new_FTDecayFunction1DGauss(double decay_length) -> FTDecayFunction1DGauss\n"
+		"FTDecayFunction1DGauss::FTDecayFunction1DGauss(double decay_length)\n"
 		"\n"
-		"Returns the two-dimensional form factor of this face, for use in a prism. \n"
+		""},
+	 { "FTDecayFunction1DGauss_clone", _wrap_FTDecayFunction1DGauss_clone, METH_O, "\n"
+		"FTDecayFunction1DGauss_clone(FTDecayFunction1DGauss self) -> FTDecayFunction1DGauss\n"
+		"FTDecayFunction1DGauss * FTDecayFunction1DGauss::clone() const\n"
 		"\n"
 		""},
-	 { "PolyhedralFace_assert_Ci", _wrap_PolyhedralFace_assert_Ci, METH_VARARGS, "\n"
-		"PolyhedralFace_assert_Ci(PolyhedralFace self, PolyhedralFace other)\n"
-		"void PolyhedralFace::assert_Ci(const PolyhedralFace &other) const\n"
+	 { "FTDecayFunction1DGauss_accept", _wrap_FTDecayFunction1DGauss_accept, METH_VARARGS, "\n"
+		"FTDecayFunction1DGauss_accept(FTDecayFunction1DGauss self, INodeVisitor visitor)\n"
+		"void FTDecayFunction1DGauss::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Throws if deviation from inversion symmetry is detected. Does not check vertices. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_PolyhedralFace", _wrap_delete_PolyhedralFace, METH_O, "delete_PolyhedralFace(PolyhedralFace self)"},
-	 { "PolyhedralFace_swigregister", PolyhedralFace_swigregister, METH_O, NULL},
-	 { "PolyhedralFace_swiginit", PolyhedralFace_swiginit, METH_VARARGS, NULL},
-	 { "FormFactorPolyhedron_bottomZ", _wrap_FormFactorPolyhedron_bottomZ, METH_VARARGS, "\n"
-		"FormFactorPolyhedron_bottomZ(FormFactorPolyhedron self, IRotation rotation) -> double\n"
-		"double FormFactorPolyhedron::bottomZ(const IRotation &rotation) const override final\n"
-		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+	 { "FTDecayFunction1DGauss_evaluate", _wrap_FTDecayFunction1DGauss_evaluate, METH_VARARGS, "\n"
+		"FTDecayFunction1DGauss_evaluate(FTDecayFunction1DGauss self, double q) -> double\n"
+		"double FTDecayFunction1DGauss::evaluate(double q) const final\n"
 		"\n"
 		""},
-	 { "FormFactorPolyhedron_topZ", _wrap_FormFactorPolyhedron_topZ, METH_VARARGS, "\n"
-		"FormFactorPolyhedron_topZ(FormFactorPolyhedron self, IRotation rotation) -> double\n"
-		"double FormFactorPolyhedron::topZ(const IRotation &rotation) const override final\n"
+	 { "delete_FTDecayFunction1DGauss", _wrap_delete_FTDecayFunction1DGauss, METH_O, "delete_FTDecayFunction1DGauss(FTDecayFunction1DGauss self)"},
+	 { "FTDecayFunction1DGauss_swigregister", FTDecayFunction1DGauss_swigregister, METH_O, NULL},
+	 { "FTDecayFunction1DGauss_swiginit", FTDecayFunction1DGauss_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDecayFunction1DTriangle", _wrap_new_FTDecayFunction1DTriangle, METH_O, "\n"
+		"new_FTDecayFunction1DTriangle(double decay_length) -> FTDecayFunction1DTriangle\n"
+		"FTDecayFunction1DTriangle::FTDecayFunction1DTriangle(double decay_length)\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		""},
+	 { "FTDecayFunction1DTriangle_clone", _wrap_FTDecayFunction1DTriangle_clone, METH_O, "\n"
+		"FTDecayFunction1DTriangle_clone(FTDecayFunction1DTriangle self) -> FTDecayFunction1DTriangle\n"
+		"FTDecayFunction1DTriangle * FTDecayFunction1DTriangle::clone() const\n"
 		"\n"
 		""},
-	 { "FormFactorPolyhedron_evaluate_for_q", _wrap_FormFactorPolyhedron_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorPolyhedron_evaluate_for_q(FormFactorPolyhedron self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorPolyhedron::evaluate_for_q(cvector_t q) const override final\n"
+	 { "FTDecayFunction1DTriangle_accept", _wrap_FTDecayFunction1DTriangle_accept, METH_VARARGS, "\n"
+		"FTDecayFunction1DTriangle_accept(FTDecayFunction1DTriangle self, INodeVisitor visitor)\n"
+		"void FTDecayFunction1DTriangle::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Returns the form factor F(q) of this polyhedron, respecting the offset z_bottom. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorPolyhedron_evaluate_centered", _wrap_FormFactorPolyhedron_evaluate_centered, METH_VARARGS, "\n"
-		"FormFactorPolyhedron_evaluate_centered(FormFactorPolyhedron self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorPolyhedron::evaluate_centered(cvector_t q) const\n"
-		"\n"
-		"Returns the form factor F(q) of this polyhedron, with origin at z=0. \n"
+	 { "FTDecayFunction1DTriangle_evaluate", _wrap_FTDecayFunction1DTriangle_evaluate, METH_VARARGS, "\n"
+		"FTDecayFunction1DTriangle_evaluate(FTDecayFunction1DTriangle self, double q) -> double\n"
+		"double FTDecayFunction1DTriangle::evaluate(double q) const final\n"
 		"\n"
 		""},
-	 { "FormFactorPolyhedron_volume", _wrap_FormFactorPolyhedron_volume, METH_O, "\n"
-		"FormFactorPolyhedron_volume(FormFactorPolyhedron self) -> double\n"
-		"double FormFactorPolyhedron::volume() const override final\n"
+	 { "delete_FTDecayFunction1DTriangle", _wrap_delete_FTDecayFunction1DTriangle, METH_O, "delete_FTDecayFunction1DTriangle(FTDecayFunction1DTriangle self)"},
+	 { "FTDecayFunction1DTriangle_swigregister", FTDecayFunction1DTriangle_swigregister, METH_O, NULL},
+	 { "FTDecayFunction1DTriangle_swiginit", FTDecayFunction1DTriangle_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDecayFunction1DVoigt", _wrap_new_FTDecayFunction1DVoigt, METH_VARARGS, "\n"
+		"new_FTDecayFunction1DVoigt(double decay_length, double eta) -> FTDecayFunction1DVoigt\n"
+		"FTDecayFunction1DVoigt::FTDecayFunction1DVoigt(double decay_length, double eta)\n"
 		"\n"
-		"Returns the total volume of the particle of this form factor's shape. \n"
+		"Constructor of pseudo-Voigt decay function.\n"
 		"\n"
-		""},
-	 { "FormFactorPolyhedron_radialExtension", _wrap_FormFactorPolyhedron_radialExtension, METH_O, "\n"
-		"FormFactorPolyhedron_radialExtension(FormFactorPolyhedron self) -> double\n"
-		"double FormFactorPolyhedron::radialExtension() const override final\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"decay_length: \n"
+		"half-width of the distribution in nanometers\n"
 		"\n"
-		""},
-	 { "FormFactorPolyhedron_assert_platonic", _wrap_FormFactorPolyhedron_assert_platonic, METH_O, "\n"
-		"FormFactorPolyhedron_assert_platonic(FormFactorPolyhedron self)\n"
-		"void FormFactorPolyhedron::assert_platonic() const\n"
+		"eta: \n"
+		"parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0) \n"
 		"\n"
-		"Assertions for Platonic solid. \n"
+		""},
+	 { "FTDecayFunction1DVoigt_clone", _wrap_FTDecayFunction1DVoigt_clone, METH_O, "\n"
+		"FTDecayFunction1DVoigt_clone(FTDecayFunction1DVoigt self) -> FTDecayFunction1DVoigt\n"
+		"FTDecayFunction1DVoigt * FTDecayFunction1DVoigt::clone() const\n"
 		"\n"
 		""},
-	 { "delete_FormFactorPolyhedron", _wrap_delete_FormFactorPolyhedron, METH_O, "delete_FormFactorPolyhedron(FormFactorPolyhedron self)"},
-	 { "FormFactorPolyhedron_swigregister", FormFactorPolyhedron_swigregister, METH_O, NULL},
-	 { "FormFactorPolygonalPrism_bottomZ", _wrap_FormFactorPolygonalPrism_bottomZ, METH_VARARGS, "\n"
-		"FormFactorPolygonalPrism_bottomZ(FormFactorPolygonalPrism self, IRotation rotation) -> double\n"
-		"double FormFactorPolygonalPrism::bottomZ(const IRotation &rotation) const override final\n"
+	 { "FTDecayFunction1DVoigt_accept", _wrap_FTDecayFunction1DVoigt_accept, METH_VARARGS, "\n"
+		"FTDecayFunction1DVoigt_accept(FTDecayFunction1DVoigt self, INodeVisitor visitor)\n"
+		"void FTDecayFunction1DVoigt::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorPolygonalPrism_topZ", _wrap_FormFactorPolygonalPrism_topZ, METH_VARARGS, "\n"
-		"FormFactorPolygonalPrism_topZ(FormFactorPolygonalPrism self, IRotation rotation) -> double\n"
-		"double FormFactorPolygonalPrism::topZ(const IRotation &rotation) const override final\n"
-		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+	 { "FTDecayFunction1DVoigt_evaluate", _wrap_FTDecayFunction1DVoigt_evaluate, METH_VARARGS, "\n"
+		"FTDecayFunction1DVoigt_evaluate(FTDecayFunction1DVoigt self, double q) -> double\n"
+		"double FTDecayFunction1DVoigt::evaluate(double q) const final\n"
 		"\n"
 		""},
-	 { "FormFactorPolygonalPrism_evaluate_for_q", _wrap_FormFactorPolygonalPrism_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorPolygonalPrism_evaluate_for_q(FormFactorPolygonalPrism self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorPolygonalPrism::evaluate_for_q(cvector_t q) const override\n"
+	 { "FTDecayFunction1DVoigt_eEta", _wrap_FTDecayFunction1DVoigt_eEta, METH_O, "\n"
+		"FTDecayFunction1DVoigt_eEta(FTDecayFunction1DVoigt self) -> double\n"
+		"double FTDecayFunction1DVoigt::eEta() const\n"
 		"\n"
-		"Returns the form factor F(q) of this polyhedron, respecting the offset height/2. \n"
+		""},
+	 { "delete_FTDecayFunction1DVoigt", _wrap_delete_FTDecayFunction1DVoigt, METH_O, "delete_FTDecayFunction1DVoigt(FTDecayFunction1DVoigt self)"},
+	 { "FTDecayFunction1DVoigt_swigregister", FTDecayFunction1DVoigt_swigregister, METH_O, NULL},
+	 { "FTDecayFunction1DVoigt_swiginit", FTDecayFunction1DVoigt_swiginit, METH_VARARGS, NULL},
+	 { "IFTDecayFunction2D_clone", _wrap_IFTDecayFunction2D_clone, METH_O, "\n"
+		"IFTDecayFunction2D_clone(IFTDecayFunction2D self) -> IFTDecayFunction2D\n"
+		"virtual IFTDecayFunction2D* IFTDecayFunction2D::clone() const =0\n"
 		"\n"
 		""},
-	 { "FormFactorPolygonalPrism_volume", _wrap_FormFactorPolygonalPrism_volume, METH_O, "\n"
-		"FormFactorPolygonalPrism_volume(FormFactorPolygonalPrism self) -> double\n"
-		"double FormFactorPolygonalPrism::volume() const override\n"
+	 { "IFTDecayFunction2D_setGamma", _wrap_IFTDecayFunction2D_setGamma, METH_VARARGS, "\n"
+		"IFTDecayFunction2D_setGamma(IFTDecayFunction2D self, double gamma)\n"
+		"void IFTDecayFunction2D::setGamma(double gamma)\n"
 		"\n"
-		"Returns the volume of this prism. \n"
+		"set angle between first lattice vector and X-axis of distribution (both in direct space) \n"
 		"\n"
 		""},
-	 { "FormFactorPolygonalPrism_getHeight", _wrap_FormFactorPolygonalPrism_getHeight, METH_O, "\n"
-		"FormFactorPolygonalPrism_getHeight(FormFactorPolygonalPrism self) -> double\n"
-		"double FormFactorPolygonalPrism::getHeight() const\n"
+	 { "IFTDecayFunction2D_gamma", _wrap_IFTDecayFunction2D_gamma, METH_O, "\n"
+		"IFTDecayFunction2D_gamma(IFTDecayFunction2D self) -> double\n"
+		"double IFTDecayFunction2D::gamma() const\n"
+		"\n"
+		"get angle between first lattice vector and X-axis of distribution (both in direct space) \n"
 		"\n"
 		""},
-	 { "FormFactorPolygonalPrism_radialExtension", _wrap_FormFactorPolygonalPrism_radialExtension, METH_O, "\n"
-		"FormFactorPolygonalPrism_radialExtension(FormFactorPolygonalPrism self) -> double\n"
-		"virtual double FormFactorPolygonalPrism::radialExtension() const override\n"
+	 { "IFTDecayFunction2D_decayLengthX", _wrap_IFTDecayFunction2D_decayLengthX, METH_O, "\n"
+		"IFTDecayFunction2D_decayLengthX(IFTDecayFunction2D self) -> double\n"
+		"double IFTDecayFunction2D::decayLengthX() const\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"get decay length in distribution's X-direction \n"
 		"\n"
 		""},
-	 { "delete_FormFactorPolygonalPrism", _wrap_delete_FormFactorPolygonalPrism, METH_O, "delete_FormFactorPolygonalPrism(FormFactorPolygonalPrism self)"},
-	 { "FormFactorPolygonalPrism_swigregister", FormFactorPolygonalPrism_swigregister, METH_O, NULL},
-	 { "FormFactorPolygonalSurface_evaluate_for_q", _wrap_FormFactorPolygonalSurface_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorPolygonalSurface_evaluate_for_q(FormFactorPolygonalSurface self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorPolygonalSurface::evaluate_for_q(cvector_t q) const override final\n"
+	 { "IFTDecayFunction2D_decayLengthY", _wrap_IFTDecayFunction2D_decayLengthY, METH_O, "\n"
+		"IFTDecayFunction2D_decayLengthY(IFTDecayFunction2D self) -> double\n"
+		"double IFTDecayFunction2D::decayLengthY() const\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"get decay length in distribution's Y-direction \n"
 		"\n"
 		""},
-	 { "FormFactorPolygonalSurface_volume", _wrap_FormFactorPolygonalSurface_volume, METH_O, "\n"
-		"FormFactorPolygonalSurface_volume(FormFactorPolygonalSurface self) -> double\n"
-		"double FormFactorPolygonalSurface::volume() const override\n"
+	 { "IFTDecayFunction2D_evaluate", _wrap_IFTDecayFunction2D_evaluate, METH_VARARGS, "\n"
+		"IFTDecayFunction2D_evaluate(IFTDecayFunction2D self, double qx, double qy) -> double\n"
+		"virtual double IFTDecayFunction2D::evaluate(double qx, double qy) const =0\n"
 		"\n"
-		"Returns the total volume of the particle of this form factor's shape. \n"
+		"evaluate Fourier transformed decay function for q in X,Y coordinates \n"
 		"\n"
 		""},
-	 { "FormFactorPolygonalSurface_radialExtension", _wrap_FormFactorPolygonalSurface_radialExtension, METH_O, "\n"
-		"FormFactorPolygonalSurface_radialExtension(FormFactorPolygonalSurface self) -> double\n"
-		"double FormFactorPolygonalSurface::radialExtension() const override final\n"
+	 { "IFTDecayFunction2D_boundingReciprocalLatticeCoordinates", _wrap_IFTDecayFunction2D_boundingReciprocalLatticeCoordinates, METH_VARARGS, "\n"
+		"IFTDecayFunction2D_boundingReciprocalLatticeCoordinates(IFTDecayFunction2D self, double qX, double qY, double a, double b, double alpha) -> pair_double_t\n"
+		"std::pair< double, double > IFTDecayFunction2D::boundingReciprocalLatticeCoordinates(double qX, double qY, double a, double b, double alpha) const\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"transform back to a*, b* basis:\n"
 		"\n"
-		""},
-	 { "delete_FormFactorPolygonalSurface", _wrap_delete_FormFactorPolygonalSurface, METH_O, "delete_FormFactorPolygonalSurface(FormFactorPolygonalSurface self)"},
-	 { "FormFactorPolygonalSurface_swigregister", FormFactorPolygonalSurface_swigregister, METH_O, NULL},
-	 { "ProfileBar_getLength", _wrap_ProfileBar_getLength, METH_O, "\n"
-		"ProfileBar_getLength(ProfileBar self) -> double\n"
-		"double ProfileBar::getLength() const\n"
+		"Calculates bounding values of reciprocal lattice coordinates that contain the centered rectangle with a corner defined by qX and qY \n"
 		"\n"
 		""},
-	 { "ProfileBar_getHeight", _wrap_ProfileBar_getHeight, METH_O, "\n"
-		"ProfileBar_getHeight(ProfileBar self) -> double\n"
-		"double ProfileBar::getHeight() const\n"
+	 { "delete_IFTDecayFunction2D", _wrap_delete_IFTDecayFunction2D, METH_O, "delete_IFTDecayFunction2D(IFTDecayFunction2D self)"},
+	 { "IFTDecayFunction2D_swigregister", IFTDecayFunction2D_swigregister, METH_O, NULL},
+	 { "new_FTDecayFunction2DCauchy", _wrap_new_FTDecayFunction2DCauchy, METH_VARARGS, "\n"
+		"FTDecayFunction2DCauchy(double decay_length_x, double decay_length_y, double gamma=0)\n"
+		"FTDecayFunction2DCauchy::FTDecayFunction2DCauchy(double decay_length_x, double decay_length_y, double gamma=0)\n"
 		"\n"
 		""},
-	 { "ProfileBar_getWidth", _wrap_ProfileBar_getWidth, METH_O, "\n"
-		"ProfileBar_getWidth(ProfileBar self) -> double\n"
-		"double ProfileBar::getWidth() const\n"
+	 { "FTDecayFunction2DCauchy_clone", _wrap_FTDecayFunction2DCauchy_clone, METH_O, "\n"
+		"FTDecayFunction2DCauchy_clone(FTDecayFunction2DCauchy self) -> FTDecayFunction2DCauchy\n"
+		"FTDecayFunction2DCauchy * FTDecayFunction2DCauchy::clone() const\n"
 		"\n"
 		""},
-	 { "ProfileBar_radialExtension", _wrap_ProfileBar_radialExtension, METH_O, "\n"
-		"ProfileBar_radialExtension(ProfileBar self) -> double\n"
-		"double ProfileBar::radialExtension() const override final\n"
+	 { "FTDecayFunction2DCauchy_accept", _wrap_FTDecayFunction2DCauchy_accept, METH_VARARGS, "\n"
+		"FTDecayFunction2DCauchy_accept(FTDecayFunction2DCauchy self, INodeVisitor visitor)\n"
+		"void FTDecayFunction2DCauchy::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "ProfileBar_evaluate_for_q", _wrap_ProfileBar_evaluate_for_q, METH_VARARGS, "\n"
-		"ProfileBar_evaluate_for_q(ProfileBar self, cvector_t q) -> complex_t\n"
-		"complex_t ProfileBar::evaluate_for_q(cvector_t q) const override final\n"
+	 { "FTDecayFunction2DCauchy_evaluate", _wrap_FTDecayFunction2DCauchy_evaluate, METH_VARARGS, "\n"
+		"FTDecayFunction2DCauchy_evaluate(FTDecayFunction2DCauchy self, double qx, double qy) -> double\n"
+		"double FTDecayFunction2DCauchy::evaluate(double qx, double qy) const final\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"evaluate Fourier transformed decay function for q in X,Y coordinates \n"
 		"\n"
 		""},
-	 { "delete_ProfileBar", _wrap_delete_ProfileBar, METH_O, "delete_ProfileBar(ProfileBar self)"},
-	 { "ProfileBar_swigregister", ProfileBar_swigregister, METH_O, NULL},
-	 { "ProfileRipple1_getLength", _wrap_ProfileRipple1_getLength, METH_O, "\n"
-		"ProfileRipple1_getLength(ProfileRipple1 self) -> double\n"
-		"double ProfileRipple1::getLength() const\n"
+	 { "delete_FTDecayFunction2DCauchy", _wrap_delete_FTDecayFunction2DCauchy, METH_O, "delete_FTDecayFunction2DCauchy(FTDecayFunction2DCauchy self)"},
+	 { "FTDecayFunction2DCauchy_swigregister", FTDecayFunction2DCauchy_swigregister, METH_O, NULL},
+	 { "FTDecayFunction2DCauchy_swiginit", FTDecayFunction2DCauchy_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDecayFunction2DGauss", _wrap_new_FTDecayFunction2DGauss, METH_VARARGS, "\n"
+		"FTDecayFunction2DGauss(double decay_length_x, double decay_length_y, double gamma=0)\n"
+		"FTDecayFunction2DGauss::FTDecayFunction2DGauss(double decay_length_x, double decay_length_y, double gamma=0)\n"
 		"\n"
 		""},
-	 { "ProfileRipple1_getHeight", _wrap_ProfileRipple1_getHeight, METH_O, "\n"
-		"ProfileRipple1_getHeight(ProfileRipple1 self) -> double\n"
-		"double ProfileRipple1::getHeight() const\n"
+	 { "FTDecayFunction2DGauss_clone", _wrap_FTDecayFunction2DGauss_clone, METH_O, "\n"
+		"FTDecayFunction2DGauss_clone(FTDecayFunction2DGauss self) -> FTDecayFunction2DGauss\n"
+		"FTDecayFunction2DGauss * FTDecayFunction2DGauss::clone() const\n"
 		"\n"
 		""},
-	 { "ProfileRipple1_getWidth", _wrap_ProfileRipple1_getWidth, METH_O, "\n"
-		"ProfileRipple1_getWidth(ProfileRipple1 self) -> double\n"
-		"double ProfileRipple1::getWidth() const\n"
+	 { "FTDecayFunction2DGauss_accept", _wrap_FTDecayFunction2DGauss_accept, METH_VARARGS, "\n"
+		"FTDecayFunction2DGauss_accept(FTDecayFunction2DGauss self, INodeVisitor visitor)\n"
+		"void FTDecayFunction2DGauss::accept(INodeVisitor *visitor) const final\n"
+		"\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "ProfileRipple1_radialExtension", _wrap_ProfileRipple1_radialExtension, METH_O, "\n"
-		"ProfileRipple1_radialExtension(ProfileRipple1 self) -> double\n"
-		"double ProfileRipple1::radialExtension() const override final\n"
+	 { "FTDecayFunction2DGauss_evaluate", _wrap_FTDecayFunction2DGauss_evaluate, METH_VARARGS, "\n"
+		"FTDecayFunction2DGauss_evaluate(FTDecayFunction2DGauss self, double qx, double qy) -> double\n"
+		"double FTDecayFunction2DGauss::evaluate(double qx, double qy) const final\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"evaluate Fourier transformed decay function for q in X,Y coordinates \n"
 		"\n"
 		""},
-	 { "ProfileRipple1_evaluate_for_q", _wrap_ProfileRipple1_evaluate_for_q, METH_VARARGS, "\n"
-		"ProfileRipple1_evaluate_for_q(ProfileRipple1 self, cvector_t q) -> complex_t\n"
-		"complex_t ProfileRipple1::evaluate_for_q(cvector_t q) const override final\n"
+	 { "delete_FTDecayFunction2DGauss", _wrap_delete_FTDecayFunction2DGauss, METH_O, "delete_FTDecayFunction2DGauss(FTDecayFunction2DGauss self)"},
+	 { "FTDecayFunction2DGauss_swigregister", FTDecayFunction2DGauss_swigregister, METH_O, NULL},
+	 { "FTDecayFunction2DGauss_swiginit", FTDecayFunction2DGauss_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDecayFunction2DVoigt", _wrap_new_FTDecayFunction2DVoigt, METH_VARARGS, "\n"
+		"FTDecayFunction2DVoigt(double decay_length_x, double decay_length_y, double eta, double gamma=0)\n"
+		"FTDecayFunction2DVoigt::FTDecayFunction2DVoigt(double decay_length_x, double decay_length_y, double eta, double gamma=0)\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"Constructor of two-dimensional pseudo-Voigt decay function in reciprocal space.\n"
 		"\n"
-		""},
-	 { "delete_ProfileRipple1", _wrap_delete_ProfileRipple1, METH_O, "delete_ProfileRipple1(ProfileRipple1 self)"},
-	 { "ProfileRipple1_swigregister", ProfileRipple1_swigregister, METH_O, NULL},
-	 { "ProfileRipple2_getLength", _wrap_ProfileRipple2_getLength, METH_O, "\n"
-		"ProfileRipple2_getLength(ProfileRipple2 self) -> double\n"
-		"double ProfileRipple2::getLength() const\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "ProfileRipple2_getHeight", _wrap_ProfileRipple2_getHeight, METH_O, "\n"
-		"ProfileRipple2_getHeight(ProfileRipple2 self) -> double\n"
-		"double ProfileRipple2::getHeight() const\n"
+		"decay_length_x: \n"
+		"the decay length in nanometers along x-axis of the distribution\n"
 		"\n"
-		""},
-	 { "ProfileRipple2_getWidth", _wrap_ProfileRipple2_getWidth, METH_O, "\n"
-		"ProfileRipple2_getWidth(ProfileRipple2 self) -> double\n"
-		"double ProfileRipple2::getWidth() const\n"
+		"decay_length_y: \n"
+		"the decay length in nanometers along y-axis of the distribution\n"
+		"\n"
+		"eta: \n"
+		"parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0)\n"
+		"\n"
+		"gamma: \n"
+		"distribution orientation with respect to the first lattice vector in radians \n"
 		"\n"
 		""},
-	 { "ProfileRipple2_getAsymmetry", _wrap_ProfileRipple2_getAsymmetry, METH_O, "\n"
-		"ProfileRipple2_getAsymmetry(ProfileRipple2 self) -> double\n"
-		"double ProfileRipple2::getAsymmetry() const\n"
+	 { "FTDecayFunction2DVoigt_clone", _wrap_FTDecayFunction2DVoigt_clone, METH_O, "\n"
+		"FTDecayFunction2DVoigt_clone(FTDecayFunction2DVoigt self) -> FTDecayFunction2DVoigt\n"
+		"FTDecayFunction2DVoigt * FTDecayFunction2DVoigt::clone() const\n"
 		"\n"
 		""},
-	 { "ProfileRipple2_radialExtension", _wrap_ProfileRipple2_radialExtension, METH_O, "\n"
-		"ProfileRipple2_radialExtension(ProfileRipple2 self) -> double\n"
-		"double ProfileRipple2::radialExtension() const override final\n"
+	 { "FTDecayFunction2DVoigt_accept", _wrap_FTDecayFunction2DVoigt_accept, METH_VARARGS, "\n"
+		"FTDecayFunction2DVoigt_accept(FTDecayFunction2DVoigt self, INodeVisitor visitor)\n"
+		"void FTDecayFunction2DVoigt::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "ProfileRipple2_evaluate_for_q", _wrap_ProfileRipple2_evaluate_for_q, METH_VARARGS, "\n"
-		"ProfileRipple2_evaluate_for_q(ProfileRipple2 self, cvector_t q) -> complex_t\n"
-		"complex_t ProfileRipple2::evaluate_for_q(cvector_t q) const override final\n"
+	 { "FTDecayFunction2DVoigt_evaluate", _wrap_FTDecayFunction2DVoigt_evaluate, METH_VARARGS, "\n"
+		"FTDecayFunction2DVoigt_evaluate(FTDecayFunction2DVoigt self, double qx, double qy) -> double\n"
+		"double FTDecayFunction2DVoigt::evaluate(double qx, double qy) const final\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"evaluate Fourier transformed decay function for q in X,Y coordinates \n"
 		"\n"
 		""},
-	 { "delete_ProfileRipple2", _wrap_delete_ProfileRipple2, METH_O, "delete_ProfileRipple2(ProfileRipple2 self)"},
-	 { "ProfileRipple2_swigregister", ProfileRipple2_swigregister, METH_O, NULL},
-	 { "factor_x_box", _wrap_factor_x_box, METH_VARARGS, "\n"
-		"factor_x_box(complex_t q, double l) -> complex_t\n"
-		"complex_t ripples::factor_x_box(complex_t q, double l)\n"
+	 { "FTDecayFunction2DVoigt_eta", _wrap_FTDecayFunction2DVoigt_eta, METH_O, "\n"
+		"FTDecayFunction2DVoigt_eta(FTDecayFunction2DVoigt self) -> double\n"
+		"double FTDecayFunction2DVoigt::eta() const\n"
 		"\n"
 		""},
-	 { "factor_x_Gauss", _wrap_factor_x_Gauss, METH_VARARGS, "\n"
-		"factor_x_Gauss(complex_t q, double l) -> complex_t\n"
-		"complex_t ripples::factor_x_Gauss(complex_t q, double l)\n"
+	 { "delete_FTDecayFunction2DVoigt", _wrap_delete_FTDecayFunction2DVoigt, METH_O, "delete_FTDecayFunction2DVoigt(FTDecayFunction2DVoigt self)"},
+	 { "FTDecayFunction2DVoigt_swigregister", FTDecayFunction2DVoigt_swigregister, METH_O, NULL},
+	 { "FTDecayFunction2DVoigt_swiginit", FTDecayFunction2DVoigt_swiginit, METH_VARARGS, NULL},
+	 { "delete_IFTDistribution1D", _wrap_delete_IFTDistribution1D, METH_O, "\n"
+		"delete_IFTDistribution1D(IFTDistribution1D self)\n"
+		"IFTDistribution1D::~IFTDistribution1D()\n"
 		"\n"
 		""},
-	 { "factor_x_Lorentz", _wrap_factor_x_Lorentz, METH_VARARGS, "\n"
-		"factor_x_Lorentz(complex_t q, double l) -> complex_t\n"
-		"complex_t ripples::factor_x_Lorentz(complex_t q, double l)\n"
+	 { "IFTDistribution1D_clone", _wrap_IFTDistribution1D_clone, METH_O, "\n"
+		"IFTDistribution1D_clone(IFTDistribution1D self) -> IFTDistribution1D\n"
+		"virtual IFTDistribution1D* IFTDistribution1D::clone() const =0\n"
 		"\n"
 		""},
-	 { "new_FormFactorAnisoPyramid", _wrap_new_FormFactorAnisoPyramid, METH_VARARGS, "\n"
-		"new_FormFactorAnisoPyramid(double length, double width, double height, double alpha) -> FormFactorAnisoPyramid\n"
-		"FormFactorAnisoPyramid::FormFactorAnisoPyramid(double length, double width, double height, double alpha)\n"
-		"\n"
-		"Constructor of a truncated pyramid with a rectangular base.\n"
+	 { "IFTDistribution1D_evaluate", _wrap_IFTDistribution1D_evaluate, METH_VARARGS, "\n"
+		"IFTDistribution1D_evaluate(IFTDistribution1D self, double q) -> double\n"
+		"virtual double IFTDistribution1D::evaluate(double q) const =0\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
 		"\n"
-		"length: \n"
-		"length of the rectangular base in nm\n"
+		""},
+	 { "IFTDistribution1D_setOmega", _wrap_IFTDistribution1D_setOmega, METH_VARARGS, "\n"
+		"IFTDistribution1D_setOmega(IFTDistribution1D self, double omega)\n"
+		"void IFTDistribution1D::setOmega(double omega)\n"
 		"\n"
-		"width: \n"
-		"width of the rectangular base in nm\n"
+		""},
+	 { "IFTDistribution1D_omega", _wrap_IFTDistribution1D_omega, METH_O, "\n"
+		"IFTDistribution1D_omega(IFTDistribution1D self) -> double\n"
+		"double IFTDistribution1D::omega() const\n"
 		"\n"
-		"height: \n"
-		"height of pyramid in nm\n"
+		""},
+	 { "IFTDistribution1D_qSecondDerivative", _wrap_IFTDistribution1D_qSecondDerivative, METH_O, "\n"
+		"IFTDistribution1D_qSecondDerivative(IFTDistribution1D self) -> double\n"
+		"virtual double IFTDistribution1D::qSecondDerivative() const =0\n"
 		"\n"
-		"alpha: \n"
-		"dihedral angle in radians between base and facet \n"
+		"Returns the negative of the second order derivative in q space around q=0. \n"
 		"\n"
 		""},
-	 { "FormFactorAnisoPyramid_clone", _wrap_FormFactorAnisoPyramid_clone, METH_O, "\n"
-		"FormFactorAnisoPyramid_clone(FormFactorAnisoPyramid self) -> FormFactorAnisoPyramid\n"
-		"FormFactorAnisoPyramid* FormFactorAnisoPyramid::clone() const override final\n"
+	 { "IFTDistribution1D_swigregister", IFTDistribution1D_swigregister, METH_O, NULL},
+	 { "new_FTDistribution1DCauchy", _wrap_new_FTDistribution1DCauchy, METH_O, "\n"
+		"new_FTDistribution1DCauchy(double omega) -> FTDistribution1DCauchy\n"
+		"FTDistribution1DCauchy::FTDistribution1DCauchy(double omega)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		""},
+	 { "FTDistribution1DCauchy_clone", _wrap_FTDistribution1DCauchy_clone, METH_O, "\n"
+		"FTDistribution1DCauchy_clone(FTDistribution1DCauchy self) -> FTDistribution1DCauchy\n"
+		"FTDistribution1DCauchy * FTDistribution1DCauchy::clone() const override final\n"
 		"\n"
 		""},
-	 { "FormFactorAnisoPyramid_accept", _wrap_FormFactorAnisoPyramid_accept, METH_VARARGS, "\n"
-		"FormFactorAnisoPyramid_accept(FormFactorAnisoPyramid self, INodeVisitor visitor)\n"
-		"void FormFactorAnisoPyramid::accept(INodeVisitor *visitor) const override final\n"
+	 { "FTDistribution1DCauchy_accept", _wrap_FTDistribution1DCauchy_accept, METH_VARARGS, "\n"
+		"FTDistribution1DCauchy_accept(FTDistribution1DCauchy self, INodeVisitor visitor)\n"
+		"void FTDistribution1DCauchy::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorAnisoPyramid_getLength", _wrap_FormFactorAnisoPyramid_getLength, METH_O, "\n"
-		"FormFactorAnisoPyramid_getLength(FormFactorAnisoPyramid self) -> double\n"
-		"double FormFactorAnisoPyramid::getLength() const\n"
+	 { "FTDistribution1DCauchy_evaluate", _wrap_FTDistribution1DCauchy_evaluate, METH_VARARGS, "\n"
+		"FTDistribution1DCauchy_evaluate(FTDistribution1DCauchy self, double q) -> double\n"
+		"double FTDistribution1DCauchy::evaluate(double q) const override final\n"
+		"\n"
+		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
 		"\n"
 		""},
-	 { "FormFactorAnisoPyramid_getWidth", _wrap_FormFactorAnisoPyramid_getWidth, METH_O, "\n"
-		"FormFactorAnisoPyramid_getWidth(FormFactorAnisoPyramid self) -> double\n"
-		"double FormFactorAnisoPyramid::getWidth() const\n"
+	 { "FTDistribution1DCauchy_qSecondDerivative", _wrap_FTDistribution1DCauchy_qSecondDerivative, METH_O, "\n"
+		"FTDistribution1DCauchy_qSecondDerivative(FTDistribution1DCauchy self) -> double\n"
+		"double FTDistribution1DCauchy::qSecondDerivative() const override final\n"
+		"\n"
+		"Returns the negative of the second order derivative in q space around q=0. \n"
 		"\n"
 		""},
-	 { "FormFactorAnisoPyramid_getHeight", _wrap_FormFactorAnisoPyramid_getHeight, METH_O, "\n"
-		"FormFactorAnisoPyramid_getHeight(FormFactorAnisoPyramid self) -> double\n"
-		"double FormFactorAnisoPyramid::getHeight() const\n"
+	 { "delete_FTDistribution1DCauchy", _wrap_delete_FTDistribution1DCauchy, METH_O, "delete_FTDistribution1DCauchy(FTDistribution1DCauchy self)"},
+	 { "FTDistribution1DCauchy_swigregister", FTDistribution1DCauchy_swigregister, METH_O, NULL},
+	 { "FTDistribution1DCauchy_swiginit", FTDistribution1DCauchy_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDistribution1DGauss", _wrap_new_FTDistribution1DGauss, METH_O, "\n"
+		"new_FTDistribution1DGauss(double omega) -> FTDistribution1DGauss\n"
+		"FTDistribution1DGauss::FTDistribution1DGauss(double omega)\n"
 		"\n"
 		""},
-	 { "FormFactorAnisoPyramid_getAlpha", _wrap_FormFactorAnisoPyramid_getAlpha, METH_O, "\n"
-		"FormFactorAnisoPyramid_getAlpha(FormFactorAnisoPyramid self) -> double\n"
-		"double FormFactorAnisoPyramid::getAlpha() const\n"
+	 { "FTDistribution1DGauss_clone", _wrap_FTDistribution1DGauss_clone, METH_O, "\n"
+		"FTDistribution1DGauss_clone(FTDistribution1DGauss self) -> FTDistribution1DGauss\n"
+		"FTDistribution1DGauss * FTDistribution1DGauss::clone() const override final\n"
 		"\n"
 		""},
-	 { "delete_FormFactorAnisoPyramid", _wrap_delete_FormFactorAnisoPyramid, METH_O, "delete_FormFactorAnisoPyramid(FormFactorAnisoPyramid self)"},
-	 { "FormFactorAnisoPyramid_swigregister", FormFactorAnisoPyramid_swigregister, METH_O, NULL},
-	 { "FormFactorAnisoPyramid_swiginit", FormFactorAnisoPyramid_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorBox", _wrap_new_FormFactorBox, METH_VARARGS, "\n"
-		"new_FormFactorBox(double length, double width, double height) -> FormFactorBox\n"
-		"FormFactorBox::FormFactorBox(double length, double width, double height)\n"
+	 { "FTDistribution1DGauss_accept", _wrap_FTDistribution1DGauss_accept, METH_VARARGS, "\n"
+		"FTDistribution1DGauss_accept(FTDistribution1DGauss self, INodeVisitor visitor)\n"
+		"void FTDistribution1DGauss::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Constructor of a rectangular cuboid.\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "FTDistribution1DGauss_evaluate", _wrap_FTDistribution1DGauss_evaluate, METH_VARARGS, "\n"
+		"FTDistribution1DGauss_evaluate(FTDistribution1DGauss self, double q) -> double\n"
+		"double FTDistribution1DGauss::evaluate(double q) const override final\n"
 		"\n"
-		"length: \n"
-		"length of the base in nanometers\n"
+		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
 		"\n"
-		"width: \n"
-		"width of the base in nanometers\n"
+		""},
+	 { "FTDistribution1DGauss_qSecondDerivative", _wrap_FTDistribution1DGauss_qSecondDerivative, METH_O, "\n"
+		"FTDistribution1DGauss_qSecondDerivative(FTDistribution1DGauss self) -> double\n"
+		"double FTDistribution1DGauss::qSecondDerivative() const override final\n"
 		"\n"
-		"height: \n"
-		"height of the box in nanometers \n"
+		"Returns the negative of the second order derivative in q space around q=0. \n"
 		"\n"
 		""},
-	 { "FormFactorBox_clone", _wrap_FormFactorBox_clone, METH_O, "\n"
-		"FormFactorBox_clone(FormFactorBox self) -> FormFactorBox\n"
-		"FormFactorBox* FormFactorBox::clone() const override final\n"
+	 { "delete_FTDistribution1DGauss", _wrap_delete_FTDistribution1DGauss, METH_O, "delete_FTDistribution1DGauss(FTDistribution1DGauss self)"},
+	 { "FTDistribution1DGauss_swigregister", FTDistribution1DGauss_swigregister, METH_O, NULL},
+	 { "FTDistribution1DGauss_swiginit", FTDistribution1DGauss_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDistribution1DGate", _wrap_new_FTDistribution1DGate, METH_O, "\n"
+		"new_FTDistribution1DGate(double omega) -> FTDistribution1DGate\n"
+		"FTDistribution1DGate::FTDistribution1DGate(double omega)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		""},
+	 { "FTDistribution1DGate_clone", _wrap_FTDistribution1DGate_clone, METH_O, "\n"
+		"FTDistribution1DGate_clone(FTDistribution1DGate self) -> FTDistribution1DGate\n"
+		"FTDistribution1DGate * FTDistribution1DGate::clone() const override final\n"
 		"\n"
 		""},
-	 { "FormFactorBox_accept", _wrap_FormFactorBox_accept, METH_VARARGS, "\n"
-		"FormFactorBox_accept(FormFactorBox self, INodeVisitor visitor)\n"
-		"void FormFactorBox::accept(INodeVisitor *visitor) const override final\n"
+	 { "FTDistribution1DGate_accept", _wrap_FTDistribution1DGate_accept, METH_VARARGS, "\n"
+		"FTDistribution1DGate_accept(FTDistribution1DGate self, INodeVisitor visitor)\n"
+		"void FTDistribution1DGate::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorBox_getLength", _wrap_FormFactorBox_getLength, METH_O, "\n"
-		"FormFactorBox_getLength(FormFactorBox self) -> double\n"
-		"double FormFactorBox::getLength() const\n"
+	 { "FTDistribution1DGate_evaluate", _wrap_FTDistribution1DGate_evaluate, METH_VARARGS, "\n"
+		"FTDistribution1DGate_evaluate(FTDistribution1DGate self, double q) -> double\n"
+		"double FTDistribution1DGate::evaluate(double q) const override final\n"
 		"\n"
-		""},
-	 { "FormFactorBox_getWidth", _wrap_FormFactorBox_getWidth, METH_O, "\n"
-		"FormFactorBox_getWidth(FormFactorBox self) -> double\n"
-		"double FormFactorBox::getWidth() const\n"
+		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
 		"\n"
 		""},
-	 { "FormFactorBox_volume", _wrap_FormFactorBox_volume, METH_O, "\n"
-		"FormFactorBox_volume(FormFactorBox self) -> double\n"
-		"double FormFactorBox::volume() const override final\n"
+	 { "FTDistribution1DGate_qSecondDerivative", _wrap_FTDistribution1DGate_qSecondDerivative, METH_O, "\n"
+		"FTDistribution1DGate_qSecondDerivative(FTDistribution1DGate self) -> double\n"
+		"double FTDistribution1DGate::qSecondDerivative() const override final\n"
 		"\n"
-		"Returns the volume of this prism. \n"
+		"Returns the negative of the second order derivative in q space around q=0. \n"
 		"\n"
 		""},
-	 { "FormFactorBox_radialExtension", _wrap_FormFactorBox_radialExtension, METH_O, "\n"
-		"FormFactorBox_radialExtension(FormFactorBox self) -> double\n"
-		"double FormFactorBox::radialExtension() const override final\n"
+	 { "delete_FTDistribution1DGate", _wrap_delete_FTDistribution1DGate, METH_O, "delete_FTDistribution1DGate(FTDistribution1DGate self)"},
+	 { "FTDistribution1DGate_swigregister", FTDistribution1DGate_swigregister, METH_O, NULL},
+	 { "FTDistribution1DGate_swiginit", FTDistribution1DGate_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDistribution1DTriangle", _wrap_new_FTDistribution1DTriangle, METH_O, "\n"
+		"new_FTDistribution1DTriangle(double omega) -> FTDistribution1DTriangle\n"
+		"FTDistribution1DTriangle::FTDistribution1DTriangle(double omega)\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		""},
+	 { "FTDistribution1DTriangle_clone", _wrap_FTDistribution1DTriangle_clone, METH_O, "\n"
+		"FTDistribution1DTriangle_clone(FTDistribution1DTriangle self) -> FTDistribution1DTriangle\n"
+		"FTDistribution1DTriangle * FTDistribution1DTriangle::clone() const override final\n"
 		"\n"
 		""},
-	 { "FormFactorBox_evaluate_for_q", _wrap_FormFactorBox_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorBox_evaluate_for_q(FormFactorBox self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorBox::evaluate_for_q(cvector_t q) const override final\n"
+	 { "FTDistribution1DTriangle_accept", _wrap_FTDistribution1DTriangle_accept, METH_VARARGS, "\n"
+		"FTDistribution1DTriangle_accept(FTDistribution1DTriangle self, INodeVisitor visitor)\n"
+		"void FTDistribution1DTriangle::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Returns the form factor F(q) of this polyhedron, respecting the offset height/2. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_FormFactorBox", _wrap_delete_FormFactorBox, METH_O, "delete_FormFactorBox(FormFactorBox self)"},
-	 { "FormFactorBox_swigregister", FormFactorBox_swigregister, METH_O, NULL},
-	 { "FormFactorBox_swiginit", FormFactorBox_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorCantellatedCube", _wrap_new_FormFactorCantellatedCube, METH_VARARGS, "\n"
-		"new_FormFactorCantellatedCube(double length, double removed_length) -> FormFactorCantellatedCube\n"
-		"FormFactorCantellatedCube::FormFactorCantellatedCube(double length, double removed_length)\n"
-		"\n"
-		"Constructor of a truncated cube.\n"
+	 { "FTDistribution1DTriangle_evaluate", _wrap_FTDistribution1DTriangle_evaluate, METH_VARARGS, "\n"
+		"FTDistribution1DTriangle_evaluate(FTDistribution1DTriangle self, double q) -> double\n"
+		"double FTDistribution1DTriangle::evaluate(double q) const override final\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
 		"\n"
-		"length: \n"
-		"length of the full cube's edge in nanometers\n"
+		""},
+	 { "FTDistribution1DTriangle_qSecondDerivative", _wrap_FTDistribution1DTriangle_qSecondDerivative, METH_O, "\n"
+		"FTDistribution1DTriangle_qSecondDerivative(FTDistribution1DTriangle self) -> double\n"
+		"double FTDistribution1DTriangle::qSecondDerivative() const override final\n"
 		"\n"
-		"removed_length: \n"
-		"removed length from each edge of the cube in nanometers \n"
+		"Returns the negative of the second order derivative in q space around q=0. \n"
 		"\n"
 		""},
-	 { "FormFactorCantellatedCube_clone", _wrap_FormFactorCantellatedCube_clone, METH_O, "\n"
-		"FormFactorCantellatedCube_clone(FormFactorCantellatedCube self) -> FormFactorCantellatedCube\n"
-		"FormFactorCantellatedCube* FormFactorCantellatedCube::clone() const override final\n"
+	 { "delete_FTDistribution1DTriangle", _wrap_delete_FTDistribution1DTriangle, METH_O, "delete_FTDistribution1DTriangle(FTDistribution1DTriangle self)"},
+	 { "FTDistribution1DTriangle_swigregister", FTDistribution1DTriangle_swigregister, METH_O, NULL},
+	 { "FTDistribution1DTriangle_swiginit", FTDistribution1DTriangle_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDistribution1DCosine", _wrap_new_FTDistribution1DCosine, METH_O, "\n"
+		"new_FTDistribution1DCosine(double omega) -> FTDistribution1DCosine\n"
+		"FTDistribution1DCosine::FTDistribution1DCosine(double omega)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		""},
+	 { "FTDistribution1DCosine_clone", _wrap_FTDistribution1DCosine_clone, METH_O, "\n"
+		"FTDistribution1DCosine_clone(FTDistribution1DCosine self) -> FTDistribution1DCosine\n"
+		"FTDistribution1DCosine * FTDistribution1DCosine::clone() const override final\n"
 		"\n"
 		""},
-	 { "FormFactorCantellatedCube_accept", _wrap_FormFactorCantellatedCube_accept, METH_VARARGS, "\n"
-		"FormFactorCantellatedCube_accept(FormFactorCantellatedCube self, INodeVisitor visitor)\n"
-		"void FormFactorCantellatedCube::accept(INodeVisitor *visitor) const override final\n"
+	 { "FTDistribution1DCosine_accept", _wrap_FTDistribution1DCosine_accept, METH_VARARGS, "\n"
+		"FTDistribution1DCosine_accept(FTDistribution1DCosine self, INodeVisitor visitor)\n"
+		"void FTDistribution1DCosine::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorCantellatedCube_getLength", _wrap_FormFactorCantellatedCube_getLength, METH_O, "\n"
-		"FormFactorCantellatedCube_getLength(FormFactorCantellatedCube self) -> double\n"
-		"double FormFactorCantellatedCube::getLength() const\n"
+	 { "FTDistribution1DCosine_evaluate", _wrap_FTDistribution1DCosine_evaluate, METH_VARARGS, "\n"
+		"FTDistribution1DCosine_evaluate(FTDistribution1DCosine self, double q) -> double\n"
+		"double FTDistribution1DCosine::evaluate(double q) const override final\n"
+		"\n"
+		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
 		"\n"
 		""},
-	 { "FormFactorCantellatedCube_getRemovedLength", _wrap_FormFactorCantellatedCube_getRemovedLength, METH_O, "\n"
-		"FormFactorCantellatedCube_getRemovedLength(FormFactorCantellatedCube self) -> double\n"
-		"double FormFactorCantellatedCube::getRemovedLength() const\n"
+	 { "FTDistribution1DCosine_qSecondDerivative", _wrap_FTDistribution1DCosine_qSecondDerivative, METH_O, "\n"
+		"FTDistribution1DCosine_qSecondDerivative(FTDistribution1DCosine self) -> double\n"
+		"double FTDistribution1DCosine::qSecondDerivative() const override final\n"
+		"\n"
+		"Returns the negative of the second order derivative in q space around q=0. \n"
 		"\n"
 		""},
-	 { "delete_FormFactorCantellatedCube", _wrap_delete_FormFactorCantellatedCube, METH_O, "delete_FormFactorCantellatedCube(FormFactorCantellatedCube self)"},
-	 { "FormFactorCantellatedCube_swigregister", FormFactorCantellatedCube_swigregister, METH_O, NULL},
-	 { "FormFactorCantellatedCube_swiginit", FormFactorCantellatedCube_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorCone", _wrap_new_FormFactorCone, METH_VARARGS, "\n"
-		"new_FormFactorCone(double radius, double height, double alpha) -> FormFactorCone\n"
-		"FormFactorCone::FormFactorCone(double radius, double height, double alpha)\n"
+	 { "delete_FTDistribution1DCosine", _wrap_delete_FTDistribution1DCosine, METH_O, "delete_FTDistribution1DCosine(FTDistribution1DCosine self)"},
+	 { "FTDistribution1DCosine_swigregister", FTDistribution1DCosine_swigregister, METH_O, NULL},
+	 { "FTDistribution1DCosine_swiginit", FTDistribution1DCosine_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDistribution1DVoigt", _wrap_new_FTDistribution1DVoigt, METH_VARARGS, "\n"
+		"new_FTDistribution1DVoigt(double omega, double eta) -> FTDistribution1DVoigt\n"
+		"FTDistribution1DVoigt::FTDistribution1DVoigt(double omega, double eta)\n"
 		"\n"
-		"Constructor of a truncated cone with circular base.\n"
+		"Constructor of one-dimensional pseudo-Voigt probability distribution.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"radius: \n"
-		"radius of the base in nanometers\n"
-		"\n"
-		"height: \n"
-		"height of the cone in nanometers\n"
+		"omega: \n"
+		"half-width of the distribution in nanometers\n"
 		"\n"
-		"alpha: \n"
-		"angle between the base and the side surface in radians \n"
+		"eta: \n"
+		"parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0) \n"
 		"\n"
 		""},
-	 { "FormFactorCone_clone", _wrap_FormFactorCone_clone, METH_O, "\n"
-		"FormFactorCone_clone(FormFactorCone self) -> FormFactorCone\n"
-		"FormFactorCone* FormFactorCone::clone() const override final\n"
-		"\n"
-		"Returns a clone of this  ISample object. \n"
+	 { "FTDistribution1DVoigt_clone", _wrap_FTDistribution1DVoigt_clone, METH_O, "\n"
+		"FTDistribution1DVoigt_clone(FTDistribution1DVoigt self) -> FTDistribution1DVoigt\n"
+		"FTDistribution1DVoigt * FTDistribution1DVoigt::clone() const override final\n"
 		"\n"
 		""},
-	 { "FormFactorCone_accept", _wrap_FormFactorCone_accept, METH_VARARGS, "\n"
-		"FormFactorCone_accept(FormFactorCone self, INodeVisitor visitor)\n"
-		"void FormFactorCone::accept(INodeVisitor *visitor) const override final\n"
+	 { "FTDistribution1DVoigt_accept", _wrap_FTDistribution1DVoigt_accept, METH_VARARGS, "\n"
+		"FTDistribution1DVoigt_accept(FTDistribution1DVoigt self, INodeVisitor visitor)\n"
+		"void FTDistribution1DVoigt::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorCone_getHeight", _wrap_FormFactorCone_getHeight, METH_O, "\n"
-		"FormFactorCone_getHeight(FormFactorCone self) -> double\n"
-		"double FormFactorCone::getHeight() const\n"
+	 { "FTDistribution1DVoigt_evaluate", _wrap_FTDistribution1DVoigt_evaluate, METH_VARARGS, "\n"
+		"FTDistribution1DVoigt_evaluate(FTDistribution1DVoigt self, double q) -> double\n"
+		"double FTDistribution1DVoigt::evaluate(double q) const override final\n"
 		"\n"
-		""},
-	 { "FormFactorCone_getAlpha", _wrap_FormFactorCone_getAlpha, METH_O, "\n"
-		"FormFactorCone_getAlpha(FormFactorCone self) -> double\n"
-		"double FormFactorCone::getAlpha() const\n"
+		"Returns Fourier transform of this distribution; is a decay function starting at evaluate(0)=1. \n"
 		"\n"
 		""},
-	 { "FormFactorCone_getRadius", _wrap_FormFactorCone_getRadius, METH_O, "\n"
-		"FormFactorCone_getRadius(FormFactorCone self) -> double\n"
-		"double FormFactorCone::getRadius() const\n"
+	 { "FTDistribution1DVoigt_eta", _wrap_FTDistribution1DVoigt_eta, METH_O, "\n"
+		"FTDistribution1DVoigt_eta(FTDistribution1DVoigt self) -> double\n"
+		"double FTDistribution1DVoigt::eta() const\n"
 		"\n"
 		""},
-	 { "FormFactorCone_radialExtension", _wrap_FormFactorCone_radialExtension, METH_O, "\n"
-		"FormFactorCone_radialExtension(FormFactorCone self) -> double\n"
-		"double FormFactorCone::radialExtension() const override final\n"
+	 { "FTDistribution1DVoigt_qSecondDerivative", _wrap_FTDistribution1DVoigt_qSecondDerivative, METH_O, "\n"
+		"FTDistribution1DVoigt_qSecondDerivative(FTDistribution1DVoigt self) -> double\n"
+		"double FTDistribution1DVoigt::qSecondDerivative() const override final\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Returns the negative of the second order derivative in q space around q=0. \n"
 		"\n"
 		""},
-	 { "FormFactorCone_evaluate_for_q", _wrap_FormFactorCone_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorCone_evaluate_for_q(FormFactorCone self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorCone::evaluate_for_q(cvector_t q) const override final\n"
+	 { "delete_FTDistribution1DVoigt", _wrap_delete_FTDistribution1DVoigt, METH_O, "delete_FTDistribution1DVoigt(FTDistribution1DVoigt self)"},
+	 { "FTDistribution1DVoigt_swigregister", FTDistribution1DVoigt_swigregister, METH_O, NULL},
+	 { "FTDistribution1DVoigt_swiginit", FTDistribution1DVoigt_swiginit, METH_VARARGS, NULL},
+	 { "IFTDistribution2D_clone", _wrap_IFTDistribution2D_clone, METH_O, "\n"
+		"IFTDistribution2D_clone(IFTDistribution2D self) -> IFTDistribution2D\n"
+		"IFTDistribution2D* IFTDistribution2D::clone() const =0\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		""},
+	 { "IFTDistribution2D_setGamma", _wrap_IFTDistribution2D_setGamma, METH_VARARGS, "\n"
+		"IFTDistribution2D_setGamma(IFTDistribution2D self, double gamma)\n"
+		"void IFTDistribution2D::setGamma(double gamma)\n"
 		"\n"
 		""},
-	 { "delete_FormFactorCone", _wrap_delete_FormFactorCone, METH_O, "delete_FormFactorCone(FormFactorCone self)"},
-	 { "FormFactorCone_swigregister", FormFactorCone_swigregister, METH_O, NULL},
-	 { "FormFactorCone_swiginit", FormFactorCone_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorCone6", _wrap_new_FormFactorCone6, METH_VARARGS, "\n"
-		"new_FormFactorCone6(double base_edge, double height, double alpha) -> FormFactorCone6\n"
-		"FormFactorCone6::FormFactorCone6(double base_edge, double height, double alpha)\n"
+	 { "IFTDistribution2D_gamma", _wrap_IFTDistribution2D_gamma, METH_O, "\n"
+		"IFTDistribution2D_gamma(IFTDistribution2D self) -> double\n"
+		"double IFTDistribution2D::gamma() const\n"
 		"\n"
-		"Constructor of a truncated pyramid, based on a regular hexagon\n"
+		""},
+	 { "IFTDistribution2D_delta", _wrap_IFTDistribution2D_delta, METH_O, "\n"
+		"IFTDistribution2D_delta(IFTDistribution2D self) -> double\n"
+		"double IFTDistribution2D::delta() const\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "IFTDistribution2D_omegaX", _wrap_IFTDistribution2D_omegaX, METH_O, "\n"
+		"IFTDistribution2D_omegaX(IFTDistribution2D self) -> double\n"
+		"double IFTDistribution2D::omegaX() const\n"
 		"\n"
-		"base_edge: \n"
-		"Edge of the regular hexagonal base in nanometers\n"
+		""},
+	 { "IFTDistribution2D_omegaY", _wrap_IFTDistribution2D_omegaY, METH_O, "\n"
+		"IFTDistribution2D_omegaY(IFTDistribution2D self) -> double\n"
+		"double IFTDistribution2D::omegaY() const\n"
 		"\n"
-		"height: \n"
-		"height of a truncated pyramid in nanometers\n"
+		""},
+	 { "IFTDistribution2D_evaluate", _wrap_IFTDistribution2D_evaluate, METH_VARARGS, "\n"
+		"IFTDistribution2D_evaluate(IFTDistribution2D self, double qx, double qy) -> double\n"
+		"virtual double IFTDistribution2D::evaluate(double qx, double qy) const =0\n"
 		"\n"
-		"alpha: \n"
-		"dihedral angle in radians between base and facet \n"
+		"evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 \n"
 		"\n"
 		""},
-	 { "FormFactorCone6_clone", _wrap_FormFactorCone6_clone, METH_O, "\n"
-		"FormFactorCone6_clone(FormFactorCone6 self) -> FormFactorCone6\n"
-		"FormFactorCone6* FormFactorCone6::clone() const override final\n"
+	 { "delete_IFTDistribution2D", _wrap_delete_IFTDistribution2D, METH_O, "delete_IFTDistribution2D(IFTDistribution2D self)"},
+	 { "IFTDistribution2D_swigregister", IFTDistribution2D_swigregister, METH_O, NULL},
+	 { "new_FTDistribution2DCauchy", _wrap_new_FTDistribution2DCauchy, METH_VARARGS, "\n"
+		"FTDistribution2DCauchy(double omega_x, double omega_y, double gamma=0)\n"
+		"FTDistribution2DCauchy::FTDistribution2DCauchy(double omega_x, double omega_y, double gamma=0)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		""},
+	 { "FTDistribution2DCauchy_clone", _wrap_FTDistribution2DCauchy_clone, METH_O, "\n"
+		"FTDistribution2DCauchy_clone(FTDistribution2DCauchy self) -> FTDistribution2DCauchy\n"
+		"FTDistribution2DCauchy * FTDistribution2DCauchy::clone() const final\n"
 		"\n"
 		""},
-	 { "FormFactorCone6_accept", _wrap_FormFactorCone6_accept, METH_VARARGS, "\n"
-		"FormFactorCone6_accept(FormFactorCone6 self, INodeVisitor visitor)\n"
-		"void FormFactorCone6::accept(INodeVisitor *visitor) const override final\n"
+	 { "FTDistribution2DCauchy_accept", _wrap_FTDistribution2DCauchy_accept, METH_VARARGS, "\n"
+		"FTDistribution2DCauchy_accept(FTDistribution2DCauchy self, INodeVisitor visitor)\n"
+		"void FTDistribution2DCauchy::accept(INodeVisitor *visitor) const final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorCone6_getBaseEdge", _wrap_FormFactorCone6_getBaseEdge, METH_O, "\n"
-		"FormFactorCone6_getBaseEdge(FormFactorCone6 self) -> double\n"
-		"double FormFactorCone6::getBaseEdge() const\n"
-		"\n"
-		""},
-	 { "FormFactorCone6_getHeight", _wrap_FormFactorCone6_getHeight, METH_O, "\n"
-		"FormFactorCone6_getHeight(FormFactorCone6 self) -> double\n"
-		"double FormFactorCone6::getHeight() const\n"
+	 { "FTDistribution2DCauchy_evaluate", _wrap_FTDistribution2DCauchy_evaluate, METH_VARARGS, "\n"
+		"FTDistribution2DCauchy_evaluate(FTDistribution2DCauchy self, double qx, double qy) -> double\n"
+		"double FTDistribution2DCauchy::evaluate(double qx, double qy) const final\n"
 		"\n"
-		""},
-	 { "FormFactorCone6_getAlpha", _wrap_FormFactorCone6_getAlpha, METH_O, "\n"
-		"FormFactorCone6_getAlpha(FormFactorCone6 self) -> double\n"
-		"double FormFactorCone6::getAlpha() const\n"
+		"evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 \n"
 		"\n"
 		""},
-	 { "delete_FormFactorCone6", _wrap_delete_FormFactorCone6, METH_O, "delete_FormFactorCone6(FormFactorCone6 self)"},
-	 { "FormFactorCone6_swigregister", FormFactorCone6_swigregister, METH_O, NULL},
-	 { "FormFactorCone6_swiginit", FormFactorCone6_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorCrystal", _wrap_new_FormFactorCrystal, METH_VARARGS, "\n"
-		"FormFactorCrystal(Lattice lattice, IFormFactor basis_form_factor, IFormFactor meso_form_factor, double position_variance=0.0)\n"
-		"FormFactorCrystal::FormFactorCrystal(const Lattice &lattice, const IFormFactor &basis_form_factor, const IFormFactor &meso_form_factor, double position_variance=0.0)\n"
+	 { "delete_FTDistribution2DCauchy", _wrap_delete_FTDistribution2DCauchy, METH_O, "delete_FTDistribution2DCauchy(FTDistribution2DCauchy self)"},
+	 { "FTDistribution2DCauchy_swigregister", FTDistribution2DCauchy_swigregister, METH_O, NULL},
+	 { "FTDistribution2DCauchy_swiginit", FTDistribution2DCauchy_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDistribution2DGauss", _wrap_new_FTDistribution2DGauss, METH_VARARGS, "\n"
+		"FTDistribution2DGauss(double omega_x, double omega_y, double gamma=0)\n"
+		"FTDistribution2DGauss::FTDistribution2DGauss(double omega_x, double omega_y, double gamma=0)\n"
 		"\n"
 		""},
-	 { "delete_FormFactorCrystal", _wrap_delete_FormFactorCrystal, METH_O, "\n"
-		"delete_FormFactorCrystal(FormFactorCrystal self)\n"
-		"FormFactorCrystal::~FormFactorCrystal() override final\n"
+	 { "FTDistribution2DGauss_clone", _wrap_FTDistribution2DGauss_clone, METH_O, "\n"
+		"FTDistribution2DGauss_clone(FTDistribution2DGauss self) -> FTDistribution2DGauss\n"
+		"FTDistribution2DGauss * FTDistribution2DGauss::clone() const final\n"
 		"\n"
 		""},
-	 { "FormFactorCrystal_clone", _wrap_FormFactorCrystal_clone, METH_O, "\n"
-		"FormFactorCrystal_clone(FormFactorCrystal self) -> FormFactorCrystal\n"
-		"FormFactorCrystal* FormFactorCrystal::clone() const override final\n"
+	 { "FTDistribution2DGauss_accept", _wrap_FTDistribution2DGauss_accept, METH_VARARGS, "\n"
+		"FTDistribution2DGauss_accept(FTDistribution2DGauss self, INodeVisitor visitor)\n"
+		"void FTDistribution2DGauss::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorCrystal_accept", _wrap_FormFactorCrystal_accept, METH_VARARGS, "\n"
-		"FormFactorCrystal_accept(FormFactorCrystal self, INodeVisitor visitor)\n"
-		"void FormFactorCrystal::accept(INodeVisitor *visitor) const override final\n"
+	 { "FTDistribution2DGauss_evaluate", _wrap_FTDistribution2DGauss_evaluate, METH_VARARGS, "\n"
+		"FTDistribution2DGauss_evaluate(FTDistribution2DGauss self, double qx, double qy) -> double\n"
+		"double FTDistribution2DGauss::evaluate(double qx, double qy) const final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 \n"
 		"\n"
 		""},
-	 { "FormFactorCrystal_setAmbientMaterial", _wrap_FormFactorCrystal_setAmbientMaterial, METH_VARARGS, "\n"
-		"FormFactorCrystal_setAmbientMaterial(FormFactorCrystal self, Material material)\n"
-		"void FormFactorCrystal::setAmbientMaterial(Material material) override\n"
+	 { "delete_FTDistribution2DGauss", _wrap_delete_FTDistribution2DGauss, METH_O, "delete_FTDistribution2DGauss(FTDistribution2DGauss self)"},
+	 { "FTDistribution2DGauss_swigregister", FTDistribution2DGauss_swigregister, METH_O, NULL},
+	 { "FTDistribution2DGauss_swiginit", FTDistribution2DGauss_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDistribution2DGate", _wrap_new_FTDistribution2DGate, METH_VARARGS, "\n"
+		"FTDistribution2DGate(double omega_x, double omega_y, double gamma=0)\n"
+		"FTDistribution2DGate::FTDistribution2DGate(double omega_x, double omega_y, double gamma=0)\n"
 		"\n"
-		"Passes the material in which this particle is embedded. \n"
+		""},
+	 { "FTDistribution2DGate_clone", _wrap_FTDistribution2DGate_clone, METH_O, "\n"
+		"FTDistribution2DGate_clone(FTDistribution2DGate self) -> FTDistribution2DGate\n"
+		"FTDistribution2DGate * FTDistribution2DGate::clone() const final\n"
 		"\n"
 		""},
-	 { "FormFactorCrystal_volume", _wrap_FormFactorCrystal_volume, METH_O, "\n"
-		"FormFactorCrystal_volume(FormFactorCrystal self) -> double\n"
-		"double FormFactorCrystal::volume() const override final\n"
+	 { "FTDistribution2DGate_accept", _wrap_FTDistribution2DGate_accept, METH_VARARGS, "\n"
+		"FTDistribution2DGate_accept(FTDistribution2DGate self, INodeVisitor visitor)\n"
+		"void FTDistribution2DGate::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Returns the total volume of the particle of this form factor's shape. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorCrystal_radialExtension", _wrap_FormFactorCrystal_radialExtension, METH_O, "\n"
-		"FormFactorCrystal_radialExtension(FormFactorCrystal self) -> double\n"
-		"double FormFactorCrystal::radialExtension() const override final\n"
+	 { "FTDistribution2DGate_evaluate", _wrap_FTDistribution2DGate_evaluate, METH_VARARGS, "\n"
+		"FTDistribution2DGate_evaluate(FTDistribution2DGate self, double qx, double qy) -> double\n"
+		"double FTDistribution2DGate::evaluate(double qx, double qy) const final\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 \n"
 		"\n"
 		""},
-	 { "FormFactorCrystal_bottomZ", _wrap_FormFactorCrystal_bottomZ, METH_VARARGS, "\n"
-		"FormFactorCrystal_bottomZ(FormFactorCrystal self, IRotation rotation) -> double\n"
-		"double FormFactorCrystal::bottomZ(const IRotation &rotation) const override\n"
+	 { "delete_FTDistribution2DGate", _wrap_delete_FTDistribution2DGate, METH_O, "delete_FTDistribution2DGate(FTDistribution2DGate self)"},
+	 { "FTDistribution2DGate_swigregister", FTDistribution2DGate_swigregister, METH_O, NULL},
+	 { "FTDistribution2DGate_swiginit", FTDistribution2DGate_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDistribution2DCone", _wrap_new_FTDistribution2DCone, METH_VARARGS, "\n"
+		"FTDistribution2DCone(double omega_x, double omega_y, double gamma=0)\n"
+		"FTDistribution2DCone::FTDistribution2DCone(double omega_x, double omega_y, double gamma=0)\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		""},
+	 { "FTDistribution2DCone_clone", _wrap_FTDistribution2DCone_clone, METH_O, "\n"
+		"FTDistribution2DCone_clone(FTDistribution2DCone self) -> FTDistribution2DCone\n"
+		"FTDistribution2DCone * FTDistribution2DCone::clone() const final\n"
 		"\n"
 		""},
-	 { "FormFactorCrystal_topZ", _wrap_FormFactorCrystal_topZ, METH_VARARGS, "\n"
-		"FormFactorCrystal_topZ(FormFactorCrystal self, IRotation rotation) -> double\n"
-		"double FormFactorCrystal::topZ(const IRotation &rotation) const override final\n"
+	 { "FTDistribution2DCone_accept", _wrap_FTDistribution2DCone_accept, METH_VARARGS, "\n"
+		"FTDistribution2DCone_accept(FTDistribution2DCone self, INodeVisitor visitor)\n"
+		"void FTDistribution2DCone::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorCrystal_evaluate", _wrap_FormFactorCrystal_evaluate, METH_VARARGS, "\n"
-		"FormFactorCrystal_evaluate(FormFactorCrystal self, WavevectorInfo wavevectors) -> complex_t\n"
-		"complex_t FormFactorCrystal::evaluate(const WavevectorInfo &wavevectors) const override final\n"
+	 { "FTDistribution2DCone_evaluate", _wrap_FTDistribution2DCone_evaluate, METH_VARARGS, "\n"
+		"FTDistribution2DCone_evaluate(FTDistribution2DCone self, double qx, double qy) -> double\n"
+		"double FTDistribution2DCone::evaluate(double qx, double qy) const final\n"
 		"\n"
-		"Returns scattering amplitude for complex wavevectors ki, kf. \n"
+		"evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 \n"
 		"\n"
 		""},
-	 { "FormFactorCrystal_swigregister", FormFactorCrystal_swigregister, METH_O, NULL},
-	 { "FormFactorCrystal_swiginit", FormFactorCrystal_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorCuboctahedron", _wrap_new_FormFactorCuboctahedron, METH_VARARGS, "\n"
-		"new_FormFactorCuboctahedron(double length, double height, double height_ratio, double alpha) -> FormFactorCuboctahedron\n"
-		"FormFactorCuboctahedron::FormFactorCuboctahedron(double length, double height, double height_ratio, double alpha)\n"
+	 { "delete_FTDistribution2DCone", _wrap_delete_FTDistribution2DCone, METH_O, "delete_FTDistribution2DCone(FTDistribution2DCone self)"},
+	 { "FTDistribution2DCone_swigregister", FTDistribution2DCone_swigregister, METH_O, NULL},
+	 { "FTDistribution2DCone_swiginit", FTDistribution2DCone_swiginit, METH_VARARGS, NULL},
+	 { "new_FTDistribution2DVoigt", _wrap_new_FTDistribution2DVoigt, METH_VARARGS, "\n"
+		"FTDistribution2DVoigt(double omega_x, double omega_y, double eta, double gamma=0)\n"
+		"FTDistribution2DVoigt::FTDistribution2DVoigt(double omega_x, double omega_y, double eta, double gamma=0)\n"
 		"\n"
-		"Constructor of cuboctahedron (compound of two truncated pyramids with a common square base and opposite orientations).\n"
+		"Constructor of two-dimensional pseudo-Voigt probability distribution.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"length: \n"
-		"side length of the common square base in nanometers\n"
+		"omega_x: \n"
+		"half-width of the distribution along its x-axis in nanometers\n"
 		"\n"
-		"height: \n"
-		"height of the lower pyramid in nanometers\n"
+		"omega_y: \n"
+		"half-width of the distribution along its y-axis in nanometers\n"
 		"\n"
-		"height_ratio: \n"
-		"ratio of heights of top to bottom pyramids\n"
+		"eta: \n"
+		"parameter [0,1] to balance between Cauchy (eta=0.0) and Gauss (eta=1.0)\n"
 		"\n"
-		"alpha: \n"
-		"dihedral angle in radians between base and facet \n"
+		"gamma: \n"
+		"angle in direct space between first lattice vector and x-axis of the distribution in radians \n"
 		"\n"
 		""},
-	 { "FormFactorCuboctahedron_clone", _wrap_FormFactorCuboctahedron_clone, METH_O, "\n"
-		"FormFactorCuboctahedron_clone(FormFactorCuboctahedron self) -> FormFactorCuboctahedron\n"
-		"FormFactorCuboctahedron* FormFactorCuboctahedron::clone() const override final\n"
-		"\n"
-		"Returns a clone of this  ISample object. \n"
+	 { "FTDistribution2DVoigt_clone", _wrap_FTDistribution2DVoigt_clone, METH_O, "\n"
+		"FTDistribution2DVoigt_clone(FTDistribution2DVoigt self) -> FTDistribution2DVoigt\n"
+		"FTDistribution2DVoigt * FTDistribution2DVoigt::clone() const final\n"
 		"\n"
 		""},
-	 { "FormFactorCuboctahedron_accept", _wrap_FormFactorCuboctahedron_accept, METH_VARARGS, "\n"
-		"FormFactorCuboctahedron_accept(FormFactorCuboctahedron self, INodeVisitor visitor)\n"
-		"void FormFactorCuboctahedron::accept(INodeVisitor *visitor) const override final\n"
+	 { "FTDistribution2DVoigt_accept", _wrap_FTDistribution2DVoigt_accept, METH_VARARGS, "\n"
+		"FTDistribution2DVoigt_accept(FTDistribution2DVoigt self, INodeVisitor visitor)\n"
+		"void FTDistribution2DVoigt::accept(INodeVisitor *visitor) const final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorCuboctahedron_getLength", _wrap_FormFactorCuboctahedron_getLength, METH_O, "\n"
-		"FormFactorCuboctahedron_getLength(FormFactorCuboctahedron self) -> double\n"
-		"double FormFactorCuboctahedron::getLength() const\n"
+	 { "FTDistribution2DVoigt_evaluate", _wrap_FTDistribution2DVoigt_evaluate, METH_VARARGS, "\n"
+		"FTDistribution2DVoigt_evaluate(FTDistribution2DVoigt self, double qx, double qy) -> double\n"
+		"double FTDistribution2DVoigt::evaluate(double qx, double qy) const final\n"
 		"\n"
-		""},
-	 { "FormFactorCuboctahedron_getHeight", _wrap_FormFactorCuboctahedron_getHeight, METH_O, "\n"
-		"FormFactorCuboctahedron_getHeight(FormFactorCuboctahedron self) -> double\n"
-		"double FormFactorCuboctahedron::getHeight() const\n"
+		"evaluate Fourier transformed distribution for q in X,Y coordinates the original distribution (in real space) is assumed to be normalized: total integral is equal to 1 \n"
 		"\n"
 		""},
-	 { "FormFactorCuboctahedron_getHeightRatio", _wrap_FormFactorCuboctahedron_getHeightRatio, METH_O, "\n"
-		"FormFactorCuboctahedron_getHeightRatio(FormFactorCuboctahedron self) -> double\n"
-		"double FormFactorCuboctahedron::getHeightRatio() const\n"
+	 { "FTDistribution2DVoigt_eta", _wrap_FTDistribution2DVoigt_eta, METH_O, "\n"
+		"FTDistribution2DVoigt_eta(FTDistribution2DVoigt self) -> double\n"
+		"double FTDistribution2DVoigt::eta() const\n"
 		"\n"
 		""},
-	 { "FormFactorCuboctahedron_getAlpha", _wrap_FormFactorCuboctahedron_getAlpha, METH_O, "\n"
-		"FormFactorCuboctahedron_getAlpha(FormFactorCuboctahedron self) -> double\n"
-		"double FormFactorCuboctahedron::getAlpha() const\n"
+	 { "delete_FTDistribution2DVoigt", _wrap_delete_FTDistribution2DVoigt, METH_O, "delete_FTDistribution2DVoigt(FTDistribution2DVoigt self)"},
+	 { "FTDistribution2DVoigt_swigregister", FTDistribution2DVoigt_swigregister, METH_O, NULL},
+	 { "FTDistribution2DVoigt_swiginit", FTDistribution2DVoigt_swiginit, METH_VARARGS, NULL},
+	 { "new_IInterferenceFunction", _wrap_new_IInterferenceFunction, METH_VARARGS, "\n"
+		"IInterferenceFunction()\n"
+		"new_IInterferenceFunction(PyObject * _self, IInterferenceFunction other) -> IInterferenceFunction\n"
+		"IInterferenceFunction::IInterferenceFunction(const IInterferenceFunction &other)\n"
 		"\n"
 		""},
-	 { "delete_FormFactorCuboctahedron", _wrap_delete_FormFactorCuboctahedron, METH_O, "delete_FormFactorCuboctahedron(FormFactorCuboctahedron self)"},
-	 { "FormFactorCuboctahedron_swigregister", FormFactorCuboctahedron_swigregister, METH_O, NULL},
-	 { "FormFactorCuboctahedron_swiginit", FormFactorCuboctahedron_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorCylinder", _wrap_new_FormFactorCylinder, METH_VARARGS, "\n"
-		"new_FormFactorCylinder(double radius, double height) -> FormFactorCylinder\n"
-		"FormFactorCylinder::FormFactorCylinder(double radius, double height)\n"
+	 { "delete_IInterferenceFunction", _wrap_delete_IInterferenceFunction, METH_O, "\n"
+		"delete_IInterferenceFunction(IInterferenceFunction self)\n"
+		"IInterferenceFunction::~IInterferenceFunction()\n"
 		"\n"
-		"Constructor of a cylinder with a circular base.\n"
+		""},
+	 { "IInterferenceFunction_clone", _wrap_IInterferenceFunction_clone, METH_O, "\n"
+		"IInterferenceFunction_clone(IInterferenceFunction self) -> IInterferenceFunction\n"
+		"virtual IInterferenceFunction* IInterferenceFunction::clone() const =0\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
-		"radius: \n"
-		"radius of the circular base in nanometers\n"
+		""},
+	 { "IInterferenceFunction_evaluate", _wrap_IInterferenceFunction_evaluate, METH_VARARGS, "\n"
+		"IInterferenceFunction_evaluate(IInterferenceFunction self, kvector_t q, double outer_iff=1.0) -> double\n"
+		"double IInterferenceFunction::evaluate(const kvector_t q, double outer_iff=1.0) const\n"
 		"\n"
-		"height: \n"
-		"height of the cylinder in nanometers \n"
+		"Evaluates the interference function for a given wavevector transfer. \n"
 		"\n"
 		""},
-	 { "FormFactorCylinder_clone", _wrap_FormFactorCylinder_clone, METH_O, "\n"
-		"FormFactorCylinder_clone(FormFactorCylinder self) -> FormFactorCylinder\n"
-		"FormFactorCylinder* FormFactorCylinder::clone() const override final\n"
+	 { "IInterferenceFunction_setPositionVariance", _wrap_IInterferenceFunction_setPositionVariance, METH_VARARGS, "\n"
+		"IInterferenceFunction_setPositionVariance(IInterferenceFunction self, double var)\n"
+		"void IInterferenceFunction::setPositionVariance(double var)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Sets the variance of the position for the calculation of the DW factor It is defined as the variance in each relevant dimension \n"
 		"\n"
 		""},
-	 { "FormFactorCylinder_accept", _wrap_FormFactorCylinder_accept, METH_VARARGS, "\n"
-		"FormFactorCylinder_accept(FormFactorCylinder self, INodeVisitor visitor)\n"
-		"void FormFactorCylinder::accept(INodeVisitor *visitor) const override final\n"
+	 { "IInterferenceFunction_positionVariance", _wrap_IInterferenceFunction_positionVariance, METH_O, "\n"
+		"IInterferenceFunction_positionVariance(IInterferenceFunction self) -> double\n"
+		"double IInterferenceFunction::positionVariance() const\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns the position variance. \n"
 		"\n"
 		""},
-	 { "FormFactorCylinder_getHeight", _wrap_FormFactorCylinder_getHeight, METH_O, "\n"
-		"FormFactorCylinder_getHeight(FormFactorCylinder self) -> double\n"
-		"double FormFactorCylinder::getHeight() const\n"
+	 { "IInterferenceFunction_getParticleDensity", _wrap_IInterferenceFunction_getParticleDensity, METH_O, "\n"
+		"IInterferenceFunction_getParticleDensity(IInterferenceFunction self) -> double\n"
+		"virtual double IInterferenceFunction::getParticleDensity() const\n"
 		"\n"
-		""},
-	 { "FormFactorCylinder_getRadius", _wrap_FormFactorCylinder_getRadius, METH_O, "\n"
-		"FormFactorCylinder_getRadius(FormFactorCylinder self) -> double\n"
-		"double FormFactorCylinder::getRadius() const\n"
+		"If defined by this interference function's parameters, returns the particle density (per area). Otherwise, returns zero or a user-defined value \n"
 		"\n"
 		""},
-	 { "FormFactorCylinder_radialExtension", _wrap_FormFactorCylinder_radialExtension, METH_O, "\n"
-		"FormFactorCylinder_radialExtension(FormFactorCylinder self) -> double\n"
-		"double FormFactorCylinder::radialExtension() const override final\n"
+	 { "IInterferenceFunction_supportsMultilayer", _wrap_IInterferenceFunction_supportsMultilayer, METH_O, "\n"
+		"IInterferenceFunction_supportsMultilayer(IInterferenceFunction self) -> bool\n"
+		"virtual bool IInterferenceFunction::supportsMultilayer() const\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Indicates if this interference function can be used with a multilayer (DWBA mode) \n"
 		"\n"
 		""},
-	 { "FormFactorCylinder_evaluate_for_q", _wrap_FormFactorCylinder_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorCylinder_evaluate_for_q(FormFactorCylinder self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorCylinder::evaluate_for_q(cvector_t q) const override final\n"
+	 { "IInterferenceFunction_DWfactor", _wrap_IInterferenceFunction_DWfactor, METH_VARARGS, "\n"
+		"IInterferenceFunction_DWfactor(IInterferenceFunction self, kvector_t q) -> double\n"
+		"double IInterferenceFunction::DWfactor(kvector_t q) const\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"Evaluates the Debye-Waller factor for a given wavevector transfer. \n"
 		"\n"
 		""},
-	 { "delete_FormFactorCylinder", _wrap_delete_FormFactorCylinder, METH_O, "delete_FormFactorCylinder(FormFactorCylinder self)"},
-	 { "FormFactorCylinder_swigregister", FormFactorCylinder_swigregister, METH_O, NULL},
-	 { "FormFactorCylinder_swiginit", FormFactorCylinder_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorDebyeBueche", _wrap_new_FormFactorDebyeBueche, METH_VARARGS, "\n"
-		"new_FormFactorDebyeBueche(double I0, double xi) -> FormFactorDebyeBueche\n"
-		"FormFactorDebyeBueche::FormFactorDebyeBueche(double I0, double xi)\n"
+	 { "IInterferenceFunction_iff_without_dw", _wrap_IInterferenceFunction_iff_without_dw, METH_VARARGS, "IInterferenceFunction_iff_without_dw(IInterferenceFunction self, kvector_t q) -> double"},
+	 { "disown_IInterferenceFunction", _wrap_disown_IInterferenceFunction, METH_O, NULL},
+	 { "IInterferenceFunction_swigregister", IInterferenceFunction_swigregister, METH_O, NULL},
+	 { "IInterferenceFunction_swiginit", IInterferenceFunction_swiginit, METH_VARARGS, NULL},
+	 { "delete_ILayout", _wrap_delete_ILayout, METH_O, "\n"
+		"delete_ILayout(ILayout self)\n"
+		"ILayout::~ILayout()\n"
 		"\n"
 		""},
-	 { "FormFactorDebyeBueche_clone", _wrap_FormFactorDebyeBueche_clone, METH_O, "\n"
-		"FormFactorDebyeBueche_clone(FormFactorDebyeBueche self) -> FormFactorDebyeBueche\n"
-		"FormFactorDebyeBueche* FormFactorDebyeBueche::clone() const override final\n"
+	 { "ILayout_clone", _wrap_ILayout_clone, METH_O, "\n"
+		"ILayout_clone(ILayout self) -> ILayout\n"
+		"virtual ILayout* ILayout::clone() const =0\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorDebyeBueche_accept", _wrap_FormFactorDebyeBueche_accept, METH_VARARGS, "\n"
-		"FormFactorDebyeBueche_accept(FormFactorDebyeBueche self, INodeVisitor visitor)\n"
-		"void FormFactorDebyeBueche::accept(INodeVisitor *visitor) const override final\n"
+	 { "ILayout_accept", _wrap_ILayout_accept, METH_VARARGS, "\n"
+		"ILayout_accept(ILayout self, INodeVisitor visitor)\n"
+		"virtual void ILayout::accept(INodeVisitor *visitor) const =0\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorDebyeBueche_radialExtension", _wrap_FormFactorDebyeBueche_radialExtension, METH_O, "\n"
-		"FormFactorDebyeBueche_radialExtension(FormFactorDebyeBueche self) -> double\n"
-		"double FormFactorDebyeBueche::radialExtension() const override final\n"
+	 { "ILayout_particles", _wrap_ILayout_particles, METH_O, "\n"
+		"ILayout_particles(ILayout self) -> SafePointerVector< IParticle >\n"
+		"virtual SafePointerVector<IParticle> ILayout::particles() const =0\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Returns information on all particles (type and abundance) and generates new particles if an  IAbstractParticle denotes a collection \n"
 		"\n"
 		""},
-	 { "FormFactorDebyeBueche_evaluate_for_q", _wrap_FormFactorDebyeBueche_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorDebyeBueche_evaluate_for_q(FormFactorDebyeBueche self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorDebyeBueche::evaluate_for_q(cvector_t q) const override final\n"
+	 { "ILayout_interferenceFunction", _wrap_ILayout_interferenceFunction, METH_O, "\n"
+		"ILayout_interferenceFunction(ILayout self) -> IInterferenceFunction\n"
+		"virtual const IInterferenceFunction* ILayout::interferenceFunction() const =0\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"Returns the interference function. \n"
 		"\n"
 		""},
-	 { "delete_FormFactorDebyeBueche", _wrap_delete_FormFactorDebyeBueche, METH_O, "delete_FormFactorDebyeBueche(FormFactorDebyeBueche self)"},
-	 { "FormFactorDebyeBueche_swigregister", FormFactorDebyeBueche_swigregister, METH_O, NULL},
-	 { "FormFactorDebyeBueche_swiginit", FormFactorDebyeBueche_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorDodecahedron", _wrap_new_FormFactorDodecahedron, METH_O, "\n"
-		"new_FormFactorDodecahedron(double edge) -> FormFactorDodecahedron\n"
-		"FormFactorDodecahedron::FormFactorDodecahedron(double edge)\n"
-		"\n"
-		"Constructs a regular dodecahedron.\n"
+	 { "ILayout_getTotalAbundance", _wrap_ILayout_getTotalAbundance, METH_O, "\n"
+		"ILayout_getTotalAbundance(ILayout self) -> double\n"
+		"virtual double ILayout::getTotalAbundance() const =0\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Get total abundance of all particles. \n"
 		"\n"
-		"edge: \n"
-		"length\n"
+		""},
+	 { "ILayout_totalParticleSurfaceDensity", _wrap_ILayout_totalParticleSurfaceDensity, METH_O, "\n"
+		"ILayout_totalParticleSurfaceDensity(ILayout self) -> double\n"
+		"virtual double ILayout::totalParticleSurfaceDensity() const =0\n"
 		"\n"
-		"Constructor of a dodecahedron.\n"
+		"Returns surface density of all particles. \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "ILayout_setTotalParticleSurfaceDensity", _wrap_ILayout_setTotalParticleSurfaceDensity, METH_VARARGS, "\n"
+		"ILayout_setTotalParticleSurfaceDensity(ILayout self, double particle_density)\n"
+		"virtual void ILayout::setTotalParticleSurfaceDensity(double particle_density)=0\n"
 		"\n"
-		"edge: \n"
-		"length of the edge in nanometers \n"
+		"Sets surface density of all particles. \n"
 		"\n"
 		""},
-	 { "FormFactorDodecahedron_clone", _wrap_FormFactorDodecahedron_clone, METH_O, "\n"
-		"FormFactorDodecahedron_clone(FormFactorDodecahedron self) -> FormFactorDodecahedron\n"
-		"FormFactorDodecahedron* FormFactorDodecahedron::clone() const override final\n"
+	 { "ILayout_weight", _wrap_ILayout_weight, METH_O, "\n"
+		"ILayout_weight(ILayout self) -> double\n"
+		"double ILayout::weight() const\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns the relative weight of this layout. \n"
 		"\n"
 		""},
-	 { "FormFactorDodecahedron_accept", _wrap_FormFactorDodecahedron_accept, METH_VARARGS, "\n"
-		"FormFactorDodecahedron_accept(FormFactorDodecahedron self, INodeVisitor visitor)\n"
-		"void FormFactorDodecahedron::accept(INodeVisitor *visitor) const override final\n"
+	 { "ILayout_setWeight", _wrap_ILayout_setWeight, METH_VARARGS, "\n"
+		"ILayout_setWeight(ILayout self, double weight)\n"
+		"void ILayout::setWeight(double weight)\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Sets the relative weight of this layout. \n"
 		"\n"
 		""},
-	 { "FormFactorDodecahedron_getEdge", _wrap_FormFactorDodecahedron_getEdge, METH_O, "\n"
-		"FormFactorDodecahedron_getEdge(FormFactorDodecahedron self) -> double\n"
-		"double FormFactorDodecahedron::getEdge() const\n"
+	 { "ILayout_swigregister", ILayout_swigregister, METH_O, NULL},
+	 { "delete_IPeakShape", _wrap_delete_IPeakShape, METH_O, "\n"
+		"delete_IPeakShape(IPeakShape self)\n"
+		"IPeakShape::~IPeakShape()\n"
 		"\n"
 		""},
-	 { "delete_FormFactorDodecahedron", _wrap_delete_FormFactorDodecahedron, METH_O, "delete_FormFactorDodecahedron(FormFactorDodecahedron self)"},
-	 { "FormFactorDodecahedron_swigregister", FormFactorDodecahedron_swigregister, METH_O, NULL},
-	 { "FormFactorDodecahedron_swiginit", FormFactorDodecahedron_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorDot", _wrap_new_FormFactorDot, METH_O, "\n"
-		"new_FormFactorDot(double radius) -> FormFactorDot\n"
-		"FormFactorDot::FormFactorDot(double radius)\n"
-		"\n"
-		"Constructor.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
+	 { "IPeakShape_clone", _wrap_IPeakShape_clone, METH_O, "\n"
+		"IPeakShape_clone(IPeakShape self) -> IPeakShape\n"
+		"virtual IPeakShape* IPeakShape::clone() const =0\n"
 		"\n"
-		"rscat: \n"
-		"radius of a sphere with same forward scattering power, in nanometers \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorDot_clone", _wrap_FormFactorDot_clone, METH_O, "\n"
-		"FormFactorDot_clone(FormFactorDot self) -> FormFactorDot\n"
-		"FormFactorDot* FormFactorDot::clone() const override final\n"
+	 { "IPeakShape_evaluate", _wrap_IPeakShape_evaluate, METH_VARARGS, "\n"
+		"IPeakShape_evaluate(IPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
+		"virtual double IPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const =0\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
 		"\n"
 		""},
-	 { "FormFactorDot_accept", _wrap_FormFactorDot_accept, METH_VARARGS, "\n"
-		"FormFactorDot_accept(FormFactorDot self, INodeVisitor visitor)\n"
-		"void FormFactorDot::accept(INodeVisitor *visitor) const override final\n"
+	 { "IPeakShape_angularDisorder", _wrap_IPeakShape_angularDisorder, METH_O, "\n"
+		"IPeakShape_angularDisorder(IPeakShape self) -> bool\n"
+		"virtual bool IPeakShape::angularDisorder() const\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed \n"
 		"\n"
 		""},
-	 { "FormFactorDot_getRadius", _wrap_FormFactorDot_getRadius, METH_O, "\n"
-		"FormFactorDot_getRadius(FormFactorDot self) -> double\n"
-		"double FormFactorDot::getRadius() const\n"
+	 { "IPeakShape_swigregister", IPeakShape_swigregister, METH_O, NULL},
+	 { "new_IsotropicGaussPeakShape", _wrap_new_IsotropicGaussPeakShape, METH_VARARGS, "\n"
+		"new_IsotropicGaussPeakShape(double max_intensity, double domainsize) -> IsotropicGaussPeakShape\n"
+		"IsotropicGaussPeakShape::IsotropicGaussPeakShape(double max_intensity, double domainsize)\n"
 		"\n"
 		""},
-	 { "FormFactorDot_radialExtension", _wrap_FormFactorDot_radialExtension, METH_O, "\n"
-		"FormFactorDot_radialExtension(FormFactorDot self) -> double\n"
-		"double FormFactorDot::radialExtension() const override final\n"
-		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+	 { "delete_IsotropicGaussPeakShape", _wrap_delete_IsotropicGaussPeakShape, METH_O, "\n"
+		"delete_IsotropicGaussPeakShape(IsotropicGaussPeakShape self)\n"
+		"IsotropicGaussPeakShape::~IsotropicGaussPeakShape() override\n"
 		"\n"
 		""},
-	 { "FormFactorDot_bottomZ", _wrap_FormFactorDot_bottomZ, METH_VARARGS, "\n"
-		"FormFactorDot_bottomZ(FormFactorDot self, IRotation arg2) -> double\n"
-		"double FormFactorDot::bottomZ(const IRotation &) const override final\n"
+	 { "IsotropicGaussPeakShape_clone", _wrap_IsotropicGaussPeakShape_clone, METH_O, "\n"
+		"IsotropicGaussPeakShape_clone(IsotropicGaussPeakShape self) -> IsotropicGaussPeakShape\n"
+		"IsotropicGaussPeakShape * IsotropicGaussPeakShape::clone() const override\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorDot_topZ", _wrap_FormFactorDot_topZ, METH_VARARGS, "\n"
-		"FormFactorDot_topZ(FormFactorDot self, IRotation arg2) -> double\n"
-		"double FormFactorDot::topZ(const IRotation &) const override final\n"
+	 { "IsotropicGaussPeakShape_accept", _wrap_IsotropicGaussPeakShape_accept, METH_VARARGS, "\n"
+		"IsotropicGaussPeakShape_accept(IsotropicGaussPeakShape self, INodeVisitor visitor)\n"
+		"void IsotropicGaussPeakShape::accept(INodeVisitor *visitor) const override\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorDot_evaluate_for_q", _wrap_FormFactorDot_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorDot_evaluate_for_q(FormFactorDot self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorDot::evaluate_for_q(cvector_t q) const override final\n"
+	 { "IsotropicGaussPeakShape_evaluate", _wrap_IsotropicGaussPeakShape_evaluate, METH_VARARGS, "\n"
+		"IsotropicGaussPeakShape_evaluate(IsotropicGaussPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
+		"double IsotropicGaussPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
 		"\n"
 		""},
-	 { "delete_FormFactorDot", _wrap_delete_FormFactorDot, METH_O, "delete_FormFactorDot(FormFactorDot self)"},
-	 { "FormFactorDot_swigregister", FormFactorDot_swigregister, METH_O, NULL},
-	 { "FormFactorDot_swiginit", FormFactorDot_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorEllipsoidalCylinder", _wrap_new_FormFactorEllipsoidalCylinder, METH_VARARGS, "\n"
-		"new_FormFactorEllipsoidalCylinder(double radius_x, double radius_y, double height) -> FormFactorEllipsoidalCylinder\n"
-		"FormFactorEllipsoidalCylinder::FormFactorEllipsoidalCylinder(double radius_x, double radius_y, double height)\n"
-		"\n"
-		"Constructor of a cylinder with an ellipse cross section.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
-		"\n"
-		"radius_x: \n"
-		"radius of the ellipse base in the x-direction, in nanometers\n"
-		"\n"
-		"radius_y: \n"
-		"radius of the ellipse base in the y-direction, in nanometers\n"
+	 { "IsotropicGaussPeakShape_swigregister", IsotropicGaussPeakShape_swigregister, METH_O, NULL},
+	 { "IsotropicGaussPeakShape_swiginit", IsotropicGaussPeakShape_swiginit, METH_VARARGS, NULL},
+	 { "new_IsotropicLorentzPeakShape", _wrap_new_IsotropicLorentzPeakShape, METH_VARARGS, "\n"
+		"new_IsotropicLorentzPeakShape(double max_intensity, double domainsize) -> IsotropicLorentzPeakShape\n"
+		"IsotropicLorentzPeakShape::IsotropicLorentzPeakShape(double max_intensity, double domainsize)\n"
 		"\n"
-		"height: \n"
-		"height of the ellipsoidal cylinder in nanometers \n"
+		""},
+	 { "delete_IsotropicLorentzPeakShape", _wrap_delete_IsotropicLorentzPeakShape, METH_O, "\n"
+		"delete_IsotropicLorentzPeakShape(IsotropicLorentzPeakShape self)\n"
+		"IsotropicLorentzPeakShape::~IsotropicLorentzPeakShape() override\n"
 		"\n"
 		""},
-	 { "FormFactorEllipsoidalCylinder_clone", _wrap_FormFactorEllipsoidalCylinder_clone, METH_O, "\n"
-		"FormFactorEllipsoidalCylinder_clone(FormFactorEllipsoidalCylinder self) -> FormFactorEllipsoidalCylinder\n"
-		"FormFactorEllipsoidalCylinder* FormFactorEllipsoidalCylinder::clone() const override final\n"
+	 { "IsotropicLorentzPeakShape_clone", _wrap_IsotropicLorentzPeakShape_clone, METH_O, "\n"
+		"IsotropicLorentzPeakShape_clone(IsotropicLorentzPeakShape self) -> IsotropicLorentzPeakShape\n"
+		"IsotropicLorentzPeakShape * IsotropicLorentzPeakShape::clone() const override\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorEllipsoidalCylinder_accept", _wrap_FormFactorEllipsoidalCylinder_accept, METH_VARARGS, "\n"
-		"FormFactorEllipsoidalCylinder_accept(FormFactorEllipsoidalCylinder self, INodeVisitor visitor)\n"
-		"void FormFactorEllipsoidalCylinder::accept(INodeVisitor *visitor) const override final\n"
+	 { "IsotropicLorentzPeakShape_accept", _wrap_IsotropicLorentzPeakShape_accept, METH_VARARGS, "\n"
+		"IsotropicLorentzPeakShape_accept(IsotropicLorentzPeakShape self, INodeVisitor visitor)\n"
+		"void IsotropicLorentzPeakShape::accept(INodeVisitor *visitor) const override\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorEllipsoidalCylinder_getRadiusX", _wrap_FormFactorEllipsoidalCylinder_getRadiusX, METH_O, "\n"
-		"FormFactorEllipsoidalCylinder_getRadiusX(FormFactorEllipsoidalCylinder self) -> double\n"
-		"double FormFactorEllipsoidalCylinder::getRadiusX() const\n"
+	 { "IsotropicLorentzPeakShape_evaluate", _wrap_IsotropicLorentzPeakShape_evaluate, METH_VARARGS, "\n"
+		"IsotropicLorentzPeakShape_evaluate(IsotropicLorentzPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
+		"double IsotropicLorentzPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override\n"
+		"\n"
+		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
 		"\n"
 		""},
-	 { "FormFactorEllipsoidalCylinder_getRadiusY", _wrap_FormFactorEllipsoidalCylinder_getRadiusY, METH_O, "\n"
-		"FormFactorEllipsoidalCylinder_getRadiusY(FormFactorEllipsoidalCylinder self) -> double\n"
-		"double FormFactorEllipsoidalCylinder::getRadiusY() const\n"
+	 { "IsotropicLorentzPeakShape_swigregister", IsotropicLorentzPeakShape_swigregister, METH_O, NULL},
+	 { "IsotropicLorentzPeakShape_swiginit", IsotropicLorentzPeakShape_swiginit, METH_VARARGS, NULL},
+	 { "new_GaussFisherPeakShape", _wrap_new_GaussFisherPeakShape, METH_VARARGS, "\n"
+		"new_GaussFisherPeakShape(double max_intensity, double radial_size, double kappa) -> GaussFisherPeakShape\n"
+		"GaussFisherPeakShape::GaussFisherPeakShape(double max_intensity, double radial_size, double kappa)\n"
 		"\n"
 		""},
-	 { "FormFactorEllipsoidalCylinder_getHeight", _wrap_FormFactorEllipsoidalCylinder_getHeight, METH_O, "\n"
-		"FormFactorEllipsoidalCylinder_getHeight(FormFactorEllipsoidalCylinder self) -> double\n"
-		"double FormFactorEllipsoidalCylinder::getHeight() const\n"
+	 { "delete_GaussFisherPeakShape", _wrap_delete_GaussFisherPeakShape, METH_O, "\n"
+		"delete_GaussFisherPeakShape(GaussFisherPeakShape self)\n"
+		"GaussFisherPeakShape::~GaussFisherPeakShape() override\n"
 		"\n"
 		""},
-	 { "FormFactorEllipsoidalCylinder_radialExtension", _wrap_FormFactorEllipsoidalCylinder_radialExtension, METH_O, "\n"
-		"FormFactorEllipsoidalCylinder_radialExtension(FormFactorEllipsoidalCylinder self) -> double\n"
-		"double FormFactorEllipsoidalCylinder::radialExtension() const override final\n"
+	 { "GaussFisherPeakShape_clone", _wrap_GaussFisherPeakShape_clone, METH_O, "\n"
+		"GaussFisherPeakShape_clone(GaussFisherPeakShape self) -> GaussFisherPeakShape\n"
+		"GaussFisherPeakShape * GaussFisherPeakShape::clone() const override\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorEllipsoidalCylinder_evaluate_for_q", _wrap_FormFactorEllipsoidalCylinder_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorEllipsoidalCylinder_evaluate_for_q(FormFactorEllipsoidalCylinder self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorEllipsoidalCylinder::evaluate_for_q(cvector_t q) const override final\n"
+	 { "GaussFisherPeakShape_accept", _wrap_GaussFisherPeakShape_accept, METH_VARARGS, "\n"
+		"GaussFisherPeakShape_accept(GaussFisherPeakShape self, INodeVisitor visitor)\n"
+		"void GaussFisherPeakShape::accept(INodeVisitor *visitor) const override\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_FormFactorEllipsoidalCylinder", _wrap_delete_FormFactorEllipsoidalCylinder, METH_O, "delete_FormFactorEllipsoidalCylinder(FormFactorEllipsoidalCylinder self)"},
-	 { "FormFactorEllipsoidalCylinder_swigregister", FormFactorEllipsoidalCylinder_swigregister, METH_O, NULL},
-	 { "FormFactorEllipsoidalCylinder_swiginit", FormFactorEllipsoidalCylinder_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorFullSphere", _wrap_new_FormFactorFullSphere, METH_VARARGS, "\n"
-		"FormFactorFullSphere(double radius, bool position_at_center=False)\n"
-		"FormFactorFullSphere::FormFactorFullSphere(double radius, bool position_at_center=false)\n"
+	 { "GaussFisherPeakShape_evaluate", _wrap_GaussFisherPeakShape_evaluate, METH_VARARGS, "\n"
+		"GaussFisherPeakShape_evaluate(GaussFisherPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
+		"double GaussFisherPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override\n"
 		"\n"
-		"Constructor of a full sphere.\n"
+		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "GaussFisherPeakShape_angularDisorder", _wrap_GaussFisherPeakShape_angularDisorder, METH_O, "\n"
+		"GaussFisherPeakShape_angularDisorder(GaussFisherPeakShape self) -> bool\n"
+		"bool GaussFisherPeakShape::angularDisorder() const override\n"
 		"\n"
-		"radius: \n"
-		"radius of the sphere in nanometers \n"
+		"Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed \n"
 		"\n"
 		""},
-	 { "FormFactorFullSphere_clone", _wrap_FormFactorFullSphere_clone, METH_O, "\n"
-		"FormFactorFullSphere_clone(FormFactorFullSphere self) -> FormFactorFullSphere\n"
-		"FormFactorFullSphere* FormFactorFullSphere::clone() const override final\n"
+	 { "GaussFisherPeakShape_swigregister", GaussFisherPeakShape_swigregister, METH_O, NULL},
+	 { "GaussFisherPeakShape_swiginit", GaussFisherPeakShape_swiginit, METH_VARARGS, NULL},
+	 { "new_LorentzFisherPeakShape", _wrap_new_LorentzFisherPeakShape, METH_VARARGS, "\n"
+		"new_LorentzFisherPeakShape(double max_intensity, double radial_size, double kappa) -> LorentzFisherPeakShape\n"
+		"LorentzFisherPeakShape::LorentzFisherPeakShape(double max_intensity, double radial_size, double kappa)\n"
+		"\n"
+		""},
+	 { "delete_LorentzFisherPeakShape", _wrap_delete_LorentzFisherPeakShape, METH_O, "\n"
+		"delete_LorentzFisherPeakShape(LorentzFisherPeakShape self)\n"
+		"LorentzFisherPeakShape::~LorentzFisherPeakShape() override\n"
+		"\n"
+		""},
+	 { "LorentzFisherPeakShape_clone", _wrap_LorentzFisherPeakShape_clone, METH_O, "\n"
+		"LorentzFisherPeakShape_clone(LorentzFisherPeakShape self) -> LorentzFisherPeakShape\n"
+		"LorentzFisherPeakShape * LorentzFisherPeakShape::clone() const override\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorFullSphere_accept", _wrap_FormFactorFullSphere_accept, METH_VARARGS, "\n"
-		"FormFactorFullSphere_accept(FormFactorFullSphere self, INodeVisitor visitor)\n"
-		"void FormFactorFullSphere::accept(INodeVisitor *visitor) const override final\n"
+	 { "LorentzFisherPeakShape_accept", _wrap_LorentzFisherPeakShape_accept, METH_VARARGS, "\n"
+		"LorentzFisherPeakShape_accept(LorentzFisherPeakShape self, INodeVisitor visitor)\n"
+		"void LorentzFisherPeakShape::accept(INodeVisitor *visitor) const override\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorFullSphere_getRadius", _wrap_FormFactorFullSphere_getRadius, METH_O, "\n"
-		"FormFactorFullSphere_getRadius(FormFactorFullSphere self) -> double\n"
-		"double FormFactorFullSphere::getRadius() const\n"
+	 { "LorentzFisherPeakShape_evaluate", _wrap_LorentzFisherPeakShape_evaluate, METH_VARARGS, "\n"
+		"LorentzFisherPeakShape_evaluate(LorentzFisherPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
+		"double LorentzFisherPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override\n"
+		"\n"
+		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
 		"\n"
 		""},
-	 { "FormFactorFullSphere_radialExtension", _wrap_FormFactorFullSphere_radialExtension, METH_O, "\n"
-		"FormFactorFullSphere_radialExtension(FormFactorFullSphere self) -> double\n"
-		"double FormFactorFullSphere::radialExtension() const override final\n"
+	 { "LorentzFisherPeakShape_angularDisorder", _wrap_LorentzFisherPeakShape_angularDisorder, METH_O, "\n"
+		"LorentzFisherPeakShape_angularDisorder(LorentzFisherPeakShape self) -> bool\n"
+		"bool LorentzFisherPeakShape::angularDisorder() const override\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed \n"
 		"\n"
 		""},
-	 { "FormFactorFullSphere_bottomZ", _wrap_FormFactorFullSphere_bottomZ, METH_VARARGS, "\n"
-		"FormFactorFullSphere_bottomZ(FormFactorFullSphere self, IRotation rotation) -> double\n"
-		"double FormFactorFullSphere::bottomZ(const IRotation &rotation) const override final\n"
+	 { "LorentzFisherPeakShape_swigregister", LorentzFisherPeakShape_swigregister, METH_O, NULL},
+	 { "LorentzFisherPeakShape_swiginit", LorentzFisherPeakShape_swiginit, METH_VARARGS, NULL},
+	 { "new_VonMisesFisherGaussPeakShape", _wrap_new_VonMisesFisherGaussPeakShape, METH_VARARGS, "\n"
+		"new_VonMisesFisherGaussPeakShape(double max_intensity, double radial_size, kvector_t zenith, double kappa_1, double kappa_2) -> VonMisesFisherGaussPeakShape\n"
+		"VonMisesFisherGaussPeakShape::VonMisesFisherGaussPeakShape(double max_intensity, double radial_size, kvector_t zenith, double kappa_1, double kappa_2)\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		""},
+	 { "delete_VonMisesFisherGaussPeakShape", _wrap_delete_VonMisesFisherGaussPeakShape, METH_O, "\n"
+		"delete_VonMisesFisherGaussPeakShape(VonMisesFisherGaussPeakShape self)\n"
+		"VonMisesFisherGaussPeakShape::~VonMisesFisherGaussPeakShape() override\n"
 		"\n"
 		""},
-	 { "FormFactorFullSphere_topZ", _wrap_FormFactorFullSphere_topZ, METH_VARARGS, "\n"
-		"FormFactorFullSphere_topZ(FormFactorFullSphere self, IRotation rotation) -> double\n"
-		"double FormFactorFullSphere::topZ(const IRotation &rotation) const override final\n"
+	 { "VonMisesFisherGaussPeakShape_clone", _wrap_VonMisesFisherGaussPeakShape_clone, METH_O, "\n"
+		"VonMisesFisherGaussPeakShape_clone(VonMisesFisherGaussPeakShape self) -> VonMisesFisherGaussPeakShape\n"
+		"VonMisesFisherGaussPeakShape * VonMisesFisherGaussPeakShape::clone() const override\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorFullSphere_evaluate_for_q", _wrap_FormFactorFullSphere_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorFullSphere_evaluate_for_q(FormFactorFullSphere self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorFullSphere::evaluate_for_q(cvector_t q) const override final\n"
+	 { "VonMisesFisherGaussPeakShape_accept", _wrap_VonMisesFisherGaussPeakShape_accept, METH_VARARGS, "\n"
+		"VonMisesFisherGaussPeakShape_accept(VonMisesFisherGaussPeakShape self, INodeVisitor visitor)\n"
+		"void VonMisesFisherGaussPeakShape::accept(INodeVisitor *visitor) const override\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_FormFactorFullSphere", _wrap_delete_FormFactorFullSphere, METH_O, "delete_FormFactorFullSphere(FormFactorFullSphere self)"},
-	 { "FormFactorFullSphere_swigregister", FormFactorFullSphere_swigregister, METH_O, NULL},
-	 { "FormFactorFullSphere_swiginit", FormFactorFullSphere_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorFullSpheroid", _wrap_new_FormFactorFullSpheroid, METH_VARARGS, "\n"
-		"new_FormFactorFullSpheroid(double radius, double height) -> FormFactorFullSpheroid\n"
-		"FormFactorFullSpheroid::FormFactorFullSpheroid(double radius, double height)\n"
+	 { "VonMisesFisherGaussPeakShape_evaluate", _wrap_VonMisesFisherGaussPeakShape_evaluate, METH_VARARGS, "\n"
+		"VonMisesFisherGaussPeakShape_evaluate(VonMisesFisherGaussPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
+		"double VonMisesFisherGaussPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override\n"
 		"\n"
-		"Constructor of full spheroid.\n"
+		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "VonMisesFisherGaussPeakShape_angularDisorder", _wrap_VonMisesFisherGaussPeakShape_angularDisorder, METH_O, "\n"
+		"VonMisesFisherGaussPeakShape_angularDisorder(VonMisesFisherGaussPeakShape self) -> bool\n"
+		"bool VonMisesFisherGaussPeakShape::angularDisorder() const override\n"
 		"\n"
-		"radius: \n"
-		"radius of the circular cross section in nanometers\n"
+		"Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed \n"
 		"\n"
-		"height: \n"
-		"height of the full spheroid in nanometers \n"
+		""},
+	 { "VonMisesFisherGaussPeakShape_swigregister", VonMisesFisherGaussPeakShape_swigregister, METH_O, NULL},
+	 { "VonMisesFisherGaussPeakShape_swiginit", VonMisesFisherGaussPeakShape_swiginit, METH_VARARGS, NULL},
+	 { "new_VonMisesGaussPeakShape", _wrap_new_VonMisesGaussPeakShape, METH_VARARGS, "\n"
+		"new_VonMisesGaussPeakShape(double max_intensity, double radial_size, kvector_t zenith, double kappa) -> VonMisesGaussPeakShape\n"
+		"VonMisesGaussPeakShape::VonMisesGaussPeakShape(double max_intensity, double radial_size, kvector_t zenith, double kappa)\n"
 		"\n"
 		""},
-	 { "FormFactorFullSpheroid_clone", _wrap_FormFactorFullSpheroid_clone, METH_O, "\n"
-		"FormFactorFullSpheroid_clone(FormFactorFullSpheroid self) -> FormFactorFullSpheroid\n"
-		"FormFactorFullSpheroid* FormFactorFullSpheroid::clone() const override final\n"
+	 { "delete_VonMisesGaussPeakShape", _wrap_delete_VonMisesGaussPeakShape, METH_O, "\n"
+		"delete_VonMisesGaussPeakShape(VonMisesGaussPeakShape self)\n"
+		"VonMisesGaussPeakShape::~VonMisesGaussPeakShape() override\n"
+		"\n"
+		""},
+	 { "VonMisesGaussPeakShape_clone", _wrap_VonMisesGaussPeakShape_clone, METH_O, "\n"
+		"VonMisesGaussPeakShape_clone(VonMisesGaussPeakShape self) -> VonMisesGaussPeakShape\n"
+		"VonMisesGaussPeakShape * VonMisesGaussPeakShape::clone() const override\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorFullSpheroid_accept", _wrap_FormFactorFullSpheroid_accept, METH_VARARGS, "\n"
-		"FormFactorFullSpheroid_accept(FormFactorFullSpheroid self, INodeVisitor visitor)\n"
-		"void FormFactorFullSpheroid::accept(INodeVisitor *visitor) const override final\n"
+	 { "VonMisesGaussPeakShape_accept", _wrap_VonMisesGaussPeakShape_accept, METH_VARARGS, "\n"
+		"VonMisesGaussPeakShape_accept(VonMisesGaussPeakShape self, INodeVisitor visitor)\n"
+		"void VonMisesGaussPeakShape::accept(INodeVisitor *visitor) const override\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorFullSpheroid_getHeight", _wrap_FormFactorFullSpheroid_getHeight, METH_O, "\n"
-		"FormFactorFullSpheroid_getHeight(FormFactorFullSpheroid self) -> double\n"
-		"double FormFactorFullSpheroid::getHeight() const\n"
+	 { "VonMisesGaussPeakShape_evaluate", _wrap_VonMisesGaussPeakShape_evaluate, METH_VARARGS, "\n"
+		"VonMisesGaussPeakShape_evaluate(VonMisesGaussPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
+		"double VonMisesGaussPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override\n"
 		"\n"
-		""},
-	 { "FormFactorFullSpheroid_getRadius", _wrap_FormFactorFullSpheroid_getRadius, METH_O, "\n"
-		"FormFactorFullSpheroid_getRadius(FormFactorFullSpheroid self) -> double\n"
-		"double FormFactorFullSpheroid::getRadius() const\n"
+		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
 		"\n"
 		""},
-	 { "FormFactorFullSpheroid_radialExtension", _wrap_FormFactorFullSpheroid_radialExtension, METH_O, "\n"
-		"FormFactorFullSpheroid_radialExtension(FormFactorFullSpheroid self) -> double\n"
-		"double FormFactorFullSpheroid::radialExtension() const override final\n"
+	 { "VonMisesGaussPeakShape_angularDisorder", _wrap_VonMisesGaussPeakShape_angularDisorder, METH_O, "\n"
+		"VonMisesGaussPeakShape_angularDisorder(VonMisesGaussPeakShape self) -> bool\n"
+		"bool VonMisesGaussPeakShape::angularDisorder() const override\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed \n"
 		"\n"
 		""},
-	 { "FormFactorFullSpheroid_evaluate_for_q", _wrap_FormFactorFullSpheroid_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorFullSpheroid_evaluate_for_q(FormFactorFullSpheroid self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorFullSpheroid::evaluate_for_q(cvector_t q) const override final\n"
+	 { "VonMisesGaussPeakShape_swigregister", VonMisesGaussPeakShape_swigregister, METH_O, NULL},
+	 { "VonMisesGaussPeakShape_swiginit", VonMisesGaussPeakShape_swiginit, METH_VARARGS, NULL},
+	 { "new_InterferenceFunction1DLattice", _wrap_new_InterferenceFunction1DLattice, METH_VARARGS, "\n"
+		"new_InterferenceFunction1DLattice(double length, double xi) -> InterferenceFunction1DLattice\n"
+		"InterferenceFunction1DLattice::InterferenceFunction1DLattice(double length, double xi)\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"Constructor of interference function of one-dimensional lattice.\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"length: \n"
+		"lattice constant in nanometers\n"
+		"\n"
+		"xi: \n"
+		"rotation of lattice with respect to x-axis in radians \n"
 		"\n"
 		""},
-	 { "delete_FormFactorFullSpheroid", _wrap_delete_FormFactorFullSpheroid, METH_O, "delete_FormFactorFullSpheroid(FormFactorFullSpheroid self)"},
-	 { "FormFactorFullSpheroid_swigregister", FormFactorFullSpheroid_swigregister, METH_O, NULL},
-	 { "FormFactorFullSpheroid_swiginit", FormFactorFullSpheroid_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorGauss", _wrap_new_FormFactorGauss, METH_VARARGS, "\n"
-		"FormFactorGauss(double length)\n"
-		"new_FormFactorGauss(double width, double height) -> FormFactorGauss\n"
-		"FormFactorGauss::FormFactorGauss(double width, double height)\n"
+	 { "delete_InterferenceFunction1DLattice", _wrap_delete_InterferenceFunction1DLattice, METH_O, "\n"
+		"delete_InterferenceFunction1DLattice(InterferenceFunction1DLattice self)\n"
+		"InterferenceFunction1DLattice::~InterferenceFunction1DLattice() final\n"
 		"\n"
 		""},
-	 { "FormFactorGauss_clone", _wrap_FormFactorGauss_clone, METH_O, "\n"
-		"FormFactorGauss_clone(FormFactorGauss self) -> FormFactorGauss\n"
-		"FormFactorGauss* FormFactorGauss::clone() const override final\n"
+	 { "InterferenceFunction1DLattice_clone", _wrap_InterferenceFunction1DLattice_clone, METH_O, "\n"
+		"InterferenceFunction1DLattice_clone(InterferenceFunction1DLattice self) -> InterferenceFunction1DLattice\n"
+		"InterferenceFunction1DLattice * InterferenceFunction1DLattice::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorGauss_accept", _wrap_FormFactorGauss_accept, METH_VARARGS, "\n"
-		"FormFactorGauss_accept(FormFactorGauss self, INodeVisitor visitor)\n"
-		"void FormFactorGauss::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunction1DLattice_accept", _wrap_InterferenceFunction1DLattice_accept, METH_VARARGS, "\n"
+		"InterferenceFunction1DLattice_accept(InterferenceFunction1DLattice self, INodeVisitor visitor)\n"
+		"void InterferenceFunction1DLattice::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorGauss_getWidth", _wrap_FormFactorGauss_getWidth, METH_O, "\n"
-		"FormFactorGauss_getWidth(FormFactorGauss self) -> double\n"
-		"double FormFactorGauss::getWidth() const\n"
+	 { "InterferenceFunction1DLattice_setDecayFunction", _wrap_InterferenceFunction1DLattice_setDecayFunction, METH_VARARGS, "\n"
+		"InterferenceFunction1DLattice_setDecayFunction(InterferenceFunction1DLattice self, IFTDecayFunction1D decay)\n"
+		"void InterferenceFunction1DLattice::setDecayFunction(const IFTDecayFunction1D &decay)\n"
 		"\n"
-		""},
-	 { "FormFactorGauss_getHeight", _wrap_FormFactorGauss_getHeight, METH_O, "\n"
-		"FormFactorGauss_getHeight(FormFactorGauss self) -> double\n"
-		"double FormFactorGauss::getHeight() const\n"
+		"Sets one-dimensional decay function.\n"
 		"\n"
-		""},
-	 { "FormFactorGauss_radialExtension", _wrap_FormFactorGauss_radialExtension, METH_O, "\n"
-		"FormFactorGauss_radialExtension(FormFactorGauss self) -> double\n"
-		"double FormFactorGauss::radialExtension() const override final\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"decay: \n"
+		"one-dimensional decay function in reciprocal space \n"
 		"\n"
 		""},
-	 { "FormFactorGauss_evaluate_for_q", _wrap_FormFactorGauss_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorGauss_evaluate_for_q(FormFactorGauss self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorGauss::evaluate_for_q(cvector_t q) const override final\n"
+	 { "InterferenceFunction1DLattice_getLatticeParameters", _wrap_InterferenceFunction1DLattice_getLatticeParameters, METH_O, "\n"
+		"InterferenceFunction1DLattice_getLatticeParameters(InterferenceFunction1DLattice self) -> Lattice1DParameters\n"
+		"Lattice1DParameters InterferenceFunction1DLattice::getLatticeParameters() const\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		""},
+	 { "InterferenceFunction1DLattice_getChildren", _wrap_InterferenceFunction1DLattice_getChildren, METH_O, "\n"
+		"InterferenceFunction1DLattice_getChildren(InterferenceFunction1DLattice self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > InterferenceFunction1DLattice::getChildren() const override final\n"
+		"\n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "delete_FormFactorGauss", _wrap_delete_FormFactorGauss, METH_O, "delete_FormFactorGauss(FormFactorGauss self)"},
-	 { "FormFactorGauss_swigregister", FormFactorGauss_swigregister, METH_O, NULL},
-	 { "FormFactorGauss_swiginit", FormFactorGauss_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorHemiEllipsoid", _wrap_new_FormFactorHemiEllipsoid, METH_VARARGS, "\n"
-		"new_FormFactorHemiEllipsoid(double radius_x, double radius_y, double height) -> FormFactorHemiEllipsoid\n"
-		"FormFactorHemiEllipsoid::FormFactorHemiEllipsoid(double radius_x, double radius_y, double height)\n"
+	 { "InterferenceFunction1DLattice_swigregister", InterferenceFunction1DLattice_swigregister, METH_O, NULL},
+	 { "InterferenceFunction1DLattice_swiginit", InterferenceFunction1DLattice_swiginit, METH_VARARGS, NULL},
+	 { "new_InterferenceFunction2DLattice", _wrap_new_InterferenceFunction2DLattice, METH_VARARGS, "\n"
+		"InterferenceFunction2DLattice(Lattice2D lattice)\n"
+		"InterferenceFunction2DLattice(double length_1, double length_2, double alpha, double xi=0.0)\n"
+		"InterferenceFunction2DLattice::InterferenceFunction2DLattice(double length_1, double length_2, double alpha, double xi=0.0)\n"
 		"\n"
-		"Constructor of horizontally oriented ellipsoid, truncated at the central plane.\n"
+		"Constructor of two-dimensional interference function.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"radius_x: \n"
-		"radius of the ellipse base in the x-direction, in nanometers\n"
+		"length_1: \n"
+		"length of the first basis vector in nanometers\n"
 		"\n"
-		"radius_y: \n"
-		"radius of the ellipse base in the y-direction, in nanometers\n"
+		"length_2: \n"
+		"length of the second basis vector in nanometers\n"
 		"\n"
-		"height: \n"
-		"height of the hemi ellipsoid in nanometers \n"
+		"alpha: \n"
+		"angle between the basis vectors in radians\n"
+		"\n"
+		"xi: \n"
+		"rotation of the lattice with respect to the x-axis (beam direction) in radians \n"
 		"\n"
 		""},
-	 { "delete_FormFactorHemiEllipsoid", _wrap_delete_FormFactorHemiEllipsoid, METH_O, "\n"
-		"delete_FormFactorHemiEllipsoid(FormFactorHemiEllipsoid self)\n"
-		"virtual FormFactorHemiEllipsoid::~FormFactorHemiEllipsoid()\n"
+	 { "delete_InterferenceFunction2DLattice", _wrap_delete_InterferenceFunction2DLattice, METH_O, "\n"
+		"delete_InterferenceFunction2DLattice(InterferenceFunction2DLattice self)\n"
+		"InterferenceFunction2DLattice::~InterferenceFunction2DLattice() final\n"
 		"\n"
 		""},
-	 { "FormFactorHemiEllipsoid_clone", _wrap_FormFactorHemiEllipsoid_clone, METH_O, "\n"
-		"FormFactorHemiEllipsoid_clone(FormFactorHemiEllipsoid self) -> FormFactorHemiEllipsoid\n"
-		"FormFactorHemiEllipsoid* FormFactorHemiEllipsoid::clone() const override final\n"
+	 { "InterferenceFunction2DLattice_clone", _wrap_InterferenceFunction2DLattice_clone, METH_O, "\n"
+		"InterferenceFunction2DLattice_clone(InterferenceFunction2DLattice self) -> InterferenceFunction2DLattice\n"
+		"InterferenceFunction2DLattice * InterferenceFunction2DLattice::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorHemiEllipsoid_accept", _wrap_FormFactorHemiEllipsoid_accept, METH_VARARGS, "\n"
-		"FormFactorHemiEllipsoid_accept(FormFactorHemiEllipsoid self, INodeVisitor visitor)\n"
-		"void FormFactorHemiEllipsoid::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunction2DLattice_accept", _wrap_InterferenceFunction2DLattice_accept, METH_VARARGS, "\n"
+		"InterferenceFunction2DLattice_accept(InterferenceFunction2DLattice self, INodeVisitor visitor)\n"
+		"void InterferenceFunction2DLattice::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorHemiEllipsoid_getHeight", _wrap_FormFactorHemiEllipsoid_getHeight, METH_O, "\n"
-		"FormFactorHemiEllipsoid_getHeight(FormFactorHemiEllipsoid self) -> double\n"
-		"double FormFactorHemiEllipsoid::getHeight() const\n"
+	 { "InterferenceFunction2DLattice_createSquare", _wrap_InterferenceFunction2DLattice_createSquare, METH_VARARGS, "InterferenceFunction2DLattice_createSquare(double lattice_length, double xi=0.0) -> InterferenceFunction2DLattice"},
+	 { "InterferenceFunction2DLattice_createHexagonal", _wrap_InterferenceFunction2DLattice_createHexagonal, METH_VARARGS, "InterferenceFunction2DLattice_createHexagonal(double lattice_length, double xi=0.0) -> InterferenceFunction2DLattice"},
+	 { "InterferenceFunction2DLattice_setDecayFunction", _wrap_InterferenceFunction2DLattice_setDecayFunction, METH_VARARGS, "\n"
+		"InterferenceFunction2DLattice_setDecayFunction(InterferenceFunction2DLattice self, IFTDecayFunction2D decay)\n"
+		"void InterferenceFunction2DLattice::setDecayFunction(const IFTDecayFunction2D &decay)\n"
+		"\n"
+		"Sets two-dimensional decay function.\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"decay: \n"
+		"two-dimensional decay function in reciprocal space \n"
 		"\n"
 		""},
-	 { "FormFactorHemiEllipsoid_getRadiusX", _wrap_FormFactorHemiEllipsoid_getRadiusX, METH_O, "\n"
-		"FormFactorHemiEllipsoid_getRadiusX(FormFactorHemiEllipsoid self) -> double\n"
-		"double FormFactorHemiEllipsoid::getRadiusX() const\n"
+	 { "InterferenceFunction2DLattice_setIntegrationOverXi", _wrap_InterferenceFunction2DLattice_setIntegrationOverXi, METH_VARARGS, "\n"
+		"InterferenceFunction2DLattice_setIntegrationOverXi(InterferenceFunction2DLattice self, bool integrate_xi)\n"
+		"void InterferenceFunction2DLattice::setIntegrationOverXi(bool integrate_xi)\n"
 		"\n"
 		""},
-	 { "FormFactorHemiEllipsoid_getRadiusY", _wrap_FormFactorHemiEllipsoid_getRadiusY, METH_O, "\n"
-		"FormFactorHemiEllipsoid_getRadiusY(FormFactorHemiEllipsoid self) -> double\n"
-		"double FormFactorHemiEllipsoid::getRadiusY() const\n"
+	 { "InterferenceFunction2DLattice_integrationOverXi", _wrap_InterferenceFunction2DLattice_integrationOverXi, METH_O, "\n"
+		"InterferenceFunction2DLattice_integrationOverXi(InterferenceFunction2DLattice self) -> bool\n"
+		"bool InterferenceFunction2DLattice::integrationOverXi() const\n"
 		"\n"
 		""},
-	 { "FormFactorHemiEllipsoid_radialExtension", _wrap_FormFactorHemiEllipsoid_radialExtension, METH_O, "\n"
-		"FormFactorHemiEllipsoid_radialExtension(FormFactorHemiEllipsoid self) -> double\n"
-		"double FormFactorHemiEllipsoid::radialExtension() const override final\n"
+	 { "InterferenceFunction2DLattice_lattice", _wrap_InterferenceFunction2DLattice_lattice, METH_O, "\n"
+		"InterferenceFunction2DLattice_lattice(InterferenceFunction2DLattice self) -> Lattice2D\n"
+		"const Lattice2D & InterferenceFunction2DLattice::lattice() const\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		""},
+	 { "InterferenceFunction2DLattice_getParticleDensity", _wrap_InterferenceFunction2DLattice_getParticleDensity, METH_O, "\n"
+		"InterferenceFunction2DLattice_getParticleDensity(InterferenceFunction2DLattice self) -> double\n"
+		"double InterferenceFunction2DLattice::getParticleDensity() const override final\n"
+		"\n"
+		"Returns the particle density associated with this 2d lattice. \n"
 		"\n"
 		""},
-	 { "FormFactorHemiEllipsoid_evaluate_for_q", _wrap_FormFactorHemiEllipsoid_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorHemiEllipsoid_evaluate_for_q(FormFactorHemiEllipsoid self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorHemiEllipsoid::evaluate_for_q(cvector_t q) const override final\n"
+	 { "InterferenceFunction2DLattice_getChildren", _wrap_InterferenceFunction2DLattice_getChildren, METH_O, "\n"
+		"InterferenceFunction2DLattice_getChildren(InterferenceFunction2DLattice self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > InterferenceFunction2DLattice::getChildren() const override final\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "FormFactorHemiEllipsoid_swigregister", FormFactorHemiEllipsoid_swigregister, METH_O, NULL},
-	 { "FormFactorHemiEllipsoid_swiginit", FormFactorHemiEllipsoid_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorIcosahedron", _wrap_new_FormFactorIcosahedron, METH_O, "\n"
-		"new_FormFactorIcosahedron(double edge) -> FormFactorIcosahedron\n"
-		"FormFactorIcosahedron::FormFactorIcosahedron(double edge)\n"
+	 { "InterferenceFunction2DLattice_onChange", _wrap_InterferenceFunction2DLattice_onChange, METH_O, "\n"
+		"InterferenceFunction2DLattice_onChange(InterferenceFunction2DLattice self)\n"
+		"void InterferenceFunction2DLattice::onChange() override final\n"
 		"\n"
-		"Constructor of a icosahedron.\n"
+		"Action to be taken in inherited class when a parameter has changed. \n"
+		"\n"
+		""},
+	 { "InterferenceFunction2DLattice_swigregister", InterferenceFunction2DLattice_swigregister, METH_O, NULL},
+	 { "InterferenceFunction2DLattice_swiginit", InterferenceFunction2DLattice_swiginit, METH_VARARGS, NULL},
+	 { "new_InterferenceFunction2DParaCrystal", _wrap_new_InterferenceFunction2DParaCrystal, METH_VARARGS, "\n"
+		"InterferenceFunction2DParaCrystal(Lattice2D lattice, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0)\n"
+		"InterferenceFunction2DParaCrystal(double length_1, double length_2, double alpha, double xi=0.0, double damping_length=0.0)\n"
+		"InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(double length_1, double length_2, double alpha, double xi=0.0, double damping_length=0.0)\n"
+		"\n"
+		"Constructor of interference function of two-dimensional paracrystal.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"edge: \n"
-		"length of the edge in nanometers \n"
+		"length_1: \n"
+		"length of first lattice vector in nanometers\n"
+		"\n"
+		"length_2: \n"
+		"length of second lattice vector in nanometers\n"
+		"\n"
+		"alpha: \n"
+		"angle between lattice vectors in radians\n"
+		"\n"
+		"xi: \n"
+		"rotation of lattice with respect to x-axis (beam direction) in radians\n"
+		"\n"
+		"damping_length: \n"
+		"the damping (coherence) length of the paracrystal in nanometers \n"
 		"\n"
 		""},
-	 { "FormFactorIcosahedron_clone", _wrap_FormFactorIcosahedron_clone, METH_O, "\n"
-		"FormFactorIcosahedron_clone(FormFactorIcosahedron self) -> FormFactorIcosahedron\n"
-		"FormFactorIcosahedron* FormFactorIcosahedron::clone() const override final\n"
+	 { "delete_InterferenceFunction2DParaCrystal", _wrap_delete_InterferenceFunction2DParaCrystal, METH_O, "\n"
+		"delete_InterferenceFunction2DParaCrystal(InterferenceFunction2DParaCrystal self)\n"
+		"InterferenceFunction2DParaCrystal::~InterferenceFunction2DParaCrystal() final\n"
+		"\n"
+		""},
+	 { "InterferenceFunction2DParaCrystal_clone", _wrap_InterferenceFunction2DParaCrystal_clone, METH_O, "\n"
+		"InterferenceFunction2DParaCrystal_clone(InterferenceFunction2DParaCrystal self) -> InterferenceFunction2DParaCrystal\n"
+		"InterferenceFunction2DParaCrystal * InterferenceFunction2DParaCrystal::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorIcosahedron_accept", _wrap_FormFactorIcosahedron_accept, METH_VARARGS, "\n"
-		"FormFactorIcosahedron_accept(FormFactorIcosahedron self, INodeVisitor visitor)\n"
-		"void FormFactorIcosahedron::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunction2DParaCrystal_accept", _wrap_InterferenceFunction2DParaCrystal_accept, METH_VARARGS, "\n"
+		"InterferenceFunction2DParaCrystal_accept(InterferenceFunction2DParaCrystal self, INodeVisitor visitor)\n"
+		"void InterferenceFunction2DParaCrystal::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorIcosahedron_getEdge", _wrap_FormFactorIcosahedron_getEdge, METH_O, "\n"
-		"FormFactorIcosahedron_getEdge(FormFactorIcosahedron self) -> double\n"
-		"double FormFactorIcosahedron::getEdge() const\n"
-		"\n"
-		""},
-	 { "delete_FormFactorIcosahedron", _wrap_delete_FormFactorIcosahedron, METH_O, "delete_FormFactorIcosahedron(FormFactorIcosahedron self)"},
-	 { "FormFactorIcosahedron_swigregister", FormFactorIcosahedron_swigregister, METH_O, NULL},
-	 { "FormFactorIcosahedron_swiginit", FormFactorIcosahedron_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorLongBoxGauss", _wrap_new_FormFactorLongBoxGauss, METH_VARARGS, "\n"
-		"new_FormFactorLongBoxGauss(double length, double width, double height) -> FormFactorLongBoxGauss\n"
-		"FormFactorLongBoxGauss::FormFactorLongBoxGauss(double length, double width, double height)\n"
+	 { "InterferenceFunction2DParaCrystal_createSquare", _wrap_InterferenceFunction2DParaCrystal_createSquare, METH_VARARGS, "InterferenceFunction2DParaCrystal_createSquare(double lattice_length, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal"},
+	 { "InterferenceFunction2DParaCrystal_createHexagonal", _wrap_InterferenceFunction2DParaCrystal_createHexagonal, METH_VARARGS, "InterferenceFunction2DParaCrystal_createHexagonal(double lattice_length, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal"},
+	 { "InterferenceFunction2DParaCrystal_setDomainSizes", _wrap_InterferenceFunction2DParaCrystal_setDomainSizes, METH_VARARGS, "\n"
+		"InterferenceFunction2DParaCrystal_setDomainSizes(InterferenceFunction2DParaCrystal self, double size_1, double size_2)\n"
+		"void InterferenceFunction2DParaCrystal::setDomainSizes(double size_1, double size_2)\n"
 		"\n"
-		"Box constructor.\n"
+		"Sets the sizes of coherence domains.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"length: \n"
-		"of  Box's base\n"
-		"\n"
-		"width: \n"
-		"of  Box's base\n"
+		"size_1: \n"
+		"coherence domain size along the first basis vector in nanometers\n"
 		"\n"
-		"height: \n"
-		"of  Box\n"
+		"size_2: \n"
+		"coherence domain size along the second basis vector in nanometers \n"
 		"\n"
 		""},
-	 { "FormFactorLongBoxGauss_clone", _wrap_FormFactorLongBoxGauss_clone, METH_O, "\n"
-		"FormFactorLongBoxGauss_clone(FormFactorLongBoxGauss self) -> FormFactorLongBoxGauss\n"
-		"FormFactorLongBoxGauss* FormFactorLongBoxGauss::clone() const override final\n"
+	 { "InterferenceFunction2DParaCrystal_setProbabilityDistributions", _wrap_InterferenceFunction2DParaCrystal_setProbabilityDistributions, METH_VARARGS, "\n"
+		"InterferenceFunction2DParaCrystal_setProbabilityDistributions(InterferenceFunction2DParaCrystal self, IFTDistribution2D pdf_1, IFTDistribution2D pdf_2)\n"
+		"void InterferenceFunction2DParaCrystal::setProbabilityDistributions(const IFTDistribution2D &pdf_1, const IFTDistribution2D &pdf_2)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Sets the probability distributions (Fourier transformed) for the two lattice directions.\n"
 		"\n"
-		""},
-	 { "FormFactorLongBoxGauss_accept", _wrap_FormFactorLongBoxGauss_accept, METH_VARARGS, "\n"
-		"FormFactorLongBoxGauss_accept(FormFactorLongBoxGauss self, INodeVisitor visitor)\n"
-		"void FormFactorLongBoxGauss::accept(INodeVisitor *visitor) const override final\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"pdf_1: \n"
+		"probability distribution in first lattice direction\n"
 		"\n"
-		""},
-	 { "FormFactorLongBoxGauss_getLength", _wrap_FormFactorLongBoxGauss_getLength, METH_O, "\n"
-		"FormFactorLongBoxGauss_getLength(FormFactorLongBoxGauss self) -> double\n"
-		"double FormFactorLongBoxGauss::getLength() const\n"
+		"pdf_2: \n"
+		"probability distribution in second lattice direction \n"
 		"\n"
 		""},
-	 { "FormFactorLongBoxGauss_getHeight", _wrap_FormFactorLongBoxGauss_getHeight, METH_O, "\n"
-		"FormFactorLongBoxGauss_getHeight(FormFactorLongBoxGauss self) -> double\n"
-		"double FormFactorLongBoxGauss::getHeight() const\n"
+	 { "InterferenceFunction2DParaCrystal_setDampingLength", _wrap_InterferenceFunction2DParaCrystal_setDampingLength, METH_VARARGS, "\n"
+		"InterferenceFunction2DParaCrystal_setDampingLength(InterferenceFunction2DParaCrystal self, double damping_length)\n"
+		"void InterferenceFunction2DParaCrystal::setDampingLength(double damping_length)\n"
 		"\n"
-		""},
-	 { "FormFactorLongBoxGauss_getWidth", _wrap_FormFactorLongBoxGauss_getWidth, METH_O, "\n"
-		"FormFactorLongBoxGauss_getWidth(FormFactorLongBoxGauss self) -> double\n"
-		"double FormFactorLongBoxGauss::getWidth() const\n"
+		"Sets the damping length.\n"
 		"\n"
-		""},
-	 { "FormFactorLongBoxGauss_radialExtension", _wrap_FormFactorLongBoxGauss_radialExtension, METH_O, "\n"
-		"FormFactorLongBoxGauss_radialExtension(FormFactorLongBoxGauss self) -> double\n"
-		"double FormFactorLongBoxGauss::radialExtension() const override final\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"damping_length: \n"
+		"the damping (coherence) length of the paracrystal in nanometers \n"
 		"\n"
 		""},
-	 { "FormFactorLongBoxGauss_evaluate_for_q", _wrap_FormFactorLongBoxGauss_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorLongBoxGauss_evaluate_for_q(FormFactorLongBoxGauss self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorLongBoxGauss::evaluate_for_q(cvector_t q) const override final\n"
-		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+	 { "InterferenceFunction2DParaCrystal_domainSizes", _wrap_InterferenceFunction2DParaCrystal_domainSizes, METH_O, "\n"
+		"InterferenceFunction2DParaCrystal_domainSizes(InterferenceFunction2DParaCrystal self) -> vdouble1d_t\n"
+		"std::vector< double > InterferenceFunction2DParaCrystal::domainSizes() const\n"
 		"\n"
 		""},
-	 { "delete_FormFactorLongBoxGauss", _wrap_delete_FormFactorLongBoxGauss, METH_O, "delete_FormFactorLongBoxGauss(FormFactorLongBoxGauss self)"},
-	 { "FormFactorLongBoxGauss_swigregister", FormFactorLongBoxGauss_swigregister, METH_O, NULL},
-	 { "FormFactorLongBoxGauss_swiginit", FormFactorLongBoxGauss_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorLongBoxLorentz", _wrap_new_FormFactorLongBoxLorentz, METH_VARARGS, "\n"
-		"new_FormFactorLongBoxLorentz(double length, double width, double height) -> FormFactorLongBoxLorentz\n"
-		"FormFactorLongBoxLorentz::FormFactorLongBoxLorentz(double length, double width, double height)\n"
+	 { "InterferenceFunction2DParaCrystal_setIntegrationOverXi", _wrap_InterferenceFunction2DParaCrystal_setIntegrationOverXi, METH_VARARGS, "\n"
+		"InterferenceFunction2DParaCrystal_setIntegrationOverXi(InterferenceFunction2DParaCrystal self, bool integrate_xi)\n"
+		"void InterferenceFunction2DParaCrystal::setIntegrationOverXi(bool integrate_xi)\n"
 		"\n"
-		"Box constructor.\n"
+		"Enables/disables averaging over the lattice rotation angle.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"length: \n"
-		"of  Box's base\n"
-		"\n"
-		"width: \n"
-		"of  Box's base\n"
+		"integrate_xi: \n"
+		"integration flag \n"
 		"\n"
-		"height: \n"
-		"of  Box\n"
+		""},
+	 { "InterferenceFunction2DParaCrystal_integrationOverXi", _wrap_InterferenceFunction2DParaCrystal_integrationOverXi, METH_O, "\n"
+		"InterferenceFunction2DParaCrystal_integrationOverXi(InterferenceFunction2DParaCrystal self) -> bool\n"
+		"bool InterferenceFunction2DParaCrystal::integrationOverXi() const\n"
 		"\n"
 		""},
-	 { "FormFactorLongBoxLorentz_clone", _wrap_FormFactorLongBoxLorentz_clone, METH_O, "\n"
-		"FormFactorLongBoxLorentz_clone(FormFactorLongBoxLorentz self) -> FormFactorLongBoxLorentz\n"
-		"FormFactorLongBoxLorentz* FormFactorLongBoxLorentz::clone() const override final\n"
+	 { "InterferenceFunction2DParaCrystal_dampingLength", _wrap_InterferenceFunction2DParaCrystal_dampingLength, METH_O, "\n"
+		"InterferenceFunction2DParaCrystal_dampingLength(InterferenceFunction2DParaCrystal self) -> double\n"
+		"double InterferenceFunction2DParaCrystal::dampingLength() const\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		""},
+	 { "InterferenceFunction2DParaCrystal_lattice", _wrap_InterferenceFunction2DParaCrystal_lattice, METH_O, "\n"
+		"InterferenceFunction2DParaCrystal_lattice(InterferenceFunction2DParaCrystal self) -> Lattice2D\n"
+		"const Lattice2D & InterferenceFunction2DParaCrystal::lattice() const\n"
 		"\n"
 		""},
-	 { "FormFactorLongBoxLorentz_accept", _wrap_FormFactorLongBoxLorentz_accept, METH_VARARGS, "\n"
-		"FormFactorLongBoxLorentz_accept(FormFactorLongBoxLorentz self, INodeVisitor visitor)\n"
-		"void FormFactorLongBoxLorentz::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunction2DParaCrystal_getParticleDensity", _wrap_InterferenceFunction2DParaCrystal_getParticleDensity, METH_O, "\n"
+		"InterferenceFunction2DParaCrystal_getParticleDensity(InterferenceFunction2DParaCrystal self) -> double\n"
+		"double InterferenceFunction2DParaCrystal::getParticleDensity() const override final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"If defined by this interference function's parameters, returns the particle density (per area). Otherwise, returns zero or a user-defined value \n"
 		"\n"
 		""},
-	 { "FormFactorLongBoxLorentz_getLength", _wrap_FormFactorLongBoxLorentz_getLength, METH_O, "\n"
-		"FormFactorLongBoxLorentz_getLength(FormFactorLongBoxLorentz self) -> double\n"
-		"double FormFactorLongBoxLorentz::getLength() const\n"
+	 { "InterferenceFunction2DParaCrystal_getChildren", _wrap_InterferenceFunction2DParaCrystal_getChildren, METH_O, "\n"
+		"InterferenceFunction2DParaCrystal_getChildren(InterferenceFunction2DParaCrystal self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > InterferenceFunction2DParaCrystal::getChildren() const override final\n"
 		"\n"
-		""},
-	 { "FormFactorLongBoxLorentz_getHeight", _wrap_FormFactorLongBoxLorentz_getHeight, METH_O, "\n"
-		"FormFactorLongBoxLorentz_getHeight(FormFactorLongBoxLorentz self) -> double\n"
-		"double FormFactorLongBoxLorentz::getHeight() const\n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "FormFactorLongBoxLorentz_getWidth", _wrap_FormFactorLongBoxLorentz_getWidth, METH_O, "\n"
-		"FormFactorLongBoxLorentz_getWidth(FormFactorLongBoxLorentz self) -> double\n"
-		"double FormFactorLongBoxLorentz::getWidth() const\n"
+	 { "InterferenceFunction2DParaCrystal_pdf1", _wrap_InterferenceFunction2DParaCrystal_pdf1, METH_O, "\n"
+		"InterferenceFunction2DParaCrystal_pdf1(InterferenceFunction2DParaCrystal self) -> IFTDistribution2D\n"
+		"const IFTDistribution2D* InterferenceFunction2DParaCrystal::pdf1() const\n"
 		"\n"
 		""},
-	 { "FormFactorLongBoxLorentz_radialExtension", _wrap_FormFactorLongBoxLorentz_radialExtension, METH_O, "\n"
-		"FormFactorLongBoxLorentz_radialExtension(FormFactorLongBoxLorentz self) -> double\n"
-		"double FormFactorLongBoxLorentz::radialExtension() const override final\n"
-		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+	 { "InterferenceFunction2DParaCrystal_pdf2", _wrap_InterferenceFunction2DParaCrystal_pdf2, METH_O, "\n"
+		"InterferenceFunction2DParaCrystal_pdf2(InterferenceFunction2DParaCrystal self) -> IFTDistribution2D\n"
+		"const IFTDistribution2D* InterferenceFunction2DParaCrystal::pdf2() const\n"
 		"\n"
 		""},
-	 { "FormFactorLongBoxLorentz_evaluate_for_q", _wrap_FormFactorLongBoxLorentz_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorLongBoxLorentz_evaluate_for_q(FormFactorLongBoxLorentz self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorLongBoxLorentz::evaluate_for_q(cvector_t q) const override final\n"
+	 { "InterferenceFunction2DParaCrystal_swigregister", InterferenceFunction2DParaCrystal_swigregister, METH_O, NULL},
+	 { "InterferenceFunction2DParaCrystal_swiginit", InterferenceFunction2DParaCrystal_swiginit, METH_VARARGS, NULL},
+	 { "new_InterferenceFunction2DSuperLattice", _wrap_new_InterferenceFunction2DSuperLattice, METH_VARARGS, "\n"
+		"InterferenceFunction2DSuperLattice(Lattice2D lattice, unsigned int size_1, unsigned int size_2)\n"
+		"new_InterferenceFunction2DSuperLattice(double length_1, double length_2, double alpha, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice\n"
+		"InterferenceFunction2DSuperLattice::InterferenceFunction2DSuperLattice(double length_1, double length_2, double alpha, double xi, unsigned size_1, unsigned size_2)\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"Constructor of two-dimensional interference function.\n"
 		"\n"
-		""},
-	 { "delete_FormFactorLongBoxLorentz", _wrap_delete_FormFactorLongBoxLorentz, METH_O, "delete_FormFactorLongBoxLorentz(FormFactorLongBoxLorentz self)"},
-	 { "FormFactorLongBoxLorentz_swigregister", FormFactorLongBoxLorentz_swigregister, METH_O, NULL},
-	 { "FormFactorLongBoxLorentz_swiginit", FormFactorLongBoxLorentz_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorLorentz", _wrap_new_FormFactorLorentz, METH_VARARGS, "\n"
-		"FormFactorLorentz(double length)\n"
-		"new_FormFactorLorentz(double width, double height) -> FormFactorLorentz\n"
-		"FormFactorLorentz::FormFactorLorentz(double width, double height)\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "FormFactorLorentz_clone", _wrap_FormFactorLorentz_clone, METH_O, "\n"
-		"FormFactorLorentz_clone(FormFactorLorentz self) -> FormFactorLorentz\n"
-		"FormFactorLorentz* FormFactorLorentz::clone() const override final\n"
+		"length_1: \n"
+		"length of first lattice vector in nanometers\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"length_2: \n"
+		"length of second lattice vector in nanometers\n"
 		"\n"
-		""},
-	 { "FormFactorLorentz_accept", _wrap_FormFactorLorentz_accept, METH_VARARGS, "\n"
-		"FormFactorLorentz_accept(FormFactorLorentz self, INodeVisitor visitor)\n"
-		"void FormFactorLorentz::accept(INodeVisitor *visitor) const override final\n"
+		"alpha: \n"
+		"angle between lattice vectors in radians\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"xi: \n"
+		"rotation of lattice with respect to x-axis (beam direction) in radians \n"
 		"\n"
 		""},
-	 { "FormFactorLorentz_getWidth", _wrap_FormFactorLorentz_getWidth, METH_O, "\n"
-		"FormFactorLorentz_getWidth(FormFactorLorentz self) -> double\n"
-		"double FormFactorLorentz::getWidth() const\n"
+	 { "delete_InterferenceFunction2DSuperLattice", _wrap_delete_InterferenceFunction2DSuperLattice, METH_O, "\n"
+		"delete_InterferenceFunction2DSuperLattice(InterferenceFunction2DSuperLattice self)\n"
+		"InterferenceFunction2DSuperLattice::~InterferenceFunction2DSuperLattice() final\n"
 		"\n"
 		""},
-	 { "FormFactorLorentz_getHeight", _wrap_FormFactorLorentz_getHeight, METH_O, "\n"
-		"FormFactorLorentz_getHeight(FormFactorLorentz self) -> double\n"
-		"double FormFactorLorentz::getHeight() const\n"
+	 { "InterferenceFunction2DSuperLattice_clone", _wrap_InterferenceFunction2DSuperLattice_clone, METH_O, "\n"
+		"InterferenceFunction2DSuperLattice_clone(InterferenceFunction2DSuperLattice self) -> InterferenceFunction2DSuperLattice\n"
+		"InterferenceFunction2DSuperLattice * InterferenceFunction2DSuperLattice::clone() const override final\n"
+		"\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorLorentz_radialExtension", _wrap_FormFactorLorentz_radialExtension, METH_O, "\n"
-		"FormFactorLorentz_radialExtension(FormFactorLorentz self) -> double\n"
-		"double FormFactorLorentz::radialExtension() const override final\n"
+	 { "InterferenceFunction2DSuperLattice_accept", _wrap_InterferenceFunction2DSuperLattice_accept, METH_VARARGS, "\n"
+		"InterferenceFunction2DSuperLattice_accept(InterferenceFunction2DSuperLattice self, INodeVisitor visitor)\n"
+		"void InterferenceFunction2DSuperLattice::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorLorentz_evaluate_for_q", _wrap_FormFactorLorentz_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorLorentz_evaluate_for_q(FormFactorLorentz self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorLorentz::evaluate_for_q(cvector_t q) const override final\n"
-		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+	 { "InterferenceFunction2DSuperLattice_setSubstructureIFF", _wrap_InterferenceFunction2DSuperLattice_setSubstructureIFF, METH_VARARGS, "\n"
+		"InterferenceFunction2DSuperLattice_setSubstructureIFF(InterferenceFunction2DSuperLattice self, IInterferenceFunction sub_iff)\n"
+		"void InterferenceFunction2DSuperLattice::setSubstructureIFF(const IInterferenceFunction &sub_iff)\n"
 		"\n"
 		""},
-	 { "delete_FormFactorLorentz", _wrap_delete_FormFactorLorentz, METH_O, "delete_FormFactorLorentz(FormFactorLorentz self)"},
-	 { "FormFactorLorentz_swigregister", FormFactorLorentz_swigregister, METH_O, NULL},
-	 { "FormFactorLorentz_swiginit", FormFactorLorentz_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorOrnsteinZernike", _wrap_new_FormFactorOrnsteinZernike, METH_VARARGS, "\n"
-		"new_FormFactorOrnsteinZernike(double I0, double xi_xy, double xi_z) -> FormFactorOrnsteinZernike\n"
-		"FormFactorOrnsteinZernike::FormFactorOrnsteinZernike(double I0, double xi_xy, double xi_z)\n"
+	 { "InterferenceFunction2DSuperLattice_substructureIFF", _wrap_InterferenceFunction2DSuperLattice_substructureIFF, METH_O, "\n"
+		"InterferenceFunction2DSuperLattice_substructureIFF(InterferenceFunction2DSuperLattice self) -> IInterferenceFunction\n"
+		"const IInterferenceFunction & InterferenceFunction2DSuperLattice::substructureIFF() const\n"
 		"\n"
 		""},
-	 { "FormFactorOrnsteinZernike_clone", _wrap_FormFactorOrnsteinZernike_clone, METH_O, "\n"
-		"FormFactorOrnsteinZernike_clone(FormFactorOrnsteinZernike self) -> FormFactorOrnsteinZernike\n"
-		"FormFactorOrnsteinZernike* FormFactorOrnsteinZernike::clone() const override final\n"
+	 { "InterferenceFunction2DSuperLattice_createSquare", _wrap_InterferenceFunction2DSuperLattice_createSquare, METH_VARARGS, "InterferenceFunction2DSuperLattice_createSquare(double lattice_length, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice"},
+	 { "InterferenceFunction2DSuperLattice_createHexagonal", _wrap_InterferenceFunction2DSuperLattice_createHexagonal, METH_VARARGS, "InterferenceFunction2DSuperLattice_createHexagonal(double lattice_length, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice"},
+	 { "InterferenceFunction2DSuperLattice_evaluate", _wrap_InterferenceFunction2DSuperLattice_evaluate, METH_VARARGS, "\n"
+		"InterferenceFunction2DSuperLattice_evaluate(InterferenceFunction2DSuperLattice self, kvector_t q, double outer_iff=1.0) -> double\n"
+		"double InterferenceFunction2DSuperLattice::evaluate(const kvector_t q, double outer_iff=1.0) const override final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Evaluates the interference function for a given wavevector transfer. \n"
 		"\n"
 		""},
-	 { "FormFactorOrnsteinZernike_accept", _wrap_FormFactorOrnsteinZernike_accept, METH_VARARGS, "\n"
-		"FormFactorOrnsteinZernike_accept(FormFactorOrnsteinZernike self, INodeVisitor visitor)\n"
-		"void FormFactorOrnsteinZernike::accept(INodeVisitor *visitor) const override final\n"
-		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+	 { "InterferenceFunction2DSuperLattice_domainSize1", _wrap_InterferenceFunction2DSuperLattice_domainSize1, METH_O, "\n"
+		"InterferenceFunction2DSuperLattice_domainSize1(InterferenceFunction2DSuperLattice self) -> unsigned int\n"
+		"unsigned InterferenceFunction2DSuperLattice::domainSize1() const\n"
 		"\n"
 		""},
-	 { "FormFactorOrnsteinZernike_radialExtension", _wrap_FormFactorOrnsteinZernike_radialExtension, METH_O, "\n"
-		"FormFactorOrnsteinZernike_radialExtension(FormFactorOrnsteinZernike self) -> double\n"
-		"double FormFactorOrnsteinZernike::radialExtension() const override final\n"
+	 { "InterferenceFunction2DSuperLattice_domainSize2", _wrap_InterferenceFunction2DSuperLattice_domainSize2, METH_O, "\n"
+		"InterferenceFunction2DSuperLattice_domainSize2(InterferenceFunction2DSuperLattice self) -> unsigned int\n"
+		"unsigned InterferenceFunction2DSuperLattice::domainSize2() const\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		""},
+	 { "InterferenceFunction2DSuperLattice_setIntegrationOverXi", _wrap_InterferenceFunction2DSuperLattice_setIntegrationOverXi, METH_VARARGS, "\n"
+		"InterferenceFunction2DSuperLattice_setIntegrationOverXi(InterferenceFunction2DSuperLattice self, bool integrate_xi)\n"
+		"void InterferenceFunction2DSuperLattice::setIntegrationOverXi(bool integrate_xi)\n"
 		"\n"
 		""},
-	 { "FormFactorOrnsteinZernike_evaluate_for_q", _wrap_FormFactorOrnsteinZernike_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorOrnsteinZernike_evaluate_for_q(FormFactorOrnsteinZernike self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorOrnsteinZernike::evaluate_for_q(cvector_t q) const override final\n"
-		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+	 { "InterferenceFunction2DSuperLattice_integrationOverXi", _wrap_InterferenceFunction2DSuperLattice_integrationOverXi, METH_O, "\n"
+		"InterferenceFunction2DSuperLattice_integrationOverXi(InterferenceFunction2DSuperLattice self) -> bool\n"
+		"bool InterferenceFunction2DSuperLattice::integrationOverXi() const\n"
 		"\n"
 		""},
-	 { "delete_FormFactorOrnsteinZernike", _wrap_delete_FormFactorOrnsteinZernike, METH_O, "delete_FormFactorOrnsteinZernike(FormFactorOrnsteinZernike self)"},
-	 { "FormFactorOrnsteinZernike_swigregister", FormFactorOrnsteinZernike_swigregister, METH_O, NULL},
-	 { "FormFactorOrnsteinZernike_swiginit", FormFactorOrnsteinZernike_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorPrism3", _wrap_new_FormFactorPrism3, METH_VARARGS, "\n"
-		"new_FormFactorPrism3(double base_edge, double height) -> FormFactorPrism3\n"
-		"FormFactorPrism3::FormFactorPrism3(double base_edge, double height)\n"
+	 { "InterferenceFunction2DSuperLattice_lattice", _wrap_InterferenceFunction2DSuperLattice_lattice, METH_O, "\n"
+		"InterferenceFunction2DSuperLattice_lattice(InterferenceFunction2DSuperLattice self) -> Lattice2D\n"
+		"const Lattice2D & InterferenceFunction2DSuperLattice::lattice() const\n"
 		"\n"
-		"Constructor of a prism with an equilaterial triangle base.\n"
+		""},
+	 { "InterferenceFunction2DSuperLattice_getChildren", _wrap_InterferenceFunction2DSuperLattice_getChildren, METH_O, "\n"
+		"InterferenceFunction2DSuperLattice_getChildren(InterferenceFunction2DSuperLattice self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > InterferenceFunction2DSuperLattice::getChildren() const override final\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Returns a vector of children (const). \n"
 		"\n"
-		"base_edge: \n"
-		"length of the base edge in nanometers\n"
+		""},
+	 { "InterferenceFunction2DSuperLattice_swigregister", InterferenceFunction2DSuperLattice_swigregister, METH_O, NULL},
+	 { "InterferenceFunction2DSuperLattice_swiginit", InterferenceFunction2DSuperLattice_swiginit, METH_VARARGS, NULL},
+	 { "new_InterferenceFunction3DLattice", _wrap_new_InterferenceFunction3DLattice, METH_O, "\n"
+		"new_InterferenceFunction3DLattice(Lattice lattice) -> InterferenceFunction3DLattice\n"
+		"InterferenceFunction3DLattice::InterferenceFunction3DLattice(const Lattice &lattice)\n"
 		"\n"
-		"height: \n"
-		"height in nanometers \n"
+		""},
+	 { "delete_InterferenceFunction3DLattice", _wrap_delete_InterferenceFunction3DLattice, METH_O, "\n"
+		"delete_InterferenceFunction3DLattice(InterferenceFunction3DLattice self)\n"
+		"InterferenceFunction3DLattice::~InterferenceFunction3DLattice() final\n"
 		"\n"
 		""},
-	 { "FormFactorPrism3_clone", _wrap_FormFactorPrism3_clone, METH_O, "\n"
-		"FormFactorPrism3_clone(FormFactorPrism3 self) -> FormFactorPrism3\n"
-		"FormFactorPrism3* FormFactorPrism3::clone() const override final\n"
+	 { "InterferenceFunction3DLattice_clone", _wrap_InterferenceFunction3DLattice_clone, METH_O, "\n"
+		"InterferenceFunction3DLattice_clone(InterferenceFunction3DLattice self) -> InterferenceFunction3DLattice\n"
+		"InterferenceFunction3DLattice * InterferenceFunction3DLattice::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorPrism3_accept", _wrap_FormFactorPrism3_accept, METH_VARARGS, "\n"
-		"FormFactorPrism3_accept(FormFactorPrism3 self, INodeVisitor visitor)\n"
-		"void FormFactorPrism3::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunction3DLattice_accept", _wrap_InterferenceFunction3DLattice_accept, METH_VARARGS, "\n"
+		"InterferenceFunction3DLattice_accept(InterferenceFunction3DLattice self, INodeVisitor visitor)\n"
+		"void InterferenceFunction3DLattice::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorPrism3_getBaseEdge", _wrap_FormFactorPrism3_getBaseEdge, METH_O, "\n"
-		"FormFactorPrism3_getBaseEdge(FormFactorPrism3 self) -> double\n"
-		"double FormFactorPrism3::getBaseEdge() const\n"
+	 { "InterferenceFunction3DLattice_setPeakShape", _wrap_InterferenceFunction3DLattice_setPeakShape, METH_VARARGS, "\n"
+		"InterferenceFunction3DLattice_setPeakShape(InterferenceFunction3DLattice self, IPeakShape peak_shape)\n"
+		"void InterferenceFunction3DLattice::setPeakShape(const IPeakShape &peak_shape)\n"
 		"\n"
 		""},
-	 { "delete_FormFactorPrism3", _wrap_delete_FormFactorPrism3, METH_O, "delete_FormFactorPrism3(FormFactorPrism3 self)"},
-	 { "FormFactorPrism3_swigregister", FormFactorPrism3_swigregister, METH_O, NULL},
-	 { "FormFactorPrism3_swiginit", FormFactorPrism3_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorPrism6", _wrap_new_FormFactorPrism6, METH_VARARGS, "\n"
-		"new_FormFactorPrism6(double base_edge, double height) -> FormFactorPrism6\n"
-		"FormFactorPrism6::FormFactorPrism6(double base_edge, double height)\n"
-		"\n"
-		"Constructor of a prism with a regular hexagonal base.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
-		"\n"
-		"base_edge: \n"
-		"length of the hexagonal base in nanometers\n"
-		"\n"
-		"height: \n"
-		"height in nanometers \n"
+	 { "InterferenceFunction3DLattice_lattice", _wrap_InterferenceFunction3DLattice_lattice, METH_O, "\n"
+		"InterferenceFunction3DLattice_lattice(InterferenceFunction3DLattice self) -> Lattice\n"
+		"const Lattice & InterferenceFunction3DLattice::lattice() const\n"
 		"\n"
 		""},
-	 { "FormFactorPrism6_clone", _wrap_FormFactorPrism6_clone, METH_O, "\n"
-		"FormFactorPrism6_clone(FormFactorPrism6 self) -> FormFactorPrism6\n"
-		"FormFactorPrism6* FormFactorPrism6::clone() const override final\n"
+	 { "InterferenceFunction3DLattice_supportsMultilayer", _wrap_InterferenceFunction3DLattice_supportsMultilayer, METH_O, "\n"
+		"InterferenceFunction3DLattice_supportsMultilayer(InterferenceFunction3DLattice self) -> bool\n"
+		"bool InterferenceFunction3DLattice::supportsMultilayer() const override final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Indicates if this interference function can be used with a multilayer (DWBA mode) \n"
 		"\n"
 		""},
-	 { "FormFactorPrism6_accept", _wrap_FormFactorPrism6_accept, METH_VARARGS, "\n"
-		"FormFactorPrism6_accept(FormFactorPrism6 self, INodeVisitor visitor)\n"
-		"void FormFactorPrism6::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunction3DLattice_getChildren", _wrap_InterferenceFunction3DLattice_getChildren, METH_O, "\n"
+		"InterferenceFunction3DLattice_getChildren(InterferenceFunction3DLattice self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > InterferenceFunction3DLattice::getChildren() const override final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "FormFactorPrism6_getBaseEdge", _wrap_FormFactorPrism6_getBaseEdge, METH_O, "\n"
-		"FormFactorPrism6_getBaseEdge(FormFactorPrism6 self) -> double\n"
-		"double FormFactorPrism6::getBaseEdge() const\n"
+	 { "InterferenceFunction3DLattice_onChange", _wrap_InterferenceFunction3DLattice_onChange, METH_O, "\n"
+		"InterferenceFunction3DLattice_onChange(InterferenceFunction3DLattice self)\n"
+		"void InterferenceFunction3DLattice::onChange() override final\n"
+		"\n"
+		"Action to be taken in inherited class when a parameter has changed. \n"
 		"\n"
 		""},
-	 { "delete_FormFactorPrism6", _wrap_delete_FormFactorPrism6, METH_O, "delete_FormFactorPrism6(FormFactorPrism6 self)"},
-	 { "FormFactorPrism6_swigregister", FormFactorPrism6_swigregister, METH_O, NULL},
-	 { "FormFactorPrism6_swiginit", FormFactorPrism6_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorPyramid", _wrap_new_FormFactorPyramid, METH_VARARGS, "\n"
-		"new_FormFactorPyramid(double base_edge, double height, double alpha) -> FormFactorPyramid\n"
-		"FormFactorPyramid::FormFactorPyramid(double base_edge, double height, double alpha)\n"
+	 { "InterferenceFunction3DLattice_swigregister", InterferenceFunction3DLattice_swigregister, METH_O, NULL},
+	 { "InterferenceFunction3DLattice_swiginit", InterferenceFunction3DLattice_swiginit, METH_VARARGS, NULL},
+	 { "new_InterferenceFunctionFinite2DLattice", _wrap_new_InterferenceFunctionFinite2DLattice, METH_VARARGS, "\n"
+		"InterferenceFunctionFinite2DLattice(Lattice2D lattice, unsigned int N_1, unsigned int N_2)\n"
+		"new_InterferenceFunctionFinite2DLattice(double length_1, double length_2, double alpha, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice\n"
+		"InterferenceFunctionFinite2DLattice::InterferenceFunctionFinite2DLattice(double length_1, double length_2, double alpha, double xi, unsigned N_1, unsigned N_2)\n"
 		"\n"
-		"Constructor of a truncated pyramid with a square base\n"
+		"Constructor of two-dimensional finite lattice interference function.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"base_edge: \n"
-		"length of the square base in nanometers\n"
+		"length_1: \n"
+		"length of first lattice vector in nanometers\n"
 		"\n"
-		"height: \n"
-		"height of the pyramid in nanometers\n"
+		"length_2: \n"
+		"length of second lattice vector in nanometers\n"
 		"\n"
 		"alpha: \n"
-		"dihedral angle between the base and a side face in radians \n"
+		"angle between lattice vectors in radians\n"
+		"\n"
+		"xi: \n"
+		"rotation of lattice with respect to x-axis (beam direction) in radians\n"
+		"\n"
+		"N_1: \n"
+		"number of lattice cells in the first lattice direction\n"
+		"\n"
+		"N_2: \n"
+		"number of lattice cells in the second lattice direction \n"
 		"\n"
 		""},
-	 { "FormFactorPyramid_clone", _wrap_FormFactorPyramid_clone, METH_O, "\n"
-		"FormFactorPyramid_clone(FormFactorPyramid self) -> FormFactorPyramid\n"
-		"FormFactorPyramid* FormFactorPyramid::clone() const override final\n"
+	 { "delete_InterferenceFunctionFinite2DLattice", _wrap_delete_InterferenceFunctionFinite2DLattice, METH_O, "\n"
+		"delete_InterferenceFunctionFinite2DLattice(InterferenceFunctionFinite2DLattice self)\n"
+		"InterferenceFunctionFinite2DLattice::~InterferenceFunctionFinite2DLattice() final\n"
+		"\n"
+		""},
+	 { "InterferenceFunctionFinite2DLattice_clone", _wrap_InterferenceFunctionFinite2DLattice_clone, METH_O, "\n"
+		"InterferenceFunctionFinite2DLattice_clone(InterferenceFunctionFinite2DLattice self) -> InterferenceFunctionFinite2DLattice\n"
+		"InterferenceFunctionFinite2DLattice * InterferenceFunctionFinite2DLattice::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorPyramid_accept", _wrap_FormFactorPyramid_accept, METH_VARARGS, "\n"
-		"FormFactorPyramid_accept(FormFactorPyramid self, INodeVisitor visitor)\n"
-		"void FormFactorPyramid::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunctionFinite2DLattice_accept", _wrap_InterferenceFunctionFinite2DLattice_accept, METH_VARARGS, "\n"
+		"InterferenceFunctionFinite2DLattice_accept(InterferenceFunctionFinite2DLattice self, INodeVisitor visitor)\n"
+		"void InterferenceFunctionFinite2DLattice::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorPyramid_getHeight", _wrap_FormFactorPyramid_getHeight, METH_O, "\n"
-		"FormFactorPyramid_getHeight(FormFactorPyramid self) -> double\n"
-		"double FormFactorPyramid::getHeight() const\n"
+	 { "InterferenceFunctionFinite2DLattice_createSquare", _wrap_InterferenceFunctionFinite2DLattice_createSquare, METH_VARARGS, "InterferenceFunctionFinite2DLattice_createSquare(double lattice_length, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice"},
+	 { "InterferenceFunctionFinite2DLattice_createHexagonal", _wrap_InterferenceFunctionFinite2DLattice_createHexagonal, METH_VARARGS, "InterferenceFunctionFinite2DLattice_createHexagonal(double lattice_length, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice"},
+	 { "InterferenceFunctionFinite2DLattice_numberUnitCells1", _wrap_InterferenceFunctionFinite2DLattice_numberUnitCells1, METH_O, "\n"
+		"InterferenceFunctionFinite2DLattice_numberUnitCells1(InterferenceFunctionFinite2DLattice self) -> unsigned int\n"
+		"unsigned InterferenceFunctionFinite2DLattice::numberUnitCells1() const\n"
 		"\n"
 		""},
-	 { "FormFactorPyramid_getBaseEdge", _wrap_FormFactorPyramid_getBaseEdge, METH_O, "\n"
-		"FormFactorPyramid_getBaseEdge(FormFactorPyramid self) -> double\n"
-		"double FormFactorPyramid::getBaseEdge() const\n"
+	 { "InterferenceFunctionFinite2DLattice_numberUnitCells2", _wrap_InterferenceFunctionFinite2DLattice_numberUnitCells2, METH_O, "\n"
+		"InterferenceFunctionFinite2DLattice_numberUnitCells2(InterferenceFunctionFinite2DLattice self) -> unsigned int\n"
+		"unsigned InterferenceFunctionFinite2DLattice::numberUnitCells2() const\n"
 		"\n"
 		""},
-	 { "FormFactorPyramid_getAlpha", _wrap_FormFactorPyramid_getAlpha, METH_O, "\n"
-		"FormFactorPyramid_getAlpha(FormFactorPyramid self) -> double\n"
-		"double FormFactorPyramid::getAlpha() const\n"
+	 { "InterferenceFunctionFinite2DLattice_setIntegrationOverXi", _wrap_InterferenceFunctionFinite2DLattice_setIntegrationOverXi, METH_VARARGS, "\n"
+		"InterferenceFunctionFinite2DLattice_setIntegrationOverXi(InterferenceFunctionFinite2DLattice self, bool integrate_xi)\n"
+		"void InterferenceFunctionFinite2DLattice::setIntegrationOverXi(bool integrate_xi)\n"
 		"\n"
 		""},
-	 { "delete_FormFactorPyramid", _wrap_delete_FormFactorPyramid, METH_O, "delete_FormFactorPyramid(FormFactorPyramid self)"},
-	 { "FormFactorPyramid_swigregister", FormFactorPyramid_swigregister, METH_O, NULL},
-	 { "FormFactorPyramid_swiginit", FormFactorPyramid_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorRipple1Box", _wrap_new_FormFactorRipple1Box, METH_VARARGS, "\n"
-		"new_FormFactorRipple1Box(double length, double width, double height) -> FormFactorRipple1Box\n"
-		"FormFactorRipple1Box::FormFactorRipple1Box(double length, double width, double height)\n"
+	 { "InterferenceFunctionFinite2DLattice_integrationOverXi", _wrap_InterferenceFunctionFinite2DLattice_integrationOverXi, METH_O, "\n"
+		"InterferenceFunctionFinite2DLattice_integrationOverXi(InterferenceFunctionFinite2DLattice self) -> bool\n"
+		"bool InterferenceFunctionFinite2DLattice::integrationOverXi() const\n"
 		"\n"
 		""},
-	 { "FormFactorRipple1Box_clone", _wrap_FormFactorRipple1Box_clone, METH_O, "\n"
-		"FormFactorRipple1Box_clone(FormFactorRipple1Box self) -> FormFactorRipple1Box\n"
-		"FormFactorRipple1Box * FormFactorRipple1Box::clone() const override final\n"
-		"\n"
-		"Returns a clone of this  ISample object. \n"
+	 { "InterferenceFunctionFinite2DLattice_lattice", _wrap_InterferenceFunctionFinite2DLattice_lattice, METH_O, "\n"
+		"InterferenceFunctionFinite2DLattice_lattice(InterferenceFunctionFinite2DLattice self) -> Lattice2D\n"
+		"const Lattice2D & InterferenceFunctionFinite2DLattice::lattice() const\n"
 		"\n"
 		""},
-	 { "FormFactorRipple1Box_accept", _wrap_FormFactorRipple1Box_accept, METH_VARARGS, "\n"
-		"FormFactorRipple1Box_accept(FormFactorRipple1Box self, INodeVisitor visitor)\n"
-		"void FormFactorRipple1Box::accept(INodeVisitor *visitor) const override final\n"
-		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+	 { "InterferenceFunctionFinite2DLattice_getParticleDensity", _wrap_InterferenceFunctionFinite2DLattice_getParticleDensity, METH_O, "\n"
+		"InterferenceFunctionFinite2DLattice_getParticleDensity(InterferenceFunctionFinite2DLattice self) -> double\n"
+		"double InterferenceFunctionFinite2DLattice::getParticleDensity() const override final\n"
 		"\n"
-		""},
-	 { "delete_FormFactorRipple1Box", _wrap_delete_FormFactorRipple1Box, METH_O, "delete_FormFactorRipple1Box(FormFactorRipple1Box self)"},
-	 { "FormFactorRipple1Box_swigregister", FormFactorRipple1Box_swigregister, METH_O, NULL},
-	 { "FormFactorRipple1Box_swiginit", FormFactorRipple1Box_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorRipple1Gauss", _wrap_new_FormFactorRipple1Gauss, METH_VARARGS, "\n"
-		"new_FormFactorRipple1Gauss(double length, double width, double height) -> FormFactorRipple1Gauss\n"
-		"FormFactorRipple1Gauss::FormFactorRipple1Gauss(double length, double width, double height)\n"
+		"Returns the particle density associated with this 2d lattice. \n"
 		"\n"
 		""},
-	 { "FormFactorRipple1Gauss_clone", _wrap_FormFactorRipple1Gauss_clone, METH_O, "\n"
-		"FormFactorRipple1Gauss_clone(FormFactorRipple1Gauss self) -> FormFactorRipple1Gauss\n"
-		"FormFactorRipple1Gauss * FormFactorRipple1Gauss::clone() const override final\n"
+	 { "InterferenceFunctionFinite2DLattice_getChildren", _wrap_InterferenceFunctionFinite2DLattice_getChildren, METH_O, "\n"
+		"InterferenceFunctionFinite2DLattice_getChildren(InterferenceFunctionFinite2DLattice self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > InterferenceFunctionFinite2DLattice::getChildren() const override final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "FormFactorRipple1Gauss_accept", _wrap_FormFactorRipple1Gauss_accept, METH_VARARGS, "\n"
-		"FormFactorRipple1Gauss_accept(FormFactorRipple1Gauss self, INodeVisitor visitor)\n"
-		"void FormFactorRipple1Gauss::accept(INodeVisitor *visitor) const override final\n"
-		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+	 { "InterferenceFunctionFinite2DLattice_swigregister", InterferenceFunctionFinite2DLattice_swigregister, METH_O, NULL},
+	 { "InterferenceFunctionFinite2DLattice_swiginit", InterferenceFunctionFinite2DLattice_swiginit, METH_VARARGS, NULL},
+	 { "new_InterferenceFunctionFinite3DLattice", _wrap_new_InterferenceFunctionFinite3DLattice, METH_VARARGS, "\n"
+		"new_InterferenceFunctionFinite3DLattice(Lattice lattice, unsigned int N_1, unsigned int N_2, unsigned int N_3) -> InterferenceFunctionFinite3DLattice\n"
+		"InterferenceFunctionFinite3DLattice::InterferenceFunctionFinite3DLattice(const Lattice &lattice, unsigned N_1, unsigned N_2, unsigned N_3)\n"
 		"\n"
-		""},
-	 { "delete_FormFactorRipple1Gauss", _wrap_delete_FormFactorRipple1Gauss, METH_O, "delete_FormFactorRipple1Gauss(FormFactorRipple1Gauss self)"},
-	 { "FormFactorRipple1Gauss_swigregister", FormFactorRipple1Gauss_swigregister, METH_O, NULL},
-	 { "FormFactorRipple1Gauss_swiginit", FormFactorRipple1Gauss_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorRipple1Lorentz", _wrap_new_FormFactorRipple1Lorentz, METH_VARARGS, "\n"
-		"new_FormFactorRipple1Lorentz(double length, double width, double height) -> FormFactorRipple1Lorentz\n"
-		"FormFactorRipple1Lorentz::FormFactorRipple1Lorentz(double length, double width, double height)\n"
+		"Constructor of three-dimensional finite lattice interference function.\n"
 		"\n"
-		""},
-	 { "FormFactorRipple1Lorentz_clone", _wrap_FormFactorRipple1Lorentz_clone, METH_O, "\n"
-		"FormFactorRipple1Lorentz_clone(FormFactorRipple1Lorentz self) -> FormFactorRipple1Lorentz\n"
-		"FormFactorRipple1Lorentz * FormFactorRipple1Lorentz::clone() const override final\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"lattice: \n"
+		"object specifying a 2d lattice structure\n"
 		"\n"
-		""},
-	 { "FormFactorRipple1Lorentz_accept", _wrap_FormFactorRipple1Lorentz_accept, METH_VARARGS, "\n"
-		"FormFactorRipple1Lorentz_accept(FormFactorRipple1Lorentz self, INodeVisitor visitor)\n"
-		"void FormFactorRipple1Lorentz::accept(INodeVisitor *visitor) const override final\n"
+		"N_1: \n"
+		"number of lattice cells in the first lattice direction\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"N_2: \n"
+		"number of lattice cells in the second lattice direction \n"
 		"\n"
 		""},
-	 { "delete_FormFactorRipple1Lorentz", _wrap_delete_FormFactorRipple1Lorentz, METH_O, "delete_FormFactorRipple1Lorentz(FormFactorRipple1Lorentz self)"},
-	 { "FormFactorRipple1Lorentz_swigregister", FormFactorRipple1Lorentz_swigregister, METH_O, NULL},
-	 { "FormFactorRipple1Lorentz_swiginit", FormFactorRipple1Lorentz_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorRipple2Box", _wrap_new_FormFactorRipple2Box, METH_VARARGS, "\n"
-		"new_FormFactorRipple2Box(double length, double width, double height, double asymmetry) -> FormFactorRipple2Box\n"
-		"FormFactorRipple2Box::FormFactorRipple2Box(double length, double width, double height, double asymmetry)\n"
+	 { "delete_InterferenceFunctionFinite3DLattice", _wrap_delete_InterferenceFunctionFinite3DLattice, METH_O, "\n"
+		"delete_InterferenceFunctionFinite3DLattice(InterferenceFunctionFinite3DLattice self)\n"
+		"InterferenceFunctionFinite3DLattice::~InterferenceFunctionFinite3DLattice() final\n"
 		"\n"
 		""},
-	 { "FormFactorRipple2Box_clone", _wrap_FormFactorRipple2Box_clone, METH_O, "\n"
-		"FormFactorRipple2Box_clone(FormFactorRipple2Box self) -> FormFactorRipple2Box\n"
-		"FormFactorRipple2Box * FormFactorRipple2Box::clone() const override final\n"
+	 { "InterferenceFunctionFinite3DLattice_clone", _wrap_InterferenceFunctionFinite3DLattice_clone, METH_O, "\n"
+		"InterferenceFunctionFinite3DLattice_clone(InterferenceFunctionFinite3DLattice self) -> InterferenceFunctionFinite3DLattice\n"
+		"InterferenceFunctionFinite3DLattice * InterferenceFunctionFinite3DLattice::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorRipple2Box_accept", _wrap_FormFactorRipple2Box_accept, METH_VARARGS, "\n"
-		"FormFactorRipple2Box_accept(FormFactorRipple2Box self, INodeVisitor visitor)\n"
-		"void FormFactorRipple2Box::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunctionFinite3DLattice_accept", _wrap_InterferenceFunctionFinite3DLattice_accept, METH_VARARGS, "\n"
+		"InterferenceFunctionFinite3DLattice_accept(InterferenceFunctionFinite3DLattice self, INodeVisitor visitor)\n"
+		"void InterferenceFunctionFinite3DLattice::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_FormFactorRipple2Box", _wrap_delete_FormFactorRipple2Box, METH_O, "delete_FormFactorRipple2Box(FormFactorRipple2Box self)"},
-	 { "FormFactorRipple2Box_swigregister", FormFactorRipple2Box_swigregister, METH_O, NULL},
-	 { "FormFactorRipple2Box_swiginit", FormFactorRipple2Box_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorRipple2Gauss", _wrap_new_FormFactorRipple2Gauss, METH_VARARGS, "\n"
-		"new_FormFactorRipple2Gauss(double length, double width, double height, double asymmetry) -> FormFactorRipple2Gauss\n"
-		"FormFactorRipple2Gauss::FormFactorRipple2Gauss(double length, double width, double height, double asymmetry)\n"
+	 { "InterferenceFunctionFinite3DLattice_numberUnitCells1", _wrap_InterferenceFunctionFinite3DLattice_numberUnitCells1, METH_O, "\n"
+		"InterferenceFunctionFinite3DLattice_numberUnitCells1(InterferenceFunctionFinite3DLattice self) -> unsigned int\n"
+		"unsigned InterferenceFunctionFinite3DLattice::numberUnitCells1() const\n"
 		"\n"
 		""},
-	 { "FormFactorRipple2Gauss_clone", _wrap_FormFactorRipple2Gauss_clone, METH_O, "\n"
-		"FormFactorRipple2Gauss_clone(FormFactorRipple2Gauss self) -> FormFactorRipple2Gauss\n"
-		"FormFactorRipple2Gauss * FormFactorRipple2Gauss::clone() const override final\n"
-		"\n"
-		"Returns a clone of this  ISample object. \n"
+	 { "InterferenceFunctionFinite3DLattice_numberUnitCells2", _wrap_InterferenceFunctionFinite3DLattice_numberUnitCells2, METH_O, "\n"
+		"InterferenceFunctionFinite3DLattice_numberUnitCells2(InterferenceFunctionFinite3DLattice self) -> unsigned int\n"
+		"unsigned InterferenceFunctionFinite3DLattice::numberUnitCells2() const\n"
 		"\n"
 		""},
-	 { "FormFactorRipple2Gauss_accept", _wrap_FormFactorRipple2Gauss_accept, METH_VARARGS, "\n"
-		"FormFactorRipple2Gauss_accept(FormFactorRipple2Gauss self, INodeVisitor visitor)\n"
-		"void FormFactorRipple2Gauss::accept(INodeVisitor *visitor) const override final\n"
-		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+	 { "InterferenceFunctionFinite3DLattice_numberUnitCells3", _wrap_InterferenceFunctionFinite3DLattice_numberUnitCells3, METH_O, "\n"
+		"InterferenceFunctionFinite3DLattice_numberUnitCells3(InterferenceFunctionFinite3DLattice self) -> unsigned int\n"
+		"unsigned InterferenceFunctionFinite3DLattice::numberUnitCells3() const\n"
 		"\n"
 		""},
-	 { "delete_FormFactorRipple2Gauss", _wrap_delete_FormFactorRipple2Gauss, METH_O, "delete_FormFactorRipple2Gauss(FormFactorRipple2Gauss self)"},
-	 { "FormFactorRipple2Gauss_swigregister", FormFactorRipple2Gauss_swigregister, METH_O, NULL},
-	 { "FormFactorRipple2Gauss_swiginit", FormFactorRipple2Gauss_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorRipple2Lorentz", _wrap_new_FormFactorRipple2Lorentz, METH_VARARGS, "\n"
-		"new_FormFactorRipple2Lorentz(double length, double width, double height, double asymmetry) -> FormFactorRipple2Lorentz\n"
-		"FormFactorRipple2Lorentz::FormFactorRipple2Lorentz(double length, double width, double height, double asymmetry)\n"
+	 { "InterferenceFunctionFinite3DLattice_lattice", _wrap_InterferenceFunctionFinite3DLattice_lattice, METH_O, "\n"
+		"InterferenceFunctionFinite3DLattice_lattice(InterferenceFunctionFinite3DLattice self) -> Lattice\n"
+		"const Lattice & InterferenceFunctionFinite3DLattice::lattice() const\n"
 		"\n"
 		""},
-	 { "FormFactorRipple2Lorentz_clone", _wrap_FormFactorRipple2Lorentz_clone, METH_O, "\n"
-		"FormFactorRipple2Lorentz_clone(FormFactorRipple2Lorentz self) -> FormFactorRipple2Lorentz\n"
-		"FormFactorRipple2Lorentz * FormFactorRipple2Lorentz::clone() const override final\n"
+	 { "InterferenceFunctionFinite3DLattice_supportsMultilayer", _wrap_InterferenceFunctionFinite3DLattice_supportsMultilayer, METH_O, "\n"
+		"InterferenceFunctionFinite3DLattice_supportsMultilayer(InterferenceFunctionFinite3DLattice self) -> bool\n"
+		"bool InterferenceFunctionFinite3DLattice::supportsMultilayer() const override final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Indicates if this interference function can be used with a multilayer (DWBA mode) \n"
 		"\n"
 		""},
-	 { "FormFactorRipple2Lorentz_accept", _wrap_FormFactorRipple2Lorentz_accept, METH_VARARGS, "\n"
-		"FormFactorRipple2Lorentz_accept(FormFactorRipple2Lorentz self, INodeVisitor visitor)\n"
-		"void FormFactorRipple2Lorentz::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunctionFinite3DLattice_getChildren", _wrap_InterferenceFunctionFinite3DLattice_getChildren, METH_O, "\n"
+		"InterferenceFunctionFinite3DLattice_getChildren(InterferenceFunctionFinite3DLattice self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > InterferenceFunctionFinite3DLattice::getChildren() const override final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "delete_FormFactorRipple2Lorentz", _wrap_delete_FormFactorRipple2Lorentz, METH_O, "delete_FormFactorRipple2Lorentz(FormFactorRipple2Lorentz self)"},
-	 { "FormFactorRipple2Lorentz_swigregister", FormFactorRipple2Lorentz_swigregister, METH_O, NULL},
-	 { "FormFactorRipple2Lorentz_swiginit", FormFactorRipple2Lorentz_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorSphereGaussianRadius", _wrap_new_FormFactorSphereGaussianRadius, METH_VARARGS, "\n"
-		"new_FormFactorSphereGaussianRadius(double mean, double sigma) -> FormFactorSphereGaussianRadius\n"
-		"FormFactorSphereGaussianRadius::FormFactorSphereGaussianRadius(double mean, double sigma)\n"
+	 { "InterferenceFunctionFinite3DLattice_swigregister", InterferenceFunctionFinite3DLattice_swigregister, METH_O, NULL},
+	 { "InterferenceFunctionFinite3DLattice_swiginit", InterferenceFunctionFinite3DLattice_swiginit, METH_VARARGS, NULL},
+	 { "new_InterferenceFunctionHardDisk", _wrap_new_InterferenceFunctionHardDisk, METH_VARARGS, "\n"
+		"new_InterferenceFunctionHardDisk(double radius, double density) -> InterferenceFunctionHardDisk\n"
+		"InterferenceFunctionHardDisk::InterferenceFunctionHardDisk(double radius, double density)\n"
 		"\n"
 		""},
-	 { "FormFactorSphereGaussianRadius_clone", _wrap_FormFactorSphereGaussianRadius_clone, METH_O, "\n"
-		"FormFactorSphereGaussianRadius_clone(FormFactorSphereGaussianRadius self) -> FormFactorSphereGaussianRadius\n"
-		"FormFactorSphereGaussianRadius* FormFactorSphereGaussianRadius::clone() const override final\n"
+	 { "delete_InterferenceFunctionHardDisk", _wrap_delete_InterferenceFunctionHardDisk, METH_O, "\n"
+		"delete_InterferenceFunctionHardDisk(InterferenceFunctionHardDisk self)\n"
+		"InterferenceFunctionHardDisk::~InterferenceFunctionHardDisk() final\n"
+		"\n"
+		""},
+	 { "InterferenceFunctionHardDisk_clone", _wrap_InterferenceFunctionHardDisk_clone, METH_O, "\n"
+		"InterferenceFunctionHardDisk_clone(InterferenceFunctionHardDisk self) -> InterferenceFunctionHardDisk\n"
+		"InterferenceFunctionHardDisk * InterferenceFunctionHardDisk::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorSphereGaussianRadius_accept", _wrap_FormFactorSphereGaussianRadius_accept, METH_VARARGS, "\n"
-		"FormFactorSphereGaussianRadius_accept(FormFactorSphereGaussianRadius self, INodeVisitor visitor)\n"
-		"void FormFactorSphereGaussianRadius::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunctionHardDisk_accept", _wrap_InterferenceFunctionHardDisk_accept, METH_VARARGS, "\n"
+		"InterferenceFunctionHardDisk_accept(InterferenceFunctionHardDisk self, INodeVisitor visitor)\n"
+		"void InterferenceFunctionHardDisk::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorSphereGaussianRadius_radialExtension", _wrap_FormFactorSphereGaussianRadius_radialExtension, METH_O, "\n"
-		"FormFactorSphereGaussianRadius_radialExtension(FormFactorSphereGaussianRadius self) -> double\n"
-		"double FormFactorSphereGaussianRadius::radialExtension() const override final\n"
+	 { "InterferenceFunctionHardDisk_getParticleDensity", _wrap_InterferenceFunctionHardDisk_getParticleDensity, METH_O, "\n"
+		"InterferenceFunctionHardDisk_getParticleDensity(InterferenceFunctionHardDisk self) -> double\n"
+		"double InterferenceFunctionHardDisk::getParticleDensity() const override final\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"If defined by this interference function's parameters, returns the particle density (per area). Otherwise, returns zero or a user-defined value \n"
 		"\n"
 		""},
-	 { "FormFactorSphereGaussianRadius_evaluate_for_q", _wrap_FormFactorSphereGaussianRadius_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorSphereGaussianRadius_evaluate_for_q(FormFactorSphereGaussianRadius self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorSphereGaussianRadius::evaluate_for_q(cvector_t q) const override final\n"
+	 { "InterferenceFunctionHardDisk_radius", _wrap_InterferenceFunctionHardDisk_radius, METH_O, "\n"
+		"InterferenceFunctionHardDisk_radius(InterferenceFunctionHardDisk self) -> double\n"
+		"double InterferenceFunctionHardDisk::radius() const\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		""},
+	 { "InterferenceFunctionHardDisk_density", _wrap_InterferenceFunctionHardDisk_density, METH_O, "\n"
+		"InterferenceFunctionHardDisk_density(InterferenceFunctionHardDisk self) -> double\n"
+		"double InterferenceFunctionHardDisk::density() const\n"
 		"\n"
 		""},
-	 { "delete_FormFactorSphereGaussianRadius", _wrap_delete_FormFactorSphereGaussianRadius, METH_O, "delete_FormFactorSphereGaussianRadius(FormFactorSphereGaussianRadius self)"},
-	 { "FormFactorSphereGaussianRadius_swigregister", FormFactorSphereGaussianRadius_swigregister, METH_O, NULL},
-	 { "FormFactorSphereGaussianRadius_swiginit", FormFactorSphereGaussianRadius_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorSphereLogNormalRadius", _wrap_new_FormFactorSphereLogNormalRadius, METH_VARARGS, "\n"
-		"new_FormFactorSphereLogNormalRadius(double mean, double scale_param, size_t n_samples) -> FormFactorSphereLogNormalRadius\n"
-		"FormFactorSphereLogNormalRadius::FormFactorSphereLogNormalRadius(double mean, double scale_param, size_t n_samples)\n"
+	 { "InterferenceFunctionHardDisk_swigregister", InterferenceFunctionHardDisk_swigregister, METH_O, NULL},
+	 { "InterferenceFunctionHardDisk_swiginit", InterferenceFunctionHardDisk_swiginit, METH_VARARGS, NULL},
+	 { "new_InterferenceFunctionNone", _wrap_new_InterferenceFunctionNone, METH_NOARGS, "\n"
+		"new_InterferenceFunctionNone() -> InterferenceFunctionNone\n"
+		"InterferenceFunctionNone::InterferenceFunctionNone()\n"
 		"\n"
 		""},
-	 { "FormFactorSphereLogNormalRadius_clone", _wrap_FormFactorSphereLogNormalRadius_clone, METH_O, "\n"
-		"FormFactorSphereLogNormalRadius_clone(FormFactorSphereLogNormalRadius self) -> FormFactorSphereLogNormalRadius\n"
-		"FormFactorSphereLogNormalRadius* FormFactorSphereLogNormalRadius::clone() const override final\n"
+	 { "InterferenceFunctionNone_clone", _wrap_InterferenceFunctionNone_clone, METH_O, "\n"
+		"InterferenceFunctionNone_clone(InterferenceFunctionNone self) -> InterferenceFunctionNone\n"
+		"InterferenceFunctionNone * InterferenceFunctionNone::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorSphereLogNormalRadius_accept", _wrap_FormFactorSphereLogNormalRadius_accept, METH_VARARGS, "\n"
-		"FormFactorSphereLogNormalRadius_accept(FormFactorSphereLogNormalRadius self, INodeVisitor visitor)\n"
-		"void FormFactorSphereLogNormalRadius::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunctionNone_accept", _wrap_InterferenceFunctionNone_accept, METH_VARARGS, "\n"
+		"InterferenceFunctionNone_accept(InterferenceFunctionNone self, INodeVisitor visitor)\n"
+		"void InterferenceFunctionNone::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorSphereLogNormalRadius_radialExtension", _wrap_FormFactorSphereLogNormalRadius_radialExtension, METH_O, "\n"
-		"FormFactorSphereLogNormalRadius_radialExtension(FormFactorSphereLogNormalRadius self) -> double\n"
-		"double FormFactorSphereLogNormalRadius::radialExtension() const override final\n"
+	 { "delete_InterferenceFunctionNone", _wrap_delete_InterferenceFunctionNone, METH_O, "delete_InterferenceFunctionNone(InterferenceFunctionNone self)"},
+	 { "InterferenceFunctionNone_swigregister", InterferenceFunctionNone_swigregister, METH_O, NULL},
+	 { "InterferenceFunctionNone_swiginit", InterferenceFunctionNone_swiginit, METH_VARARGS, NULL},
+	 { "new_InterferenceFunctionRadialParaCrystal", _wrap_new_InterferenceFunctionRadialParaCrystal, METH_VARARGS, "\n"
+		"InterferenceFunctionRadialParaCrystal(double peak_distance, double damping_length=0.0)\n"
+		"InterferenceFunctionRadialParaCrystal::InterferenceFunctionRadialParaCrystal(double peak_distance, double damping_length=0.0)\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Constructor of interference function of radial paracrystal.\n"
 		"\n"
-		""},
-	 { "FormFactorSphereLogNormalRadius_evaluate_for_q", _wrap_FormFactorSphereLogNormalRadius_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorSphereLogNormalRadius_evaluate_for_q(FormFactorSphereLogNormalRadius self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorSphereLogNormalRadius::evaluate_for_q(cvector_t q) const override final\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"peak_distance: \n"
+		"average distance to the next neighbor in nanometers\n"
 		"\n"
-		""},
-	 { "delete_FormFactorSphereLogNormalRadius", _wrap_delete_FormFactorSphereLogNormalRadius, METH_O, "delete_FormFactorSphereLogNormalRadius(FormFactorSphereLogNormalRadius self)"},
-	 { "FormFactorSphereLogNormalRadius_swigregister", FormFactorSphereLogNormalRadius_swigregister, METH_O, NULL},
-	 { "FormFactorSphereLogNormalRadius_swiginit", FormFactorSphereLogNormalRadius_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorSphereUniformRadius", _wrap_new_FormFactorSphereUniformRadius, METH_VARARGS, "\n"
-		"new_FormFactorSphereUniformRadius(double mean, double full_width) -> FormFactorSphereUniformRadius\n"
-		"FormFactorSphereUniformRadius::FormFactorSphereUniformRadius(double mean, double full_width)\n"
+		"damping_length: \n"
+		"the damping (coherence) length of the paracrystal in nanometers \n"
 		"\n"
 		""},
-	 { "FormFactorSphereUniformRadius_clone", _wrap_FormFactorSphereUniformRadius_clone, METH_O, "\n"
-		"FormFactorSphereUniformRadius_clone(FormFactorSphereUniformRadius self) -> FormFactorSphereUniformRadius\n"
-		"FormFactorSphereUniformRadius* FormFactorSphereUniformRadius::clone() const override final\n"
+	 { "InterferenceFunctionRadialParaCrystal_clone", _wrap_InterferenceFunctionRadialParaCrystal_clone, METH_O, "\n"
+		"InterferenceFunctionRadialParaCrystal_clone(InterferenceFunctionRadialParaCrystal self) -> InterferenceFunctionRadialParaCrystal\n"
+		"InterferenceFunctionRadialParaCrystal * InterferenceFunctionRadialParaCrystal::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorSphereUniformRadius_accept", _wrap_FormFactorSphereUniformRadius_accept, METH_VARARGS, "\n"
-		"FormFactorSphereUniformRadius_accept(FormFactorSphereUniformRadius self, INodeVisitor visitor)\n"
-		"void FormFactorSphereUniformRadius::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunctionRadialParaCrystal_accept", _wrap_InterferenceFunctionRadialParaCrystal_accept, METH_VARARGS, "\n"
+		"InterferenceFunctionRadialParaCrystal_accept(InterferenceFunctionRadialParaCrystal self, INodeVisitor visitor)\n"
+		"void InterferenceFunctionRadialParaCrystal::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorSphereUniformRadius_radialExtension", _wrap_FormFactorSphereUniformRadius_radialExtension, METH_O, "\n"
-		"FormFactorSphereUniformRadius_radialExtension(FormFactorSphereUniformRadius self) -> double\n"
-		"double FormFactorSphereUniformRadius::radialExtension() const override final\n"
+	 { "InterferenceFunctionRadialParaCrystal_setKappa", _wrap_InterferenceFunctionRadialParaCrystal_setKappa, METH_VARARGS, "\n"
+		"InterferenceFunctionRadialParaCrystal_setKappa(InterferenceFunctionRadialParaCrystal self, double kappa)\n"
+		"void InterferenceFunctionRadialParaCrystal::setKappa(double kappa)\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Sets size spacing coupling parameter of the Size Spacing Correlation Approximation.\n"
 		"\n"
-		""},
-	 { "FormFactorSphereUniformRadius_evaluate_for_q", _wrap_FormFactorSphereUniformRadius_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorSphereUniformRadius_evaluate_for_q(FormFactorSphereUniformRadius self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorSphereUniformRadius::evaluate_for_q(cvector_t q) const override final\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"size: \n"
+		"spacing coupling parameter \n"
 		"\n"
 		""},
-	 { "delete_FormFactorSphereUniformRadius", _wrap_delete_FormFactorSphereUniformRadius, METH_O, "delete_FormFactorSphereUniformRadius(FormFactorSphereUniformRadius self)"},
-	 { "FormFactorSphereUniformRadius_swigregister", FormFactorSphereUniformRadius_swigregister, METH_O, NULL},
-	 { "FormFactorSphereUniformRadius_swiginit", FormFactorSphereUniformRadius_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorTetrahedron", _wrap_new_FormFactorTetrahedron, METH_VARARGS, "\n"
-		"new_FormFactorTetrahedron(double base_edge, double height, double alpha) -> FormFactorTetrahedron\n"
-		"FormFactorTetrahedron::FormFactorTetrahedron(double base_edge, double height, double alpha)\n"
+	 { "InterferenceFunctionRadialParaCrystal_kappa", _wrap_InterferenceFunctionRadialParaCrystal_kappa, METH_O, "\n"
+		"InterferenceFunctionRadialParaCrystal_kappa(InterferenceFunctionRadialParaCrystal self) -> double\n"
+		"double InterferenceFunctionRadialParaCrystal::kappa() const\n"
 		"\n"
-		"Constructor of a truncated tethrahedron.\n"
+		""},
+	 { "InterferenceFunctionRadialParaCrystal_setDomainSize", _wrap_InterferenceFunctionRadialParaCrystal_setDomainSize, METH_VARARGS, "\n"
+		"InterferenceFunctionRadialParaCrystal_setDomainSize(InterferenceFunctionRadialParaCrystal self, double size)\n"
+		"void InterferenceFunctionRadialParaCrystal::setDomainSize(double size)\n"
+		"\n"
+		"Sets domain size (finite size corrections).\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"base_edge: \n"
-		"length of one edge of the equilateral triangular base in nanometers\n"
+		"size: \n"
+		"size of coherence domain along the lattice main axis in nanometers \n"
 		"\n"
-		"height: \n"
-		"height of the tetrahedron in nanometers\n"
+		""},
+	 { "InterferenceFunctionRadialParaCrystal_domainSize", _wrap_InterferenceFunctionRadialParaCrystal_domainSize, METH_O, "\n"
+		"InterferenceFunctionRadialParaCrystal_domainSize(InterferenceFunctionRadialParaCrystal self) -> double\n"
+		"double InterferenceFunctionRadialParaCrystal::domainSize() const\n"
 		"\n"
-		"alpha: \n"
-		"dihedral angle in radians between base and facet \n"
+		""},
+	 { "InterferenceFunctionRadialParaCrystal_FTPDF", _wrap_InterferenceFunctionRadialParaCrystal_FTPDF, METH_VARARGS, "\n"
+		"InterferenceFunctionRadialParaCrystal_FTPDF(InterferenceFunctionRadialParaCrystal self, double qpar) -> complex_t\n"
+		"complex_t InterferenceFunctionRadialParaCrystal::FTPDF(double qpar) const\n"
 		"\n"
 		""},
-	 { "FormFactorTetrahedron_clone", _wrap_FormFactorTetrahedron_clone, METH_O, "\n"
-		"FormFactorTetrahedron_clone(FormFactorTetrahedron self) -> FormFactorTetrahedron\n"
-		"FormFactorTetrahedron* FormFactorTetrahedron::clone() const override final\n"
+	 { "InterferenceFunctionRadialParaCrystal_setProbabilityDistribution", _wrap_InterferenceFunctionRadialParaCrystal_setProbabilityDistribution, METH_VARARGS, "\n"
+		"InterferenceFunctionRadialParaCrystal_setProbabilityDistribution(InterferenceFunctionRadialParaCrystal self, IFTDistribution1D pdf)\n"
+		"void InterferenceFunctionRadialParaCrystal::setProbabilityDistribution(const IFTDistribution1D &pdf)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Sets one-dimensional probability distribution.\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"pdf: \n"
+		"probability distribution (Fourier transform of probability density) \n"
 		"\n"
 		""},
-	 { "FormFactorTetrahedron_accept", _wrap_FormFactorTetrahedron_accept, METH_VARARGS, "\n"
-		"FormFactorTetrahedron_accept(FormFactorTetrahedron self, INodeVisitor visitor)\n"
-		"void FormFactorTetrahedron::accept(INodeVisitor *visitor) const override final\n"
+	 { "InterferenceFunctionRadialParaCrystal_peakDistance", _wrap_InterferenceFunctionRadialParaCrystal_peakDistance, METH_O, "\n"
+		"InterferenceFunctionRadialParaCrystal_peakDistance(InterferenceFunctionRadialParaCrystal self) -> double\n"
+		"double InterferenceFunctionRadialParaCrystal::peakDistance() const\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		""},
+	 { "InterferenceFunctionRadialParaCrystal_dampingLength", _wrap_InterferenceFunctionRadialParaCrystal_dampingLength, METH_O, "\n"
+		"InterferenceFunctionRadialParaCrystal_dampingLength(InterferenceFunctionRadialParaCrystal self) -> double\n"
+		"double InterferenceFunctionRadialParaCrystal::dampingLength() const\n"
 		"\n"
 		""},
-	 { "FormFactorTetrahedron_getBaseEdge", _wrap_FormFactorTetrahedron_getBaseEdge, METH_O, "\n"
-		"FormFactorTetrahedron_getBaseEdge(FormFactorTetrahedron self) -> double\n"
-		"double FormFactorTetrahedron::getBaseEdge() const\n"
+	 { "InterferenceFunctionRadialParaCrystal_getChildren", _wrap_InterferenceFunctionRadialParaCrystal_getChildren, METH_O, "\n"
+		"InterferenceFunctionRadialParaCrystal_getChildren(InterferenceFunctionRadialParaCrystal self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > InterferenceFunctionRadialParaCrystal::getChildren() const override final\n"
+		"\n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "FormFactorTetrahedron_getHeight", _wrap_FormFactorTetrahedron_getHeight, METH_O, "\n"
-		"FormFactorTetrahedron_getHeight(FormFactorTetrahedron self) -> double\n"
-		"double FormFactorTetrahedron::getHeight() const\n"
+	 { "InterferenceFunctionRadialParaCrystal_randomSample", _wrap_InterferenceFunctionRadialParaCrystal_randomSample, METH_O, "\n"
+		"InterferenceFunctionRadialParaCrystal_randomSample(InterferenceFunctionRadialParaCrystal self) -> double\n"
+		"double InterferenceFunctionRadialParaCrystal::randomSample() const\n"
 		"\n"
 		""},
-	 { "FormFactorTetrahedron_getAlpha", _wrap_FormFactorTetrahedron_getAlpha, METH_O, "\n"
-		"FormFactorTetrahedron_getAlpha(FormFactorTetrahedron self) -> double\n"
-		"double FormFactorTetrahedron::getAlpha() const\n"
+	 { "delete_InterferenceFunctionRadialParaCrystal", _wrap_delete_InterferenceFunctionRadialParaCrystal, METH_O, "delete_InterferenceFunctionRadialParaCrystal(InterferenceFunctionRadialParaCrystal self)"},
+	 { "InterferenceFunctionRadialParaCrystal_swigregister", InterferenceFunctionRadialParaCrystal_swigregister, METH_O, NULL},
+	 { "InterferenceFunctionRadialParaCrystal_swiginit", InterferenceFunctionRadialParaCrystal_swiginit, METH_VARARGS, NULL},
+	 { "new_InterferenceFunctionTwin", _wrap_new_InterferenceFunctionTwin, METH_VARARGS, "\n"
+		"new_InterferenceFunctionTwin(kvector_t direction, double mean_distance, double std_dev) -> InterferenceFunctionTwin\n"
+		"InterferenceFunctionTwin::InterferenceFunctionTwin(const kvector_t &direction, double mean_distance, double std_dev)\n"
 		"\n"
 		""},
-	 { "delete_FormFactorTetrahedron", _wrap_delete_FormFactorTetrahedron, METH_O, "delete_FormFactorTetrahedron(FormFactorTetrahedron self)"},
-	 { "FormFactorTetrahedron_swigregister", FormFactorTetrahedron_swigregister, METH_O, NULL},
-	 { "FormFactorTetrahedron_swiginit", FormFactorTetrahedron_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorTruncatedCube", _wrap_new_FormFactorTruncatedCube, METH_VARARGS, "\n"
-		"new_FormFactorTruncatedCube(double length, double removed_length) -> FormFactorTruncatedCube\n"
-		"FormFactorTruncatedCube::FormFactorTruncatedCube(double length, double removed_length)\n"
+	 { "InterferenceFunctionTwin_clone", _wrap_InterferenceFunctionTwin_clone, METH_O, "\n"
+		"InterferenceFunctionTwin_clone(InterferenceFunctionTwin self) -> InterferenceFunctionTwin\n"
+		"InterferenceFunctionTwin * InterferenceFunctionTwin::clone() const override final\n"
 		"\n"
-		"Constructor of a truncated cube.\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "InterferenceFunctionTwin_accept", _wrap_InterferenceFunctionTwin_accept, METH_VARARGS, "\n"
+		"InterferenceFunctionTwin_accept(InterferenceFunctionTwin self, INodeVisitor visitor)\n"
+		"void InterferenceFunctionTwin::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"length: \n"
-		"length of the full cube's edge in nanometers\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
-		"removed_length: \n"
-		"removed length from each edge of the cube in nanometers \n"
+		""},
+	 { "InterferenceFunctionTwin_direction", _wrap_InterferenceFunctionTwin_direction, METH_O, "\n"
+		"InterferenceFunctionTwin_direction(InterferenceFunctionTwin self) -> kvector_t\n"
+		"kvector_t InterferenceFunctionTwin::direction() const\n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedCube_clone", _wrap_FormFactorTruncatedCube_clone, METH_O, "\n"
-		"FormFactorTruncatedCube_clone(FormFactorTruncatedCube self) -> FormFactorTruncatedCube\n"
-		"FormFactorTruncatedCube* FormFactorTruncatedCube::clone() const override final\n"
+	 { "InterferenceFunctionTwin_meanDistance", _wrap_InterferenceFunctionTwin_meanDistance, METH_O, "\n"
+		"InterferenceFunctionTwin_meanDistance(InterferenceFunctionTwin self) -> double\n"
+		"double InterferenceFunctionTwin::meanDistance() const\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		""},
+	 { "InterferenceFunctionTwin_stdDev", _wrap_InterferenceFunctionTwin_stdDev, METH_O, "\n"
+		"InterferenceFunctionTwin_stdDev(InterferenceFunctionTwin self) -> double\n"
+		"double InterferenceFunctionTwin::stdDev() const\n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedCube_accept", _wrap_FormFactorTruncatedCube_accept, METH_VARARGS, "\n"
-		"FormFactorTruncatedCube_accept(FormFactorTruncatedCube self, INodeVisitor visitor)\n"
-		"void FormFactorTruncatedCube::accept(INodeVisitor *visitor) const override final\n"
+	 { "delete_InterferenceFunctionTwin", _wrap_delete_InterferenceFunctionTwin, METH_O, "delete_InterferenceFunctionTwin(InterferenceFunctionTwin self)"},
+	 { "InterferenceFunctionTwin_swigregister", InterferenceFunctionTwin_swigregister, METH_O, NULL},
+	 { "InterferenceFunctionTwin_swiginit", InterferenceFunctionTwin_swiginit, METH_VARARGS, NULL},
+	 { "new_ParticleLayout", _wrap_new_ParticleLayout, METH_VARARGS, "\n"
+		"ParticleLayout()\n"
+		"ParticleLayout(IAbstractParticle particle, double abundance=-1.0)\n"
+		"ParticleLayout::ParticleLayout(const IAbstractParticle &particle, double abundance=-1.0)\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		""},
+	 { "delete_ParticleLayout", _wrap_delete_ParticleLayout, METH_O, "\n"
+		"delete_ParticleLayout(ParticleLayout self)\n"
+		"ParticleLayout::~ParticleLayout() override\n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedCube_getLength", _wrap_FormFactorTruncatedCube_getLength, METH_O, "\n"
-		"FormFactorTruncatedCube_getLength(FormFactorTruncatedCube self) -> double\n"
-		"double FormFactorTruncatedCube::getLength() const\n"
+	 { "ParticleLayout_clone", _wrap_ParticleLayout_clone, METH_O, "\n"
+		"ParticleLayout_clone(ParticleLayout self) -> ParticleLayout\n"
+		"ParticleLayout * ParticleLayout::clone() const final override\n"
+		"\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedCube_getRemovedLength", _wrap_FormFactorTruncatedCube_getRemovedLength, METH_O, "\n"
-		"FormFactorTruncatedCube_getRemovedLength(FormFactorTruncatedCube self) -> double\n"
-		"double FormFactorTruncatedCube::getRemovedLength() const\n"
+	 { "ParticleLayout_accept", _wrap_ParticleLayout_accept, METH_VARARGS, "\n"
+		"ParticleLayout_accept(ParticleLayout self, INodeVisitor visitor)\n"
+		"void ParticleLayout::accept(INodeVisitor *visitor) const final override\n"
+		"\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_FormFactorTruncatedCube", _wrap_delete_FormFactorTruncatedCube, METH_O, "delete_FormFactorTruncatedCube(FormFactorTruncatedCube self)"},
-	 { "FormFactorTruncatedCube_swigregister", FormFactorTruncatedCube_swigregister, METH_O, NULL},
-	 { "FormFactorTruncatedCube_swiginit", FormFactorTruncatedCube_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorTruncatedSphere", _wrap_new_FormFactorTruncatedSphere, METH_VARARGS, "\n"
-		"FormFactorTruncatedSphere(double radius, double height, double dh=0.0)\n"
-		"FormFactorTruncatedSphere::FormFactorTruncatedSphere(double radius, double height, double dh=0.0)\n"
+	 { "ParticleLayout_addParticle", _wrap_ParticleLayout_addParticle, METH_VARARGS, "\n"
+		"ParticleLayout_addParticle(ParticleLayout self, IAbstractParticle particle, double abundance=-1.0, kvector_t position={}, IRotation rotation=IdentityRotation())\n"
+		"void ParticleLayout::addParticle(const IAbstractParticle &particle, double abundance=-1.0, const kvector_t position={}, const IRotation &rotation=IdentityRotation())\n"
 		"\n"
-		"Constructor of a spherical dome.\n"
+		"Adds particle to the layout with abundance, position and the rotation defined.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"radius: \n"
-		"radius of the truncated sphere in nanometers\n"
-		"\n"
-		"height: \n"
-		"height of the truncated sphere in nanometers\n"
+		"particle: \n"
+		"to be added\n"
 		"\n"
-		"dh: \n"
-		"length of cup truncated from the top \n"
+		"abundance: \n"
+		" Particle abundance\n"
 		"\n"
-		""},
-	 { "FormFactorTruncatedSphere_clone", _wrap_FormFactorTruncatedSphere_clone, METH_O, "\n"
-		"FormFactorTruncatedSphere_clone(FormFactorTruncatedSphere self) -> FormFactorTruncatedSphere\n"
-		"FormFactorTruncatedSphere* FormFactorTruncatedSphere::clone() const override final\n"
+		"position: \n"
+		" Particle position\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"rotation: \n"
+		" Particle rotation \n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedSphere_accept", _wrap_FormFactorTruncatedSphere_accept, METH_VARARGS, "\n"
-		"FormFactorTruncatedSphere_accept(FormFactorTruncatedSphere self, INodeVisitor visitor)\n"
-		"void FormFactorTruncatedSphere::accept(INodeVisitor *visitor) const override final\n"
+	 { "ParticleLayout_particles", _wrap_ParticleLayout_particles, METH_O, "\n"
+		"ParticleLayout_particles(ParticleLayout self) -> SafePointerVector< IParticle >\n"
+		"SafePointerVector< IParticle > ParticleLayout::particles() const final override\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns information on all particles (type and abundance) and generates new particles if an  IAbstractParticle denotes a collection \n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedSphere_getHeight", _wrap_FormFactorTruncatedSphere_getHeight, METH_O, "\n"
-		"FormFactorTruncatedSphere_getHeight(FormFactorTruncatedSphere self) -> double\n"
-		"double FormFactorTruncatedSphere::getHeight() const\n"
+	 { "ParticleLayout_interferenceFunction", _wrap_ParticleLayout_interferenceFunction, METH_O, "\n"
+		"ParticleLayout_interferenceFunction(ParticleLayout self) -> IInterferenceFunction\n"
+		"const IInterferenceFunction * ParticleLayout::interferenceFunction() const final override\n"
 		"\n"
-		""},
-	 { "FormFactorTruncatedSphere_getRadius", _wrap_FormFactorTruncatedSphere_getRadius, METH_O, "\n"
-		"FormFactorTruncatedSphere_getRadius(FormFactorTruncatedSphere self) -> double\n"
-		"double FormFactorTruncatedSphere::getRadius() const\n"
+		"Returns the interference function. \n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedSphere_getRemovedTop", _wrap_FormFactorTruncatedSphere_getRemovedTop, METH_O, "\n"
-		"FormFactorTruncatedSphere_getRemovedTop(FormFactorTruncatedSphere self) -> double\n"
-		"double FormFactorTruncatedSphere::getRemovedTop() const\n"
+	 { "ParticleLayout_getTotalAbundance", _wrap_ParticleLayout_getTotalAbundance, METH_O, "\n"
+		"ParticleLayout_getTotalAbundance(ParticleLayout self) -> double\n"
+		"double ParticleLayout::getTotalAbundance() const final override\n"
+		"\n"
+		"Get total abundance of all particles. \n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedSphere_radialExtension", _wrap_FormFactorTruncatedSphere_radialExtension, METH_O, "\n"
-		"FormFactorTruncatedSphere_radialExtension(FormFactorTruncatedSphere self) -> double\n"
-		"double FormFactorTruncatedSphere::radialExtension() const override final\n"
+	 { "ParticleLayout_setInterferenceFunction", _wrap_ParticleLayout_setInterferenceFunction, METH_VARARGS, "\n"
+		"ParticleLayout_setInterferenceFunction(ParticleLayout self, IInterferenceFunction interference_function)\n"
+		"void ParticleLayout::setInterferenceFunction(const IInterferenceFunction &interference_function)\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Adds interference functions. \n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedSphere_evaluate_for_q", _wrap_FormFactorTruncatedSphere_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorTruncatedSphere_evaluate_for_q(FormFactorTruncatedSphere self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorTruncatedSphere::evaluate_for_q(cvector_t q) const override final\n"
+	 { "ParticleLayout_totalParticleSurfaceDensity", _wrap_ParticleLayout_totalParticleSurfaceDensity, METH_O, "\n"
+		"ParticleLayout_totalParticleSurfaceDensity(ParticleLayout self) -> double\n"
+		"double ParticleLayout::totalParticleSurfaceDensity() const final override\n"
 		"\n"
-		"Complex form factor. \n"
+		"Returns surface density of all particles. \n"
 		"\n"
 		""},
-	 { "delete_FormFactorTruncatedSphere", _wrap_delete_FormFactorTruncatedSphere, METH_O, "delete_FormFactorTruncatedSphere(FormFactorTruncatedSphere self)"},
-	 { "FormFactorTruncatedSphere_swigregister", FormFactorTruncatedSphere_swigregister, METH_O, NULL},
-	 { "FormFactorTruncatedSphere_swiginit", FormFactorTruncatedSphere_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorTruncatedSpheroid", _wrap_new_FormFactorTruncatedSpheroid, METH_VARARGS, "\n"
-		"FormFactorTruncatedSpheroid(double radius, double height, double height_flattening, double dh=0.0)\n"
-		"FormFactorTruncatedSpheroid::FormFactorTruncatedSpheroid(double radius, double height, double height_flattening, double dh=0.0)\n"
+	 { "ParticleLayout_setTotalParticleSurfaceDensity", _wrap_ParticleLayout_setTotalParticleSurfaceDensity, METH_VARARGS, "\n"
+		"ParticleLayout_setTotalParticleSurfaceDensity(ParticleLayout self, double particle_density)\n"
+		"void ParticleLayout::setTotalParticleSurfaceDensity(double particle_density) final override\n"
 		"\n"
-		"Constructor of a spheroidal dome.\n"
+		"Sets total particle surface density.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"radius: \n"
-		"radius of the truncated spheroid in nanometers\n"
-		"\n"
-		"height: \n"
-		"height of the truncated spheroid in nanometers\n"
-		"\n"
-		"height_flattening: \n"
-		"ratio of the height of the corresponding full spheroid to its diameter\n"
-		"\n"
-		"dh: \n"
-		"length of cup truncated from the top \n"
+		"particle_density: \n"
+		"number of particles per square nanometer \n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedSpheroid_clone", _wrap_FormFactorTruncatedSpheroid_clone, METH_O, "\n"
-		"FormFactorTruncatedSpheroid_clone(FormFactorTruncatedSpheroid self) -> FormFactorTruncatedSpheroid\n"
-		"FormFactorTruncatedSpheroid* FormFactorTruncatedSpheroid::clone() const override final\n"
+	 { "ParticleLayout_getChildren", _wrap_ParticleLayout_getChildren, METH_O, "\n"
+		"ParticleLayout_getChildren(ParticleLayout self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > ParticleLayout::getChildren() const final override\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedSpheroid_accept", _wrap_FormFactorTruncatedSpheroid_accept, METH_VARARGS, "\n"
-		"FormFactorTruncatedSpheroid_accept(FormFactorTruncatedSpheroid self, INodeVisitor visitor)\n"
-		"void FormFactorTruncatedSpheroid::accept(INodeVisitor *visitor) const override final\n"
-		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+	 { "ParticleLayout_swigregister", ParticleLayout_swigregister, METH_O, NULL},
+	 { "ParticleLayout_swiginit", ParticleLayout_swiginit, METH_VARARGS, NULL},
+	 { "new_Beam", _wrap_new_Beam, METH_VARARGS, "\n"
+		"Beam()\n"
+		"new_Beam(Beam other) -> Beam\n"
+		"Beam::Beam(const Beam &other)\n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedSpheroid_getRadius", _wrap_FormFactorTruncatedSpheroid_getRadius, METH_O, "\n"
-		"FormFactorTruncatedSpheroid_getRadius(FormFactorTruncatedSpheroid self) -> double\n"
-		"double FormFactorTruncatedSpheroid::getRadius() const\n"
+	 { "delete_Beam", _wrap_delete_Beam, METH_O, "\n"
+		"delete_Beam(Beam self)\n"
+		"Beam::~Beam()\n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedSpheroid_getHeight", _wrap_FormFactorTruncatedSpheroid_getHeight, METH_O, "\n"
-		"FormFactorTruncatedSpheroid_getHeight(FormFactorTruncatedSpheroid self) -> double\n"
-		"double FormFactorTruncatedSpheroid::getHeight() const\n"
+	 { "Beam_getCentralK", _wrap_Beam_getCentralK, METH_O, "\n"
+		"Beam_getCentralK(Beam self) -> kvector_t\n"
+		"kvector_t Beam::getCentralK() const\n"
 		"\n"
-		""},
-	 { "FormFactorTruncatedSpheroid_getHeightFlattening", _wrap_FormFactorTruncatedSpheroid_getHeightFlattening, METH_O, "\n"
-		"FormFactorTruncatedSpheroid_getHeightFlattening(FormFactorTruncatedSpheroid self) -> double\n"
-		"double FormFactorTruncatedSpheroid::getHeightFlattening() const\n"
+		"Returns the wavevector. \n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedSpheroid_getRemovedTop", _wrap_FormFactorTruncatedSpheroid_getRemovedTop, METH_O, "\n"
-		"FormFactorTruncatedSpheroid_getRemovedTop(FormFactorTruncatedSpheroid self) -> double\n"
-		"double FormFactorTruncatedSpheroid::getRemovedTop() const\n"
+	 { "Beam_setCentralK", _wrap_Beam_setCentralK, METH_VARARGS, "\n"
+		"Beam_setCentralK(Beam self, double wavelength, double alpha_i, double phi_i)\n"
+		"void Beam::setCentralK(double wavelength, double alpha_i, double phi_i)\n"
+		"\n"
+		"Sets the wavevector in terms of wavelength and incoming angles. \n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedSpheroid_radialExtension", _wrap_FormFactorTruncatedSpheroid_radialExtension, METH_O, "\n"
-		"FormFactorTruncatedSpheroid_radialExtension(FormFactorTruncatedSpheroid self) -> double\n"
-		"double FormFactorTruncatedSpheroid::radialExtension() const override final\n"
+	 { "Beam_getIntensity", _wrap_Beam_getIntensity, METH_O, "\n"
+		"Beam_getIntensity(Beam self) -> double\n"
+		"double Beam::getIntensity() const\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Returns the beam intensity in neutrons/sec. \n"
 		"\n"
 		""},
-	 { "FormFactorTruncatedSpheroid_evaluate_for_q", _wrap_FormFactorTruncatedSpheroid_evaluate_for_q, METH_VARARGS, "\n"
-		"FormFactorTruncatedSpheroid_evaluate_for_q(FormFactorTruncatedSpheroid self, cvector_t q) -> complex_t\n"
-		"complex_t FormFactorTruncatedSpheroid::evaluate_for_q(cvector_t q) const override final\n"
+	 { "Beam_setIntensity", _wrap_Beam_setIntensity, METH_VARARGS, "\n"
+		"Beam_setIntensity(Beam self, double intensity)\n"
+		"void Beam::setIntensity(double intensity)\n"
 		"\n"
-		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"Sets the beam intensity in neutrons/sec. \n"
 		"\n"
 		""},
-	 { "delete_FormFactorTruncatedSpheroid", _wrap_delete_FormFactorTruncatedSpheroid, METH_O, "delete_FormFactorTruncatedSpheroid(FormFactorTruncatedSpheroid self)"},
-	 { "FormFactorTruncatedSpheroid_swigregister", FormFactorTruncatedSpheroid_swigregister, METH_O, NULL},
-	 { "FormFactorTruncatedSpheroid_swiginit", FormFactorTruncatedSpheroid_swiginit, METH_VARARGS, NULL},
-	 { "new_FormFactorWeighted", _wrap_new_FormFactorWeighted, METH_NOARGS, "\n"
-		"new_FormFactorWeighted() -> FormFactorWeighted\n"
-		"FormFactorWeighted::FormFactorWeighted()\n"
+	 { "Beam_footprintFactor", _wrap_Beam_footprintFactor, METH_O, "\n"
+		"Beam_footprintFactor(Beam self) -> IFootprintFactor\n"
+		"const IFootprintFactor * Beam::footprintFactor() const\n"
 		"\n"
-		""},
-	 { "delete_FormFactorWeighted", _wrap_delete_FormFactorWeighted, METH_O, "\n"
-		"delete_FormFactorWeighted(FormFactorWeighted self)\n"
-		"FormFactorWeighted::~FormFactorWeighted() override final\n"
+		"Returns footprint factor. \n"
 		"\n"
 		""},
-	 { "FormFactorWeighted_clone", _wrap_FormFactorWeighted_clone, METH_O, "\n"
-		"FormFactorWeighted_clone(FormFactorWeighted self) -> FormFactorWeighted\n"
-		"FormFactorWeighted * FormFactorWeighted::clone() const override final\n"
+	 { "Beam_setFootprintFactor", _wrap_Beam_setFootprintFactor, METH_VARARGS, "\n"
+		"Beam_setFootprintFactor(Beam self, IFootprintFactor shape_factor)\n"
+		"void Beam::setFootprintFactor(const IFootprintFactor &shape_factor)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Sets footprint factor to the beam. \n"
 		"\n"
 		""},
-	 { "FormFactorWeighted_accept", _wrap_FormFactorWeighted_accept, METH_VARARGS, "\n"
-		"FormFactorWeighted_accept(FormFactorWeighted self, INodeVisitor visitor)\n"
-		"void FormFactorWeighted::accept(INodeVisitor *visitor) const override final\n"
+	 { "Beam_setWidthRatio", _wrap_Beam_setWidthRatio, METH_VARARGS, "\n"
+		"Beam_setWidthRatio(Beam self, double width_ratio)\n"
+		"void Beam::setWidthRatio(double width_ratio)\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Sets beam to sample width ratio in footprint factor. \n"
 		"\n"
 		""},
-	 { "FormFactorWeighted_radialExtension", _wrap_FormFactorWeighted_radialExtension, METH_O, "\n"
-		"FormFactorWeighted_radialExtension(FormFactorWeighted self) -> double\n"
-		"double FormFactorWeighted::radialExtension() const override final\n"
+	 { "Beam_setPolarization", _wrap_Beam_setPolarization, METH_VARARGS, "\n"
+		"Beam_setPolarization(Beam self, kvector_t bloch_vector)\n"
+		"void Beam::setPolarization(const kvector_t bloch_vector)\n"
 		"\n"
-		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
+		"Sets the polarization density matrix according to the given Bloch vector. \n"
 		"\n"
 		""},
-	 { "FormFactorWeighted_bottomZ", _wrap_FormFactorWeighted_bottomZ, METH_VARARGS, "\n"
-		"FormFactorWeighted_bottomZ(FormFactorWeighted self, IRotation rotation) -> double\n"
-		"double FormFactorWeighted::bottomZ(const IRotation &rotation) const override final\n"
-		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+	 { "Beam_getBlochVector", _wrap_Beam_getBlochVector, METH_O, "\n"
+		"Beam_getBlochVector(Beam self) -> kvector_t\n"
+		"kvector_t Beam::getBlochVector() const\n"
 		"\n"
 		""},
-	 { "FormFactorWeighted_topZ", _wrap_FormFactorWeighted_topZ, METH_VARARGS, "\n"
-		"FormFactorWeighted_topZ(FormFactorWeighted self, IRotation rotation) -> double\n"
-		"double FormFactorWeighted::topZ(const IRotation &rotation) const override final\n"
+	 { "Beam_getWavelength", _wrap_Beam_getWavelength, METH_O, "\n"
+		"Beam_getWavelength(Beam self) -> double\n"
+		"double Beam::getWavelength() const\n"
 		"\n"
-		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
+		""},
+	 { "Beam_getAlpha", _wrap_Beam_getAlpha, METH_O, "\n"
+		"Beam_getAlpha(Beam self) -> double\n"
+		"double Beam::getAlpha() const\n"
 		"\n"
 		""},
-	 { "FormFactorWeighted_addFormFactor", _wrap_FormFactorWeighted_addFormFactor, METH_VARARGS, "\n"
-		"FormFactorWeighted_addFormFactor(FormFactorWeighted self, IFormFactor form_factor, double weight=1.0)\n"
-		"void FormFactorWeighted::addFormFactor(const IFormFactor &form_factor, double weight=1.0)\n"
+	 { "Beam_getPhi", _wrap_Beam_getPhi, METH_O, "\n"
+		"Beam_getPhi(Beam self) -> double\n"
+		"double Beam::getPhi() const\n"
 		"\n"
 		""},
-	 { "FormFactorWeighted_setAmbientMaterial", _wrap_FormFactorWeighted_setAmbientMaterial, METH_VARARGS, "\n"
-		"FormFactorWeighted_setAmbientMaterial(FormFactorWeighted self, Material material)\n"
-		"void FormFactorWeighted::setAmbientMaterial(Material material) override final\n"
+	 { "Beam_accept", _wrap_Beam_accept, METH_VARARGS, "\n"
+		"Beam_accept(Beam self, INodeVisitor visitor)\n"
+		"void Beam::accept(INodeVisitor *visitor) const override\n"
 		"\n"
-		"Passes the material in which this particle is embedded. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "FormFactorWeighted_evaluate", _wrap_FormFactorWeighted_evaluate, METH_VARARGS, "\n"
-		"FormFactorWeighted_evaluate(FormFactorWeighted self, WavevectorInfo wavevectors) -> complex_t\n"
-		"complex_t FormFactorWeighted::evaluate(const WavevectorInfo &wavevectors) const override final\n"
+	 { "Beam_getChildren", _wrap_Beam_getChildren, METH_O, "\n"
+		"Beam_getChildren(Beam self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > Beam::getChildren() const override\n"
 		"\n"
-		"Returns scattering amplitude for complex wavevectors ki, kf. \n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "FormFactorWeighted_swigregister", FormFactorWeighted_swigregister, METH_O, NULL},
-	 { "FormFactorWeighted_swiginit", FormFactorWeighted_swiginit, METH_VARARGS, NULL},
+	 { "Beam_swigregister", Beam_swigregister, METH_O, NULL},
+	 { "Beam_swiginit", Beam_swiginit, METH_VARARGS, NULL},
 	 { "delete_IFootprintFactor", _wrap_delete_IFootprintFactor, METH_O, "\n"
 		"delete_IFootprintFactor(IFootprintFactor self)\n"
 		"IFootprintFactor::~IFootprintFactor()\n"
@@ -129128,5684 +128352,5774 @@ static PyMethodDef SwigMethods[] = {
 	 { "delete_FootprintSquare", _wrap_delete_FootprintSquare, METH_O, "delete_FootprintSquare(FootprintSquare self)"},
 	 { "FootprintSquare_swigregister", FootprintSquare_swigregister, METH_O, NULL},
 	 { "FootprintSquare_swiginit", FootprintSquare_swiginit, METH_VARARGS, NULL},
-	 { "delete_Simulation", _wrap_delete_Simulation, METH_O, "\n"
-		"delete_Simulation(Simulation self)\n"
-		"Simulation::~Simulation()\n"
+	 { "delete_IFormFactorDecorator", _wrap_delete_IFormFactorDecorator, METH_O, "\n"
+		"delete_IFormFactorDecorator(IFormFactorDecorator self)\n"
+		"IFormFactorDecorator::~IFormFactorDecorator() override\n"
 		"\n"
 		""},
-	 { "Simulation_clone", _wrap_Simulation_clone, METH_O, "\n"
-		"Simulation_clone(Simulation self) -> Simulation\n"
-		"virtual Simulation* Simulation::clone() const =0\n"
+	 { "IFormFactorDecorator_clone", _wrap_IFormFactorDecorator_clone, METH_O, "\n"
+		"IFormFactorDecorator_clone(IFormFactorDecorator self) -> IFormFactorDecorator\n"
+		"IFormFactorDecorator* IFormFactorDecorator::clone() const override=0\n"
+		"\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "Simulation_prepareSimulation", _wrap_Simulation_prepareSimulation, METH_O, "\n"
-		"Simulation_prepareSimulation(Simulation self)\n"
-		"void Simulation::prepareSimulation()\n"
+	 { "IFormFactorDecorator_setAmbientMaterial", _wrap_IFormFactorDecorator_setAmbientMaterial, METH_VARARGS, "\n"
+		"IFormFactorDecorator_setAmbientMaterial(IFormFactorDecorator self, Material material)\n"
+		"void IFormFactorDecorator::setAmbientMaterial(Material material) override\n"
 		"\n"
-		"Put into a clean state for running a simulation. \n"
+		"Passes the material in which this particle is embedded. \n"
 		"\n"
 		""},
-	 { "Simulation_runSimulation", _wrap_Simulation_runSimulation, METH_O, "\n"
-		"Simulation_runSimulation(Simulation self)\n"
-		"void Simulation::runSimulation()\n"
+	 { "IFormFactorDecorator_volume", _wrap_IFormFactorDecorator_volume, METH_O, "\n"
+		"IFormFactorDecorator_volume(IFormFactorDecorator self) -> double\n"
+		"double IFormFactorDecorator::volume() const override\n"
 		"\n"
-		"Run a simulation, possibly averaged over parameter distributions.\n"
+		"Returns the total volume of the particle of this form factor's shape. \n"
 		"\n"
-		"Run simulation with possible averaging over parameter distributions. \n"
+		""},
+	 { "IFormFactorDecorator_radialExtension", _wrap_IFormFactorDecorator_radialExtension, METH_O, "\n"
+		"IFormFactorDecorator_radialExtension(IFormFactorDecorator self) -> double\n"
+		"double IFormFactorDecorator::radialExtension() const override\n"
+		"\n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "Simulation_runMPISimulation", _wrap_Simulation_runMPISimulation, METH_O, "\n"
-		"Simulation_runMPISimulation(Simulation self)\n"
-		"void Simulation::runMPISimulation()\n"
+	 { "IFormFactorDecorator_bottomZ", _wrap_IFormFactorDecorator_bottomZ, METH_VARARGS, "\n"
+		"IFormFactorDecorator_bottomZ(IFormFactorDecorator self, IRotation rotation) -> double\n"
+		"double IFormFactorDecorator::bottomZ(const IRotation &rotation) const override\n"
 		"\n"
-		"Run a simulation in a MPI environment. \n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "Simulation_setInstrument", _wrap_Simulation_setInstrument, METH_VARARGS, "\n"
-		"Simulation_setInstrument(Simulation self, Instrument instrument)\n"
-		"void Simulation::setInstrument(const Instrument &instrument)\n"
+	 { "IFormFactorDecorator_topZ", _wrap_IFormFactorDecorator_topZ, METH_VARARGS, "\n"
+		"IFormFactorDecorator_topZ(IFormFactorDecorator self, IRotation rotation) -> double\n"
+		"double IFormFactorDecorator::topZ(const IRotation &rotation) const override\n"
+		"\n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "Simulation_getInstrument", _wrap_Simulation_getInstrument, METH_VARARGS, "\n"
-		"Simulation_getInstrument(Simulation self) -> Instrument\n"
-		"Simulation_getInstrument(Simulation self) -> Instrument\n"
-		"Instrument& Simulation::getInstrument()\n"
+	 { "IFormFactorDecorator_getFormFactor", _wrap_IFormFactorDecorator_getFormFactor, METH_O, "\n"
+		"IFormFactorDecorator_getFormFactor(IFormFactorDecorator self) -> IFormFactor\n"
+		"const IFormFactor* IFormFactorDecorator::getFormFactor() const\n"
 		"\n"
 		""},
-	 { "Simulation_setBeamIntensity", _wrap_Simulation_setBeamIntensity, METH_VARARGS, "\n"
-		"Simulation_setBeamIntensity(Simulation self, double intensity)\n"
-		"void Simulation::setBeamIntensity(double intensity)\n"
+	 { "IFormFactorDecorator_swigregister", IFormFactorDecorator_swigregister, METH_O, NULL},
+	 { "new_IMultiLayerBuilder", _wrap_new_IMultiLayerBuilder, METH_O, "\n"
+		"new_IMultiLayerBuilder(PyObject * _self) -> IMultiLayerBuilder\n"
+		"IMultiLayerBuilder::IMultiLayerBuilder()\n"
 		"\n"
 		""},
-	 { "Simulation_getBeamIntensity", _wrap_Simulation_getBeamIntensity, METH_O, "\n"
-		"Simulation_getBeamIntensity(Simulation self) -> double\n"
-		"double Simulation::getBeamIntensity() const\n"
+	 { "delete_IMultiLayerBuilder", _wrap_delete_IMultiLayerBuilder, METH_O, "\n"
+		"delete_IMultiLayerBuilder(IMultiLayerBuilder self)\n"
+		"virtual IMultiLayerBuilder::~IMultiLayerBuilder()=default\n"
 		"\n"
 		""},
-	 { "Simulation_setBeamPolarization", _wrap_Simulation_setBeamPolarization, METH_VARARGS, "\n"
-		"Simulation_setBeamPolarization(Simulation self, kvector_t bloch_vector)\n"
-		"void Simulation::setBeamPolarization(const kvector_t bloch_vector)\n"
+	 { "IMultiLayerBuilder_buildSample", _wrap_IMultiLayerBuilder_buildSample, METH_O, "\n"
+		"IMultiLayerBuilder_buildSample(IMultiLayerBuilder self) -> MultiLayer\n"
+		"virtual MultiLayer* IMultiLayerBuilder::buildSample() const =0\n"
 		"\n"
-		"Sets the beam polarization according to the given Bloch vector. \n"
+		""},
+	 { "IMultiLayerBuilder_createSample", _wrap_IMultiLayerBuilder_createSample, METH_VARARGS, "\n"
+		"IMultiLayerBuilder_createSample(IMultiLayerBuilder self, size_t index=0) -> MultiLayer\n"
+		"virtual MultiLayer* IMultiLayerBuilder::createSample(size_t index=0)\n"
 		"\n"
 		""},
-	 { "Simulation_setDetectorResolutionFunction", _wrap_Simulation_setDetectorResolutionFunction, METH_VARARGS, "\n"
-		"Simulation_setDetectorResolutionFunction(Simulation self, IResolutionFunction2D resolution_function)\n"
-		"void Simulation::setDetectorResolutionFunction(const IResolutionFunction2D &resolution_function)\n"
+	 { "IMultiLayerBuilder_size", _wrap_IMultiLayerBuilder_size, METH_O, "\n"
+		"IMultiLayerBuilder_size(IMultiLayerBuilder self) -> size_t\n"
+		"virtual size_t IMultiLayerBuilder::size()\n"
 		"\n"
 		""},
-	 { "Simulation_removeDetectorResolutionFunction", _wrap_Simulation_removeDetectorResolutionFunction, METH_O, "\n"
-		"Simulation_removeDetectorResolutionFunction(Simulation self)\n"
-		"void Simulation::removeDetectorResolutionFunction()\n"
+	 { "IMultiLayerBuilder_registerParameter", _wrap_IMultiLayerBuilder_registerParameter, METH_VARARGS, "\n"
+		"IMultiLayerBuilder_registerParameter(IMultiLayerBuilder self, std::string const & name, int64_t parpointer) -> RealParameter\n"
+		"RealParameter & IParameterized::registerParameter(const std::string &name, double *parpointer)\n"
 		"\n"
 		""},
-	 { "Simulation_setAnalyzerProperties", _wrap_Simulation_setAnalyzerProperties, METH_VARARGS, "\n"
-		"Simulation_setAnalyzerProperties(Simulation self, kvector_t direction, double efficiency, double total_transmission)\n"
-		"void Simulation::setAnalyzerProperties(const kvector_t direction, double efficiency, double total_transmission)\n"
+	 { "IMultiLayerBuilder_setParameterValue", _wrap_IMultiLayerBuilder_setParameterValue, METH_VARARGS, "\n"
+		"IMultiLayerBuilder_setParameterValue(IMultiLayerBuilder self, std::string const & name, double value)\n"
+		"void IParameterized::setParameterValue(const std::string &name, double value)\n"
 		"\n"
-		"Sets the polarization analyzer characteristics of the detector. \n"
+		""},
+	 { "IMultiLayerBuilder_parametersToString", _wrap_IMultiLayerBuilder_parametersToString, METH_O, "\n"
+		"IMultiLayerBuilder_parametersToString(IMultiLayerBuilder self) -> std::string\n"
+		"std::string IParameterized::parametersToString() const\n"
+		"\n"
+		"Returns multiline string representing available parameters. \n"
 		"\n"
 		""},
-	 { "Simulation_setSample", _wrap_Simulation_setSample, METH_VARARGS, "\n"
-		"Simulation_setSample(Simulation self, MultiLayer sample)\n"
-		"void Simulation::setSample(const MultiLayer &sample)\n"
+	 { "IMultiLayerBuilder_createParameterTree", _wrap_IMultiLayerBuilder_createParameterTree, METH_O, "\n"
+		"IMultiLayerBuilder_createParameterTree(IMultiLayerBuilder self) -> ParameterPool\n"
+		"ParameterPool * IParameterized::createParameterTree() const\n"
 		"\n"
-		"The  MultiLayer object will not be owned by the  Simulation object. \n"
+		"Creates new parameter pool, with all local parameters and those of its children. \n"
 		"\n"
 		""},
-	 { "Simulation_sample", _wrap_Simulation_sample, METH_O, "\n"
-		"Simulation_sample(Simulation self) -> MultiLayer\n"
-		"const MultiLayer * Simulation::sample() const\n"
+	 { "IMultiLayerBuilder_parameterPool", _wrap_IMultiLayerBuilder_parameterPool, METH_O, "\n"
+		"IMultiLayerBuilder_parameterPool(IMultiLayerBuilder self) -> ParameterPool\n"
+		"ParameterPool* IParameterized::parameterPool() const\n"
+		"\n"
+		"Returns pointer to the parameter pool. \n"
 		"\n"
 		""},
-	 { "Simulation_setSampleBuilderCpp", _wrap_Simulation_setSampleBuilderCpp, METH_VARARGS, "\n"
-		"Simulation_setSampleBuilderCpp(Simulation self, std::shared_ptr< IMultiLayerBuilder > const sample_builder)\n"
-		"void Simulation::setSampleBuilder(const std::shared_ptr< IMultiLayerBuilder > sample_builder)\n"
+	 { "IMultiLayerBuilder_onChange", _wrap_IMultiLayerBuilder_onChange, METH_O, "\n"
+		"IMultiLayerBuilder_onChange(IMultiLayerBuilder self)\n"
+		"virtual void IParameterized::onChange()\n"
+		"\n"
+		"Action to be taken in inherited class when a parameter has changed. \n"
 		"\n"
 		""},
-	 { "Simulation_setBackground", _wrap_Simulation_setBackground, METH_VARARGS, "\n"
-		"Simulation_setBackground(Simulation self, IBackground bg)\n"
-		"void Simulation::setBackground(const IBackground &bg)\n"
+	 { "disown_IMultiLayerBuilder", _wrap_disown_IMultiLayerBuilder, METH_O, NULL},
+	 { "IMultiLayerBuilder_swigregister", IMultiLayerBuilder_swigregister, METH_O, NULL},
+	 { "IMultiLayerBuilder_swiginit", IMultiLayerBuilder_swiginit, METH_VARARGS, NULL},
+	 { "new_Layer", _wrap_new_Layer, METH_VARARGS, "\n"
+		"Layer(Material material, double thickness=0)\n"
+		"Layer::Layer(Material material, double thickness=0)\n"
+		"\n"
+		"Constructor of a layer with thickness and material\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"material: \n"
+		"material the layer is made of\n"
+		"\n"
+		"thickness: \n"
+		"thickness of a layer in nanometers \n"
 		"\n"
 		""},
-	 { "Simulation_background", _wrap_Simulation_background, METH_O, "\n"
-		"Simulation_background(Simulation self) -> IBackground\n"
-		"const IBackground* Simulation::background() const\n"
+	 { "delete_Layer", _wrap_delete_Layer, METH_O, "\n"
+		"delete_Layer(Layer self)\n"
+		"Layer::~Layer() override\n"
 		"\n"
 		""},
-	 { "Simulation_intensityMapSize", _wrap_Simulation_intensityMapSize, METH_O, "\n"
-		"Simulation_intensityMapSize(Simulation self) -> size_t\n"
-		"virtual size_t Simulation::intensityMapSize() const =0\n"
+	 { "Layer_clone", _wrap_Layer_clone, METH_O, "\n"
+		"Layer_clone(Layer self) -> Layer\n"
+		"Layer * Layer::clone() const override final\n"
 		"\n"
-		"Returns the total number of the intensity values in the simulation result. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "Simulation_result", _wrap_Simulation_result, METH_O, "\n"
-		"Simulation_result(Simulation self) -> SimulationResult\n"
-		"virtual SimulationResult Simulation::result() const =0\n"
+	 { "Layer_accept", _wrap_Layer_accept, METH_VARARGS, "\n"
+		"Layer_accept(Layer self, INodeVisitor visitor)\n"
+		"void Layer::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "Simulation_addParameterDistribution", _wrap_Simulation_addParameterDistribution, METH_VARARGS, "\n"
-		"Simulation_addParameterDistribution(Simulation self, std::string const & param_name, IDistribution1D distribution, size_t nbr_samples, double sigma_factor=0.0, RealLimits limits=RealLimits())\n"
-		"Simulation_addParameterDistribution(Simulation self, ParameterDistribution par_distr)\n"
-		"void Simulation::addParameterDistribution(const ParameterDistribution &par_distr)\n"
+	 { "Layer_setThickness", _wrap_Layer_setThickness, METH_VARARGS, "\n"
+		"Layer_setThickness(Layer self, double thickness)\n"
+		"void Layer::setThickness(double thickness)\n"
+		"\n"
+		"Sets layer thickness in nanometers. \n"
 		"\n"
 		""},
-	 { "Simulation_getDistributionHandler", _wrap_Simulation_getDistributionHandler, METH_O, "\n"
-		"Simulation_getDistributionHandler(Simulation self) -> DistributionHandler const &\n"
-		"const DistributionHandler& Simulation::getDistributionHandler() const\n"
+	 { "Layer_thickness", _wrap_Layer_thickness, METH_O, "\n"
+		"Layer_thickness(Layer self) -> double\n"
+		"double Layer::thickness() const\n"
 		"\n"
 		""},
-	 { "Simulation_setOptions", _wrap_Simulation_setOptions, METH_VARARGS, "\n"
-		"Simulation_setOptions(Simulation self, SimulationOptions options)\n"
-		"void Simulation::setOptions(const SimulationOptions &options)\n"
+	 { "Layer_material", _wrap_Layer_material, METH_O, "\n"
+		"Layer_material(Layer self) -> Material\n"
+		"const Material* Layer::material() const override final\n"
+		"\n"
+		"Returns nullptr, unless overwritten to return a specific material. \n"
 		"\n"
 		""},
-	 { "Simulation_getOptions", _wrap_Simulation_getOptions, METH_VARARGS, "\n"
-		"Simulation_getOptions(Simulation self) -> SimulationOptions\n"
-		"Simulation_getOptions(Simulation self) -> SimulationOptions\n"
-		"SimulationOptions& Simulation::getOptions()\n"
+	 { "Layer_setMaterial", _wrap_Layer_setMaterial, METH_VARARGS, "\n"
+		"Layer_setMaterial(Layer self, Material material)\n"
+		"void Layer::setMaterial(Material material)\n"
 		"\n"
 		""},
-	 { "Simulation_subscribe", _wrap_Simulation_subscribe, METH_VARARGS, "\n"
-		"Simulation_subscribe(Simulation self, ProgressHandler::Callback_t inform)\n"
-		"void Simulation::subscribe(ProgressHandler::Callback_t inform)\n"
+	 { "Layer_addLayout", _wrap_Layer_addLayout, METH_VARARGS, "\n"
+		"Layer_addLayout(Layer self, ILayout decoration)\n"
+		"void Layer::addLayout(const ILayout &decoration)\n"
 		"\n"
 		""},
-	 { "Simulation_setTerminalProgressMonitor", _wrap_Simulation_setTerminalProgressMonitor, METH_O, "\n"
-		"Simulation_setTerminalProgressMonitor(Simulation self)\n"
-		"void Simulation::setTerminalProgressMonitor()\n"
+	 { "Layer_numberOfLayouts", _wrap_Layer_numberOfLayouts, METH_O, "\n"
+		"Layer_numberOfLayouts(Layer self) -> size_t\n"
+		"size_t Layer::numberOfLayouts() const\n"
 		"\n"
-		"Initializes a progress monitor that prints to stdout. \n"
+		""},
+	 { "Layer_layouts", _wrap_Layer_layouts, METH_O, "\n"
+		"Layer_layouts(Layer self) -> std::vector< ILayout const *,std::allocator< ILayout const * > >\n"
+		"std::vector< const ILayout * > Layer::layouts() const\n"
 		"\n"
 		""},
-	 { "Simulation_getChildren", _wrap_Simulation_getChildren, METH_O, "\n"
-		"Simulation_getChildren(Simulation self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > Simulation::getChildren() const\n"
+	 { "Layer_getChildren", _wrap_Layer_getChildren, METH_O, "\n"
+		"Layer_getChildren(Layer self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > Layer::getChildren() const override final\n"
 		"\n"
 		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "Simulation_swigregister", Simulation_swigregister, METH_O, NULL},
-	 { "delete_Simulation2D", _wrap_delete_Simulation2D, METH_O, "\n"
-		"delete_Simulation2D(Simulation2D self)\n"
-		"Simulation2D::~Simulation2D() override\n"
+	 { "Layer_registerThickness", _wrap_Layer_registerThickness, METH_VARARGS, "\n"
+		"Layer_registerThickness(Layer self, bool make_registered=True)\n"
+		"void Layer::registerThickness(bool make_registered=true)\n"
 		"\n"
 		""},
-	 { "Simulation2D_clone", _wrap_Simulation2D_clone, METH_O, "\n"
-		"Simulation2D_clone(Simulation2D self) -> Simulation2D\n"
-		"Simulation2D* Simulation2D::clone() const override=0\n"
+	 { "Layer_setNumberOfSlices", _wrap_Layer_setNumberOfSlices, METH_VARARGS, "\n"
+		"Layer_setNumberOfSlices(Layer self, unsigned int n_slices)\n"
+		"void Layer::setNumberOfSlices(unsigned int n_slices)\n"
 		"\n"
 		""},
-	 { "Simulation2D_prepareSimulation", _wrap_Simulation2D_prepareSimulation, METH_O, "\n"
-		"Simulation2D_prepareSimulation(Simulation2D self)\n"
-		"void Simulation2D::prepareSimulation() override\n"
-		"\n"
-		"Put into a clean state for running a simulation. \n"
+	 { "Layer_numberOfSlices", _wrap_Layer_numberOfSlices, METH_O, "\n"
+		"Layer_numberOfSlices(Layer self) -> unsigned int\n"
+		"unsigned int Layer::numberOfSlices() const\n"
 		"\n"
 		""},
-	 { "Simulation2D_setDetectorParameters", _wrap_Simulation2D_setDetectorParameters, METH_VARARGS, "\n"
-		"Simulation2D_setDetectorParameters(Simulation2D self, size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max)\n"
-		"void Simulation2D::setDetectorParameters(size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max)\n"
+	 { "Layer_swigregister", Layer_swigregister, METH_O, NULL},
+	 { "Layer_swiginit", Layer_swiginit, METH_VARARGS, NULL},
+	 { "new_LayerRoughness", _wrap_new_LayerRoughness, METH_VARARGS, "\n"
+		"LayerRoughness()\n"
+		"new_LayerRoughness(double sigma, double hurstParameter, double lateralCorrLength) -> LayerRoughness\n"
+		"LayerRoughness::LayerRoughness(double sigma, double hurstParameter, double lateralCorrLength)\n"
 		"\n"
-		"Sets spherical detector parameters using angle ranges\n"
+		"Constructor of layer roughness.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"n_phi: \n"
-		"number of phi-axis bins\n"
-		"\n"
-		"phi_min: \n"
-		"low edge of first phi-bin\n"
-		"\n"
-		"phi_max: \n"
-		"upper edge of last phi-bin\n"
-		"\n"
-		"n_alpha: \n"
-		"number of alpha-axis bins\n"
+		"sigma: \n"
+		"rms of the roughness in nanometers\n"
 		"\n"
-		"alpha_min: \n"
-		"low edge of first alpha-bin\n"
+		"hurstParameter: \n"
+		"hurst parameter which describes how jagged the interface, dimensionless [0.0, 1.0], where 0.0 gives more spikes, 1.0 more smoothness\n"
 		"\n"
-		"alpha_max: \n"
-		"upper edge of last alpha-bin \n"
+		"lateralCorrLength: \n"
+		"lateral correlation length of the roughness in nanometers \n"
 		"\n"
 		""},
-	 { "Simulation2D_setDetector", _wrap_Simulation2D_setDetector, METH_VARARGS, "\n"
-		"Simulation2D_setDetector(Simulation2D self, IDetector2D detector)\n"
-		"void Simulation2D::setDetector(const IDetector2D &detector)\n"
+	 { "LayerRoughness_clone", _wrap_LayerRoughness_clone, METH_O, "\n"
+		"LayerRoughness_clone(LayerRoughness self) -> LayerRoughness\n"
+		"LayerRoughness* LayerRoughness::clone() const\n"
 		"\n"
-		"Sets the detector (axes can be overwritten later) \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "Simulation2D_removeMasks", _wrap_Simulation2D_removeMasks, METH_O, "\n"
-		"Simulation2D_removeMasks(Simulation2D self)\n"
-		"void Simulation2D::removeMasks()\n"
+	 { "LayerRoughness_accept", _wrap_LayerRoughness_accept, METH_VARARGS, "\n"
+		"LayerRoughness_accept(LayerRoughness self, INodeVisitor visitor)\n"
+		"virtual void LayerRoughness::accept(INodeVisitor *visitor) const\n"
 		"\n"
-		"removes all masks from the detector \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "Simulation2D_addMask", _wrap_Simulation2D_addMask, METH_VARARGS, "\n"
-		"Simulation2D_addMask(Simulation2D self, IShape2D shape, bool mask_value=True)\n"
-		"void Simulation2D::addMask(const IShape2D &shape, bool mask_value=true)\n"
-		"\n"
-		"Adds mask of given shape to the stack of detector masks. The mask value 'true' means that the channel will be excluded from the simulation. The mask which is added last has priority.\n"
+	 { "LayerRoughness_getSpectralFun", _wrap_LayerRoughness_getSpectralFun, METH_VARARGS, "\n"
+		"LayerRoughness_getSpectralFun(LayerRoughness self, kvector_t kvec) -> double\n"
+		"double LayerRoughness::getSpectralFun(const kvector_t kvec) const\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Returns power spectral density of the surface roughness.\n"
 		"\n"
-		"shape: \n"
-		"The shape of mask ( Rectangle,  Polygon,  Line,  Ellipse)\n"
+		"Power spectral density of the surface roughness is a result of two-dimensional Fourier transform of the correlation function of the roughness profile.\n"
 		"\n"
-		"mask_value: \n"
-		"The value of mask \n"
+		"Based on the article D.K.G. de Boer, Physical review B, Volume 51, Number 8, 15 February 1995 \"X-ray reflection and transmission by rough surfaces\" \n"
 		"\n"
 		""},
-	 { "Simulation2D_maskAll", _wrap_Simulation2D_maskAll, METH_O, "\n"
-		"Simulation2D_maskAll(Simulation2D self)\n"
-		"void Simulation2D::maskAll()\n"
+	 { "LayerRoughness_getCorrFun", _wrap_LayerRoughness_getCorrFun, METH_VARARGS, "\n"
+		"LayerRoughness_getCorrFun(LayerRoughness self, kvector_t k) -> double\n"
+		"double LayerRoughness::getCorrFun(const kvector_t k) const\n"
 		"\n"
-		"Put the mask for all detector channels (i.e. exclude whole detector from the analysis) \n"
+		"Correlation function of the roughness profile. \n"
 		"\n"
 		""},
-	 { "Simulation2D_setRegionOfInterest", _wrap_Simulation2D_setRegionOfInterest, METH_VARARGS, "\n"
-		"Simulation2D_setRegionOfInterest(Simulation2D self, double xlow, double ylow, double xup, double yup)\n"
-		"void Simulation2D::setRegionOfInterest(double xlow, double ylow, double xup, double yup)\n"
+	 { "LayerRoughness_setSigma", _wrap_LayerRoughness_setSigma, METH_VARARGS, "\n"
+		"LayerRoughness_setSigma(LayerRoughness self, double sigma)\n"
+		"void LayerRoughness::setSigma(double sigma)\n"
 		"\n"
-		"Sets rectangular region of interest with lower left and upper right corners defined. \n"
+		"Sets rms of roughness. \n"
 		"\n"
 		""},
-	 { "Simulation2D_swigregister", Simulation2D_swigregister, METH_O, NULL},
-	 { "new_SimulationOptions", _wrap_new_SimulationOptions, METH_NOARGS, "\n"
-		"new_SimulationOptions() -> SimulationOptions\n"
-		"SimulationOptions::SimulationOptions()\n"
+	 { "LayerRoughness_getSigma", _wrap_LayerRoughness_getSigma, METH_O, "\n"
+		"LayerRoughness_getSigma(LayerRoughness self) -> double\n"
+		"double LayerRoughness::getSigma() const\n"
 		"\n"
-		""},
-	 { "SimulationOptions_isIntegrate", _wrap_SimulationOptions_isIntegrate, METH_O, "\n"
-		"SimulationOptions_isIntegrate(SimulationOptions self) -> bool\n"
-		"bool SimulationOptions::isIntegrate() const\n"
+		"Returns rms of roughness. \n"
 		"\n"
 		""},
-	 { "SimulationOptions_getMcPoints", _wrap_SimulationOptions_getMcPoints, METH_O, "\n"
-		"SimulationOptions_getMcPoints(SimulationOptions self) -> size_t\n"
-		"size_t SimulationOptions::getMcPoints() const\n"
+	 { "LayerRoughness_setHurstParameter", _wrap_LayerRoughness_setHurstParameter, METH_VARARGS, "\n"
+		"LayerRoughness_setHurstParameter(LayerRoughness self, double hurstParameter)\n"
+		"void LayerRoughness::setHurstParameter(double hurstParameter)\n"
 		"\n"
-		""},
-	 { "SimulationOptions_setMonteCarloIntegration", _wrap_SimulationOptions_setMonteCarloIntegration, METH_VARARGS, "\n"
-		"SimulationOptions_setMonteCarloIntegration(SimulationOptions self, bool flag=True, size_t mc_points=50)\n"
-		"void SimulationOptions::setMonteCarloIntegration(bool flag=true, size_t mc_points=50)\n"
+		"Sets hurst parameter. It describes how jagged the surface is. \n"
 		"\n"
-		"Enables/disables MonetCarlo integration.\n"
+		""},
+	 { "LayerRoughness_getHurstParameter", _wrap_LayerRoughness_getHurstParameter, METH_O, "\n"
+		"LayerRoughness_getHurstParameter(LayerRoughness self) -> double\n"
+		"double LayerRoughness::getHurstParameter() const\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Returns hurst parameter. \n"
 		"\n"
-		"flag: \n"
-		"If true, MonteCarlo integration will be used, otherwise analytical calculations\n"
+		""},
+	 { "LayerRoughness_setLatteralCorrLength", _wrap_LayerRoughness_setLatteralCorrLength, METH_VARARGS, "\n"
+		"LayerRoughness_setLatteralCorrLength(LayerRoughness self, double lateralCorrLength)\n"
+		"void LayerRoughness::setLatteralCorrLength(double lateralCorrLength)\n"
 		"\n"
-		"mc_points: \n"
-		"Number of points for MonteCarlo integrator \n"
+		"Sets lateral correlation length. \n"
 		"\n"
 		""},
-	 { "SimulationOptions_setNumberOfThreads", _wrap_SimulationOptions_setNumberOfThreads, METH_VARARGS, "\n"
-		"SimulationOptions_setNumberOfThreads(SimulationOptions self, int nthreads)\n"
-		"void SimulationOptions::setNumberOfThreads(int nthreads)\n"
+	 { "LayerRoughness_getLatteralCorrLength", _wrap_LayerRoughness_getLatteralCorrLength, METH_O, "\n"
+		"LayerRoughness_getLatteralCorrLength(LayerRoughness self) -> double\n"
+		"double LayerRoughness::getLatteralCorrLength() const\n"
 		"\n"
-		"Sets number of threads to use during the simulation (0 - take the default value from the hardware) \n"
+		"Returns lateral correlation length. \n"
 		"\n"
 		""},
-	 { "SimulationOptions_getNumberOfThreads", _wrap_SimulationOptions_getNumberOfThreads, METH_O, "\n"
-		"SimulationOptions_getNumberOfThreads(SimulationOptions self) -> unsigned int\n"
-		"unsigned SimulationOptions::getNumberOfThreads() const\n"
+	 { "delete_LayerRoughness", _wrap_delete_LayerRoughness, METH_O, "delete_LayerRoughness(LayerRoughness self)"},
+	 { "LayerRoughness_swigregister", LayerRoughness_swigregister, METH_O, NULL},
+	 { "LayerRoughness_swiginit", LayerRoughness_swiginit, METH_VARARGS, NULL},
+	 { "new_MultiLayer", _wrap_new_MultiLayer, METH_NOARGS, "\n"
+		"new_MultiLayer() -> MultiLayer\n"
+		"MultiLayer::MultiLayer()\n"
 		"\n"
 		""},
-	 { "SimulationOptions_setNumberOfBatches", _wrap_SimulationOptions_setNumberOfBatches, METH_VARARGS, "\n"
-		"SimulationOptions_setNumberOfBatches(SimulationOptions self, int nbatches)\n"
-		"void SimulationOptions::setNumberOfBatches(int nbatches)\n"
-		"\n"
-		"Sets number of batches to split. \n"
+	 { "delete_MultiLayer", _wrap_delete_MultiLayer, METH_O, "\n"
+		"delete_MultiLayer(MultiLayer self)\n"
+		"MultiLayer::~MultiLayer() override\n"
 		"\n"
 		""},
-	 { "SimulationOptions_getNumberOfBatches", _wrap_SimulationOptions_getNumberOfBatches, METH_O, "\n"
-		"SimulationOptions_getNumberOfBatches(SimulationOptions self) -> unsigned int\n"
-		"unsigned SimulationOptions::getNumberOfBatches() const\n"
+	 { "MultiLayer_clone", _wrap_MultiLayer_clone, METH_O, "\n"
+		"MultiLayer_clone(MultiLayer self) -> MultiLayer\n"
+		"MultiLayer * MultiLayer::clone() const final override\n"
 		"\n"
-		""},
-	 { "SimulationOptions_getCurrentBatch", _wrap_SimulationOptions_getCurrentBatch, METH_O, "\n"
-		"SimulationOptions_getCurrentBatch(SimulationOptions self) -> unsigned int\n"
-		"unsigned SimulationOptions::getCurrentBatch() const\n"
+		"Returns a clone of multilayer with clones of all layers and interfaces between layers \n"
 		"\n"
 		""},
-	 { "SimulationOptions_setThreadInfo", _wrap_SimulationOptions_setThreadInfo, METH_VARARGS, "\n"
-		"SimulationOptions_setThreadInfo(SimulationOptions self, ThreadInfo thread_info)\n"
-		"void SimulationOptions::setThreadInfo(const ThreadInfo &thread_info)\n"
+	 { "MultiLayer_accept", _wrap_MultiLayer_accept, METH_VARARGS, "\n"
+		"MultiLayer_accept(MultiLayer self, INodeVisitor visitor)\n"
+		"void MultiLayer::accept(INodeVisitor *visitor) const final override\n"
 		"\n"
-		"Sets the batch and thread information to be used. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "SimulationOptions_getHardwareConcurrency", _wrap_SimulationOptions_getHardwareConcurrency, METH_O, "\n"
-		"SimulationOptions_getHardwareConcurrency(SimulationOptions self) -> unsigned int\n"
-		"unsigned SimulationOptions::getHardwareConcurrency() const\n"
+	 { "MultiLayer_numberOfLayers", _wrap_MultiLayer_numberOfLayers, METH_O, "\n"
+		"MultiLayer_numberOfLayers(MultiLayer self) -> size_t\n"
+		"size_t MultiLayer::numberOfLayers() const\n"
 		"\n"
 		""},
-	 { "SimulationOptions_setIncludeSpecular", _wrap_SimulationOptions_setIncludeSpecular, METH_VARARGS, "\n"
-		"SimulationOptions_setIncludeSpecular(SimulationOptions self, bool include_specular)\n"
-		"void SimulationOptions::setIncludeSpecular(bool include_specular)\n"
+	 { "MultiLayer_addLayer", _wrap_MultiLayer_addLayer, METH_VARARGS, "\n"
+		"MultiLayer_addLayer(MultiLayer self, Layer layer)\n"
+		"void MultiLayer::addLayer(const Layer &layer)\n"
 		"\n"
-		""},
-	 { "SimulationOptions_includeSpecular", _wrap_SimulationOptions_includeSpecular, METH_O, "\n"
-		"SimulationOptions_includeSpecular(SimulationOptions self) -> bool\n"
-		"bool SimulationOptions::includeSpecular() const\n"
+		"Adds object to multilayer.\n"
 		"\n"
-		""},
-	 { "SimulationOptions_setUseAvgMaterials", _wrap_SimulationOptions_setUseAvgMaterials, METH_VARARGS, "\n"
-		"SimulationOptions_setUseAvgMaterials(SimulationOptions self, bool use_avg_materials)\n"
-		"void SimulationOptions::setUseAvgMaterials(bool use_avg_materials)\n"
+		"Adds layer with default (zero) roughness. \n"
 		"\n"
 		""},
-	 { "SimulationOptions_useAvgMaterials", _wrap_SimulationOptions_useAvgMaterials, METH_O, "\n"
-		"SimulationOptions_useAvgMaterials(SimulationOptions self) -> bool\n"
-		"bool SimulationOptions::useAvgMaterials() const\n"
+	 { "MultiLayer_addLayerWithTopRoughness", _wrap_MultiLayer_addLayerWithTopRoughness, METH_VARARGS, "\n"
+		"MultiLayer_addLayerWithTopRoughness(MultiLayer self, Layer layer, LayerRoughness roughness)\n"
+		"void MultiLayer::addLayerWithTopRoughness(const Layer &layer, const LayerRoughness &roughness)\n"
 		"\n"
-		""},
-	 { "delete_SimulationOptions", _wrap_delete_SimulationOptions, METH_O, "delete_SimulationOptions(SimulationOptions self)"},
-	 { "SimulationOptions_swigregister", SimulationOptions_swigregister, METH_O, NULL},
-	 { "SimulationOptions_swiginit", SimulationOptions_swiginit, METH_VARARGS, NULL},
-	 { "new_GISASSimulation", _wrap_new_GISASSimulation, METH_VARARGS, "\n"
-		"GISASSimulation()\n"
-		"GISASSimulation(MultiLayer p_sample)\n"
-		"new_GISASSimulation(std::shared_ptr< IMultiLayerBuilder > const p_sample_builder) -> GISASSimulation\n"
-		"GISASSimulation::GISASSimulation(const std::shared_ptr< IMultiLayerBuilder > p_sample_builder)\n"
+		"Adds layer with top roughness. \n"
 		"\n"
 		""},
-	 { "delete_GISASSimulation", _wrap_delete_GISASSimulation, METH_O, "\n"
-		"delete_GISASSimulation(GISASSimulation self)\n"
-		"GISASSimulation::~GISASSimulation()\n"
+	 { "MultiLayer_layer", _wrap_MultiLayer_layer, METH_VARARGS, "\n"
+		"MultiLayer_layer(MultiLayer self, size_t i_layer) -> Layer\n"
+		"const Layer * MultiLayer::layer(size_t i_layer) const\n"
+		"\n"
+		"Returns layer with given index. \n"
 		"\n"
 		""},
-	 { "GISASSimulation_clone", _wrap_GISASSimulation_clone, METH_O, "\n"
-		"GISASSimulation_clone(GISASSimulation self) -> GISASSimulation\n"
-		"GISASSimulation* GISASSimulation::clone() const override\n"
+	 { "MultiLayer_layerInterface", _wrap_MultiLayer_layerInterface, METH_VARARGS, "\n"
+		"MultiLayer_layerInterface(MultiLayer self, size_t i_interface) -> LayerInterface const *\n"
+		"const LayerInterface * MultiLayer::layerInterface(size_t i_interface) const\n"
+		"\n"
+		"Returns interface with given index. \n"
 		"\n"
 		""},
-	 { "GISASSimulation_accept", _wrap_GISASSimulation_accept, METH_VARARGS, "\n"
-		"GISASSimulation_accept(GISASSimulation self, INodeVisitor visitor)\n"
-		"void GISASSimulation::accept(INodeVisitor *visitor) const override\n"
+	 { "MultiLayer_setCrossCorrLength", _wrap_MultiLayer_setCrossCorrLength, METH_VARARGS, "\n"
+		"MultiLayer_setCrossCorrLength(MultiLayer self, double crossCorrLength)\n"
+		"void MultiLayer::setCrossCorrLength(double crossCorrLength)\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Sets cross correlation length of roughnesses between interfaces. \n"
 		"\n"
 		""},
-	 { "GISASSimulation_prepareSimulation", _wrap_GISASSimulation_prepareSimulation, METH_O, "\n"
-		"GISASSimulation_prepareSimulation(GISASSimulation self)\n"
-		"void GISASSimulation::prepareSimulation() override\n"
+	 { "MultiLayer_crossCorrLength", _wrap_MultiLayer_crossCorrLength, METH_O, "\n"
+		"MultiLayer_crossCorrLength(MultiLayer self) -> double\n"
+		"double MultiLayer::crossCorrLength() const\n"
 		"\n"
-		"Put into a clean state for running a simulation. \n"
+		"Returns cross correlation length of roughnesses between interfaces. \n"
 		"\n"
 		""},
-	 { "GISASSimulation_result", _wrap_GISASSimulation_result, METH_O, "\n"
-		"GISASSimulation_result(GISASSimulation self) -> SimulationResult\n"
-		"SimulationResult GISASSimulation::result() const override\n"
+	 { "MultiLayer_setExternalField", _wrap_MultiLayer_setExternalField, METH_VARARGS, "\n"
+		"MultiLayer_setExternalField(MultiLayer self, kvector_t ext_field)\n"
+		"void MultiLayer::setExternalField(kvector_t ext_field)\n"
 		"\n"
-		"Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays \n"
+		"Sets the external field applied to the multilayer (units: A/m) \n"
 		"\n"
 		""},
-	 { "GISASSimulation_setBeamParameters", _wrap_GISASSimulation_setBeamParameters, METH_VARARGS, "\n"
-		"GISASSimulation_setBeamParameters(GISASSimulation self, double wavelength, double alpha_i, double phi_i)\n"
-		"void GISASSimulation::setBeamParameters(double wavelength, double alpha_i, double phi_i)\n"
+	 { "MultiLayer_externalField", _wrap_MultiLayer_externalField, METH_O, "\n"
+		"MultiLayer_externalField(MultiLayer self) -> kvector_t\n"
+		"kvector_t MultiLayer::externalField() const\n"
 		"\n"
-		"Sets beam parameters from here (forwarded to  Instrument) \n"
+		"Returns the external field applied to the multilayer (units: A/m) \n"
 		"\n"
 		""},
-	 { "GISASSimulation_intensityMapSize", _wrap_GISASSimulation_intensityMapSize, METH_O, "\n"
-		"GISASSimulation_intensityMapSize(GISASSimulation self) -> size_t\n"
-		"size_t GISASSimulation::intensityMapSize() const override\n"
+	 { "MultiLayer_getChildren", _wrap_MultiLayer_getChildren, METH_O, "\n"
+		"MultiLayer_getChildren(MultiLayer self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > MultiLayer::getChildren() const final override\n"
 		"\n"
-		"Returns the total number of the intensity values in the simulation result. \n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "GISASSimulation_swigregister", GISASSimulation_swigregister, METH_O, NULL},
-	 { "GISASSimulation_swiginit", GISASSimulation_swiginit, METH_VARARGS, NULL},
-	 { "delete_IHistogram", _wrap_delete_IHistogram, METH_O, "\n"
-		"delete_IHistogram(IHistogram self)\n"
-		"virtual IHistogram::~IHistogram()\n"
+	 { "MultiLayer_setRoughnessModel", _wrap_MultiLayer_setRoughnessModel, METH_VARARGS, "\n"
+		"MultiLayer_setRoughnessModel(MultiLayer self, RoughnessModel roughnessModel)\n"
+		"void MultiLayer::setRoughnessModel(RoughnessModel roughnessModel)\n"
 		"\n"
 		""},
-	 { "IHistogram_clone", _wrap_IHistogram_clone, METH_O, "\n"
-		"IHistogram_clone(IHistogram self) -> IHistogram\n"
-		"virtual IHistogram* IHistogram::clone() const =0\n"
+	 { "MultiLayer_roughnessModel", _wrap_MultiLayer_roughnessModel, METH_O, "\n"
+		"MultiLayer_roughnessModel(MultiLayer self) -> RoughnessModel\n"
+		"RoughnessModel MultiLayer::roughnessModel() const\n"
 		"\n"
 		""},
-	 { "IHistogram_getRank", _wrap_IHistogram_getRank, METH_O, "\n"
-		"IHistogram_getRank(IHistogram self) -> size_t\n"
-		"virtual size_t IHistogram::getRank() const =0\n"
+	 { "MultiLayer_swigregister", MultiLayer_swigregister, METH_O, NULL},
+	 { "MultiLayer_swiginit", MultiLayer_swiginit, METH_VARARGS, NULL},
+	 { "MaterialProfile_cpp", _wrap_MaterialProfile_cpp, METH_VARARGS, "\n"
+		"MaterialProfile_cpp(MultiLayer multilayer, int n_points, double z_min, double z_max) -> vector_complex_t\n"
+		"BA_CORE_API_ std::vector<complex_t> MaterialProfile(const MultiLayer &multilayer, int n_points, double z_min, double z_max)\n"
 		"\n"
-		"Returns number of histogram dimensions. \n"
+		"Calculate average material profile for given multilayer. \n"
 		"\n"
 		""},
-	 { "IHistogram_getTotalNumberOfBins", _wrap_IHistogram_getTotalNumberOfBins, METH_O, "\n"
-		"IHistogram_getTotalNumberOfBins(IHistogram self) -> size_t\n"
-		"size_t IHistogram::getTotalNumberOfBins() const\n"
+	 { "DefaultMaterialProfileLimits", _wrap_DefaultMaterialProfileLimits, METH_O, "\n"
+		"DefaultMaterialProfileLimits(MultiLayer multilayer) -> pair_double_t\n"
+		"BA_CORE_API_ std::pair<double, double> DefaultMaterialProfileLimits(const MultiLayer &multilayer)\n"
 		"\n"
-		"Returns total number of histogram bins. For 2D histograms the result will be the product of bin numbers along X and Y axes. \n"
+		"Get default z limits for generating a material profile. \n"
 		"\n"
 		""},
-	 { "IHistogram_getXaxis", _wrap_IHistogram_getXaxis, METH_O, "\n"
-		"IHistogram_getXaxis(IHistogram self) -> IAxis\n"
-		"const IAxis & IHistogram::getXaxis() const\n"
+	 { "GenerateZValues", _wrap_GenerateZValues, METH_VARARGS, "\n"
+		"GenerateZValues(int n_points, double z_min, double z_max) -> vdouble1d_t\n"
+		"BA_CORE_API_ std::vector<double> GenerateZValues(int n_points, double z_min, double z_max)\n"
 		"\n"
-		"returns x-axis \n"
+		"Generate z values (equidistant) for use in MaterialProfile. \n"
 		"\n"
 		""},
-	 { "IHistogram_getYaxis", _wrap_IHistogram_getYaxis, METH_O, "\n"
-		"IHistogram_getYaxis(IHistogram self) -> IAxis\n"
-		"const IAxis & IHistogram::getYaxis() const\n"
+	 { "delete_RoughnessModel", _wrap_delete_RoughnessModel, METH_O, "delete_RoughnessModel(RoughnessModel self)"},
+	 { "RoughnessModel_swigregister", RoughnessModel_swigregister, METH_O, NULL},
+	 { "rad2deg", _wrap_rad2deg, METH_O, "\n"
+		"rad2deg(double angle) -> double\n"
+		"double Units::rad2deg(double angle)\n"
 		"\n"
-		"returns y-axis for 2D histograms \n"
+		""},
+	 { "deg2rad", _wrap_deg2rad, METH_O, "\n"
+		"deg2rad(double angle) -> double\n"
+		"double Units::deg2rad(double angle)\n"
 		"\n"
 		""},
-	 { "IHistogram_getXmin", _wrap_IHistogram_getXmin, METH_O, "\n"
-		"IHistogram_getXmin(IHistogram self) -> double\n"
-		"double IHistogram::getXmin() const\n"
+	 { "delete_IDistribution1D", _wrap_delete_IDistribution1D, METH_O, "\n"
+		"delete_IDistribution1D(IDistribution1D self)\n"
+		"virtual IDistribution1D::~IDistribution1D()\n"
 		"\n"
-		"Returns x-axis min (lower edge of first bin). \n"
+		""},
+	 { "IDistribution1D_clone", _wrap_IDistribution1D_clone, METH_O, "\n"
+		"IDistribution1D_clone(IDistribution1D self) -> IDistribution1D\n"
+		"virtual IDistribution1D* IDistribution1D::clone() const =0\n"
 		"\n"
 		""},
-	 { "IHistogram_getXmax", _wrap_IHistogram_getXmax, METH_O, "\n"
-		"IHistogram_getXmax(IHistogram self) -> double\n"
-		"double IHistogram::getXmax() const\n"
+	 { "IDistribution1D_probabilityDensity", _wrap_IDistribution1D_probabilityDensity, METH_VARARGS, "\n"
+		"IDistribution1D_probabilityDensity(IDistribution1D self, double x) -> double\n"
+		"virtual double IDistribution1D::probabilityDensity(double x) const =0\n"
 		"\n"
-		"Returns x-axis max (upper edge of last bin). \n"
+		"Returns the distribution-specific probability density for value x. \n"
 		"\n"
 		""},
-	 { "IHistogram_getNbinsX", _wrap_IHistogram_getNbinsX, METH_O, "\n"
-		"IHistogram_getNbinsX(IHistogram self) -> size_t\n"
-		"size_t IHistogram::getNbinsX() const\n"
+	 { "IDistribution1D_getMean", _wrap_IDistribution1D_getMean, METH_O, "\n"
+		"IDistribution1D_getMean(IDistribution1D self) -> double\n"
+		"virtual double IDistribution1D::getMean() const =0\n"
 		"\n"
-		"Returns number of bins on x-axis. \n"
+		"Returns the distribution-specific mean. \n"
 		"\n"
 		""},
-	 { "IHistogram_getYmin", _wrap_IHistogram_getYmin, METH_O, "\n"
-		"IHistogram_getYmin(IHistogram self) -> double\n"
-		"double IHistogram::getYmin() const\n"
+	 { "IDistribution1D_equidistantSamples", _wrap_IDistribution1D_equidistantSamples, METH_VARARGS, "\n"
+		"IDistribution1D_equidistantSamples(IDistribution1D self, size_t nbr_samples, double sigma_factor=0., RealLimits limits=RealLimits()) -> ParameterSampleVector\n"
+		"std::vector< ParameterSample > IDistribution1D::equidistantSamples(size_t nbr_samples, double sigma_factor=0., const RealLimits &limits=RealLimits()) const\n"
 		"\n"
-		"Returns y-axis min (lower edge of first bin) for 2D histograms. \n"
+		"Returns equidistant samples, using intrinsic parameters, weighted with  probabilityDensity(). \n"
 		"\n"
 		""},
-	 { "IHistogram_getYmax", _wrap_IHistogram_getYmax, METH_O, "\n"
-		"IHistogram_getYmax(IHistogram self) -> double\n"
-		"double IHistogram::getYmax() const\n"
+	 { "IDistribution1D_equidistantSamplesInRange", _wrap_IDistribution1D_equidistantSamplesInRange, METH_VARARGS, "\n"
+		"IDistribution1D_equidistantSamplesInRange(IDistribution1D self, size_t nbr_samples, double xmin, double xmax) -> ParameterSampleVector\n"
+		"std::vector< ParameterSample > IDistribution1D::equidistantSamplesInRange(size_t nbr_samples, double xmin, double xmax) const\n"
 		"\n"
-		"Returns y-axis max (upper edge of last bin) for 2D histograms. \n"
+		"Returns equidistant samples from xmin to xmax, weighted with  probabilityDensity(). \n"
 		"\n"
 		""},
-	 { "IHistogram_getNbinsY", _wrap_IHistogram_getNbinsY, METH_O, "\n"
-		"IHistogram_getNbinsY(IHistogram self) -> size_t\n"
-		"size_t IHistogram::getNbinsY() const\n"
+	 { "IDistribution1D_equidistantPoints", _wrap_IDistribution1D_equidistantPoints, METH_VARARGS, "\n"
+		"IDistribution1D_equidistantPoints(IDistribution1D self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
+		"virtual std::vector<double> IDistribution1D::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const =0\n"
 		"\n"
-		"Returns number of bins on y-axis. \n"
+		"Returns equidistant interpolation points, with range computed in distribution-specific way from mean and width parameter, taking into account limits and sigma_factor. \n"
 		"\n"
 		""},
-	 { "IHistogram_getGlobalBin", _wrap_IHistogram_getGlobalBin, METH_VARARGS, "\n"
-		"IHistogram_getGlobalBin(IHistogram self, size_t binx, size_t biny=0) -> size_t\n"
-		"size_t IHistogram::getGlobalBin(size_t binx, size_t biny=0) const\n"
+	 { "IDistribution1D_equidistantPointsInRange", _wrap_IDistribution1D_equidistantPointsInRange, METH_VARARGS, "\n"
+		"IDistribution1D_equidistantPointsInRange(IDistribution1D self, size_t nbr_samples, double xmin, double xmax) -> vdouble1d_t\n"
+		"std::vector< double > IDistribution1D::equidistantPointsInRange(size_t nbr_samples, double xmin, double xmax) const\n"
 		"\n"
-		"Returns global bin index for given axes indices. For 1D histogram the global bin index coinside with x-axis index.\n"
+		"Returns equidistant interpolation points from xmin to xmax. \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "IDistribution1D_isDelta", _wrap_IDistribution1D_isDelta, METH_O, "\n"
+		"IDistribution1D_isDelta(IDistribution1D self) -> bool\n"
+		"virtual bool IDistribution1D::isDelta() const =0\n"
 		"\n"
-		"binx: \n"
-		"x-axis bin index\n"
+		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
 		"\n"
-		"biny: \n"
-		"y-axis bin index (for 2D histograms)\n"
+		""},
+	 { "IDistribution1D_setUnits", _wrap_IDistribution1D_setUnits, METH_VARARGS, "\n"
+		"IDistribution1D_setUnits(IDistribution1D self, std::string const & units)\n"
+		"void IDistribution1D::setUnits(const std::string &units)\n"
 		"\n"
-		"The global bin index \n"
+		"Sets distribution units. \n"
 		"\n"
 		""},
-	 { "IHistogram_findGlobalBin", _wrap_IHistogram_findGlobalBin, METH_VARARGS, "\n"
-		"IHistogram_findGlobalBin(IHistogram self, double x, double y) -> size_t\n"
-		"size_t IHistogram::findGlobalBin(double x, double y) const\n"
+	 { "IDistribution1D_swigregister", IDistribution1D_swigregister, METH_O, NULL},
+	 { "new_DistributionGate", _wrap_new_DistributionGate, METH_VARARGS, "\n"
+		"DistributionGate()\n"
+		"new_DistributionGate(double min, double max) -> DistributionGate\n"
+		"DistributionGate::DistributionGate(double min, double max)\n"
 		"\n"
-		"Returns closest global bin index for given axes coordinates. For 1D.\n"
+		""},
+	 { "delete_DistributionGate", _wrap_delete_DistributionGate, METH_O, "\n"
+		"delete_DistributionGate(DistributionGate self)\n"
+		"virtual DistributionGate::~DistributionGate()\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "DistributionGate_clone", _wrap_DistributionGate_clone, METH_O, "\n"
+		"DistributionGate_clone(DistributionGate self) -> DistributionGate\n"
+		"DistributionGate* DistributionGate::clone() const final\n"
 		"\n"
-		"x: \n"
-		"Value on x-axis\n"
+		""},
+	 { "DistributionGate_probabilityDensity", _wrap_DistributionGate_probabilityDensity, METH_VARARGS, "\n"
+		"DistributionGate_probabilityDensity(DistributionGate self, double x) -> double\n"
+		"double DistributionGate::probabilityDensity(double x) const final\n"
 		"\n"
-		"y: \n"
-		"Value on y-axis (for 2D histograms)\n"
+		"Returns the distribution-specific probability density for value x. \n"
 		"\n"
-		"Closest global bin index \n"
+		""},
+	 { "DistributionGate_getMean", _wrap_DistributionGate_getMean, METH_O, "\n"
+		"DistributionGate_getMean(DistributionGate self) -> double\n"
+		"double DistributionGate::getMean() const final\n"
+		"\n"
+		"Returns the distribution-specific mean. \n"
 		"\n"
 		""},
-	 { "IHistogram_getXaxisIndex", _wrap_IHistogram_getXaxisIndex, METH_VARARGS, "\n"
-		"IHistogram_getXaxisIndex(IHistogram self, size_t i) -> size_t\n"
-		"size_t IHistogram::getXaxisIndex(size_t i) const\n"
+	 { "DistributionGate_getMin", _wrap_DistributionGate_getMin, METH_O, "\n"
+		"DistributionGate_getMin(DistributionGate self) -> double\n"
+		"double DistributionGate::getMin() const\n"
 		"\n"
-		"Returns x-axis bin index for given globalbin. For 1D histograms returned value conicide with globalbin value. \n"
+		""},
+	 { "DistributionGate_getMax", _wrap_DistributionGate_getMax, METH_O, "\n"
+		"DistributionGate_getMax(DistributionGate self) -> double\n"
+		"double DistributionGate::getMax() const\n"
 		"\n"
 		""},
-	 { "IHistogram_getYaxisIndex", _wrap_IHistogram_getYaxisIndex, METH_VARARGS, "\n"
-		"IHistogram_getYaxisIndex(IHistogram self, size_t i) -> size_t\n"
-		"size_t IHistogram::getYaxisIndex(size_t i) const\n"
+	 { "DistributionGate_equidistantPoints", _wrap_DistributionGate_equidistantPoints, METH_VARARGS, "\n"
+		"DistributionGate_equidistantPoints(DistributionGate self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
+		"std::vector< double > DistributionGate::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const\n"
 		"\n"
-		"Returns y-axis bin index for given globalbin (for 2D histograms). \n"
+		"Returns list of sample values. \n"
 		"\n"
 		""},
-	 { "IHistogram_getXaxisValue", _wrap_IHistogram_getXaxisValue, METH_VARARGS, "\n"
-		"IHistogram_getXaxisValue(IHistogram self, size_t i) -> double\n"
-		"double IHistogram::getXaxisValue(size_t i)\n"
+	 { "DistributionGate_isDelta", _wrap_DistributionGate_isDelta, METH_O, "\n"
+		"DistributionGate_isDelta(DistributionGate self) -> bool\n"
+		"bool DistributionGate::isDelta() const final\n"
 		"\n"
-		"Returns the value on x-axis corresponding to the global bin index.\n"
+		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "DistributionGate_accept", _wrap_DistributionGate_accept, METH_VARARGS, "\n"
+		"DistributionGate_accept(DistributionGate self, INodeVisitor visitor)\n"
+		"void DistributionGate::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"globalbin: \n"
-		"The global bin index\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
-		"The center of corresponding bin of the axis \n"
+		""},
+	 { "DistributionGate_swigregister", DistributionGate_swigregister, METH_O, NULL},
+	 { "DistributionGate_swiginit", DistributionGate_swiginit, METH_VARARGS, NULL},
+	 { "new_DistributionLorentz", _wrap_new_DistributionLorentz, METH_VARARGS, "\n"
+		"DistributionLorentz()\n"
+		"new_DistributionLorentz(double mean, double hwhm) -> DistributionLorentz\n"
+		"DistributionLorentz::DistributionLorentz(double mean, double hwhm)\n"
 		"\n"
 		""},
-	 { "IHistogram_getYaxisValue", _wrap_IHistogram_getYaxisValue, METH_VARARGS, "\n"
-		"IHistogram_getYaxisValue(IHistogram self, size_t i) -> double\n"
-		"double IHistogram::getYaxisValue(size_t i)\n"
+	 { "delete_DistributionLorentz", _wrap_delete_DistributionLorentz, METH_O, "\n"
+		"delete_DistributionLorentz(DistributionLorentz self)\n"
+		"virtual DistributionLorentz::~DistributionLorentz()\n"
 		"\n"
-		"Returns the value on y-axis corresponding to the 2D histogram global bin index.\n"
+		""},
+	 { "DistributionLorentz_clone", _wrap_DistributionLorentz_clone, METH_O, "\n"
+		"DistributionLorentz_clone(DistributionLorentz self) -> DistributionLorentz\n"
+		"DistributionLorentz* DistributionLorentz::clone() const final\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "DistributionLorentz_probabilityDensity", _wrap_DistributionLorentz_probabilityDensity, METH_VARARGS, "\n"
+		"DistributionLorentz_probabilityDensity(DistributionLorentz self, double x) -> double\n"
+		"double DistributionLorentz::probabilityDensity(double x) const final\n"
 		"\n"
-		"globalbin: \n"
-		"The global bin index\n"
+		"Returns the distribution-specific probability density for value x. \n"
 		"\n"
-		"The center of corresponding bin of the axis \n"
+		""},
+	 { "DistributionLorentz_getMean", _wrap_DistributionLorentz_getMean, METH_O, "\n"
+		"DistributionLorentz_getMean(DistributionLorentz self) -> double\n"
+		"double DistributionLorentz::getMean() const final\n"
+		"\n"
+		"Returns the distribution-specific mean. \n"
 		"\n"
 		""},
-	 { "IHistogram_getData", _wrap_IHistogram_getData, METH_VARARGS, "\n"
-		"IHistogram_getData(IHistogram self) -> OutputData< CumulativeValue > const\n"
-		"IHistogram_getData(IHistogram self) -> OutputData< CumulativeValue > &\n"
-		"OutputData<CumulativeValue>& IHistogram::getData()\n"
+	 { "DistributionLorentz_getHWHM", _wrap_DistributionLorentz_getHWHM, METH_O, "\n"
+		"DistributionLorentz_getHWHM(DistributionLorentz self) -> double\n"
+		"double DistributionLorentz::getHWHM() const\n"
 		"\n"
 		""},
-	 { "IHistogram_getBinContent", _wrap_IHistogram_getBinContent, METH_VARARGS, "\n"
-		"IHistogram_getBinContent(IHistogram self, size_t i) -> double\n"
-		"IHistogram_getBinContent(IHistogram self, size_t binx, size_t biny) -> double\n"
-		"double IHistogram::getBinContent(size_t binx, size_t biny) const\n"
+	 { "DistributionLorentz_equidistantPoints", _wrap_DistributionLorentz_equidistantPoints, METH_VARARGS, "\n"
+		"DistributionLorentz_equidistantPoints(DistributionLorentz self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
+		"std::vector< double > DistributionLorentz::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const\n"
 		"\n"
-		"Returns content (accumulated value) of the 2D histogram bin with given indices.\n"
+		"generate list of sample values \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "DistributionLorentz_isDelta", _wrap_DistributionLorentz_isDelta, METH_O, "\n"
+		"DistributionLorentz_isDelta(DistributionLorentz self) -> bool\n"
+		"bool DistributionLorentz::isDelta() const final\n"
 		"\n"
-		"binx: \n"
-		"x-axis bin index\n"
+		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
 		"\n"
-		"biny: \n"
-		"y-axis bin index\n"
+		""},
+	 { "DistributionLorentz_accept", _wrap_DistributionLorentz_accept, METH_VARARGS, "\n"
+		"DistributionLorentz_accept(DistributionLorentz self, INodeVisitor visitor)\n"
+		"void DistributionLorentz::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"The value accumulated by the bin (integral) \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "IHistogram_setBinContent", _wrap_IHistogram_setBinContent, METH_VARARGS, "\n"
-		"IHistogram_setBinContent(IHistogram self, size_t i, double value)\n"
-		"void IHistogram::setBinContent(size_t i, double value)\n"
-		"\n"
-		"Sets content of the bin corresponding to the globalbin number. \n"
+	 { "DistributionLorentz_swigregister", DistributionLorentz_swigregister, METH_O, NULL},
+	 { "DistributionLorentz_swiginit", DistributionLorentz_swiginit, METH_VARARGS, NULL},
+	 { "new_DistributionGaussian", _wrap_new_DistributionGaussian, METH_VARARGS, "\n"
+		"DistributionGaussian()\n"
+		"new_DistributionGaussian(double mean, double std_dev) -> DistributionGaussian\n"
+		"DistributionGaussian::DistributionGaussian(double mean, double std_dev)\n"
 		"\n"
 		""},
-	 { "IHistogram_addBinContent", _wrap_IHistogram_addBinContent, METH_VARARGS, "\n"
-		"IHistogram_addBinContent(IHistogram self, size_t i, double value)\n"
-		"void IHistogram::addBinContent(size_t i, double value)\n"
+	 { "delete_DistributionGaussian", _wrap_delete_DistributionGaussian, METH_O, "\n"
+		"delete_DistributionGaussian(DistributionGaussian self)\n"
+		"virtual DistributionGaussian::~DistributionGaussian()\n"
 		"\n"
-		"Add the value to the bin. \n"
+		""},
+	 { "DistributionGaussian_clone", _wrap_DistributionGaussian_clone, METH_O, "\n"
+		"DistributionGaussian_clone(DistributionGaussian self) -> DistributionGaussian\n"
+		"DistributionGaussian* DistributionGaussian::clone() const final\n"
 		"\n"
 		""},
-	 { "IHistogram_getBinError", _wrap_IHistogram_getBinError, METH_VARARGS, "\n"
-		"IHistogram_getBinError(IHistogram self, size_t i) -> double\n"
-		"IHistogram_getBinError(IHistogram self, size_t binx, size_t biny) -> double\n"
-		"double IHistogram::getBinError(size_t binx, size_t biny) const\n"
+	 { "DistributionGaussian_probabilityDensity", _wrap_DistributionGaussian_probabilityDensity, METH_VARARGS, "\n"
+		"DistributionGaussian_probabilityDensity(DistributionGaussian self, double x) -> double\n"
+		"double DistributionGaussian::probabilityDensity(double x) const final\n"
 		"\n"
-		"Returns error of the bin with given indices (for 2D histograms). \n"
+		"Returns the distribution-specific probability density for value x. \n"
 		"\n"
 		""},
-	 { "IHistogram_getBinAverage", _wrap_IHistogram_getBinAverage, METH_VARARGS, "\n"
-		"IHistogram_getBinAverage(IHistogram self, size_t i) -> double\n"
-		"IHistogram_getBinAverage(IHistogram self, size_t binx, size_t biny) -> double\n"
-		"double IHistogram::getBinAverage(size_t binx, size_t biny) const\n"
+	 { "DistributionGaussian_getMean", _wrap_DistributionGaussian_getMean, METH_O, "\n"
+		"DistributionGaussian_getMean(DistributionGaussian self) -> double\n"
+		"double DistributionGaussian::getMean() const final\n"
 		"\n"
-		"Returns average value of the bin with given indices (for 2D histograms). \n"
+		"Returns the distribution-specific mean. \n"
 		"\n"
 		""},
-	 { "IHistogram_getBinNumberOfEntries", _wrap_IHistogram_getBinNumberOfEntries, METH_VARARGS, "\n"
-		"IHistogram_getBinNumberOfEntries(IHistogram self, size_t i) -> int\n"
-		"IHistogram_getBinNumberOfEntries(IHistogram self, size_t binx, size_t biny) -> int\n"
-		"int IHistogram::getBinNumberOfEntries(size_t binx, size_t biny) const\n"
-		"\n"
-		"Returns number of entries in the bin with given indices (for 2D histograms). \n"
+	 { "DistributionGaussian_getStdDev", _wrap_DistributionGaussian_getStdDev, METH_O, "\n"
+		"DistributionGaussian_getStdDev(DistributionGaussian self) -> double\n"
+		"double DistributionGaussian::getStdDev() const\n"
 		"\n"
 		""},
-	 { "IHistogram_getMaximum", _wrap_IHistogram_getMaximum, METH_O, "\n"
-		"IHistogram_getMaximum(IHistogram self) -> double\n"
-		"double IHistogram::getMaximum() const\n"
+	 { "DistributionGaussian_equidistantPoints", _wrap_DistributionGaussian_equidistantPoints, METH_VARARGS, "\n"
+		"DistributionGaussian_equidistantPoints(DistributionGaussian self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
+		"std::vector< double > DistributionGaussian::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const\n"
 		"\n"
-		"Returns histogram maximum value (maximum of  getBinContent() over all bins) \n"
+		"generate list of sample values \n"
 		"\n"
 		""},
-	 { "IHistogram_getMaximumBinIndex", _wrap_IHistogram_getMaximumBinIndex, METH_O, "\n"
-		"IHistogram_getMaximumBinIndex(IHistogram self) -> size_t\n"
-		"size_t IHistogram::getMaximumBinIndex() const\n"
+	 { "DistributionGaussian_isDelta", _wrap_DistributionGaussian_isDelta, METH_O, "\n"
+		"DistributionGaussian_isDelta(DistributionGaussian self) -> bool\n"
+		"bool DistributionGaussian::isDelta() const final\n"
 		"\n"
-		"Returns globalbin index with maximum content. \n"
+		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
 		"\n"
 		""},
-	 { "IHistogram_getMinimum", _wrap_IHistogram_getMinimum, METH_O, "\n"
-		"IHistogram_getMinimum(IHistogram self) -> double\n"
-		"double IHistogram::getMinimum() const\n"
+	 { "DistributionGaussian_accept", _wrap_DistributionGaussian_accept, METH_VARARGS, "\n"
+		"DistributionGaussian_accept(DistributionGaussian self, INodeVisitor visitor)\n"
+		"void DistributionGaussian::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Returns histogram minimum value (minimum of  getBinContent() over all bins) \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "IHistogram_getMinimumBinIndex", _wrap_IHistogram_getMinimumBinIndex, METH_O, "\n"
-		"IHistogram_getMinimumBinIndex(IHistogram self) -> size_t\n"
-		"size_t IHistogram::getMinimumBinIndex() const\n"
+	 { "DistributionGaussian_swigregister", DistributionGaussian_swigregister, METH_O, NULL},
+	 { "DistributionGaussian_swiginit", DistributionGaussian_swiginit, METH_VARARGS, NULL},
+	 { "new_DistributionLogNormal", _wrap_new_DistributionLogNormal, METH_VARARGS, "\n"
+		"DistributionLogNormal(double scale_param)\n"
+		"new_DistributionLogNormal(double median, double scale_param) -> DistributionLogNormal\n"
+		"DistributionLogNormal::DistributionLogNormal(double median, double scale_param)\n"
 		"\n"
-		"Returns globalbin index with minimum content. \n"
+		""},
+	 { "delete_DistributionLogNormal", _wrap_delete_DistributionLogNormal, METH_O, "\n"
+		"delete_DistributionLogNormal(DistributionLogNormal self)\n"
+		"virtual DistributionLogNormal::~DistributionLogNormal()\n"
 		"\n"
 		""},
-	 { "IHistogram_scale", _wrap_IHistogram_scale, METH_VARARGS, "\n"
-		"IHistogram_scale(IHistogram self, double value)\n"
-		"void IHistogram::scale(double value)\n"
+	 { "DistributionLogNormal_clone", _wrap_DistributionLogNormal_clone, METH_O, "\n"
+		"DistributionLogNormal_clone(DistributionLogNormal self) -> DistributionLogNormal\n"
+		"DistributionLogNormal* DistributionLogNormal::clone() const final\n"
 		"\n"
-		"Multiply this histogram (every bin content value) by a constant. \n"
+		""},
+	 { "DistributionLogNormal_probabilityDensity", _wrap_DistributionLogNormal_probabilityDensity, METH_VARARGS, "\n"
+		"DistributionLogNormal_probabilityDensity(DistributionLogNormal self, double x) -> double\n"
+		"double DistributionLogNormal::probabilityDensity(double x) const final\n"
+		"\n"
+		"Returns the distribution-specific probability density for value x. \n"
 		"\n"
 		""},
-	 { "IHistogram_integral", _wrap_IHistogram_integral, METH_O, "\n"
-		"IHistogram_integral(IHistogram self) -> double\n"
-		"double IHistogram::integral() const\n"
+	 { "DistributionLogNormal_getMean", _wrap_DistributionLogNormal_getMean, METH_O, "\n"
+		"DistributionLogNormal_getMean(DistributionLogNormal self) -> double\n"
+		"double DistributionLogNormal::getMean() const final\n"
 		"\n"
-		"Returns integral of bins content (computed as a sum of all bin content). \n"
+		"Returns the distribution-specific mean. \n"
 		"\n"
 		""},
-	 { "IHistogram_array", _wrap_IHistogram_array, METH_VARARGS, "\n"
-		"IHistogram_array(IHistogram self, IHistogram::DataType dataType=DataType::INTEGRAL) -> PyObject\n"
-		"PyObject * IHistogram::array(DataType dataType=DataType::INTEGRAL) const\n"
+	 { "DistributionLogNormal_getMedian", _wrap_DistributionLogNormal_getMedian, METH_O, "\n"
+		"DistributionLogNormal_getMedian(DistributionLogNormal self) -> double\n"
+		"double DistributionLogNormal::getMedian() const\n"
 		"\n"
-		"Returns numpy array with bin content (accumulated values). \n"
+		""},
+	 { "DistributionLogNormal_getScalePar", _wrap_DistributionLogNormal_getScalePar, METH_O, "\n"
+		"DistributionLogNormal_getScalePar(DistributionLogNormal self) -> double\n"
+		"double DistributionLogNormal::getScalePar() const\n"
 		"\n"
 		""},
-	 { "IHistogram_getArrayObsolete", _wrap_IHistogram_getArrayObsolete, METH_VARARGS, "\n"
-		"IHistogram_getArrayObsolete(IHistogram self, IHistogram::DataType dataType=DataType::INTEGRAL) -> PyObject\n"
-		"PyObject * IHistogram::getArray(DataType dataType=DataType::INTEGRAL) const\n"
+	 { "DistributionLogNormal_equidistantPoints", _wrap_DistributionLogNormal_equidistantPoints, METH_VARARGS, "\n"
+		"DistributionLogNormal_equidistantPoints(DistributionLogNormal self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
+		"std::vector< double > DistributionLogNormal::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const\n"
 		"\n"
-		"Deprecated\n"
-		"Use  array() instead. \n"
+		"generate list of sample values \n"
 		"\n"
 		""},
-	 { "IHistogram_reset", _wrap_IHistogram_reset, METH_O, "\n"
-		"IHistogram_reset(IHistogram self)\n"
-		"void IHistogram::reset()\n"
+	 { "DistributionLogNormal_isDelta", _wrap_DistributionLogNormal_isDelta, METH_O, "\n"
+		"DistributionLogNormal_isDelta(DistributionLogNormal self) -> bool\n"
+		"bool DistributionLogNormal::isDelta() const final\n"
 		"\n"
-		"Reset histogram content (axes remains) \n"
+		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
 		"\n"
 		""},
-	 { "IHistogram_createHistogram", _wrap_IHistogram_createHistogram, METH_O, "IHistogram_createHistogram(IntensityData source) -> IHistogram"},
-	 { "IHistogram_createFrom", _wrap_IHistogram_createFrom, METH_VARARGS, "\n"
-		"IHistogram_createFrom(std::string const & filename) -> IHistogram\n"
-		"IHistogram_createFrom(vdouble2d_t data) -> IHistogram\n"
+	 { "DistributionLogNormal_accept", _wrap_DistributionLogNormal_accept, METH_VARARGS, "\n"
+		"DistributionLogNormal_accept(DistributionLogNormal self, INodeVisitor visitor)\n"
+		"void DistributionLogNormal::accept(INodeVisitor *visitor) const final\n"
+		"\n"
+		"Calls the  INodeVisitor's visit method. \n"
+		"\n"
 		""},
-	 { "IHistogram_createOutputData", _wrap_IHistogram_createOutputData, METH_VARARGS, "\n"
-		"IHistogram_createOutputData(IHistogram self, IHistogram::DataType dataType=DataType::INTEGRAL) -> IntensityData\n"
-		"OutputData< double > * IHistogram::createOutputData(DataType dataType=DataType::INTEGRAL) const\n"
+	 { "DistributionLogNormal_setUnits", _wrap_DistributionLogNormal_setUnits, METH_VARARGS, "\n"
+		"DistributionLogNormal_setUnits(DistributionLogNormal self, std::string const & units)\n"
+		"void DistributionLogNormal::setUnits(const std::string &units)\n"
 		"\n"
-		"creates new  OutputData with histogram's shape and values corresponding to DataType\n"
+		"Sets distribution units. \n"
 		"\n"
-		"creates new  OutputData with histogram's shape and put there values corresponding to DataType \n"
+		""},
+	 { "DistributionLogNormal_swigregister", DistributionLogNormal_swigregister, METH_O, NULL},
+	 { "DistributionLogNormal_swiginit", DistributionLogNormal_swiginit, METH_VARARGS, NULL},
+	 { "new_DistributionCosine", _wrap_new_DistributionCosine, METH_VARARGS, "\n"
+		"DistributionCosine()\n"
+		"new_DistributionCosine(double mean, double sigma) -> DistributionCosine\n"
+		"DistributionCosine::DistributionCosine(double mean, double sigma)\n"
 		"\n"
 		""},
-	 { "IHistogram_hasSameShape", _wrap_IHistogram_hasSameShape, METH_VARARGS, "\n"
-		"IHistogram_hasSameShape(IHistogram self, IHistogram other) -> bool\n"
-		"bool IHistogram::hasSameShape(const IHistogram &other) const\n"
+	 { "delete_DistributionCosine", _wrap_delete_DistributionCosine, METH_O, "\n"
+		"delete_DistributionCosine(DistributionCosine self)\n"
+		"virtual DistributionCosine::~DistributionCosine()\n"
 		"\n"
-		"Returns true if objects a) have same dimensions b) bin boundaries of axes coincide. \n"
+		""},
+	 { "DistributionCosine_clone", _wrap_DistributionCosine_clone, METH_O, "\n"
+		"DistributionCosine_clone(DistributionCosine self) -> DistributionCosine\n"
+		"DistributionCosine* DistributionCosine::clone() const final\n"
 		"\n"
 		""},
-	 { "IHistogram_hasSameDimensions", _wrap_IHistogram_hasSameDimensions, METH_VARARGS, "\n"
-		"IHistogram_hasSameDimensions(IHistogram self, IHistogram other) -> bool\n"
-		"bool IHistogram::hasSameDimensions(const IHistogram &other) const\n"
+	 { "DistributionCosine_probabilityDensity", _wrap_DistributionCosine_probabilityDensity, METH_VARARGS, "\n"
+		"DistributionCosine_probabilityDensity(DistributionCosine self, double x) -> double\n"
+		"double DistributionCosine::probabilityDensity(double x) const final\n"
 		"\n"
-		"Returns true if object have same rank and number of axes bins. \n"
+		"Returns the distribution-specific probability density for value x. \n"
 		"\n"
 		""},
-	 { "IHistogram___iadd__", _wrap_IHistogram___iadd__, METH_VARARGS, "IHistogram___iadd__(IHistogram self, IHistogram right) -> IHistogram"},
-	 { "IHistogram_relativeDifferenceHistogram", _wrap_IHistogram_relativeDifferenceHistogram, METH_VARARGS, "\n"
-		"IHistogram_relativeDifferenceHistogram(IHistogram self, IHistogram rhs) -> IHistogram\n"
-		"IHistogram * IHistogram::relativeDifferenceHistogram(const IHistogram &rhs)\n"
+	 { "DistributionCosine_getMean", _wrap_DistributionCosine_getMean, METH_O, "\n"
+		"DistributionCosine_getMean(DistributionCosine self) -> double\n"
+		"double DistributionCosine::getMean() const final\n"
 		"\n"
-		"returns histogram representing relative difference of two histograms. \n"
+		"Returns the distribution-specific mean. \n"
 		"\n"
 		""},
-	 { "IHistogram_save", _wrap_IHistogram_save, METH_VARARGS, "\n"
-		"IHistogram_save(IHistogram self, std::string const & filename)\n"
-		"void IHistogram::save(const std::string &filename)\n"
-		"\n"
-		"Saves histogram in file Following formats are available: *.txt, *.tif, *.int (*.txt.gz, *.tif.gz, *.int.gz) \n"
+	 { "DistributionCosine_getSigma", _wrap_DistributionCosine_getSigma, METH_O, "\n"
+		"DistributionCosine_getSigma(DistributionCosine self) -> double\n"
+		"double DistributionCosine::getSigma() const\n"
 		"\n"
 		""},
-	 { "IHistogram_load", _wrap_IHistogram_load, METH_VARARGS, "\n"
-		"IHistogram_load(IHistogram self, std::string const & filename)\n"
-		"void IHistogram::load(const std::string &filename)\n"
+	 { "DistributionCosine_equidistantPoints", _wrap_DistributionCosine_equidistantPoints, METH_VARARGS, "\n"
+		"DistributionCosine_equidistantPoints(DistributionCosine self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
+		"std::vector< double > DistributionCosine::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const\n"
 		"\n"
-		"Loads histogram from file, the shape of array in file should match Following formats are available: *.txt, *.tif, *.int (*.txt.gz, *.tif.gz, *.int.gz) Only bin content will be loaded, histogram axes remain the same. \n"
+		"generate list of sample values \n"
 		"\n"
 		""},
-	 { "IHistogram_swigregister", IHistogram_swigregister, METH_O, NULL},
-	 { "new_Histogram1D", _wrap_new_Histogram1D, METH_VARARGS, "\n"
-		"Histogram1D(int nbinsx, double xlow, double xup)\n"
-		"Histogram1D(int nbinsx, vdouble1d_t xbins)\n"
-		"Histogram1D(IAxis axis)\n"
-		"new_Histogram1D(IntensityData data) -> Histogram1D\n"
-		"Histogram1D::Histogram1D(const OutputData< double > &data)\n"
+	 { "DistributionCosine_isDelta", _wrap_DistributionCosine_isDelta, METH_O, "\n"
+		"DistributionCosine_isDelta(DistributionCosine self) -> bool\n"
+		"bool DistributionCosine::isDelta() const final\n"
 		"\n"
-		"Constructor for 1D histograms from basic  OutputData object. \n"
+		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
 		"\n"
 		""},
-	 { "Histogram1D_clone", _wrap_Histogram1D_clone, METH_O, "\n"
-		"Histogram1D_clone(Histogram1D self) -> Histogram1D\n"
-		"Histogram1D * Histogram1D::clone() const\n"
+	 { "DistributionCosine_accept", _wrap_DistributionCosine_accept, METH_VARARGS, "\n"
+		"DistributionCosine_accept(DistributionCosine self, INodeVisitor visitor)\n"
+		"void DistributionCosine::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Returns clone of other histogram. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "Histogram1D_getRank", _wrap_Histogram1D_getRank, METH_O, "\n"
-		"Histogram1D_getRank(Histogram1D self) -> size_t\n"
-		"size_t Histogram1D::getRank() const\n"
-		"\n"
-		"Returns the number of histogram dimensions. \n"
+	 { "DistributionCosine_swigregister", DistributionCosine_swigregister, METH_O, NULL},
+	 { "DistributionCosine_swiginit", DistributionCosine_swiginit, METH_VARARGS, NULL},
+	 { "new_DistributionTrapezoid", _wrap_new_DistributionTrapezoid, METH_VARARGS, "\n"
+		"DistributionTrapezoid()\n"
+		"new_DistributionTrapezoid(double center, double left_width, double middle_width, double right_width) -> DistributionTrapezoid\n"
+		"DistributionTrapezoid::DistributionTrapezoid(double center, double left_width, double middle_width, double right_width)\n"
 		"\n"
 		""},
-	 { "Histogram1D_fill", _wrap_Histogram1D_fill, METH_VARARGS, "\n"
-		"Histogram1D_fill(Histogram1D self, double x, double weight=1.0) -> int\n"
-		"int Histogram1D::fill(double x, double weight=1.0)\n"
+	 { "delete_DistributionTrapezoid", _wrap_delete_DistributionTrapezoid, METH_O, "\n"
+		"delete_DistributionTrapezoid(DistributionTrapezoid self)\n"
+		"virtual DistributionTrapezoid::~DistributionTrapezoid()\n"
 		"\n"
-		"Increment bin with abscissa x with a weight. \n"
+		""},
+	 { "DistributionTrapezoid_clone", _wrap_DistributionTrapezoid_clone, METH_O, "\n"
+		"DistributionTrapezoid_clone(DistributionTrapezoid self) -> DistributionTrapezoid\n"
+		"DistributionTrapezoid* DistributionTrapezoid::clone() const final\n"
 		"\n"
 		""},
-	 { "Histogram1D_getBinCenters", _wrap_Histogram1D_getBinCenters, METH_O, "\n"
-		"Histogram1D_getBinCenters(Histogram1D self) -> vdouble1d_t\n"
-		"std::vector< double > Histogram1D::getBinCenters() const\n"
+	 { "DistributionTrapezoid_probabilityDensity", _wrap_DistributionTrapezoid_probabilityDensity, METH_VARARGS, "\n"
+		"DistributionTrapezoid_probabilityDensity(DistributionTrapezoid self, double x) -> double\n"
+		"double DistributionTrapezoid::probabilityDensity(double x) const final\n"
 		"\n"
-		"returns vector of histogram bin centers \n"
+		"Returns the distribution-specific probability density for value x. \n"
 		"\n"
 		""},
-	 { "Histogram1D_getBinValues", _wrap_Histogram1D_getBinValues, METH_O, "\n"
-		"Histogram1D_getBinValues(Histogram1D self) -> vdouble1d_t\n"
-		"std::vector< double > Histogram1D::getBinValues() const\n"
+	 { "DistributionTrapezoid_getMean", _wrap_DistributionTrapezoid_getMean, METH_O, "\n"
+		"DistributionTrapezoid_getMean(DistributionTrapezoid self) -> double\n"
+		"double DistributionTrapezoid::getMean() const final\n"
 		"\n"
-		"returns vector of bin content (the value accumulated by bins) \n"
+		"Returns the distribution-specific mean. \n"
 		"\n"
 		""},
-	 { "Histogram1D_getBinErrors", _wrap_Histogram1D_getBinErrors, METH_O, "\n"
-		"Histogram1D_getBinErrors(Histogram1D self) -> vdouble1d_t\n"
-		"std::vector< double > Histogram1D::getBinErrors() const\n"
+	 { "DistributionTrapezoid_getLeftWidth", _wrap_DistributionTrapezoid_getLeftWidth, METH_O, "\n"
+		"DistributionTrapezoid_getLeftWidth(DistributionTrapezoid self) -> double\n"
+		"double DistributionTrapezoid::getLeftWidth() const\n"
 		"\n"
-		"returns vector of bin errors \n"
+		""},
+	 { "DistributionTrapezoid_getMiddleWidth", _wrap_DistributionTrapezoid_getMiddleWidth, METH_O, "\n"
+		"DistributionTrapezoid_getMiddleWidth(DistributionTrapezoid self) -> double\n"
+		"double DistributionTrapezoid::getMiddleWidth() const\n"
 		"\n"
 		""},
-	 { "Histogram1D_getBinCentersNumpy", _wrap_Histogram1D_getBinCentersNumpy, METH_O, "\n"
-		"Histogram1D_getBinCentersNumpy(Histogram1D self) -> PyObject *\n"
-		"PyObject * Histogram1D::getBinCentersNumpy() const\n"
+	 { "DistributionTrapezoid_getRightWidth", _wrap_DistributionTrapezoid_getRightWidth, METH_O, "\n"
+		"DistributionTrapezoid_getRightWidth(DistributionTrapezoid self) -> double\n"
+		"double DistributionTrapezoid::getRightWidth() const\n"
 		"\n"
 		""},
-	 { "Histogram1D_getBinValuesNumpy", _wrap_Histogram1D_getBinValuesNumpy, METH_O, "\n"
-		"Histogram1D_getBinValuesNumpy(Histogram1D self) -> PyObject *\n"
-		"PyObject * Histogram1D::getBinValuesNumpy() const\n"
+	 { "DistributionTrapezoid_equidistantPoints", _wrap_DistributionTrapezoid_equidistantPoints, METH_VARARGS, "\n"
+		"DistributionTrapezoid_equidistantPoints(DistributionTrapezoid self, size_t nbr_samples, double sigma_factor, RealLimits limits=RealLimits()) -> vdouble1d_t\n"
+		"std::vector< double > DistributionTrapezoid::equidistantPoints(size_t nbr_samples, double sigma_factor, const RealLimits &limits=RealLimits()) const\n"
+		"\n"
+		"generate list of sample values \n"
 		"\n"
 		""},
-	 { "Histogram1D_getBinErrorsNumpy", _wrap_Histogram1D_getBinErrorsNumpy, METH_O, "\n"
-		"Histogram1D_getBinErrorsNumpy(Histogram1D self) -> PyObject *\n"
-		"PyObject * Histogram1D::getBinErrorsNumpy() const\n"
+	 { "DistributionTrapezoid_isDelta", _wrap_DistributionTrapezoid_isDelta, METH_O, "\n"
+		"DistributionTrapezoid_isDelta(DistributionTrapezoid self) -> bool\n"
+		"bool DistributionTrapezoid::isDelta() const final\n"
+		"\n"
+		"Returns true if the distribution is in the limit case of a Dirac delta distribution. \n"
 		"\n"
 		""},
-	 { "Histogram1D_crop", _wrap_Histogram1D_crop, METH_VARARGS, "\n"
-		"Histogram1D_crop(Histogram1D self, double xmin, double xmax) -> Histogram1D\n"
-		"Histogram1D * Histogram1D::crop(double xmin, double xmax)\n"
+	 { "DistributionTrapezoid_accept", _wrap_DistributionTrapezoid_accept, METH_VARARGS, "\n"
+		"DistributionTrapezoid_accept(DistributionTrapezoid self, INodeVisitor visitor)\n"
+		"void DistributionTrapezoid::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Create new histogram by applying crop on axis. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_Histogram1D", _wrap_delete_Histogram1D, METH_O, "delete_Histogram1D(Histogram1D self)"},
-	 { "Histogram1D_swigregister", Histogram1D_swigregister, METH_O, NULL},
-	 { "Histogram1D_swiginit", Histogram1D_swiginit, METH_VARARGS, NULL},
-	 { "new_Histogram2D", _wrap_new_Histogram2D, METH_VARARGS, "\n"
-		"Histogram2D(int nbinsx, double xlow, double xup, int nbinsy, double ylow, double yup)\n"
-		"Histogram2D(int nbinsx, vdouble1d_t xbins, int nbinsy, vdouble1d_t ybins)\n"
-		"Histogram2D(IAxis axis_x, IAxis axis_y)\n"
-		"Histogram2D(IntensityData data)\n"
-		"new_Histogram2D(vdouble2d_t data) -> Histogram2D\n"
-		"Histogram2D::Histogram2D(std::vector< std::vector< double >> data)\n"
+	 { "DistributionTrapezoid_swigregister", DistributionTrapezoid_swigregister, METH_O, NULL},
+	 { "DistributionTrapezoid_swiginit", DistributionTrapezoid_swiginit, METH_VARARGS, NULL},
+	 { "new_INodeVisitor", _wrap_new_INodeVisitor, METH_NOARGS, "\n"
+		"new_INodeVisitor() -> INodeVisitor\n"
+		"INodeVisitor::INodeVisitor()\n"
 		"\n"
-		"Constructor for 2D histograms from numpy array (thanks to swig) \n"
+		""},
+	 { "delete_INodeVisitor", _wrap_delete_INodeVisitor, METH_O, "\n"
+		"delete_INodeVisitor(INodeVisitor self)\n"
+		"virtual INodeVisitor::~INodeVisitor()\n"
+		"\n"
+		""},
+	 { "INodeVisitor_visit", _wrap_INodeVisitor_visit, METH_VARARGS, "\n"
+		"INodeVisitor_visit(INodeVisitor self, BasicLattice arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, Beam arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, ConstantBackground arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, ConvolutionDetectorResolution const * arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, Crystal arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, DistributionCosine arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, DistributionGate arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, DistributionGaussian arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, DistributionLogNormal arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, DistributionLorentz arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, DistributionTrapezoid arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FootprintGauss arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FootprintSquare arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorAnisoPyramid arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorBarGauss const * arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorBarLorentz const * arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorBox arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorCantellatedCube arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorCone arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorCone6 arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorCoreShell const * arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorCrystal arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorCuboctahedron arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorCylinder arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorDWBA const * arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorDWBAPol const * arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorDecoratorMaterial const * arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorDecoratorPositionFactor const * arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorDecoratorRotation const * arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorDodecahedron arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorDot arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorEllipsoidalCylinder arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorFullSphere arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorFullSpheroid arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorGauss arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorHemiEllipsoid arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorIcosahedron arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorLongBoxGauss arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorLongBoxLorentz arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorLorentz arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorPrism3 arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorPrism6 arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorPyramid arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorRipple1Box arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorRipple1Gauss arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorRipple1Lorentz arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorRipple2Box arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorRipple2Gauss arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorRipple2Lorentz arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorSphereGaussianRadius arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorSphereLogNormalRadius arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorTetrahedron arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorTruncatedCube arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorTruncatedSphere arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorTruncatedSpheroid arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FormFactorWeighted arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction1DCauchy arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction1DGauss arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction1DTriangle arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction1DVoigt arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction2DCauchy arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction2DGauss arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDecayFunction2DVoigt arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDistribution1DCauchy arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDistribution1DCosine arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDistribution1DGate arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDistribution1DGauss arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDistribution1DTriangle arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDistribution1DVoigt arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDistribution2DCauchy arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDistribution2DCone arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDistribution2DGate arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDistribution2DGauss arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, FTDistribution2DVoigt arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, GISASSimulation arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, HexagonalLattice arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IAbstractParticle arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IClusteredParticles arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IdentityRotation arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IFormFactor arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IFormFactorBorn arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IFormFactorDecorator arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IInterferenceFunction arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, ILayout arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, INode arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, Instrument arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IntensityNormalizer arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IntensityScaleAndShiftNormalizer arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, InterferenceFunction1DLattice arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, InterferenceFunction2DLattice arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, InterferenceFunction2DParaCrystal arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, InterferenceFunction2DSuperLattice arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, InterferenceFunction3DLattice arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, InterferenceFunctionFinite2DLattice arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, InterferenceFunctionFinite3DLattice arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, InterferenceFunctionHardDisk arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, InterferenceFunctionRadialParaCrystal arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, InterferenceFunctionTwin arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, InterferenceFunctionNone arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IParticle arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IPeakShape arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IRotation arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, ISample arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, IsGISAXSDetector arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, Layer arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, LayerInterface const * arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, LayerRoughness arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, MesoCrystal arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, MultiLayer arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, OffSpecSimulation arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, Particle arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, ParticleComposition arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, ParticleCoreShell arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, ParticleDistribution arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, ParticleLayout arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, PoissonNoiseBackground arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, RectangularDetector arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, ResolutionFunction2DGaussian arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, RotationEuler arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, RotationX arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, RotationY arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, RotationZ arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, SpecularDetector1D const * arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, SpecularSimulation arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, SphericalDetector arg2)\n"
+		"INodeVisitor_visit(INodeVisitor self, SquareLattice arg2)\n"
+		"virtual void INodeVisitor::visit(const SquareLattice *)\n"
 		"\n"
 		""},
-	 { "Histogram2D_clone", _wrap_Histogram2D_clone, METH_O, "\n"
-		"Histogram2D_clone(Histogram2D self) -> Histogram2D\n"
-		"Histogram2D * Histogram2D::clone() const\n"
+	 { "INodeVisitor_depth", _wrap_INodeVisitor_depth, METH_O, "\n"
+		"INodeVisitor_depth(INodeVisitor self) -> int\n"
+		"int INodeVisitor::depth() const\n"
 		"\n"
-		"Returns clone of other histogram. \n"
+		"Returns depth of the visitor in the composite hierarchy. \n"
 		"\n"
 		""},
-	 { "Histogram2D_getRank", _wrap_Histogram2D_getRank, METH_O, "\n"
-		"Histogram2D_getRank(Histogram2D self) -> size_t\n"
-		"size_t Histogram2D::getRank() const\n"
+	 { "INodeVisitor_setDepth", _wrap_INodeVisitor_setDepth, METH_VARARGS, "\n"
+		"INodeVisitor_setDepth(INodeVisitor self, int depth)\n"
+		"void INodeVisitor::setDepth(int depth)\n"
 		"\n"
-		"Returns the number of histogram dimensions. \n"
+		"Sets depth of the visitor in the composite hierarchy. \n"
 		"\n"
 		""},
-	 { "Histogram2D_fill", _wrap_Histogram2D_fill, METH_VARARGS, "\n"
-		"Histogram2D_fill(Histogram2D self, double x, double y, double weight=1.0) -> int\n"
-		"int Histogram2D::fill(double x, double y, double weight=1.0)\n"
-		"\n"
-		"Increment bin with abscissa x and ordinate y with a weight. \n"
+	 { "INodeVisitor_swigregister", INodeVisitor_swigregister, METH_O, NULL},
+	 { "INodeVisitor_swiginit", INodeVisitor_swiginit, METH_VARARGS, NULL},
+	 { "VisitNodesPreorder", _wrap_VisitNodesPreorder, METH_VARARGS, "\n"
+		"VisitNodesPreorder(INode node, INodeVisitor visitor)\n"
+		"BA_CORE_API_ void VisitNodesPreorder(const INode &node, INodeVisitor &visitor)\n"
 		"\n"
 		""},
-	 { "Histogram2D_projectionX", _wrap_Histogram2D_projectionX, METH_VARARGS, "\n"
-		"Histogram2D_projectionX(Histogram2D self) -> Histogram1D\n"
-		"Histogram2D_projectionX(Histogram2D self, double yvalue) -> Histogram1D\n"
-		"Histogram2D_projectionX(Histogram2D self, double ylow, double yup) -> Histogram1D\n"
-		"Histogram1D * Histogram2D::projectionX(double ylow, double yup)\n"
-		"\n"
-		"Project a 2D histogram into 1D histogram along X. The projection is made from all y-bins corresponding to ordinate between ylow and yup.\n"
+	 { "VisitNodesPostorder", _wrap_VisitNodesPostorder, METH_VARARGS, "\n"
+		"VisitNodesPostorder(INode node, INodeVisitor visitor)\n"
+		"BA_CORE_API_ void VisitNodesPostorder(const INode &node, INodeVisitor &visitor)\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "new_SimulationOptions", _wrap_new_SimulationOptions, METH_NOARGS, "\n"
+		"new_SimulationOptions() -> SimulationOptions\n"
+		"SimulationOptions::SimulationOptions()\n"
 		"\n"
-		"ylow: \n"
-		"lower edje on y-axis\n"
+		""},
+	 { "SimulationOptions_isIntegrate", _wrap_SimulationOptions_isIntegrate, METH_O, "\n"
+		"SimulationOptions_isIntegrate(SimulationOptions self) -> bool\n"
+		"bool SimulationOptions::isIntegrate() const\n"
 		"\n"
-		"yup: \n"
-		"upper edje on y-axis \n"
+		""},
+	 { "SimulationOptions_getMcPoints", _wrap_SimulationOptions_getMcPoints, METH_O, "\n"
+		"SimulationOptions_getMcPoints(SimulationOptions self) -> size_t\n"
+		"size_t SimulationOptions::getMcPoints() const\n"
 		"\n"
 		""},
-	 { "Histogram2D_projectionY", _wrap_Histogram2D_projectionY, METH_VARARGS, "\n"
-		"Histogram2D_projectionY(Histogram2D self) -> Histogram1D\n"
-		"Histogram2D_projectionY(Histogram2D self, double xvalue) -> Histogram1D\n"
-		"Histogram2D_projectionY(Histogram2D self, double xlow, double xup) -> Histogram1D\n"
-		"Histogram1D * Histogram2D::projectionY(double xlow, double xup)\n"
+	 { "SimulationOptions_setMonteCarloIntegration", _wrap_SimulationOptions_setMonteCarloIntegration, METH_VARARGS, "\n"
+		"SimulationOptions_setMonteCarloIntegration(SimulationOptions self, bool flag=True, size_t mc_points=50)\n"
+		"void SimulationOptions::setMonteCarloIntegration(bool flag=true, size_t mc_points=50)\n"
 		"\n"
-		"Project a 2D histogram into 1D histogram along Y. The projection is made from all x-bins corresponding to abscissa between xlow and xup.\n"
+		"Enables/disables MonetCarlo integration.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"xlow: \n"
-		"lower edje on x-axis\n"
-		"\n"
-		"xup: \n"
-		"upper edje on x-axis \n"
-		"\n"
-		""},
-	 { "Histogram2D_crop", _wrap_Histogram2D_crop, METH_VARARGS, "\n"
-		"Histogram2D_crop(Histogram2D self, double xmin, double ymin, double xmax, double ymax) -> Histogram2D\n"
-		"Histogram2D * Histogram2D::crop(double xmin, double ymin, double xmax, double ymax)\n"
+		"flag: \n"
+		"If true, MonteCarlo integration will be used, otherwise analytical calculations\n"
 		"\n"
-		"Create new histogram by applying rectangular clip. \n"
+		"mc_points: \n"
+		"Number of points for MonteCarlo integrator \n"
 		"\n"
 		""},
-	 { "Histogram2D_setContent", _wrap_Histogram2D_setContent, METH_VARARGS, "\n"
-		"Histogram2D_setContent(Histogram2D self, vdouble2d_t data)\n"
-		"void Histogram2D::setContent(const std::vector< std::vector< double >> &data)\n"
+	 { "SimulationOptions_setNumberOfThreads", _wrap_SimulationOptions_setNumberOfThreads, METH_VARARGS, "\n"
+		"SimulationOptions_setNumberOfThreads(SimulationOptions self, int nthreads)\n"
+		"void SimulationOptions::setNumberOfThreads(int nthreads)\n"
 		"\n"
-		"Sets the values in histograms channels from numpy array,. \n"
+		"Sets number of threads to use during the simulation (0 - take the default value from the hardware) \n"
 		"\n"
 		""},
-	 { "Histogram2D_addContent", _wrap_Histogram2D_addContent, METH_VARARGS, "\n"
-		"Histogram2D_addContent(Histogram2D self, vdouble2d_t data)\n"
-		"void Histogram2D::addContent(const std::vector< std::vector< double >> &data)\n"
-		"\n"
-		"Add to values in histograms channels from numpy array,. \n"
+	 { "SimulationOptions_getNumberOfThreads", _wrap_SimulationOptions_getNumberOfThreads, METH_O, "\n"
+		"SimulationOptions_getNumberOfThreads(SimulationOptions self) -> unsigned int\n"
+		"unsigned SimulationOptions::getNumberOfThreads() const\n"
 		"\n"
 		""},
-	 { "delete_Histogram2D", _wrap_delete_Histogram2D, METH_O, "delete_Histogram2D(Histogram2D self)"},
-	 { "Histogram2D_swigregister", Histogram2D_swigregister, METH_O, NULL},
-	 { "Histogram2D_swiginit", Histogram2D_swiginit, METH_VARARGS, NULL},
-	 { "AxisInfo_m_name_set", _wrap_AxisInfo_m_name_set, METH_VARARGS, "AxisInfo_m_name_set(AxisInfo self, std::string const & m_name)"},
-	 { "AxisInfo_m_name_get", _wrap_AxisInfo_m_name_get, METH_O, "AxisInfo_m_name_get(AxisInfo self) -> std::string const &"},
-	 { "AxisInfo_m_min_set", _wrap_AxisInfo_m_min_set, METH_VARARGS, "AxisInfo_m_min_set(AxisInfo self, double m_min)"},
-	 { "AxisInfo_m_min_get", _wrap_AxisInfo_m_min_get, METH_O, "AxisInfo_m_min_get(AxisInfo self) -> double"},
-	 { "AxisInfo_m_max_set", _wrap_AxisInfo_m_max_set, METH_VARARGS, "AxisInfo_m_max_set(AxisInfo self, double m_max)"},
-	 { "AxisInfo_m_max_get", _wrap_AxisInfo_m_max_get, METH_O, "AxisInfo_m_max_get(AxisInfo self) -> double"},
-	 { "new_AxisInfo", _wrap_new_AxisInfo, METH_NOARGS, "\n"
-		"new_AxisInfo() -> AxisInfo\n"
-		"\n"
-		"\n"
-		"Information about an axis in specific units. Can be used for plotting.\n"
+	 { "SimulationOptions_setNumberOfBatches", _wrap_SimulationOptions_setNumberOfBatches, METH_VARARGS, "\n"
+		"SimulationOptions_setNumberOfBatches(SimulationOptions self, int nbatches)\n"
+		"void SimulationOptions::setNumberOfBatches(int nbatches)\n"
 		"\n"
-		"C++ includes: SimulationResult.h\n"
+		"Sets number of batches to split. \n"
 		"\n"
 		""},
-	 { "delete_AxisInfo", _wrap_delete_AxisInfo, METH_O, "delete_AxisInfo(AxisInfo self)"},
-	 { "AxisInfo_swigregister", AxisInfo_swigregister, METH_O, NULL},
-	 { "AxisInfo_swiginit", AxisInfo_swiginit, METH_VARARGS, NULL},
-	 { "new_SimulationResult", _wrap_new_SimulationResult, METH_VARARGS, "\n"
-		"SimulationResult()\n"
-		"SimulationResult(IntensityData data, IUnitConverter unit_converter)\n"
-		"SimulationResult(SimulationResult other)\n"
-		"new_SimulationResult(SimulationResult other) -> SimulationResult\n"
-		"SimulationResult::SimulationResult(SimulationResult &&other)\n"
+	 { "SimulationOptions_getNumberOfBatches", _wrap_SimulationOptions_getNumberOfBatches, METH_O, "\n"
+		"SimulationOptions_getNumberOfBatches(SimulationOptions self) -> unsigned int\n"
+		"unsigned SimulationOptions::getNumberOfBatches() const\n"
 		"\n"
 		""},
-	 { "SimulationResult_histogram2d", _wrap_SimulationResult_histogram2d, METH_VARARGS, "\n"
-		"SimulationResult_histogram2d(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> Histogram2D\n"
-		"Histogram2D * SimulationResult::histogram2d(AxesUnits units=AxesUnits::DEFAULT) const\n"
+	 { "SimulationOptions_getCurrentBatch", _wrap_SimulationOptions_getCurrentBatch, METH_O, "\n"
+		"SimulationOptions_getCurrentBatch(SimulationOptions self) -> unsigned int\n"
+		"unsigned SimulationOptions::getCurrentBatch() const\n"
 		"\n"
 		""},
-	 { "SimulationResult_axisInfo", _wrap_SimulationResult_axisInfo, METH_VARARGS, "\n"
-		"SimulationResult_axisInfo(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> swig_dummy_type_axisinfo_vector\n"
-		"std::vector< AxisInfo > SimulationResult::axisInfo(AxesUnits units=AxesUnits::DEFAULT) const\n"
+	 { "SimulationOptions_setThreadInfo", _wrap_SimulationOptions_setThreadInfo, METH_VARARGS, "\n"
+		"SimulationOptions_setThreadInfo(SimulationOptions self, ThreadInfo thread_info)\n"
+		"void SimulationOptions::setThreadInfo(const ThreadInfo &thread_info)\n"
 		"\n"
-		"Provide  AxisInfo for each axis and the given units. \n"
+		"Sets the batch and thread information to be used. \n"
 		"\n"
 		""},
-	 { "SimulationResult_converter", _wrap_SimulationResult_converter, METH_O, "\n"
-		"SimulationResult_converter(SimulationResult self) -> IUnitConverter\n"
-		"const IUnitConverter & SimulationResult::converter() const\n"
-		"\n"
-		"Returns underlying unit converter. \n"
+	 { "SimulationOptions_getHardwareConcurrency", _wrap_SimulationOptions_getHardwareConcurrency, METH_O, "\n"
+		"SimulationOptions_getHardwareConcurrency(SimulationOptions self) -> unsigned int\n"
+		"unsigned SimulationOptions::getHardwareConcurrency() const\n"
 		"\n"
 		""},
-	 { "SimulationResult_size", _wrap_SimulationResult_size, METH_O, "\n"
-		"SimulationResult_size(SimulationResult self) -> size_t\n"
-		"size_t SimulationResult::size() const\n"
+	 { "SimulationOptions_setIncludeSpecular", _wrap_SimulationOptions_setIncludeSpecular, METH_VARARGS, "\n"
+		"SimulationOptions_setIncludeSpecular(SimulationOptions self, bool include_specular)\n"
+		"void SimulationOptions::setIncludeSpecular(bool include_specular)\n"
 		"\n"
 		""},
-	 { "SimulationResult_array", _wrap_SimulationResult_array, METH_VARARGS, "\n"
-		"SimulationResult_array(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> PyObject\n"
-		"PyObject * SimulationResult::array(AxesUnits units=AxesUnits::DEFAULT) const\n"
-		"\n"
-		"returns intensity data as Python numpy array \n"
+	 { "SimulationOptions_includeSpecular", _wrap_SimulationOptions_includeSpecular, METH_O, "\n"
+		"SimulationOptions_includeSpecular(SimulationOptions self) -> bool\n"
+		"bool SimulationOptions::includeSpecular() const\n"
 		"\n"
 		""},
-	 { "SimulationResult_axis", _wrap_SimulationResult_axis, METH_VARARGS, "\n"
-		"SimulationResult_axis(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> vdouble1d_t\n"
-		"SimulationResult_axis(SimulationResult self, size_t i_axis, AxesUnits units=AxesUnits::DEFAULT) -> vdouble1d_t\n"
-		"std::vector< double > SimulationResult::axis(size_t i_axis, AxesUnits units=AxesUnits::DEFAULT) const\n"
-		"\n"
-		"Returns axis coordinates as a numpy array. With no parameters given returns coordinates of x-axis in default units. \n"
+	 { "SimulationOptions_setUseAvgMaterials", _wrap_SimulationOptions_setUseAvgMaterials, METH_VARARGS, "\n"
+		"SimulationOptions_setUseAvgMaterials(SimulationOptions self, bool use_avg_materials)\n"
+		"void SimulationOptions::setUseAvgMaterials(bool use_avg_materials)\n"
 		"\n"
 		""},
-	 { "SimulationResult___getitem__", _wrap_SimulationResult___getitem__, METH_VARARGS, "SimulationResult___getitem__(SimulationResult self, unsigned int i) -> double"},
-	 { "SimulationResult___setitem__", _wrap_SimulationResult___setitem__, METH_VARARGS, "SimulationResult___setitem__(SimulationResult self, unsigned int i, double value) -> double"},
-	 { "delete_SimulationResult", _wrap_delete_SimulationResult, METH_O, "delete_SimulationResult(SimulationResult self)"},
-	 { "SimulationResult_swigregister", SimulationResult_swigregister, METH_O, NULL},
-	 { "SimulationResult_swiginit", SimulationResult_swiginit, METH_VARARGS, NULL},
-	 { "delete_IBackground", _wrap_delete_IBackground, METH_O, "\n"
-		"delete_IBackground(IBackground self)\n"
-		"IBackground::~IBackground()\n"
+	 { "SimulationOptions_useAvgMaterials", _wrap_SimulationOptions_useAvgMaterials, METH_O, "\n"
+		"SimulationOptions_useAvgMaterials(SimulationOptions self) -> bool\n"
+		"bool SimulationOptions::useAvgMaterials() const\n"
 		"\n"
 		""},
-	 { "IBackground_clone", _wrap_IBackground_clone, METH_O, "\n"
-		"IBackground_clone(IBackground self) -> IBackground\n"
-		"virtual IBackground* IBackground::clone() const =0\n"
+	 { "delete_SimulationOptions", _wrap_delete_SimulationOptions, METH_O, "delete_SimulationOptions(SimulationOptions self)"},
+	 { "SimulationOptions_swigregister", SimulationOptions_swigregister, METH_O, NULL},
+	 { "SimulationOptions_swiginit", SimulationOptions_swiginit, METH_VARARGS, NULL},
+	 { "delete_IParameterReal", _wrap_delete_IParameterReal, METH_O, "\n"
+		"delete_IParameterReal(IParameterReal self)\n"
+		"virtual IParameter< T >::~IParameter()=default\n"
 		"\n"
 		""},
-	 { "IBackground_addBackGround", _wrap_IBackground_addBackGround, METH_VARARGS, "\n"
-		"IBackground_addBackGround(IBackground self, double element) -> double\n"
-		"virtual double IBackground::addBackGround(double element) const =0\n"
+	 { "IParameterReal_clone", _wrap_IParameterReal_clone, METH_VARARGS, "\n"
+		"IParameterReal_clone(IParameterReal self, std::string const & new_name=\"\") -> IParameterReal\n"
+		"virtual IParameter* IParameter< T >::clone(const std::string &new_name=\"\") const =0\n"
 		"\n"
 		""},
-	 { "IBackground_swigregister", IBackground_swigregister, METH_O, NULL},
-	 { "new_ConstantBackground", _wrap_new_ConstantBackground, METH_O, "\n"
-		"new_ConstantBackground(double background_value) -> ConstantBackground\n"
-		"ConstantBackground::ConstantBackground(double background_value)\n"
+	 { "IParameterReal_isNull", _wrap_IParameterReal_isNull, METH_O, "\n"
+		"IParameterReal_isNull(IParameterReal self) -> bool\n"
+		"virtual bool IParameter< T >::isNull() const\n"
 		"\n"
-		""},
-	 { "delete_ConstantBackground", _wrap_delete_ConstantBackground, METH_O, "\n"
-		"delete_ConstantBackground(ConstantBackground self)\n"
-		"ConstantBackground::~ConstantBackground()\n"
+		"Returns true if wrapped parameter was not initialized with proper real value. \n"
 		"\n"
 		""},
-	 { "ConstantBackground_clone", _wrap_ConstantBackground_clone, METH_O, "\n"
-		"ConstantBackground_clone(ConstantBackground self) -> ConstantBackground\n"
-		"ConstantBackground * ConstantBackground::clone() const override final\n"
+	 { "IParameterReal_getData", _wrap_IParameterReal_getData, METH_O, "\n"
+		"IParameterReal_getData(IParameterReal self) -> double &\n"
+		"T& IParameter< T >::getData() const\n"
 		"\n"
 		""},
-	 { "ConstantBackground_backgroundValue", _wrap_ConstantBackground_backgroundValue, METH_O, "\n"
-		"ConstantBackground_backgroundValue(ConstantBackground self) -> double\n"
-		"double ConstantBackground::backgroundValue() const\n"
+	 { "IParameterReal_setData", _wrap_IParameterReal_setData, METH_VARARGS, "\n"
+		"IParameterReal_setData(IParameterReal self, double & data)\n"
+		"void IParameter< T >::setData(T &data)\n"
 		"\n"
 		""},
-	 { "ConstantBackground_accept", _wrap_ConstantBackground_accept, METH_VARARGS, "\n"
-		"ConstantBackground_accept(ConstantBackground self, INodeVisitor visitor)\n"
-		"void ConstantBackground::accept(INodeVisitor *visitor) const override\n"
-		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+	 { "IParameterReal_hasSameData", _wrap_IParameterReal_hasSameData, METH_VARARGS, "\n"
+		"IParameterReal_hasSameData(IParameterReal self, IParameterReal other) -> bool\n"
+		"bool IParameter< T >::hasSameData(const IParameter &other)\n"
 		"\n"
-		""},
-	 { "ConstantBackground_addBackGround", _wrap_ConstantBackground_addBackGround, METH_VARARGS, "\n"
-		"ConstantBackground_addBackGround(ConstantBackground self, double intensity) -> double\n"
-		"double ConstantBackground::addBackGround(double intensity) const override final\n"
+		"Returns true if two parameters are pointing to the same raw data. \n"
 		"\n"
 		""},
-	 { "ConstantBackground_swigregister", ConstantBackground_swigregister, METH_O, NULL},
-	 { "ConstantBackground_swiginit", ConstantBackground_swiginit, METH_VARARGS, NULL},
-	 { "IDetector_clone", _wrap_IDetector_clone, METH_O, "\n"
-		"IDetector_clone(IDetector self) -> IDetector\n"
-		"IDetector* IDetector::clone() const override=0\n"
+	 { "IParameterReal_getName", _wrap_IParameterReal_getName, METH_O, "\n"
+		"IParameterReal_getName(IParameterReal self) -> std::string const &\n"
+		"const std::string& IParameter< T >::getName() const\n"
 		"\n"
 		""},
-	 { "delete_IDetector", _wrap_delete_IDetector, METH_O, "\n"
-		"delete_IDetector(IDetector self)\n"
-		"IDetector::~IDetector()\n"
+	 { "IParameterReal_swigregister", IParameterReal_swigregister, METH_O, NULL},
+	 { "new_ParameterSample", _wrap_new_ParameterSample, METH_VARARGS, "\n"
+		"ParameterSample(double _value=0., double _weight=1.)\n"
+		"ParameterSample::ParameterSample(double _value=0., double _weight=1.)\n"
 		"\n"
 		""},
-	 { "IDetector_init", _wrap_IDetector_init, METH_VARARGS, "\n"
-		"IDetector_init(IDetector self, Beam arg2)\n"
-		"virtual void IDetector::init(const Beam &)\n"
-		"\n"
-		"Inits detector with the beam settings. \n"
-		"\n"
+	 { "ParameterSample_value_set", _wrap_ParameterSample_value_set, METH_VARARGS, "ParameterSample_value_set(ParameterSample self, double value)"},
+	 { "ParameterSample_value_get", _wrap_ParameterSample_value_get, METH_O, "ParameterSample_value_get(ParameterSample self) -> double"},
+	 { "ParameterSample_weight_set", _wrap_ParameterSample_weight_set, METH_VARARGS, "ParameterSample_weight_set(ParameterSample self, double weight)"},
+	 { "ParameterSample_weight_get", _wrap_ParameterSample_weight_get, METH_O, "ParameterSample_weight_get(ParameterSample self) -> double"},
+	 { "delete_ParameterSample", _wrap_delete_ParameterSample, METH_O, "delete_ParameterSample(ParameterSample self)"},
+	 { "ParameterSample_swigregister", ParameterSample_swigregister, METH_O, NULL},
+	 { "ParameterSample_swiginit", ParameterSample_swiginit, METH_VARARGS, NULL},
+	 { "ParameterSampleVector_iterator", _wrap_ParameterSampleVector_iterator, METH_O, "ParameterSampleVector_iterator(ParameterSampleVector self) -> SwigPyIterator"},
+	 { "ParameterSampleVector___nonzero__", _wrap_ParameterSampleVector___nonzero__, METH_O, "ParameterSampleVector___nonzero__(ParameterSampleVector self) -> bool"},
+	 { "ParameterSampleVector___bool__", _wrap_ParameterSampleVector___bool__, METH_O, "ParameterSampleVector___bool__(ParameterSampleVector self) -> bool"},
+	 { "ParameterSampleVector___len__", _wrap_ParameterSampleVector___len__, METH_O, "ParameterSampleVector___len__(ParameterSampleVector self) -> std::vector< ParameterSample >::size_type"},
+	 { "ParameterSampleVector___getslice__", _wrap_ParameterSampleVector___getslice__, METH_VARARGS, "ParameterSampleVector___getslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j) -> ParameterSampleVector"},
+	 { "ParameterSampleVector___setslice__", _wrap_ParameterSampleVector___setslice__, METH_VARARGS, "\n"
+		"ParameterSampleVector___setslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j)\n"
+		"ParameterSampleVector___setslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j, ParameterSampleVector v)\n"
 		""},
-	 { "IDetector_clear", _wrap_IDetector_clear, METH_O, "\n"
-		"IDetector_clear(IDetector self)\n"
-		"void IDetector::clear()\n"
-		"\n"
+	 { "ParameterSampleVector___delslice__", _wrap_ParameterSampleVector___delslice__, METH_VARARGS, "ParameterSampleVector___delslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j)"},
+	 { "ParameterSampleVector___delitem__", _wrap_ParameterSampleVector___delitem__, METH_VARARGS, "\n"
+		"ParameterSampleVector___delitem__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i)\n"
+		"ParameterSampleVector___delitem__(ParameterSampleVector self, PySliceObject * slice)\n"
 		""},
-	 { "IDetector_addAxis", _wrap_IDetector_addAxis, METH_VARARGS, "\n"
-		"IDetector_addAxis(IDetector self, IAxis axis)\n"
-		"void IDetector::addAxis(const IAxis &axis)\n"
-		"\n"
+	 { "ParameterSampleVector___getitem__", _wrap_ParameterSampleVector___getitem__, METH_VARARGS, "\n"
+		"ParameterSampleVector___getitem__(ParameterSampleVector self, PySliceObject * slice) -> ParameterSampleVector\n"
+		"ParameterSampleVector___getitem__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i) -> ParameterSample\n"
 		""},
-	 { "IDetector_getAxis", _wrap_IDetector_getAxis, METH_VARARGS, "\n"
-		"IDetector_getAxis(IDetector self, size_t index) -> IAxis\n"
-		"const IAxis & IDetector::getAxis(size_t index) const\n"
-		"\n"
+	 { "ParameterSampleVector___setitem__", _wrap_ParameterSampleVector___setitem__, METH_VARARGS, "\n"
+		"ParameterSampleVector___setitem__(ParameterSampleVector self, PySliceObject * slice, ParameterSampleVector v)\n"
+		"ParameterSampleVector___setitem__(ParameterSampleVector self, PySliceObject * slice)\n"
+		"ParameterSampleVector___setitem__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, ParameterSample x)\n"
 		""},
-	 { "IDetector_dimension", _wrap_IDetector_dimension, METH_O, "\n"
-		"IDetector_dimension(IDetector self) -> size_t\n"
-		"size_t IDetector::dimension() const\n"
+	 { "ParameterSampleVector_pop", _wrap_ParameterSampleVector_pop, METH_O, "ParameterSampleVector_pop(ParameterSampleVector self) -> ParameterSample"},
+	 { "ParameterSampleVector_append", _wrap_ParameterSampleVector_append, METH_VARARGS, "ParameterSampleVector_append(ParameterSampleVector self, ParameterSample x)"},
+	 { "ParameterSampleVector_empty", _wrap_ParameterSampleVector_empty, METH_O, "ParameterSampleVector_empty(ParameterSampleVector self) -> bool"},
+	 { "ParameterSampleVector_size", _wrap_ParameterSampleVector_size, METH_O, "ParameterSampleVector_size(ParameterSampleVector self) -> std::vector< ParameterSample >::size_type"},
+	 { "ParameterSampleVector_swap", _wrap_ParameterSampleVector_swap, METH_VARARGS, "\n"
+		"ParameterSampleVector_swap(ParameterSampleVector self, ParameterSampleVector v)\n"
+		"void swap(OutputDataIterator< TValue, TContainer > &left, OutputDataIterator< TValue, TContainer > &right)\n"
 		"\n"
-		"Returns actual dimensionality of the detector (number of defined axes) \n"
+		"make Swappable \n"
 		"\n"
 		""},
-	 { "IDetector_axisBinIndex", _wrap_IDetector_axisBinIndex, METH_VARARGS, "\n"
-		"IDetector_axisBinIndex(IDetector self, size_t index, size_t selected_axis) -> size_t\n"
-		"size_t IDetector::axisBinIndex(size_t index, size_t selected_axis) const\n"
-		"\n"
-		"Calculate axis index for given global index. \n"
-		"\n"
+	 { "ParameterSampleVector_begin", _wrap_ParameterSampleVector_begin, METH_O, "ParameterSampleVector_begin(ParameterSampleVector self) -> std::vector< ParameterSample >::iterator"},
+	 { "ParameterSampleVector_end", _wrap_ParameterSampleVector_end, METH_O, "ParameterSampleVector_end(ParameterSampleVector self) -> std::vector< ParameterSample >::iterator"},
+	 { "ParameterSampleVector_rbegin", _wrap_ParameterSampleVector_rbegin, METH_O, "ParameterSampleVector_rbegin(ParameterSampleVector self) -> std::vector< ParameterSample >::reverse_iterator"},
+	 { "ParameterSampleVector_rend", _wrap_ParameterSampleVector_rend, METH_O, "ParameterSampleVector_rend(ParameterSampleVector self) -> std::vector< ParameterSample >::reverse_iterator"},
+	 { "ParameterSampleVector_clear", _wrap_ParameterSampleVector_clear, METH_O, "ParameterSampleVector_clear(ParameterSampleVector self)"},
+	 { "ParameterSampleVector_get_allocator", _wrap_ParameterSampleVector_get_allocator, METH_O, "ParameterSampleVector_get_allocator(ParameterSampleVector self) -> std::vector< ParameterSample >::allocator_type"},
+	 { "ParameterSampleVector_pop_back", _wrap_ParameterSampleVector_pop_back, METH_O, "ParameterSampleVector_pop_back(ParameterSampleVector self)"},
+	 { "ParameterSampleVector_erase", _wrap_ParameterSampleVector_erase, METH_VARARGS, "\n"
+		"ParameterSampleVector_erase(ParameterSampleVector self, std::vector< ParameterSample >::iterator pos) -> std::vector< ParameterSample >::iterator\n"
+		"ParameterSampleVector_erase(ParameterSampleVector self, std::vector< ParameterSample >::iterator first, std::vector< ParameterSample >::iterator last) -> std::vector< ParameterSample >::iterator\n"
 		""},
-	 { "IDetector_totalSize", _wrap_IDetector_totalSize, METH_O, "\n"
-		"IDetector_totalSize(IDetector self) -> size_t\n"
-		"size_t IDetector::totalSize() const\n"
-		"\n"
-		"Returns total number of pixels. \n"
-		"\n"
+	 { "new_ParameterSampleVector", _wrap_new_ParameterSampleVector, METH_VARARGS, "\n"
+		"ParameterSampleVector()\n"
+		"ParameterSampleVector(ParameterSampleVector other)\n"
+		"ParameterSampleVector(std::vector< ParameterSample >::size_type size)\n"
+		"new_ParameterSampleVector(std::vector< ParameterSample >::size_type size, ParameterSample value) -> ParameterSampleVector\n"
 		""},
-	 { "IDetector_detectorMask", _wrap_IDetector_detectorMask, METH_O, "\n"
-		"IDetector_detectorMask(IDetector self) -> DetectorMask\n"
-		"virtual const DetectorMask* IDetector::detectorMask() const =0\n"
-		"\n"
-		"Returns detector masks container. \n"
-		"\n"
+	 { "ParameterSampleVector_push_back", _wrap_ParameterSampleVector_push_back, METH_VARARGS, "ParameterSampleVector_push_back(ParameterSampleVector self, ParameterSample x)"},
+	 { "ParameterSampleVector_front", _wrap_ParameterSampleVector_front, METH_O, "ParameterSampleVector_front(ParameterSampleVector self) -> ParameterSample"},
+	 { "ParameterSampleVector_back", _wrap_ParameterSampleVector_back, METH_O, "ParameterSampleVector_back(ParameterSampleVector self) -> ParameterSample"},
+	 { "ParameterSampleVector_assign", _wrap_ParameterSampleVector_assign, METH_VARARGS, "ParameterSampleVector_assign(ParameterSampleVector self, std::vector< ParameterSample >::size_type n, ParameterSample x)"},
+	 { "ParameterSampleVector_resize", _wrap_ParameterSampleVector_resize, METH_VARARGS, "\n"
+		"ParameterSampleVector_resize(ParameterSampleVector self, std::vector< ParameterSample >::size_type new_size)\n"
+		"ParameterSampleVector_resize(ParameterSampleVector self, std::vector< ParameterSample >::size_type new_size, ParameterSample x)\n"
 		""},
-	 { "IDetector_setAnalyzerProperties", _wrap_IDetector_setAnalyzerProperties, METH_VARARGS, "\n"
-		"IDetector_setAnalyzerProperties(IDetector self, kvector_t direction, double efficiency, double total_transmission)\n"
-		"void IDetector::setAnalyzerProperties(const kvector_t direction, double efficiency, double total_transmission)\n"
-		"\n"
-		"Sets the polarization analyzer characteristics of the detector. \n"
-		"\n"
+	 { "ParameterSampleVector_insert", _wrap_ParameterSampleVector_insert, METH_VARARGS, "\n"
+		"ParameterSampleVector_insert(ParameterSampleVector self, std::vector< ParameterSample >::iterator pos, ParameterSample x) -> std::vector< ParameterSample >::iterator\n"
+		"ParameterSampleVector_insert(ParameterSampleVector self, std::vector< ParameterSample >::iterator pos, std::vector< ParameterSample >::size_type n, ParameterSample x)\n"
 		""},
-	 { "IDetector_setDetectorResolution", _wrap_IDetector_setDetectorResolution, METH_VARARGS, "\n"
-		"IDetector_setDetectorResolution(IDetector self, IDetectorResolution p_detector_resolution)\n"
-		"void IDetector::setDetectorResolution(const IDetectorResolution &p_detector_resolution)\n"
-		"\n"
-		"Sets the detector resolution. \n"
+	 { "ParameterSampleVector_reserve", _wrap_ParameterSampleVector_reserve, METH_VARARGS, "ParameterSampleVector_reserve(ParameterSampleVector self, std::vector< ParameterSample >::size_type n)"},
+	 { "ParameterSampleVector_capacity", _wrap_ParameterSampleVector_capacity, METH_O, "ParameterSampleVector_capacity(ParameterSampleVector self) -> std::vector< ParameterSample >::size_type"},
+	 { "delete_ParameterSampleVector", _wrap_delete_ParameterSampleVector, METH_O, "delete_ParameterSampleVector(ParameterSampleVector self)"},
+	 { "ParameterSampleVector_swigregister", ParameterSampleVector_swigregister, METH_O, NULL},
+	 { "ParameterSampleVector_swiginit", ParameterSampleVector_swiginit, METH_VARARGS, NULL},
+	 { "new_ParameterDistribution", _wrap_new_ParameterDistribution, METH_VARARGS, "\n"
+		"ParameterDistribution(std::string const & par_name, IDistribution1D distribution, size_t nbr_samples, double sigma_factor=0.0, RealLimits limits=RealLimits())\n"
+		"ParameterDistribution(std::string const & par_name, IDistribution1D distribution, size_t nbr_samples, double xmin, double xmax)\n"
+		"new_ParameterDistribution(ParameterDistribution other) -> ParameterDistribution\n"
+		"ParameterDistribution::ParameterDistribution(const ParameterDistribution &other)\n"
 		"\n"
 		""},
-	 { "IDetector_setResolutionFunction", _wrap_IDetector_setResolutionFunction, METH_VARARGS, "\n"
-		"IDetector_setResolutionFunction(IDetector self, IResolutionFunction2D resFunc)\n"
-		"void IDetector::setResolutionFunction(const IResolutionFunction2D &resFunc)\n"
+	 { "delete_ParameterDistribution", _wrap_delete_ParameterDistribution, METH_O, "\n"
+		"delete_ParameterDistribution(ParameterDistribution self)\n"
+		"ParameterDistribution::~ParameterDistribution()\n"
 		"\n"
 		""},
-	 { "IDetector_applyDetectorResolution", _wrap_IDetector_applyDetectorResolution, METH_VARARGS, "\n"
-		"IDetector_applyDetectorResolution(IDetector self, IntensityData p_intensity_map)\n"
-		"void IDetector::applyDetectorResolution(OutputData< double > *p_intensity_map) const\n"
-		"\n"
-		"Applies the detector resolution to the given intensity maps. \n"
+	 { "ParameterDistribution_linkParameter", _wrap_ParameterDistribution_linkParameter, METH_VARARGS, "\n"
+		"ParameterDistribution_linkParameter(ParameterDistribution self, std::string par_name) -> ParameterDistribution\n"
+		"ParameterDistribution & ParameterDistribution::linkParameter(std::string par_name)\n"
 		"\n"
 		""},
-	 { "IDetector_removeDetectorResolution", _wrap_IDetector_removeDetectorResolution, METH_O, "\n"
-		"IDetector_removeDetectorResolution(IDetector self)\n"
-		"void IDetector::removeDetectorResolution()\n"
+	 { "ParameterDistribution_getMainParameterName", _wrap_ParameterDistribution_getMainParameterName, METH_O, "\n"
+		"ParameterDistribution_getMainParameterName(ParameterDistribution self) -> std::string\n"
+		"std::string ParameterDistribution::getMainParameterName() const\n"
 		"\n"
-		"Removes detector resolution function. \n"
+		"get the main parameter's name \n"
 		"\n"
 		""},
-	 { "IDetector_detectorResolution", _wrap_IDetector_detectorResolution, METH_O, "\n"
-		"IDetector_detectorResolution(IDetector self) -> IDetectorResolution\n"
-		"const IDetectorResolution * IDetector::detectorResolution() const\n"
+	 { "ParameterDistribution_getNbrSamples", _wrap_ParameterDistribution_getNbrSamples, METH_O, "\n"
+		"ParameterDistribution_getNbrSamples(ParameterDistribution self) -> size_t\n"
+		"size_t ParameterDistribution::getNbrSamples() const\n"
 		"\n"
-		"Returns a pointer to detector resolution object. \n"
+		"get number of samples for this distribution \n"
 		"\n"
 		""},
-	 { "IDetector_regionOfInterest", _wrap_IDetector_regionOfInterest, METH_O, "\n"
-		"IDetector_regionOfInterest(IDetector self) -> RegionOfInterest const *\n"
-		"virtual const RegionOfInterest* IDetector::regionOfInterest() const =0\n"
+	 { "ParameterDistribution_getSigmaFactor", _wrap_ParameterDistribution_getSigmaFactor, METH_O, "\n"
+		"ParameterDistribution_getSigmaFactor(ParameterDistribution self) -> double\n"
+		"double ParameterDistribution::getSigmaFactor() const\n"
 		"\n"
-		"Returns region of interest if exists. \n"
+		"get the sigma factor \n"
 		"\n"
 		""},
-	 { "IDetector_resetRegionOfInterest", _wrap_IDetector_resetRegionOfInterest, METH_O, "\n"
-		"IDetector_resetRegionOfInterest(IDetector self)\n"
-		"virtual void IDetector::resetRegionOfInterest()=0\n"
-		"\n"
-		"Resets region of interest making whole detector plane available for the simulation. \n"
+	 { "ParameterDistribution_getDistribution", _wrap_ParameterDistribution_getDistribution, METH_VARARGS, "\n"
+		"ParameterDistribution_getDistribution(ParameterDistribution self) -> IDistribution1D\n"
+		"ParameterDistribution_getDistribution(ParameterDistribution self) -> IDistribution1D\n"
+		"IDistribution1D * ParameterDistribution::getDistribution()\n"
 		"\n"
 		""},
-	 { "IDetector_detectionProperties", _wrap_IDetector_detectionProperties, METH_O, "\n"
-		"IDetector_detectionProperties(IDetector self) -> DetectionProperties const &\n"
-		"const DetectionProperties& IDetector::detectionProperties() const\n"
+	 { "ParameterDistribution_generateSamples", _wrap_ParameterDistribution_generateSamples, METH_O, "\n"
+		"ParameterDistribution_generateSamples(ParameterDistribution self) -> ParameterSampleVector\n"
+		"std::vector< ParameterSample > ParameterDistribution::generateSamples() const\n"
 		"\n"
-		"Returns detection properties. \n"
+		"generate list of sampled values with their weight \n"
 		"\n"
 		""},
-	 { "IDetector_createDetectorIntensity", _wrap_IDetector_createDetectorIntensity, METH_VARARGS, "\n"
-		"IDetector_createDetectorIntensity(IDetector self, std::vector< SimulationElement,std::allocator< SimulationElement > > const & elements) -> IntensityData\n"
-		"OutputData< double > * IDetector::createDetectorIntensity(const std::vector< SimulationElement > &elements) const\n"
+	 { "ParameterDistribution_getLinkedParameterNames", _wrap_ParameterDistribution_getLinkedParameterNames, METH_O, "\n"
+		"ParameterDistribution_getLinkedParameterNames(ParameterDistribution self) -> vector_string_t\n"
+		"std::vector<std::string> ParameterDistribution::getLinkedParameterNames() const\n"
 		"\n"
-		"Returns new intensity map with detector resolution applied. Map will be cropped to ROI if ROI is present. \n"
+		"get list of linked parameter names \n"
 		"\n"
 		""},
-	 { "IDetector_defaultAxesUnits", _wrap_IDetector_defaultAxesUnits, METH_O, "\n"
-		"IDetector_defaultAxesUnits(IDetector self) -> AxesUnits\n"
-		"virtual AxesUnits IDetector::defaultAxesUnits() const\n"
-		"\n"
-		"Return default axes units. \n"
+	 { "ParameterDistribution_getLimits", _wrap_ParameterDistribution_getLimits, METH_O, "\n"
+		"ParameterDistribution_getLimits(ParameterDistribution self) -> RealLimits\n"
+		"RealLimits ParameterDistribution::getLimits() const\n"
 		"\n"
 		""},
-	 { "IDetector_numberOfSimulationElements", _wrap_IDetector_numberOfSimulationElements, METH_O, "\n"
-		"IDetector_numberOfSimulationElements(IDetector self) -> size_t\n"
-		"size_t IDetector::numberOfSimulationElements() const\n"
-		"\n"
-		"Returns number of simulation elements. \n"
+	 { "ParameterDistribution_getMinValue", _wrap_ParameterDistribution_getMinValue, METH_O, "\n"
+		"ParameterDistribution_getMinValue(ParameterDistribution self) -> double\n"
+		"double ParameterDistribution::getMinValue() const\n"
 		"\n"
 		""},
-	 { "IDetector_getChildren", _wrap_IDetector_getChildren, METH_O, "\n"
-		"IDetector_getChildren(IDetector self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > IDetector::getChildren() const override\n"
-		"\n"
-		"Returns a vector of children (const). \n"
+	 { "ParameterDistribution_getMaxValue", _wrap_ParameterDistribution_getMaxValue, METH_O, "\n"
+		"ParameterDistribution_getMaxValue(ParameterDistribution self) -> double\n"
+		"double ParameterDistribution::getMaxValue() const\n"
 		"\n"
 		""},
-	 { "IDetector_iterate", _wrap_IDetector_iterate, METH_VARARGS, "\n"
-		"IDetector_iterate(IDetector self, std::function< void (IDetector::const_iterator) > func, bool visit_masks=False)\n"
-		"void IDetector::iterate(std::function< void(const_iterator)> func, bool visit_masks=false) const\n"
+	 { "ParameterDistribution_swigregister", ParameterDistribution_swigregister, METH_O, NULL},
+	 { "ParameterDistribution_swiginit", ParameterDistribution_swiginit, METH_VARARGS, NULL},
+	 { "new_ParameterPool", _wrap_new_ParameterPool, METH_NOARGS, "\n"
+		"new_ParameterPool() -> ParameterPool\n"
+		"ParameterPool::ParameterPool()\n"
 		"\n"
-		""},
-	 { "IDetector_swigregister", IDetector_swigregister, METH_O, NULL},
-	 { "IDetector2D_clone", _wrap_IDetector2D_clone, METH_O, "\n"
-		"IDetector2D_clone(IDetector2D self) -> IDetector2D\n"
-		"IDetector2D* IDetector2D::clone() const override=0\n"
+		"Constructs an empty parameter pool. \n"
 		"\n"
 		""},
-	 { "delete_IDetector2D", _wrap_delete_IDetector2D, METH_O, "\n"
-		"delete_IDetector2D(IDetector2D self)\n"
-		"IDetector2D::~IDetector2D()\n"
+	 { "delete_ParameterPool", _wrap_delete_ParameterPool, METH_O, "\n"
+		"delete_ParameterPool(ParameterPool self)\n"
+		"ParameterPool::~ParameterPool()\n"
 		"\n"
 		""},
-	 { "IDetector2D_setDetectorParameters", _wrap_IDetector2D_setDetectorParameters, METH_VARARGS, "\n"
-		"IDetector2D_setDetectorParameters(IDetector2D self, size_t n_x, double x_min, double x_max, size_t n_y, double y_min, double y_max)\n"
-		"void IDetector2D::setDetectorParameters(size_t n_x, double x_min, double x_max, size_t n_y, double y_min, double y_max)\n"
+	 { "ParameterPool_clone", _wrap_ParameterPool_clone, METH_O, "\n"
+		"ParameterPool_clone(ParameterPool self) -> ParameterPool\n"
+		"ParameterPool * ParameterPool::clone() const\n"
 		"\n"
-		"Sets detector parameters using angle ranges. \n"
+		"Returns a literal clone. \n"
 		"\n"
 		""},
-	 { "IDetector2D_setDetectorAxes", _wrap_IDetector2D_setDetectorAxes, METH_VARARGS, "\n"
-		"IDetector2D_setDetectorAxes(IDetector2D self, IAxis axis0, IAxis axis1)\n"
-		"void IDetector2D::setDetectorAxes(const IAxis &axis0, const IAxis &axis1)\n"
+	 { "ParameterPool_copyToExternalPool", _wrap_ParameterPool_copyToExternalPool, METH_VARARGS, "\n"
+		"ParameterPool_copyToExternalPool(ParameterPool self, std::string const & prefix, ParameterPool other_pool)\n"
+		"void ParameterPool::copyToExternalPool(const std::string &prefix, ParameterPool *other_pool) const\n"
 		"\n"
-		"Sets detector parameters using axes. \n"
+		"Copies parameters of given pool to  other pool, prepeding  prefix to the parameter names. \n"
 		"\n"
 		""},
-	 { "IDetector2D_removeMasks", _wrap_IDetector2D_removeMasks, METH_O, "\n"
-		"IDetector2D_removeMasks(IDetector2D self)\n"
-		"void IDetector2D::removeMasks()\n"
+	 { "ParameterPool_clear", _wrap_ParameterPool_clear, METH_O, "\n"
+		"ParameterPool_clear(ParameterPool self)\n"
+		"void ParameterPool::clear()\n"
 		"\n"
-		"Removes all masks from the detector. \n"
+		"Clears the parameter map. \n"
 		"\n"
 		""},
-	 { "IDetector2D_detectorMask", _wrap_IDetector2D_detectorMask, METH_O, "\n"
-		"IDetector2D_detectorMask(IDetector2D self) -> DetectorMask\n"
-		"const DetectorMask * IDetector2D::detectorMask() const override\n"
+	 { "ParameterPool_size", _wrap_ParameterPool_size, METH_O, "\n"
+		"ParameterPool_size(ParameterPool self) -> size_t\n"
+		"size_t ParameterPool::size() const\n"
 		"\n"
-		"Returns detector masks container. \n"
+		"Returns number of parameters in the pool. \n"
 		"\n"
 		""},
-	 { "IDetector2D_addMask", _wrap_IDetector2D_addMask, METH_VARARGS, "\n"
-		"IDetector2D_addMask(IDetector2D self, IShape2D shape, bool mask_value=True)\n"
-		"void IDetector2D::addMask(const IShape2D &shape, bool mask_value=true)\n"
-		"\n"
-		"Adds mask of given shape to the stack of detector masks. The mask value 'true' means that the channel will be excluded from the simulation. The mask which is added last has priority.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
-		"\n"
-		"shape: \n"
-		"The shape of mask ( Rectangle,  Polygon,  Line,  Ellipse)\n"
-		"\n"
-		"mask_value: \n"
-		"The value of mask \n"
+	 { "ParameterPool_addParameter", _wrap_ParameterPool_addParameter, METH_VARARGS, "\n"
+		"ParameterPool_addParameter(ParameterPool self, RealParameter newPar) -> RealParameter\n"
+		"RealParameter & ParameterPool::addParameter(RealParameter *newPar)\n"
 		"\n"
-		""},
-	 { "IDetector2D_maskAll", _wrap_IDetector2D_maskAll, METH_O, "\n"
-		"IDetector2D_maskAll(IDetector2D self)\n"
-		"void IDetector2D::maskAll()\n"
+		"Adds parameter to the pool, and returns reference to the input pointer.\n"
 		"\n"
-		"Put the mask for all detector channels (i.e. exclude whole detector from the analysis) \n"
+		"Returning the input pointer allows us to concatenate function calls like pool->addParameter( new RealParameter(...) ).setLimits(-1,+1).setFixed().setUnit(\"nm\") \n"
 		"\n"
 		""},
-	 { "IDetector2D_regionOfInterest", _wrap_IDetector2D_regionOfInterest, METH_O, "\n"
-		"IDetector2D_regionOfInterest(IDetector2D self) -> RegionOfInterest const *\n"
-		"const RegionOfInterest * IDetector2D::regionOfInterest() const override\n"
+	 { "ParameterPool_parameter", _wrap_ParameterPool_parameter, METH_VARARGS, "\n"
+		"ParameterPool_parameter(ParameterPool self, std::string const & name) -> RealParameter\n"
+		"ParameterPool_parameter(ParameterPool self, std::string const & name) -> RealParameter\n"
+		"const RealParameter * ParameterPool::parameter(const std::string &name) const\n"
 		"\n"
-		"Returns region of interest if exists. \n"
+		"Returns parameter with given  name. \n"
 		"\n"
 		""},
-	 { "IDetector2D_setRegionOfInterest", _wrap_IDetector2D_setRegionOfInterest, METH_VARARGS, "\n"
-		"IDetector2D_setRegionOfInterest(IDetector2D self, double xlow, double ylow, double xup, double yup)\n"
-		"void IDetector2D::setRegionOfInterest(double xlow, double ylow, double xup, double yup)\n"
+	 { "ParameterPool_parameters", _wrap_ParameterPool_parameters, METH_O, "\n"
+		"ParameterPool_parameters(ParameterPool self) -> std::vector< RealParameter *,std::allocator< RealParameter * > > const\n"
+		"const std::vector<RealParameter*> ParameterPool::parameters() const\n"
 		"\n"
-		"Sets rectangular region of interest with lower left and upper right corners defined. \n"
+		"Returns full vector of parameters. \n"
 		"\n"
 		""},
-	 { "IDetector2D_resetRegionOfInterest", _wrap_IDetector2D_resetRegionOfInterest, METH_O, "\n"
-		"IDetector2D_resetRegionOfInterest(IDetector2D self)\n"
-		"void IDetector2D::resetRegionOfInterest() override\n"
+	 { "ParameterPool_getMatchedParameters", _wrap_ParameterPool_getMatchedParameters, METH_VARARGS, "\n"
+		"ParameterPool_getMatchedParameters(ParameterPool self, std::string const & pattern) -> std::vector< RealParameter *,std::allocator< RealParameter * > >\n"
+		"std::vector< RealParameter * > ParameterPool::getMatchedParameters(const std::string &pattern) const\n"
 		"\n"
-		"Resets region of interest making whole detector plane available for the simulation. \n"
+		"Returns nonempty vector of parameters that match the  pattern ('*' allowed), or throws. \n"
 		"\n"
 		""},
-	 { "IDetector2D_active_indices", _wrap_IDetector2D_active_indices, METH_O, "\n"
-		"IDetector2D_active_indices(IDetector2D self) -> std::vector< size_t,std::allocator< size_t > >\n"
-		"std::vector< size_t > IDetector2D::active_indices() const\n"
+	 { "ParameterPool_getUniqueMatch", _wrap_ParameterPool_getUniqueMatch, METH_VARARGS, "\n"
+		"ParameterPool_getUniqueMatch(ParameterPool self, std::string const & pattern) -> RealParameter\n"
+		"RealParameter * ParameterPool::getUniqueMatch(const std::string &pattern) const\n"
 		"\n"
-		"Returns vector of unmasked detector indices. \n"
+		"Returns the one parameter that matches the  pattern (wildcards '*' allowed), or throws. \n"
 		"\n"
 		""},
-	 { "IDetector2D_createPixel", _wrap_IDetector2D_createPixel, METH_VARARGS, "\n"
-		"IDetector2D_createPixel(IDetector2D self, size_t index) -> IPixel\n"
-		"virtual IPixel* IDetector2D::createPixel(size_t index) const =0\n"
+	 { "ParameterPool_setParameterValue", _wrap_ParameterPool_setParameterValue, METH_VARARGS, "\n"
+		"ParameterPool_setParameterValue(ParameterPool self, std::string const & name, double value)\n"
+		"void ParameterPool::setParameterValue(const std::string &name, double value)\n"
 		"\n"
-		"Create an  IPixel for the given  OutputData object and index. \n"
+		"Sets parameter value. \n"
 		"\n"
 		""},
-	 { "IDetector2D_getIndexOfSpecular", _wrap_IDetector2D_getIndexOfSpecular, METH_VARARGS, "\n"
-		"IDetector2D_getIndexOfSpecular(IDetector2D self, Beam beam) -> size_t\n"
-		"virtual size_t IDetector2D::getIndexOfSpecular(const Beam &beam) const =0\n"
-		"\n"
-		"Returns index of pixel that contains the specular wavevector. If no pixel contains this specular wavevector, the number of pixels is returned. This corresponds to an overflow index. \n"
+	 { "ParameterPool_setMatchedParametersValue", _wrap_ParameterPool_setMatchedParametersValue, METH_VARARGS, "\n"
+		"ParameterPool_setMatchedParametersValue(ParameterPool self, std::string const & wildcards, double value) -> int\n"
+		"int ParameterPool::setMatchedParametersValue(const std::string &wildcards, double value)\n"
 		"\n"
-		""},
-	 { "IDetector2D_swigregister", IDetector2D_swigregister, METH_O, NULL},
-	 { "delete_IDetectorResolution", _wrap_delete_IDetectorResolution, METH_O, "\n"
-		"delete_IDetectorResolution(IDetectorResolution self)\n"
-		"virtual IDetectorResolution::~IDetectorResolution()\n"
+		"Sets value of the nonzero parameters that match  pattern ('*' allowed), or throws. \n"
 		"\n"
 		""},
-	 { "IDetectorResolution_applyDetectorResolution", _wrap_IDetectorResolution_applyDetectorResolution, METH_VARARGS, "\n"
-		"IDetectorResolution_applyDetectorResolution(IDetectorResolution self, IntensityData p_intensity_map)\n"
-		"virtual void IDetectorResolution::applyDetectorResolution(OutputData< double > *p_intensity_map) const =0\n"
+	 { "ParameterPool_setUniqueMatchValue", _wrap_ParameterPool_setUniqueMatchValue, METH_VARARGS, "\n"
+		"ParameterPool_setUniqueMatchValue(ParameterPool self, std::string const & pattern, double value)\n"
+		"void ParameterPool::setUniqueMatchValue(const std::string &pattern, double value)\n"
 		"\n"
-		"Apply the resolution function to the intensity data. \n"
+		"Sets value of the one parameter that matches  pattern ('*' allowed), or throws. \n"
 		"\n"
 		""},
-	 { "IDetectorResolution_clone", _wrap_IDetectorResolution_clone, METH_O, "\n"
-		"IDetectorResolution_clone(IDetectorResolution self) -> IDetectorResolution\n"
-		"virtual IDetectorResolution* IDetectorResolution::clone() const =0\n"
+	 { "ParameterPool_parameterNames", _wrap_ParameterPool_parameterNames, METH_O, "\n"
+		"ParameterPool_parameterNames(ParameterPool self) -> vector_string_t\n"
+		"std::vector< std::string > ParameterPool::parameterNames() const\n"
 		"\n"
 		""},
-	 { "IDetectorResolution_swigregister", IDetectorResolution_swigregister, METH_O, NULL},
-	 { "new_IInterferenceFunction", _wrap_new_IInterferenceFunction, METH_VARARGS, "\n"
-		"IInterferenceFunction()\n"
-		"new_IInterferenceFunction(PyObject * _self, IInterferenceFunction other) -> IInterferenceFunction\n"
-		"IInterferenceFunction::IInterferenceFunction(const IInterferenceFunction &other)\n"
+	 { "ParameterPool_removeParameter", _wrap_ParameterPool_removeParameter, METH_VARARGS, "\n"
+		"ParameterPool_removeParameter(ParameterPool self, std::string const & name)\n"
+		"void ParameterPool::removeParameter(const std::string &name)\n"
 		"\n"
-		""},
-	 { "delete_IInterferenceFunction", _wrap_delete_IInterferenceFunction, METH_O, "\n"
-		"delete_IInterferenceFunction(IInterferenceFunction self)\n"
-		"IInterferenceFunction::~IInterferenceFunction()\n"
+		"Removes parameter with given name from the pool. \n"
 		"\n"
 		""},
-	 { "IInterferenceFunction_clone", _wrap_IInterferenceFunction_clone, METH_O, "\n"
-		"IInterferenceFunction_clone(IInterferenceFunction self) -> IInterferenceFunction\n"
-		"virtual IInterferenceFunction* IInterferenceFunction::clone() const =0\n"
+	 { "ParameterPool___getitem__", _wrap_ParameterPool___getitem__, METH_VARARGS, "ParameterPool___getitem__(ParameterPool self, size_t index) -> RealParameter"},
+	 { "ParameterPool_swigregister", ParameterPool_swigregister, METH_O, NULL},
+	 { "ParameterPool_swiginit", ParameterPool_swiginit, METH_VARARGS, NULL},
+	 { "new_RangedDistributionGate", _wrap_new_RangedDistributionGate, METH_VARARGS, "\n"
+		"RangedDistributionGate()\n"
+		"RangedDistributionGate(size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless())\n"
+		"new_RangedDistributionGate(size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionGate\n"
+		"RangedDistributionGate::RangedDistributionGate(size_t n_samples, double sigma_factor, double min, double max)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). \n"
 		"\n"
 		""},
-	 { "IInterferenceFunction_evaluate", _wrap_IInterferenceFunction_evaluate, METH_VARARGS, "\n"
-		"IInterferenceFunction_evaluate(IInterferenceFunction self, kvector_t q, double outer_iff=1.0) -> double\n"
-		"double IInterferenceFunction::evaluate(const kvector_t q, double outer_iff=1.0) const\n"
-		"\n"
-		"Evaluates the interference function for a given wavevector transfer. \n"
+	 { "RangedDistributionGate_clone", _wrap_RangedDistributionGate_clone, METH_O, "\n"
+		"RangedDistributionGate_clone(RangedDistributionGate self) -> RangedDistributionGate\n"
+		"RangedDistributionGate * RangedDistributionGate::clone() const override\n"
 		"\n"
 		""},
-	 { "IInterferenceFunction_setPositionVariance", _wrap_IInterferenceFunction_setPositionVariance, METH_VARARGS, "\n"
-		"IInterferenceFunction_setPositionVariance(IInterferenceFunction self, double var)\n"
-		"void IInterferenceFunction::setPositionVariance(double var)\n"
-		"\n"
-		"Sets the variance of the position for the calculation of the DW factor It is defined as the variance in each relevant dimension \n"
+	 { "delete_RangedDistributionGate", _wrap_delete_RangedDistributionGate, METH_O, "\n"
+		"delete_RangedDistributionGate(RangedDistributionGate self)\n"
+		"RangedDistributionGate::~RangedDistributionGate() override=default\n"
 		"\n"
 		""},
-	 { "IInterferenceFunction_positionVariance", _wrap_IInterferenceFunction_positionVariance, METH_O, "\n"
-		"IInterferenceFunction_positionVariance(IInterferenceFunction self) -> double\n"
-		"double IInterferenceFunction::positionVariance() const\n"
+	 { "RangedDistributionGate_swigregister", RangedDistributionGate_swigregister, METH_O, NULL},
+	 { "RangedDistributionGate_swiginit", RangedDistributionGate_swiginit, METH_VARARGS, NULL},
+	 { "new_RangedDistributionLorentz", _wrap_new_RangedDistributionLorentz, METH_VARARGS, "\n"
+		"RangedDistributionLorentz()\n"
+		"RangedDistributionLorentz(size_t n_samples, double hwhm_factor, RealLimits limits=RealLimits::limitless())\n"
+		"new_RangedDistributionLorentz(size_t n_samples, double hwhm_factor, double min, double max) -> RangedDistributionLorentz\n"
+		"RangedDistributionLorentz::RangedDistributionLorentz(size_t n_samples, double hwhm_factor, double min, double max)\n"
 		"\n"
-		"Returns the position variance. \n"
+		"Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  hwhm_factor = 2.0, while the limits are (-inf, +inf). \n"
 		"\n"
 		""},
-	 { "IInterferenceFunction_getParticleDensity", _wrap_IInterferenceFunction_getParticleDensity, METH_O, "\n"
-		"IInterferenceFunction_getParticleDensity(IInterferenceFunction self) -> double\n"
-		"virtual double IInterferenceFunction::getParticleDensity() const\n"
-		"\n"
-		"If defined by this interference function's parameters, returns the particle density (per area). Otherwise, returns zero or a user-defined value \n"
+	 { "RangedDistributionLorentz_clone", _wrap_RangedDistributionLorentz_clone, METH_O, "\n"
+		"RangedDistributionLorentz_clone(RangedDistributionLorentz self) -> RangedDistributionLorentz\n"
+		"RangedDistributionLorentz * RangedDistributionLorentz::clone() const override\n"
 		"\n"
 		""},
-	 { "IInterferenceFunction_supportsMultilayer", _wrap_IInterferenceFunction_supportsMultilayer, METH_O, "\n"
-		"IInterferenceFunction_supportsMultilayer(IInterferenceFunction self) -> bool\n"
-		"virtual bool IInterferenceFunction::supportsMultilayer() const\n"
-		"\n"
-		"Indicates if this interference function can be used with a multilayer (DWBA mode) \n"
+	 { "delete_RangedDistributionLorentz", _wrap_delete_RangedDistributionLorentz, METH_O, "\n"
+		"delete_RangedDistributionLorentz(RangedDistributionLorentz self)\n"
+		"RangedDistributionLorentz::~RangedDistributionLorentz() override=default\n"
 		"\n"
 		""},
-	 { "IInterferenceFunction_DWfactor", _wrap_IInterferenceFunction_DWfactor, METH_VARARGS, "\n"
-		"IInterferenceFunction_DWfactor(IInterferenceFunction self, kvector_t q) -> double\n"
-		"double IInterferenceFunction::DWfactor(kvector_t q) const\n"
+	 { "RangedDistributionLorentz_swigregister", RangedDistributionLorentz_swigregister, METH_O, NULL},
+	 { "RangedDistributionLorentz_swiginit", RangedDistributionLorentz_swiginit, METH_VARARGS, NULL},
+	 { "new_RangedDistributionGaussian", _wrap_new_RangedDistributionGaussian, METH_VARARGS, "\n"
+		"RangedDistributionGaussian()\n"
+		"RangedDistributionGaussian(size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless())\n"
+		"new_RangedDistributionGaussian(size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionGaussian\n"
+		"RangedDistributionGaussian::RangedDistributionGaussian(size_t n_samples, double sigma_factor, double min, double max)\n"
 		"\n"
-		"Evaluates the Debye-Waller factor for a given wavevector transfer. \n"
+		"Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). \n"
 		"\n"
 		""},
-	 { "IInterferenceFunction_iff_without_dw", _wrap_IInterferenceFunction_iff_without_dw, METH_VARARGS, "IInterferenceFunction_iff_without_dw(IInterferenceFunction self, kvector_t q) -> double"},
-	 { "disown_IInterferenceFunction", _wrap_disown_IInterferenceFunction, METH_O, NULL},
-	 { "IInterferenceFunction_swigregister", IInterferenceFunction_swigregister, METH_O, NULL},
-	 { "IInterferenceFunction_swiginit", IInterferenceFunction_swiginit, METH_VARARGS, NULL},
-	 { "delete_ILayout", _wrap_delete_ILayout, METH_O, "\n"
-		"delete_ILayout(ILayout self)\n"
-		"ILayout::~ILayout()\n"
+	 { "RangedDistributionGaussian_clone", _wrap_RangedDistributionGaussian_clone, METH_O, "\n"
+		"RangedDistributionGaussian_clone(RangedDistributionGaussian self) -> RangedDistributionGaussian\n"
+		"RangedDistributionGaussian * RangedDistributionGaussian::clone() const override\n"
 		"\n"
 		""},
-	 { "ILayout_clone", _wrap_ILayout_clone, METH_O, "\n"
-		"ILayout_clone(ILayout self) -> ILayout\n"
-		"virtual ILayout* ILayout::clone() const =0\n"
-		"\n"
-		"Returns a clone of this  ISample object. \n"
+	 { "delete_RangedDistributionGaussian", _wrap_delete_RangedDistributionGaussian, METH_O, "\n"
+		"delete_RangedDistributionGaussian(RangedDistributionGaussian self)\n"
+		"RangedDistributionGaussian::~RangedDistributionGaussian() override=default\n"
 		"\n"
 		""},
-	 { "ILayout_accept", _wrap_ILayout_accept, METH_VARARGS, "\n"
-		"ILayout_accept(ILayout self, INodeVisitor visitor)\n"
-		"virtual void ILayout::accept(INodeVisitor *visitor) const =0\n"
+	 { "RangedDistributionGaussian_swigregister", RangedDistributionGaussian_swigregister, METH_O, NULL},
+	 { "RangedDistributionGaussian_swiginit", RangedDistributionGaussian_swiginit, METH_VARARGS, NULL},
+	 { "new_RangedDistributionLogNormal", _wrap_new_RangedDistributionLogNormal, METH_VARARGS, "\n"
+		"RangedDistributionLogNormal()\n"
+		"RangedDistributionLogNormal(size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless())\n"
+		"new_RangedDistributionLogNormal(size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionLogNormal\n"
+		"RangedDistributionLogNormal::RangedDistributionLogNormal(size_t n_samples, double sigma_factor, double min, double max)\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). \n"
 		"\n"
 		""},
-	 { "ILayout_particles", _wrap_ILayout_particles, METH_O, "\n"
-		"ILayout_particles(ILayout self) -> SafePointerVector< IParticle >\n"
-		"virtual SafePointerVector<IParticle> ILayout::particles() const =0\n"
-		"\n"
-		"Returns information on all particles (type and abundance) and generates new particles if an  IAbstractParticle denotes a collection \n"
+	 { "RangedDistributionLogNormal_clone", _wrap_RangedDistributionLogNormal_clone, METH_O, "\n"
+		"RangedDistributionLogNormal_clone(RangedDistributionLogNormal self) -> RangedDistributionLogNormal\n"
+		"RangedDistributionLogNormal * RangedDistributionLogNormal::clone() const override\n"
 		"\n"
 		""},
-	 { "ILayout_interferenceFunction", _wrap_ILayout_interferenceFunction, METH_O, "\n"
-		"ILayout_interferenceFunction(ILayout self) -> IInterferenceFunction\n"
-		"virtual const IInterferenceFunction* ILayout::interferenceFunction() const =0\n"
-		"\n"
-		"Returns the interference function. \n"
+	 { "delete_RangedDistributionLogNormal", _wrap_delete_RangedDistributionLogNormal, METH_O, "\n"
+		"delete_RangedDistributionLogNormal(RangedDistributionLogNormal self)\n"
+		"RangedDistributionLogNormal::~RangedDistributionLogNormal() override=default\n"
 		"\n"
 		""},
-	 { "ILayout_getTotalAbundance", _wrap_ILayout_getTotalAbundance, METH_O, "\n"
-		"ILayout_getTotalAbundance(ILayout self) -> double\n"
-		"virtual double ILayout::getTotalAbundance() const =0\n"
+	 { "RangedDistributionLogNormal_swigregister", RangedDistributionLogNormal_swigregister, METH_O, NULL},
+	 { "RangedDistributionLogNormal_swiginit", RangedDistributionLogNormal_swiginit, METH_VARARGS, NULL},
+	 { "new_RangedDistributionCosine", _wrap_new_RangedDistributionCosine, METH_VARARGS, "\n"
+		"RangedDistributionCosine()\n"
+		"RangedDistributionCosine(size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless())\n"
+		"new_RangedDistributionCosine(size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionCosine\n"
+		"RangedDistributionCosine::RangedDistributionCosine(size_t n_samples, double sigma_factor, double min, double max)\n"
 		"\n"
-		"Get total abundance of all particles. \n"
+		"Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). \n"
 		"\n"
 		""},
-	 { "ILayout_totalParticleSurfaceDensity", _wrap_ILayout_totalParticleSurfaceDensity, METH_O, "\n"
-		"ILayout_totalParticleSurfaceDensity(ILayout self) -> double\n"
-		"virtual double ILayout::totalParticleSurfaceDensity() const =0\n"
-		"\n"
-		"Returns surface density of all particles. \n"
+	 { "RangedDistributionCosine_clone", _wrap_RangedDistributionCosine_clone, METH_O, "\n"
+		"RangedDistributionCosine_clone(RangedDistributionCosine self) -> RangedDistributionCosine\n"
+		"RangedDistributionCosine * RangedDistributionCosine::clone() const override\n"
 		"\n"
 		""},
-	 { "ILayout_setTotalParticleSurfaceDensity", _wrap_ILayout_setTotalParticleSurfaceDensity, METH_VARARGS, "\n"
-		"ILayout_setTotalParticleSurfaceDensity(ILayout self, double particle_density)\n"
-		"virtual void ILayout::setTotalParticleSurfaceDensity(double particle_density)=0\n"
-		"\n"
-		"Sets surface density of all particles. \n"
+	 { "delete_RangedDistributionCosine", _wrap_delete_RangedDistributionCosine, METH_O, "\n"
+		"delete_RangedDistributionCosine(RangedDistributionCosine self)\n"
+		"RangedDistributionCosine::~RangedDistributionCosine() override=default\n"
 		"\n"
 		""},
-	 { "ILayout_weight", _wrap_ILayout_weight, METH_O, "\n"
-		"ILayout_weight(ILayout self) -> double\n"
-		"double ILayout::weight() const\n"
-		"\n"
-		"Returns the relative weight of this layout. \n"
+	 { "RangedDistributionCosine_swigregister", RangedDistributionCosine_swigregister, METH_O, NULL},
+	 { "RangedDistributionCosine_swiginit", RangedDistributionCosine_swiginit, METH_VARARGS, NULL},
+	 { "new_RealParameter", _wrap_new_RealParameter, METH_VARARGS, "\n"
+		"RealParameter(std::string const & name, double * par, std::string const & parent_name=\"\", std::function< void () > const & onChange=std::function< void () >(), RealLimits limits=RealLimits::limitless(), Attributes attr=Attributes::free())\n"
+		"RealParameter::RealParameter(const std::string &name, double *par, const std::string &parent_name=\"\", const std::function< void()> &onChange=std::function< void()>(), const RealLimits &limits=RealLimits::limitless(), const Attributes &attr=Attributes::free())\n"
 		"\n"
 		""},
-	 { "ILayout_setWeight", _wrap_ILayout_setWeight, METH_VARARGS, "\n"
-		"ILayout_setWeight(ILayout self, double weight)\n"
-		"void ILayout::setWeight(double weight)\n"
-		"\n"
-		"Sets the relative weight of this layout. \n"
+	 { "delete_RealParameter", _wrap_delete_RealParameter, METH_O, "\n"
+		"delete_RealParameter(RealParameter self)\n"
+		"virtual RealParameter::~RealParameter()=default\n"
 		"\n"
 		""},
-	 { "ILayout_swigregister", ILayout_swigregister, METH_O, NULL},
-	 { "delete_IAbstractParticle", _wrap_delete_IAbstractParticle, METH_O, "\n"
-		"delete_IAbstractParticle(IAbstractParticle self)\n"
-		"IAbstractParticle::~IAbstractParticle()\n"
+	 { "RealParameter_clone", _wrap_RealParameter_clone, METH_VARARGS, "\n"
+		"RealParameter_clone(RealParameter self, std::string const & new_name=\"\") -> RealParameter\n"
+		"RealParameter * RealParameter::clone(const std::string &new_name=\"\") const\n"
 		"\n"
 		""},
-	 { "IAbstractParticle_clone", _wrap_IAbstractParticle_clone, METH_O, "\n"
-		"IAbstractParticle_clone(IAbstractParticle self) -> IAbstractParticle\n"
-		"virtual IAbstractParticle* IAbstractParticle::clone() const =0\n"
+	 { "RealParameter_setValue", _wrap_RealParameter_setValue, METH_VARARGS, "\n"
+		"RealParameter_setValue(RealParameter self, double value)\n"
+		"void RealParameter::setValue(double value)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Sets value of wrapped parameter and emit signal. \n"
 		"\n"
 		""},
-	 { "IAbstractParticle_accept", _wrap_IAbstractParticle_accept, METH_VARARGS, "\n"
-		"IAbstractParticle_accept(IAbstractParticle self, INodeVisitor visitor)\n"
-		"void IAbstractParticle::accept(INodeVisitor *visitor) const\n"
+	 { "RealParameter_value", _wrap_RealParameter_value, METH_O, "\n"
+		"RealParameter_value(RealParameter self) -> double\n"
+		"double RealParameter::value() const\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns value of wrapped parameter. \n"
 		"\n"
 		""},
-	 { "IAbstractParticle_abundance", _wrap_IAbstractParticle_abundance, METH_O, "\n"
-		"IAbstractParticle_abundance(IAbstractParticle self) -> double\n"
-		"double IAbstractParticle::abundance() const\n"
+	 { "RealParameter_setLimits", _wrap_RealParameter_setLimits, METH_VARARGS, "\n"
+		"RealParameter_setLimits(RealParameter self, RealLimits limits) -> RealParameter\n"
+		"RealParameter & RealParameter::setLimits(const RealLimits &limits)\n"
 		"\n"
 		""},
-	 { "IAbstractParticle_setAbundance", _wrap_IAbstractParticle_setAbundance, METH_VARARGS, "\n"
-		"IAbstractParticle_setAbundance(IAbstractParticle self, double abundance)\n"
-		"void IAbstractParticle::setAbundance(double abundance)\n"
-		"\n"
-		"Sets particle abundance.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
-		"\n"
-		"abundance: \n"
-		"proportion of this type of particles normalized to the total number of particles in the layout. \n"
+	 { "RealParameter_limits", _wrap_RealParameter_limits, METH_O, "\n"
+		"RealParameter_limits(RealParameter self) -> RealLimits\n"
+		"RealLimits RealParameter::limits() const\n"
 		"\n"
 		""},
-	 { "IAbstractParticle_translate", _wrap_IAbstractParticle_translate, METH_VARARGS, "\n"
-		"IAbstractParticle_translate(IAbstractParticle self, kvector_t translation)\n"
-		"virtual void IAbstractParticle::translate(kvector_t translation)=0\n"
-		"\n"
-		"Translates the particle with the given vector. \n"
+	 { "RealParameter_setLimited", _wrap_RealParameter_setLimited, METH_VARARGS, "\n"
+		"RealParameter_setLimited(RealParameter self, double lower, double upper) -> RealParameter\n"
+		"RealParameter & RealParameter::setLimited(double lower, double upper)\n"
 		"\n"
 		""},
-	 { "IAbstractParticle_rotate", _wrap_IAbstractParticle_rotate, METH_VARARGS, "\n"
-		"IAbstractParticle_rotate(IAbstractParticle self, IRotation rotation)\n"
-		"virtual void IAbstractParticle::rotate(const IRotation &rotation)=0\n"
-		"\n"
-		"Applies the given rotation to the particle. \n"
+	 { "RealParameter_setPositive", _wrap_RealParameter_setPositive, METH_O, "\n"
+		"RealParameter_setPositive(RealParameter self) -> RealParameter\n"
+		"RealParameter & RealParameter::setPositive()\n"
 		"\n"
 		""},
-	 { "IAbstractParticle_swigregister", IAbstractParticle_swigregister, METH_O, NULL},
-	 { "delete_IParameterReal", _wrap_delete_IParameterReal, METH_O, "\n"
-		"delete_IParameterReal(IParameterReal self)\n"
-		"virtual IParameter< T >::~IParameter()=default\n"
+	 { "RealParameter_setNonnegative", _wrap_RealParameter_setNonnegative, METH_O, "\n"
+		"RealParameter_setNonnegative(RealParameter self) -> RealParameter\n"
+		"RealParameter & RealParameter::setNonnegative()\n"
 		"\n"
 		""},
-	 { "IParameterReal_clone", _wrap_IParameterReal_clone, METH_VARARGS, "\n"
-		"IParameterReal_clone(IParameterReal self, std::string const & new_name=\"\") -> IParameterReal\n"
-		"virtual IParameter* IParameter< T >::clone(const std::string &new_name=\"\") const =0\n"
+	 { "RealParameter_setUnit", _wrap_RealParameter_setUnit, METH_VARARGS, "\n"
+		"RealParameter_setUnit(RealParameter self, std::string const & name) -> RealParameter\n"
+		"RealParameter & RealParameter::setUnit(const std::string &name)\n"
 		"\n"
 		""},
-	 { "IParameterReal_isNull", _wrap_IParameterReal_isNull, METH_O, "\n"
-		"IParameterReal_isNull(IParameterReal self) -> bool\n"
-		"virtual bool IParameter< T >::isNull() const\n"
-		"\n"
-		"Returns true if wrapped parameter was not initialized with proper real value. \n"
+	 { "RealParameter_unit", _wrap_RealParameter_unit, METH_O, "\n"
+		"RealParameter_unit(RealParameter self) -> std::string\n"
+		"std::string RealParameter::unit() const\n"
 		"\n"
 		""},
-	 { "IParameterReal_getData", _wrap_IParameterReal_getData, METH_O, "\n"
-		"IParameterReal_getData(IParameterReal self) -> double &\n"
-		"T& IParameter< T >::getData() const\n"
+	 { "RealParameter_swigregister", RealParameter_swigregister, METH_O, NULL},
+	 { "RealParameter_swiginit", RealParameter_swiginit, METH_VARARGS, NULL},
+	 { "new_ThreadInfo", _wrap_new_ThreadInfo, METH_NOARGS, "\n"
+		"new_ThreadInfo() -> ThreadInfo\n"
+		"ThreadInfo::ThreadInfo()\n"
 		"\n"
 		""},
-	 { "IParameterReal_setData", _wrap_IParameterReal_setData, METH_VARARGS, "\n"
-		"IParameterReal_setData(IParameterReal self, double & data)\n"
-		"void IParameter< T >::setData(T &data)\n"
+	 { "ThreadInfo_n_threads_set", _wrap_ThreadInfo_n_threads_set, METH_VARARGS, "ThreadInfo_n_threads_set(ThreadInfo self, unsigned int n_threads)"},
+	 { "ThreadInfo_n_threads_get", _wrap_ThreadInfo_n_threads_get, METH_O, "ThreadInfo_n_threads_get(ThreadInfo self) -> unsigned int"},
+	 { "ThreadInfo_n_batches_set", _wrap_ThreadInfo_n_batches_set, METH_VARARGS, "ThreadInfo_n_batches_set(ThreadInfo self, unsigned int n_batches)"},
+	 { "ThreadInfo_n_batches_get", _wrap_ThreadInfo_n_batches_get, METH_O, "ThreadInfo_n_batches_get(ThreadInfo self) -> unsigned int"},
+	 { "ThreadInfo_current_batch_set", _wrap_ThreadInfo_current_batch_set, METH_VARARGS, "ThreadInfo_current_batch_set(ThreadInfo self, unsigned int current_batch)"},
+	 { "ThreadInfo_current_batch_get", _wrap_ThreadInfo_current_batch_get, METH_O, "ThreadInfo_current_batch_get(ThreadInfo self) -> unsigned int"},
+	 { "delete_ThreadInfo", _wrap_delete_ThreadInfo, METH_O, "delete_ThreadInfo(ThreadInfo self)"},
+	 { "ThreadInfo_swigregister", ThreadInfo_swigregister, METH_O, NULL},
+	 { "ThreadInfo_swiginit", ThreadInfo_swiginit, METH_VARARGS, NULL},
+	 { "PolygonalTopology_vertexIndices_set", _wrap_PolygonalTopology_vertexIndices_set, METH_VARARGS, "PolygonalTopology_vertexIndices_set(PolygonalTopology self, vector_integer_t vertexIndices)"},
+	 { "PolygonalTopology_vertexIndices_get", _wrap_PolygonalTopology_vertexIndices_get, METH_O, "PolygonalTopology_vertexIndices_get(PolygonalTopology self) -> vector_integer_t"},
+	 { "PolygonalTopology_symmetry_S2_set", _wrap_PolygonalTopology_symmetry_S2_set, METH_VARARGS, "PolygonalTopology_symmetry_S2_set(PolygonalTopology self, bool symmetry_S2)"},
+	 { "PolygonalTopology_symmetry_S2_get", _wrap_PolygonalTopology_symmetry_S2_get, METH_O, "PolygonalTopology_symmetry_S2_get(PolygonalTopology self) -> bool"},
+	 { "new_PolygonalTopology", _wrap_new_PolygonalTopology, METH_NOARGS, "\n"
+		"new_PolygonalTopology() -> PolygonalTopology\n"
 		"\n"
-		""},
-	 { "IParameterReal_hasSameData", _wrap_IParameterReal_hasSameData, METH_VARARGS, "\n"
-		"IParameterReal_hasSameData(IParameterReal self, IParameterReal other) -> bool\n"
-		"bool IParameter< T >::hasSameData(const IParameter &other)\n"
 		"\n"
-		"Returns true if two parameters are pointing to the same raw data. \n"
+		"For internal use in  PolyhedralFace.\n"
 		"\n"
-		""},
-	 { "IParameterReal_getName", _wrap_IParameterReal_getName, METH_O, "\n"
-		"IParameterReal_getName(IParameterReal self) -> std::string const &\n"
-		"const std::string& IParameter< T >::getName() const\n"
+		"C++ includes: FormFactorPolyhedron.h\n"
 		"\n"
 		""},
-	 { "IParameterReal_swigregister", IParameterReal_swigregister, METH_O, NULL},
-	 { "ParticleLimits_m_bottom_set", _wrap_ParticleLimits_m_bottom_set, METH_VARARGS, "ParticleLimits_m_bottom_set(ParticleLimits self, double m_bottom)"},
-	 { "ParticleLimits_m_bottom_get", _wrap_ParticleLimits_m_bottom_get, METH_O, "ParticleLimits_m_bottom_get(ParticleLimits self) -> double"},
-	 { "ParticleLimits_m_top_set", _wrap_ParticleLimits_m_top_set, METH_VARARGS, "ParticleLimits_m_top_set(ParticleLimits self, double m_top)"},
-	 { "ParticleLimits_m_top_get", _wrap_ParticleLimits_m_top_get, METH_O, "ParticleLimits_m_top_get(ParticleLimits self) -> double"},
-	 { "new_ParticleLimits", _wrap_new_ParticleLimits, METH_NOARGS, "\n"
-		"new_ParticleLimits() -> ParticleLimits\n"
+	 { "delete_PolygonalTopology", _wrap_delete_PolygonalTopology, METH_O, "delete_PolygonalTopology(PolygonalTopology self)"},
+	 { "PolygonalTopology_swigregister", PolygonalTopology_swigregister, METH_O, NULL},
+	 { "PolygonalTopology_swiginit", PolygonalTopology_swiginit, METH_VARARGS, NULL},
+	 { "PolyhedralTopology_faces_set", _wrap_PolyhedralTopology_faces_set, METH_VARARGS, "PolyhedralTopology_faces_set(PolyhedralTopology self, std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > * faces)"},
+	 { "PolyhedralTopology_faces_get", _wrap_PolyhedralTopology_faces_get, METH_O, "PolyhedralTopology_faces_get(PolyhedralTopology self) -> std::vector< PolygonalTopology,std::allocator< PolygonalTopology > > *"},
+	 { "PolyhedralTopology_symmetry_Ci_set", _wrap_PolyhedralTopology_symmetry_Ci_set, METH_VARARGS, "PolyhedralTopology_symmetry_Ci_set(PolyhedralTopology self, bool symmetry_Ci)"},
+	 { "PolyhedralTopology_symmetry_Ci_get", _wrap_PolyhedralTopology_symmetry_Ci_get, METH_O, "PolyhedralTopology_symmetry_Ci_get(PolyhedralTopology self) -> bool"},
+	 { "new_PolyhedralTopology", _wrap_new_PolyhedralTopology, METH_NOARGS, "\n"
+		"new_PolyhedralTopology() -> PolyhedralTopology\n"
 		"\n"
 		"\n"
-		"Vertical extension of a particle, specified by bottom and top z coordinate.\n"
+		"For internal use in  FormFactorPolyhedron.\n"
 		"\n"
-		"C++ includes: IParticle.h\n"
+		"C++ includes: FormFactorPolyhedron.h\n"
 		"\n"
 		""},
-	 { "delete_ParticleLimits", _wrap_delete_ParticleLimits, METH_O, "delete_ParticleLimits(ParticleLimits self)"},
-	 { "ParticleLimits_swigregister", ParticleLimits_swigregister, METH_O, NULL},
-	 { "ParticleLimits_swiginit", ParticleLimits_swiginit, METH_VARARGS, NULL},
-	 { "delete_IParticle", _wrap_delete_IParticle, METH_O, "\n"
-		"delete_IParticle(IParticle self)\n"
-		"IParticle::~IParticle()\n"
+	 { "delete_PolyhedralTopology", _wrap_delete_PolyhedralTopology, METH_O, "delete_PolyhedralTopology(PolyhedralTopology self)"},
+	 { "PolyhedralTopology_swigregister", PolyhedralTopology_swigregister, METH_O, NULL},
+	 { "PolyhedralTopology_swiginit", PolyhedralTopology_swiginit, METH_VARARGS, NULL},
+	 { "new_PolyhedralEdge", _wrap_new_PolyhedralEdge, METH_VARARGS, "\n"
+		"new_PolyhedralEdge(kvector_t _Vlow, kvector_t _Vhig) -> PolyhedralEdge\n"
+		"PolyhedralEdge::PolyhedralEdge(const kvector_t _Vlow, const kvector_t _Vhig)\n"
 		"\n"
 		""},
-	 { "IParticle_clone", _wrap_IParticle_clone, METH_O, "\n"
-		"IParticle_clone(IParticle self) -> IParticle\n"
-		"IParticle* IParticle::clone() const override=0\n"
-		"\n"
-		"Returns a clone of this  ISample object. \n"
+	 { "PolyhedralEdge_E", _wrap_PolyhedralEdge_E, METH_O, "\n"
+		"PolyhedralEdge_E(PolyhedralEdge self) -> kvector_t\n"
+		"kvector_t PolyhedralEdge::E() const\n"
 		"\n"
 		""},
-	 { "IParticle_createFormFactor", _wrap_IParticle_createFormFactor, METH_O, "\n"
-		"IParticle_createFormFactor(IParticle self) -> IFormFactor\n"
-		"IFormFactor * IParticle::createFormFactor() const\n"
-		"\n"
-		"Create a form factor for this particle. \n"
+	 { "PolyhedralEdge_R", _wrap_PolyhedralEdge_R, METH_O, "\n"
+		"PolyhedralEdge_R(PolyhedralEdge self) -> kvector_t\n"
+		"kvector_t PolyhedralEdge::R() const\n"
 		"\n"
 		""},
-	 { "IParticle_createSlicedParticle", _wrap_IParticle_createSlicedParticle, METH_VARARGS, "\n"
-		"IParticle_createSlicedParticle(IParticle self, ZLimits limits) -> SlicedParticle\n"
-		"SlicedParticle IParticle::createSlicedParticle(ZLimits limits) const\n"
+	 { "PolyhedralEdge_qE", _wrap_PolyhedralEdge_qE, METH_VARARGS, "\n"
+		"PolyhedralEdge_qE(PolyhedralEdge self, cvector_t q) -> complex_t\n"
+		"complex_t PolyhedralEdge::qE(cvector_t q) const\n"
 		"\n"
-		"Create a sliced form factor for this particle. \n"
+		""},
+	 { "PolyhedralEdge_qR", _wrap_PolyhedralEdge_qR, METH_VARARGS, "\n"
+		"PolyhedralEdge_qR(PolyhedralEdge self, cvector_t q) -> complex_t\n"
+		"complex_t PolyhedralEdge::qR(cvector_t q) const\n"
 		"\n"
 		""},
-	 { "IParticle_position", _wrap_IParticle_position, METH_O, "\n"
-		"IParticle_position(IParticle self) -> kvector_t\n"
-		"kvector_t IParticle::position() const\n"
+	 { "PolyhedralEdge_contrib", _wrap_PolyhedralEdge_contrib, METH_VARARGS, "\n"
+		"PolyhedralEdge_contrib(PolyhedralEdge self, int m, cvector_t qpa, complex_t qrperp) -> complex_t\n"
+		"complex_t PolyhedralEdge::contrib(int m, cvector_t qpa, complex_t qrperp) const\n"
 		"\n"
-		"Returns particle position. \n"
+		"Returns sum_l=0^M/2 u^2l v^(M-2l) / (2l+1)!(M-2l)! - vperp^M/M! \n"
 		"\n"
 		""},
-	 { "IParticle_setPosition", _wrap_IParticle_setPosition, METH_VARARGS, "\n"
-		"IParticle_setPosition(IParticle self, kvector_t position)\n"
-		"IParticle_setPosition(IParticle self, double x, double y, double z)\n"
-		"void IParticle::setPosition(double x, double y, double z)\n"
+	 { "delete_PolyhedralEdge", _wrap_delete_PolyhedralEdge, METH_O, "delete_PolyhedralEdge(PolyhedralEdge self)"},
+	 { "PolyhedralEdge_swigregister", PolyhedralEdge_swigregister, METH_O, NULL},
+	 { "PolyhedralEdge_swiginit", PolyhedralEdge_swiginit, METH_VARARGS, NULL},
+	 { "PolyhedralFace_diameter", _wrap_PolyhedralFace_diameter, METH_O, "PolyhedralFace_diameter(vector_kvector_t V) -> double"},
+	 { "new_PolyhedralFace", _wrap_new_PolyhedralFace, METH_VARARGS, "\n"
+		"PolyhedralFace(vector_kvector_t _V=std::vector< kvector_t >(), bool _sym_S2=False)\n"
+		"PolyhedralFace::PolyhedralFace(const std::vector< kvector_t > &_V=std::vector< kvector_t >(), bool _sym_S2=false)\n"
 		"\n"
-		"Sets relative position of the particle's reference point in the coordinate system of parent.\n"
+		"Sets internal variables for given vertex chain.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"x: \n"
-		"x-coordinate in nanometers\n"
+		"V: \n"
+		"oriented vertex list\n"
 		"\n"
-		"y: \n"
-		"y-coordinate in nanometers\n"
+		"_sym_S2: \n"
+		"true if face has a perpedicular two-fold symmetry axis \n"
 		"\n"
-		"z: \n"
-		"z-coordinate in nanometers \n"
+		""},
+	 { "PolyhedralFace_area", _wrap_PolyhedralFace_area, METH_O, "\n"
+		"PolyhedralFace_area(PolyhedralFace self) -> double\n"
+		"double PolyhedralFace::area() const\n"
 		"\n"
 		""},
-	 { "IParticle_translate", _wrap_IParticle_translate, METH_VARARGS, "\n"
-		"IParticle_translate(IParticle self, kvector_t translation)\n"
-		"void IParticle::translate(kvector_t translation) override final\n"
+	 { "PolyhedralFace_pyramidalVolume", _wrap_PolyhedralFace_pyramidalVolume, METH_O, "\n"
+		"PolyhedralFace_pyramidalVolume(PolyhedralFace self) -> double\n"
+		"double PolyhedralFace::pyramidalVolume() const\n"
 		"\n"
-		"Translates the particle. \n"
+		""},
+	 { "PolyhedralFace_radius3d", _wrap_PolyhedralFace_radius3d, METH_O, "\n"
+		"PolyhedralFace_radius3d(PolyhedralFace self) -> double\n"
+		"double PolyhedralFace::radius3d() const\n"
 		"\n"
 		""},
-	 { "IParticle_rotation", _wrap_IParticle_rotation, METH_O, "\n"
-		"IParticle_rotation(IParticle self) -> IRotation\n"
-		"const IRotation * IParticle::rotation() const\n"
+	 { "PolyhedralFace_normalProjectionConj", _wrap_PolyhedralFace_normalProjectionConj, METH_VARARGS, "\n"
+		"PolyhedralFace_normalProjectionConj(PolyhedralFace self, cvector_t q) -> complex_t\n"
+		"complex_t PolyhedralFace::normalProjectionConj(cvector_t q) const\n"
 		"\n"
-		"Returns rotation object. \n"
+		"Returns conj(q)*normal [ BasicVector3D::dot is antilinear in 'this' argument]. \n"
 		"\n"
 		""},
-	 { "IParticle_setRotation", _wrap_IParticle_setRotation, METH_VARARGS, "\n"
-		"IParticle_setRotation(IParticle self, IRotation rotation)\n"
-		"void IParticle::setRotation(const IRotation &rotation)\n"
+	 { "PolyhedralFace_ff_n", _wrap_PolyhedralFace_ff_n, METH_VARARGS, "\n"
+		"PolyhedralFace_ff_n(PolyhedralFace self, int m, cvector_t q) -> complex_t\n"
+		"complex_t PolyhedralFace::ff_n(int m, cvector_t q) const\n"
 		"\n"
-		"Sets transformation. \n"
+		"Returns contribution qn*f_n [of order q^(n+1)] from this face to the polyhedral form factor. \n"
 		"\n"
 		""},
-	 { "IParticle_rotate", _wrap_IParticle_rotate, METH_VARARGS, "\n"
-		"IParticle_rotate(IParticle self, IRotation rotation)\n"
-		"void IParticle::rotate(const IRotation &rotation) override final\n"
+	 { "PolyhedralFace_ff", _wrap_PolyhedralFace_ff, METH_VARARGS, "\n"
+		"PolyhedralFace_ff(PolyhedralFace self, cvector_t q, bool sym_Ci) -> complex_t\n"
+		"complex_t PolyhedralFace::ff(cvector_t q, bool sym_Ci) const\n"
 		"\n"
-		"Rotates the particle. \n"
+		"Returns the contribution ff(q) of this face to the polyhedral form factor. \n"
 		"\n"
 		""},
-	 { "IParticle_getChildren", _wrap_IParticle_getChildren, METH_O, "\n"
-		"IParticle_getChildren(IParticle self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > IParticle::getChildren() const override\n"
+	 { "PolyhedralFace_ff_2D", _wrap_PolyhedralFace_ff_2D, METH_VARARGS, "\n"
+		"PolyhedralFace_ff_2D(PolyhedralFace self, cvector_t qpa) -> complex_t\n"
+		"complex_t PolyhedralFace::ff_2D(cvector_t qpa) const\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Returns the two-dimensional form factor of this face, for use in a prism. \n"
 		"\n"
 		""},
-	 { "IParticle_registerAbundance", _wrap_IParticle_registerAbundance, METH_VARARGS, "\n"
-		"IParticle_registerAbundance(IParticle self, bool make_registered=True)\n"
-		"void IParticle::registerAbundance(bool make_registered=true)\n"
+	 { "PolyhedralFace_assert_Ci", _wrap_PolyhedralFace_assert_Ci, METH_VARARGS, "\n"
+		"PolyhedralFace_assert_Ci(PolyhedralFace self, PolyhedralFace other)\n"
+		"void PolyhedralFace::assert_Ci(const PolyhedralFace &other) const\n"
+		"\n"
+		"Throws if deviation from inversion symmetry is detected. Does not check vertices. \n"
 		"\n"
 		""},
-	 { "IParticle_registerPosition", _wrap_IParticle_registerPosition, METH_VARARGS, "\n"
-		"IParticle_registerPosition(IParticle self, bool make_registered=True)\n"
-		"void IParticle::registerPosition(bool make_registered=true)\n"
+	 { "delete_PolyhedralFace", _wrap_delete_PolyhedralFace, METH_O, "delete_PolyhedralFace(PolyhedralFace self)"},
+	 { "PolyhedralFace_swigregister", PolyhedralFace_swigregister, METH_O, NULL},
+	 { "PolyhedralFace_swiginit", PolyhedralFace_swiginit, METH_VARARGS, NULL},
+	 { "FormFactorPolyhedron_bottomZ", _wrap_FormFactorPolyhedron_bottomZ, METH_VARARGS, "\n"
+		"FormFactorPolyhedron_bottomZ(FormFactorPolyhedron self, IRotation rotation) -> double\n"
+		"double FormFactorPolyhedron::bottomZ(const IRotation &rotation) const override final\n"
 		"\n"
-		"Registers the three components of its position. \n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "IParticle_decompose", _wrap_IParticle_decompose, METH_O, "\n"
-		"IParticle_decompose(IParticle self) -> SafePointerVector< IParticle >\n"
-		"SafePointerVector< IParticle > IParticle::decompose() const\n"
+	 { "FormFactorPolyhedron_topZ", _wrap_FormFactorPolyhedron_topZ, METH_VARARGS, "\n"
+		"FormFactorPolyhedron_topZ(FormFactorPolyhedron self, IRotation rotation) -> double\n"
+		"double FormFactorPolyhedron::topZ(const IRotation &rotation) const override final\n"
 		"\n"
-		"Decompose in constituent  IParticle objects. \n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "IParticle_bottomTopZ", _wrap_IParticle_bottomTopZ, METH_O, "\n"
-		"IParticle_bottomTopZ(IParticle self) -> ParticleLimits\n"
-		"ParticleLimits IParticle::bottomTopZ() const\n"
+	 { "FormFactorPolyhedron_evaluate_for_q", _wrap_FormFactorPolyhedron_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorPolyhedron_evaluate_for_q(FormFactorPolyhedron self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorPolyhedron::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"Top and bottom z-coordinate. \n"
+		"Returns the form factor F(q) of this polyhedron, respecting the offset z_bottom. \n"
 		"\n"
 		""},
-	 { "IParticle_swigregister", IParticle_swigregister, METH_O, NULL},
-	 { "delete_IPeakShape", _wrap_delete_IPeakShape, METH_O, "\n"
-		"delete_IPeakShape(IPeakShape self)\n"
-		"IPeakShape::~IPeakShape()\n"
+	 { "FormFactorPolyhedron_evaluate_centered", _wrap_FormFactorPolyhedron_evaluate_centered, METH_VARARGS, "\n"
+		"FormFactorPolyhedron_evaluate_centered(FormFactorPolyhedron self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorPolyhedron::evaluate_centered(cvector_t q) const\n"
+		"\n"
+		"Returns the form factor F(q) of this polyhedron, with origin at z=0. \n"
 		"\n"
 		""},
-	 { "IPeakShape_clone", _wrap_IPeakShape_clone, METH_O, "\n"
-		"IPeakShape_clone(IPeakShape self) -> IPeakShape\n"
-		"virtual IPeakShape* IPeakShape::clone() const =0\n"
+	 { "FormFactorPolyhedron_volume", _wrap_FormFactorPolyhedron_volume, METH_O, "\n"
+		"FormFactorPolyhedron_volume(FormFactorPolyhedron self) -> double\n"
+		"double FormFactorPolyhedron::volume() const override final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns the total volume of the particle of this form factor's shape. \n"
 		"\n"
 		""},
-	 { "IPeakShape_evaluate", _wrap_IPeakShape_evaluate, METH_VARARGS, "\n"
-		"IPeakShape_evaluate(IPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
-		"virtual double IPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const =0\n"
+	 { "FormFactorPolyhedron_radialExtension", _wrap_FormFactorPolyhedron_radialExtension, METH_O, "\n"
+		"FormFactorPolyhedron_radialExtension(FormFactorPolyhedron self) -> double\n"
+		"double FormFactorPolyhedron::radialExtension() const override final\n"
 		"\n"
-		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "IPeakShape_angularDisorder", _wrap_IPeakShape_angularDisorder, METH_O, "\n"
-		"IPeakShape_angularDisorder(IPeakShape self) -> bool\n"
-		"virtual bool IPeakShape::angularDisorder() const\n"
+	 { "FormFactorPolyhedron_assert_platonic", _wrap_FormFactorPolyhedron_assert_platonic, METH_O, "\n"
+		"FormFactorPolyhedron_assert_platonic(FormFactorPolyhedron self)\n"
+		"void FormFactorPolyhedron::assert_platonic() const\n"
 		"\n"
-		"Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed \n"
+		"Assertions for Platonic solid. \n"
 		"\n"
 		""},
-	 { "IPeakShape_swigregister", IPeakShape_swigregister, METH_O, NULL},
-	 { "new_IsotropicGaussPeakShape", _wrap_new_IsotropicGaussPeakShape, METH_VARARGS, "\n"
-		"new_IsotropicGaussPeakShape(double max_intensity, double domainsize) -> IsotropicGaussPeakShape\n"
-		"IsotropicGaussPeakShape::IsotropicGaussPeakShape(double max_intensity, double domainsize)\n"
+	 { "delete_FormFactorPolyhedron", _wrap_delete_FormFactorPolyhedron, METH_O, "delete_FormFactorPolyhedron(FormFactorPolyhedron self)"},
+	 { "FormFactorPolyhedron_swigregister", FormFactorPolyhedron_swigregister, METH_O, NULL},
+	 { "FormFactorPolygonalPrism_bottomZ", _wrap_FormFactorPolygonalPrism_bottomZ, METH_VARARGS, "\n"
+		"FormFactorPolygonalPrism_bottomZ(FormFactorPolygonalPrism self, IRotation rotation) -> double\n"
+		"double FormFactorPolygonalPrism::bottomZ(const IRotation &rotation) const override final\n"
 		"\n"
-		""},
-	 { "delete_IsotropicGaussPeakShape", _wrap_delete_IsotropicGaussPeakShape, METH_O, "\n"
-		"delete_IsotropicGaussPeakShape(IsotropicGaussPeakShape self)\n"
-		"IsotropicGaussPeakShape::~IsotropicGaussPeakShape() override\n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "IsotropicGaussPeakShape_clone", _wrap_IsotropicGaussPeakShape_clone, METH_O, "\n"
-		"IsotropicGaussPeakShape_clone(IsotropicGaussPeakShape self) -> IsotropicGaussPeakShape\n"
-		"IsotropicGaussPeakShape * IsotropicGaussPeakShape::clone() const override\n"
+	 { "FormFactorPolygonalPrism_topZ", _wrap_FormFactorPolygonalPrism_topZ, METH_VARARGS, "\n"
+		"FormFactorPolygonalPrism_topZ(FormFactorPolygonalPrism self, IRotation rotation) -> double\n"
+		"double FormFactorPolygonalPrism::topZ(const IRotation &rotation) const override final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "IsotropicGaussPeakShape_accept", _wrap_IsotropicGaussPeakShape_accept, METH_VARARGS, "\n"
-		"IsotropicGaussPeakShape_accept(IsotropicGaussPeakShape self, INodeVisitor visitor)\n"
-		"void IsotropicGaussPeakShape::accept(INodeVisitor *visitor) const override\n"
+	 { "FormFactorPolygonalPrism_evaluate_for_q", _wrap_FormFactorPolygonalPrism_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorPolygonalPrism_evaluate_for_q(FormFactorPolygonalPrism self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorPolygonalPrism::evaluate_for_q(cvector_t q) const override\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns the form factor F(q) of this polyhedron, respecting the offset height/2. \n"
 		"\n"
 		""},
-	 { "IsotropicGaussPeakShape_evaluate", _wrap_IsotropicGaussPeakShape_evaluate, METH_VARARGS, "\n"
-		"IsotropicGaussPeakShape_evaluate(IsotropicGaussPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
-		"double IsotropicGaussPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override\n"
+	 { "FormFactorPolygonalPrism_volume", _wrap_FormFactorPolygonalPrism_volume, METH_O, "\n"
+		"FormFactorPolygonalPrism_volume(FormFactorPolygonalPrism self) -> double\n"
+		"double FormFactorPolygonalPrism::volume() const override\n"
 		"\n"
-		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
+		"Returns the volume of this prism. \n"
 		"\n"
 		""},
-	 { "IsotropicGaussPeakShape_swigregister", IsotropicGaussPeakShape_swigregister, METH_O, NULL},
-	 { "IsotropicGaussPeakShape_swiginit", IsotropicGaussPeakShape_swiginit, METH_VARARGS, NULL},
-	 { "new_IsotropicLorentzPeakShape", _wrap_new_IsotropicLorentzPeakShape, METH_VARARGS, "\n"
-		"new_IsotropicLorentzPeakShape(double max_intensity, double domainsize) -> IsotropicLorentzPeakShape\n"
-		"IsotropicLorentzPeakShape::IsotropicLorentzPeakShape(double max_intensity, double domainsize)\n"
+	 { "FormFactorPolygonalPrism_getHeight", _wrap_FormFactorPolygonalPrism_getHeight, METH_O, "\n"
+		"FormFactorPolygonalPrism_getHeight(FormFactorPolygonalPrism self) -> double\n"
+		"double FormFactorPolygonalPrism::getHeight() const\n"
 		"\n"
 		""},
-	 { "delete_IsotropicLorentzPeakShape", _wrap_delete_IsotropicLorentzPeakShape, METH_O, "\n"
-		"delete_IsotropicLorentzPeakShape(IsotropicLorentzPeakShape self)\n"
-		"IsotropicLorentzPeakShape::~IsotropicLorentzPeakShape() override\n"
+	 { "FormFactorPolygonalPrism_radialExtension", _wrap_FormFactorPolygonalPrism_radialExtension, METH_O, "\n"
+		"FormFactorPolygonalPrism_radialExtension(FormFactorPolygonalPrism self) -> double\n"
+		"virtual double FormFactorPolygonalPrism::radialExtension() const override\n"
+		"\n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "IsotropicLorentzPeakShape_clone", _wrap_IsotropicLorentzPeakShape_clone, METH_O, "\n"
-		"IsotropicLorentzPeakShape_clone(IsotropicLorentzPeakShape self) -> IsotropicLorentzPeakShape\n"
-		"IsotropicLorentzPeakShape * IsotropicLorentzPeakShape::clone() const override\n"
+	 { "delete_FormFactorPolygonalPrism", _wrap_delete_FormFactorPolygonalPrism, METH_O, "delete_FormFactorPolygonalPrism(FormFactorPolygonalPrism self)"},
+	 { "FormFactorPolygonalPrism_swigregister", FormFactorPolygonalPrism_swigregister, METH_O, NULL},
+	 { "FormFactorPolygonalSurface_evaluate_for_q", _wrap_FormFactorPolygonalSurface_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorPolygonalSurface_evaluate_for_q(FormFactorPolygonalSurface self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorPolygonalSurface::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "IsotropicLorentzPeakShape_accept", _wrap_IsotropicLorentzPeakShape_accept, METH_VARARGS, "\n"
-		"IsotropicLorentzPeakShape_accept(IsotropicLorentzPeakShape self, INodeVisitor visitor)\n"
-		"void IsotropicLorentzPeakShape::accept(INodeVisitor *visitor) const override\n"
+	 { "FormFactorPolygonalSurface_volume", _wrap_FormFactorPolygonalSurface_volume, METH_O, "\n"
+		"FormFactorPolygonalSurface_volume(FormFactorPolygonalSurface self) -> double\n"
+		"double FormFactorPolygonalSurface::volume() const override\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns the total volume of the particle of this form factor's shape. \n"
 		"\n"
 		""},
-	 { "IsotropicLorentzPeakShape_evaluate", _wrap_IsotropicLorentzPeakShape_evaluate, METH_VARARGS, "\n"
-		"IsotropicLorentzPeakShape_evaluate(IsotropicLorentzPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
-		"double IsotropicLorentzPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override\n"
+	 { "FormFactorPolygonalSurface_radialExtension", _wrap_FormFactorPolygonalSurface_radialExtension, METH_O, "\n"
+		"FormFactorPolygonalSurface_radialExtension(FormFactorPolygonalSurface self) -> double\n"
+		"double FormFactorPolygonalSurface::radialExtension() const override final\n"
 		"\n"
-		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "IsotropicLorentzPeakShape_swigregister", IsotropicLorentzPeakShape_swigregister, METH_O, NULL},
-	 { "IsotropicLorentzPeakShape_swiginit", IsotropicLorentzPeakShape_swiginit, METH_VARARGS, NULL},
-	 { "new_GaussFisherPeakShape", _wrap_new_GaussFisherPeakShape, METH_VARARGS, "\n"
-		"new_GaussFisherPeakShape(double max_intensity, double radial_size, double kappa) -> GaussFisherPeakShape\n"
-		"GaussFisherPeakShape::GaussFisherPeakShape(double max_intensity, double radial_size, double kappa)\n"
+	 { "delete_FormFactorPolygonalSurface", _wrap_delete_FormFactorPolygonalSurface, METH_O, "delete_FormFactorPolygonalSurface(FormFactorPolygonalSurface self)"},
+	 { "FormFactorPolygonalSurface_swigregister", FormFactorPolygonalSurface_swigregister, METH_O, NULL},
+	 { "ProfileBar_getLength", _wrap_ProfileBar_getLength, METH_O, "\n"
+		"ProfileBar_getLength(ProfileBar self) -> double\n"
+		"double ProfileBar::getLength() const\n"
 		"\n"
 		""},
-	 { "delete_GaussFisherPeakShape", _wrap_delete_GaussFisherPeakShape, METH_O, "\n"
-		"delete_GaussFisherPeakShape(GaussFisherPeakShape self)\n"
-		"GaussFisherPeakShape::~GaussFisherPeakShape() override\n"
+	 { "ProfileBar_getHeight", _wrap_ProfileBar_getHeight, METH_O, "\n"
+		"ProfileBar_getHeight(ProfileBar self) -> double\n"
+		"double ProfileBar::getHeight() const\n"
 		"\n"
 		""},
-	 { "GaussFisherPeakShape_clone", _wrap_GaussFisherPeakShape_clone, METH_O, "\n"
-		"GaussFisherPeakShape_clone(GaussFisherPeakShape self) -> GaussFisherPeakShape\n"
-		"GaussFisherPeakShape * GaussFisherPeakShape::clone() const override\n"
-		"\n"
-		"Returns a clone of this  ISample object. \n"
+	 { "ProfileBar_getWidth", _wrap_ProfileBar_getWidth, METH_O, "\n"
+		"ProfileBar_getWidth(ProfileBar self) -> double\n"
+		"double ProfileBar::getWidth() const\n"
 		"\n"
 		""},
-	 { "GaussFisherPeakShape_accept", _wrap_GaussFisherPeakShape_accept, METH_VARARGS, "\n"
-		"GaussFisherPeakShape_accept(GaussFisherPeakShape self, INodeVisitor visitor)\n"
-		"void GaussFisherPeakShape::accept(INodeVisitor *visitor) const override\n"
+	 { "ProfileBar_radialExtension", _wrap_ProfileBar_radialExtension, METH_O, "\n"
+		"ProfileBar_radialExtension(ProfileBar self) -> double\n"
+		"double ProfileBar::radialExtension() const override final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "GaussFisherPeakShape_evaluate", _wrap_GaussFisherPeakShape_evaluate, METH_VARARGS, "\n"
-		"GaussFisherPeakShape_evaluate(GaussFisherPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
-		"double GaussFisherPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override\n"
+	 { "ProfileBar_evaluate_for_q", _wrap_ProfileBar_evaluate_for_q, METH_VARARGS, "\n"
+		"ProfileBar_evaluate_for_q(ProfileBar self, cvector_t q) -> complex_t\n"
+		"complex_t ProfileBar::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "GaussFisherPeakShape_angularDisorder", _wrap_GaussFisherPeakShape_angularDisorder, METH_O, "\n"
-		"GaussFisherPeakShape_angularDisorder(GaussFisherPeakShape self) -> bool\n"
-		"bool GaussFisherPeakShape::angularDisorder() const override\n"
-		"\n"
-		"Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed \n"
+	 { "delete_ProfileBar", _wrap_delete_ProfileBar, METH_O, "delete_ProfileBar(ProfileBar self)"},
+	 { "ProfileBar_swigregister", ProfileBar_swigregister, METH_O, NULL},
+	 { "ProfileRipple1_getLength", _wrap_ProfileRipple1_getLength, METH_O, "\n"
+		"ProfileRipple1_getLength(ProfileRipple1 self) -> double\n"
+		"double ProfileRipple1::getLength() const\n"
 		"\n"
 		""},
-	 { "GaussFisherPeakShape_swigregister", GaussFisherPeakShape_swigregister, METH_O, NULL},
-	 { "GaussFisherPeakShape_swiginit", GaussFisherPeakShape_swiginit, METH_VARARGS, NULL},
-	 { "new_LorentzFisherPeakShape", _wrap_new_LorentzFisherPeakShape, METH_VARARGS, "\n"
-		"new_LorentzFisherPeakShape(double max_intensity, double radial_size, double kappa) -> LorentzFisherPeakShape\n"
-		"LorentzFisherPeakShape::LorentzFisherPeakShape(double max_intensity, double radial_size, double kappa)\n"
+	 { "ProfileRipple1_getHeight", _wrap_ProfileRipple1_getHeight, METH_O, "\n"
+		"ProfileRipple1_getHeight(ProfileRipple1 self) -> double\n"
+		"double ProfileRipple1::getHeight() const\n"
 		"\n"
 		""},
-	 { "delete_LorentzFisherPeakShape", _wrap_delete_LorentzFisherPeakShape, METH_O, "\n"
-		"delete_LorentzFisherPeakShape(LorentzFisherPeakShape self)\n"
-		"LorentzFisherPeakShape::~LorentzFisherPeakShape() override\n"
+	 { "ProfileRipple1_getWidth", _wrap_ProfileRipple1_getWidth, METH_O, "\n"
+		"ProfileRipple1_getWidth(ProfileRipple1 self) -> double\n"
+		"double ProfileRipple1::getWidth() const\n"
 		"\n"
 		""},
-	 { "LorentzFisherPeakShape_clone", _wrap_LorentzFisherPeakShape_clone, METH_O, "\n"
-		"LorentzFisherPeakShape_clone(LorentzFisherPeakShape self) -> LorentzFisherPeakShape\n"
-		"LorentzFisherPeakShape * LorentzFisherPeakShape::clone() const override\n"
+	 { "ProfileRipple1_radialExtension", _wrap_ProfileRipple1_radialExtension, METH_O, "\n"
+		"ProfileRipple1_radialExtension(ProfileRipple1 self) -> double\n"
+		"double ProfileRipple1::radialExtension() const override final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "LorentzFisherPeakShape_accept", _wrap_LorentzFisherPeakShape_accept, METH_VARARGS, "\n"
-		"LorentzFisherPeakShape_accept(LorentzFisherPeakShape self, INodeVisitor visitor)\n"
-		"void LorentzFisherPeakShape::accept(INodeVisitor *visitor) const override\n"
+	 { "ProfileRipple1_evaluate_for_q", _wrap_ProfileRipple1_evaluate_for_q, METH_VARARGS, "\n"
+		"ProfileRipple1_evaluate_for_q(ProfileRipple1 self, cvector_t q) -> complex_t\n"
+		"complex_t ProfileRipple1::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "LorentzFisherPeakShape_evaluate", _wrap_LorentzFisherPeakShape_evaluate, METH_VARARGS, "\n"
-		"LorentzFisherPeakShape_evaluate(LorentzFisherPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
-		"double LorentzFisherPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override\n"
-		"\n"
-		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
+	 { "delete_ProfileRipple1", _wrap_delete_ProfileRipple1, METH_O, "delete_ProfileRipple1(ProfileRipple1 self)"},
+	 { "ProfileRipple1_swigregister", ProfileRipple1_swigregister, METH_O, NULL},
+	 { "ProfileRipple2_getLength", _wrap_ProfileRipple2_getLength, METH_O, "\n"
+		"ProfileRipple2_getLength(ProfileRipple2 self) -> double\n"
+		"double ProfileRipple2::getLength() const\n"
 		"\n"
 		""},
-	 { "LorentzFisherPeakShape_angularDisorder", _wrap_LorentzFisherPeakShape_angularDisorder, METH_O, "\n"
-		"LorentzFisherPeakShape_angularDisorder(LorentzFisherPeakShape self) -> bool\n"
-		"bool LorentzFisherPeakShape::angularDisorder() const override\n"
-		"\n"
-		"Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed \n"
+	 { "ProfileRipple2_getHeight", _wrap_ProfileRipple2_getHeight, METH_O, "\n"
+		"ProfileRipple2_getHeight(ProfileRipple2 self) -> double\n"
+		"double ProfileRipple2::getHeight() const\n"
 		"\n"
 		""},
-	 { "LorentzFisherPeakShape_swigregister", LorentzFisherPeakShape_swigregister, METH_O, NULL},
-	 { "LorentzFisherPeakShape_swiginit", LorentzFisherPeakShape_swiginit, METH_VARARGS, NULL},
-	 { "new_VonMisesFisherGaussPeakShape", _wrap_new_VonMisesFisherGaussPeakShape, METH_VARARGS, "\n"
-		"new_VonMisesFisherGaussPeakShape(double max_intensity, double radial_size, kvector_t zenith, double kappa_1, double kappa_2) -> VonMisesFisherGaussPeakShape\n"
-		"VonMisesFisherGaussPeakShape::VonMisesFisherGaussPeakShape(double max_intensity, double radial_size, kvector_t zenith, double kappa_1, double kappa_2)\n"
+	 { "ProfileRipple2_getWidth", _wrap_ProfileRipple2_getWidth, METH_O, "\n"
+		"ProfileRipple2_getWidth(ProfileRipple2 self) -> double\n"
+		"double ProfileRipple2::getWidth() const\n"
 		"\n"
 		""},
-	 { "delete_VonMisesFisherGaussPeakShape", _wrap_delete_VonMisesFisherGaussPeakShape, METH_O, "\n"
-		"delete_VonMisesFisherGaussPeakShape(VonMisesFisherGaussPeakShape self)\n"
-		"VonMisesFisherGaussPeakShape::~VonMisesFisherGaussPeakShape() override\n"
+	 { "ProfileRipple2_getAsymmetry", _wrap_ProfileRipple2_getAsymmetry, METH_O, "\n"
+		"ProfileRipple2_getAsymmetry(ProfileRipple2 self) -> double\n"
+		"double ProfileRipple2::getAsymmetry() const\n"
 		"\n"
 		""},
-	 { "VonMisesFisherGaussPeakShape_clone", _wrap_VonMisesFisherGaussPeakShape_clone, METH_O, "\n"
-		"VonMisesFisherGaussPeakShape_clone(VonMisesFisherGaussPeakShape self) -> VonMisesFisherGaussPeakShape\n"
-		"VonMisesFisherGaussPeakShape * VonMisesFisherGaussPeakShape::clone() const override\n"
+	 { "ProfileRipple2_radialExtension", _wrap_ProfileRipple2_radialExtension, METH_O, "\n"
+		"ProfileRipple2_radialExtension(ProfileRipple2 self) -> double\n"
+		"double ProfileRipple2::radialExtension() const override final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "VonMisesFisherGaussPeakShape_accept", _wrap_VonMisesFisherGaussPeakShape_accept, METH_VARARGS, "\n"
-		"VonMisesFisherGaussPeakShape_accept(VonMisesFisherGaussPeakShape self, INodeVisitor visitor)\n"
-		"void VonMisesFisherGaussPeakShape::accept(INodeVisitor *visitor) const override\n"
+	 { "ProfileRipple2_evaluate_for_q", _wrap_ProfileRipple2_evaluate_for_q, METH_VARARGS, "\n"
+		"ProfileRipple2_evaluate_for_q(ProfileRipple2 self, cvector_t q) -> complex_t\n"
+		"complex_t ProfileRipple2::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "VonMisesFisherGaussPeakShape_evaluate", _wrap_VonMisesFisherGaussPeakShape_evaluate, METH_VARARGS, "\n"
-		"VonMisesFisherGaussPeakShape_evaluate(VonMisesFisherGaussPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
-		"double VonMisesFisherGaussPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override\n"
+	 { "delete_ProfileRipple2", _wrap_delete_ProfileRipple2, METH_O, "delete_ProfileRipple2(ProfileRipple2 self)"},
+	 { "ProfileRipple2_swigregister", ProfileRipple2_swigregister, METH_O, NULL},
+	 { "new_FormFactorAnisoPyramid", _wrap_new_FormFactorAnisoPyramid, METH_VARARGS, "\n"
+		"new_FormFactorAnisoPyramid(double length, double width, double height, double alpha) -> FormFactorAnisoPyramid\n"
+		"FormFactorAnisoPyramid::FormFactorAnisoPyramid(double length, double width, double height, double alpha)\n"
 		"\n"
-		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
+		"Constructor of a truncated pyramid with a rectangular base.\n"
 		"\n"
-		""},
-	 { "VonMisesFisherGaussPeakShape_angularDisorder", _wrap_VonMisesFisherGaussPeakShape_angularDisorder, METH_O, "\n"
-		"VonMisesFisherGaussPeakShape_angularDisorder(VonMisesFisherGaussPeakShape self) -> bool\n"
-		"bool VonMisesFisherGaussPeakShape::angularDisorder() const override\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed \n"
+		"length: \n"
+		"length of the rectangular base in nm\n"
 		"\n"
-		""},
-	 { "VonMisesFisherGaussPeakShape_swigregister", VonMisesFisherGaussPeakShape_swigregister, METH_O, NULL},
-	 { "VonMisesFisherGaussPeakShape_swiginit", VonMisesFisherGaussPeakShape_swiginit, METH_VARARGS, NULL},
-	 { "new_VonMisesGaussPeakShape", _wrap_new_VonMisesGaussPeakShape, METH_VARARGS, "\n"
-		"new_VonMisesGaussPeakShape(double max_intensity, double radial_size, kvector_t zenith, double kappa) -> VonMisesGaussPeakShape\n"
-		"VonMisesGaussPeakShape::VonMisesGaussPeakShape(double max_intensity, double radial_size, kvector_t zenith, double kappa)\n"
+		"width: \n"
+		"width of the rectangular base in nm\n"
 		"\n"
-		""},
-	 { "delete_VonMisesGaussPeakShape", _wrap_delete_VonMisesGaussPeakShape, METH_O, "\n"
-		"delete_VonMisesGaussPeakShape(VonMisesGaussPeakShape self)\n"
-		"VonMisesGaussPeakShape::~VonMisesGaussPeakShape() override\n"
+		"height: \n"
+		"height of pyramid in nm\n"
+		"\n"
+		"alpha: \n"
+		"dihedral angle in radians between base and facet \n"
 		"\n"
 		""},
-	 { "VonMisesGaussPeakShape_clone", _wrap_VonMisesGaussPeakShape_clone, METH_O, "\n"
-		"VonMisesGaussPeakShape_clone(VonMisesGaussPeakShape self) -> VonMisesGaussPeakShape\n"
-		"VonMisesGaussPeakShape * VonMisesGaussPeakShape::clone() const override\n"
+	 { "FormFactorAnisoPyramid_clone", _wrap_FormFactorAnisoPyramid_clone, METH_O, "\n"
+		"FormFactorAnisoPyramid_clone(FormFactorAnisoPyramid self) -> FormFactorAnisoPyramid\n"
+		"FormFactorAnisoPyramid* FormFactorAnisoPyramid::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "VonMisesGaussPeakShape_accept", _wrap_VonMisesGaussPeakShape_accept, METH_VARARGS, "\n"
-		"VonMisesGaussPeakShape_accept(VonMisesGaussPeakShape self, INodeVisitor visitor)\n"
-		"void VonMisesGaussPeakShape::accept(INodeVisitor *visitor) const override\n"
+	 { "FormFactorAnisoPyramid_accept", _wrap_FormFactorAnisoPyramid_accept, METH_VARARGS, "\n"
+		"FormFactorAnisoPyramid_accept(FormFactorAnisoPyramid self, INodeVisitor visitor)\n"
+		"void FormFactorAnisoPyramid::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "VonMisesGaussPeakShape_evaluate", _wrap_VonMisesGaussPeakShape_evaluate, METH_VARARGS, "\n"
-		"VonMisesGaussPeakShape_evaluate(VonMisesGaussPeakShape self, kvector_t q, kvector_t q_lattice_point) -> double\n"
-		"double VonMisesGaussPeakShape::evaluate(const kvector_t q, const kvector_t q_lattice_point) const override\n"
-		"\n"
-		"Evaluates the peak shape at q from a reciprocal lattice point at q_lattice_point. \n"
+	 { "FormFactorAnisoPyramid_getLength", _wrap_FormFactorAnisoPyramid_getLength, METH_O, "\n"
+		"FormFactorAnisoPyramid_getLength(FormFactorAnisoPyramid self) -> double\n"
+		"double FormFactorAnisoPyramid::getLength() const\n"
 		"\n"
 		""},
-	 { "VonMisesGaussPeakShape_angularDisorder", _wrap_VonMisesGaussPeakShape_angularDisorder, METH_O, "\n"
-		"VonMisesGaussPeakShape_angularDisorder(VonMisesGaussPeakShape self) -> bool\n"
-		"bool VonMisesGaussPeakShape::angularDisorder() const override\n"
-		"\n"
-		"Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed \n"
+	 { "FormFactorAnisoPyramid_getWidth", _wrap_FormFactorAnisoPyramid_getWidth, METH_O, "\n"
+		"FormFactorAnisoPyramid_getWidth(FormFactorAnisoPyramid self) -> double\n"
+		"double FormFactorAnisoPyramid::getWidth() const\n"
 		"\n"
 		""},
-	 { "VonMisesGaussPeakShape_swigregister", VonMisesGaussPeakShape_swigregister, METH_O, NULL},
-	 { "VonMisesGaussPeakShape_swiginit", VonMisesGaussPeakShape_swiginit, METH_VARARGS, NULL},
-	 { "delete_IResolutionFunction2D", _wrap_delete_IResolutionFunction2D, METH_O, "\n"
-		"delete_IResolutionFunction2D(IResolutionFunction2D self)\n"
-		"virtual IResolutionFunction2D::~IResolutionFunction2D()\n"
+	 { "FormFactorAnisoPyramid_getHeight", _wrap_FormFactorAnisoPyramid_getHeight, METH_O, "\n"
+		"FormFactorAnisoPyramid_getHeight(FormFactorAnisoPyramid self) -> double\n"
+		"double FormFactorAnisoPyramid::getHeight() const\n"
 		"\n"
 		""},
-	 { "IResolutionFunction2D_evaluateCDF", _wrap_IResolutionFunction2D_evaluateCDF, METH_VARARGS, "\n"
-		"IResolutionFunction2D_evaluateCDF(IResolutionFunction2D self, double x, double y) -> double\n"
-		"virtual double IResolutionFunction2D::evaluateCDF(double x, double y) const =0\n"
+	 { "FormFactorAnisoPyramid_getAlpha", _wrap_FormFactorAnisoPyramid_getAlpha, METH_O, "\n"
+		"FormFactorAnisoPyramid_getAlpha(FormFactorAnisoPyramid self) -> double\n"
+		"double FormFactorAnisoPyramid::getAlpha() const\n"
 		"\n"
 		""},
-	 { "IResolutionFunction2D_clone", _wrap_IResolutionFunction2D_clone, METH_O, "\n"
-		"IResolutionFunction2D_clone(IResolutionFunction2D self) -> IResolutionFunction2D\n"
-		"virtual IResolutionFunction2D* IResolutionFunction2D::clone() const =0\n"
+	 { "delete_FormFactorAnisoPyramid", _wrap_delete_FormFactorAnisoPyramid, METH_O, "delete_FormFactorAnisoPyramid(FormFactorAnisoPyramid self)"},
+	 { "FormFactorAnisoPyramid_swigregister", FormFactorAnisoPyramid_swigregister, METH_O, NULL},
+	 { "FormFactorAnisoPyramid_swiginit", FormFactorAnisoPyramid_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorBox", _wrap_new_FormFactorBox, METH_VARARGS, "\n"
+		"new_FormFactorBox(double length, double width, double height) -> FormFactorBox\n"
+		"FormFactorBox::FormFactorBox(double length, double width, double height)\n"
 		"\n"
-		""},
-	 { "IResolutionFunction2D_swigregister", IResolutionFunction2D_swigregister, METH_O, NULL},
-	 { "IRotation_createRotation", _wrap_IRotation_createRotation, METH_O, "IRotation_createRotation(Transform3D const & transform) -> IRotation"},
-	 { "IRotation_createIdentity", _wrap_IRotation_createIdentity, METH_NOARGS, "IRotation_createIdentity() -> IRotation"},
-	 { "delete_IRotation", _wrap_delete_IRotation, METH_O, "\n"
-		"delete_IRotation(IRotation self)\n"
-		"virtual IRotation::~IRotation()\n"
+		"Constructor of a rectangular cuboid.\n"
 		"\n"
-		""},
-	 { "IRotation_clone", _wrap_IRotation_clone, METH_O, "\n"
-		"IRotation_clone(IRotation self) -> IRotation\n"
-		"virtual IRotation* IRotation::clone() const =0\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"length: \n"
+		"length of the base in nanometers\n"
+		"\n"
+		"width: \n"
+		"width of the base in nanometers\n"
+		"\n"
+		"height: \n"
+		"height of the box in nanometers \n"
 		"\n"
 		""},
-	 { "IRotation_createInverse", _wrap_IRotation_createInverse, METH_O, "\n"
-		"IRotation_createInverse(IRotation self) -> IRotation\n"
-		"virtual IRotation* IRotation::createInverse() const =0\n"
+	 { "FormFactorBox_clone", _wrap_FormFactorBox_clone, METH_O, "\n"
+		"FormFactorBox_clone(FormFactorBox self) -> FormFactorBox\n"
+		"FormFactorBox* FormFactorBox::clone() const override final\n"
 		"\n"
-		"Returns a new  IRotation object that is the current object's inverse. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "IRotation_accept", _wrap_IRotation_accept, METH_VARARGS, "\n"
-		"IRotation_accept(IRotation self, INodeVisitor visitor)\n"
-		"void IRotation::accept(INodeVisitor *visitor) const\n"
+	 { "FormFactorBox_accept", _wrap_FormFactorBox_accept, METH_VARARGS, "\n"
+		"FormFactorBox_accept(FormFactorBox self, INodeVisitor visitor)\n"
+		"void FormFactorBox::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "IRotation_getTransform3D", _wrap_IRotation_getTransform3D, METH_O, "\n"
-		"IRotation_getTransform3D(IRotation self) -> Transform3D\n"
-		"virtual Transform3D IRotation::getTransform3D() const =0\n"
+	 { "FormFactorBox_getLength", _wrap_FormFactorBox_getLength, METH_O, "\n"
+		"FormFactorBox_getLength(FormFactorBox self) -> double\n"
+		"double FormFactorBox::getLength() const\n"
 		"\n"
-		"Returns transformation. \n"
+		""},
+	 { "FormFactorBox_getWidth", _wrap_FormFactorBox_getWidth, METH_O, "\n"
+		"FormFactorBox_getWidth(FormFactorBox self) -> double\n"
+		"double FormFactorBox::getWidth() const\n"
 		"\n"
 		""},
-	 { "IRotation_isIdentity", _wrap_IRotation_isIdentity, METH_O, "\n"
-		"IRotation_isIdentity(IRotation self) -> bool\n"
-		"bool IRotation::isIdentity() const\n"
+	 { "FormFactorBox_volume", _wrap_FormFactorBox_volume, METH_O, "\n"
+		"FormFactorBox_volume(FormFactorBox self) -> double\n"
+		"double FormFactorBox::volume() const override final\n"
 		"\n"
-		"Returns true if rotation matrix is identity matrix (no rotations) \n"
+		"Returns the volume of this prism. \n"
 		"\n"
 		""},
-	 { "IRotation_swigregister", IRotation_swigregister, METH_O, NULL},
-	 { "createProduct", _wrap_createProduct, METH_VARARGS, "\n"
-		"createProduct(IRotation left, IRotation right) -> IRotation\n"
-		"BA_CORE_API_ IRotation* createProduct(const IRotation &left, const IRotation &right)\n"
+	 { "FormFactorBox_radialExtension", _wrap_FormFactorBox_radialExtension, METH_O, "\n"
+		"FormFactorBox_radialExtension(FormFactorBox self) -> double\n"
+		"double FormFactorBox::radialExtension() const override final\n"
 		"\n"
-		"Returns concatenated rotation (first right, then left). \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "IsZRotation", _wrap_IsZRotation, METH_O, "\n"
-		"IsZRotation(IRotation rot) -> bool\n"
-		"bool IsZRotation(const IRotation &rot)\n"
+	 { "FormFactorBox_evaluate_for_q", _wrap_FormFactorBox_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorBox_evaluate_for_q(FormFactorBox self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorBox::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		""},
-	 { "new_IdentityRotation", _wrap_new_IdentityRotation, METH_NOARGS, "\n"
-		"new_IdentityRotation() -> IdentityRotation\n"
-		"IdentityRotation::IdentityRotation()=default\n"
+		"Returns the form factor F(q) of this polyhedron, respecting the offset height/2. \n"
 		"\n"
 		""},
-	 { "IdentityRotation_clone", _wrap_IdentityRotation_clone, METH_O, "\n"
-		"IdentityRotation_clone(IdentityRotation self) -> IdentityRotation\n"
-		"IdentityRotation* IdentityRotation::clone() const\n"
+	 { "delete_FormFactorBox", _wrap_delete_FormFactorBox, METH_O, "delete_FormFactorBox(FormFactorBox self)"},
+	 { "FormFactorBox_swigregister", FormFactorBox_swigregister, METH_O, NULL},
+	 { "FormFactorBox_swiginit", FormFactorBox_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorCantellatedCube", _wrap_new_FormFactorCantellatedCube, METH_VARARGS, "\n"
+		"new_FormFactorCantellatedCube(double length, double removed_length) -> FormFactorCantellatedCube\n"
+		"FormFactorCantellatedCube::FormFactorCantellatedCube(double length, double removed_length)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Constructor of a truncated cube.\n"
 		"\n"
-		""},
-	 { "IdentityRotation_createInverse", _wrap_IdentityRotation_createInverse, METH_O, "\n"
-		"IdentityRotation_createInverse(IdentityRotation self) -> IdentityRotation\n"
-		"IdentityRotation* IdentityRotation::createInverse() const\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns a new  IRotation object that is the current object's inverse. \n"
+		"length: \n"
+		"length of the full cube's edge in nanometers\n"
+		"\n"
+		"removed_length: \n"
+		"removed length from each edge of the cube in nanometers \n"
 		"\n"
 		""},
-	 { "IdentityRotation_accept", _wrap_IdentityRotation_accept, METH_VARARGS, "\n"
-		"IdentityRotation_accept(IdentityRotation self, INodeVisitor visitor)\n"
-		"void IdentityRotation::accept(INodeVisitor *visitor) const\n"
+	 { "FormFactorCantellatedCube_clone", _wrap_FormFactorCantellatedCube_clone, METH_O, "\n"
+		"FormFactorCantellatedCube_clone(FormFactorCantellatedCube self) -> FormFactorCantellatedCube\n"
+		"FormFactorCantellatedCube* FormFactorCantellatedCube::clone() const override final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "IdentityRotation_getTransform3D", _wrap_IdentityRotation_getTransform3D, METH_O, "\n"
-		"IdentityRotation_getTransform3D(IdentityRotation self) -> Transform3D\n"
-		"Transform3D IdentityRotation::getTransform3D() const\n"
+	 { "FormFactorCantellatedCube_accept", _wrap_FormFactorCantellatedCube_accept, METH_VARARGS, "\n"
+		"FormFactorCantellatedCube_accept(FormFactorCantellatedCube self, INodeVisitor visitor)\n"
+		"void FormFactorCantellatedCube::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Returns transformation. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "IdentityRotation_isIdentity", _wrap_IdentityRotation_isIdentity, METH_O, "\n"
-		"IdentityRotation_isIdentity(IdentityRotation self) -> bool\n"
-		"bool IdentityRotation::isIdentity() const\n"
+	 { "FormFactorCantellatedCube_getLength", _wrap_FormFactorCantellatedCube_getLength, METH_O, "\n"
+		"FormFactorCantellatedCube_getLength(FormFactorCantellatedCube self) -> double\n"
+		"double FormFactorCantellatedCube::getLength() const\n"
 		"\n"
-		"Returns true if rotation matrix is identity matrix (no rotations) \n"
+		""},
+	 { "FormFactorCantellatedCube_getRemovedLength", _wrap_FormFactorCantellatedCube_getRemovedLength, METH_O, "\n"
+		"FormFactorCantellatedCube_getRemovedLength(FormFactorCantellatedCube self) -> double\n"
+		"double FormFactorCantellatedCube::getRemovedLength() const\n"
 		"\n"
 		""},
-	 { "delete_IdentityRotation", _wrap_delete_IdentityRotation, METH_O, "delete_IdentityRotation(IdentityRotation self)"},
-	 { "IdentityRotation_swigregister", IdentityRotation_swigregister, METH_O, NULL},
-	 { "IdentityRotation_swiginit", IdentityRotation_swiginit, METH_VARARGS, NULL},
-	 { "new_RotationX", _wrap_new_RotationX, METH_O, "\n"
-		"new_RotationX(double angle) -> RotationX\n"
-		"RotationX::RotationX(double angle)\n"
+	 { "delete_FormFactorCantellatedCube", _wrap_delete_FormFactorCantellatedCube, METH_O, "delete_FormFactorCantellatedCube(FormFactorCantellatedCube self)"},
+	 { "FormFactorCantellatedCube_swigregister", FormFactorCantellatedCube_swigregister, METH_O, NULL},
+	 { "FormFactorCantellatedCube_swiginit", FormFactorCantellatedCube_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorCone", _wrap_new_FormFactorCone, METH_VARARGS, "\n"
+		"new_FormFactorCone(double radius, double height, double alpha) -> FormFactorCone\n"
+		"FormFactorCone::FormFactorCone(double radius, double height, double alpha)\n"
 		"\n"
-		"Constructor of rotation around x-axis\n"
+		"Constructor of a truncated cone with circular base.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"angle: \n"
-		"rotation angle around x-axis in radians \n"
+		"radius: \n"
+		"radius of the base in nanometers\n"
+		"\n"
+		"height: \n"
+		"height of the cone in nanometers\n"
+		"\n"
+		"alpha: \n"
+		"angle between the base and the side surface in radians \n"
 		"\n"
 		""},
-	 { "RotationX_clone", _wrap_RotationX_clone, METH_O, "\n"
-		"RotationX_clone(RotationX self) -> RotationX\n"
-		"RotationX* RotationX::clone() const\n"
+	 { "FormFactorCone_clone", _wrap_FormFactorCone_clone, METH_O, "\n"
+		"FormFactorCone_clone(FormFactorCone self) -> FormFactorCone\n"
+		"FormFactorCone* FormFactorCone::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "RotationX_createInverse", _wrap_RotationX_createInverse, METH_O, "\n"
-		"RotationX_createInverse(RotationX self) -> RotationX\n"
-		"RotationX* RotationX::createInverse() const\n"
+	 { "FormFactorCone_accept", _wrap_FormFactorCone_accept, METH_VARARGS, "\n"
+		"FormFactorCone_accept(FormFactorCone self, INodeVisitor visitor)\n"
+		"void FormFactorCone::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Returns a new  IRotation object that is the current object's inverse. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "RotationX_accept", _wrap_RotationX_accept, METH_VARARGS, "\n"
-		"RotationX_accept(RotationX self, INodeVisitor visitor)\n"
-		"void RotationX::accept(INodeVisitor *visitor) const\n"
+	 { "FormFactorCone_getHeight", _wrap_FormFactorCone_getHeight, METH_O, "\n"
+		"FormFactorCone_getHeight(FormFactorCone self) -> double\n"
+		"double FormFactorCone::getHeight() const\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		""},
+	 { "FormFactorCone_getAlpha", _wrap_FormFactorCone_getAlpha, METH_O, "\n"
+		"FormFactorCone_getAlpha(FormFactorCone self) -> double\n"
+		"double FormFactorCone::getAlpha() const\n"
 		"\n"
 		""},
-	 { "RotationX_getAngle", _wrap_RotationX_getAngle, METH_O, "\n"
-		"RotationX_getAngle(RotationX self) -> double\n"
-		"double RotationX::getAngle() const\n"
+	 { "FormFactorCone_getRadius", _wrap_FormFactorCone_getRadius, METH_O, "\n"
+		"FormFactorCone_getRadius(FormFactorCone self) -> double\n"
+		"double FormFactorCone::getRadius() const\n"
 		"\n"
 		""},
-	 { "RotationX_getTransform3D", _wrap_RotationX_getTransform3D, METH_O, "\n"
-		"RotationX_getTransform3D(RotationX self) -> Transform3D\n"
-		"Transform3D RotationX::getTransform3D() const\n"
+	 { "FormFactorCone_radialExtension", _wrap_FormFactorCone_radialExtension, METH_O, "\n"
+		"FormFactorCone_radialExtension(FormFactorCone self) -> double\n"
+		"double FormFactorCone::radialExtension() const override final\n"
 		"\n"
-		"Returns transformation. \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "delete_RotationX", _wrap_delete_RotationX, METH_O, "delete_RotationX(RotationX self)"},
-	 { "RotationX_swigregister", RotationX_swigregister, METH_O, NULL},
-	 { "RotationX_swiginit", RotationX_swiginit, METH_VARARGS, NULL},
-	 { "new_RotationY", _wrap_new_RotationY, METH_O, "\n"
-		"new_RotationY(double angle) -> RotationY\n"
-		"RotationY::RotationY(double angle)\n"
+	 { "FormFactorCone_evaluate_for_q", _wrap_FormFactorCone_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorCone_evaluate_for_q(FormFactorCone self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorCone::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"Constructor of rotation around y-axis\n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
+		"\n"
+		""},
+	 { "delete_FormFactorCone", _wrap_delete_FormFactorCone, METH_O, "delete_FormFactorCone(FormFactorCone self)"},
+	 { "FormFactorCone_swigregister", FormFactorCone_swigregister, METH_O, NULL},
+	 { "FormFactorCone_swiginit", FormFactorCone_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorCone6", _wrap_new_FormFactorCone6, METH_VARARGS, "\n"
+		"new_FormFactorCone6(double base_edge, double height, double alpha) -> FormFactorCone6\n"
+		"FormFactorCone6::FormFactorCone6(double base_edge, double height, double alpha)\n"
+		"\n"
+		"Constructor of a truncated pyramid, based on a regular hexagon\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"angle: \n"
-		"rotation angle around y-axis in radians \n"
+		"base_edge: \n"
+		"Edge of the regular hexagonal base in nanometers\n"
 		"\n"
-		""},
-	 { "RotationY_clone", _wrap_RotationY_clone, METH_O, "\n"
-		"RotationY_clone(RotationY self) -> RotationY\n"
-		"RotationY* RotationY::clone() const\n"
+		"height: \n"
+		"height of a truncated pyramid in nanometers\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"alpha: \n"
+		"dihedral angle in radians between base and facet \n"
 		"\n"
 		""},
-	 { "RotationY_createInverse", _wrap_RotationY_createInverse, METH_O, "\n"
-		"RotationY_createInverse(RotationY self) -> RotationY\n"
-		"RotationY* RotationY::createInverse() const\n"
+	 { "FormFactorCone6_clone", _wrap_FormFactorCone6_clone, METH_O, "\n"
+		"FormFactorCone6_clone(FormFactorCone6 self) -> FormFactorCone6\n"
+		"FormFactorCone6* FormFactorCone6::clone() const override final\n"
 		"\n"
-		"Returns a new  IRotation object that is the current object's inverse. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "RotationY_accept", _wrap_RotationY_accept, METH_VARARGS, "\n"
-		"RotationY_accept(RotationY self, INodeVisitor visitor)\n"
-		"void RotationY::accept(INodeVisitor *visitor) const\n"
+	 { "FormFactorCone6_accept", _wrap_FormFactorCone6_accept, METH_VARARGS, "\n"
+		"FormFactorCone6_accept(FormFactorCone6 self, INodeVisitor visitor)\n"
+		"void FormFactorCone6::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "RotationY_getAngle", _wrap_RotationY_getAngle, METH_O, "\n"
-		"RotationY_getAngle(RotationY self) -> double\n"
-		"double RotationY::getAngle() const\n"
+	 { "FormFactorCone6_getBaseEdge", _wrap_FormFactorCone6_getBaseEdge, METH_O, "\n"
+		"FormFactorCone6_getBaseEdge(FormFactorCone6 self) -> double\n"
+		"double FormFactorCone6::getBaseEdge() const\n"
 		"\n"
 		""},
-	 { "RotationY_getTransform3D", _wrap_RotationY_getTransform3D, METH_O, "\n"
-		"RotationY_getTransform3D(RotationY self) -> Transform3D\n"
-		"Transform3D RotationY::getTransform3D() const\n"
+	 { "FormFactorCone6_getHeight", _wrap_FormFactorCone6_getHeight, METH_O, "\n"
+		"FormFactorCone6_getHeight(FormFactorCone6 self) -> double\n"
+		"double FormFactorCone6::getHeight() const\n"
 		"\n"
-		"Returns transformation. \n"
+		""},
+	 { "FormFactorCone6_getAlpha", _wrap_FormFactorCone6_getAlpha, METH_O, "\n"
+		"FormFactorCone6_getAlpha(FormFactorCone6 self) -> double\n"
+		"double FormFactorCone6::getAlpha() const\n"
 		"\n"
 		""},
-	 { "delete_RotationY", _wrap_delete_RotationY, METH_O, "delete_RotationY(RotationY self)"},
-	 { "RotationY_swigregister", RotationY_swigregister, METH_O, NULL},
-	 { "RotationY_swiginit", RotationY_swiginit, METH_VARARGS, NULL},
-	 { "new_RotationZ", _wrap_new_RotationZ, METH_VARARGS, "\n"
-		"RotationZ(double angle=0.0)\n"
-		"RotationZ::RotationZ(double angle=0.0)\n"
+	 { "delete_FormFactorCone6", _wrap_delete_FormFactorCone6, METH_O, "delete_FormFactorCone6(FormFactorCone6 self)"},
+	 { "FormFactorCone6_swigregister", FormFactorCone6_swigregister, METH_O, NULL},
+	 { "FormFactorCone6_swiginit", FormFactorCone6_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorCuboctahedron", _wrap_new_FormFactorCuboctahedron, METH_VARARGS, "\n"
+		"new_FormFactorCuboctahedron(double length, double height, double height_ratio, double alpha) -> FormFactorCuboctahedron\n"
+		"FormFactorCuboctahedron::FormFactorCuboctahedron(double length, double height, double height_ratio, double alpha)\n"
 		"\n"
-		"Constructor of rotation around z-axis\n"
+		"Constructor of cuboctahedron (compound of two truncated pyramids with a common square base and opposite orientations).\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"angle: \n"
-		"rotation angle around z-axis in radians \n"
+		"length: \n"
+		"side length of the common square base in nanometers\n"
 		"\n"
-		""},
-	 { "RotationZ_clone", _wrap_RotationZ_clone, METH_O, "\n"
-		"RotationZ_clone(RotationZ self) -> RotationZ\n"
-		"RotationZ* RotationZ::clone() const\n"
+		"height: \n"
+		"height of the lower pyramid in nanometers\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"height_ratio: \n"
+		"ratio of heights of top to bottom pyramids\n"
+		"\n"
+		"alpha: \n"
+		"dihedral angle in radians between base and facet \n"
 		"\n"
 		""},
-	 { "RotationZ_createInverse", _wrap_RotationZ_createInverse, METH_O, "\n"
-		"RotationZ_createInverse(RotationZ self) -> RotationZ\n"
-		"RotationZ* RotationZ::createInverse() const\n"
+	 { "FormFactorCuboctahedron_clone", _wrap_FormFactorCuboctahedron_clone, METH_O, "\n"
+		"FormFactorCuboctahedron_clone(FormFactorCuboctahedron self) -> FormFactorCuboctahedron\n"
+		"FormFactorCuboctahedron* FormFactorCuboctahedron::clone() const override final\n"
 		"\n"
-		"Returns a new  IRotation object that is the current object's inverse. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "RotationZ_accept", _wrap_RotationZ_accept, METH_VARARGS, "\n"
-		"RotationZ_accept(RotationZ self, INodeVisitor visitor)\n"
-		"void RotationZ::accept(INodeVisitor *visitor) const\n"
+	 { "FormFactorCuboctahedron_accept", _wrap_FormFactorCuboctahedron_accept, METH_VARARGS, "\n"
+		"FormFactorCuboctahedron_accept(FormFactorCuboctahedron self, INodeVisitor visitor)\n"
+		"void FormFactorCuboctahedron::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "RotationZ_getAngle", _wrap_RotationZ_getAngle, METH_O, "\n"
-		"RotationZ_getAngle(RotationZ self) -> double\n"
-		"double RotationZ::getAngle() const\n"
+	 { "FormFactorCuboctahedron_getLength", _wrap_FormFactorCuboctahedron_getLength, METH_O, "\n"
+		"FormFactorCuboctahedron_getLength(FormFactorCuboctahedron self) -> double\n"
+		"double FormFactorCuboctahedron::getLength() const\n"
 		"\n"
 		""},
-	 { "RotationZ_getTransform3D", _wrap_RotationZ_getTransform3D, METH_O, "\n"
-		"RotationZ_getTransform3D(RotationZ self) -> Transform3D\n"
-		"Transform3D RotationZ::getTransform3D() const\n"
+	 { "FormFactorCuboctahedron_getHeight", _wrap_FormFactorCuboctahedron_getHeight, METH_O, "\n"
+		"FormFactorCuboctahedron_getHeight(FormFactorCuboctahedron self) -> double\n"
+		"double FormFactorCuboctahedron::getHeight() const\n"
 		"\n"
-		"Returns transformation. \n"
+		""},
+	 { "FormFactorCuboctahedron_getHeightRatio", _wrap_FormFactorCuboctahedron_getHeightRatio, METH_O, "\n"
+		"FormFactorCuboctahedron_getHeightRatio(FormFactorCuboctahedron self) -> double\n"
+		"double FormFactorCuboctahedron::getHeightRatio() const\n"
 		"\n"
 		""},
-	 { "delete_RotationZ", _wrap_delete_RotationZ, METH_O, "delete_RotationZ(RotationZ self)"},
-	 { "RotationZ_swigregister", RotationZ_swigregister, METH_O, NULL},
-	 { "RotationZ_swiginit", RotationZ_swiginit, METH_VARARGS, NULL},
-	 { "new_RotationEuler", _wrap_new_RotationEuler, METH_VARARGS, "\n"
-		"new_RotationEuler(double alpha, double beta, double gamma) -> RotationEuler\n"
-		"RotationEuler::RotationEuler(double alpha, double beta, double gamma)\n"
+	 { "FormFactorCuboctahedron_getAlpha", _wrap_FormFactorCuboctahedron_getAlpha, METH_O, "\n"
+		"FormFactorCuboctahedron_getAlpha(FormFactorCuboctahedron self) -> double\n"
+		"double FormFactorCuboctahedron::getAlpha() const\n"
 		"\n"
-		"Constructor of Euler rotation (sequence of three rotations following Euler angles notation z-x'-z').\n"
+		""},
+	 { "delete_FormFactorCuboctahedron", _wrap_delete_FormFactorCuboctahedron, METH_O, "delete_FormFactorCuboctahedron(FormFactorCuboctahedron self)"},
+	 { "FormFactorCuboctahedron_swigregister", FormFactorCuboctahedron_swigregister, METH_O, NULL},
+	 { "FormFactorCuboctahedron_swiginit", FormFactorCuboctahedron_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorCylinder", _wrap_new_FormFactorCylinder, METH_VARARGS, "\n"
+		"new_FormFactorCylinder(double radius, double height) -> FormFactorCylinder\n"
+		"FormFactorCylinder::FormFactorCylinder(double radius, double height)\n"
+		"\n"
+		"Constructor of a cylinder with a circular base.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"alpha: \n"
-		"first Euler angle in radians\n"
-		"\n"
-		"beta: \n"
-		"second Euler angle in radians\n"
+		"radius: \n"
+		"radius of the circular base in nanometers\n"
 		"\n"
-		"gamma: \n"
-		"third Euler angle in radians \n"
+		"height: \n"
+		"height of the cylinder in nanometers \n"
 		"\n"
 		""},
-	 { "RotationEuler_clone", _wrap_RotationEuler_clone, METH_O, "\n"
-		"RotationEuler_clone(RotationEuler self) -> RotationEuler\n"
-		"RotationEuler* RotationEuler::clone() const\n"
+	 { "FormFactorCylinder_clone", _wrap_FormFactorCylinder_clone, METH_O, "\n"
+		"FormFactorCylinder_clone(FormFactorCylinder self) -> FormFactorCylinder\n"
+		"FormFactorCylinder* FormFactorCylinder::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "RotationEuler_createInverse", _wrap_RotationEuler_createInverse, METH_O, "\n"
-		"RotationEuler_createInverse(RotationEuler self) -> IRotation\n"
-		"IRotation * RotationEuler::createInverse() const\n"
-		"\n"
-		"Returns a new  IRotation object that is the current object's inverse. \n"
-		"\n"
-		""},
-	 { "RotationEuler_accept", _wrap_RotationEuler_accept, METH_VARARGS, "\n"
-		"RotationEuler_accept(RotationEuler self, INodeVisitor visitor)\n"
-		"void RotationEuler::accept(INodeVisitor *visitor) const\n"
+	 { "FormFactorCylinder_accept", _wrap_FormFactorCylinder_accept, METH_VARARGS, "\n"
+		"FormFactorCylinder_accept(FormFactorCylinder self, INodeVisitor visitor)\n"
+		"void FormFactorCylinder::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "RotationEuler_getAlpha", _wrap_RotationEuler_getAlpha, METH_O, "\n"
-		"RotationEuler_getAlpha(RotationEuler self) -> double\n"
-		"double RotationEuler::getAlpha() const\n"
+	 { "FormFactorCylinder_getHeight", _wrap_FormFactorCylinder_getHeight, METH_O, "\n"
+		"FormFactorCylinder_getHeight(FormFactorCylinder self) -> double\n"
+		"double FormFactorCylinder::getHeight() const\n"
 		"\n"
 		""},
-	 { "RotationEuler_getBeta", _wrap_RotationEuler_getBeta, METH_O, "\n"
-		"RotationEuler_getBeta(RotationEuler self) -> double\n"
-		"double RotationEuler::getBeta() const\n"
+	 { "FormFactorCylinder_getRadius", _wrap_FormFactorCylinder_getRadius, METH_O, "\n"
+		"FormFactorCylinder_getRadius(FormFactorCylinder self) -> double\n"
+		"double FormFactorCylinder::getRadius() const\n"
 		"\n"
 		""},
-	 { "RotationEuler_getGamma", _wrap_RotationEuler_getGamma, METH_O, "\n"
-		"RotationEuler_getGamma(RotationEuler self) -> double\n"
-		"double RotationEuler::getGamma() const\n"
+	 { "FormFactorCylinder_radialExtension", _wrap_FormFactorCylinder_radialExtension, METH_O, "\n"
+		"FormFactorCylinder_radialExtension(FormFactorCylinder self) -> double\n"
+		"double FormFactorCylinder::radialExtension() const override final\n"
+		"\n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "RotationEuler_getTransform3D", _wrap_RotationEuler_getTransform3D, METH_O, "\n"
-		"RotationEuler_getTransform3D(RotationEuler self) -> Transform3D\n"
-		"Transform3D RotationEuler::getTransform3D() const\n"
+	 { "FormFactorCylinder_evaluate_for_q", _wrap_FormFactorCylinder_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorCylinder_evaluate_for_q(FormFactorCylinder self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorCylinder::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"Returns transformation. \n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "delete_RotationEuler", _wrap_delete_RotationEuler, METH_O, "delete_RotationEuler(RotationEuler self)"},
-	 { "RotationEuler_swigregister", RotationEuler_swigregister, METH_O, NULL},
-	 { "RotationEuler_swiginit", RotationEuler_swiginit, METH_VARARGS, NULL},
-	 { "delete_ISelectionRule", _wrap_delete_ISelectionRule, METH_O, "\n"
-		"delete_ISelectionRule(ISelectionRule self)\n"
-		"virtual ISelectionRule::~ISelectionRule()\n"
+	 { "delete_FormFactorCylinder", _wrap_delete_FormFactorCylinder, METH_O, "delete_FormFactorCylinder(FormFactorCylinder self)"},
+	 { "FormFactorCylinder_swigregister", FormFactorCylinder_swigregister, METH_O, NULL},
+	 { "FormFactorCylinder_swiginit", FormFactorCylinder_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorDodecahedron", _wrap_new_FormFactorDodecahedron, METH_O, "\n"
+		"new_FormFactorDodecahedron(double edge) -> FormFactorDodecahedron\n"
+		"FormFactorDodecahedron::FormFactorDodecahedron(double edge)\n"
 		"\n"
-		""},
-	 { "ISelectionRule_clone", _wrap_ISelectionRule_clone, METH_O, "\n"
-		"ISelectionRule_clone(ISelectionRule self) -> ISelectionRule\n"
-		"virtual ISelectionRule* ISelectionRule::clone() const =0\n"
+		"Constructs a regular dodecahedron.\n"
 		"\n"
-		""},
-	 { "ISelectionRule_coordinateSelected", _wrap_ISelectionRule_coordinateSelected, METH_VARARGS, "\n"
-		"ISelectionRule_coordinateSelected(ISelectionRule self, ivector_t const & coordinate) -> bool\n"
-		"virtual bool ISelectionRule::coordinateSelected(const ivector_t &coordinate) const =0\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "ISelectionRule_swigregister", ISelectionRule_swigregister, METH_O, NULL},
-	 { "new_SimpleSelectionRule", _wrap_new_SimpleSelectionRule, METH_VARARGS, "\n"
-		"new_SimpleSelectionRule(int a, int b, int c, int modulus) -> SimpleSelectionRule\n"
-		"SimpleSelectionRule::SimpleSelectionRule(int a, int b, int c, int modulus)\n"
+		"edge: \n"
+		"length\n"
 		"\n"
-		""},
-	 { "delete_SimpleSelectionRule", _wrap_delete_SimpleSelectionRule, METH_O, "\n"
-		"delete_SimpleSelectionRule(SimpleSelectionRule self)\n"
-		"virtual SimpleSelectionRule::~SimpleSelectionRule()\n"
+		"Constructor of a dodecahedron.\n"
 		"\n"
-		""},
-	 { "SimpleSelectionRule_clone", _wrap_SimpleSelectionRule_clone, METH_O, "\n"
-		"SimpleSelectionRule_clone(SimpleSelectionRule self) -> SimpleSelectionRule\n"
-		"SimpleSelectionRule * SimpleSelectionRule::clone() const\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "SimpleSelectionRule_coordinateSelected", _wrap_SimpleSelectionRule_coordinateSelected, METH_VARARGS, "\n"
-		"SimpleSelectionRule_coordinateSelected(SimpleSelectionRule self, ivector_t const & coordinate) -> bool\n"
-		"bool SimpleSelectionRule::coordinateSelected(const ivector_t &coordinate) const\n"
+		"edge: \n"
+		"length of the edge in nanometers \n"
 		"\n"
 		""},
-	 { "SimpleSelectionRule_swigregister", SimpleSelectionRule_swigregister, METH_O, NULL},
-	 { "SimpleSelectionRule_swiginit", SimpleSelectionRule_swiginit, METH_VARARGS, NULL},
-	 { "new_Instrument", _wrap_new_Instrument, METH_VARARGS, "\n"
-		"Instrument()\n"
-		"new_Instrument(Instrument other) -> Instrument\n"
-		"Instrument::Instrument(const Instrument &other)\n"
+	 { "FormFactorDodecahedron_clone", _wrap_FormFactorDodecahedron_clone, METH_O, "\n"
+		"FormFactorDodecahedron_clone(FormFactorDodecahedron self) -> FormFactorDodecahedron\n"
+		"FormFactorDodecahedron* FormFactorDodecahedron::clone() const override final\n"
 		"\n"
-		""},
-	 { "delete_Instrument", _wrap_delete_Instrument, METH_O, "\n"
-		"delete_Instrument(Instrument self)\n"
-		"Instrument::~Instrument()\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "Instrument_accept", _wrap_Instrument_accept, METH_VARARGS, "\n"
-		"Instrument_accept(Instrument self, INodeVisitor visitor)\n"
-		"void Instrument::accept(INodeVisitor *visitor) const final\n"
+	 { "FormFactorDodecahedron_accept", _wrap_FormFactorDodecahedron_accept, METH_VARARGS, "\n"
+		"FormFactorDodecahedron_accept(FormFactorDodecahedron self, INodeVisitor visitor)\n"
+		"void FormFactorDodecahedron::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "Instrument_getBeam", _wrap_Instrument_getBeam, METH_VARARGS, "\n"
-		"Instrument_getBeam(Instrument self) -> Beam\n"
-		"Instrument_getBeam(Instrument self) -> Beam\n"
-		"const Beam& Instrument::getBeam() const\n"
-		"\n"
-		""},
-	 { "Instrument_setBeam", _wrap_Instrument_setBeam, METH_VARARGS, "\n"
-		"Instrument_setBeam(Instrument self, Beam beam)\n"
-		"void Instrument::setBeam(const Beam &beam)\n"
+	 { "FormFactorDodecahedron_getEdge", _wrap_FormFactorDodecahedron_getEdge, METH_O, "\n"
+		"FormFactorDodecahedron_getEdge(FormFactorDodecahedron self) -> double\n"
+		"double FormFactorDodecahedron::getEdge() const\n"
 		"\n"
 		""},
-	 { "Instrument_setBeamParameters", _wrap_Instrument_setBeamParameters, METH_VARARGS, "\n"
-		"Instrument_setBeamParameters(Instrument self, double wavelength, double alpha_i, double phi_i)\n"
-		"void Instrument::setBeamParameters(double wavelength, double alpha_i, double phi_i)\n"
+	 { "delete_FormFactorDodecahedron", _wrap_delete_FormFactorDodecahedron, METH_O, "delete_FormFactorDodecahedron(FormFactorDodecahedron self)"},
+	 { "FormFactorDodecahedron_swigregister", FormFactorDodecahedron_swigregister, METH_O, NULL},
+	 { "FormFactorDodecahedron_swiginit", FormFactorDodecahedron_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorDot", _wrap_new_FormFactorDot, METH_O, "\n"
+		"new_FormFactorDot(double radius) -> FormFactorDot\n"
+		"FormFactorDot::FormFactorDot(double radius)\n"
 		"\n"
-		"Sets the beam wavelength and incoming angles. \n"
+		"Constructor.\n"
 		"\n"
-		""},
-	 { "Instrument_setBeamIntensity", _wrap_Instrument_setBeamIntensity, METH_VARARGS, "\n"
-		"Instrument_setBeamIntensity(Instrument self, double intensity)\n"
-		"void Instrument::setBeamIntensity(double intensity)\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Sets the beam's intensity. \n"
+		"rscat: \n"
+		"radius of a sphere with same forward scattering power, in nanometers \n"
 		"\n"
 		""},
-	 { "Instrument_setBeamPolarization", _wrap_Instrument_setBeamPolarization, METH_VARARGS, "\n"
-		"Instrument_setBeamPolarization(Instrument self, kvector_t bloch_vector)\n"
-		"void Instrument::setBeamPolarization(const kvector_t bloch_vector)\n"
+	 { "FormFactorDot_clone", _wrap_FormFactorDot_clone, METH_O, "\n"
+		"FormFactorDot_clone(FormFactorDot self) -> FormFactorDot\n"
+		"FormFactorDot* FormFactorDot::clone() const override final\n"
 		"\n"
-		"Sets the beam's polarization according to the given Bloch vector. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "Instrument_getBeamIntensity", _wrap_Instrument_getBeamIntensity, METH_O, "\n"
-		"Instrument_getBeamIntensity(Instrument self) -> double\n"
-		"double Instrument::getBeamIntensity() const\n"
-		"\n"
-		"Returns the beam's intensity. \n"
+	 { "FormFactorDot_accept", _wrap_FormFactorDot_accept, METH_VARARGS, "\n"
+		"FormFactorDot_accept(FormFactorDot self, INodeVisitor visitor)\n"
+		"void FormFactorDot::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		""},
-	 { "Instrument_getDetector", _wrap_Instrument_getDetector, METH_VARARGS, "\n"
-		"Instrument_getDetector(Instrument self) -> IDetector\n"
-		"Instrument_getDetector(Instrument self) -> IDetector\n"
-		"IDetector * Instrument::getDetector()\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "Instrument_getDetectorMask", _wrap_Instrument_getDetectorMask, METH_O, "\n"
-		"Instrument_getDetectorMask(Instrument self) -> DetectorMask\n"
-		"const DetectorMask * Instrument::getDetectorMask() const\n"
+	 { "FormFactorDot_getRadius", _wrap_FormFactorDot_getRadius, METH_O, "\n"
+		"FormFactorDot_getRadius(FormFactorDot self) -> double\n"
+		"double FormFactorDot::getRadius() const\n"
 		"\n"
 		""},
-	 { "Instrument_getDetectorAxis", _wrap_Instrument_getDetectorAxis, METH_VARARGS, "\n"
-		"Instrument_getDetectorAxis(Instrument self, size_t index) -> IAxis\n"
-		"const IAxis & Instrument::getDetectorAxis(size_t index) const\n"
+	 { "FormFactorDot_radialExtension", _wrap_FormFactorDot_radialExtension, METH_O, "\n"
+		"FormFactorDot_radialExtension(FormFactorDot self) -> double\n"
+		"double FormFactorDot::radialExtension() const override final\n"
 		"\n"
-		"Returns a detector axis. \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "Instrument_getDetectorDimension", _wrap_Instrument_getDetectorDimension, METH_O, "\n"
-		"Instrument_getDetectorDimension(Instrument self) -> size_t\n"
-		"size_t Instrument::getDetectorDimension() const\n"
+	 { "FormFactorDot_bottomZ", _wrap_FormFactorDot_bottomZ, METH_VARARGS, "\n"
+		"FormFactorDot_bottomZ(FormFactorDot self, IRotation arg2) -> double\n"
+		"double FormFactorDot::bottomZ(const IRotation &) const override final\n"
 		"\n"
-		"Returns the detector's dimension. \n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "Instrument_setDetector", _wrap_Instrument_setDetector, METH_VARARGS, "\n"
-		"Instrument_setDetector(Instrument self, IDetector detector)\n"
-		"void Instrument::setDetector(const IDetector &detector)\n"
+	 { "FormFactorDot_topZ", _wrap_FormFactorDot_topZ, METH_VARARGS, "\n"
+		"FormFactorDot_topZ(FormFactorDot self, IRotation arg2) -> double\n"
+		"double FormFactorDot::topZ(const IRotation &) const override final\n"
 		"\n"
-		"Sets the detector (axes can be overwritten later) \n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
 		""},
-	 { "Instrument_setDetectorResolutionFunction", _wrap_Instrument_setDetectorResolutionFunction, METH_VARARGS, "\n"
-		"Instrument_setDetectorResolutionFunction(Instrument self, IResolutionFunction2D p_resolution_function)\n"
-		"void Instrument::setDetectorResolutionFunction(const IResolutionFunction2D &p_resolution_function)\n"
+	 { "FormFactorDot_evaluate_for_q", _wrap_FormFactorDot_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorDot_evaluate_for_q(FormFactorDot self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorDot::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"Sets detector resolution function. \n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "Instrument_removeDetectorResolution", _wrap_Instrument_removeDetectorResolution, METH_O, "\n"
-		"Instrument_removeDetectorResolution(Instrument self)\n"
-		"void Instrument::removeDetectorResolution()\n"
+	 { "delete_FormFactorDot", _wrap_delete_FormFactorDot, METH_O, "delete_FormFactorDot(FormFactorDot self)"},
+	 { "FormFactorDot_swigregister", FormFactorDot_swigregister, METH_O, NULL},
+	 { "FormFactorDot_swiginit", FormFactorDot_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorEllipsoidalCylinder", _wrap_new_FormFactorEllipsoidalCylinder, METH_VARARGS, "\n"
+		"new_FormFactorEllipsoidalCylinder(double radius_x, double radius_y, double height) -> FormFactorEllipsoidalCylinder\n"
+		"FormFactorEllipsoidalCylinder::FormFactorEllipsoidalCylinder(double radius_x, double radius_y, double height)\n"
 		"\n"
-		"Removes detector resolution function. \n"
+		"Constructor of a cylinder with an ellipse cross section.\n"
 		"\n"
-		""},
-	 { "Instrument_setAnalyzerProperties", _wrap_Instrument_setAnalyzerProperties, METH_VARARGS, "\n"
-		"Instrument_setAnalyzerProperties(Instrument self, kvector_t direction, double efficiency, double total_transmission)\n"
-		"void Instrument::setAnalyzerProperties(const kvector_t direction, double efficiency, double total_transmission)\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Sets the polarization analyzer characteristics of the detector. \n"
+		"radius_x: \n"
+		"radius of the ellipse base in the x-direction, in nanometers\n"
 		"\n"
-		""},
-	 { "Instrument_applyDetectorResolution", _wrap_Instrument_applyDetectorResolution, METH_VARARGS, "\n"
-		"Instrument_applyDetectorResolution(Instrument self, IntensityData p_intensity_map)\n"
-		"void Instrument::applyDetectorResolution(OutputData< double > *p_intensity_map) const\n"
+		"radius_y: \n"
+		"radius of the ellipse base in the y-direction, in nanometers\n"
 		"\n"
-		"apply the detector resolution to the given intensity map \n"
+		"height: \n"
+		"height of the ellipsoidal cylinder in nanometers \n"
 		"\n"
 		""},
-	 { "Instrument_createDetectorIntensity", _wrap_Instrument_createDetectorIntensity, METH_VARARGS, "\n"
-		"Instrument_createDetectorIntensity(Instrument self, std::vector< SimulationElement,std::allocator< SimulationElement > > const & elements) -> IntensityData\n"
-		"OutputData< double > * Instrument::createDetectorIntensity(const std::vector< SimulationElement > &elements) const\n"
+	 { "FormFactorEllipsoidalCylinder_clone", _wrap_FormFactorEllipsoidalCylinder_clone, METH_O, "\n"
+		"FormFactorEllipsoidalCylinder_clone(FormFactorEllipsoidalCylinder self) -> FormFactorEllipsoidalCylinder\n"
+		"FormFactorEllipsoidalCylinder* FormFactorEllipsoidalCylinder::clone() const override final\n"
 		"\n"
-		"Returns new intensity map with detector resolution applied and axes in requested units. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "Instrument_initDetector", _wrap_Instrument_initDetector, METH_O, "\n"
-		"Instrument_initDetector(Instrument self)\n"
-		"void Instrument::initDetector()\n"
+	 { "FormFactorEllipsoidalCylinder_accept", _wrap_FormFactorEllipsoidalCylinder_accept, METH_VARARGS, "\n"
+		"FormFactorEllipsoidalCylinder_accept(FormFactorEllipsoidalCylinder self, INodeVisitor visitor)\n"
+		"void FormFactorEllipsoidalCylinder::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"init detector with beam settings \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "Instrument_getChildren", _wrap_Instrument_getChildren, METH_O, "\n"
-		"Instrument_getChildren(Instrument self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > Instrument::getChildren() const\n"
+	 { "FormFactorEllipsoidalCylinder_getRadiusX", _wrap_FormFactorEllipsoidalCylinder_getRadiusX, METH_O, "\n"
+		"FormFactorEllipsoidalCylinder_getRadiusX(FormFactorEllipsoidalCylinder self) -> double\n"
+		"double FormFactorEllipsoidalCylinder::getRadiusX() const\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		""},
+	 { "FormFactorEllipsoidalCylinder_getRadiusY", _wrap_FormFactorEllipsoidalCylinder_getRadiusY, METH_O, "\n"
+		"FormFactorEllipsoidalCylinder_getRadiusY(FormFactorEllipsoidalCylinder self) -> double\n"
+		"double FormFactorEllipsoidalCylinder::getRadiusY() const\n"
 		"\n"
 		""},
-	 { "Instrument_swigregister", Instrument_swigregister, METH_O, NULL},
-	 { "Instrument_swiginit", Instrument_swiginit, METH_VARARGS, NULL},
-	 { "RelativeDifference", _wrap_RelativeDifference, METH_VARARGS, "\n"
-		"RelativeDifference(SimulationResult dat, SimulationResult ref) -> double\n"
-		"double IntensityDataFunctions::RelativeDifference(const SimulationResult &dat, const SimulationResult &ref)\n"
+	 { "FormFactorEllipsoidalCylinder_getHeight", _wrap_FormFactorEllipsoidalCylinder_getHeight, METH_O, "\n"
+		"FormFactorEllipsoidalCylinder_getHeight(FormFactorEllipsoidalCylinder self) -> double\n"
+		"double FormFactorEllipsoidalCylinder::getHeight() const\n"
 		"\n"
-		"Returns sum of relative differences between each pair of elements: (a, b) -> 2*abs(a - b)/(a + b) ( and zero if a-b=0 )\n"
+		""},
+	 { "FormFactorEllipsoidalCylinder_radialExtension", _wrap_FormFactorEllipsoidalCylinder_radialExtension, METH_O, "\n"
+		"FormFactorEllipsoidalCylinder_radialExtension(FormFactorEllipsoidalCylinder self) -> double\n"
+		"double FormFactorEllipsoidalCylinder::radialExtension() const override final\n"
 		"\n"
-		"Returns sum of relative differences between each pair of elements: (a, b) -> 2*abs(a - b)/(|a| + |b|) ( and zero if a=b=0 within epsilon ) \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "checkRelativeDifference", _wrap_checkRelativeDifference, METH_VARARGS, "\n"
-		"checkRelativeDifference(IntensityData dat, IntensityData ref, double const threshold) -> bool\n"
-		"bool IntensityDataFunctions::checkRelativeDifference(const OutputData< double > &dat, const OutputData< double > &ref, const double threshold)\n"
+	 { "FormFactorEllipsoidalCylinder_evaluate_for_q", _wrap_FormFactorEllipsoidalCylinder_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorEllipsoidalCylinder_evaluate_for_q(FormFactorEllipsoidalCylinder self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorEllipsoidalCylinder::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"Returns true is relative difference is below threshold; prints informative output. \n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "getRelativeDifference", _wrap_getRelativeDifference, METH_VARARGS, "\n"
-		"getRelativeDifference(IntensityData dat, IntensityData ref) -> double\n"
-		"getRelativeDifference(IHistogram dat, IHistogram ref) -> double\n"
-		"double IntensityDataFunctions::getRelativeDifference(const IHistogram &dat, const IHistogram &ref)\n"
+	 { "delete_FormFactorEllipsoidalCylinder", _wrap_delete_FormFactorEllipsoidalCylinder, METH_O, "delete_FormFactorEllipsoidalCylinder(FormFactorEllipsoidalCylinder self)"},
+	 { "FormFactorEllipsoidalCylinder_swigregister", FormFactorEllipsoidalCylinder_swigregister, METH_O, NULL},
+	 { "FormFactorEllipsoidalCylinder_swiginit", FormFactorEllipsoidalCylinder_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorFullSphere", _wrap_new_FormFactorFullSphere, METH_VARARGS, "\n"
+		"FormFactorFullSphere(double radius, bool position_at_center=False)\n"
+		"FormFactorFullSphere::FormFactorFullSphere(double radius, bool position_at_center=false)\n"
+		"\n"
+		"Constructor of a full sphere.\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"radius: \n"
+		"radius of the sphere in nanometers \n"
 		"\n"
 		""},
-	 { "coordinateToBinf", _wrap_coordinateToBinf, METH_VARARGS, "\n"
-		"coordinateToBinf(double coordinate, IAxis axis) -> double\n"
-		"coordinateToBinf(double & x, double & y, IntensityData data)\n"
-		"void IntensityDataFunctions::coordinateToBinf(double &x, double &y, const OutputData< double > &data)\n"
+	 { "FormFactorFullSphere_clone", _wrap_FormFactorFullSphere_clone, METH_O, "\n"
+		"FormFactorFullSphere_clone(FormFactorFullSphere self) -> FormFactorFullSphere\n"
+		"FormFactorFullSphere* FormFactorFullSphere::clone() const override final\n"
 		"\n"
-		"Transforms x,y coordinate from  OutputData axes coordinates to bin-fraction-coordinates. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "coordinateFromBinf", _wrap_coordinateFromBinf, METH_VARARGS, "\n"
-		"coordinateFromBinf(double value, IAxis axis) -> double\n"
-		"coordinateFromBinf(double & x, double & y, IntensityData data)\n"
-		"void IntensityDataFunctions::coordinateFromBinf(double &x, double &y, const OutputData< double > &data)\n"
+	 { "FormFactorFullSphere_accept", _wrap_FormFactorFullSphere_accept, METH_VARARGS, "\n"
+		"FormFactorFullSphere_accept(FormFactorFullSphere self, INodeVisitor visitor)\n"
+		"void FormFactorFullSphere::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Transforms x,y coordinate from bin-fraction-coordinates to  OutputData's axes coordinates. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "create2DArrayfromOutputData", _wrap_create2DArrayfromOutputData, METH_O, "\n"
-		"create2DArrayfromOutputData(IntensityData data) -> vdouble2d_t\n"
-		"std::vector< std::vector< double > > IntensityDataFunctions::create2DArrayfromOutputData(const OutputData< double > &data)\n"
-		"\n"
-		"Creates a vector of vectors of double (2D Array) from  OutputData. \n"
+	 { "FormFactorFullSphere_getRadius", _wrap_FormFactorFullSphere_getRadius, METH_O, "\n"
+		"FormFactorFullSphere_getRadius(FormFactorFullSphere self) -> double\n"
+		"double FormFactorFullSphere::getRadius() const\n"
 		"\n"
 		""},
-	 { "FT2DArray", _wrap_FT2DArray, METH_O, "\n"
-		"FT2DArray(vdouble2d_t signal) -> vdouble2d_t\n"
-		"std::vector< std::vector< double > > IntensityDataFunctions::FT2DArray(const std::vector< std::vector< double >> &signal)\n"
+	 { "FormFactorFullSphere_radialExtension", _wrap_FormFactorFullSphere_radialExtension, METH_O, "\n"
+		"FormFactorFullSphere_radialExtension(FormFactorFullSphere self) -> double\n"
+		"double FormFactorFullSphere::radialExtension() const override final\n"
 		"\n"
-		"Creates a Fourier Transform of a 2D Array (vector of vectors). \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "ConvertData", _wrap_ConvertData, METH_VARARGS, "\n"
-		"ConvertData(Simulation simulation, IntensityData data, bool put_masked_areas_to_zero=True) -> SimulationResult\n"
-		"ConvertData(Simulation simulation, vdouble2d_t data, bool put_masked_areas_to_zero=True) -> SimulationResult\n"
-		"SimulationResult IntensityDataFunctions::ConvertData(const Simulation &simulation, const std::vector< std::vector< double >> &data, bool put_masked_areas_to_zero=true)\n"
+	 { "FormFactorFullSphere_bottomZ", _wrap_FormFactorFullSphere_bottomZ, METH_VARARGS, "\n"
+		"FormFactorFullSphere_bottomZ(FormFactorFullSphere self, IRotation rotation) -> double\n"
+		"double FormFactorFullSphere::bottomZ(const IRotation &rotation) const override final\n"
 		"\n"
-		""},
-	 { "IntensityDataIOFactory_readOutputData", _wrap_IntensityDataIOFactory_readOutputData, METH_O, "IntensityDataIOFactory_readOutputData(std::string const & file_name) -> IntensityData"},
-	 { "IntensityDataIOFactory_readReflectometryData", _wrap_IntensityDataIOFactory_readReflectometryData, METH_O, "IntensityDataIOFactory_readReflectometryData(std::string const & file_name) -> IntensityData"},
-	 { "IntensityDataIOFactory_readIntensityData", _wrap_IntensityDataIOFactory_readIntensityData, METH_O, "IntensityDataIOFactory_readIntensityData(std::string const & file_name) -> IHistogram"},
-	 { "IntensityDataIOFactory_writeOutputData", _wrap_IntensityDataIOFactory_writeOutputData, METH_VARARGS, "IntensityDataIOFactory_writeOutputData(IntensityData data, std::string const & file_name)"},
-	 { "IntensityDataIOFactory_writeIntensityData", _wrap_IntensityDataIOFactory_writeIntensityData, METH_VARARGS, "IntensityDataIOFactory_writeIntensityData(IHistogram histogram, std::string const & file_name)"},
-	 { "IntensityDataIOFactory_writeSimulationResult", _wrap_IntensityDataIOFactory_writeSimulationResult, METH_VARARGS, "IntensityDataIOFactory_writeSimulationResult(SimulationResult result, std::string const & file_name)"},
-	 { "new_IntensityDataIOFactory", _wrap_new_IntensityDataIOFactory, METH_NOARGS, "\n"
-		"new_IntensityDataIOFactory() -> IntensityDataIOFactory\n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
+		""},
+	 { "FormFactorFullSphere_topZ", _wrap_FormFactorFullSphere_topZ, METH_VARARGS, "\n"
+		"FormFactorFullSphere_topZ(FormFactorFullSphere self, IRotation rotation) -> double\n"
+		"double FormFactorFullSphere::topZ(const IRotation &rotation) const override final\n"
 		"\n"
-		"Provides users with possibility to read and write IntensityData from/to files in different format. Type of the file will be deduced from file name. *.txt - ASCII file with 2D array [nrow][ncol], layout as in numpy. *.int - BornAgain internal ASCII format. *.tif - 32-bits tiff file. If file name ends woth \"*.gz\" or \"*.bz2\" the file will be zipped on the fly using appropriate algorithm.\n"
+		"Returns the z-coordinate of the lowest point in this shape after a given rotation. \n"
 		"\n"
-		"Usage:\n"
+		""},
+	 { "FormFactorFullSphere_evaluate_for_q", _wrap_FormFactorFullSphere_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorFullSphere_evaluate_for_q(FormFactorFullSphere self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorFullSphere::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"C++ includes: IntensityDataIOFactory.h\n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "delete_IntensityDataIOFactory", _wrap_delete_IntensityDataIOFactory, METH_O, "delete_IntensityDataIOFactory(IntensityDataIOFactory self)"},
-	 { "IntensityDataIOFactory_swigregister", IntensityDataIOFactory_swigregister, METH_O, NULL},
-	 { "IntensityDataIOFactory_swiginit", IntensityDataIOFactory_swiginit, METH_VARARGS, NULL},
-	 { "new_InterferenceFunction1DLattice", _wrap_new_InterferenceFunction1DLattice, METH_VARARGS, "\n"
-		"new_InterferenceFunction1DLattice(double length, double xi) -> InterferenceFunction1DLattice\n"
-		"InterferenceFunction1DLattice::InterferenceFunction1DLattice(double length, double xi)\n"
+	 { "delete_FormFactorFullSphere", _wrap_delete_FormFactorFullSphere, METH_O, "delete_FormFactorFullSphere(FormFactorFullSphere self)"},
+	 { "FormFactorFullSphere_swigregister", FormFactorFullSphere_swigregister, METH_O, NULL},
+	 { "FormFactorFullSphere_swiginit", FormFactorFullSphere_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorFullSpheroid", _wrap_new_FormFactorFullSpheroid, METH_VARARGS, "\n"
+		"new_FormFactorFullSpheroid(double radius, double height) -> FormFactorFullSpheroid\n"
+		"FormFactorFullSpheroid::FormFactorFullSpheroid(double radius, double height)\n"
 		"\n"
-		"Constructor of interference function of one-dimensional lattice.\n"
+		"Constructor of full spheroid.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"length: \n"
-		"lattice constant in nanometers\n"
-		"\n"
-		"xi: \n"
-		"rotation of lattice with respect to x-axis in radians \n"
+		"radius: \n"
+		"radius of the circular cross section in nanometers\n"
 		"\n"
-		""},
-	 { "delete_InterferenceFunction1DLattice", _wrap_delete_InterferenceFunction1DLattice, METH_O, "\n"
-		"delete_InterferenceFunction1DLattice(InterferenceFunction1DLattice self)\n"
-		"InterferenceFunction1DLattice::~InterferenceFunction1DLattice() final\n"
+		"height: \n"
+		"height of the full spheroid in nanometers \n"
 		"\n"
 		""},
-	 { "InterferenceFunction1DLattice_clone", _wrap_InterferenceFunction1DLattice_clone, METH_O, "\n"
-		"InterferenceFunction1DLattice_clone(InterferenceFunction1DLattice self) -> InterferenceFunction1DLattice\n"
-		"InterferenceFunction1DLattice * InterferenceFunction1DLattice::clone() const override final\n"
+	 { "FormFactorFullSpheroid_clone", _wrap_FormFactorFullSpheroid_clone, METH_O, "\n"
+		"FormFactorFullSpheroid_clone(FormFactorFullSpheroid self) -> FormFactorFullSpheroid\n"
+		"FormFactorFullSpheroid* FormFactorFullSpheroid::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction1DLattice_accept", _wrap_InterferenceFunction1DLattice_accept, METH_VARARGS, "\n"
-		"InterferenceFunction1DLattice_accept(InterferenceFunction1DLattice self, INodeVisitor visitor)\n"
-		"void InterferenceFunction1DLattice::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorFullSpheroid_accept", _wrap_FormFactorFullSpheroid_accept, METH_VARARGS, "\n"
+		"FormFactorFullSpheroid_accept(FormFactorFullSpheroid self, INodeVisitor visitor)\n"
+		"void FormFactorFullSpheroid::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction1DLattice_setDecayFunction", _wrap_InterferenceFunction1DLattice_setDecayFunction, METH_VARARGS, "\n"
-		"InterferenceFunction1DLattice_setDecayFunction(InterferenceFunction1DLattice self, IFTDecayFunction1D decay)\n"
-		"void InterferenceFunction1DLattice::setDecayFunction(const IFTDecayFunction1D &decay)\n"
-		"\n"
-		"Sets one-dimensional decay function.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
+	 { "FormFactorFullSpheroid_getHeight", _wrap_FormFactorFullSpheroid_getHeight, METH_O, "\n"
+		"FormFactorFullSpheroid_getHeight(FormFactorFullSpheroid self) -> double\n"
+		"double FormFactorFullSpheroid::getHeight() const\n"
 		"\n"
-		"decay: \n"
-		"one-dimensional decay function in reciprocal space \n"
+		""},
+	 { "FormFactorFullSpheroid_getRadius", _wrap_FormFactorFullSpheroid_getRadius, METH_O, "\n"
+		"FormFactorFullSpheroid_getRadius(FormFactorFullSpheroid self) -> double\n"
+		"double FormFactorFullSpheroid::getRadius() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunction1DLattice_getLatticeParameters", _wrap_InterferenceFunction1DLattice_getLatticeParameters, METH_O, "\n"
-		"InterferenceFunction1DLattice_getLatticeParameters(InterferenceFunction1DLattice self) -> Lattice1DParameters\n"
-		"Lattice1DParameters InterferenceFunction1DLattice::getLatticeParameters() const\n"
+	 { "FormFactorFullSpheroid_radialExtension", _wrap_FormFactorFullSpheroid_radialExtension, METH_O, "\n"
+		"FormFactorFullSpheroid_radialExtension(FormFactorFullSpheroid self) -> double\n"
+		"double FormFactorFullSpheroid::radialExtension() const override final\n"
+		"\n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "InterferenceFunction1DLattice_getChildren", _wrap_InterferenceFunction1DLattice_getChildren, METH_O, "\n"
-		"InterferenceFunction1DLattice_getChildren(InterferenceFunction1DLattice self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > InterferenceFunction1DLattice::getChildren() const override final\n"
+	 { "FormFactorFullSpheroid_evaluate_for_q", _wrap_FormFactorFullSpheroid_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorFullSpheroid_evaluate_for_q(FormFactorFullSpheroid self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorFullSpheroid::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction1DLattice_swigregister", InterferenceFunction1DLattice_swigregister, METH_O, NULL},
-	 { "InterferenceFunction1DLattice_swiginit", InterferenceFunction1DLattice_swiginit, METH_VARARGS, NULL},
-	 { "new_InterferenceFunction2DLattice", _wrap_new_InterferenceFunction2DLattice, METH_VARARGS, "\n"
-		"InterferenceFunction2DLattice(Lattice2D lattice)\n"
-		"InterferenceFunction2DLattice(double length_1, double length_2, double alpha, double xi=0.0)\n"
-		"InterferenceFunction2DLattice::InterferenceFunction2DLattice(double length_1, double length_2, double alpha, double xi=0.0)\n"
+	 { "delete_FormFactorFullSpheroid", _wrap_delete_FormFactorFullSpheroid, METH_O, "delete_FormFactorFullSpheroid(FormFactorFullSpheroid self)"},
+	 { "FormFactorFullSpheroid_swigregister", FormFactorFullSpheroid_swigregister, METH_O, NULL},
+	 { "FormFactorFullSpheroid_swiginit", FormFactorFullSpheroid_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorHemiEllipsoid", _wrap_new_FormFactorHemiEllipsoid, METH_VARARGS, "\n"
+		"new_FormFactorHemiEllipsoid(double radius_x, double radius_y, double height) -> FormFactorHemiEllipsoid\n"
+		"FormFactorHemiEllipsoid::FormFactorHemiEllipsoid(double radius_x, double radius_y, double height)\n"
 		"\n"
-		"Constructor of two-dimensional interference function.\n"
+		"Constructor of horizontally oriented ellipsoid, truncated at the central plane.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"length_1: \n"
-		"length of the first basis vector in nanometers\n"
-		"\n"
-		"length_2: \n"
-		"length of the second basis vector in nanometers\n"
+		"radius_x: \n"
+		"radius of the ellipse base in the x-direction, in nanometers\n"
 		"\n"
-		"alpha: \n"
-		"angle between the basis vectors in radians\n"
+		"radius_y: \n"
+		"radius of the ellipse base in the y-direction, in nanometers\n"
 		"\n"
-		"xi: \n"
-		"rotation of the lattice with respect to the x-axis (beam direction) in radians \n"
+		"height: \n"
+		"height of the hemi ellipsoid in nanometers \n"
 		"\n"
 		""},
-	 { "delete_InterferenceFunction2DLattice", _wrap_delete_InterferenceFunction2DLattice, METH_O, "\n"
-		"delete_InterferenceFunction2DLattice(InterferenceFunction2DLattice self)\n"
-		"InterferenceFunction2DLattice::~InterferenceFunction2DLattice() final\n"
+	 { "delete_FormFactorHemiEllipsoid", _wrap_delete_FormFactorHemiEllipsoid, METH_O, "\n"
+		"delete_FormFactorHemiEllipsoid(FormFactorHemiEllipsoid self)\n"
+		"virtual FormFactorHemiEllipsoid::~FormFactorHemiEllipsoid()\n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DLattice_clone", _wrap_InterferenceFunction2DLattice_clone, METH_O, "\n"
-		"InterferenceFunction2DLattice_clone(InterferenceFunction2DLattice self) -> InterferenceFunction2DLattice\n"
-		"InterferenceFunction2DLattice * InterferenceFunction2DLattice::clone() const override final\n"
+	 { "FormFactorHemiEllipsoid_clone", _wrap_FormFactorHemiEllipsoid_clone, METH_O, "\n"
+		"FormFactorHemiEllipsoid_clone(FormFactorHemiEllipsoid self) -> FormFactorHemiEllipsoid\n"
+		"FormFactorHemiEllipsoid* FormFactorHemiEllipsoid::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DLattice_accept", _wrap_InterferenceFunction2DLattice_accept, METH_VARARGS, "\n"
-		"InterferenceFunction2DLattice_accept(InterferenceFunction2DLattice self, INodeVisitor visitor)\n"
-		"void InterferenceFunction2DLattice::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorHemiEllipsoid_accept", _wrap_FormFactorHemiEllipsoid_accept, METH_VARARGS, "\n"
+		"FormFactorHemiEllipsoid_accept(FormFactorHemiEllipsoid self, INodeVisitor visitor)\n"
+		"void FormFactorHemiEllipsoid::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DLattice_createSquare", _wrap_InterferenceFunction2DLattice_createSquare, METH_VARARGS, "InterferenceFunction2DLattice_createSquare(double lattice_length, double xi=0.0) -> InterferenceFunction2DLattice"},
-	 { "InterferenceFunction2DLattice_createHexagonal", _wrap_InterferenceFunction2DLattice_createHexagonal, METH_VARARGS, "InterferenceFunction2DLattice_createHexagonal(double lattice_length, double xi=0.0) -> InterferenceFunction2DLattice"},
-	 { "InterferenceFunction2DLattice_setDecayFunction", _wrap_InterferenceFunction2DLattice_setDecayFunction, METH_VARARGS, "\n"
-		"InterferenceFunction2DLattice_setDecayFunction(InterferenceFunction2DLattice self, IFTDecayFunction2D decay)\n"
-		"void InterferenceFunction2DLattice::setDecayFunction(const IFTDecayFunction2D &decay)\n"
-		"\n"
-		"Sets two-dimensional decay function.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
-		"\n"
-		"decay: \n"
-		"two-dimensional decay function in reciprocal space \n"
+	 { "FormFactorHemiEllipsoid_getHeight", _wrap_FormFactorHemiEllipsoid_getHeight, METH_O, "\n"
+		"FormFactorHemiEllipsoid_getHeight(FormFactorHemiEllipsoid self) -> double\n"
+		"double FormFactorHemiEllipsoid::getHeight() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DLattice_setIntegrationOverXi", _wrap_InterferenceFunction2DLattice_setIntegrationOverXi, METH_VARARGS, "\n"
-		"InterferenceFunction2DLattice_setIntegrationOverXi(InterferenceFunction2DLattice self, bool integrate_xi)\n"
-		"void InterferenceFunction2DLattice::setIntegrationOverXi(bool integrate_xi)\n"
+	 { "FormFactorHemiEllipsoid_getRadiusX", _wrap_FormFactorHemiEllipsoid_getRadiusX, METH_O, "\n"
+		"FormFactorHemiEllipsoid_getRadiusX(FormFactorHemiEllipsoid self) -> double\n"
+		"double FormFactorHemiEllipsoid::getRadiusX() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DLattice_integrationOverXi", _wrap_InterferenceFunction2DLattice_integrationOverXi, METH_O, "\n"
-		"InterferenceFunction2DLattice_integrationOverXi(InterferenceFunction2DLattice self) -> bool\n"
-		"bool InterferenceFunction2DLattice::integrationOverXi() const\n"
+	 { "FormFactorHemiEllipsoid_getRadiusY", _wrap_FormFactorHemiEllipsoid_getRadiusY, METH_O, "\n"
+		"FormFactorHemiEllipsoid_getRadiusY(FormFactorHemiEllipsoid self) -> double\n"
+		"double FormFactorHemiEllipsoid::getRadiusY() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DLattice_lattice", _wrap_InterferenceFunction2DLattice_lattice, METH_O, "\n"
-		"InterferenceFunction2DLattice_lattice(InterferenceFunction2DLattice self) -> Lattice2D\n"
-		"const Lattice2D & InterferenceFunction2DLattice::lattice() const\n"
+	 { "FormFactorHemiEllipsoid_radialExtension", _wrap_FormFactorHemiEllipsoid_radialExtension, METH_O, "\n"
+		"FormFactorHemiEllipsoid_radialExtension(FormFactorHemiEllipsoid self) -> double\n"
+		"double FormFactorHemiEllipsoid::radialExtension() const override final\n"
+		"\n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DLattice_getParticleDensity", _wrap_InterferenceFunction2DLattice_getParticleDensity, METH_O, "\n"
-		"InterferenceFunction2DLattice_getParticleDensity(InterferenceFunction2DLattice self) -> double\n"
-		"double InterferenceFunction2DLattice::getParticleDensity() const override final\n"
+	 { "FormFactorHemiEllipsoid_evaluate_for_q", _wrap_FormFactorHemiEllipsoid_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorHemiEllipsoid_evaluate_for_q(FormFactorHemiEllipsoid self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorHemiEllipsoid::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"Returns the particle density associated with this 2d lattice. \n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DLattice_getChildren", _wrap_InterferenceFunction2DLattice_getChildren, METH_O, "\n"
-		"InterferenceFunction2DLattice_getChildren(InterferenceFunction2DLattice self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > InterferenceFunction2DLattice::getChildren() const override final\n"
+	 { "FormFactorHemiEllipsoid_swigregister", FormFactorHemiEllipsoid_swigregister, METH_O, NULL},
+	 { "FormFactorHemiEllipsoid_swiginit", FormFactorHemiEllipsoid_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorHollowSphere", _wrap_new_FormFactorHollowSphere, METH_VARARGS, "new_FormFactorHollowSphere(double mean, double full_width) -> FormFactorHollowSphere"},
+	 { "FormFactorHollowSphere_clone", _wrap_FormFactorHollowSphere_clone, METH_O, "\n"
+		"FormFactorHollowSphere_clone(FormFactorHollowSphere self) -> FormFactorHollowSphere\n"
+		"IFormFactorBorn* IFormFactorBorn::clone() const override=0\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DLattice_onChange", _wrap_InterferenceFunction2DLattice_onChange, METH_O, "\n"
-		"InterferenceFunction2DLattice_onChange(InterferenceFunction2DLattice self)\n"
-		"void InterferenceFunction2DLattice::onChange() override final\n"
+	 { "FormFactorHollowSphere_accept", _wrap_FormFactorHollowSphere_accept, METH_VARARGS, "\n"
+		"FormFactorHollowSphere_accept(FormFactorHollowSphere self, INodeVisitor visitor)\n"
+		"virtual void INode::accept(INodeVisitor *visitor) const =0\n"
 		"\n"
-		"Action to be taken in inherited class when a parameter has changed. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DLattice_swigregister", InterferenceFunction2DLattice_swigregister, METH_O, NULL},
-	 { "InterferenceFunction2DLattice_swiginit", InterferenceFunction2DLattice_swiginit, METH_VARARGS, NULL},
-	 { "new_InterferenceFunction2DParaCrystal", _wrap_new_InterferenceFunction2DParaCrystal, METH_VARARGS, "\n"
-		"InterferenceFunction2DParaCrystal(Lattice2D lattice, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0)\n"
-		"InterferenceFunction2DParaCrystal(double length_1, double length_2, double alpha, double xi=0.0, double damping_length=0.0)\n"
-		"InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(double length_1, double length_2, double alpha, double xi=0.0, double damping_length=0.0)\n"
-		"\n"
-		"Constructor of interference function of two-dimensional paracrystal.\n"
+	 { "FormFactorHollowSphere_radialExtension", _wrap_FormFactorHollowSphere_radialExtension, METH_O, "\n"
+		"FormFactorHollowSphere_radialExtension(FormFactorHollowSphere self) -> double\n"
+		"virtual double IFormFactor::radialExtension() const =0\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
-		"length_1: \n"
-		"length of first lattice vector in nanometers\n"
+		""},
+	 { "FormFactorHollowSphere_evaluate_for_q", _wrap_FormFactorHollowSphere_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorHollowSphere_evaluate_for_q(FormFactorHollowSphere self, cvector_t q) -> complex_t\n"
+		"virtual complex_t IFormFactorBorn::evaluate_for_q(cvector_t q) const =0\n"
 		"\n"
-		"length_2: \n"
-		"length of second lattice vector in nanometers\n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
-		"alpha: \n"
-		"angle between lattice vectors in radians\n"
+		""},
+	 { "delete_FormFactorHollowSphere", _wrap_delete_FormFactorHollowSphere, METH_O, "delete_FormFactorHollowSphere(FormFactorHollowSphere self)"},
+	 { "FormFactorHollowSphere_swigregister", FormFactorHollowSphere_swigregister, METH_O, NULL},
+	 { "FormFactorHollowSphere_swiginit", FormFactorHollowSphere_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorIcosahedron", _wrap_new_FormFactorIcosahedron, METH_O, "\n"
+		"new_FormFactorIcosahedron(double edge) -> FormFactorIcosahedron\n"
+		"FormFactorIcosahedron::FormFactorIcosahedron(double edge)\n"
 		"\n"
-		"xi: \n"
-		"rotation of lattice with respect to x-axis (beam direction) in radians\n"
+		"Constructor of a icosahedron.\n"
 		"\n"
-		"damping_length: \n"
-		"the damping (coherence) length of the paracrystal in nanometers \n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "delete_InterferenceFunction2DParaCrystal", _wrap_delete_InterferenceFunction2DParaCrystal, METH_O, "\n"
-		"delete_InterferenceFunction2DParaCrystal(InterferenceFunction2DParaCrystal self)\n"
-		"InterferenceFunction2DParaCrystal::~InterferenceFunction2DParaCrystal() final\n"
+		"edge: \n"
+		"length of the edge in nanometers \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_clone", _wrap_InterferenceFunction2DParaCrystal_clone, METH_O, "\n"
-		"InterferenceFunction2DParaCrystal_clone(InterferenceFunction2DParaCrystal self) -> InterferenceFunction2DParaCrystal\n"
-		"InterferenceFunction2DParaCrystal * InterferenceFunction2DParaCrystal::clone() const override final\n"
+	 { "FormFactorIcosahedron_clone", _wrap_FormFactorIcosahedron_clone, METH_O, "\n"
+		"FormFactorIcosahedron_clone(FormFactorIcosahedron self) -> FormFactorIcosahedron\n"
+		"FormFactorIcosahedron* FormFactorIcosahedron::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_accept", _wrap_InterferenceFunction2DParaCrystal_accept, METH_VARARGS, "\n"
-		"InterferenceFunction2DParaCrystal_accept(InterferenceFunction2DParaCrystal self, INodeVisitor visitor)\n"
-		"void InterferenceFunction2DParaCrystal::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorIcosahedron_accept", _wrap_FormFactorIcosahedron_accept, METH_VARARGS, "\n"
+		"FormFactorIcosahedron_accept(FormFactorIcosahedron self, INodeVisitor visitor)\n"
+		"void FormFactorIcosahedron::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_createSquare", _wrap_InterferenceFunction2DParaCrystal_createSquare, METH_VARARGS, "InterferenceFunction2DParaCrystal_createSquare(double lattice_length, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal"},
-	 { "InterferenceFunction2DParaCrystal_createHexagonal", _wrap_InterferenceFunction2DParaCrystal_createHexagonal, METH_VARARGS, "InterferenceFunction2DParaCrystal_createHexagonal(double lattice_length, double damping_length=0.0, double domain_size_1=0.0, double domain_size_2=0.0) -> InterferenceFunction2DParaCrystal"},
-	 { "InterferenceFunction2DParaCrystal_setDomainSizes", _wrap_InterferenceFunction2DParaCrystal_setDomainSizes, METH_VARARGS, "\n"
-		"InterferenceFunction2DParaCrystal_setDomainSizes(InterferenceFunction2DParaCrystal self, double size_1, double size_2)\n"
-		"void InterferenceFunction2DParaCrystal::setDomainSizes(double size_1, double size_2)\n"
+	 { "FormFactorIcosahedron_getEdge", _wrap_FormFactorIcosahedron_getEdge, METH_O, "\n"
+		"FormFactorIcosahedron_getEdge(FormFactorIcosahedron self) -> double\n"
+		"double FormFactorIcosahedron::getEdge() const\n"
 		"\n"
-		"Sets the sizes of coherence domains.\n"
+		""},
+	 { "delete_FormFactorIcosahedron", _wrap_delete_FormFactorIcosahedron, METH_O, "delete_FormFactorIcosahedron(FormFactorIcosahedron self)"},
+	 { "FormFactorIcosahedron_swigregister", FormFactorIcosahedron_swigregister, METH_O, NULL},
+	 { "FormFactorIcosahedron_swiginit", FormFactorIcosahedron_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorLongBoxGauss", _wrap_new_FormFactorLongBoxGauss, METH_VARARGS, "\n"
+		"new_FormFactorLongBoxGauss(double length, double width, double height) -> FormFactorLongBoxGauss\n"
+		"FormFactorLongBoxGauss::FormFactorLongBoxGauss(double length, double width, double height)\n"
+		"\n"
+		"Box constructor.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"size_1: \n"
-		"coherence domain size along the first basis vector in nanometers\n"
+		"length: \n"
+		"of  Box's base\n"
 		"\n"
-		"size_2: \n"
-		"coherence domain size along the second basis vector in nanometers \n"
+		"width: \n"
+		"of  Box's base\n"
+		"\n"
+		"height: \n"
+		"of  Box\n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_setProbabilityDistributions", _wrap_InterferenceFunction2DParaCrystal_setProbabilityDistributions, METH_VARARGS, "\n"
-		"InterferenceFunction2DParaCrystal_setProbabilityDistributions(InterferenceFunction2DParaCrystal self, IFTDistribution2D pdf_1, IFTDistribution2D pdf_2)\n"
-		"void InterferenceFunction2DParaCrystal::setProbabilityDistributions(const IFTDistribution2D &pdf_1, const IFTDistribution2D &pdf_2)\n"
+	 { "FormFactorLongBoxGauss_clone", _wrap_FormFactorLongBoxGauss_clone, METH_O, "\n"
+		"FormFactorLongBoxGauss_clone(FormFactorLongBoxGauss self) -> FormFactorLongBoxGauss\n"
+		"FormFactorLongBoxGauss* FormFactorLongBoxGauss::clone() const override final\n"
 		"\n"
-		"Sets the probability distributions (Fourier transformed) for the two lattice directions.\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "FormFactorLongBoxGauss_accept", _wrap_FormFactorLongBoxGauss_accept, METH_VARARGS, "\n"
+		"FormFactorLongBoxGauss_accept(FormFactorLongBoxGauss self, INodeVisitor visitor)\n"
+		"void FormFactorLongBoxGauss::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"pdf_1: \n"
-		"probability distribution in first lattice direction\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
-		"pdf_2: \n"
-		"probability distribution in second lattice direction \n"
+		""},
+	 { "FormFactorLongBoxGauss_getLength", _wrap_FormFactorLongBoxGauss_getLength, METH_O, "\n"
+		"FormFactorLongBoxGauss_getLength(FormFactorLongBoxGauss self) -> double\n"
+		"double FormFactorLongBoxGauss::getLength() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_setDampingLength", _wrap_InterferenceFunction2DParaCrystal_setDampingLength, METH_VARARGS, "\n"
-		"InterferenceFunction2DParaCrystal_setDampingLength(InterferenceFunction2DParaCrystal self, double damping_length)\n"
-		"void InterferenceFunction2DParaCrystal::setDampingLength(double damping_length)\n"
+	 { "FormFactorLongBoxGauss_getHeight", _wrap_FormFactorLongBoxGauss_getHeight, METH_O, "\n"
+		"FormFactorLongBoxGauss_getHeight(FormFactorLongBoxGauss self) -> double\n"
+		"double FormFactorLongBoxGauss::getHeight() const\n"
 		"\n"
-		"Sets the damping length.\n"
+		""},
+	 { "FormFactorLongBoxGauss_getWidth", _wrap_FormFactorLongBoxGauss_getWidth, METH_O, "\n"
+		"FormFactorLongBoxGauss_getWidth(FormFactorLongBoxGauss self) -> double\n"
+		"double FormFactorLongBoxGauss::getWidth() const\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "FormFactorLongBoxGauss_radialExtension", _wrap_FormFactorLongBoxGauss_radialExtension, METH_O, "\n"
+		"FormFactorLongBoxGauss_radialExtension(FormFactorLongBoxGauss self) -> double\n"
+		"double FormFactorLongBoxGauss::radialExtension() const override final\n"
 		"\n"
-		"damping_length: \n"
-		"the damping (coherence) length of the paracrystal in nanometers \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_domainSizes", _wrap_InterferenceFunction2DParaCrystal_domainSizes, METH_O, "\n"
-		"InterferenceFunction2DParaCrystal_domainSizes(InterferenceFunction2DParaCrystal self) -> vdouble1d_t\n"
-		"std::vector< double > InterferenceFunction2DParaCrystal::domainSizes() const\n"
+	 { "FormFactorLongBoxGauss_evaluate_for_q", _wrap_FormFactorLongBoxGauss_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorLongBoxGauss_evaluate_for_q(FormFactorLongBoxGauss self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorLongBoxGauss::evaluate_for_q(cvector_t q) const override final\n"
+		"\n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_setIntegrationOverXi", _wrap_InterferenceFunction2DParaCrystal_setIntegrationOverXi, METH_VARARGS, "\n"
-		"InterferenceFunction2DParaCrystal_setIntegrationOverXi(InterferenceFunction2DParaCrystal self, bool integrate_xi)\n"
-		"void InterferenceFunction2DParaCrystal::setIntegrationOverXi(bool integrate_xi)\n"
+	 { "delete_FormFactorLongBoxGauss", _wrap_delete_FormFactorLongBoxGauss, METH_O, "delete_FormFactorLongBoxGauss(FormFactorLongBoxGauss self)"},
+	 { "FormFactorLongBoxGauss_swigregister", FormFactorLongBoxGauss_swigregister, METH_O, NULL},
+	 { "FormFactorLongBoxGauss_swiginit", FormFactorLongBoxGauss_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorLongBoxLorentz", _wrap_new_FormFactorLongBoxLorentz, METH_VARARGS, "\n"
+		"new_FormFactorLongBoxLorentz(double length, double width, double height) -> FormFactorLongBoxLorentz\n"
+		"FormFactorLongBoxLorentz::FormFactorLongBoxLorentz(double length, double width, double height)\n"
 		"\n"
-		"Enables/disables averaging over the lattice rotation angle.\n"
+		"Box constructor.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"integrate_xi: \n"
-		"integration flag \n"
+		"length: \n"
+		"of  Box's base\n"
+		"\n"
+		"width: \n"
+		"of  Box's base\n"
+		"\n"
+		"height: \n"
+		"of  Box\n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_integrationOverXi", _wrap_InterferenceFunction2DParaCrystal_integrationOverXi, METH_O, "\n"
-		"InterferenceFunction2DParaCrystal_integrationOverXi(InterferenceFunction2DParaCrystal self) -> bool\n"
-		"bool InterferenceFunction2DParaCrystal::integrationOverXi() const\n"
+	 { "FormFactorLongBoxLorentz_clone", _wrap_FormFactorLongBoxLorentz_clone, METH_O, "\n"
+		"FormFactorLongBoxLorentz_clone(FormFactorLongBoxLorentz self) -> FormFactorLongBoxLorentz\n"
+		"FormFactorLongBoxLorentz* FormFactorLongBoxLorentz::clone() const override final\n"
+		"\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_dampingLength", _wrap_InterferenceFunction2DParaCrystal_dampingLength, METH_O, "\n"
-		"InterferenceFunction2DParaCrystal_dampingLength(InterferenceFunction2DParaCrystal self) -> double\n"
-		"double InterferenceFunction2DParaCrystal::dampingLength() const\n"
+	 { "FormFactorLongBoxLorentz_accept", _wrap_FormFactorLongBoxLorentz_accept, METH_VARARGS, "\n"
+		"FormFactorLongBoxLorentz_accept(FormFactorLongBoxLorentz self, INodeVisitor visitor)\n"
+		"void FormFactorLongBoxLorentz::accept(INodeVisitor *visitor) const override final\n"
+		"\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_lattice", _wrap_InterferenceFunction2DParaCrystal_lattice, METH_O, "\n"
-		"InterferenceFunction2DParaCrystal_lattice(InterferenceFunction2DParaCrystal self) -> Lattice2D\n"
-		"const Lattice2D & InterferenceFunction2DParaCrystal::lattice() const\n"
+	 { "FormFactorLongBoxLorentz_getLength", _wrap_FormFactorLongBoxLorentz_getLength, METH_O, "\n"
+		"FormFactorLongBoxLorentz_getLength(FormFactorLongBoxLorentz self) -> double\n"
+		"double FormFactorLongBoxLorentz::getLength() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_getParticleDensity", _wrap_InterferenceFunction2DParaCrystal_getParticleDensity, METH_O, "\n"
-		"InterferenceFunction2DParaCrystal_getParticleDensity(InterferenceFunction2DParaCrystal self) -> double\n"
-		"double InterferenceFunction2DParaCrystal::getParticleDensity() const override final\n"
+	 { "FormFactorLongBoxLorentz_getHeight", _wrap_FormFactorLongBoxLorentz_getHeight, METH_O, "\n"
+		"FormFactorLongBoxLorentz_getHeight(FormFactorLongBoxLorentz self) -> double\n"
+		"double FormFactorLongBoxLorentz::getHeight() const\n"
 		"\n"
-		"If defined by this interference function's parameters, returns the particle density (per area). Otherwise, returns zero or a user-defined value \n"
+		""},
+	 { "FormFactorLongBoxLorentz_getWidth", _wrap_FormFactorLongBoxLorentz_getWidth, METH_O, "\n"
+		"FormFactorLongBoxLorentz_getWidth(FormFactorLongBoxLorentz self) -> double\n"
+		"double FormFactorLongBoxLorentz::getWidth() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_getChildren", _wrap_InterferenceFunction2DParaCrystal_getChildren, METH_O, "\n"
-		"InterferenceFunction2DParaCrystal_getChildren(InterferenceFunction2DParaCrystal self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > InterferenceFunction2DParaCrystal::getChildren() const override final\n"
+	 { "FormFactorLongBoxLorentz_radialExtension", _wrap_FormFactorLongBoxLorentz_radialExtension, METH_O, "\n"
+		"FormFactorLongBoxLorentz_radialExtension(FormFactorLongBoxLorentz self) -> double\n"
+		"double FormFactorLongBoxLorentz::radialExtension() const override final\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_pdf1", _wrap_InterferenceFunction2DParaCrystal_pdf1, METH_O, "\n"
-		"InterferenceFunction2DParaCrystal_pdf1(InterferenceFunction2DParaCrystal self) -> IFTDistribution2D\n"
-		"const IFTDistribution2D* InterferenceFunction2DParaCrystal::pdf1() const\n"
+	 { "FormFactorLongBoxLorentz_evaluate_for_q", _wrap_FormFactorLongBoxLorentz_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorLongBoxLorentz_evaluate_for_q(FormFactorLongBoxLorentz self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorLongBoxLorentz::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		""},
-	 { "InterferenceFunction2DParaCrystal_pdf2", _wrap_InterferenceFunction2DParaCrystal_pdf2, METH_O, "\n"
-		"InterferenceFunction2DParaCrystal_pdf2(InterferenceFunction2DParaCrystal self) -> IFTDistribution2D\n"
-		"const IFTDistribution2D* InterferenceFunction2DParaCrystal::pdf2() const\n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DParaCrystal_swigregister", InterferenceFunction2DParaCrystal_swigregister, METH_O, NULL},
-	 { "InterferenceFunction2DParaCrystal_swiginit", InterferenceFunction2DParaCrystal_swiginit, METH_VARARGS, NULL},
-	 { "new_InterferenceFunction2DSuperLattice", _wrap_new_InterferenceFunction2DSuperLattice, METH_VARARGS, "\n"
-		"InterferenceFunction2DSuperLattice(Lattice2D lattice, unsigned int size_1, unsigned int size_2)\n"
-		"new_InterferenceFunction2DSuperLattice(double length_1, double length_2, double alpha, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice\n"
-		"InterferenceFunction2DSuperLattice::InterferenceFunction2DSuperLattice(double length_1, double length_2, double alpha, double xi, unsigned size_1, unsigned size_2)\n"
+	 { "delete_FormFactorLongBoxLorentz", _wrap_delete_FormFactorLongBoxLorentz, METH_O, "delete_FormFactorLongBoxLorentz(FormFactorLongBoxLorentz self)"},
+	 { "FormFactorLongBoxLorentz_swigregister", FormFactorLongBoxLorentz_swigregister, METH_O, NULL},
+	 { "FormFactorLongBoxLorentz_swiginit", FormFactorLongBoxLorentz_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorPrism3", _wrap_new_FormFactorPrism3, METH_VARARGS, "\n"
+		"new_FormFactorPrism3(double base_edge, double height) -> FormFactorPrism3\n"
+		"FormFactorPrism3::FormFactorPrism3(double base_edge, double height)\n"
 		"\n"
-		"Constructor of two-dimensional interference function.\n"
+		"Constructor of a prism with an equilaterial triangle base.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"length_1: \n"
-		"length of first lattice vector in nanometers\n"
-		"\n"
-		"length_2: \n"
-		"length of second lattice vector in nanometers\n"
-		"\n"
-		"alpha: \n"
-		"angle between lattice vectors in radians\n"
-		"\n"
-		"xi: \n"
-		"rotation of lattice with respect to x-axis (beam direction) in radians \n"
+		"base_edge: \n"
+		"length of the base edge in nanometers\n"
 		"\n"
-		""},
-	 { "delete_InterferenceFunction2DSuperLattice", _wrap_delete_InterferenceFunction2DSuperLattice, METH_O, "\n"
-		"delete_InterferenceFunction2DSuperLattice(InterferenceFunction2DSuperLattice self)\n"
-		"InterferenceFunction2DSuperLattice::~InterferenceFunction2DSuperLattice() final\n"
+		"height: \n"
+		"height in nanometers \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DSuperLattice_clone", _wrap_InterferenceFunction2DSuperLattice_clone, METH_O, "\n"
-		"InterferenceFunction2DSuperLattice_clone(InterferenceFunction2DSuperLattice self) -> InterferenceFunction2DSuperLattice\n"
-		"InterferenceFunction2DSuperLattice * InterferenceFunction2DSuperLattice::clone() const override final\n"
+	 { "FormFactorPrism3_clone", _wrap_FormFactorPrism3_clone, METH_O, "\n"
+		"FormFactorPrism3_clone(FormFactorPrism3 self) -> FormFactorPrism3\n"
+		"FormFactorPrism3* FormFactorPrism3::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DSuperLattice_accept", _wrap_InterferenceFunction2DSuperLattice_accept, METH_VARARGS, "\n"
-		"InterferenceFunction2DSuperLattice_accept(InterferenceFunction2DSuperLattice self, INodeVisitor visitor)\n"
-		"void InterferenceFunction2DSuperLattice::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorPrism3_accept", _wrap_FormFactorPrism3_accept, METH_VARARGS, "\n"
+		"FormFactorPrism3_accept(FormFactorPrism3 self, INodeVisitor visitor)\n"
+		"void FormFactorPrism3::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DSuperLattice_setSubstructureIFF", _wrap_InterferenceFunction2DSuperLattice_setSubstructureIFF, METH_VARARGS, "\n"
-		"InterferenceFunction2DSuperLattice_setSubstructureIFF(InterferenceFunction2DSuperLattice self, IInterferenceFunction sub_iff)\n"
-		"void InterferenceFunction2DSuperLattice::setSubstructureIFF(const IInterferenceFunction &sub_iff)\n"
+	 { "FormFactorPrism3_getBaseEdge", _wrap_FormFactorPrism3_getBaseEdge, METH_O, "\n"
+		"FormFactorPrism3_getBaseEdge(FormFactorPrism3 self) -> double\n"
+		"double FormFactorPrism3::getBaseEdge() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DSuperLattice_substructureIFF", _wrap_InterferenceFunction2DSuperLattice_substructureIFF, METH_O, "\n"
-		"InterferenceFunction2DSuperLattice_substructureIFF(InterferenceFunction2DSuperLattice self) -> IInterferenceFunction\n"
-		"const IInterferenceFunction & InterferenceFunction2DSuperLattice::substructureIFF() const\n"
+	 { "delete_FormFactorPrism3", _wrap_delete_FormFactorPrism3, METH_O, "delete_FormFactorPrism3(FormFactorPrism3 self)"},
+	 { "FormFactorPrism3_swigregister", FormFactorPrism3_swigregister, METH_O, NULL},
+	 { "FormFactorPrism3_swiginit", FormFactorPrism3_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorPrism6", _wrap_new_FormFactorPrism6, METH_VARARGS, "\n"
+		"new_FormFactorPrism6(double base_edge, double height) -> FormFactorPrism6\n"
+		"FormFactorPrism6::FormFactorPrism6(double base_edge, double height)\n"
 		"\n"
-		""},
-	 { "InterferenceFunction2DSuperLattice_createSquare", _wrap_InterferenceFunction2DSuperLattice_createSquare, METH_VARARGS, "InterferenceFunction2DSuperLattice_createSquare(double lattice_length, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice"},
-	 { "InterferenceFunction2DSuperLattice_createHexagonal", _wrap_InterferenceFunction2DSuperLattice_createHexagonal, METH_VARARGS, "InterferenceFunction2DSuperLattice_createHexagonal(double lattice_length, double xi, unsigned int size_1, unsigned int size_2) -> InterferenceFunction2DSuperLattice"},
-	 { "InterferenceFunction2DSuperLattice_evaluate", _wrap_InterferenceFunction2DSuperLattice_evaluate, METH_VARARGS, "\n"
-		"InterferenceFunction2DSuperLattice_evaluate(InterferenceFunction2DSuperLattice self, kvector_t q, double outer_iff=1.0) -> double\n"
-		"double InterferenceFunction2DSuperLattice::evaluate(const kvector_t q, double outer_iff=1.0) const override final\n"
+		"Constructor of a prism with a regular hexagonal base.\n"
 		"\n"
-		"Evaluates the interference function for a given wavevector transfer. \n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "InterferenceFunction2DSuperLattice_domainSize1", _wrap_InterferenceFunction2DSuperLattice_domainSize1, METH_O, "\n"
-		"InterferenceFunction2DSuperLattice_domainSize1(InterferenceFunction2DSuperLattice self) -> unsigned int\n"
-		"unsigned InterferenceFunction2DSuperLattice::domainSize1() const\n"
+		"base_edge: \n"
+		"length of the hexagonal base in nanometers\n"
 		"\n"
-		""},
-	 { "InterferenceFunction2DSuperLattice_domainSize2", _wrap_InterferenceFunction2DSuperLattice_domainSize2, METH_O, "\n"
-		"InterferenceFunction2DSuperLattice_domainSize2(InterferenceFunction2DSuperLattice self) -> unsigned int\n"
-		"unsigned InterferenceFunction2DSuperLattice::domainSize2() const\n"
+		"height: \n"
+		"height in nanometers \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DSuperLattice_setIntegrationOverXi", _wrap_InterferenceFunction2DSuperLattice_setIntegrationOverXi, METH_VARARGS, "\n"
-		"InterferenceFunction2DSuperLattice_setIntegrationOverXi(InterferenceFunction2DSuperLattice self, bool integrate_xi)\n"
-		"void InterferenceFunction2DSuperLattice::setIntegrationOverXi(bool integrate_xi)\n"
+	 { "FormFactorPrism6_clone", _wrap_FormFactorPrism6_clone, METH_O, "\n"
+		"FormFactorPrism6_clone(FormFactorPrism6 self) -> FormFactorPrism6\n"
+		"FormFactorPrism6* FormFactorPrism6::clone() const override final\n"
+		"\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DSuperLattice_integrationOverXi", _wrap_InterferenceFunction2DSuperLattice_integrationOverXi, METH_O, "\n"
-		"InterferenceFunction2DSuperLattice_integrationOverXi(InterferenceFunction2DSuperLattice self) -> bool\n"
-		"bool InterferenceFunction2DSuperLattice::integrationOverXi() const\n"
+	 { "FormFactorPrism6_accept", _wrap_FormFactorPrism6_accept, METH_VARARGS, "\n"
+		"FormFactorPrism6_accept(FormFactorPrism6 self, INodeVisitor visitor)\n"
+		"void FormFactorPrism6::accept(INodeVisitor *visitor) const override final\n"
+		"\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DSuperLattice_lattice", _wrap_InterferenceFunction2DSuperLattice_lattice, METH_O, "\n"
-		"InterferenceFunction2DSuperLattice_lattice(InterferenceFunction2DSuperLattice self) -> Lattice2D\n"
-		"const Lattice2D & InterferenceFunction2DSuperLattice::lattice() const\n"
+	 { "FormFactorPrism6_getBaseEdge", _wrap_FormFactorPrism6_getBaseEdge, METH_O, "\n"
+		"FormFactorPrism6_getBaseEdge(FormFactorPrism6 self) -> double\n"
+		"double FormFactorPrism6::getBaseEdge() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunction2DSuperLattice_getChildren", _wrap_InterferenceFunction2DSuperLattice_getChildren, METH_O, "\n"
-		"InterferenceFunction2DSuperLattice_getChildren(InterferenceFunction2DSuperLattice self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > InterferenceFunction2DSuperLattice::getChildren() const override final\n"
+	 { "delete_FormFactorPrism6", _wrap_delete_FormFactorPrism6, METH_O, "delete_FormFactorPrism6(FormFactorPrism6 self)"},
+	 { "FormFactorPrism6_swigregister", FormFactorPrism6_swigregister, METH_O, NULL},
+	 { "FormFactorPrism6_swiginit", FormFactorPrism6_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorPyramid", _wrap_new_FormFactorPyramid, METH_VARARGS, "\n"
+		"new_FormFactorPyramid(double base_edge, double height, double alpha) -> FormFactorPyramid\n"
+		"FormFactorPyramid::FormFactorPyramid(double base_edge, double height, double alpha)\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Constructor of a truncated pyramid with a square base\n"
 		"\n"
-		""},
-	 { "InterferenceFunction2DSuperLattice_swigregister", InterferenceFunction2DSuperLattice_swigregister, METH_O, NULL},
-	 { "InterferenceFunction2DSuperLattice_swiginit", InterferenceFunction2DSuperLattice_swiginit, METH_VARARGS, NULL},
-	 { "new_InterferenceFunction3DLattice", _wrap_new_InterferenceFunction3DLattice, METH_O, "\n"
-		"new_InterferenceFunction3DLattice(Lattice lattice) -> InterferenceFunction3DLattice\n"
-		"InterferenceFunction3DLattice::InterferenceFunction3DLattice(const Lattice &lattice)\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "delete_InterferenceFunction3DLattice", _wrap_delete_InterferenceFunction3DLattice, METH_O, "\n"
-		"delete_InterferenceFunction3DLattice(InterferenceFunction3DLattice self)\n"
-		"InterferenceFunction3DLattice::~InterferenceFunction3DLattice() final\n"
+		"base_edge: \n"
+		"length of the square base in nanometers\n"
+		"\n"
+		"height: \n"
+		"height of the pyramid in nanometers\n"
+		"\n"
+		"alpha: \n"
+		"dihedral angle between the base and a side face in radians \n"
 		"\n"
 		""},
-	 { "InterferenceFunction3DLattice_clone", _wrap_InterferenceFunction3DLattice_clone, METH_O, "\n"
-		"InterferenceFunction3DLattice_clone(InterferenceFunction3DLattice self) -> InterferenceFunction3DLattice\n"
-		"InterferenceFunction3DLattice * InterferenceFunction3DLattice::clone() const override final\n"
+	 { "FormFactorPyramid_clone", _wrap_FormFactorPyramid_clone, METH_O, "\n"
+		"FormFactorPyramid_clone(FormFactorPyramid self) -> FormFactorPyramid\n"
+		"FormFactorPyramid* FormFactorPyramid::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction3DLattice_accept", _wrap_InterferenceFunction3DLattice_accept, METH_VARARGS, "\n"
-		"InterferenceFunction3DLattice_accept(InterferenceFunction3DLattice self, INodeVisitor visitor)\n"
-		"void InterferenceFunction3DLattice::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorPyramid_accept", _wrap_FormFactorPyramid_accept, METH_VARARGS, "\n"
+		"FormFactorPyramid_accept(FormFactorPyramid self, INodeVisitor visitor)\n"
+		"void FormFactorPyramid::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction3DLattice_setPeakShape", _wrap_InterferenceFunction3DLattice_setPeakShape, METH_VARARGS, "\n"
-		"InterferenceFunction3DLattice_setPeakShape(InterferenceFunction3DLattice self, IPeakShape peak_shape)\n"
-		"void InterferenceFunction3DLattice::setPeakShape(const IPeakShape &peak_shape)\n"
+	 { "FormFactorPyramid_getHeight", _wrap_FormFactorPyramid_getHeight, METH_O, "\n"
+		"FormFactorPyramid_getHeight(FormFactorPyramid self) -> double\n"
+		"double FormFactorPyramid::getHeight() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunction3DLattice_lattice", _wrap_InterferenceFunction3DLattice_lattice, METH_O, "\n"
-		"InterferenceFunction3DLattice_lattice(InterferenceFunction3DLattice self) -> Lattice\n"
-		"const Lattice & InterferenceFunction3DLattice::lattice() const\n"
+	 { "FormFactorPyramid_getBaseEdge", _wrap_FormFactorPyramid_getBaseEdge, METH_O, "\n"
+		"FormFactorPyramid_getBaseEdge(FormFactorPyramid self) -> double\n"
+		"double FormFactorPyramid::getBaseEdge() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunction3DLattice_supportsMultilayer", _wrap_InterferenceFunction3DLattice_supportsMultilayer, METH_O, "\n"
-		"InterferenceFunction3DLattice_supportsMultilayer(InterferenceFunction3DLattice self) -> bool\n"
-		"bool InterferenceFunction3DLattice::supportsMultilayer() const override final\n"
+	 { "FormFactorPyramid_getAlpha", _wrap_FormFactorPyramid_getAlpha, METH_O, "\n"
+		"FormFactorPyramid_getAlpha(FormFactorPyramid self) -> double\n"
+		"double FormFactorPyramid::getAlpha() const\n"
 		"\n"
-		"Indicates if this interference function can be used with a multilayer (DWBA mode) \n"
+		""},
+	 { "delete_FormFactorPyramid", _wrap_delete_FormFactorPyramid, METH_O, "delete_FormFactorPyramid(FormFactorPyramid self)"},
+	 { "FormFactorPyramid_swigregister", FormFactorPyramid_swigregister, METH_O, NULL},
+	 { "FormFactorPyramid_swiginit", FormFactorPyramid_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorRipple1Box", _wrap_new_FormFactorRipple1Box, METH_VARARGS, "\n"
+		"new_FormFactorRipple1Box(double length, double width, double height) -> FormFactorRipple1Box\n"
+		"FormFactorRipple1Box::FormFactorRipple1Box(double length, double width, double height)\n"
 		"\n"
 		""},
-	 { "InterferenceFunction3DLattice_getChildren", _wrap_InterferenceFunction3DLattice_getChildren, METH_O, "\n"
-		"InterferenceFunction3DLattice_getChildren(InterferenceFunction3DLattice self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > InterferenceFunction3DLattice::getChildren() const override final\n"
+	 { "FormFactorRipple1Box_clone", _wrap_FormFactorRipple1Box_clone, METH_O, "\n"
+		"FormFactorRipple1Box_clone(FormFactorRipple1Box self) -> FormFactorRipple1Box\n"
+		"FormFactorRipple1Box * FormFactorRipple1Box::clone() const override final\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction3DLattice_onChange", _wrap_InterferenceFunction3DLattice_onChange, METH_O, "\n"
-		"InterferenceFunction3DLattice_onChange(InterferenceFunction3DLattice self)\n"
-		"void InterferenceFunction3DLattice::onChange() override final\n"
+	 { "FormFactorRipple1Box_accept", _wrap_FormFactorRipple1Box_accept, METH_VARARGS, "\n"
+		"FormFactorRipple1Box_accept(FormFactorRipple1Box self, INodeVisitor visitor)\n"
+		"void FormFactorRipple1Box::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Action to be taken in inherited class when a parameter has changed. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunction3DLattice_swigregister", InterferenceFunction3DLattice_swigregister, METH_O, NULL},
-	 { "InterferenceFunction3DLattice_swiginit", InterferenceFunction3DLattice_swiginit, METH_VARARGS, NULL},
-	 { "new_InterferenceFunctionFinite2DLattice", _wrap_new_InterferenceFunctionFinite2DLattice, METH_VARARGS, "\n"
-		"InterferenceFunctionFinite2DLattice(Lattice2D lattice, unsigned int N_1, unsigned int N_2)\n"
-		"new_InterferenceFunctionFinite2DLattice(double length_1, double length_2, double alpha, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice\n"
-		"InterferenceFunctionFinite2DLattice::InterferenceFunctionFinite2DLattice(double length_1, double length_2, double alpha, double xi, unsigned N_1, unsigned N_2)\n"
+	 { "delete_FormFactorRipple1Box", _wrap_delete_FormFactorRipple1Box, METH_O, "delete_FormFactorRipple1Box(FormFactorRipple1Box self)"},
+	 { "FormFactorRipple1Box_swigregister", FormFactorRipple1Box_swigregister, METH_O, NULL},
+	 { "FormFactorRipple1Box_swiginit", FormFactorRipple1Box_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorRipple1Gauss", _wrap_new_FormFactorRipple1Gauss, METH_VARARGS, "\n"
+		"new_FormFactorRipple1Gauss(double length, double width, double height) -> FormFactorRipple1Gauss\n"
+		"FormFactorRipple1Gauss::FormFactorRipple1Gauss(double length, double width, double height)\n"
 		"\n"
-		"Constructor of two-dimensional finite lattice interference function.\n"
+		""},
+	 { "FormFactorRipple1Gauss_clone", _wrap_FormFactorRipple1Gauss_clone, METH_O, "\n"
+		"FormFactorRipple1Gauss_clone(FormFactorRipple1Gauss self) -> FormFactorRipple1Gauss\n"
+		"FormFactorRipple1Gauss * FormFactorRipple1Gauss::clone() const override final\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
-		"length_1: \n"
-		"length of first lattice vector in nanometers\n"
+		""},
+	 { "FormFactorRipple1Gauss_accept", _wrap_FormFactorRipple1Gauss_accept, METH_VARARGS, "\n"
+		"FormFactorRipple1Gauss_accept(FormFactorRipple1Gauss self, INodeVisitor visitor)\n"
+		"void FormFactorRipple1Gauss::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"length_2: \n"
-		"length of second lattice vector in nanometers\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
-		"alpha: \n"
-		"angle between lattice vectors in radians\n"
+		""},
+	 { "delete_FormFactorRipple1Gauss", _wrap_delete_FormFactorRipple1Gauss, METH_O, "delete_FormFactorRipple1Gauss(FormFactorRipple1Gauss self)"},
+	 { "FormFactorRipple1Gauss_swigregister", FormFactorRipple1Gauss_swigregister, METH_O, NULL},
+	 { "FormFactorRipple1Gauss_swiginit", FormFactorRipple1Gauss_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorRipple1Lorentz", _wrap_new_FormFactorRipple1Lorentz, METH_VARARGS, "\n"
+		"new_FormFactorRipple1Lorentz(double length, double width, double height) -> FormFactorRipple1Lorentz\n"
+		"FormFactorRipple1Lorentz::FormFactorRipple1Lorentz(double length, double width, double height)\n"
 		"\n"
-		"xi: \n"
-		"rotation of lattice with respect to x-axis (beam direction) in radians\n"
+		""},
+	 { "FormFactorRipple1Lorentz_clone", _wrap_FormFactorRipple1Lorentz_clone, METH_O, "\n"
+		"FormFactorRipple1Lorentz_clone(FormFactorRipple1Lorentz self) -> FormFactorRipple1Lorentz\n"
+		"FormFactorRipple1Lorentz * FormFactorRipple1Lorentz::clone() const override final\n"
 		"\n"
-		"N_1: \n"
-		"number of lattice cells in the first lattice direction\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
-		"N_2: \n"
-		"number of lattice cells in the second lattice direction \n"
+		""},
+	 { "FormFactorRipple1Lorentz_accept", _wrap_FormFactorRipple1Lorentz_accept, METH_VARARGS, "\n"
+		"FormFactorRipple1Lorentz_accept(FormFactorRipple1Lorentz self, INodeVisitor visitor)\n"
+		"void FormFactorRipple1Lorentz::accept(INodeVisitor *visitor) const override final\n"
+		"\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_InterferenceFunctionFinite2DLattice", _wrap_delete_InterferenceFunctionFinite2DLattice, METH_O, "\n"
-		"delete_InterferenceFunctionFinite2DLattice(InterferenceFunctionFinite2DLattice self)\n"
-		"InterferenceFunctionFinite2DLattice::~InterferenceFunctionFinite2DLattice() final\n"
+	 { "delete_FormFactorRipple1Lorentz", _wrap_delete_FormFactorRipple1Lorentz, METH_O, "delete_FormFactorRipple1Lorentz(FormFactorRipple1Lorentz self)"},
+	 { "FormFactorRipple1Lorentz_swigregister", FormFactorRipple1Lorentz_swigregister, METH_O, NULL},
+	 { "FormFactorRipple1Lorentz_swiginit", FormFactorRipple1Lorentz_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorRipple2Box", _wrap_new_FormFactorRipple2Box, METH_VARARGS, "\n"
+		"new_FormFactorRipple2Box(double length, double width, double height, double asymmetry) -> FormFactorRipple2Box\n"
+		"FormFactorRipple2Box::FormFactorRipple2Box(double length, double width, double height, double asymmetry)\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite2DLattice_clone", _wrap_InterferenceFunctionFinite2DLattice_clone, METH_O, "\n"
-		"InterferenceFunctionFinite2DLattice_clone(InterferenceFunctionFinite2DLattice self) -> InterferenceFunctionFinite2DLattice\n"
-		"InterferenceFunctionFinite2DLattice * InterferenceFunctionFinite2DLattice::clone() const override final\n"
+	 { "FormFactorRipple2Box_clone", _wrap_FormFactorRipple2Box_clone, METH_O, "\n"
+		"FormFactorRipple2Box_clone(FormFactorRipple2Box self) -> FormFactorRipple2Box\n"
+		"FormFactorRipple2Box * FormFactorRipple2Box::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite2DLattice_accept", _wrap_InterferenceFunctionFinite2DLattice_accept, METH_VARARGS, "\n"
-		"InterferenceFunctionFinite2DLattice_accept(InterferenceFunctionFinite2DLattice self, INodeVisitor visitor)\n"
-		"void InterferenceFunctionFinite2DLattice::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorRipple2Box_accept", _wrap_FormFactorRipple2Box_accept, METH_VARARGS, "\n"
+		"FormFactorRipple2Box_accept(FormFactorRipple2Box self, INodeVisitor visitor)\n"
+		"void FormFactorRipple2Box::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite2DLattice_createSquare", _wrap_InterferenceFunctionFinite2DLattice_createSquare, METH_VARARGS, "InterferenceFunctionFinite2DLattice_createSquare(double lattice_length, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice"},
-	 { "InterferenceFunctionFinite2DLattice_createHexagonal", _wrap_InterferenceFunctionFinite2DLattice_createHexagonal, METH_VARARGS, "InterferenceFunctionFinite2DLattice_createHexagonal(double lattice_length, double xi, unsigned int N_1, unsigned int N_2) -> InterferenceFunctionFinite2DLattice"},
-	 { "InterferenceFunctionFinite2DLattice_numberUnitCells1", _wrap_InterferenceFunctionFinite2DLattice_numberUnitCells1, METH_O, "\n"
-		"InterferenceFunctionFinite2DLattice_numberUnitCells1(InterferenceFunctionFinite2DLattice self) -> unsigned int\n"
-		"unsigned InterferenceFunctionFinite2DLattice::numberUnitCells1() const\n"
+	 { "delete_FormFactorRipple2Box", _wrap_delete_FormFactorRipple2Box, METH_O, "delete_FormFactorRipple2Box(FormFactorRipple2Box self)"},
+	 { "FormFactorRipple2Box_swigregister", FormFactorRipple2Box_swigregister, METH_O, NULL},
+	 { "FormFactorRipple2Box_swiginit", FormFactorRipple2Box_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorRipple2Gauss", _wrap_new_FormFactorRipple2Gauss, METH_VARARGS, "\n"
+		"new_FormFactorRipple2Gauss(double length, double width, double height, double asymmetry) -> FormFactorRipple2Gauss\n"
+		"FormFactorRipple2Gauss::FormFactorRipple2Gauss(double length, double width, double height, double asymmetry)\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite2DLattice_numberUnitCells2", _wrap_InterferenceFunctionFinite2DLattice_numberUnitCells2, METH_O, "\n"
-		"InterferenceFunctionFinite2DLattice_numberUnitCells2(InterferenceFunctionFinite2DLattice self) -> unsigned int\n"
-		"unsigned InterferenceFunctionFinite2DLattice::numberUnitCells2() const\n"
+	 { "FormFactorRipple2Gauss_clone", _wrap_FormFactorRipple2Gauss_clone, METH_O, "\n"
+		"FormFactorRipple2Gauss_clone(FormFactorRipple2Gauss self) -> FormFactorRipple2Gauss\n"
+		"FormFactorRipple2Gauss * FormFactorRipple2Gauss::clone() const override final\n"
 		"\n"
-		""},
-	 { "InterferenceFunctionFinite2DLattice_setIntegrationOverXi", _wrap_InterferenceFunctionFinite2DLattice_setIntegrationOverXi, METH_VARARGS, "\n"
-		"InterferenceFunctionFinite2DLattice_setIntegrationOverXi(InterferenceFunctionFinite2DLattice self, bool integrate_xi)\n"
-		"void InterferenceFunctionFinite2DLattice::setIntegrationOverXi(bool integrate_xi)\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite2DLattice_integrationOverXi", _wrap_InterferenceFunctionFinite2DLattice_integrationOverXi, METH_O, "\n"
-		"InterferenceFunctionFinite2DLattice_integrationOverXi(InterferenceFunctionFinite2DLattice self) -> bool\n"
-		"bool InterferenceFunctionFinite2DLattice::integrationOverXi() const\n"
+	 { "FormFactorRipple2Gauss_accept", _wrap_FormFactorRipple2Gauss_accept, METH_VARARGS, "\n"
+		"FormFactorRipple2Gauss_accept(FormFactorRipple2Gauss self, INodeVisitor visitor)\n"
+		"void FormFactorRipple2Gauss::accept(INodeVisitor *visitor) const override final\n"
+		"\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite2DLattice_lattice", _wrap_InterferenceFunctionFinite2DLattice_lattice, METH_O, "\n"
-		"InterferenceFunctionFinite2DLattice_lattice(InterferenceFunctionFinite2DLattice self) -> Lattice2D\n"
-		"const Lattice2D & InterferenceFunctionFinite2DLattice::lattice() const\n"
+	 { "delete_FormFactorRipple2Gauss", _wrap_delete_FormFactorRipple2Gauss, METH_O, "delete_FormFactorRipple2Gauss(FormFactorRipple2Gauss self)"},
+	 { "FormFactorRipple2Gauss_swigregister", FormFactorRipple2Gauss_swigregister, METH_O, NULL},
+	 { "FormFactorRipple2Gauss_swiginit", FormFactorRipple2Gauss_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorRipple2Lorentz", _wrap_new_FormFactorRipple2Lorentz, METH_VARARGS, "\n"
+		"new_FormFactorRipple2Lorentz(double length, double width, double height, double asymmetry) -> FormFactorRipple2Lorentz\n"
+		"FormFactorRipple2Lorentz::FormFactorRipple2Lorentz(double length, double width, double height, double asymmetry)\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite2DLattice_getParticleDensity", _wrap_InterferenceFunctionFinite2DLattice_getParticleDensity, METH_O, "\n"
-		"InterferenceFunctionFinite2DLattice_getParticleDensity(InterferenceFunctionFinite2DLattice self) -> double\n"
-		"double InterferenceFunctionFinite2DLattice::getParticleDensity() const override final\n"
+	 { "FormFactorRipple2Lorentz_clone", _wrap_FormFactorRipple2Lorentz_clone, METH_O, "\n"
+		"FormFactorRipple2Lorentz_clone(FormFactorRipple2Lorentz self) -> FormFactorRipple2Lorentz\n"
+		"FormFactorRipple2Lorentz * FormFactorRipple2Lorentz::clone() const override final\n"
 		"\n"
-		"Returns the particle density associated with this 2d lattice. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite2DLattice_getChildren", _wrap_InterferenceFunctionFinite2DLattice_getChildren, METH_O, "\n"
-		"InterferenceFunctionFinite2DLattice_getChildren(InterferenceFunctionFinite2DLattice self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > InterferenceFunctionFinite2DLattice::getChildren() const override final\n"
+	 { "FormFactorRipple2Lorentz_accept", _wrap_FormFactorRipple2Lorentz_accept, METH_VARARGS, "\n"
+		"FormFactorRipple2Lorentz_accept(FormFactorRipple2Lorentz self, INodeVisitor visitor)\n"
+		"void FormFactorRipple2Lorentz::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite2DLattice_swigregister", InterferenceFunctionFinite2DLattice_swigregister, METH_O, NULL},
-	 { "InterferenceFunctionFinite2DLattice_swiginit", InterferenceFunctionFinite2DLattice_swiginit, METH_VARARGS, NULL},
-	 { "new_InterferenceFunctionFinite3DLattice", _wrap_new_InterferenceFunctionFinite3DLattice, METH_VARARGS, "\n"
-		"new_InterferenceFunctionFinite3DLattice(Lattice lattice, unsigned int N_1, unsigned int N_2, unsigned int N_3) -> InterferenceFunctionFinite3DLattice\n"
-		"InterferenceFunctionFinite3DLattice::InterferenceFunctionFinite3DLattice(const Lattice &lattice, unsigned N_1, unsigned N_2, unsigned N_3)\n"
+	 { "delete_FormFactorRipple2Lorentz", _wrap_delete_FormFactorRipple2Lorentz, METH_O, "delete_FormFactorRipple2Lorentz(FormFactorRipple2Lorentz self)"},
+	 { "FormFactorRipple2Lorentz_swigregister", FormFactorRipple2Lorentz_swigregister, METH_O, NULL},
+	 { "FormFactorRipple2Lorentz_swiginit", FormFactorRipple2Lorentz_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorTetrahedron", _wrap_new_FormFactorTetrahedron, METH_VARARGS, "\n"
+		"new_FormFactorTetrahedron(double base_edge, double height, double alpha) -> FormFactorTetrahedron\n"
+		"FormFactorTetrahedron::FormFactorTetrahedron(double base_edge, double height, double alpha)\n"
 		"\n"
-		"Constructor of three-dimensional finite lattice interference function.\n"
+		"Constructor of a truncated tethrahedron.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"lattice: \n"
-		"object specifying a 2d lattice structure\n"
-		"\n"
-		"N_1: \n"
-		"number of lattice cells in the first lattice direction\n"
+		"base_edge: \n"
+		"length of one edge of the equilateral triangular base in nanometers\n"
 		"\n"
-		"N_2: \n"
-		"number of lattice cells in the second lattice direction \n"
+		"height: \n"
+		"height of the tetrahedron in nanometers\n"
 		"\n"
-		""},
-	 { "delete_InterferenceFunctionFinite3DLattice", _wrap_delete_InterferenceFunctionFinite3DLattice, METH_O, "\n"
-		"delete_InterferenceFunctionFinite3DLattice(InterferenceFunctionFinite3DLattice self)\n"
-		"InterferenceFunctionFinite3DLattice::~InterferenceFunctionFinite3DLattice() final\n"
+		"alpha: \n"
+		"dihedral angle in radians between base and facet \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite3DLattice_clone", _wrap_InterferenceFunctionFinite3DLattice_clone, METH_O, "\n"
-		"InterferenceFunctionFinite3DLattice_clone(InterferenceFunctionFinite3DLattice self) -> InterferenceFunctionFinite3DLattice\n"
-		"InterferenceFunctionFinite3DLattice * InterferenceFunctionFinite3DLattice::clone() const override final\n"
+	 { "FormFactorTetrahedron_clone", _wrap_FormFactorTetrahedron_clone, METH_O, "\n"
+		"FormFactorTetrahedron_clone(FormFactorTetrahedron self) -> FormFactorTetrahedron\n"
+		"FormFactorTetrahedron* FormFactorTetrahedron::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite3DLattice_accept", _wrap_InterferenceFunctionFinite3DLattice_accept, METH_VARARGS, "\n"
-		"InterferenceFunctionFinite3DLattice_accept(InterferenceFunctionFinite3DLattice self, INodeVisitor visitor)\n"
-		"void InterferenceFunctionFinite3DLattice::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorTetrahedron_accept", _wrap_FormFactorTetrahedron_accept, METH_VARARGS, "\n"
+		"FormFactorTetrahedron_accept(FormFactorTetrahedron self, INodeVisitor visitor)\n"
+		"void FormFactorTetrahedron::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite3DLattice_numberUnitCells1", _wrap_InterferenceFunctionFinite3DLattice_numberUnitCells1, METH_O, "\n"
-		"InterferenceFunctionFinite3DLattice_numberUnitCells1(InterferenceFunctionFinite3DLattice self) -> unsigned int\n"
-		"unsigned InterferenceFunctionFinite3DLattice::numberUnitCells1() const\n"
+	 { "FormFactorTetrahedron_getBaseEdge", _wrap_FormFactorTetrahedron_getBaseEdge, METH_O, "\n"
+		"FormFactorTetrahedron_getBaseEdge(FormFactorTetrahedron self) -> double\n"
+		"double FormFactorTetrahedron::getBaseEdge() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite3DLattice_numberUnitCells2", _wrap_InterferenceFunctionFinite3DLattice_numberUnitCells2, METH_O, "\n"
-		"InterferenceFunctionFinite3DLattice_numberUnitCells2(InterferenceFunctionFinite3DLattice self) -> unsigned int\n"
-		"unsigned InterferenceFunctionFinite3DLattice::numberUnitCells2() const\n"
+	 { "FormFactorTetrahedron_getHeight", _wrap_FormFactorTetrahedron_getHeight, METH_O, "\n"
+		"FormFactorTetrahedron_getHeight(FormFactorTetrahedron self) -> double\n"
+		"double FormFactorTetrahedron::getHeight() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite3DLattice_numberUnitCells3", _wrap_InterferenceFunctionFinite3DLattice_numberUnitCells3, METH_O, "\n"
-		"InterferenceFunctionFinite3DLattice_numberUnitCells3(InterferenceFunctionFinite3DLattice self) -> unsigned int\n"
-		"unsigned InterferenceFunctionFinite3DLattice::numberUnitCells3() const\n"
+	 { "FormFactorTetrahedron_getAlpha", _wrap_FormFactorTetrahedron_getAlpha, METH_O, "\n"
+		"FormFactorTetrahedron_getAlpha(FormFactorTetrahedron self) -> double\n"
+		"double FormFactorTetrahedron::getAlpha() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite3DLattice_lattice", _wrap_InterferenceFunctionFinite3DLattice_lattice, METH_O, "\n"
-		"InterferenceFunctionFinite3DLattice_lattice(InterferenceFunctionFinite3DLattice self) -> Lattice\n"
-		"const Lattice & InterferenceFunctionFinite3DLattice::lattice() const\n"
+	 { "delete_FormFactorTetrahedron", _wrap_delete_FormFactorTetrahedron, METH_O, "delete_FormFactorTetrahedron(FormFactorTetrahedron self)"},
+	 { "FormFactorTetrahedron_swigregister", FormFactorTetrahedron_swigregister, METH_O, NULL},
+	 { "FormFactorTetrahedron_swiginit", FormFactorTetrahedron_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorTruncatedCube", _wrap_new_FormFactorTruncatedCube, METH_VARARGS, "\n"
+		"new_FormFactorTruncatedCube(double length, double removed_length) -> FormFactorTruncatedCube\n"
+		"FormFactorTruncatedCube::FormFactorTruncatedCube(double length, double removed_length)\n"
+		"\n"
+		"Constructor of a truncated cube.\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"length: \n"
+		"length of the full cube's edge in nanometers\n"
+		"\n"
+		"removed_length: \n"
+		"removed length from each edge of the cube in nanometers \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite3DLattice_supportsMultilayer", _wrap_InterferenceFunctionFinite3DLattice_supportsMultilayer, METH_O, "\n"
-		"InterferenceFunctionFinite3DLattice_supportsMultilayer(InterferenceFunctionFinite3DLattice self) -> bool\n"
-		"bool InterferenceFunctionFinite3DLattice::supportsMultilayer() const override final\n"
+	 { "FormFactorTruncatedCube_clone", _wrap_FormFactorTruncatedCube_clone, METH_O, "\n"
+		"FormFactorTruncatedCube_clone(FormFactorTruncatedCube self) -> FormFactorTruncatedCube\n"
+		"FormFactorTruncatedCube* FormFactorTruncatedCube::clone() const override final\n"
 		"\n"
-		"Indicates if this interference function can be used with a multilayer (DWBA mode) \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite3DLattice_getChildren", _wrap_InterferenceFunctionFinite3DLattice_getChildren, METH_O, "\n"
-		"InterferenceFunctionFinite3DLattice_getChildren(InterferenceFunctionFinite3DLattice self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > InterferenceFunctionFinite3DLattice::getChildren() const override final\n"
+	 { "FormFactorTruncatedCube_accept", _wrap_FormFactorTruncatedCube_accept, METH_VARARGS, "\n"
+		"FormFactorTruncatedCube_accept(FormFactorTruncatedCube self, INodeVisitor visitor)\n"
+		"void FormFactorTruncatedCube::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionFinite3DLattice_swigregister", InterferenceFunctionFinite3DLattice_swigregister, METH_O, NULL},
-	 { "InterferenceFunctionFinite3DLattice_swiginit", InterferenceFunctionFinite3DLattice_swiginit, METH_VARARGS, NULL},
-	 { "new_InterferenceFunctionHardDisk", _wrap_new_InterferenceFunctionHardDisk, METH_VARARGS, "\n"
-		"new_InterferenceFunctionHardDisk(double radius, double density) -> InterferenceFunctionHardDisk\n"
-		"InterferenceFunctionHardDisk::InterferenceFunctionHardDisk(double radius, double density)\n"
+	 { "FormFactorTruncatedCube_getLength", _wrap_FormFactorTruncatedCube_getLength, METH_O, "\n"
+		"FormFactorTruncatedCube_getLength(FormFactorTruncatedCube self) -> double\n"
+		"double FormFactorTruncatedCube::getLength() const\n"
 		"\n"
 		""},
-	 { "delete_InterferenceFunctionHardDisk", _wrap_delete_InterferenceFunctionHardDisk, METH_O, "\n"
-		"delete_InterferenceFunctionHardDisk(InterferenceFunctionHardDisk self)\n"
-		"InterferenceFunctionHardDisk::~InterferenceFunctionHardDisk() final\n"
+	 { "FormFactorTruncatedCube_getRemovedLength", _wrap_FormFactorTruncatedCube_getRemovedLength, METH_O, "\n"
+		"FormFactorTruncatedCube_getRemovedLength(FormFactorTruncatedCube self) -> double\n"
+		"double FormFactorTruncatedCube::getRemovedLength() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionHardDisk_clone", _wrap_InterferenceFunctionHardDisk_clone, METH_O, "\n"
-		"InterferenceFunctionHardDisk_clone(InterferenceFunctionHardDisk self) -> InterferenceFunctionHardDisk\n"
-		"InterferenceFunctionHardDisk * InterferenceFunctionHardDisk::clone() const override final\n"
+	 { "delete_FormFactorTruncatedCube", _wrap_delete_FormFactorTruncatedCube, METH_O, "delete_FormFactorTruncatedCube(FormFactorTruncatedCube self)"},
+	 { "FormFactorTruncatedCube_swigregister", FormFactorTruncatedCube_swigregister, METH_O, NULL},
+	 { "FormFactorTruncatedCube_swiginit", FormFactorTruncatedCube_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorTruncatedSphere", _wrap_new_FormFactorTruncatedSphere, METH_VARARGS, "\n"
+		"FormFactorTruncatedSphere(double radius, double height, double dh=0.0)\n"
+		"FormFactorTruncatedSphere::FormFactorTruncatedSphere(double radius, double height, double dh=0.0)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Constructor of a spherical dome.\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"radius: \n"
+		"radius of the truncated sphere in nanometers\n"
+		"\n"
+		"height: \n"
+		"height of the truncated sphere in nanometers\n"
+		"\n"
+		"dh: \n"
+		"length of cup truncated from the top \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionHardDisk_accept", _wrap_InterferenceFunctionHardDisk_accept, METH_VARARGS, "\n"
-		"InterferenceFunctionHardDisk_accept(InterferenceFunctionHardDisk self, INodeVisitor visitor)\n"
-		"void InterferenceFunctionHardDisk::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorTruncatedSphere_clone", _wrap_FormFactorTruncatedSphere_clone, METH_O, "\n"
+		"FormFactorTruncatedSphere_clone(FormFactorTruncatedSphere self) -> FormFactorTruncatedSphere\n"
+		"FormFactorTruncatedSphere* FormFactorTruncatedSphere::clone() const override final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionHardDisk_getParticleDensity", _wrap_InterferenceFunctionHardDisk_getParticleDensity, METH_O, "\n"
-		"InterferenceFunctionHardDisk_getParticleDensity(InterferenceFunctionHardDisk self) -> double\n"
-		"double InterferenceFunctionHardDisk::getParticleDensity() const override final\n"
+	 { "FormFactorTruncatedSphere_accept", _wrap_FormFactorTruncatedSphere_accept, METH_VARARGS, "\n"
+		"FormFactorTruncatedSphere_accept(FormFactorTruncatedSphere self, INodeVisitor visitor)\n"
+		"void FormFactorTruncatedSphere::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"If defined by this interference function's parameters, returns the particle density (per area). Otherwise, returns zero or a user-defined value \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionHardDisk_radius", _wrap_InterferenceFunctionHardDisk_radius, METH_O, "\n"
-		"InterferenceFunctionHardDisk_radius(InterferenceFunctionHardDisk self) -> double\n"
-		"double InterferenceFunctionHardDisk::radius() const\n"
+	 { "FormFactorTruncatedSphere_getHeight", _wrap_FormFactorTruncatedSphere_getHeight, METH_O, "\n"
+		"FormFactorTruncatedSphere_getHeight(FormFactorTruncatedSphere self) -> double\n"
+		"double FormFactorTruncatedSphere::getHeight() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionHardDisk_density", _wrap_InterferenceFunctionHardDisk_density, METH_O, "\n"
-		"InterferenceFunctionHardDisk_density(InterferenceFunctionHardDisk self) -> double\n"
-		"double InterferenceFunctionHardDisk::density() const\n"
+	 { "FormFactorTruncatedSphere_getRadius", _wrap_FormFactorTruncatedSphere_getRadius, METH_O, "\n"
+		"FormFactorTruncatedSphere_getRadius(FormFactorTruncatedSphere self) -> double\n"
+		"double FormFactorTruncatedSphere::getRadius() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionHardDisk_swigregister", InterferenceFunctionHardDisk_swigregister, METH_O, NULL},
-	 { "InterferenceFunctionHardDisk_swiginit", InterferenceFunctionHardDisk_swiginit, METH_VARARGS, NULL},
-	 { "new_InterferenceFunctionNone", _wrap_new_InterferenceFunctionNone, METH_NOARGS, "\n"
-		"new_InterferenceFunctionNone() -> InterferenceFunctionNone\n"
-		"InterferenceFunctionNone::InterferenceFunctionNone()\n"
+	 { "FormFactorTruncatedSphere_getRemovedTop", _wrap_FormFactorTruncatedSphere_getRemovedTop, METH_O, "\n"
+		"FormFactorTruncatedSphere_getRemovedTop(FormFactorTruncatedSphere self) -> double\n"
+		"double FormFactorTruncatedSphere::getRemovedTop() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionNone_clone", _wrap_InterferenceFunctionNone_clone, METH_O, "\n"
-		"InterferenceFunctionNone_clone(InterferenceFunctionNone self) -> InterferenceFunctionNone\n"
-		"InterferenceFunctionNone * InterferenceFunctionNone::clone() const override final\n"
+	 { "FormFactorTruncatedSphere_radialExtension", _wrap_FormFactorTruncatedSphere_radialExtension, METH_O, "\n"
+		"FormFactorTruncatedSphere_radialExtension(FormFactorTruncatedSphere self) -> double\n"
+		"double FormFactorTruncatedSphere::radialExtension() const override final\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionNone_accept", _wrap_InterferenceFunctionNone_accept, METH_VARARGS, "\n"
-		"InterferenceFunctionNone_accept(InterferenceFunctionNone self, INodeVisitor visitor)\n"
-		"void InterferenceFunctionNone::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorTruncatedSphere_evaluate_for_q", _wrap_FormFactorTruncatedSphere_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorTruncatedSphere_evaluate_for_q(FormFactorTruncatedSphere self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorTruncatedSphere::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Complex form factor. \n"
 		"\n"
 		""},
-	 { "delete_InterferenceFunctionNone", _wrap_delete_InterferenceFunctionNone, METH_O, "delete_InterferenceFunctionNone(InterferenceFunctionNone self)"},
-	 { "InterferenceFunctionNone_swigregister", InterferenceFunctionNone_swigregister, METH_O, NULL},
-	 { "InterferenceFunctionNone_swiginit", InterferenceFunctionNone_swiginit, METH_VARARGS, NULL},
-	 { "new_InterferenceFunctionRadialParaCrystal", _wrap_new_InterferenceFunctionRadialParaCrystal, METH_VARARGS, "\n"
-		"InterferenceFunctionRadialParaCrystal(double peak_distance, double damping_length=0.0)\n"
-		"InterferenceFunctionRadialParaCrystal::InterferenceFunctionRadialParaCrystal(double peak_distance, double damping_length=0.0)\n"
+	 { "delete_FormFactorTruncatedSphere", _wrap_delete_FormFactorTruncatedSphere, METH_O, "delete_FormFactorTruncatedSphere(FormFactorTruncatedSphere self)"},
+	 { "FormFactorTruncatedSphere_swigregister", FormFactorTruncatedSphere_swigregister, METH_O, NULL},
+	 { "FormFactorTruncatedSphere_swiginit", FormFactorTruncatedSphere_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorTruncatedSpheroid", _wrap_new_FormFactorTruncatedSpheroid, METH_VARARGS, "\n"
+		"FormFactorTruncatedSpheroid(double radius, double height, double height_flattening, double dh=0.0)\n"
+		"FormFactorTruncatedSpheroid::FormFactorTruncatedSpheroid(double radius, double height, double height_flattening, double dh=0.0)\n"
 		"\n"
-		"Constructor of interference function of radial paracrystal.\n"
+		"Constructor of a spheroidal dome.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"peak_distance: \n"
-		"average distance to the next neighbor in nanometers\n"
+		"radius: \n"
+		"radius of the truncated spheroid in nanometers\n"
 		"\n"
-		"damping_length: \n"
-		"the damping (coherence) length of the paracrystal in nanometers \n"
+		"height: \n"
+		"height of the truncated spheroid in nanometers\n"
+		"\n"
+		"height_flattening: \n"
+		"ratio of the height of the corresponding full spheroid to its diameter\n"
+		"\n"
+		"dh: \n"
+		"length of cup truncated from the top \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionRadialParaCrystal_clone", _wrap_InterferenceFunctionRadialParaCrystal_clone, METH_O, "\n"
-		"InterferenceFunctionRadialParaCrystal_clone(InterferenceFunctionRadialParaCrystal self) -> InterferenceFunctionRadialParaCrystal\n"
-		"InterferenceFunctionRadialParaCrystal * InterferenceFunctionRadialParaCrystal::clone() const override final\n"
+	 { "FormFactorTruncatedSpheroid_clone", _wrap_FormFactorTruncatedSpheroid_clone, METH_O, "\n"
+		"FormFactorTruncatedSpheroid_clone(FormFactorTruncatedSpheroid self) -> FormFactorTruncatedSpheroid\n"
+		"FormFactorTruncatedSpheroid* FormFactorTruncatedSpheroid::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionRadialParaCrystal_accept", _wrap_InterferenceFunctionRadialParaCrystal_accept, METH_VARARGS, "\n"
-		"InterferenceFunctionRadialParaCrystal_accept(InterferenceFunctionRadialParaCrystal self, INodeVisitor visitor)\n"
-		"void InterferenceFunctionRadialParaCrystal::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorTruncatedSpheroid_accept", _wrap_FormFactorTruncatedSpheroid_accept, METH_VARARGS, "\n"
+		"FormFactorTruncatedSpheroid_accept(FormFactorTruncatedSpheroid self, INodeVisitor visitor)\n"
+		"void FormFactorTruncatedSpheroid::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionRadialParaCrystal_setKappa", _wrap_InterferenceFunctionRadialParaCrystal_setKappa, METH_VARARGS, "\n"
-		"InterferenceFunctionRadialParaCrystal_setKappa(InterferenceFunctionRadialParaCrystal self, double kappa)\n"
-		"void InterferenceFunctionRadialParaCrystal::setKappa(double kappa)\n"
-		"\n"
-		"Sets size spacing coupling parameter of the Size Spacing Correlation Approximation.\n"
+	 { "FormFactorTruncatedSpheroid_getRadius", _wrap_FormFactorTruncatedSpheroid_getRadius, METH_O, "\n"
+		"FormFactorTruncatedSpheroid_getRadius(FormFactorTruncatedSpheroid self) -> double\n"
+		"double FormFactorTruncatedSpheroid::getRadius() const\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "FormFactorTruncatedSpheroid_getHeight", _wrap_FormFactorTruncatedSpheroid_getHeight, METH_O, "\n"
+		"FormFactorTruncatedSpheroid_getHeight(FormFactorTruncatedSpheroid self) -> double\n"
+		"double FormFactorTruncatedSpheroid::getHeight() const\n"
 		"\n"
-		"size: \n"
-		"spacing coupling parameter \n"
+		""},
+	 { "FormFactorTruncatedSpheroid_getHeightFlattening", _wrap_FormFactorTruncatedSpheroid_getHeightFlattening, METH_O, "\n"
+		"FormFactorTruncatedSpheroid_getHeightFlattening(FormFactorTruncatedSpheroid self) -> double\n"
+		"double FormFactorTruncatedSpheroid::getHeightFlattening() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionRadialParaCrystal_kappa", _wrap_InterferenceFunctionRadialParaCrystal_kappa, METH_O, "\n"
-		"InterferenceFunctionRadialParaCrystal_kappa(InterferenceFunctionRadialParaCrystal self) -> double\n"
-		"double InterferenceFunctionRadialParaCrystal::kappa() const\n"
+	 { "FormFactorTruncatedSpheroid_getRemovedTop", _wrap_FormFactorTruncatedSpheroid_getRemovedTop, METH_O, "\n"
+		"FormFactorTruncatedSpheroid_getRemovedTop(FormFactorTruncatedSpheroid self) -> double\n"
+		"double FormFactorTruncatedSpheroid::getRemovedTop() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionRadialParaCrystal_setDomainSize", _wrap_InterferenceFunctionRadialParaCrystal_setDomainSize, METH_VARARGS, "\n"
-		"InterferenceFunctionRadialParaCrystal_setDomainSize(InterferenceFunctionRadialParaCrystal self, double size)\n"
-		"void InterferenceFunctionRadialParaCrystal::setDomainSize(double size)\n"
+	 { "FormFactorTruncatedSpheroid_radialExtension", _wrap_FormFactorTruncatedSpheroid_radialExtension, METH_O, "\n"
+		"FormFactorTruncatedSpheroid_radialExtension(FormFactorTruncatedSpheroid self) -> double\n"
+		"double FormFactorTruncatedSpheroid::radialExtension() const override final\n"
 		"\n"
-		"Sets domain size (finite size corrections).\n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "FormFactorTruncatedSpheroid_evaluate_for_q", _wrap_FormFactorTruncatedSpheroid_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorTruncatedSpheroid_evaluate_for_q(FormFactorTruncatedSpheroid self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorTruncatedSpheroid::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"size: \n"
-		"size of coherence domain along the lattice main axis in nanometers \n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionRadialParaCrystal_domainSize", _wrap_InterferenceFunctionRadialParaCrystal_domainSize, METH_O, "\n"
-		"InterferenceFunctionRadialParaCrystal_domainSize(InterferenceFunctionRadialParaCrystal self) -> double\n"
-		"double InterferenceFunctionRadialParaCrystal::domainSize() const\n"
+	 { "delete_FormFactorTruncatedSpheroid", _wrap_delete_FormFactorTruncatedSpheroid, METH_O, "delete_FormFactorTruncatedSpheroid(FormFactorTruncatedSpheroid self)"},
+	 { "FormFactorTruncatedSpheroid_swigregister", FormFactorTruncatedSpheroid_swigregister, METH_O, NULL},
+	 { "FormFactorTruncatedSpheroid_swiginit", FormFactorTruncatedSpheroid_swiginit, METH_VARARGS, NULL},
+	 { "factor_x_box", _wrap_factor_x_box, METH_VARARGS, "\n"
+		"factor_x_box(complex_t q, double l) -> complex_t\n"
+		"complex_t ripples::factor_x_box(complex_t q, double l)\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionRadialParaCrystal_FTPDF", _wrap_InterferenceFunctionRadialParaCrystal_FTPDF, METH_VARARGS, "\n"
-		"InterferenceFunctionRadialParaCrystal_FTPDF(InterferenceFunctionRadialParaCrystal self, double qpar) -> complex_t\n"
-		"complex_t InterferenceFunctionRadialParaCrystal::FTPDF(double qpar) const\n"
+	 { "factor_x_Gauss", _wrap_factor_x_Gauss, METH_VARARGS, "\n"
+		"factor_x_Gauss(complex_t q, double l) -> complex_t\n"
+		"complex_t ripples::factor_x_Gauss(complex_t q, double l)\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionRadialParaCrystal_setProbabilityDistribution", _wrap_InterferenceFunctionRadialParaCrystal_setProbabilityDistribution, METH_VARARGS, "\n"
-		"InterferenceFunctionRadialParaCrystal_setProbabilityDistribution(InterferenceFunctionRadialParaCrystal self, IFTDistribution1D pdf)\n"
-		"void InterferenceFunctionRadialParaCrystal::setProbabilityDistribution(const IFTDistribution1D &pdf)\n"
+	 { "factor_x_Lorentz", _wrap_factor_x_Lorentz, METH_VARARGS, "\n"
+		"factor_x_Lorentz(complex_t q, double l) -> complex_t\n"
+		"complex_t ripples::factor_x_Lorentz(complex_t q, double l)\n"
 		"\n"
-		"Sets one-dimensional probability distribution.\n"
+		""},
+	 { "new_FormFactorDebyeBueche", _wrap_new_FormFactorDebyeBueche, METH_VARARGS, "\n"
+		"new_FormFactorDebyeBueche(double I0, double xi) -> FormFactorDebyeBueche\n"
+		"FormFactorDebyeBueche::FormFactorDebyeBueche(double I0, double xi)\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "FormFactorDebyeBueche_clone", _wrap_FormFactorDebyeBueche_clone, METH_O, "\n"
+		"FormFactorDebyeBueche_clone(FormFactorDebyeBueche self) -> FormFactorDebyeBueche\n"
+		"FormFactorDebyeBueche* FormFactorDebyeBueche::clone() const override final\n"
 		"\n"
-		"pdf: \n"
-		"probability distribution (Fourier transform of probability density) \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionRadialParaCrystal_peakDistance", _wrap_InterferenceFunctionRadialParaCrystal_peakDistance, METH_O, "\n"
-		"InterferenceFunctionRadialParaCrystal_peakDistance(InterferenceFunctionRadialParaCrystal self) -> double\n"
-		"double InterferenceFunctionRadialParaCrystal::peakDistance() const\n"
+	 { "FormFactorDebyeBueche_accept", _wrap_FormFactorDebyeBueche_accept, METH_VARARGS, "\n"
+		"FormFactorDebyeBueche_accept(FormFactorDebyeBueche self, INodeVisitor visitor)\n"
+		"void FormFactorDebyeBueche::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		""},
-	 { "InterferenceFunctionRadialParaCrystal_dampingLength", _wrap_InterferenceFunctionRadialParaCrystal_dampingLength, METH_O, "\n"
-		"InterferenceFunctionRadialParaCrystal_dampingLength(InterferenceFunctionRadialParaCrystal self) -> double\n"
-		"double InterferenceFunctionRadialParaCrystal::dampingLength() const\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionRadialParaCrystal_getChildren", _wrap_InterferenceFunctionRadialParaCrystal_getChildren, METH_O, "\n"
-		"InterferenceFunctionRadialParaCrystal_getChildren(InterferenceFunctionRadialParaCrystal self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > InterferenceFunctionRadialParaCrystal::getChildren() const override final\n"
+	 { "FormFactorDebyeBueche_radialExtension", _wrap_FormFactorDebyeBueche_radialExtension, METH_O, "\n"
+		"FormFactorDebyeBueche_radialExtension(FormFactorDebyeBueche self) -> double\n"
+		"double FormFactorDebyeBueche::radialExtension() const override final\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionRadialParaCrystal_randomSample", _wrap_InterferenceFunctionRadialParaCrystal_randomSample, METH_O, "\n"
-		"InterferenceFunctionRadialParaCrystal_randomSample(InterferenceFunctionRadialParaCrystal self) -> double\n"
-		"double InterferenceFunctionRadialParaCrystal::randomSample() const\n"
+	 { "FormFactorDebyeBueche_evaluate_for_q", _wrap_FormFactorDebyeBueche_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorDebyeBueche_evaluate_for_q(FormFactorDebyeBueche self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorDebyeBueche::evaluate_for_q(cvector_t q) const override final\n"
+		"\n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "delete_InterferenceFunctionRadialParaCrystal", _wrap_delete_InterferenceFunctionRadialParaCrystal, METH_O, "delete_InterferenceFunctionRadialParaCrystal(InterferenceFunctionRadialParaCrystal self)"},
-	 { "InterferenceFunctionRadialParaCrystal_swigregister", InterferenceFunctionRadialParaCrystal_swigregister, METH_O, NULL},
-	 { "InterferenceFunctionRadialParaCrystal_swiginit", InterferenceFunctionRadialParaCrystal_swiginit, METH_VARARGS, NULL},
-	 { "new_InterferenceFunctionTwin", _wrap_new_InterferenceFunctionTwin, METH_VARARGS, "\n"
-		"new_InterferenceFunctionTwin(kvector_t direction, double mean_distance, double std_dev) -> InterferenceFunctionTwin\n"
-		"InterferenceFunctionTwin::InterferenceFunctionTwin(const kvector_t &direction, double mean_distance, double std_dev)\n"
+	 { "delete_FormFactorDebyeBueche", _wrap_delete_FormFactorDebyeBueche, METH_O, "delete_FormFactorDebyeBueche(FormFactorDebyeBueche self)"},
+	 { "FormFactorDebyeBueche_swigregister", FormFactorDebyeBueche_swigregister, METH_O, NULL},
+	 { "FormFactorDebyeBueche_swiginit", FormFactorDebyeBueche_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorGauss", _wrap_new_FormFactorGauss, METH_VARARGS, "\n"
+		"FormFactorGauss(double length)\n"
+		"new_FormFactorGauss(double width, double height) -> FormFactorGauss\n"
+		"FormFactorGauss::FormFactorGauss(double width, double height)\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionTwin_clone", _wrap_InterferenceFunctionTwin_clone, METH_O, "\n"
-		"InterferenceFunctionTwin_clone(InterferenceFunctionTwin self) -> InterferenceFunctionTwin\n"
-		"InterferenceFunctionTwin * InterferenceFunctionTwin::clone() const override final\n"
+	 { "FormFactorGauss_clone", _wrap_FormFactorGauss_clone, METH_O, "\n"
+		"FormFactorGauss_clone(FormFactorGauss self) -> FormFactorGauss\n"
+		"FormFactorGauss* FormFactorGauss::clone() const override final\n"
 		"\n"
 		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionTwin_accept", _wrap_InterferenceFunctionTwin_accept, METH_VARARGS, "\n"
-		"InterferenceFunctionTwin_accept(InterferenceFunctionTwin self, INodeVisitor visitor)\n"
-		"void InterferenceFunctionTwin::accept(INodeVisitor *visitor) const override final\n"
+	 { "FormFactorGauss_accept", _wrap_FormFactorGauss_accept, METH_VARARGS, "\n"
+		"FormFactorGauss_accept(FormFactorGauss self, INodeVisitor visitor)\n"
+		"void FormFactorGauss::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "InterferenceFunctionTwin_direction", _wrap_InterferenceFunctionTwin_direction, METH_O, "\n"
-		"InterferenceFunctionTwin_direction(InterferenceFunctionTwin self) -> kvector_t\n"
-		"kvector_t InterferenceFunctionTwin::direction() const\n"
+	 { "FormFactorGauss_getWidth", _wrap_FormFactorGauss_getWidth, METH_O, "\n"
+		"FormFactorGauss_getWidth(FormFactorGauss self) -> double\n"
+		"double FormFactorGauss::getWidth() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionTwin_meanDistance", _wrap_InterferenceFunctionTwin_meanDistance, METH_O, "\n"
-		"InterferenceFunctionTwin_meanDistance(InterferenceFunctionTwin self) -> double\n"
-		"double InterferenceFunctionTwin::meanDistance() const\n"
+	 { "FormFactorGauss_getHeight", _wrap_FormFactorGauss_getHeight, METH_O, "\n"
+		"FormFactorGauss_getHeight(FormFactorGauss self) -> double\n"
+		"double FormFactorGauss::getHeight() const\n"
 		"\n"
 		""},
-	 { "InterferenceFunctionTwin_stdDev", _wrap_InterferenceFunctionTwin_stdDev, METH_O, "\n"
-		"InterferenceFunctionTwin_stdDev(InterferenceFunctionTwin self) -> double\n"
-		"double InterferenceFunctionTwin::stdDev() const\n"
+	 { "FormFactorGauss_radialExtension", _wrap_FormFactorGauss_radialExtension, METH_O, "\n"
+		"FormFactorGauss_radialExtension(FormFactorGauss self) -> double\n"
+		"double FormFactorGauss::radialExtension() const override final\n"
 		"\n"
-		""},
-	 { "delete_InterferenceFunctionTwin", _wrap_delete_InterferenceFunctionTwin, METH_O, "delete_InterferenceFunctionTwin(InterferenceFunctionTwin self)"},
-	 { "InterferenceFunctionTwin_swigregister", InterferenceFunctionTwin_swigregister, METH_O, NULL},
-	 { "InterferenceFunctionTwin_swiginit", InterferenceFunctionTwin_swiginit, METH_VARARGS, NULL},
-	 { "delete_IPixel", _wrap_delete_IPixel, METH_O, "\n"
-		"delete_IPixel(IPixel self)\n"
-		"virtual IPixel::~IPixel()\n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "IPixel_clone", _wrap_IPixel_clone, METH_O, "\n"
-		"IPixel_clone(IPixel self) -> IPixel\n"
-		"virtual IPixel* IPixel::clone() const =0\n"
+	 { "FormFactorGauss_evaluate_for_q", _wrap_FormFactorGauss_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorGauss_evaluate_for_q(FormFactorGauss self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorGauss::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		""},
-	 { "IPixel_createZeroSizePixel", _wrap_IPixel_createZeroSizePixel, METH_VARARGS, "\n"
-		"IPixel_createZeroSizePixel(IPixel self, double x, double y) -> IPixel\n"
-		"virtual IPixel* IPixel::createZeroSizePixel(double x, double y) const =0\n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "IPixel_getK", _wrap_IPixel_getK, METH_VARARGS, "\n"
-		"IPixel_getK(IPixel self, double x, double y, double wavelength) -> kvector_t\n"
-		"virtual kvector_t IPixel::getK(double x, double y, double wavelength) const =0\n"
+	 { "delete_FormFactorGauss", _wrap_delete_FormFactorGauss, METH_O, "delete_FormFactorGauss(FormFactorGauss self)"},
+	 { "FormFactorGauss_swigregister", FormFactorGauss_swigregister, METH_O, NULL},
+	 { "FormFactorGauss_swiginit", FormFactorGauss_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorLorentz", _wrap_new_FormFactorLorentz, METH_VARARGS, "\n"
+		"FormFactorLorentz(double length)\n"
+		"new_FormFactorLorentz(double width, double height) -> FormFactorLorentz\n"
+		"FormFactorLorentz::FormFactorLorentz(double width, double height)\n"
 		"\n"
 		""},
-	 { "IPixel_getIntegrationFactor", _wrap_IPixel_getIntegrationFactor, METH_VARARGS, "\n"
-		"IPixel_getIntegrationFactor(IPixel self, double x, double y) -> double\n"
-		"virtual double IPixel::getIntegrationFactor(double x, double y) const =0\n"
+	 { "FormFactorLorentz_clone", _wrap_FormFactorLorentz_clone, METH_O, "\n"
+		"FormFactorLorentz_clone(FormFactorLorentz self) -> FormFactorLorentz\n"
+		"FormFactorLorentz* FormFactorLorentz::clone() const override final\n"
 		"\n"
-		""},
-	 { "IPixel_getSolidAngle", _wrap_IPixel_getSolidAngle, METH_O, "\n"
-		"IPixel_getSolidAngle(IPixel self) -> double\n"
-		"virtual double IPixel::getSolidAngle() const =0\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "IPixel_swigregister", IPixel_swigregister, METH_O, NULL},
-	 { "new_SphericalPixel", _wrap_new_SphericalPixel, METH_VARARGS, "\n"
-		"new_SphericalPixel(Bin1D alpha_bin, Bin1D phi_bin) -> SphericalPixel\n"
-		"SphericalPixel::SphericalPixel(const Bin1D &alpha_bin, const Bin1D &phi_bin)\n"
+	 { "FormFactorLorentz_accept", _wrap_FormFactorLorentz_accept, METH_VARARGS, "\n"
+		"FormFactorLorentz_accept(FormFactorLorentz self, INodeVisitor visitor)\n"
+		"void FormFactorLorentz::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		""},
-	 { "SphericalPixel_clone", _wrap_SphericalPixel_clone, METH_O, "\n"
-		"SphericalPixel_clone(SphericalPixel self) -> SphericalPixel\n"
-		"SphericalPixel * SphericalPixel::clone() const override\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "SphericalPixel_createZeroSizePixel", _wrap_SphericalPixel_createZeroSizePixel, METH_VARARGS, "\n"
-		"SphericalPixel_createZeroSizePixel(SphericalPixel self, double x, double y) -> SphericalPixel\n"
-		"SphericalPixel * SphericalPixel::createZeroSizePixel(double x, double y) const override\n"
+	 { "FormFactorLorentz_getWidth", _wrap_FormFactorLorentz_getWidth, METH_O, "\n"
+		"FormFactorLorentz_getWidth(FormFactorLorentz self) -> double\n"
+		"double FormFactorLorentz::getWidth() const\n"
 		"\n"
 		""},
-	 { "SphericalPixel_getK", _wrap_SphericalPixel_getK, METH_VARARGS, "\n"
-		"SphericalPixel_getK(SphericalPixel self, double x, double y, double wavelength) -> kvector_t\n"
-		"kvector_t SphericalPixel::getK(double x, double y, double wavelength) const override\n"
+	 { "FormFactorLorentz_getHeight", _wrap_FormFactorLorentz_getHeight, METH_O, "\n"
+		"FormFactorLorentz_getHeight(FormFactorLorentz self) -> double\n"
+		"double FormFactorLorentz::getHeight() const\n"
 		"\n"
 		""},
-	 { "SphericalPixel_getIntegrationFactor", _wrap_SphericalPixel_getIntegrationFactor, METH_VARARGS, "\n"
-		"SphericalPixel_getIntegrationFactor(SphericalPixel self, double x, double y) -> double\n"
-		"double SphericalPixel::getIntegrationFactor(double x, double y) const override\n"
+	 { "FormFactorLorentz_radialExtension", _wrap_FormFactorLorentz_radialExtension, METH_O, "\n"
+		"FormFactorLorentz_radialExtension(FormFactorLorentz self) -> double\n"
+		"double FormFactorLorentz::radialExtension() const override final\n"
+		"\n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "SphericalPixel_getSolidAngle", _wrap_SphericalPixel_getSolidAngle, METH_O, "\n"
-		"SphericalPixel_getSolidAngle(SphericalPixel self) -> double\n"
-		"double SphericalPixel::getSolidAngle() const override\n"
+	 { "FormFactorLorentz_evaluate_for_q", _wrap_FormFactorLorentz_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorLorentz_evaluate_for_q(FormFactorLorentz self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorLorentz::evaluate_for_q(cvector_t q) const override final\n"
+		"\n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "delete_SphericalPixel", _wrap_delete_SphericalPixel, METH_O, "delete_SphericalPixel(SphericalPixel self)"},
-	 { "SphericalPixel_swigregister", SphericalPixel_swigregister, METH_O, NULL},
-	 { "SphericalPixel_swiginit", SphericalPixel_swiginit, METH_VARARGS, NULL},
-	 { "new_SphericalDetector", _wrap_new_SphericalDetector, METH_VARARGS, "\n"
-		"SphericalDetector()\n"
-		"SphericalDetector(size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max)\n"
-		"new_SphericalDetector(SphericalDetector other) -> SphericalDetector\n"
-		"SphericalDetector::SphericalDetector(const SphericalDetector &other)\n"
+	 { "delete_FormFactorLorentz", _wrap_delete_FormFactorLorentz, METH_O, "delete_FormFactorLorentz(FormFactorLorentz self)"},
+	 { "FormFactorLorentz_swigregister", FormFactorLorentz_swigregister, METH_O, NULL},
+	 { "FormFactorLorentz_swiginit", FormFactorLorentz_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorOrnsteinZernike", _wrap_new_FormFactorOrnsteinZernike, METH_VARARGS, "\n"
+		"new_FormFactorOrnsteinZernike(double I0, double xi_xy, double xi_z) -> FormFactorOrnsteinZernike\n"
+		"FormFactorOrnsteinZernike::FormFactorOrnsteinZernike(double I0, double xi_xy, double xi_z)\n"
 		"\n"
 		""},
-	 { "SphericalDetector_clone", _wrap_SphericalDetector_clone, METH_O, "\n"
-		"SphericalDetector_clone(SphericalDetector self) -> SphericalDetector\n"
-		"SphericalDetector * SphericalDetector::clone() const override\n"
+	 { "FormFactorOrnsteinZernike_clone", _wrap_FormFactorOrnsteinZernike_clone, METH_O, "\n"
+		"FormFactorOrnsteinZernike_clone(FormFactorOrnsteinZernike self) -> FormFactorOrnsteinZernike\n"
+		"FormFactorOrnsteinZernike* FormFactorOrnsteinZernike::clone() const override final\n"
+		"\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "SphericalDetector_accept", _wrap_SphericalDetector_accept, METH_VARARGS, "\n"
-		"SphericalDetector_accept(SphericalDetector self, INodeVisitor visitor)\n"
-		"void SphericalDetector::accept(INodeVisitor *visitor) const override\n"
+	 { "FormFactorOrnsteinZernike_accept", _wrap_FormFactorOrnsteinZernike_accept, METH_VARARGS, "\n"
+		"FormFactorOrnsteinZernike_accept(FormFactorOrnsteinZernike self, INodeVisitor visitor)\n"
+		"void FormFactorOrnsteinZernike::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_SphericalDetector", _wrap_delete_SphericalDetector, METH_O, "\n"
-		"delete_SphericalDetector(SphericalDetector self)\n"
-		"SphericalDetector::~SphericalDetector() override\n"
+	 { "FormFactorOrnsteinZernike_radialExtension", _wrap_FormFactorOrnsteinZernike_radialExtension, METH_O, "\n"
+		"FormFactorOrnsteinZernike_radialExtension(FormFactorOrnsteinZernike self) -> double\n"
+		"double FormFactorOrnsteinZernike::radialExtension() const override final\n"
+		"\n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "SphericalDetector_defaultAxesUnits", _wrap_SphericalDetector_defaultAxesUnits, METH_O, "\n"
-		"SphericalDetector_defaultAxesUnits(SphericalDetector self) -> AxesUnits\n"
-		"AxesUnits SphericalDetector::defaultAxesUnits() const override\n"
+	 { "FormFactorOrnsteinZernike_evaluate_for_q", _wrap_FormFactorOrnsteinZernike_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorOrnsteinZernike_evaluate_for_q(FormFactorOrnsteinZernike self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorOrnsteinZernike::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		"return default axes units \n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "SphericalDetector_swigregister", SphericalDetector_swigregister, METH_O, NULL},
-	 { "SphericalDetector_swiginit", SphericalDetector_swiginit, METH_VARARGS, NULL},
-	 { "new_IsGISAXSDetector", _wrap_new_IsGISAXSDetector, METH_VARARGS, "\n"
-		"IsGISAXSDetector()\n"
-		"IsGISAXSDetector(size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max)\n"
-		"new_IsGISAXSDetector(IsGISAXSDetector other) -> IsGISAXSDetector\n"
-		"IsGISAXSDetector::IsGISAXSDetector(const IsGISAXSDetector &other)\n"
+	 { "delete_FormFactorOrnsteinZernike", _wrap_delete_FormFactorOrnsteinZernike, METH_O, "delete_FormFactorOrnsteinZernike(FormFactorOrnsteinZernike self)"},
+	 { "FormFactorOrnsteinZernike_swigregister", FormFactorOrnsteinZernike_swigregister, METH_O, NULL},
+	 { "FormFactorOrnsteinZernike_swiginit", FormFactorOrnsteinZernike_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorSphereGaussianRadius", _wrap_new_FormFactorSphereGaussianRadius, METH_VARARGS, "\n"
+		"new_FormFactorSphereGaussianRadius(double mean, double sigma) -> FormFactorSphereGaussianRadius\n"
+		"FormFactorSphereGaussianRadius::FormFactorSphereGaussianRadius(double mean, double sigma)\n"
 		"\n"
 		""},
-	 { "IsGISAXSDetector_clone", _wrap_IsGISAXSDetector_clone, METH_O, "\n"
-		"IsGISAXSDetector_clone(IsGISAXSDetector self) -> IsGISAXSDetector\n"
-		"IsGISAXSDetector * IsGISAXSDetector::clone() const override\n"
+	 { "FormFactorSphereGaussianRadius_clone", _wrap_FormFactorSphereGaussianRadius_clone, METH_O, "\n"
+		"FormFactorSphereGaussianRadius_clone(FormFactorSphereGaussianRadius self) -> FormFactorSphereGaussianRadius\n"
+		"FormFactorSphereGaussianRadius* FormFactorSphereGaussianRadius::clone() const override final\n"
+		"\n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "IsGISAXSDetector_accept", _wrap_IsGISAXSDetector_accept, METH_VARARGS, "\n"
-		"IsGISAXSDetector_accept(IsGISAXSDetector self, INodeVisitor visitor)\n"
-		"void IsGISAXSDetector::accept(INodeVisitor *visitor) const final\n"
+	 { "FormFactorSphereGaussianRadius_accept", _wrap_FormFactorSphereGaussianRadius_accept, METH_VARARGS, "\n"
+		"FormFactorSphereGaussianRadius_accept(FormFactorSphereGaussianRadius self, INodeVisitor visitor)\n"
+		"void FormFactorSphereGaussianRadius::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_IsGISAXSDetector", _wrap_delete_IsGISAXSDetector, METH_O, "delete_IsGISAXSDetector(IsGISAXSDetector self)"},
-	 { "IsGISAXSDetector_swigregister", IsGISAXSDetector_swigregister, METH_O, NULL},
-	 { "IsGISAXSDetector_swiginit", IsGISAXSDetector_swiginit, METH_VARARGS, NULL},
-	 { "delete_ILatticeOrientation", _wrap_delete_ILatticeOrientation, METH_O, "\n"
-		"delete_ILatticeOrientation(ILatticeOrientation self)\n"
-		"ILatticeOrientation::~ILatticeOrientation()\n"
+	 { "FormFactorSphereGaussianRadius_radialExtension", _wrap_FormFactorSphereGaussianRadius_radialExtension, METH_O, "\n"
+		"FormFactorSphereGaussianRadius_radialExtension(FormFactorSphereGaussianRadius self) -> double\n"
+		"double FormFactorSphereGaussianRadius::radialExtension() const override final\n"
 		"\n"
-		""},
-	 { "ILatticeOrientation_clone", _wrap_ILatticeOrientation_clone, METH_O, "\n"
-		"ILatticeOrientation_clone(ILatticeOrientation self) -> ILatticeOrientation\n"
-		"virtual ILatticeOrientation* ILatticeOrientation::clone() const =0\n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "ILatticeOrientation_usePrimitiveLattice", _wrap_ILatticeOrientation_usePrimitiveLattice, METH_VARARGS, "\n"
-		"ILatticeOrientation_usePrimitiveLattice(ILatticeOrientation self, Lattice lattice)\n"
-		"virtual void ILatticeOrientation::usePrimitiveLattice(const Lattice &lattice)=0\n"
+	 { "FormFactorSphereGaussianRadius_evaluate_for_q", _wrap_FormFactorSphereGaussianRadius_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorSphereGaussianRadius_evaluate_for_q(FormFactorSphereGaussianRadius self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorSphereGaussianRadius::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		""},
-	 { "ILatticeOrientation_transformationMatrix", _wrap_ILatticeOrientation_transformationMatrix, METH_O, "\n"
-		"ILatticeOrientation_transformationMatrix(ILatticeOrientation self) -> Transform3D\n"
-		"virtual Transform3D ILatticeOrientation::transformationMatrix() const =0\n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "ILatticeOrientation_swigregister", ILatticeOrientation_swigregister, METH_O, NULL},
-	 { "new_MillerIndex", _wrap_new_MillerIndex, METH_VARARGS, "\n"
-		"new_MillerIndex(double h_, double k_, double l_) -> MillerIndex\n"
-		"MillerIndex::MillerIndex(double h_, double k_, double l_)\n"
+	 { "delete_FormFactorSphereGaussianRadius", _wrap_delete_FormFactorSphereGaussianRadius, METH_O, "delete_FormFactorSphereGaussianRadius(FormFactorSphereGaussianRadius self)"},
+	 { "FormFactorSphereGaussianRadius_swigregister", FormFactorSphereGaussianRadius_swigregister, METH_O, NULL},
+	 { "FormFactorSphereGaussianRadius_swiginit", FormFactorSphereGaussianRadius_swiginit, METH_VARARGS, NULL},
+	 { "new_FormFactorSphereLogNormalRadius", _wrap_new_FormFactorSphereLogNormalRadius, METH_VARARGS, "\n"
+		"new_FormFactorSphereLogNormalRadius(double mean, double scale_param, size_t n_samples) -> FormFactorSphereLogNormalRadius\n"
+		"FormFactorSphereLogNormalRadius::FormFactorSphereLogNormalRadius(double mean, double scale_param, size_t n_samples)\n"
 		"\n"
 		""},
-	 { "MillerIndex_h_set", _wrap_MillerIndex_h_set, METH_VARARGS, "MillerIndex_h_set(MillerIndex self, double h)"},
-	 { "MillerIndex_h_get", _wrap_MillerIndex_h_get, METH_O, "MillerIndex_h_get(MillerIndex self) -> double"},
-	 { "MillerIndex_k_set", _wrap_MillerIndex_k_set, METH_VARARGS, "MillerIndex_k_set(MillerIndex self, double k)"},
-	 { "MillerIndex_k_get", _wrap_MillerIndex_k_get, METH_O, "MillerIndex_k_get(MillerIndex self) -> double"},
-	 { "MillerIndex_l_set", _wrap_MillerIndex_l_set, METH_VARARGS, "MillerIndex_l_set(MillerIndex self, double l)"},
-	 { "MillerIndex_l_get", _wrap_MillerIndex_l_get, METH_O, "MillerIndex_l_get(MillerIndex self) -> double"},
-	 { "delete_MillerIndex", _wrap_delete_MillerIndex, METH_O, "delete_MillerIndex(MillerIndex self)"},
-	 { "MillerIndex_swigregister", MillerIndex_swigregister, METH_O, NULL},
-	 { "MillerIndex_swiginit", MillerIndex_swiginit, METH_VARARGS, NULL},
-	 { "new_MillerIndexOrientation", _wrap_new_MillerIndexOrientation, METH_VARARGS, "\n"
-		"new_MillerIndexOrientation(MillerIndexOrientation::QComponent q1, MillerIndex index1, MillerIndexOrientation::QComponent q2, MillerIndex index2) -> MillerIndexOrientation\n"
-		"MillerIndexOrientation::MillerIndexOrientation(QComponent q1, MillerIndex index1, QComponent q2, MillerIndex index2)\n"
+	 { "FormFactorSphereLogNormalRadius_clone", _wrap_FormFactorSphereLogNormalRadius_clone, METH_O, "\n"
+		"FormFactorSphereLogNormalRadius_clone(FormFactorSphereLogNormalRadius self) -> FormFactorSphereLogNormalRadius\n"
+		"FormFactorSphereLogNormalRadius* FormFactorSphereLogNormalRadius::clone() const override final\n"
 		"\n"
-		"This constructor is best explained by an example. Arguments QX, (1,1,0), QY, (0,2,1) mean: Rotate the lattice such that the axis [110] points into x direction, and the axis [021], projected into the yz plane, points into z direction. \n"
+		"Returns a clone of this  ISample object. \n"
 		"\n"
 		""},
-	 { "delete_MillerIndexOrientation", _wrap_delete_MillerIndexOrientation, METH_O, "\n"
-		"delete_MillerIndexOrientation(MillerIndexOrientation self)\n"
-		"MillerIndexOrientation::~MillerIndexOrientation() override\n"
+	 { "FormFactorSphereLogNormalRadius_accept", _wrap_FormFactorSphereLogNormalRadius_accept, METH_VARARGS, "\n"
+		"FormFactorSphereLogNormalRadius_accept(FormFactorSphereLogNormalRadius self, INodeVisitor visitor)\n"
+		"void FormFactorSphereLogNormalRadius::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		""},
-	 { "MillerIndexOrientation_clone", _wrap_MillerIndexOrientation_clone, METH_O, "\n"
-		"MillerIndexOrientation_clone(MillerIndexOrientation self) -> MillerIndexOrientation\n"
-		"MillerIndexOrientation * MillerIndexOrientation::clone() const override\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "MillerIndexOrientation_usePrimitiveLattice", _wrap_MillerIndexOrientation_usePrimitiveLattice, METH_VARARGS, "\n"
-		"MillerIndexOrientation_usePrimitiveLattice(MillerIndexOrientation self, Lattice lattice)\n"
-		"void MillerIndexOrientation::usePrimitiveLattice(const Lattice &lattice) override\n"
+	 { "FormFactorSphereLogNormalRadius_radialExtension", _wrap_FormFactorSphereLogNormalRadius_radialExtension, METH_O, "\n"
+		"FormFactorSphereLogNormalRadius_radialExtension(FormFactorSphereLogNormalRadius self) -> double\n"
+		"double FormFactorSphereLogNormalRadius::radialExtension() const override final\n"
 		"\n"
-		""},
-	 { "MillerIndexOrientation_transformationMatrix", _wrap_MillerIndexOrientation_transformationMatrix, METH_O, "\n"
-		"MillerIndexOrientation_transformationMatrix(MillerIndexOrientation self) -> Transform3D\n"
-		"Transform3D MillerIndexOrientation::transformationMatrix() const override\n"
+		"Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations \n"
 		"\n"
 		""},
-	 { "MillerIndexOrientation_swigregister", MillerIndexOrientation_swigregister, METH_O, NULL},
-	 { "MillerIndexOrientation_swiginit", MillerIndexOrientation_swiginit, METH_VARARGS, NULL},
-	 { "new_Lattice", _wrap_new_Lattice, METH_VARARGS, "\n"
-		"Lattice()\n"
-		"Lattice(kvector_t a1, kvector_t a2, kvector_t a3)\n"
-		"new_Lattice(Lattice lattice) -> Lattice\n"
-		"Lattice::Lattice(const Lattice &lattice)\n"
+	 { "FormFactorSphereLogNormalRadius_evaluate_for_q", _wrap_FormFactorSphereLogNormalRadius_evaluate_for_q, METH_VARARGS, "\n"
+		"FormFactorSphereLogNormalRadius_evaluate_for_q(FormFactorSphereLogNormalRadius self, cvector_t q) -> complex_t\n"
+		"complex_t FormFactorSphereLogNormalRadius::evaluate_for_q(cvector_t q) const override final\n"
 		"\n"
-		""},
-	 { "delete_Lattice", _wrap_delete_Lattice, METH_O, "\n"
-		"delete_Lattice(Lattice self)\n"
-		"Lattice::~Lattice() override\n"
+		"Returns scattering amplitude for complex scattering wavevector q=k_i-k_f. This method is public only for convenience of plotting form factors in Python. \n"
 		"\n"
 		""},
-	 { "Lattice_accept", _wrap_Lattice_accept, METH_VARARGS, "\n"
-		"Lattice_accept(Lattice self, INodeVisitor visitor)\n"
-		"void Lattice::accept(INodeVisitor *visitor) const override\n"
+	 { "delete_FormFactorSphereLogNormalRadius", _wrap_delete_FormFactorSphereLogNormalRadius, METH_O, "delete_FormFactorSphereLogNormalRadius(FormFactorSphereLogNormalRadius self)"},
+	 { "FormFactorSphereLogNormalRadius_swigregister", FormFactorSphereLogNormalRadius_swigregister, METH_O, NULL},
+	 { "FormFactorSphereLogNormalRadius_swiginit", FormFactorSphereLogNormalRadius_swiginit, METH_VARARGS, NULL},
+	 { "delete_Simulation", _wrap_delete_Simulation, METH_O, "\n"
+		"delete_Simulation(Simulation self)\n"
+		"Simulation::~Simulation()\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		""},
+	 { "Simulation_clone", _wrap_Simulation_clone, METH_O, "\n"
+		"Simulation_clone(Simulation self) -> Simulation\n"
+		"virtual Simulation* Simulation::clone() const =0\n"
 		"\n"
 		""},
-	 { "Lattice_createTransformedLattice", _wrap_Lattice_createTransformedLattice, METH_VARARGS, "\n"
-		"Lattice_createTransformedLattice(Lattice self, Transform3D const & transform) -> Lattice\n"
-		"Lattice Lattice::createTransformedLattice(const Transform3D &transform) const\n"
+	 { "Simulation_prepareSimulation", _wrap_Simulation_prepareSimulation, METH_O, "\n"
+		"Simulation_prepareSimulation(Simulation self)\n"
+		"void Simulation::prepareSimulation()\n"
 		"\n"
-		"Create transformed lattice. \n"
+		"Put into a clean state for running a simulation. \n"
 		"\n"
 		""},
-	 { "Lattice_initialize", _wrap_Lattice_initialize, METH_O, "\n"
-		"Lattice_initialize(Lattice self)\n"
-		"void Lattice::initialize() const\n"
+	 { "Simulation_runSimulation", _wrap_Simulation_runSimulation, METH_O, "\n"
+		"Simulation_runSimulation(Simulation self)\n"
+		"void Simulation::runSimulation()\n"
 		"\n"
-		"Initializes cached data. \n"
+		"Run a simulation, possibly averaged over parameter distributions.\n"
+		"\n"
+		"Run simulation with possible averaging over parameter distributions. \n"
 		"\n"
 		""},
-	 { "Lattice_getBasisVectorA", _wrap_Lattice_getBasisVectorA, METH_O, "\n"
-		"Lattice_getBasisVectorA(Lattice self) -> kvector_t\n"
-		"kvector_t Lattice::getBasisVectorA() const\n"
+	 { "Simulation_runMPISimulation", _wrap_Simulation_runMPISimulation, METH_O, "\n"
+		"Simulation_runMPISimulation(Simulation self)\n"
+		"void Simulation::runMPISimulation()\n"
 		"\n"
-		"Returns basis vector a. \n"
+		"Run a simulation in a MPI environment. \n"
 		"\n"
 		""},
-	 { "Lattice_getBasisVectorB", _wrap_Lattice_getBasisVectorB, METH_O, "\n"
-		"Lattice_getBasisVectorB(Lattice self) -> kvector_t\n"
-		"kvector_t Lattice::getBasisVectorB() const\n"
+	 { "Simulation_setInstrument", _wrap_Simulation_setInstrument, METH_VARARGS, "\n"
+		"Simulation_setInstrument(Simulation self, Instrument instrument)\n"
+		"void Simulation::setInstrument(const Instrument &instrument)\n"
 		"\n"
-		"Returns basis vector b. \n"
+		""},
+	 { "Simulation_getInstrument", _wrap_Simulation_getInstrument, METH_VARARGS, "\n"
+		"Simulation_getInstrument(Simulation self) -> Instrument\n"
+		"Simulation_getInstrument(Simulation self) -> Instrument\n"
+		"Instrument& Simulation::getInstrument()\n"
 		"\n"
 		""},
-	 { "Lattice_getBasisVectorC", _wrap_Lattice_getBasisVectorC, METH_O, "\n"
-		"Lattice_getBasisVectorC(Lattice self) -> kvector_t\n"
-		"kvector_t Lattice::getBasisVectorC() const\n"
+	 { "Simulation_setBeamIntensity", _wrap_Simulation_setBeamIntensity, METH_VARARGS, "\n"
+		"Simulation_setBeamIntensity(Simulation self, double intensity)\n"
+		"void Simulation::setBeamIntensity(double intensity)\n"
 		"\n"
-		"Returns basis vector c. \n"
+		""},
+	 { "Simulation_getBeamIntensity", _wrap_Simulation_getBeamIntensity, METH_O, "\n"
+		"Simulation_getBeamIntensity(Simulation self) -> double\n"
+		"double Simulation::getBeamIntensity() const\n"
 		"\n"
 		""},
-	 { "Lattice_resetBasis", _wrap_Lattice_resetBasis, METH_VARARGS, "\n"
-		"Lattice_resetBasis(Lattice self, kvector_t a1, kvector_t a2, kvector_t a3)\n"
-		"void Lattice::resetBasis(const kvector_t a1, const kvector_t a2, const kvector_t a3)\n"
+	 { "Simulation_setBeamPolarization", _wrap_Simulation_setBeamPolarization, METH_VARARGS, "\n"
+		"Simulation_setBeamPolarization(Simulation self, kvector_t bloch_vector)\n"
+		"void Simulation::setBeamPolarization(const kvector_t bloch_vector)\n"
 		"\n"
-		"Resets the basis vectors. \n"
+		"Sets the beam polarization according to the given Bloch vector. \n"
 		"\n"
 		""},
-	 { "Lattice_getMillerDirection", _wrap_Lattice_getMillerDirection, METH_VARARGS, "\n"
-		"Lattice_getMillerDirection(Lattice self, double h, double k, double l) -> kvector_t\n"
-		"kvector_t Lattice::getMillerDirection(double h, double k, double l) const\n"
+	 { "Simulation_setDetectorResolutionFunction", _wrap_Simulation_setDetectorResolutionFunction, METH_VARARGS, "\n"
+		"Simulation_setDetectorResolutionFunction(Simulation self, IResolutionFunction2D resolution_function)\n"
+		"void Simulation::setDetectorResolutionFunction(const IResolutionFunction2D &resolution_function)\n"
 		"\n"
-		"Returns normalized direction corresponding to the given Miller indices. \n"
+		""},
+	 { "Simulation_removeDetectorResolutionFunction", _wrap_Simulation_removeDetectorResolutionFunction, METH_O, "\n"
+		"Simulation_removeDetectorResolutionFunction(Simulation self)\n"
+		"void Simulation::removeDetectorResolutionFunction()\n"
 		"\n"
 		""},
-	 { "Lattice_volume", _wrap_Lattice_volume, METH_O, "\n"
-		"Lattice_volume(Lattice self) -> double\n"
-		"double Lattice::volume() const\n"
+	 { "Simulation_setAnalyzerProperties", _wrap_Simulation_setAnalyzerProperties, METH_VARARGS, "\n"
+		"Simulation_setAnalyzerProperties(Simulation self, kvector_t direction, double efficiency, double total_transmission)\n"
+		"void Simulation::setAnalyzerProperties(const kvector_t direction, double efficiency, double total_transmission)\n"
 		"\n"
-		"Returns the volume of the unit cell. \n"
+		"Sets the polarization analyzer characteristics of the detector. \n"
 		"\n"
 		""},
-	 { "Lattice_getReciprocalLatticeBasis", _wrap_Lattice_getReciprocalLatticeBasis, METH_VARARGS, "\n"
-		"Lattice_getReciprocalLatticeBasis(Lattice self, kvector_t b1, kvector_t b2, kvector_t b3)\n"
-		"void Lattice::getReciprocalLatticeBasis(kvector_t &b1, kvector_t &b2, kvector_t &b3) const\n"
+	 { "Simulation_setSample", _wrap_Simulation_setSample, METH_VARARGS, "\n"
+		"Simulation_setSample(Simulation self, MultiLayer sample)\n"
+		"void Simulation::setSample(const MultiLayer &sample)\n"
 		"\n"
-		"Returns the reciprocal basis vectors. \n"
+		"The  MultiLayer object will not be owned by the  Simulation object. \n"
 		"\n"
 		""},
-	 { "Lattice_getNearestLatticeVectorCoordinates", _wrap_Lattice_getNearestLatticeVectorCoordinates, METH_VARARGS, "\n"
-		"Lattice_getNearestLatticeVectorCoordinates(Lattice self, kvector_t vector_in) -> ivector_t\n"
-		"ivector_t Lattice::getNearestLatticeVectorCoordinates(const kvector_t vector_in) const\n"
+	 { "Simulation_sample", _wrap_Simulation_sample, METH_O, "\n"
+		"Simulation_sample(Simulation self) -> MultiLayer\n"
+		"const MultiLayer * Simulation::sample() const\n"
 		"\n"
-		"Returns the nearest lattice point from a given vector. \n"
+		""},
+	 { "Simulation_setSampleBuilderCpp", _wrap_Simulation_setSampleBuilderCpp, METH_VARARGS, "\n"
+		"Simulation_setSampleBuilderCpp(Simulation self, std::shared_ptr< IMultiLayerBuilder > const sample_builder)\n"
+		"void Simulation::setSampleBuilder(const std::shared_ptr< IMultiLayerBuilder > sample_builder)\n"
 		"\n"
 		""},
-	 { "Lattice_getNearestReciprocalLatticeVectorCoordinates", _wrap_Lattice_getNearestReciprocalLatticeVectorCoordinates, METH_VARARGS, "\n"
-		"Lattice_getNearestReciprocalLatticeVectorCoordinates(Lattice self, kvector_t vector_in) -> ivector_t\n"
-		"ivector_t Lattice::getNearestReciprocalLatticeVectorCoordinates(const kvector_t vector_in) const\n"
+	 { "Simulation_setBackground", _wrap_Simulation_setBackground, METH_VARARGS, "\n"
+		"Simulation_setBackground(Simulation self, IBackground bg)\n"
+		"void Simulation::setBackground(const IBackground &bg)\n"
 		"\n"
-		"Returns the nearest reciprocal lattice point from a given vector. \n"
+		""},
+	 { "Simulation_background", _wrap_Simulation_background, METH_O, "\n"
+		"Simulation_background(Simulation self) -> IBackground\n"
+		"const IBackground* Simulation::background() const\n"
 		"\n"
 		""},
-	 { "Lattice_reciprocalLatticeVectorsWithinRadius", _wrap_Lattice_reciprocalLatticeVectorsWithinRadius, METH_VARARGS, "\n"
-		"Lattice_reciprocalLatticeVectorsWithinRadius(Lattice self, kvector_t input_vector, double radius) -> vector_kvector_t\n"
-		"std::vector< kvector_t > Lattice::reciprocalLatticeVectorsWithinRadius(const kvector_t input_vector, double radius) const\n"
+	 { "Simulation_intensityMapSize", _wrap_Simulation_intensityMapSize, METH_O, "\n"
+		"Simulation_intensityMapSize(Simulation self) -> size_t\n"
+		"virtual size_t Simulation::intensityMapSize() const =0\n"
 		"\n"
-		"Computes a list of reciprocal lattice vectors within a specified distance of a given vector. \n"
+		"Returns the total number of the intensity values in the simulation result. \n"
 		"\n"
 		""},
-	 { "Lattice_setSelectionRule", _wrap_Lattice_setSelectionRule, METH_VARARGS, "\n"
-		"Lattice_setSelectionRule(Lattice self, ISelectionRule p_selection_rule)\n"
-		"void Lattice::setSelectionRule(const ISelectionRule &p_selection_rule)\n"
+	 { "Simulation_result", _wrap_Simulation_result, METH_O, "\n"
+		"Simulation_result(Simulation self) -> SimulationResult\n"
+		"virtual SimulationResult Simulation::result() const =0\n"
 		"\n"
-		"Sets a selection rule for the reciprocal vectors. \n"
+		"Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays \n"
 		"\n"
 		""},
-	 { "Lattice_createCubicLattice", _wrap_Lattice_createCubicLattice, METH_O, "Lattice_createCubicLattice(double a) -> Lattice"},
-	 { "Lattice_createFCCLattice", _wrap_Lattice_createFCCLattice, METH_O, "Lattice_createFCCLattice(double a) -> Lattice"},
-	 { "Lattice_createHexagonalLattice", _wrap_Lattice_createHexagonalLattice, METH_VARARGS, "Lattice_createHexagonalLattice(double a, double c) -> Lattice"},
-	 { "Lattice_createHCPLattice", _wrap_Lattice_createHCPLattice, METH_VARARGS, "Lattice_createHCPLattice(double a, double c) -> Lattice"},
-	 { "Lattice_createTetragonalLattice", _wrap_Lattice_createTetragonalLattice, METH_VARARGS, "Lattice_createTetragonalLattice(double a, double c) -> Lattice"},
-	 { "Lattice_createBCTLattice", _wrap_Lattice_createBCTLattice, METH_VARARGS, "Lattice_createBCTLattice(double a, double c) -> Lattice"},
-	 { "Lattice_onChange", _wrap_Lattice_onChange, METH_O, "\n"
-		"Lattice_onChange(Lattice self)\n"
-		"void Lattice::onChange() override\n"
+	 { "Simulation_addParameterDistribution", _wrap_Simulation_addParameterDistribution, METH_VARARGS, "\n"
+		"Simulation_addParameterDistribution(Simulation self, std::string const & param_name, IDistribution1D distribution, size_t nbr_samples, double sigma_factor=0.0, RealLimits limits=RealLimits())\n"
+		"Simulation_addParameterDistribution(Simulation self, ParameterDistribution par_distr)\n"
+		"void Simulation::addParameterDistribution(const ParameterDistribution &par_distr)\n"
 		"\n"
-		"Action to be taken in inherited class when a parameter has changed. \n"
+		""},
+	 { "Simulation_getDistributionHandler", _wrap_Simulation_getDistributionHandler, METH_O, "\n"
+		"Simulation_getDistributionHandler(Simulation self) -> DistributionHandler const &\n"
+		"const DistributionHandler& Simulation::getDistributionHandler() const\n"
 		"\n"
 		""},
-	 { "Lattice_swigregister", Lattice_swigregister, METH_O, NULL},
-	 { "Lattice_swiginit", Lattice_swiginit, METH_VARARGS, NULL},
-	 { "CreateFCCLattice", _wrap_CreateFCCLattice, METH_VARARGS, "\n"
-		"CreateFCCLattice(double lattice_constant, ILatticeOrientation orientation) -> Lattice\n"
-		"Lattice LatticeUtils::CreateFCCLattice(double lattice_constant, const ILatticeOrientation &orientation)\n"
+	 { "Simulation_setOptions", _wrap_Simulation_setOptions, METH_VARARGS, "\n"
+		"Simulation_setOptions(Simulation self, SimulationOptions options)\n"
+		"void Simulation::setOptions(const SimulationOptions &options)\n"
 		"\n"
 		""},
-	 { "CreateHCPLattice", _wrap_CreateHCPLattice, METH_VARARGS, "\n"
-		"CreateHCPLattice(double a, double c, ILatticeOrientation orientation) -> Lattice\n"
-		"Lattice LatticeUtils::CreateHCPLattice(double a, double c, const ILatticeOrientation &orientation)\n"
+	 { "Simulation_getOptions", _wrap_Simulation_getOptions, METH_VARARGS, "\n"
+		"Simulation_getOptions(Simulation self) -> SimulationOptions\n"
+		"Simulation_getOptions(Simulation self) -> SimulationOptions\n"
+		"SimulationOptions& Simulation::getOptions()\n"
 		"\n"
 		""},
-	 { "CreateBCTLattice", _wrap_CreateBCTLattice, METH_VARARGS, "\n"
-		"CreateBCTLattice(double a, double c, ILatticeOrientation orientation) -> Lattice\n"
-		"Lattice LatticeUtils::CreateBCTLattice(double a, double c, const ILatticeOrientation &orientation)\n"
+	 { "Simulation_subscribe", _wrap_Simulation_subscribe, METH_VARARGS, "\n"
+		"Simulation_subscribe(Simulation self, ProgressHandler::Callback_t inform)\n"
+		"void Simulation::subscribe(ProgressHandler::Callback_t inform)\n"
 		"\n"
 		""},
-	 { "new_Lattice1DParameters", _wrap_new_Lattice1DParameters, METH_VARARGS, "\n"
-		"Lattice1DParameters()\n"
-		"new_Lattice1DParameters(double length, double xi) -> Lattice1DParameters\n"
-		"Lattice1DParameters::Lattice1DParameters(double length, double xi)\n"
+	 { "Simulation_setTerminalProgressMonitor", _wrap_Simulation_setTerminalProgressMonitor, METH_O, "\n"
+		"Simulation_setTerminalProgressMonitor(Simulation self)\n"
+		"void Simulation::setTerminalProgressMonitor()\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Initializes a progress monitor that prints to stdout. \n"
 		"\n"
-		"length: \n"
-		" Lattice constant.\n"
+		""},
+	 { "Simulation_getChildren", _wrap_Simulation_getChildren, METH_O, "\n"
+		"Simulation_getChildren(Simulation self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > Simulation::getChildren() const\n"
 		"\n"
-		"xi: \n"
-		" Lattice rotation angle. \n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "Lattice1DParameters_m_length_set", _wrap_Lattice1DParameters_m_length_set, METH_VARARGS, "Lattice1DParameters_m_length_set(Lattice1DParameters self, double m_length)"},
-	 { "Lattice1DParameters_m_length_get", _wrap_Lattice1DParameters_m_length_get, METH_O, "Lattice1DParameters_m_length_get(Lattice1DParameters self) -> double"},
-	 { "Lattice1DParameters_m_xi_set", _wrap_Lattice1DParameters_m_xi_set, METH_VARARGS, "Lattice1DParameters_m_xi_set(Lattice1DParameters self, double m_xi)"},
-	 { "Lattice1DParameters_m_xi_get", _wrap_Lattice1DParameters_m_xi_get, METH_O, "Lattice1DParameters_m_xi_get(Lattice1DParameters self) -> double"},
-	 { "delete_Lattice1DParameters", _wrap_delete_Lattice1DParameters, METH_O, "delete_Lattice1DParameters(Lattice1DParameters self)"},
-	 { "Lattice1DParameters_swigregister", Lattice1DParameters_swigregister, METH_O, NULL},
-	 { "Lattice1DParameters_swiginit", Lattice1DParameters_swiginit, METH_VARARGS, NULL},
-	 { "Lattice2D_clone", _wrap_Lattice2D_clone, METH_O, "\n"
-		"Lattice2D_clone(Lattice2D self) -> Lattice2D\n"
-		"Lattice2D* Lattice2D::clone() const =0\n"
+	 { "Simulation_swigregister", Simulation_swigregister, METH_O, NULL},
+	 { "delete_Simulation2D", _wrap_delete_Simulation2D, METH_O, "\n"
+		"delete_Simulation2D(Simulation2D self)\n"
+		"Simulation2D::~Simulation2D() override\n"
 		"\n"
 		""},
-	 { "Lattice2D_length1", _wrap_Lattice2D_length1, METH_O, "\n"
-		"Lattice2D_length1(Lattice2D self) -> double\n"
-		"virtual double Lattice2D::length1() const =0\n"
+	 { "Simulation2D_clone", _wrap_Simulation2D_clone, METH_O, "\n"
+		"Simulation2D_clone(Simulation2D self) -> Simulation2D\n"
+		"Simulation2D* Simulation2D::clone() const override=0\n"
 		"\n"
 		""},
-	 { "Lattice2D_length2", _wrap_Lattice2D_length2, METH_O, "\n"
-		"Lattice2D_length2(Lattice2D self) -> double\n"
-		"virtual double Lattice2D::length2() const =0\n"
+	 { "Simulation2D_prepareSimulation", _wrap_Simulation2D_prepareSimulation, METH_O, "\n"
+		"Simulation2D_prepareSimulation(Simulation2D self)\n"
+		"void Simulation2D::prepareSimulation() override\n"
 		"\n"
-		""},
-	 { "Lattice2D_latticeAngle", _wrap_Lattice2D_latticeAngle, METH_O, "\n"
-		"Lattice2D_latticeAngle(Lattice2D self) -> double\n"
-		"virtual double Lattice2D::latticeAngle() const =0\n"
+		"Put into a clean state for running a simulation. \n"
 		"\n"
 		""},
-	 { "Lattice2D_unitCellArea", _wrap_Lattice2D_unitCellArea, METH_O, "\n"
-		"Lattice2D_unitCellArea(Lattice2D self) -> double\n"
-		"virtual double Lattice2D::unitCellArea() const =0\n"
+	 { "Simulation2D_setDetectorParameters", _wrap_Simulation2D_setDetectorParameters, METH_VARARGS, "\n"
+		"Simulation2D_setDetectorParameters(Simulation2D self, size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max)\n"
+		"void Simulation2D::setDetectorParameters(size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max)\n"
 		"\n"
-		""},
-	 { "Lattice2D_rotationAngle", _wrap_Lattice2D_rotationAngle, METH_O, "\n"
-		"Lattice2D_rotationAngle(Lattice2D self) -> double\n"
-		"double Lattice2D::rotationAngle() const\n"
+		"Sets spherical detector parameters using angle ranges\n"
 		"\n"
-		""},
-	 { "Lattice2D_reciprocalBases", _wrap_Lattice2D_reciprocalBases, METH_O, "\n"
-		"Lattice2D_reciprocalBases(Lattice2D self) -> Lattice2D::ReciprocalBases\n"
-		"Lattice2D::ReciprocalBases Lattice2D::reciprocalBases() const\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "Lattice2D_setRotationEnabled", _wrap_Lattice2D_setRotationEnabled, METH_VARARGS, "\n"
-		"Lattice2D_setRotationEnabled(Lattice2D self, bool enabled)\n"
-		"void Lattice2D::setRotationEnabled(bool enabled)\n"
+		"n_phi: \n"
+		"number of phi-axis bins\n"
 		"\n"
-		""},
-	 { "delete_Lattice2D", _wrap_delete_Lattice2D, METH_O, "delete_Lattice2D(Lattice2D self)"},
-	 { "Lattice2D_swigregister", Lattice2D_swigregister, METH_O, NULL},
-	 { "new_BasicLattice", _wrap_new_BasicLattice, METH_VARARGS, "\n"
-		"BasicLattice(double length1, double length2, double angle, double rotation_angle=0.0)\n"
-		"BasicLattice::BasicLattice(double length1, double length2, double angle, double rotation_angle=0.0)\n"
+		"phi_min: \n"
+		"low edge of first phi-bin\n"
 		"\n"
-		""},
-	 { "BasicLattice_clone", _wrap_BasicLattice_clone, METH_O, "\n"
-		"BasicLattice_clone(BasicLattice self) -> BasicLattice\n"
-		"BasicLattice * BasicLattice::clone() const\n"
+		"phi_max: \n"
+		"upper edge of last phi-bin\n"
 		"\n"
-		""},
-	 { "BasicLattice_accept", _wrap_BasicLattice_accept, METH_VARARGS, "\n"
-		"BasicLattice_accept(BasicLattice self, INodeVisitor visitor)\n"
-		"void BasicLattice::accept(INodeVisitor *visitor) const final\n"
+		"n_alpha: \n"
+		"number of alpha-axis bins\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"alpha_min: \n"
+		"low edge of first alpha-bin\n"
 		"\n"
-		""},
-	 { "BasicLattice_length1", _wrap_BasicLattice_length1, METH_O, "\n"
-		"BasicLattice_length1(BasicLattice self) -> double\n"
-		"virtual double BasicLattice::length1() const\n"
+		"alpha_max: \n"
+		"upper edge of last alpha-bin \n"
 		"\n"
 		""},
-	 { "BasicLattice_length2", _wrap_BasicLattice_length2, METH_O, "\n"
-		"BasicLattice_length2(BasicLattice self) -> double\n"
-		"virtual double BasicLattice::length2() const\n"
+	 { "Simulation2D_setDetector", _wrap_Simulation2D_setDetector, METH_VARARGS, "\n"
+		"Simulation2D_setDetector(Simulation2D self, IDetector2D detector)\n"
+		"void Simulation2D::setDetector(const IDetector2D &detector)\n"
 		"\n"
-		""},
-	 { "BasicLattice_latticeAngle", _wrap_BasicLattice_latticeAngle, METH_O, "\n"
-		"BasicLattice_latticeAngle(BasicLattice self) -> double\n"
-		"virtual double BasicLattice::latticeAngle() const\n"
+		"Sets the detector (axes can be overwritten later) \n"
 		"\n"
 		""},
-	 { "BasicLattice_unitCellArea", _wrap_BasicLattice_unitCellArea, METH_O, "\n"
-		"BasicLattice_unitCellArea(BasicLattice self) -> double\n"
-		"double BasicLattice::unitCellArea() const\n"
+	 { "Simulation2D_removeMasks", _wrap_Simulation2D_removeMasks, METH_O, "\n"
+		"Simulation2D_removeMasks(Simulation2D self)\n"
+		"void Simulation2D::removeMasks()\n"
 		"\n"
-		""},
-	 { "delete_BasicLattice", _wrap_delete_BasicLattice, METH_O, "delete_BasicLattice(BasicLattice self)"},
-	 { "BasicLattice_swigregister", BasicLattice_swigregister, METH_O, NULL},
-	 { "BasicLattice_swiginit", BasicLattice_swiginit, METH_VARARGS, NULL},
-	 { "new_SquareLattice", _wrap_new_SquareLattice, METH_VARARGS, "\n"
-		"SquareLattice(double length, double rotation_angle=0.0)\n"
-		"SquareLattice::SquareLattice(double length, double rotation_angle=0.0)\n"
+		"removes all masks from the detector \n"
 		"\n"
 		""},
-	 { "SquareLattice_clone", _wrap_SquareLattice_clone, METH_O, "\n"
-		"SquareLattice_clone(SquareLattice self) -> SquareLattice\n"
-		"SquareLattice * SquareLattice::clone() const\n"
+	 { "Simulation2D_addMask", _wrap_Simulation2D_addMask, METH_VARARGS, "\n"
+		"Simulation2D_addMask(Simulation2D self, IShape2D shape, bool mask_value=True)\n"
+		"void Simulation2D::addMask(const IShape2D &shape, bool mask_value=true)\n"
 		"\n"
-		""},
-	 { "SquareLattice_accept", _wrap_SquareLattice_accept, METH_VARARGS, "\n"
-		"SquareLattice_accept(SquareLattice self, INodeVisitor visitor)\n"
-		"void SquareLattice::accept(INodeVisitor *visitor) const final\n"
+		"Adds mask of given shape to the stack of detector masks. The mask value 'true' means that the channel will be excluded from the simulation. The mask which is added last has priority.\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "SquareLattice_length1", _wrap_SquareLattice_length1, METH_O, "\n"
-		"SquareLattice_length1(SquareLattice self) -> double\n"
-		"virtual double SquareLattice::length1() const\n"
+		"shape: \n"
+		"The shape of mask ( Rectangle,  Polygon,  Line,  Ellipse)\n"
+		"\n"
+		"mask_value: \n"
+		"The value of mask \n"
 		"\n"
 		""},
-	 { "SquareLattice_length2", _wrap_SquareLattice_length2, METH_O, "\n"
-		"SquareLattice_length2(SquareLattice self) -> double\n"
-		"virtual double SquareLattice::length2() const\n"
+	 { "Simulation2D_maskAll", _wrap_Simulation2D_maskAll, METH_O, "\n"
+		"Simulation2D_maskAll(Simulation2D self)\n"
+		"void Simulation2D::maskAll()\n"
+		"\n"
+		"Put the mask for all detector channels (i.e. exclude whole detector from the analysis) \n"
 		"\n"
 		""},
-	 { "SquareLattice_latticeAngle", _wrap_SquareLattice_latticeAngle, METH_O, "\n"
-		"SquareLattice_latticeAngle(SquareLattice self) -> double\n"
-		"double SquareLattice::latticeAngle() const\n"
+	 { "Simulation2D_setRegionOfInterest", _wrap_Simulation2D_setRegionOfInterest, METH_VARARGS, "\n"
+		"Simulation2D_setRegionOfInterest(Simulation2D self, double xlow, double ylow, double xup, double yup)\n"
+		"void Simulation2D::setRegionOfInterest(double xlow, double ylow, double xup, double yup)\n"
+		"\n"
+		"Sets rectangular region of interest with lower left and upper right corners defined. \n"
 		"\n"
 		""},
-	 { "SquareLattice_unitCellArea", _wrap_SquareLattice_unitCellArea, METH_O, "\n"
-		"SquareLattice_unitCellArea(SquareLattice self) -> double\n"
-		"double SquareLattice::unitCellArea() const\n"
+	 { "Simulation2D_swigregister", Simulation2D_swigregister, METH_O, NULL},
+	 { "new_GISASSimulation", _wrap_new_GISASSimulation, METH_VARARGS, "\n"
+		"GISASSimulation()\n"
+		"GISASSimulation(MultiLayer p_sample)\n"
+		"new_GISASSimulation(std::shared_ptr< IMultiLayerBuilder > const p_sample_builder) -> GISASSimulation\n"
+		"GISASSimulation::GISASSimulation(const std::shared_ptr< IMultiLayerBuilder > p_sample_builder)\n"
 		"\n"
 		""},
-	 { "delete_SquareLattice", _wrap_delete_SquareLattice, METH_O, "delete_SquareLattice(SquareLattice self)"},
-	 { "SquareLattice_swigregister", SquareLattice_swigregister, METH_O, NULL},
-	 { "SquareLattice_swiginit", SquareLattice_swiginit, METH_VARARGS, NULL},
-	 { "new_HexagonalLattice", _wrap_new_HexagonalLattice, METH_VARARGS, "\n"
-		"HexagonalLattice(double length, double rotation_angle=0.0)\n"
-		"HexagonalLattice::HexagonalLattice(double length, double rotation_angle=0.0)\n"
+	 { "delete_GISASSimulation", _wrap_delete_GISASSimulation, METH_O, "\n"
+		"delete_GISASSimulation(GISASSimulation self)\n"
+		"GISASSimulation::~GISASSimulation()\n"
 		"\n"
 		""},
-	 { "HexagonalLattice_clone", _wrap_HexagonalLattice_clone, METH_O, "\n"
-		"HexagonalLattice_clone(HexagonalLattice self) -> HexagonalLattice\n"
-		"HexagonalLattice * HexagonalLattice::clone() const\n"
+	 { "GISASSimulation_clone", _wrap_GISASSimulation_clone, METH_O, "\n"
+		"GISASSimulation_clone(GISASSimulation self) -> GISASSimulation\n"
+		"GISASSimulation* GISASSimulation::clone() const override\n"
 		"\n"
 		""},
-	 { "HexagonalLattice_accept", _wrap_HexagonalLattice_accept, METH_VARARGS, "\n"
-		"HexagonalLattice_accept(HexagonalLattice self, INodeVisitor visitor)\n"
-		"void HexagonalLattice::accept(INodeVisitor *visitor) const final\n"
+	 { "GISASSimulation_accept", _wrap_GISASSimulation_accept, METH_VARARGS, "\n"
+		"GISASSimulation_accept(GISASSimulation self, INodeVisitor visitor)\n"
+		"void GISASSimulation::accept(INodeVisitor *visitor) const override\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "HexagonalLattice_length1", _wrap_HexagonalLattice_length1, METH_O, "\n"
-		"HexagonalLattice_length1(HexagonalLattice self) -> double\n"
-		"virtual double HexagonalLattice::length1() const\n"
+	 { "GISASSimulation_prepareSimulation", _wrap_GISASSimulation_prepareSimulation, METH_O, "\n"
+		"GISASSimulation_prepareSimulation(GISASSimulation self)\n"
+		"void GISASSimulation::prepareSimulation() override\n"
 		"\n"
-		""},
-	 { "HexagonalLattice_length2", _wrap_HexagonalLattice_length2, METH_O, "\n"
-		"HexagonalLattice_length2(HexagonalLattice self) -> double\n"
-		"virtual double HexagonalLattice::length2() const\n"
+		"Put into a clean state for running a simulation. \n"
 		"\n"
 		""},
-	 { "HexagonalLattice_latticeAngle", _wrap_HexagonalLattice_latticeAngle, METH_O, "\n"
-		"HexagonalLattice_latticeAngle(HexagonalLattice self) -> double\n"
-		"double HexagonalLattice::latticeAngle() const\n"
+	 { "GISASSimulation_result", _wrap_GISASSimulation_result, METH_O, "\n"
+		"GISASSimulation_result(GISASSimulation self) -> SimulationResult\n"
+		"SimulationResult GISASSimulation::result() const override\n"
 		"\n"
-		""},
-	 { "HexagonalLattice_unitCellArea", _wrap_HexagonalLattice_unitCellArea, METH_O, "\n"
-		"HexagonalLattice_unitCellArea(HexagonalLattice self) -> double\n"
-		"double HexagonalLattice::unitCellArea() const\n"
+		"Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays \n"
 		"\n"
 		""},
-	 { "delete_HexagonalLattice", _wrap_delete_HexagonalLattice, METH_O, "delete_HexagonalLattice(HexagonalLattice self)"},
-	 { "HexagonalLattice_swigregister", HexagonalLattice_swigregister, METH_O, NULL},
-	 { "HexagonalLattice_swiginit", HexagonalLattice_swiginit, METH_VARARGS, NULL},
-	 { "new_Layer", _wrap_new_Layer, METH_VARARGS, "\n"
-		"Layer(Material material, double thickness=0)\n"
-		"Layer::Layer(Material material, double thickness=0)\n"
-		"\n"
-		"Constructor of a layer with thickness and material\n"
+	 { "GISASSimulation_setBeamParameters", _wrap_GISASSimulation_setBeamParameters, METH_VARARGS, "\n"
+		"GISASSimulation_setBeamParameters(GISASSimulation self, double wavelength, double alpha_i, double phi_i)\n"
+		"void GISASSimulation::setBeamParameters(double wavelength, double alpha_i, double phi_i)\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Sets beam parameters from here (forwarded to  Instrument) \n"
 		"\n"
-		"material: \n"
-		"material the layer is made of\n"
+		""},
+	 { "GISASSimulation_intensityMapSize", _wrap_GISASSimulation_intensityMapSize, METH_O, "\n"
+		"GISASSimulation_intensityMapSize(GISASSimulation self) -> size_t\n"
+		"size_t GISASSimulation::intensityMapSize() const override\n"
 		"\n"
-		"thickness: \n"
-		"thickness of a layer in nanometers \n"
+		"Returns the total number of the intensity values in the simulation result. \n"
 		"\n"
 		""},
-	 { "delete_Layer", _wrap_delete_Layer, METH_O, "\n"
-		"delete_Layer(Layer self)\n"
-		"Layer::~Layer() override\n"
+	 { "GISASSimulation_swigregister", GISASSimulation_swigregister, METH_O, NULL},
+	 { "GISASSimulation_swiginit", GISASSimulation_swiginit, METH_VARARGS, NULL},
+	 { "new_DepthProbeSimulation", _wrap_new_DepthProbeSimulation, METH_VARARGS, "\n"
+		"DepthProbeSimulation()\n"
+		"DepthProbeSimulation(MultiLayer sample)\n"
+		"new_DepthProbeSimulation(std::shared_ptr< IMultiLayerBuilder > const sample_builder) -> DepthProbeSimulation\n"
+		"DepthProbeSimulation::DepthProbeSimulation(const std::shared_ptr< IMultiLayerBuilder > sample_builder)\n"
 		"\n"
 		""},
-	 { "Layer_clone", _wrap_Layer_clone, METH_O, "\n"
-		"Layer_clone(Layer self) -> Layer\n"
-		"Layer * Layer::clone() const override final\n"
+	 { "delete_DepthProbeSimulation", _wrap_delete_DepthProbeSimulation, METH_O, "\n"
+		"delete_DepthProbeSimulation(DepthProbeSimulation self)\n"
+		"DepthProbeSimulation::~DepthProbeSimulation() override\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		""},
+	 { "DepthProbeSimulation_clone", _wrap_DepthProbeSimulation_clone, METH_O, "\n"
+		"DepthProbeSimulation_clone(DepthProbeSimulation self) -> DepthProbeSimulation\n"
+		"DepthProbeSimulation * DepthProbeSimulation::clone() const override\n"
 		"\n"
 		""},
-	 { "Layer_accept", _wrap_Layer_accept, METH_VARARGS, "\n"
-		"Layer_accept(Layer self, INodeVisitor visitor)\n"
-		"void Layer::accept(INodeVisitor *visitor) const override final\n"
+	 { "DepthProbeSimulation_accept", _wrap_DepthProbeSimulation_accept, METH_VARARGS, "\n"
+		"DepthProbeSimulation_accept(DepthProbeSimulation self, INodeVisitor visitor)\n"
+		"void DepthProbeSimulation::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "Layer_setThickness", _wrap_Layer_setThickness, METH_VARARGS, "\n"
-		"Layer_setThickness(Layer self, double thickness)\n"
-		"void Layer::setThickness(double thickness)\n"
+	 { "DepthProbeSimulation_result", _wrap_DepthProbeSimulation_result, METH_O, "\n"
+		"DepthProbeSimulation_result(DepthProbeSimulation self) -> SimulationResult\n"
+		"SimulationResult DepthProbeSimulation::result() const override\n"
 		"\n"
-		"Sets layer thickness in nanometers. \n"
+		"Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays \n"
 		"\n"
 		""},
-	 { "Layer_thickness", _wrap_Layer_thickness, METH_O, "\n"
-		"Layer_thickness(Layer self) -> double\n"
-		"double Layer::thickness() const\n"
+	 { "DepthProbeSimulation_setBeamParameters", _wrap_DepthProbeSimulation_setBeamParameters, METH_VARARGS, "\n"
+		"DepthProbeSimulation_setBeamParameters(DepthProbeSimulation self, double _lambda, int nbins, double alpha_i_min, double alpha_i_max, IFootprintFactor beam_shape=None)\n"
+		"void DepthProbeSimulation::setBeamParameters(double lambda, int nbins, double alpha_i_min, double alpha_i_max, const IFootprintFactor *beam_shape=nullptr)\n"
+		"\n"
+		"Sets beam parameters with alpha_i of the beam defined in the range. \n"
 		"\n"
 		""},
-	 { "Layer_material", _wrap_Layer_material, METH_O, "\n"
-		"Layer_material(Layer self) -> Material\n"
-		"const Material* Layer::material() const override final\n"
+	 { "DepthProbeSimulation_setZSpan", _wrap_DepthProbeSimulation_setZSpan, METH_VARARGS, "\n"
+		"DepthProbeSimulation_setZSpan(DepthProbeSimulation self, size_t n_bins, double z_min, double z_max)\n"
+		"void DepthProbeSimulation::setZSpan(size_t n_bins, double z_min, double z_max)\n"
 		"\n"
-		"Returns nullptr, unless overwritten to return a specific material. \n"
+		"Set z positions for intensity calculations. Negative z's correspond to the area under sample surface. The more negative z is, the deeper layer corresponds to it. \n"
 		"\n"
 		""},
-	 { "Layer_setMaterial", _wrap_Layer_setMaterial, METH_VARARGS, "\n"
-		"Layer_setMaterial(Layer self, Material material)\n"
-		"void Layer::setMaterial(Material material)\n"
+	 { "DepthProbeSimulation_getAlphaAxis", _wrap_DepthProbeSimulation_getAlphaAxis, METH_O, "\n"
+		"DepthProbeSimulation_getAlphaAxis(DepthProbeSimulation self) -> IAxis\n"
+		"const IAxis * DepthProbeSimulation::getAlphaAxis() const\n"
 		"\n"
-		""},
-	 { "Layer_addLayout", _wrap_Layer_addLayout, METH_VARARGS, "\n"
-		"Layer_addLayout(Layer self, ILayout decoration)\n"
-		"void Layer::addLayout(const ILayout &decoration)\n"
+		"Returns a pointer to incident angle axis. \n"
 		"\n"
 		""},
-	 { "Layer_numberOfLayouts", _wrap_Layer_numberOfLayouts, METH_O, "\n"
-		"Layer_numberOfLayouts(Layer self) -> size_t\n"
-		"size_t Layer::numberOfLayouts() const\n"
+	 { "DepthProbeSimulation_getZAxis", _wrap_DepthProbeSimulation_getZAxis, METH_O, "\n"
+		"DepthProbeSimulation_getZAxis(DepthProbeSimulation self) -> IAxis\n"
+		"const IAxis * DepthProbeSimulation::getZAxis() const\n"
 		"\n"
-		""},
-	 { "Layer_layouts", _wrap_Layer_layouts, METH_O, "\n"
-		"Layer_layouts(Layer self) -> std::vector< ILayout const *,std::allocator< ILayout const * > >\n"
-		"std::vector< const ILayout * > Layer::layouts() const\n"
+		"Returns a pointer to z-position axis. \n"
 		"\n"
 		""},
-	 { "Layer_getChildren", _wrap_Layer_getChildren, METH_O, "\n"
-		"Layer_getChildren(Layer self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > Layer::getChildren() const override final\n"
+	 { "DepthProbeSimulation_intensityMapSize", _wrap_DepthProbeSimulation_intensityMapSize, METH_O, "\n"
+		"DepthProbeSimulation_intensityMapSize(DepthProbeSimulation self) -> size_t\n"
+		"size_t DepthProbeSimulation::intensityMapSize() const override\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Returns the total number of the intensity values in the simulation result. \n"
 		"\n"
 		""},
-	 { "Layer_registerThickness", _wrap_Layer_registerThickness, METH_VARARGS, "\n"
-		"Layer_registerThickness(Layer self, bool make_registered=True)\n"
-		"void Layer::registerThickness(bool make_registered=true)\n"
+	 { "DepthProbeSimulation_swigregister", DepthProbeSimulation_swigregister, METH_O, NULL},
+	 { "DepthProbeSimulation_swiginit", DepthProbeSimulation_swiginit, METH_VARARGS, NULL},
+	 { "new_SpecularSimulation", _wrap_new_SpecularSimulation, METH_VARARGS, "\n"
+		"SpecularSimulation()\n"
+		"SpecularSimulation(MultiLayer sample)\n"
+		"new_SpecularSimulation(std::shared_ptr< IMultiLayerBuilder > const sample_builder) -> SpecularSimulation\n"
+		"SpecularSimulation::SpecularSimulation(const std::shared_ptr< IMultiLayerBuilder > sample_builder)\n"
 		"\n"
 		""},
-	 { "Layer_setNumberOfSlices", _wrap_Layer_setNumberOfSlices, METH_VARARGS, "\n"
-		"Layer_setNumberOfSlices(Layer self, unsigned int n_slices)\n"
-		"void Layer::setNumberOfSlices(unsigned int n_slices)\n"
+	 { "delete_SpecularSimulation", _wrap_delete_SpecularSimulation, METH_O, "\n"
+		"delete_SpecularSimulation(SpecularSimulation self)\n"
+		"SpecularSimulation::~SpecularSimulation() override\n"
 		"\n"
 		""},
-	 { "Layer_numberOfSlices", _wrap_Layer_numberOfSlices, METH_O, "\n"
-		"Layer_numberOfSlices(Layer self) -> unsigned int\n"
-		"unsigned int Layer::numberOfSlices() const\n"
+	 { "SpecularSimulation_clone", _wrap_SpecularSimulation_clone, METH_O, "\n"
+		"SpecularSimulation_clone(SpecularSimulation self) -> SpecularSimulation\n"
+		"SpecularSimulation * SpecularSimulation::clone() const override\n"
 		"\n"
 		""},
-	 { "Layer_swigregister", Layer_swigregister, METH_O, NULL},
-	 { "Layer_swiginit", Layer_swiginit, METH_VARARGS, NULL},
-	 { "new_LayerRoughness", _wrap_new_LayerRoughness, METH_VARARGS, "\n"
-		"LayerRoughness()\n"
-		"new_LayerRoughness(double sigma, double hurstParameter, double lateralCorrLength) -> LayerRoughness\n"
-		"LayerRoughness::LayerRoughness(double sigma, double hurstParameter, double lateralCorrLength)\n"
-		"\n"
-		"Constructor of layer roughness.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
+	 { "SpecularSimulation_prepareSimulation", _wrap_SpecularSimulation_prepareSimulation, METH_O, "\n"
+		"SpecularSimulation_prepareSimulation(SpecularSimulation self)\n"
+		"void SpecularSimulation::prepareSimulation() override\n"
 		"\n"
-		"sigma: \n"
-		"rms of the roughness in nanometers\n"
+		"Put into a clean state for running a simulation. \n"
 		"\n"
-		"hurstParameter: \n"
-		"hurst parameter which describes how jagged the interface, dimensionless [0.0, 1.0], where 0.0 gives more spikes, 1.0 more smoothness\n"
+		""},
+	 { "SpecularSimulation_accept", _wrap_SpecularSimulation_accept, METH_VARARGS, "\n"
+		"SpecularSimulation_accept(SpecularSimulation self, INodeVisitor visitor)\n"
+		"void SpecularSimulation::accept(INodeVisitor *visitor) const override final\n"
 		"\n"
-		"lateralCorrLength: \n"
-		"lateral correlation length of the roughness in nanometers \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "LayerRoughness_clone", _wrap_LayerRoughness_clone, METH_O, "\n"
-		"LayerRoughness_clone(LayerRoughness self) -> LayerRoughness\n"
-		"LayerRoughness* LayerRoughness::clone() const\n"
+	 { "SpecularSimulation_result", _wrap_SpecularSimulation_result, METH_O, "\n"
+		"SpecularSimulation_result(SpecularSimulation self) -> SimulationResult\n"
+		"SimulationResult SpecularSimulation::result() const override\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays. If simulation was not run, returns an array of proper size filled with zeros. \n"
 		"\n"
 		""},
-	 { "LayerRoughness_accept", _wrap_LayerRoughness_accept, METH_VARARGS, "\n"
-		"LayerRoughness_accept(LayerRoughness self, INodeVisitor visitor)\n"
-		"virtual void LayerRoughness::accept(INodeVisitor *visitor) const\n"
+	 { "SpecularSimulation_setScan", _wrap_SpecularSimulation_setScan, METH_VARARGS, "\n"
+		"SpecularSimulation_setScan(SpecularSimulation self, ISpecularScan const & scan)\n"
+		"void SpecularSimulation::setScan(const ISpecularScan &scan)\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Sets chosen specular scan to the simulation. \n"
 		"\n"
 		""},
-	 { "LayerRoughness_getSpectralFun", _wrap_LayerRoughness_getSpectralFun, METH_VARARGS, "\n"
-		"LayerRoughness_getSpectralFun(LayerRoughness self, kvector_t kvec) -> double\n"
-		"double LayerRoughness::getSpectralFun(const kvector_t kvec) const\n"
+	 { "SpecularSimulation_coordinateAxis", _wrap_SpecularSimulation_coordinateAxis, METH_O, "\n"
+		"SpecularSimulation_coordinateAxis(SpecularSimulation self) -> IAxis\n"
+		"const IAxis * SpecularSimulation::coordinateAxis() const\n"
 		"\n"
-		"Returns power spectral density of the surface roughness.\n"
+		"Returns a pointer to coordinate axis. \n"
 		"\n"
-		"Power spectral density of the surface roughness is a result of two-dimensional Fourier transform of the correlation function of the roughness profile.\n"
+		""},
+	 { "SpecularSimulation_footprintFactor", _wrap_SpecularSimulation_footprintFactor, METH_O, "\n"
+		"SpecularSimulation_footprintFactor(SpecularSimulation self) -> IFootprintFactor\n"
+		"const IFootprintFactor * SpecularSimulation::footprintFactor() const\n"
 		"\n"
-		"Based on the article D.K.G. de Boer, Physical review B, Volume 51, Number 8, 15 February 1995 \"X-ray reflection and transmission by rough surfaces\" \n"
+		"Returns a pointer to footprint factor holder. \n"
 		"\n"
 		""},
-	 { "LayerRoughness_getCorrFun", _wrap_LayerRoughness_getCorrFun, METH_VARARGS, "\n"
-		"LayerRoughness_getCorrFun(LayerRoughness self, kvector_t k) -> double\n"
-		"double LayerRoughness::getCorrFun(const kvector_t k) const\n"
+	 { "SpecularSimulation_intensityMapSize", _wrap_SpecularSimulation_intensityMapSize, METH_O, "\n"
+		"SpecularSimulation_intensityMapSize(SpecularSimulation self) -> size_t\n"
+		"size_t SpecularSimulation::intensityMapSize() const override\n"
 		"\n"
-		"Correlation function of the roughness profile. \n"
+		"Returns the total number of the intensity values in the simulation result. \n"
 		"\n"
 		""},
-	 { "LayerRoughness_setSigma", _wrap_LayerRoughness_setSigma, METH_VARARGS, "\n"
-		"LayerRoughness_setSigma(LayerRoughness self, double sigma)\n"
-		"void LayerRoughness::setSigma(double sigma)\n"
-		"\n"
-		"Sets rms of roughness. \n"
+	 { "SpecularSimulation_swigregister", SpecularSimulation_swigregister, METH_O, NULL},
+	 { "SpecularSimulation_swiginit", SpecularSimulation_swiginit, METH_VARARGS, NULL},
+	 { "new_OffSpecSimulation", _wrap_new_OffSpecSimulation, METH_VARARGS, "\n"
+		"OffSpecSimulation()\n"
+		"OffSpecSimulation(MultiLayer p_sample)\n"
+		"new_OffSpecSimulation(std::shared_ptr< IMultiLayerBuilder > const p_sample_builder) -> OffSpecSimulation\n"
+		"OffSpecSimulation::OffSpecSimulation(const std::shared_ptr< class IMultiLayerBuilder > p_sample_builder)\n"
 		"\n"
 		""},
-	 { "LayerRoughness_getSigma", _wrap_LayerRoughness_getSigma, METH_O, "\n"
-		"LayerRoughness_getSigma(LayerRoughness self) -> double\n"
-		"double LayerRoughness::getSigma() const\n"
+	 { "delete_OffSpecSimulation", _wrap_delete_OffSpecSimulation, METH_O, "\n"
+		"delete_OffSpecSimulation(OffSpecSimulation self)\n"
+		"OffSpecSimulation::~OffSpecSimulation() final\n"
 		"\n"
-		"Returns rms of roughness. \n"
+		""},
+	 { "OffSpecSimulation_clone", _wrap_OffSpecSimulation_clone, METH_O, "\n"
+		"OffSpecSimulation_clone(OffSpecSimulation self) -> OffSpecSimulation\n"
+		"OffSpecSimulation* OffSpecSimulation::clone() const override\n"
 		"\n"
 		""},
-	 { "LayerRoughness_setHurstParameter", _wrap_LayerRoughness_setHurstParameter, METH_VARARGS, "\n"
-		"LayerRoughness_setHurstParameter(LayerRoughness self, double hurstParameter)\n"
-		"void LayerRoughness::setHurstParameter(double hurstParameter)\n"
+	 { "OffSpecSimulation_accept", _wrap_OffSpecSimulation_accept, METH_VARARGS, "\n"
+		"OffSpecSimulation_accept(OffSpecSimulation self, INodeVisitor visitor)\n"
+		"void OffSpecSimulation::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Sets hurst parameter. It describes how jagged the surface is. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "LayerRoughness_getHurstParameter", _wrap_LayerRoughness_getHurstParameter, METH_O, "\n"
-		"LayerRoughness_getHurstParameter(LayerRoughness self) -> double\n"
-		"double LayerRoughness::getHurstParameter() const\n"
+	 { "OffSpecSimulation_prepareSimulation", _wrap_OffSpecSimulation_prepareSimulation, METH_O, "\n"
+		"OffSpecSimulation_prepareSimulation(OffSpecSimulation self)\n"
+		"void OffSpecSimulation::prepareSimulation() final\n"
 		"\n"
-		"Returns hurst parameter. \n"
+		"Put into a clean state for running a simulation. \n"
 		"\n"
 		""},
-	 { "LayerRoughness_setLatteralCorrLength", _wrap_LayerRoughness_setLatteralCorrLength, METH_VARARGS, "\n"
-		"LayerRoughness_setLatteralCorrLength(LayerRoughness self, double lateralCorrLength)\n"
-		"void LayerRoughness::setLatteralCorrLength(double lateralCorrLength)\n"
+	 { "OffSpecSimulation_result", _wrap_OffSpecSimulation_result, METH_O, "\n"
+		"OffSpecSimulation_result(OffSpecSimulation self) -> SimulationResult\n"
+		"SimulationResult OffSpecSimulation::result() const override\n"
 		"\n"
-		"Sets lateral correlation length. \n"
+		"Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays \n"
 		"\n"
 		""},
-	 { "LayerRoughness_getLatteralCorrLength", _wrap_LayerRoughness_getLatteralCorrLength, METH_O, "\n"
-		"LayerRoughness_getLatteralCorrLength(LayerRoughness self) -> double\n"
-		"double LayerRoughness::getLatteralCorrLength() const\n"
+	 { "OffSpecSimulation_setBeamParameters", _wrap_OffSpecSimulation_setBeamParameters, METH_VARARGS, "\n"
+		"OffSpecSimulation_setBeamParameters(OffSpecSimulation self, double wavelength, IAxis alpha_axis, double phi_i)\n"
+		"void OffSpecSimulation::setBeamParameters(double wavelength, const IAxis &alpha_axis, double phi_i)\n"
 		"\n"
-		"Returns lateral correlation length. \n"
+		"Sets beam parameters from here (forwarded to  Instrument) \n"
 		"\n"
 		""},
-	 { "delete_LayerRoughness", _wrap_delete_LayerRoughness, METH_O, "delete_LayerRoughness(LayerRoughness self)"},
-	 { "LayerRoughness_swigregister", LayerRoughness_swigregister, METH_O, NULL},
-	 { "LayerRoughness_swiginit", LayerRoughness_swiginit, METH_VARARGS, NULL},
-	 { "new_Line", _wrap_new_Line, METH_VARARGS, "\n"
-		"new_Line(double x1, double y1, double x2, double y2) -> Line\n"
-		"Line::Line(double x1, double y1, double x2, double y2)\n"
+	 { "OffSpecSimulation_beamAxis", _wrap_OffSpecSimulation_beamAxis, METH_O, "\n"
+		"OffSpecSimulation_beamAxis(OffSpecSimulation self) -> IAxis\n"
+		"const IAxis * OffSpecSimulation::beamAxis() const\n"
 		"\n"
-		""},
-	 { "Line_clone", _wrap_Line_clone, METH_O, "\n"
-		"Line_clone(Line self) -> Line\n"
-		"Line* Line::clone() const\n"
+		"Returns axis of the beam. \n"
 		"\n"
 		""},
-	 { "Line_contains", _wrap_Line_contains, METH_VARARGS, "\n"
-		"Line_contains(Line self, double x, double y) -> bool\n"
-		"Line_contains(Line self, Bin1D binx, Bin1D biny) -> bool\n"
-		"bool Line::contains(const Bin1D &binx, const Bin1D &biny) const\n"
+	 { "OffSpecSimulation_intensityMapSize", _wrap_OffSpecSimulation_intensityMapSize, METH_O, "\n"
+		"OffSpecSimulation_intensityMapSize(OffSpecSimulation self) -> size_t\n"
+		"size_t OffSpecSimulation::intensityMapSize() const override\n"
 		"\n"
-		"Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). \n"
+		"Returns the total number of the intensity values in the simulation result. \n"
 		"\n"
 		""},
-	 { "delete_Line", _wrap_delete_Line, METH_O, "delete_Line(Line self)"},
-	 { "Line_swigregister", Line_swigregister, METH_O, NULL},
-	 { "Line_swiginit", Line_swiginit, METH_VARARGS, NULL},
-	 { "new_VerticalLine", _wrap_new_VerticalLine, METH_O, "\n"
-		"new_VerticalLine(double x) -> VerticalLine\n"
-		"VerticalLine::VerticalLine(double x)\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
+	 { "OffSpecSimulation_swigregister", OffSpecSimulation_swigregister, METH_O, NULL},
+	 { "OffSpecSimulation_swiginit", OffSpecSimulation_swiginit, METH_VARARGS, NULL},
+	 { "delete_IBackground", _wrap_delete_IBackground, METH_O, "\n"
+		"delete_IBackground(IBackground self)\n"
+		"IBackground::~IBackground()\n"
 		"\n"
-		"x: \n"
-		"The value at which it crosses x-axes \n"
+		""},
+	 { "IBackground_clone", _wrap_IBackground_clone, METH_O, "\n"
+		"IBackground_clone(IBackground self) -> IBackground\n"
+		"virtual IBackground* IBackground::clone() const =0\n"
 		"\n"
 		""},
-	 { "VerticalLine_clone", _wrap_VerticalLine_clone, METH_O, "\n"
-		"VerticalLine_clone(VerticalLine self) -> VerticalLine\n"
-		"VerticalLine* VerticalLine::clone() const\n"
+	 { "IBackground_addBackGround", _wrap_IBackground_addBackGround, METH_VARARGS, "\n"
+		"IBackground_addBackGround(IBackground self, double element) -> double\n"
+		"virtual double IBackground::addBackGround(double element) const =0\n"
 		"\n"
 		""},
-	 { "VerticalLine_contains", _wrap_VerticalLine_contains, METH_VARARGS, "\n"
-		"VerticalLine_contains(VerticalLine self, double x, double y) -> bool\n"
-		"VerticalLine_contains(VerticalLine self, Bin1D binx, Bin1D biny) -> bool\n"
-		"bool VerticalLine::contains(const Bin1D &binx, const Bin1D &biny) const\n"
+	 { "IBackground_swigregister", IBackground_swigregister, METH_O, NULL},
+	 { "new_ConstantBackground", _wrap_new_ConstantBackground, METH_O, "\n"
+		"new_ConstantBackground(double background_value) -> ConstantBackground\n"
+		"ConstantBackground::ConstantBackground(double background_value)\n"
 		"\n"
-		"Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). \n"
+		""},
+	 { "delete_ConstantBackground", _wrap_delete_ConstantBackground, METH_O, "\n"
+		"delete_ConstantBackground(ConstantBackground self)\n"
+		"ConstantBackground::~ConstantBackground()\n"
 		"\n"
 		""},
-	 { "VerticalLine_getXpos", _wrap_VerticalLine_getXpos, METH_O, "\n"
-		"VerticalLine_getXpos(VerticalLine self) -> double\n"
-		"double VerticalLine::getXpos() const\n"
+	 { "ConstantBackground_clone", _wrap_ConstantBackground_clone, METH_O, "\n"
+		"ConstantBackground_clone(ConstantBackground self) -> ConstantBackground\n"
+		"ConstantBackground * ConstantBackground::clone() const override final\n"
 		"\n"
 		""},
-	 { "delete_VerticalLine", _wrap_delete_VerticalLine, METH_O, "delete_VerticalLine(VerticalLine self)"},
-	 { "VerticalLine_swigregister", VerticalLine_swigregister, METH_O, NULL},
-	 { "VerticalLine_swiginit", VerticalLine_swiginit, METH_VARARGS, NULL},
-	 { "new_HorizontalLine", _wrap_new_HorizontalLine, METH_O, "\n"
-		"new_HorizontalLine(double y) -> HorizontalLine\n"
-		"HorizontalLine::HorizontalLine(double y)\n"
+	 { "ConstantBackground_backgroundValue", _wrap_ConstantBackground_backgroundValue, METH_O, "\n"
+		"ConstantBackground_backgroundValue(ConstantBackground self) -> double\n"
+		"double ConstantBackground::backgroundValue() const\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "ConstantBackground_accept", _wrap_ConstantBackground_accept, METH_VARARGS, "\n"
+		"ConstantBackground_accept(ConstantBackground self, INodeVisitor visitor)\n"
+		"void ConstantBackground::accept(INodeVisitor *visitor) const override\n"
 		"\n"
-		"y: \n"
-		"The value at which it crosses y-axes \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "HorizontalLine_clone", _wrap_HorizontalLine_clone, METH_O, "\n"
-		"HorizontalLine_clone(HorizontalLine self) -> HorizontalLine\n"
-		"HorizontalLine* HorizontalLine::clone() const\n"
+	 { "ConstantBackground_addBackGround", _wrap_ConstantBackground_addBackGround, METH_VARARGS, "\n"
+		"ConstantBackground_addBackGround(ConstantBackground self, double intensity) -> double\n"
+		"double ConstantBackground::addBackGround(double intensity) const override final\n"
 		"\n"
 		""},
-	 { "HorizontalLine_contains", _wrap_HorizontalLine_contains, METH_VARARGS, "\n"
-		"HorizontalLine_contains(HorizontalLine self, double x, double y) -> bool\n"
-		"HorizontalLine_contains(HorizontalLine self, Bin1D binx, Bin1D biny) -> bool\n"
-		"bool HorizontalLine::contains(const Bin1D &binx, const Bin1D &biny) const\n"
+	 { "ConstantBackground_swigregister", ConstantBackground_swigregister, METH_O, NULL},
+	 { "ConstantBackground_swiginit", ConstantBackground_swiginit, METH_VARARGS, NULL},
+	 { "new_PoissonNoiseBackground", _wrap_new_PoissonNoiseBackground, METH_NOARGS, "\n"
+		"new_PoissonNoiseBackground() -> PoissonNoiseBackground\n"
+		"PoissonNoiseBackground::PoissonNoiseBackground()\n"
 		"\n"
-		"Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). \n"
+		""},
+	 { "delete_PoissonNoiseBackground", _wrap_delete_PoissonNoiseBackground, METH_O, "\n"
+		"delete_PoissonNoiseBackground(PoissonNoiseBackground self)\n"
+		"PoissonNoiseBackground::~PoissonNoiseBackground()\n"
 		"\n"
 		""},
-	 { "HorizontalLine_getYpos", _wrap_HorizontalLine_getYpos, METH_O, "\n"
-		"HorizontalLine_getYpos(HorizontalLine self) -> double\n"
-		"double HorizontalLine::getYpos() const\n"
+	 { "PoissonNoiseBackground_clone", _wrap_PoissonNoiseBackground_clone, METH_O, "\n"
+		"PoissonNoiseBackground_clone(PoissonNoiseBackground self) -> PoissonNoiseBackground\n"
+		"PoissonNoiseBackground * PoissonNoiseBackground::clone() const override final\n"
 		"\n"
 		""},
-	 { "delete_HorizontalLine", _wrap_delete_HorizontalLine, METH_O, "delete_HorizontalLine(HorizontalLine self)"},
-	 { "HorizontalLine_swigregister", HorizontalLine_swigregister, METH_O, NULL},
-	 { "HorizontalLine_swiginit", HorizontalLine_swiginit, METH_VARARGS, NULL},
-	 { "new_Material", _wrap_new_Material, METH_VARARGS, "\n"
-		"Material(Material material)\n"
-		"new_Material(Material material) -> Material\n"
-		"Material::Material(std::unique_ptr< BaseMaterialImpl > material_impl)\n"
+	 { "PoissonNoiseBackground_accept", _wrap_PoissonNoiseBackground_accept, METH_VARARGS, "\n"
+		"PoissonNoiseBackground_accept(PoissonNoiseBackground self, INodeVisitor visitor)\n"
+		"void PoissonNoiseBackground::accept(INodeVisitor *visitor) const override\n"
 		"\n"
-		"Creates material with particular material implementation. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "Material_inverted", _wrap_Material_inverted, METH_O, "\n"
-		"Material_inverted(Material self) -> Material\n"
-		"Material Material::inverted() const\n"
-		"\n"
-		"Constructs a material with inverted magnetization. \n"
+	 { "PoissonNoiseBackground_addBackGround", _wrap_PoissonNoiseBackground_addBackGround, METH_VARARGS, "\n"
+		"PoissonNoiseBackground_addBackGround(PoissonNoiseBackground self, double intensity) -> double\n"
+		"double PoissonNoiseBackground::addBackGround(double intensity) const override final\n"
 		"\n"
 		""},
-	 { "Material_refractiveIndex", _wrap_Material_refractiveIndex, METH_VARARGS, "\n"
-		"Material_refractiveIndex(Material self, double wavelength) -> complex_t\n"
-		"complex_t Material::refractiveIndex(double wavelength) const\n"
+	 { "PoissonNoiseBackground_swigregister", PoissonNoiseBackground_swigregister, METH_O, NULL},
+	 { "PoissonNoiseBackground_swiginit", PoissonNoiseBackground_swiginit, METH_VARARGS, NULL},
+	 { "IntensityDataIOFactory_readOutputData", _wrap_IntensityDataIOFactory_readOutputData, METH_O, "IntensityDataIOFactory_readOutputData(std::string const & file_name) -> IntensityData"},
+	 { "IntensityDataIOFactory_readReflectometryData", _wrap_IntensityDataIOFactory_readReflectometryData, METH_O, "IntensityDataIOFactory_readReflectometryData(std::string const & file_name) -> IntensityData"},
+	 { "IntensityDataIOFactory_readIntensityData", _wrap_IntensityDataIOFactory_readIntensityData, METH_O, "IntensityDataIOFactory_readIntensityData(std::string const & file_name) -> IHistogram"},
+	 { "IntensityDataIOFactory_writeOutputData", _wrap_IntensityDataIOFactory_writeOutputData, METH_VARARGS, "IntensityDataIOFactory_writeOutputData(IntensityData data, std::string const & file_name)"},
+	 { "IntensityDataIOFactory_writeIntensityData", _wrap_IntensityDataIOFactory_writeIntensityData, METH_VARARGS, "IntensityDataIOFactory_writeIntensityData(IHistogram histogram, std::string const & file_name)"},
+	 { "IntensityDataIOFactory_writeSimulationResult", _wrap_IntensityDataIOFactory_writeSimulationResult, METH_VARARGS, "IntensityDataIOFactory_writeSimulationResult(SimulationResult result, std::string const & file_name)"},
+	 { "new_IntensityDataIOFactory", _wrap_new_IntensityDataIOFactory, METH_NOARGS, "\n"
+		"new_IntensityDataIOFactory() -> IntensityDataIOFactory\n"
 		"\n"
-		"Returns refractive index. \n"
+		"\n"
+		"Provides users with possibility to read and write IntensityData from/to files in different format. Type of the file will be deduced from file name. *.txt - ASCII file with 2D array [nrow][ncol], layout as in numpy. *.int - BornAgain internal ASCII format. *.tif - 32-bits tiff file. If file name ends woth \"*.gz\" or \"*.bz2\" the file will be zipped on the fly using appropriate algorithm.\n"
+		"\n"
+		"Usage:\n"
+		"\n"
+		"C++ includes: IntensityDataIOFactory.h\n"
 		"\n"
 		""},
-	 { "Material_refractiveIndex2", _wrap_Material_refractiveIndex2, METH_VARARGS, "\n"
-		"Material_refractiveIndex2(Material self, double wavelength) -> complex_t\n"
-		"complex_t Material::refractiveIndex2(double wavelength) const\n"
+	 { "delete_IntensityDataIOFactory", _wrap_delete_IntensityDataIOFactory, METH_O, "delete_IntensityDataIOFactory(IntensityDataIOFactory self)"},
+	 { "IntensityDataIOFactory_swigregister", IntensityDataIOFactory_swigregister, METH_O, NULL},
+	 { "IntensityDataIOFactory_swiginit", IntensityDataIOFactory_swiginit, METH_VARARGS, NULL},
+	 { "delete_IHistogram", _wrap_delete_IHistogram, METH_O, "\n"
+		"delete_IHistogram(IHistogram self)\n"
+		"virtual IHistogram::~IHistogram()\n"
 		"\n"
-		"Returns squared refractive index. \n"
+		""},
+	 { "IHistogram_clone", _wrap_IHistogram_clone, METH_O, "\n"
+		"IHistogram_clone(IHistogram self) -> IHistogram\n"
+		"virtual IHistogram* IHistogram::clone() const =0\n"
 		"\n"
 		""},
-	 { "Material_isScalarMaterial", _wrap_Material_isScalarMaterial, METH_O, "\n"
-		"Material_isScalarMaterial(Material self) -> bool\n"
-		"bool Material::isScalarMaterial() const\n"
+	 { "IHistogram_getRank", _wrap_IHistogram_getRank, METH_O, "\n"
+		"IHistogram_getRank(IHistogram self) -> size_t\n"
+		"virtual size_t IHistogram::getRank() const =0\n"
 		"\n"
-		"Indicates whether the interaction with the material is scalar. This means that different polarization states will be diffracted equally \n"
+		"Returns number of histogram dimensions. \n"
 		"\n"
 		""},
-	 { "Material_isMagneticMaterial", _wrap_Material_isMagneticMaterial, METH_O, "\n"
-		"Material_isMagneticMaterial(Material self) -> bool\n"
-		"bool Material::isMagneticMaterial() const\n"
+	 { "IHistogram_getTotalNumberOfBins", _wrap_IHistogram_getTotalNumberOfBins, METH_O, "\n"
+		"IHistogram_getTotalNumberOfBins(IHistogram self) -> size_t\n"
+		"size_t IHistogram::getTotalNumberOfBins() const\n"
+		"\n"
+		"Returns total number of histogram bins. For 2D histograms the result will be the product of bin numbers along X and Y axes. \n"
 		"\n"
 		""},
-	 { "Material_getName", _wrap_Material_getName, METH_O, "\n"
-		"Material_getName(Material self) -> std::string\n"
-		"std::string Material::getName() const\n"
+	 { "IHistogram_getXaxis", _wrap_IHistogram_getXaxis, METH_O, "\n"
+		"IHistogram_getXaxis(IHistogram self) -> IAxis\n"
+		"const IAxis & IHistogram::getXaxis() const\n"
 		"\n"
-		"Returns the name of material. \n"
+		"returns x-axis \n"
 		"\n"
 		""},
-	 { "Material_magnetization", _wrap_Material_magnetization, METH_O, "\n"
-		"Material_magnetization(Material self) -> kvector_t\n"
-		"kvector_t Material::magnetization() const\n"
+	 { "IHistogram_getYaxis", _wrap_IHistogram_getYaxis, METH_O, "\n"
+		"IHistogram_getYaxis(IHistogram self) -> IAxis\n"
+		"const IAxis & IHistogram::getYaxis() const\n"
 		"\n"
-		"Get the magnetization (in A/m) \n"
+		"returns y-axis for 2D histograms \n"
 		"\n"
 		""},
-	 { "Material_materialData", _wrap_Material_materialData, METH_O, "\n"
-		"Material_materialData(Material self) -> complex_t\n"
-		"complex_t Material::materialData() const\n"
+	 { "IHistogram_getXmin", _wrap_IHistogram_getXmin, METH_O, "\n"
+		"IHistogram_getXmin(IHistogram self) -> double\n"
+		"double IHistogram::getXmin() const\n"
 		"\n"
-		"Returns underlying material data. The units of returned values are the same as the ones passed to material factory functions \n"
+		"Returns x-axis min (lower edge of first bin). \n"
 		"\n"
 		""},
-	 { "Material_isEmpty", _wrap_Material_isEmpty, METH_O, "\n"
-		"Material_isEmpty(Material self) -> bool\n"
-		"bool Material::isEmpty() const\n"
+	 { "IHistogram_getXmax", _wrap_IHistogram_getXmax, METH_O, "\n"
+		"IHistogram_getXmax(IHistogram self) -> double\n"
+		"double IHistogram::getXmax() const\n"
 		"\n"
-		"Returns true if material underlying data is nullptr. \n"
+		"Returns x-axis max (upper edge of last bin). \n"
 		"\n"
 		""},
-	 { "Material_isDefaultMaterial", _wrap_Material_isDefaultMaterial, METH_O, "\n"
-		"Material_isDefaultMaterial(Material self) -> bool\n"
-		"bool Material::isDefaultMaterial() const\n"
+	 { "IHistogram_getNbinsX", _wrap_IHistogram_getNbinsX, METH_O, "\n"
+		"IHistogram_getNbinsX(IHistogram self) -> size_t\n"
+		"size_t IHistogram::getNbinsX() const\n"
 		"\n"
-		"Returns true if material has refractive index of (1.0, 0.0) and zero magnetization. \n"
+		"Returns number of bins on x-axis. \n"
 		"\n"
 		""},
-	 { "Material_scalarSubtrSLD", _wrap_Material_scalarSubtrSLD, METH_VARARGS, "\n"
-		"Material_scalarSubtrSLD(Material self, WavevectorInfo wavevectors) -> complex_t\n"
-		"complex_t Material::scalarSubtrSLD(const WavevectorInfo &wavevectors) const\n"
+	 { "IHistogram_getYmin", _wrap_IHistogram_getYmin, METH_O, "\n"
+		"IHistogram_getYmin(IHistogram self) -> double\n"
+		"double IHistogram::getYmin() const\n"
 		"\n"
-		"Returns (  $ \\\\pi/\\\\lambda^2 $ - sld), sld (in  $nm^{-2}$) being the scattering length density \n"
+		"Returns y-axis min (lower edge of first bin) for 2D histograms. \n"
 		"\n"
 		""},
-	 { "Material_transformedMaterial", _wrap_Material_transformedMaterial, METH_VARARGS, "\n"
-		"Material_transformedMaterial(Material self, Transform3D const & transform) -> Material\n"
-		"Material Material::transformedMaterial(const Transform3D &transform) const\n"
+	 { "IHistogram_getYmax", _wrap_IHistogram_getYmax, METH_O, "\n"
+		"IHistogram_getYmax(IHistogram self) -> double\n"
+		"double IHistogram::getYmax() const\n"
+		"\n"
+		"Returns y-axis max (upper edge of last bin) for 2D histograms. \n"
 		"\n"
 		""},
-	 { "delete_Material", _wrap_delete_Material, METH_O, "delete_Material(Material self)"},
-	 { "Material_swigregister", Material_swigregister, METH_O, NULL},
-	 { "Material_swiginit", Material_swiginit, METH_VARARGS, NULL},
-	 { "HomogeneousMaterial", _wrap_HomogeneousMaterial, METH_VARARGS, "\n"
-		"HomogeneousMaterial() -> Material\n"
-		"HomogeneousMaterial(std::string const & name, double delta, double beta, kvector_t magnetization={}) -> Material\n"
-		"HomogeneousMaterial(std::string const & name, complex_t refractive_index, kvector_t magnetization={}) -> Material\n"
-		"BA_CORE_API_ Material HomogeneousMaterial(const std::string &name, complex_t refractive_index, kvector_t magnetization={})\n"
+	 { "IHistogram_getNbinsY", _wrap_IHistogram_getNbinsY, METH_O, "\n"
+		"IHistogram_getNbinsY(IHistogram self) -> size_t\n"
+		"size_t IHistogram::getNbinsY() const\n"
 		"\n"
-		"Constructs a material with  name,  refractive_index and  magnetization (in A/m). Alternatively,  $\\\\delta$ and  $\\\\beta$ for refractive index  $n = 1 - \\\\delta + i \\\\beta$ can be passed directly. With no parameters given, constructs default (vacuum) material with  $n = 1$ and zero magnetization. \n"
+		"Returns number of bins on y-axis. \n"
 		"\n"
 		""},
-	 { "MaterialBySLD", _wrap_MaterialBySLD, METH_VARARGS, "\n"
-		"MaterialBySLD() -> Material\n"
-		"MaterialBySLD(std::string const & name, double sld_real, double sld_imag, kvector_t magnetization={}) -> Material\n"
-		"BA_CORE_API_ Material MaterialBySLD(const std::string &name, double sld_real, double sld_imag, kvector_t magnetization={})\n"
+	 { "IHistogram_getGlobalBin", _wrap_IHistogram_getGlobalBin, METH_VARARGS, "\n"
+		"IHistogram_getGlobalBin(IHistogram self, size_t binx, size_t biny=0) -> size_t\n"
+		"size_t IHistogram::getGlobalBin(size_t binx, size_t biny=0) const\n"
 		"\n"
-		"Constructs a wavelength-independent material with a given complex-valued scattering length density (SLD). SLD values for a wide variety of materials can be found on https://sld-calculator.appspot.com/ and https://www.ncnr.nist.gov/resources/activation/ By convention, SLD imaginary part is treated as negative by default, which corresponds to attenuation of the signal. With no parameters given, MaterialBySLD constructs default (vacuum) material with zero sld and zero magnetization.\n"
+		"Returns global bin index for given axes indices. For 1D histogram the global bin index coinside with x-axis index.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"name: \n"
-		"material name\n"
-		"\n"
-		"sld_real: \n"
-		"real part of the scattering length density, inverse square angstroms\n"
+		"binx: \n"
+		"x-axis bin index\n"
 		"\n"
-		"sld_imag: \n"
-		"imaginary part of the scattering length density, inverse square angstroms\n"
+		"biny: \n"
+		"y-axis bin index (for 2D histograms)\n"
 		"\n"
-		"magnetization: \n"
-		"magnetization (in A/m) \n"
+		"The global bin index \n"
 		"\n"
 		""},
-	 { "new_MesoCrystal", _wrap_new_MesoCrystal, METH_VARARGS, "\n"
-		"new_MesoCrystal(IClusteredParticles particle_structure, IFormFactor form_factor) -> MesoCrystal\n"
-		"MesoCrystal::MesoCrystal(const IClusteredParticles &particle_structure, const IFormFactor &form_factor)\n"
+	 { "IHistogram_findGlobalBin", _wrap_IHistogram_findGlobalBin, METH_VARARGS, "\n"
+		"IHistogram_findGlobalBin(IHistogram self, double x, double y) -> size_t\n"
+		"size_t IHistogram::findGlobalBin(double x, double y) const\n"
 		"\n"
-		""},
-	 { "delete_MesoCrystal", _wrap_delete_MesoCrystal, METH_O, "\n"
-		"delete_MesoCrystal(MesoCrystal self)\n"
-		"MesoCrystal::~MesoCrystal()\n"
+		"Returns closest global bin index for given axes coordinates. For 1D.\n"
 		"\n"
-		""},
-	 { "MesoCrystal_clone", _wrap_MesoCrystal_clone, METH_O, "\n"
-		"MesoCrystal_clone(MesoCrystal self) -> MesoCrystal\n"
-		"MesoCrystal * MesoCrystal::clone() const override final\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"x: \n"
+		"Value on x-axis\n"
 		"\n"
-		""},
-	 { "MesoCrystal_accept", _wrap_MesoCrystal_accept, METH_VARARGS, "\n"
-		"MesoCrystal_accept(MesoCrystal self, INodeVisitor visitor)\n"
-		"void MesoCrystal::accept(INodeVisitor *visitor) const override final\n"
+		"y: \n"
+		"Value on y-axis (for 2D histograms)\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Closest global bin index \n"
 		"\n"
 		""},
-	 { "MesoCrystal_createSlicedParticle", _wrap_MesoCrystal_createSlicedParticle, METH_VARARGS, "\n"
-		"MesoCrystal_createSlicedParticle(MesoCrystal self, ZLimits limits) -> SlicedParticle\n"
-		"SlicedParticle MesoCrystal::createSlicedParticle(ZLimits limits) const override final\n"
+	 { "IHistogram_getXaxisIndex", _wrap_IHistogram_getXaxisIndex, METH_VARARGS, "\n"
+		"IHistogram_getXaxisIndex(IHistogram self, size_t i) -> size_t\n"
+		"size_t IHistogram::getXaxisIndex(size_t i) const\n"
 		"\n"
-		"Create a sliced form factor for this particle. \n"
+		"Returns x-axis bin index for given globalbin. For 1D histograms returned value conicide with globalbin value. \n"
 		"\n"
 		""},
-	 { "MesoCrystal_getChildren", _wrap_MesoCrystal_getChildren, METH_O, "\n"
-		"MesoCrystal_getChildren(MesoCrystal self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > MesoCrystal::getChildren() const override final\n"
+	 { "IHistogram_getYaxisIndex", _wrap_IHistogram_getYaxisIndex, METH_VARARGS, "\n"
+		"IHistogram_getYaxisIndex(IHistogram self, size_t i) -> size_t\n"
+		"size_t IHistogram::getYaxisIndex(size_t i) const\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Returns y-axis bin index for given globalbin (for 2D histograms). \n"
 		"\n"
 		""},
-	 { "MesoCrystal_swigregister", MesoCrystal_swigregister, METH_O, NULL},
-	 { "MesoCrystal_swiginit", MesoCrystal_swiginit, METH_VARARGS, NULL},
-	 { "new_MultiLayer", _wrap_new_MultiLayer, METH_NOARGS, "\n"
-		"new_MultiLayer() -> MultiLayer\n"
-		"MultiLayer::MultiLayer()\n"
+	 { "IHistogram_getXaxisValue", _wrap_IHistogram_getXaxisValue, METH_VARARGS, "\n"
+		"IHistogram_getXaxisValue(IHistogram self, size_t i) -> double\n"
+		"double IHistogram::getXaxisValue(size_t i)\n"
 		"\n"
-		""},
-	 { "delete_MultiLayer", _wrap_delete_MultiLayer, METH_O, "\n"
-		"delete_MultiLayer(MultiLayer self)\n"
-		"MultiLayer::~MultiLayer() override\n"
+		"Returns the value on x-axis corresponding to the global bin index.\n"
 		"\n"
-		""},
-	 { "MultiLayer_clone", _wrap_MultiLayer_clone, METH_O, "\n"
-		"MultiLayer_clone(MultiLayer self) -> MultiLayer\n"
-		"MultiLayer * MultiLayer::clone() const final override\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns a clone of multilayer with clones of all layers and interfaces between layers \n"
+		"globalbin: \n"
+		"The global bin index\n"
+		"\n"
+		"The center of corresponding bin of the axis \n"
 		"\n"
 		""},
-	 { "MultiLayer_accept", _wrap_MultiLayer_accept, METH_VARARGS, "\n"
-		"MultiLayer_accept(MultiLayer self, INodeVisitor visitor)\n"
-		"void MultiLayer::accept(INodeVisitor *visitor) const final override\n"
+	 { "IHistogram_getYaxisValue", _wrap_IHistogram_getYaxisValue, METH_VARARGS, "\n"
+		"IHistogram_getYaxisValue(IHistogram self, size_t i) -> double\n"
+		"double IHistogram::getYaxisValue(size_t i)\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns the value on y-axis corresponding to the 2D histogram global bin index.\n"
 		"\n"
-		""},
-	 { "MultiLayer_numberOfLayers", _wrap_MultiLayer_numberOfLayers, METH_O, "\n"
-		"MultiLayer_numberOfLayers(MultiLayer self) -> size_t\n"
-		"size_t MultiLayer::numberOfLayers() const\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		""},
-	 { "MultiLayer_addLayer", _wrap_MultiLayer_addLayer, METH_VARARGS, "\n"
-		"MultiLayer_addLayer(MultiLayer self, Layer layer)\n"
-		"void MultiLayer::addLayer(const Layer &layer)\n"
+		"globalbin: \n"
+		"The global bin index\n"
 		"\n"
-		"Adds object to multilayer.\n"
+		"The center of corresponding bin of the axis \n"
 		"\n"
-		"Adds layer with default (zero) roughness. \n"
+		""},
+	 { "IHistogram_getData", _wrap_IHistogram_getData, METH_VARARGS, "\n"
+		"IHistogram_getData(IHistogram self) -> OutputData< CumulativeValue > const\n"
+		"IHistogram_getData(IHistogram self) -> OutputData< CumulativeValue > &\n"
+		"OutputData<CumulativeValue>& IHistogram::getData()\n"
 		"\n"
 		""},
-	 { "MultiLayer_addLayerWithTopRoughness", _wrap_MultiLayer_addLayerWithTopRoughness, METH_VARARGS, "\n"
-		"MultiLayer_addLayerWithTopRoughness(MultiLayer self, Layer layer, LayerRoughness roughness)\n"
-		"void MultiLayer::addLayerWithTopRoughness(const Layer &layer, const LayerRoughness &roughness)\n"
+	 { "IHistogram_getBinContent", _wrap_IHistogram_getBinContent, METH_VARARGS, "\n"
+		"IHistogram_getBinContent(IHistogram self, size_t i) -> double\n"
+		"IHistogram_getBinContent(IHistogram self, size_t binx, size_t biny) -> double\n"
+		"double IHistogram::getBinContent(size_t binx, size_t biny) const\n"
 		"\n"
-		"Adds layer with top roughness. \n"
+		"Returns content (accumulated value) of the 2D histogram bin with given indices.\n"
 		"\n"
-		""},
-	 { "MultiLayer_layer", _wrap_MultiLayer_layer, METH_VARARGS, "\n"
-		"MultiLayer_layer(MultiLayer self, size_t i_layer) -> Layer\n"
-		"const Layer * MultiLayer::layer(size_t i_layer) const\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Returns layer with given index. \n"
+		"binx: \n"
+		"x-axis bin index\n"
 		"\n"
-		""},
-	 { "MultiLayer_layerInterface", _wrap_MultiLayer_layerInterface, METH_VARARGS, "\n"
-		"MultiLayer_layerInterface(MultiLayer self, size_t i_interface) -> LayerInterface const *\n"
-		"const LayerInterface * MultiLayer::layerInterface(size_t i_interface) const\n"
+		"biny: \n"
+		"y-axis bin index\n"
 		"\n"
-		"Returns interface with given index. \n"
+		"The value accumulated by the bin (integral) \n"
 		"\n"
 		""},
-	 { "MultiLayer_setCrossCorrLength", _wrap_MultiLayer_setCrossCorrLength, METH_VARARGS, "\n"
-		"MultiLayer_setCrossCorrLength(MultiLayer self, double crossCorrLength)\n"
-		"void MultiLayer::setCrossCorrLength(double crossCorrLength)\n"
+	 { "IHistogram_setBinContent", _wrap_IHistogram_setBinContent, METH_VARARGS, "\n"
+		"IHistogram_setBinContent(IHistogram self, size_t i, double value)\n"
+		"void IHistogram::setBinContent(size_t i, double value)\n"
 		"\n"
-		"Sets cross correlation length of roughnesses between interfaces. \n"
+		"Sets content of the bin corresponding to the globalbin number. \n"
 		"\n"
 		""},
-	 { "MultiLayer_crossCorrLength", _wrap_MultiLayer_crossCorrLength, METH_O, "\n"
-		"MultiLayer_crossCorrLength(MultiLayer self) -> double\n"
-		"double MultiLayer::crossCorrLength() const\n"
+	 { "IHistogram_addBinContent", _wrap_IHistogram_addBinContent, METH_VARARGS, "\n"
+		"IHistogram_addBinContent(IHistogram self, size_t i, double value)\n"
+		"void IHistogram::addBinContent(size_t i, double value)\n"
 		"\n"
-		"Returns cross correlation length of roughnesses between interfaces. \n"
+		"Add the value to the bin. \n"
 		"\n"
 		""},
-	 { "MultiLayer_setExternalField", _wrap_MultiLayer_setExternalField, METH_VARARGS, "\n"
-		"MultiLayer_setExternalField(MultiLayer self, kvector_t ext_field)\n"
-		"void MultiLayer::setExternalField(kvector_t ext_field)\n"
+	 { "IHistogram_getBinError", _wrap_IHistogram_getBinError, METH_VARARGS, "\n"
+		"IHistogram_getBinError(IHistogram self, size_t i) -> double\n"
+		"IHistogram_getBinError(IHistogram self, size_t binx, size_t biny) -> double\n"
+		"double IHistogram::getBinError(size_t binx, size_t biny) const\n"
 		"\n"
-		"Sets the external field applied to the multilayer (units: A/m) \n"
+		"Returns error of the bin with given indices (for 2D histograms). \n"
 		"\n"
 		""},
-	 { "MultiLayer_externalField", _wrap_MultiLayer_externalField, METH_O, "\n"
-		"MultiLayer_externalField(MultiLayer self) -> kvector_t\n"
-		"kvector_t MultiLayer::externalField() const\n"
+	 { "IHistogram_getBinAverage", _wrap_IHistogram_getBinAverage, METH_VARARGS, "\n"
+		"IHistogram_getBinAverage(IHistogram self, size_t i) -> double\n"
+		"IHistogram_getBinAverage(IHistogram self, size_t binx, size_t biny) -> double\n"
+		"double IHistogram::getBinAverage(size_t binx, size_t biny) const\n"
 		"\n"
-		"Returns the external field applied to the multilayer (units: A/m) \n"
+		"Returns average value of the bin with given indices (for 2D histograms). \n"
 		"\n"
 		""},
-	 { "MultiLayer_getChildren", _wrap_MultiLayer_getChildren, METH_O, "\n"
-		"MultiLayer_getChildren(MultiLayer self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > MultiLayer::getChildren() const final override\n"
+	 { "IHistogram_getBinNumberOfEntries", _wrap_IHistogram_getBinNumberOfEntries, METH_VARARGS, "\n"
+		"IHistogram_getBinNumberOfEntries(IHistogram self, size_t i) -> int\n"
+		"IHistogram_getBinNumberOfEntries(IHistogram self, size_t binx, size_t biny) -> int\n"
+		"int IHistogram::getBinNumberOfEntries(size_t binx, size_t biny) const\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Returns number of entries in the bin with given indices (for 2D histograms). \n"
 		"\n"
 		""},
-	 { "MultiLayer_setRoughnessModel", _wrap_MultiLayer_setRoughnessModel, METH_VARARGS, "\n"
-		"MultiLayer_setRoughnessModel(MultiLayer self, RoughnessModel roughnessModel)\n"
-		"void MultiLayer::setRoughnessModel(RoughnessModel roughnessModel)\n"
+	 { "IHistogram_getMaximum", _wrap_IHistogram_getMaximum, METH_O, "\n"
+		"IHistogram_getMaximum(IHistogram self) -> double\n"
+		"double IHistogram::getMaximum() const\n"
 		"\n"
-		""},
-	 { "MultiLayer_roughnessModel", _wrap_MultiLayer_roughnessModel, METH_O, "\n"
-		"MultiLayer_roughnessModel(MultiLayer self) -> RoughnessModel\n"
-		"RoughnessModel MultiLayer::roughnessModel() const\n"
+		"Returns histogram maximum value (maximum of  getBinContent() over all bins) \n"
 		"\n"
 		""},
-	 { "MultiLayer_swigregister", MultiLayer_swigregister, METH_O, NULL},
-	 { "MultiLayer_swiginit", MultiLayer_swiginit, METH_VARARGS, NULL},
-	 { "MaterialProfile_cpp", _wrap_MaterialProfile_cpp, METH_VARARGS, "\n"
-		"MaterialProfile_cpp(MultiLayer multilayer, int n_points, double z_min, double z_max) -> vector_complex_t\n"
-		"BA_CORE_API_ std::vector<complex_t> MaterialProfile(const MultiLayer &multilayer, int n_points, double z_min, double z_max)\n"
+	 { "IHistogram_getMaximumBinIndex", _wrap_IHistogram_getMaximumBinIndex, METH_O, "\n"
+		"IHistogram_getMaximumBinIndex(IHistogram self) -> size_t\n"
+		"size_t IHistogram::getMaximumBinIndex() const\n"
 		"\n"
-		"Calculate average material profile for given multilayer. \n"
+		"Returns globalbin index with maximum content. \n"
 		"\n"
 		""},
-	 { "DefaultMaterialProfileLimits", _wrap_DefaultMaterialProfileLimits, METH_O, "\n"
-		"DefaultMaterialProfileLimits(MultiLayer multilayer) -> pair_double_t\n"
-		"BA_CORE_API_ std::pair<double, double> DefaultMaterialProfileLimits(const MultiLayer &multilayer)\n"
+	 { "IHistogram_getMinimum", _wrap_IHistogram_getMinimum, METH_O, "\n"
+		"IHistogram_getMinimum(IHistogram self) -> double\n"
+		"double IHistogram::getMinimum() const\n"
 		"\n"
-		"Get default z limits for generating a material profile. \n"
+		"Returns histogram minimum value (minimum of  getBinContent() over all bins) \n"
 		"\n"
 		""},
-	 { "GenerateZValues", _wrap_GenerateZValues, METH_VARARGS, "\n"
-		"GenerateZValues(int n_points, double z_min, double z_max) -> vdouble1d_t\n"
-		"BA_CORE_API_ std::vector<double> GenerateZValues(int n_points, double z_min, double z_max)\n"
+	 { "IHistogram_getMinimumBinIndex", _wrap_IHistogram_getMinimumBinIndex, METH_O, "\n"
+		"IHistogram_getMinimumBinIndex(IHistogram self) -> size_t\n"
+		"size_t IHistogram::getMinimumBinIndex() const\n"
 		"\n"
-		"Generate z values (equidistant) for use in MaterialProfile. \n"
+		"Returns globalbin index with minimum content. \n"
 		"\n"
 		""},
-	 { "new_OffSpecSimulation", _wrap_new_OffSpecSimulation, METH_VARARGS, "\n"
-		"OffSpecSimulation()\n"
-		"OffSpecSimulation(MultiLayer p_sample)\n"
-		"new_OffSpecSimulation(std::shared_ptr< IMultiLayerBuilder > const p_sample_builder) -> OffSpecSimulation\n"
-		"OffSpecSimulation::OffSpecSimulation(const std::shared_ptr< class IMultiLayerBuilder > p_sample_builder)\n"
+	 { "IHistogram_scale", _wrap_IHistogram_scale, METH_VARARGS, "\n"
+		"IHistogram_scale(IHistogram self, double value)\n"
+		"void IHistogram::scale(double value)\n"
 		"\n"
-		""},
-	 { "delete_OffSpecSimulation", _wrap_delete_OffSpecSimulation, METH_O, "\n"
-		"delete_OffSpecSimulation(OffSpecSimulation self)\n"
-		"OffSpecSimulation::~OffSpecSimulation() final\n"
+		"Multiply this histogram (every bin content value) by a constant. \n"
 		"\n"
 		""},
-	 { "OffSpecSimulation_clone", _wrap_OffSpecSimulation_clone, METH_O, "\n"
-		"OffSpecSimulation_clone(OffSpecSimulation self) -> OffSpecSimulation\n"
-		"OffSpecSimulation* OffSpecSimulation::clone() const override\n"
+	 { "IHistogram_integral", _wrap_IHistogram_integral, METH_O, "\n"
+		"IHistogram_integral(IHistogram self) -> double\n"
+		"double IHistogram::integral() const\n"
+		"\n"
+		"Returns integral of bins content (computed as a sum of all bin content). \n"
 		"\n"
 		""},
-	 { "OffSpecSimulation_accept", _wrap_OffSpecSimulation_accept, METH_VARARGS, "\n"
-		"OffSpecSimulation_accept(OffSpecSimulation self, INodeVisitor visitor)\n"
-		"void OffSpecSimulation::accept(INodeVisitor *visitor) const final\n"
+	 { "IHistogram_array", _wrap_IHistogram_array, METH_VARARGS, "\n"
+		"IHistogram_array(IHistogram self, IHistogram::DataType dataType=DataType::INTEGRAL) -> PyObject\n"
+		"PyObject * IHistogram::array(DataType dataType=DataType::INTEGRAL) const\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		"Returns numpy array with bin content (accumulated values). \n"
 		"\n"
 		""},
-	 { "OffSpecSimulation_prepareSimulation", _wrap_OffSpecSimulation_prepareSimulation, METH_O, "\n"
-		"OffSpecSimulation_prepareSimulation(OffSpecSimulation self)\n"
-		"void OffSpecSimulation::prepareSimulation() final\n"
+	 { "IHistogram_getArrayObsolete", _wrap_IHistogram_getArrayObsolete, METH_VARARGS, "\n"
+		"IHistogram_getArrayObsolete(IHistogram self, IHistogram::DataType dataType=DataType::INTEGRAL) -> PyObject\n"
+		"PyObject * IHistogram::getArray(DataType dataType=DataType::INTEGRAL) const\n"
 		"\n"
-		"Put into a clean state for running a simulation. \n"
+		"Deprecated\n"
+		"Use  array() instead. \n"
 		"\n"
 		""},
-	 { "OffSpecSimulation_result", _wrap_OffSpecSimulation_result, METH_O, "\n"
-		"OffSpecSimulation_result(OffSpecSimulation self) -> SimulationResult\n"
-		"SimulationResult OffSpecSimulation::result() const override\n"
+	 { "IHistogram_reset", _wrap_IHistogram_reset, METH_O, "\n"
+		"IHistogram_reset(IHistogram self)\n"
+		"void IHistogram::reset()\n"
 		"\n"
-		"Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays \n"
+		"Reset histogram content (axes remains) \n"
 		"\n"
 		""},
-	 { "OffSpecSimulation_setBeamParameters", _wrap_OffSpecSimulation_setBeamParameters, METH_VARARGS, "\n"
-		"OffSpecSimulation_setBeamParameters(OffSpecSimulation self, double wavelength, IAxis alpha_axis, double phi_i)\n"
-		"void OffSpecSimulation::setBeamParameters(double wavelength, const IAxis &alpha_axis, double phi_i)\n"
+	 { "IHistogram_createHistogram", _wrap_IHistogram_createHistogram, METH_O, "IHistogram_createHistogram(IntensityData source) -> IHistogram"},
+	 { "IHistogram_createFrom", _wrap_IHistogram_createFrom, METH_VARARGS, "\n"
+		"IHistogram_createFrom(std::string const & filename) -> IHistogram\n"
+		"IHistogram_createFrom(vdouble2d_t data) -> IHistogram\n"
+		""},
+	 { "IHistogram_createOutputData", _wrap_IHistogram_createOutputData, METH_VARARGS, "\n"
+		"IHistogram_createOutputData(IHistogram self, IHistogram::DataType dataType=DataType::INTEGRAL) -> IntensityData\n"
+		"OutputData< double > * IHistogram::createOutputData(DataType dataType=DataType::INTEGRAL) const\n"
 		"\n"
-		"Sets beam parameters from here (forwarded to  Instrument) \n"
+		"creates new  OutputData with histogram's shape and values corresponding to DataType\n"
+		"\n"
+		"creates new  OutputData with histogram's shape and put there values corresponding to DataType \n"
 		"\n"
 		""},
-	 { "OffSpecSimulation_beamAxis", _wrap_OffSpecSimulation_beamAxis, METH_O, "\n"
-		"OffSpecSimulation_beamAxis(OffSpecSimulation self) -> IAxis\n"
-		"const IAxis * OffSpecSimulation::beamAxis() const\n"
+	 { "IHistogram_hasSameShape", _wrap_IHistogram_hasSameShape, METH_VARARGS, "\n"
+		"IHistogram_hasSameShape(IHistogram self, IHistogram other) -> bool\n"
+		"bool IHistogram::hasSameShape(const IHistogram &other) const\n"
 		"\n"
-		"Returns axis of the beam. \n"
+		"Returns true if objects a) have same dimensions b) bin boundaries of axes coincide. \n"
 		"\n"
 		""},
-	 { "OffSpecSimulation_intensityMapSize", _wrap_OffSpecSimulation_intensityMapSize, METH_O, "\n"
-		"OffSpecSimulation_intensityMapSize(OffSpecSimulation self) -> size_t\n"
-		"size_t OffSpecSimulation::intensityMapSize() const override\n"
+	 { "IHistogram_hasSameDimensions", _wrap_IHistogram_hasSameDimensions, METH_VARARGS, "\n"
+		"IHistogram_hasSameDimensions(IHistogram self, IHistogram other) -> bool\n"
+		"bool IHistogram::hasSameDimensions(const IHistogram &other) const\n"
 		"\n"
-		"Returns the total number of the intensity values in the simulation result. \n"
+		"Returns true if object have same rank and number of axes bins. \n"
 		"\n"
 		""},
-	 { "OffSpecSimulation_swigregister", OffSpecSimulation_swigregister, METH_O, NULL},
-	 { "OffSpecSimulation_swiginit", OffSpecSimulation_swiginit, METH_VARARGS, NULL},
-	 { "new_IntensityData", _wrap_new_IntensityData, METH_NOARGS, "\n"
-		"new_IntensityData() -> IntensityData\n"
-		"OutputData< T >::OutputData(const OutputData &)=delete\n"
+	 { "IHistogram___iadd__", _wrap_IHistogram___iadd__, METH_VARARGS, "IHistogram___iadd__(IHistogram self, IHistogram right) -> IHistogram"},
+	 { "IHistogram_relativeDifferenceHistogram", _wrap_IHistogram_relativeDifferenceHistogram, METH_VARARGS, "\n"
+		"IHistogram_relativeDifferenceHistogram(IHistogram self, IHistogram rhs) -> IHistogram\n"
+		"IHistogram * IHistogram::relativeDifferenceHistogram(const IHistogram &rhs)\n"
 		"\n"
-		""},
-	 { "delete_IntensityData", _wrap_delete_IntensityData, METH_O, "\n"
-		"delete_IntensityData(IntensityData self)\n"
-		"OutputData< T >::~OutputData()\n"
+		"returns histogram representing relative difference of two histograms. \n"
 		"\n"
 		""},
-	 { "IntensityData_clone", _wrap_IntensityData_clone, METH_O, "\n"
-		"IntensityData_clone(IntensityData self) -> IntensityData\n"
-		"OutputData< T > * OutputData< T >::clone() const\n"
+	 { "IHistogram_save", _wrap_IHistogram_save, METH_VARARGS, "\n"
+		"IHistogram_save(IHistogram self, std::string const & filename)\n"
+		"void IHistogram::save(const std::string &filename)\n"
 		"\n"
-		""},
-	 { "IntensityData_copyFrom", _wrap_IntensityData_copyFrom, METH_VARARGS, "\n"
-		"IntensityData_copyFrom(IntensityData self, IntensityData x)\n"
-		"void OutputData< T >::copyFrom(const OutputData< T > &x)\n"
+		"Saves histogram in file Following formats are available: *.txt, *.tif, *.int (*.txt.gz, *.tif.gz, *.int.gz) \n"
 		"\n"
 		""},
-	 { "IntensityData_meanValues", _wrap_IntensityData_meanValues, METH_O, "\n"
-		"IntensityData_meanValues(IntensityData self) -> IntensityData\n"
-		"OutputData< double > * OutputData< T >::meanValues() const\n"
+	 { "IHistogram_load", _wrap_IHistogram_load, METH_VARARGS, "\n"
+		"IHistogram_load(IHistogram self, std::string const & filename)\n"
+		"void IHistogram::load(const std::string &filename)\n"
 		"\n"
-		""},
-	 { "IntensityData_addAxis", _wrap_IntensityData_addAxis, METH_VARARGS, "\n"
-		"IntensityData_addAxis(IntensityData self, IAxis new_axis)\n"
-		"IntensityData_addAxis(IntensityData self, std::string const & name, size_t size, double start, double end)\n"
-		"void OutputData< T >::addAxis(const std::string &name, size_t size, double start, double end)\n"
+		"Loads histogram from file, the shape of array in file should match Following formats are available: *.txt, *.tif, *.int (*.txt.gz, *.tif.gz, *.int.gz) Only bin content will be loaded, histogram axes remain the same. \n"
 		"\n"
 		""},
-	 { "IntensityData_getAxis", _wrap_IntensityData_getAxis, METH_VARARGS, "\n"
-		"IntensityData_getAxis(IntensityData self, size_t serial_number) -> IAxis\n"
-		"IntensityData_getAxis(IntensityData self, std::string const & axis_name) -> IAxis\n"
-		"const IAxis & OutputData< T >::getAxis(const std::string &axis_name) const\n"
+	 { "IHistogram_swigregister", IHistogram_swigregister, METH_O, NULL},
+	 { "new_Histogram1D", _wrap_new_Histogram1D, METH_VARARGS, "\n"
+		"Histogram1D(int nbinsx, double xlow, double xup)\n"
+		"Histogram1D(int nbinsx, vdouble1d_t xbins)\n"
+		"Histogram1D(IAxis axis)\n"
+		"new_Histogram1D(IntensityData data) -> Histogram1D\n"
+		"Histogram1D::Histogram1D(const OutputData< double > &data)\n"
 		"\n"
-		"returns axis with given name \n"
+		"Constructor for 1D histograms from basic  OutputData object. \n"
 		"\n"
 		""},
-	 { "IntensityData_getRank", _wrap_IntensityData_getRank, METH_O, "\n"
-		"IntensityData_getRank(IntensityData self) -> size_t\n"
-		"size_t OutputData< T >::getRank() const\n"
+	 { "Histogram1D_clone", _wrap_Histogram1D_clone, METH_O, "\n"
+		"Histogram1D_clone(Histogram1D self) -> Histogram1D\n"
+		"Histogram1D * Histogram1D::clone() const\n"
 		"\n"
-		"Returns number of dimensions. \n"
+		"Returns clone of other histogram. \n"
 		"\n"
 		""},
-	 { "IntensityData_getAllocatedSize", _wrap_IntensityData_getAllocatedSize, METH_O, "\n"
-		"IntensityData_getAllocatedSize(IntensityData self) -> size_t\n"
-		"size_t OutputData< T >::getAllocatedSize() const\n"
+	 { "Histogram1D_getRank", _wrap_Histogram1D_getRank, METH_O, "\n"
+		"Histogram1D_getRank(Histogram1D self) -> size_t\n"
+		"size_t Histogram1D::getRank() const\n"
 		"\n"
-		"Returns total size of data buffer (product of bin number in every dimension). \n"
+		"Returns the number of histogram dimensions. \n"
 		"\n"
 		""},
-	 { "IntensityData_getAllSizes", _wrap_IntensityData_getAllSizes, METH_O, "\n"
-		"IntensityData_getAllSizes(IntensityData self) -> std::vector< size_t,std::allocator< size_t > >\n"
-		"std::vector< size_t > OutputData< T >::getAllSizes() const\n"
+	 { "Histogram1D_fill", _wrap_Histogram1D_fill, METH_VARARGS, "\n"
+		"Histogram1D_fill(Histogram1D self, double x, double weight=1.0) -> int\n"
+		"int Histogram1D::fill(double x, double weight=1.0)\n"
 		"\n"
-		"Returns all sizes of its axes. \n"
+		"Increment bin with abscissa x with a weight. \n"
 		"\n"
 		""},
-	 { "IntensityData_getRawDataVector", _wrap_IntensityData_getRawDataVector, METH_O, "\n"
-		"IntensityData_getRawDataVector(IntensityData self) -> vdouble1d_t\n"
-		"std::vector< T > OutputData< T >::getRawDataVector() const\n"
+	 { "Histogram1D_getBinCenters", _wrap_Histogram1D_getBinCenters, METH_O, "\n"
+		"Histogram1D_getBinCenters(Histogram1D self) -> vdouble1d_t\n"
+		"std::vector< double > Histogram1D::getBinCenters() const\n"
 		"\n"
-		"Returns copy of raw data vector. \n"
+		"returns vector of histogram bin centers \n"
 		"\n"
 		""},
-	 { "IntensityData_totalSum", _wrap_IntensityData_totalSum, METH_O, "\n"
-		"IntensityData_totalSum(IntensityData self) -> double\n"
-		"T OutputData< T >::totalSum() const\n"
+	 { "Histogram1D_getBinValues", _wrap_Histogram1D_getBinValues, METH_O, "\n"
+		"Histogram1D_getBinValues(Histogram1D self) -> vdouble1d_t\n"
+		"std::vector< double > Histogram1D::getBinValues() const\n"
 		"\n"
-		"Returns sum of all values in the data structure. \n"
+		"returns vector of bin content (the value accumulated by bins) \n"
 		"\n"
 		""},
-	 { "IntensityData_begin", _wrap_IntensityData_begin, METH_VARARGS, "\n"
-		"IntensityData_begin(IntensityData self) -> OutputData< double >::iterator\n"
-		"IntensityData_begin(IntensityData self) -> OutputData< double >::const_iterator\n"
-		"OutputData< T >::const_iterator OutputData< T >::begin() const\n"
+	 { "Histogram1D_getBinErrors", _wrap_Histogram1D_getBinErrors, METH_O, "\n"
+		"Histogram1D_getBinErrors(Histogram1D self) -> vdouble1d_t\n"
+		"std::vector< double > Histogram1D::getBinErrors() const\n"
 		"\n"
-		"Returns read-only iterator that points to the first element. \n"
+		"returns vector of bin errors \n"
 		"\n"
 		""},
-	 { "IntensityData_end", _wrap_IntensityData_end, METH_VARARGS, "\n"
-		"IntensityData_end(IntensityData self) -> OutputData< double >::iterator\n"
-		"IntensityData_end(IntensityData self) -> OutputData< double >::const_iterator\n"
-		"const_iterator OutputData< T >::end() const\n"
+	 { "Histogram1D_getBinCentersNumpy", _wrap_Histogram1D_getBinCentersNumpy, METH_O, "\n"
+		"Histogram1D_getBinCentersNumpy(Histogram1D self) -> PyObject *\n"
+		"PyObject * Histogram1D::getBinCentersNumpy() const\n"
 		"\n"
-		"Returns read-only iterator that points to the one past last element. \n"
+		""},
+	 { "Histogram1D_getBinValuesNumpy", _wrap_Histogram1D_getBinValuesNumpy, METH_O, "\n"
+		"Histogram1D_getBinValuesNumpy(Histogram1D self) -> PyObject *\n"
+		"PyObject * Histogram1D::getBinValuesNumpy() const\n"
 		"\n"
 		""},
-	 { "IntensityData_getAxesBinIndices", _wrap_IntensityData_getAxesBinIndices, METH_VARARGS, "\n"
-		"IntensityData_getAxesBinIndices(IntensityData self, size_t global_index) -> vector_integer_t\n"
-		"std::vector< int > OutputData< T >::getAxesBinIndices(size_t global_index) const\n"
+	 { "Histogram1D_getBinErrorsNumpy", _wrap_Histogram1D_getBinErrorsNumpy, METH_O, "\n"
+		"Histogram1D_getBinErrorsNumpy(Histogram1D self) -> PyObject *\n"
+		"PyObject * Histogram1D::getBinErrorsNumpy() const\n"
 		"\n"
-		"Returns vector of axes indices for given global index\n"
+		""},
+	 { "Histogram1D_crop", _wrap_Histogram1D_crop, METH_VARARGS, "\n"
+		"Histogram1D_crop(Histogram1D self, double xmin, double xmax) -> Histogram1D\n"
+		"Histogram1D * Histogram1D::crop(double xmin, double xmax)\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Create new histogram by applying crop on axis. \n"
 		"\n"
-		"global_index: \n"
-		"The global index of this data structure.\n"
+		""},
+	 { "delete_Histogram1D", _wrap_delete_Histogram1D, METH_O, "delete_Histogram1D(Histogram1D self)"},
+	 { "Histogram1D_swigregister", Histogram1D_swigregister, METH_O, NULL},
+	 { "Histogram1D_swiginit", Histogram1D_swiginit, METH_VARARGS, NULL},
+	 { "new_Histogram2D", _wrap_new_Histogram2D, METH_VARARGS, "\n"
+		"Histogram2D(int nbinsx, double xlow, double xup, int nbinsy, double ylow, double yup)\n"
+		"Histogram2D(int nbinsx, vdouble1d_t xbins, int nbinsy, vdouble1d_t ybins)\n"
+		"Histogram2D(IAxis axis_x, IAxis axis_y)\n"
+		"Histogram2D(IntensityData data)\n"
+		"new_Histogram2D(vdouble2d_t data) -> Histogram2D\n"
+		"Histogram2D::Histogram2D(std::vector< std::vector< double >> data)\n"
 		"\n"
-		"Vector of bin indices for all axes defined \n"
+		"Constructor for 2D histograms from numpy array (thanks to swig) \n"
 		"\n"
 		""},
-	 { "IntensityData_getAxisBinIndex", _wrap_IntensityData_getAxisBinIndex, METH_VARARGS, "\n"
-		"IntensityData_getAxisBinIndex(IntensityData self, size_t global_index, size_t i_selected_axis) -> size_t\n"
-		"IntensityData_getAxisBinIndex(IntensityData self, size_t global_index, std::string const & axis_name) -> size_t\n"
-		"size_t OutputData< T >::getAxisBinIndex(size_t global_index, const std::string &axis_name) const\n"
+	 { "Histogram2D_clone", _wrap_Histogram2D_clone, METH_O, "\n"
+		"Histogram2D_clone(Histogram2D self) -> Histogram2D\n"
+		"Histogram2D * Histogram2D::clone() const\n"
 		"\n"
-		"Returns axis bin index for given global index\n"
+		"Returns clone of other histogram. \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "Histogram2D_getRank", _wrap_Histogram2D_getRank, METH_O, "\n"
+		"Histogram2D_getRank(Histogram2D self) -> size_t\n"
+		"size_t Histogram2D::getRank() const\n"
 		"\n"
-		"global_index: \n"
-		"The global index of this data structure.\n"
+		"Returns the number of histogram dimensions. \n"
 		"\n"
-		"axis_name: \n"
-		"The name of selected axis.\n"
+		""},
+	 { "Histogram2D_fill", _wrap_Histogram2D_fill, METH_VARARGS, "\n"
+		"Histogram2D_fill(Histogram2D self, double x, double y, double weight=1.0) -> int\n"
+		"int Histogram2D::fill(double x, double y, double weight=1.0)\n"
 		"\n"
-		"Corresponding bin index for selected axis \n"
+		"Increment bin with abscissa x and ordinate y with a weight. \n"
 		"\n"
 		""},
-	 { "IntensityData_toGlobalIndex", _wrap_IntensityData_toGlobalIndex, METH_VARARGS, "\n"
-		"IntensityData_toGlobalIndex(IntensityData self, std::vector< unsigned int,std::allocator< unsigned int > > const & axes_indices) -> size_t\n"
-		"size_t OutputData< T >::toGlobalIndex(const std::vector< unsigned > &axes_indices) const\n"
+	 { "Histogram2D_projectionX", _wrap_Histogram2D_projectionX, METH_VARARGS, "\n"
+		"Histogram2D_projectionX(Histogram2D self) -> Histogram1D\n"
+		"Histogram2D_projectionX(Histogram2D self, double yvalue) -> Histogram1D\n"
+		"Histogram2D_projectionX(Histogram2D self, double ylow, double yup) -> Histogram1D\n"
+		"Histogram1D * Histogram2D::projectionX(double ylow, double yup)\n"
 		"\n"
-		"Returns global index for specified indices of axes\n"
+		"Project a 2D histogram into 1D histogram along X. The projection is made from all y-bins corresponding to ordinate between ylow and yup.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"axes_indices: \n"
-		"Vector of axes indices for all specified axes in this dataset\n"
+		"ylow: \n"
+		"lower edje on y-axis\n"
 		"\n"
-		"Corresponding global index \n"
+		"yup: \n"
+		"upper edje on y-axis \n"
 		"\n"
 		""},
-	 { "IntensityData_findGlobalIndex", _wrap_IntensityData_findGlobalIndex, METH_VARARGS, "\n"
-		"IntensityData_findGlobalIndex(IntensityData self, vdouble1d_t coordinates) -> size_t\n"
-		"size_t OutputData< T >::findGlobalIndex(const std::vector< double > &coordinates) const\n"
+	 { "Histogram2D_projectionY", _wrap_Histogram2D_projectionY, METH_VARARGS, "\n"
+		"Histogram2D_projectionY(Histogram2D self) -> Histogram1D\n"
+		"Histogram2D_projectionY(Histogram2D self, double xvalue) -> Histogram1D\n"
+		"Histogram2D_projectionY(Histogram2D self, double xlow, double xup) -> Histogram1D\n"
+		"Histogram1D * Histogram2D::projectionY(double xlow, double xup)\n"
 		"\n"
-		"Returns global index for specified axes values\n"
+		"Project a 2D histogram into 1D histogram along Y. The projection is made from all x-bins corresponding to abscissa between xlow and xup.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"coordinates: \n"
-		"Vector of axes coordinates for all specified axes in this dataset\n"
+		"xlow: \n"
+		"lower edje on x-axis\n"
 		"\n"
-		"Closest global index \n"
+		"xup: \n"
+		"upper edje on x-axis \n"
 		"\n"
 		""},
-	 { "IntensityData_getAxisValue", _wrap_IntensityData_getAxisValue, METH_VARARGS, "\n"
-		"IntensityData_getAxisValue(IntensityData self, size_t global_index, size_t i_selected_axis) -> double\n"
-		"IntensityData_getAxisValue(IntensityData self, size_t global_index, std::string const & axis_name) -> double\n"
-		"double OutputData< T >::getAxisValue(size_t global_index, const std::string &axis_name) const\n"
+	 { "Histogram2D_crop", _wrap_Histogram2D_crop, METH_VARARGS, "\n"
+		"Histogram2D_crop(Histogram2D self, double xmin, double ymin, double xmax, double ymax) -> Histogram2D\n"
+		"Histogram2D * Histogram2D::crop(double xmin, double ymin, double xmax, double ymax)\n"
 		"\n"
-		"Returns the value of selected axis for given global_index.\n"
+		"Create new histogram by applying rectangular clip. \n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		""},
+	 { "Histogram2D_setContent", _wrap_Histogram2D_setContent, METH_VARARGS, "\n"
+		"Histogram2D_setContent(Histogram2D self, vdouble2d_t data)\n"
+		"void Histogram2D::setContent(const std::vector< std::vector< double >> &data)\n"
 		"\n"
-		"global_index: \n"
-		"The global index of this data structure.\n"
+		"Sets the values in histograms channels from numpy array,. \n"
 		"\n"
-		"axis_name: \n"
-		"The name of selected axis.\n"
+		""},
+	 { "Histogram2D_addContent", _wrap_Histogram2D_addContent, METH_VARARGS, "\n"
+		"Histogram2D_addContent(Histogram2D self, vdouble2d_t data)\n"
+		"void Histogram2D::addContent(const std::vector< std::vector< double >> &data)\n"
 		"\n"
-		"corresponding bin center of selected axis \n"
+		"Add to values in histograms channels from numpy array,. \n"
 		"\n"
 		""},
-	 { "IntensityData_getAxesValues", _wrap_IntensityData_getAxesValues, METH_VARARGS, "\n"
-		"IntensityData_getAxesValues(IntensityData self, size_t global_index) -> vdouble1d_t\n"
-		"std::vector< double > OutputData< T >::getAxesValues(size_t global_index) const\n"
+	 { "delete_Histogram2D", _wrap_delete_Histogram2D, METH_O, "delete_Histogram2D(Histogram2D self)"},
+	 { "Histogram2D_swigregister", Histogram2D_swigregister, METH_O, NULL},
+	 { "Histogram2D_swiginit", Histogram2D_swiginit, METH_VARARGS, NULL},
+	 { "AxisInfo_m_name_set", _wrap_AxisInfo_m_name_set, METH_VARARGS, "AxisInfo_m_name_set(AxisInfo self, std::string const & m_name)"},
+	 { "AxisInfo_m_name_get", _wrap_AxisInfo_m_name_get, METH_O, "AxisInfo_m_name_get(AxisInfo self) -> std::string const &"},
+	 { "AxisInfo_m_min_set", _wrap_AxisInfo_m_min_set, METH_VARARGS, "AxisInfo_m_min_set(AxisInfo self, double m_min)"},
+	 { "AxisInfo_m_min_get", _wrap_AxisInfo_m_min_get, METH_O, "AxisInfo_m_min_get(AxisInfo self) -> double"},
+	 { "AxisInfo_m_max_set", _wrap_AxisInfo_m_max_set, METH_VARARGS, "AxisInfo_m_max_set(AxisInfo self, double m_max)"},
+	 { "AxisInfo_m_max_get", _wrap_AxisInfo_m_max_get, METH_O, "AxisInfo_m_max_get(AxisInfo self) -> double"},
+	 { "new_AxisInfo", _wrap_new_AxisInfo, METH_NOARGS, "\n"
+		"new_AxisInfo() -> AxisInfo\n"
 		"\n"
-		"Returns values on all defined axes for given globalbin number\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Information about an axis in specific units. Can be used for plotting.\n"
 		"\n"
-		"global_index: \n"
-		"The global index of this data structure.\n"
+		"C++ includes: SimulationResult.h\n"
 		"\n"
-		"Vector of corresponding bin centers \n"
+		""},
+	 { "delete_AxisInfo", _wrap_delete_AxisInfo, METH_O, "delete_AxisInfo(AxisInfo self)"},
+	 { "AxisInfo_swigregister", AxisInfo_swigregister, METH_O, NULL},
+	 { "AxisInfo_swiginit", AxisInfo_swiginit, METH_VARARGS, NULL},
+	 { "new_SimulationResult", _wrap_new_SimulationResult, METH_VARARGS, "\n"
+		"SimulationResult()\n"
+		"SimulationResult(IntensityData data, IUnitConverter unit_converter)\n"
+		"SimulationResult(SimulationResult other)\n"
+		"new_SimulationResult(SimulationResult other) -> SimulationResult\n"
+		"SimulationResult::SimulationResult(SimulationResult &&other)\n"
 		"\n"
 		""},
-	 { "IntensityData_getAxisBin", _wrap_IntensityData_getAxisBin, METH_VARARGS, "\n"
-		"IntensityData_getAxisBin(IntensityData self, size_t global_index, size_t i_selected_axis) -> Bin1D\n"
-		"IntensityData_getAxisBin(IntensityData self, size_t global_index, std::string const & axis_name) -> Bin1D\n"
-		"Bin1D OutputData< T >::getAxisBin(size_t global_index, const std::string &axis_name) const\n"
+	 { "SimulationResult_histogram2d", _wrap_SimulationResult_histogram2d, METH_VARARGS, "\n"
+		"SimulationResult_histogram2d(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> Histogram2D\n"
+		"Histogram2D * SimulationResult::histogram2d(AxesUnits units=AxesUnits::DEFAULT) const\n"
 		"\n"
-		"Returns bin of selected axis for given global_index.\n"
+		""},
+	 { "SimulationResult_axisInfo", _wrap_SimulationResult_axisInfo, METH_VARARGS, "\n"
+		"SimulationResult_axisInfo(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> swig_dummy_type_axisinfo_vector\n"
+		"std::vector< AxisInfo > SimulationResult::axisInfo(AxesUnits units=AxesUnits::DEFAULT) const\n"
 		"\n"
-		"Parameters:\n"
-		"-----------\n"
+		"Provide  AxisInfo for each axis and the given units. \n"
 		"\n"
-		"global_index: \n"
-		"The global index of this data structure.\n"
+		""},
+	 { "SimulationResult_converter", _wrap_SimulationResult_converter, METH_O, "\n"
+		"SimulationResult_converter(SimulationResult self) -> IUnitConverter\n"
+		"const IUnitConverter & SimulationResult::converter() const\n"
 		"\n"
-		"axis_name: \n"
-		"The name of selected axis.\n"
+		"Returns underlying unit converter. \n"
 		"\n"
-		"Corresponding  Bin1D object \n"
+		""},
+	 { "SimulationResult_size", _wrap_SimulationResult_size, METH_O, "\n"
+		"SimulationResult_size(SimulationResult self) -> size_t\n"
+		"size_t SimulationResult::size() const\n"
 		"\n"
 		""},
-	 { "IntensityData_clear", _wrap_IntensityData_clear, METH_O, "\n"
-		"IntensityData_clear(IntensityData self)\n"
-		"void OutputData< T >::clear()\n"
+	 { "SimulationResult_array", _wrap_SimulationResult_array, METH_VARARGS, "\n"
+		"SimulationResult_array(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> PyObject\n"
+		"PyObject * SimulationResult::array(AxesUnits units=AxesUnits::DEFAULT) const\n"
 		"\n"
-		"Sets object into initial state (no dimensions, data) \n"
+		"returns intensity data as Python numpy array \n"
 		"\n"
 		""},
-	 { "IntensityData_setAllTo", _wrap_IntensityData_setAllTo, METH_VARARGS, "\n"
-		"IntensityData_setAllTo(IntensityData self, double const & value)\n"
-		"void OutputData< T >::setAllTo(const T &value)\n"
+	 { "SimulationResult_axis", _wrap_SimulationResult_axis, METH_VARARGS, "\n"
+		"SimulationResult_axis(SimulationResult self, AxesUnits units=AxesUnits::DEFAULT) -> vdouble1d_t\n"
+		"SimulationResult_axis(SimulationResult self, size_t i_axis, AxesUnits units=AxesUnits::DEFAULT) -> vdouble1d_t\n"
+		"std::vector< double > SimulationResult::axis(size_t i_axis, AxesUnits units=AxesUnits::DEFAULT) const\n"
 		"\n"
-		"Sets content of output data to specific value. \n"
+		"Returns axis coordinates as a numpy array. With no parameters given returns coordinates of x-axis in default units. \n"
 		"\n"
 		""},
-	 { "IntensityData_scaleAll", _wrap_IntensityData_scaleAll, METH_VARARGS, "\n"
-		"IntensityData_scaleAll(IntensityData self, double const & factor)\n"
-		"void OutputData< T >::scaleAll(const T &factor)\n"
+	 { "SimulationResult___getitem__", _wrap_SimulationResult___getitem__, METH_VARARGS, "SimulationResult___getitem__(SimulationResult self, unsigned int i) -> double"},
+	 { "SimulationResult___setitem__", _wrap_SimulationResult___setitem__, METH_VARARGS, "SimulationResult___setitem__(SimulationResult self, unsigned int i, double value) -> double"},
+	 { "delete_SimulationResult", _wrap_delete_SimulationResult, METH_O, "delete_SimulationResult(SimulationResult self)"},
+	 { "SimulationResult_swigregister", SimulationResult_swigregister, METH_O, NULL},
+	 { "SimulationResult_swiginit", SimulationResult_swiginit, METH_VARARGS, NULL},
+	 { "IDetector_clone", _wrap_IDetector_clone, METH_O, "\n"
+		"IDetector_clone(IDetector self) -> IDetector\n"
+		"IDetector* IDetector::clone() const override=0\n"
 		"\n"
-		"multiply every item of this output data by value \n"
+		""},
+	 { "delete_IDetector", _wrap_delete_IDetector, METH_O, "\n"
+		"delete_IDetector(IDetector self)\n"
+		"IDetector::~IDetector()\n"
 		"\n"
 		""},
-	 { "IntensityData_setAxisSizes", _wrap_IntensityData_setAxisSizes, METH_VARARGS, "\n"
-		"IntensityData_setAxisSizes(IntensityData self, size_t rank, int * n_dims)\n"
-		"void OutputData< T >::setAxisSizes(size_t rank, int *n_dims)\n"
+	 { "IDetector_init", _wrap_IDetector_init, METH_VARARGS, "\n"
+		"IDetector_init(IDetector self, Beam arg2)\n"
+		"virtual void IDetector::init(const Beam &)\n"
 		"\n"
-		"Adds 'rank' axes with indicated sizes. \n"
+		"Inits detector with the beam settings. \n"
 		"\n"
 		""},
-	 { "IntensityData_setRawDataVector", _wrap_IntensityData_setRawDataVector, METH_VARARGS, "\n"
-		"IntensityData_setRawDataVector(IntensityData self, vdouble1d_t data_vector)\n"
-		"void OutputData< T >::setRawDataVector(const std::vector< T > &data_vector)\n"
+	 { "IDetector_clear", _wrap_IDetector_clear, METH_O, "\n"
+		"IDetector_clear(IDetector self)\n"
+		"void IDetector::clear()\n"
 		"\n"
-		"Sets new values to raw data vector. \n"
+		""},
+	 { "IDetector_addAxis", _wrap_IDetector_addAxis, METH_VARARGS, "\n"
+		"IDetector_addAxis(IDetector self, IAxis axis)\n"
+		"void IDetector::addAxis(const IAxis &axis)\n"
 		"\n"
 		""},
-	 { "IntensityData_setRawDataArray", _wrap_IntensityData_setRawDataArray, METH_VARARGS, "\n"
-		"IntensityData_setRawDataArray(IntensityData self, double const * source)\n"
-		"void OutputData< T >::setRawDataArray(const T *source)\n"
+	 { "IDetector_getAxis", _wrap_IDetector_getAxis, METH_VARARGS, "\n"
+		"IDetector_getAxis(IDetector self, size_t index) -> IAxis\n"
+		"const IAxis & IDetector::getAxis(size_t index) const\n"
 		"\n"
-		"Sets new values to raw data array. \n"
+		""},
+	 { "IDetector_dimension", _wrap_IDetector_dimension, METH_O, "\n"
+		"IDetector_dimension(IDetector self) -> size_t\n"
+		"size_t IDetector::dimension() const\n"
+		"\n"
+		"Returns actual dimensionality of the detector (number of defined axes) \n"
 		"\n"
 		""},
-	 { "IntensityData___iadd__", _wrap_IntensityData___iadd__, METH_VARARGS, "IntensityData___iadd__(IntensityData self, IntensityData right) -> IntensityData"},
-	 { "IntensityData___isub__", _wrap_IntensityData___isub__, METH_VARARGS, "IntensityData___isub__(IntensityData self, IntensityData right) -> IntensityData"},
-	 { "IntensityData___itruediv__", _wrap_IntensityData___itruediv__, METH_VARARGS, "IntensityData___itruediv__(IntensityData self, IntensityData right) -> IntensityData"},
-	 { "IntensityData___imul__", _wrap_IntensityData___imul__, METH_VARARGS, "IntensityData___imul__(IntensityData self, IntensityData right) -> IntensityData"},
-	 { "IntensityData_getValue", _wrap_IntensityData_getValue, METH_VARARGS, "\n"
-		"IntensityData_getValue(IntensityData self, size_t index) -> double\n"
-		"double OutputData< T >::getValue(size_t index) const\n"
+	 { "IDetector_axisBinIndex", _wrap_IDetector_axisBinIndex, METH_VARARGS, "\n"
+		"IDetector_axisBinIndex(IDetector self, size_t index, size_t selected_axis) -> size_t\n"
+		"size_t IDetector::axisBinIndex(size_t index, size_t selected_axis) const\n"
 		"\n"
-		"Returns value or summed value, depending on T. \n"
+		"Calculate axis index for given global index. \n"
 		"\n"
 		""},
-	 { "IntensityData_getArray", _wrap_IntensityData_getArray, METH_O, "\n"
-		"IntensityData_getArray(IntensityData self) -> PyObject *\n"
-		"PyObject* OutputData< T >::getArray() const\n"
+	 { "IDetector_totalSize", _wrap_IDetector_totalSize, METH_O, "\n"
+		"IDetector_totalSize(IDetector self) -> size_t\n"
+		"size_t IDetector::totalSize() const\n"
 		"\n"
-		"returns data as Python numpy array \n"
+		"Returns total number of pixels. \n"
 		"\n"
 		""},
-	 { "IntensityData_isInitialized", _wrap_IntensityData_isInitialized, METH_O, "\n"
-		"IntensityData_isInitialized(IntensityData self) -> bool\n"
-		"bool OutputData< T >::isInitialized() const\n"
+	 { "IDetector_detectorMask", _wrap_IDetector_detectorMask, METH_O, "\n"
+		"IDetector_detectorMask(IDetector self) -> DetectorMask\n"
+		"virtual const DetectorMask* IDetector::detectorMask() const =0\n"
 		"\n"
-		"returns true if object is correctly initialized \n"
+		"Returns detector masks container. \n"
 		"\n"
 		""},
-	 { "IntensityData_allocate", _wrap_IntensityData_allocate, METH_O, "\n"
-		"IntensityData_allocate(IntensityData self)\n"
-		"void OutputData< T >::allocate()\n"
+	 { "IDetector_setAnalyzerProperties", _wrap_IDetector_setAnalyzerProperties, METH_VARARGS, "\n"
+		"IDetector_setAnalyzerProperties(IDetector self, kvector_t direction, double efficiency, double total_transmission)\n"
+		"void IDetector::setAnalyzerProperties(const kvector_t direction, double efficiency, double total_transmission)\n"
 		"\n"
-		"memory allocation for current dimensions configuration \n"
+		"Sets the polarization analyzer characteristics of the detector. \n"
 		"\n"
 		""},
-	 { "IntensityData___getitem__", _wrap_IntensityData___getitem__, METH_VARARGS, "IntensityData___getitem__(IntensityData self, unsigned int i) -> double"},
-	 { "IntensityData___setitem__", _wrap_IntensityData___setitem__, METH_VARARGS, "IntensityData___setitem__(IntensityData self, unsigned int i, double value) -> double"},
-	 { "IntensityData_swigregister", IntensityData_swigregister, METH_O, NULL},
-	 { "IntensityData_swiginit", IntensityData_swiginit, METH_VARARGS, NULL},
-	 { "new_ParameterDistribution", _wrap_new_ParameterDistribution, METH_VARARGS, "\n"
-		"ParameterDistribution(std::string const & par_name, IDistribution1D distribution, size_t nbr_samples, double sigma_factor=0.0, RealLimits limits=RealLimits())\n"
-		"ParameterDistribution(std::string const & par_name, IDistribution1D distribution, size_t nbr_samples, double xmin, double xmax)\n"
-		"new_ParameterDistribution(ParameterDistribution other) -> ParameterDistribution\n"
-		"ParameterDistribution::ParameterDistribution(const ParameterDistribution &other)\n"
+	 { "IDetector_setDetectorResolution", _wrap_IDetector_setDetectorResolution, METH_VARARGS, "\n"
+		"IDetector_setDetectorResolution(IDetector self, IDetectorResolution p_detector_resolution)\n"
+		"void IDetector::setDetectorResolution(const IDetectorResolution &p_detector_resolution)\n"
+		"\n"
+		"Sets the detector resolution. \n"
 		"\n"
 		""},
-	 { "delete_ParameterDistribution", _wrap_delete_ParameterDistribution, METH_O, "\n"
-		"delete_ParameterDistribution(ParameterDistribution self)\n"
-		"ParameterDistribution::~ParameterDistribution()\n"
+	 { "IDetector_setResolutionFunction", _wrap_IDetector_setResolutionFunction, METH_VARARGS, "\n"
+		"IDetector_setResolutionFunction(IDetector self, IResolutionFunction2D resFunc)\n"
+		"void IDetector::setResolutionFunction(const IResolutionFunction2D &resFunc)\n"
 		"\n"
 		""},
-	 { "ParameterDistribution_linkParameter", _wrap_ParameterDistribution_linkParameter, METH_VARARGS, "\n"
-		"ParameterDistribution_linkParameter(ParameterDistribution self, std::string par_name) -> ParameterDistribution\n"
-		"ParameterDistribution & ParameterDistribution::linkParameter(std::string par_name)\n"
+	 { "IDetector_applyDetectorResolution", _wrap_IDetector_applyDetectorResolution, METH_VARARGS, "\n"
+		"IDetector_applyDetectorResolution(IDetector self, IntensityData p_intensity_map)\n"
+		"void IDetector::applyDetectorResolution(OutputData< double > *p_intensity_map) const\n"
+		"\n"
+		"Applies the detector resolution to the given intensity maps. \n"
 		"\n"
 		""},
-	 { "ParameterDistribution_getMainParameterName", _wrap_ParameterDistribution_getMainParameterName, METH_O, "\n"
-		"ParameterDistribution_getMainParameterName(ParameterDistribution self) -> std::string\n"
-		"std::string ParameterDistribution::getMainParameterName() const\n"
+	 { "IDetector_removeDetectorResolution", _wrap_IDetector_removeDetectorResolution, METH_O, "\n"
+		"IDetector_removeDetectorResolution(IDetector self)\n"
+		"void IDetector::removeDetectorResolution()\n"
 		"\n"
-		"get the main parameter's name \n"
+		"Removes detector resolution function. \n"
 		"\n"
 		""},
-	 { "ParameterDistribution_getNbrSamples", _wrap_ParameterDistribution_getNbrSamples, METH_O, "\n"
-		"ParameterDistribution_getNbrSamples(ParameterDistribution self) -> size_t\n"
-		"size_t ParameterDistribution::getNbrSamples() const\n"
+	 { "IDetector_detectorResolution", _wrap_IDetector_detectorResolution, METH_O, "\n"
+		"IDetector_detectorResolution(IDetector self) -> IDetectorResolution\n"
+		"const IDetectorResolution * IDetector::detectorResolution() const\n"
 		"\n"
-		"get number of samples for this distribution \n"
+		"Returns a pointer to detector resolution object. \n"
 		"\n"
 		""},
-	 { "ParameterDistribution_getSigmaFactor", _wrap_ParameterDistribution_getSigmaFactor, METH_O, "\n"
-		"ParameterDistribution_getSigmaFactor(ParameterDistribution self) -> double\n"
-		"double ParameterDistribution::getSigmaFactor() const\n"
+	 { "IDetector_regionOfInterest", _wrap_IDetector_regionOfInterest, METH_O, "\n"
+		"IDetector_regionOfInterest(IDetector self) -> RegionOfInterest const *\n"
+		"virtual const RegionOfInterest* IDetector::regionOfInterest() const =0\n"
 		"\n"
-		"get the sigma factor \n"
+		"Returns region of interest if exists. \n"
 		"\n"
 		""},
-	 { "ParameterDistribution_getDistribution", _wrap_ParameterDistribution_getDistribution, METH_VARARGS, "\n"
-		"ParameterDistribution_getDistribution(ParameterDistribution self) -> IDistribution1D\n"
-		"ParameterDistribution_getDistribution(ParameterDistribution self) -> IDistribution1D\n"
-		"IDistribution1D * ParameterDistribution::getDistribution()\n"
+	 { "IDetector_resetRegionOfInterest", _wrap_IDetector_resetRegionOfInterest, METH_O, "\n"
+		"IDetector_resetRegionOfInterest(IDetector self)\n"
+		"virtual void IDetector::resetRegionOfInterest()=0\n"
+		"\n"
+		"Resets region of interest making whole detector plane available for the simulation. \n"
 		"\n"
 		""},
-	 { "ParameterDistribution_generateSamples", _wrap_ParameterDistribution_generateSamples, METH_O, "\n"
-		"ParameterDistribution_generateSamples(ParameterDistribution self) -> ParameterSampleVector\n"
-		"std::vector< ParameterSample > ParameterDistribution::generateSamples() const\n"
+	 { "IDetector_detectionProperties", _wrap_IDetector_detectionProperties, METH_O, "\n"
+		"IDetector_detectionProperties(IDetector self) -> DetectionProperties const &\n"
+		"const DetectionProperties& IDetector::detectionProperties() const\n"
 		"\n"
-		"generate list of sampled values with their weight \n"
+		"Returns detection properties. \n"
 		"\n"
 		""},
-	 { "ParameterDistribution_getLinkedParameterNames", _wrap_ParameterDistribution_getLinkedParameterNames, METH_O, "\n"
-		"ParameterDistribution_getLinkedParameterNames(ParameterDistribution self) -> vector_string_t\n"
-		"std::vector<std::string> ParameterDistribution::getLinkedParameterNames() const\n"
+	 { "IDetector_createDetectorIntensity", _wrap_IDetector_createDetectorIntensity, METH_VARARGS, "\n"
+		"IDetector_createDetectorIntensity(IDetector self, std::vector< SimulationElement,std::allocator< SimulationElement > > const & elements) -> IntensityData\n"
+		"OutputData< double > * IDetector::createDetectorIntensity(const std::vector< SimulationElement > &elements) const\n"
 		"\n"
-		"get list of linked parameter names \n"
+		"Returns new intensity map with detector resolution applied. Map will be cropped to ROI if ROI is present. \n"
 		"\n"
 		""},
-	 { "ParameterDistribution_getLimits", _wrap_ParameterDistribution_getLimits, METH_O, "\n"
-		"ParameterDistribution_getLimits(ParameterDistribution self) -> RealLimits\n"
-		"RealLimits ParameterDistribution::getLimits() const\n"
+	 { "IDetector_defaultAxesUnits", _wrap_IDetector_defaultAxesUnits, METH_O, "\n"
+		"IDetector_defaultAxesUnits(IDetector self) -> AxesUnits\n"
+		"virtual AxesUnits IDetector::defaultAxesUnits() const\n"
+		"\n"
+		"Return default axes units. \n"
 		"\n"
 		""},
-	 { "ParameterDistribution_getMinValue", _wrap_ParameterDistribution_getMinValue, METH_O, "\n"
-		"ParameterDistribution_getMinValue(ParameterDistribution self) -> double\n"
-		"double ParameterDistribution::getMinValue() const\n"
+	 { "IDetector_numberOfSimulationElements", _wrap_IDetector_numberOfSimulationElements, METH_O, "\n"
+		"IDetector_numberOfSimulationElements(IDetector self) -> size_t\n"
+		"size_t IDetector::numberOfSimulationElements() const\n"
+		"\n"
+		"Returns number of simulation elements. \n"
 		"\n"
 		""},
-	 { "ParameterDistribution_getMaxValue", _wrap_ParameterDistribution_getMaxValue, METH_O, "\n"
-		"ParameterDistribution_getMaxValue(ParameterDistribution self) -> double\n"
-		"double ParameterDistribution::getMaxValue() const\n"
+	 { "IDetector_getChildren", _wrap_IDetector_getChildren, METH_O, "\n"
+		"IDetector_getChildren(IDetector self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > IDetector::getChildren() const override\n"
+		"\n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "ParameterDistribution_swigregister", ParameterDistribution_swigregister, METH_O, NULL},
-	 { "ParameterDistribution_swiginit", ParameterDistribution_swiginit, METH_VARARGS, NULL},
-	 { "new_ParameterPool", _wrap_new_ParameterPool, METH_NOARGS, "\n"
-		"new_ParameterPool() -> ParameterPool\n"
-		"ParameterPool::ParameterPool()\n"
+	 { "IDetector_iterate", _wrap_IDetector_iterate, METH_VARARGS, "\n"
+		"IDetector_iterate(IDetector self, std::function< void (IDetector::const_iterator) > func, bool visit_masks=False)\n"
+		"void IDetector::iterate(std::function< void(const_iterator)> func, bool visit_masks=false) const\n"
 		"\n"
-		"Constructs an empty parameter pool. \n"
+		""},
+	 { "IDetector_swigregister", IDetector_swigregister, METH_O, NULL},
+	 { "IDetector2D_clone", _wrap_IDetector2D_clone, METH_O, "\n"
+		"IDetector2D_clone(IDetector2D self) -> IDetector2D\n"
+		"IDetector2D* IDetector2D::clone() const override=0\n"
+		"\n"
+		""},
+	 { "delete_IDetector2D", _wrap_delete_IDetector2D, METH_O, "\n"
+		"delete_IDetector2D(IDetector2D self)\n"
+		"IDetector2D::~IDetector2D()\n"
 		"\n"
 		""},
-	 { "delete_ParameterPool", _wrap_delete_ParameterPool, METH_O, "\n"
-		"delete_ParameterPool(ParameterPool self)\n"
-		"ParameterPool::~ParameterPool()\n"
+	 { "IDetector2D_setDetectorParameters", _wrap_IDetector2D_setDetectorParameters, METH_VARARGS, "\n"
+		"IDetector2D_setDetectorParameters(IDetector2D self, size_t n_x, double x_min, double x_max, size_t n_y, double y_min, double y_max)\n"
+		"void IDetector2D::setDetectorParameters(size_t n_x, double x_min, double x_max, size_t n_y, double y_min, double y_max)\n"
+		"\n"
+		"Sets detector parameters using angle ranges. \n"
 		"\n"
 		""},
-	 { "ParameterPool_clone", _wrap_ParameterPool_clone, METH_O, "\n"
-		"ParameterPool_clone(ParameterPool self) -> ParameterPool\n"
-		"ParameterPool * ParameterPool::clone() const\n"
+	 { "IDetector2D_setDetectorAxes", _wrap_IDetector2D_setDetectorAxes, METH_VARARGS, "\n"
+		"IDetector2D_setDetectorAxes(IDetector2D self, IAxis axis0, IAxis axis1)\n"
+		"void IDetector2D::setDetectorAxes(const IAxis &axis0, const IAxis &axis1)\n"
 		"\n"
-		"Returns a literal clone. \n"
+		"Sets detector parameters using axes. \n"
 		"\n"
 		""},
-	 { "ParameterPool_copyToExternalPool", _wrap_ParameterPool_copyToExternalPool, METH_VARARGS, "\n"
-		"ParameterPool_copyToExternalPool(ParameterPool self, std::string const & prefix, ParameterPool other_pool)\n"
-		"void ParameterPool::copyToExternalPool(const std::string &prefix, ParameterPool *other_pool) const\n"
+	 { "IDetector2D_removeMasks", _wrap_IDetector2D_removeMasks, METH_O, "\n"
+		"IDetector2D_removeMasks(IDetector2D self)\n"
+		"void IDetector2D::removeMasks()\n"
 		"\n"
-		"Copies parameters of given pool to  other pool, prepeding  prefix to the parameter names. \n"
+		"Removes all masks from the detector. \n"
 		"\n"
 		""},
-	 { "ParameterPool_clear", _wrap_ParameterPool_clear, METH_O, "\n"
-		"ParameterPool_clear(ParameterPool self)\n"
-		"void ParameterPool::clear()\n"
+	 { "IDetector2D_detectorMask", _wrap_IDetector2D_detectorMask, METH_O, "\n"
+		"IDetector2D_detectorMask(IDetector2D self) -> DetectorMask\n"
+		"const DetectorMask * IDetector2D::detectorMask() const override\n"
 		"\n"
-		"Clears the parameter map. \n"
+		"Returns detector masks container. \n"
 		"\n"
 		""},
-	 { "ParameterPool_size", _wrap_ParameterPool_size, METH_O, "\n"
-		"ParameterPool_size(ParameterPool self) -> size_t\n"
-		"size_t ParameterPool::size() const\n"
+	 { "IDetector2D_addMask", _wrap_IDetector2D_addMask, METH_VARARGS, "\n"
+		"IDetector2D_addMask(IDetector2D self, IShape2D shape, bool mask_value=True)\n"
+		"void IDetector2D::addMask(const IShape2D &shape, bool mask_value=true)\n"
 		"\n"
-		"Returns number of parameters in the pool. \n"
+		"Adds mask of given shape to the stack of detector masks. The mask value 'true' means that the channel will be excluded from the simulation. The mask which is added last has priority.\n"
 		"\n"
-		""},
-	 { "ParameterPool_addParameter", _wrap_ParameterPool_addParameter, METH_VARARGS, "\n"
-		"ParameterPool_addParameter(ParameterPool self, RealParameter newPar) -> RealParameter\n"
-		"RealParameter & ParameterPool::addParameter(RealParameter *newPar)\n"
+		"Parameters:\n"
+		"-----------\n"
 		"\n"
-		"Adds parameter to the pool, and returns reference to the input pointer.\n"
+		"shape: \n"
+		"The shape of mask ( Rectangle,  Polygon,  Line,  Ellipse)\n"
 		"\n"
-		"Returning the input pointer allows us to concatenate function calls like pool->addParameter( new RealParameter(...) ).setLimits(-1,+1).setFixed().setUnit(\"nm\") \n"
+		"mask_value: \n"
+		"The value of mask \n"
 		"\n"
 		""},
-	 { "ParameterPool_parameter", _wrap_ParameterPool_parameter, METH_VARARGS, "\n"
-		"ParameterPool_parameter(ParameterPool self, std::string const & name) -> RealParameter\n"
-		"ParameterPool_parameter(ParameterPool self, std::string const & name) -> RealParameter\n"
-		"const RealParameter * ParameterPool::parameter(const std::string &name) const\n"
+	 { "IDetector2D_maskAll", _wrap_IDetector2D_maskAll, METH_O, "\n"
+		"IDetector2D_maskAll(IDetector2D self)\n"
+		"void IDetector2D::maskAll()\n"
 		"\n"
-		"Returns parameter with given  name. \n"
+		"Put the mask for all detector channels (i.e. exclude whole detector from the analysis) \n"
 		"\n"
 		""},
-	 { "ParameterPool_parameters", _wrap_ParameterPool_parameters, METH_O, "\n"
-		"ParameterPool_parameters(ParameterPool self) -> std::vector< RealParameter *,std::allocator< RealParameter * > > const\n"
-		"const std::vector<RealParameter*> ParameterPool::parameters() const\n"
+	 { "IDetector2D_regionOfInterest", _wrap_IDetector2D_regionOfInterest, METH_O, "\n"
+		"IDetector2D_regionOfInterest(IDetector2D self) -> RegionOfInterest const *\n"
+		"const RegionOfInterest * IDetector2D::regionOfInterest() const override\n"
 		"\n"
-		"Returns full vector of parameters. \n"
+		"Returns region of interest if exists. \n"
 		"\n"
 		""},
-	 { "ParameterPool_getMatchedParameters", _wrap_ParameterPool_getMatchedParameters, METH_VARARGS, "\n"
-		"ParameterPool_getMatchedParameters(ParameterPool self, std::string const & pattern) -> std::vector< RealParameter *,std::allocator< RealParameter * > >\n"
-		"std::vector< RealParameter * > ParameterPool::getMatchedParameters(const std::string &pattern) const\n"
+	 { "IDetector2D_setRegionOfInterest", _wrap_IDetector2D_setRegionOfInterest, METH_VARARGS, "\n"
+		"IDetector2D_setRegionOfInterest(IDetector2D self, double xlow, double ylow, double xup, double yup)\n"
+		"void IDetector2D::setRegionOfInterest(double xlow, double ylow, double xup, double yup)\n"
 		"\n"
-		"Returns nonempty vector of parameters that match the  pattern ('*' allowed), or throws. \n"
+		"Sets rectangular region of interest with lower left and upper right corners defined. \n"
 		"\n"
 		""},
-	 { "ParameterPool_getUniqueMatch", _wrap_ParameterPool_getUniqueMatch, METH_VARARGS, "\n"
-		"ParameterPool_getUniqueMatch(ParameterPool self, std::string const & pattern) -> RealParameter\n"
-		"RealParameter * ParameterPool::getUniqueMatch(const std::string &pattern) const\n"
+	 { "IDetector2D_resetRegionOfInterest", _wrap_IDetector2D_resetRegionOfInterest, METH_O, "\n"
+		"IDetector2D_resetRegionOfInterest(IDetector2D self)\n"
+		"void IDetector2D::resetRegionOfInterest() override\n"
 		"\n"
-		"Returns the one parameter that matches the  pattern (wildcards '*' allowed), or throws. \n"
+		"Resets region of interest making whole detector plane available for the simulation. \n"
 		"\n"
 		""},
-	 { "ParameterPool_setParameterValue", _wrap_ParameterPool_setParameterValue, METH_VARARGS, "\n"
-		"ParameterPool_setParameterValue(ParameterPool self, std::string const & name, double value)\n"
-		"void ParameterPool::setParameterValue(const std::string &name, double value)\n"
+	 { "IDetector2D_active_indices", _wrap_IDetector2D_active_indices, METH_O, "\n"
+		"IDetector2D_active_indices(IDetector2D self) -> std::vector< size_t,std::allocator< size_t > >\n"
+		"std::vector< size_t > IDetector2D::active_indices() const\n"
 		"\n"
-		"Sets parameter value. \n"
+		"Returns vector of unmasked detector indices. \n"
 		"\n"
 		""},
-	 { "ParameterPool_setMatchedParametersValue", _wrap_ParameterPool_setMatchedParametersValue, METH_VARARGS, "\n"
-		"ParameterPool_setMatchedParametersValue(ParameterPool self, std::string const & wildcards, double value) -> int\n"
-		"int ParameterPool::setMatchedParametersValue(const std::string &wildcards, double value)\n"
+	 { "IDetector2D_createPixel", _wrap_IDetector2D_createPixel, METH_VARARGS, "\n"
+		"IDetector2D_createPixel(IDetector2D self, size_t index) -> IPixel\n"
+		"virtual IPixel* IDetector2D::createPixel(size_t index) const =0\n"
 		"\n"
-		"Sets value of the nonzero parameters that match  pattern ('*' allowed), or throws. \n"
+		"Create an  IPixel for the given  OutputData object and index. \n"
 		"\n"
 		""},
-	 { "ParameterPool_setUniqueMatchValue", _wrap_ParameterPool_setUniqueMatchValue, METH_VARARGS, "\n"
-		"ParameterPool_setUniqueMatchValue(ParameterPool self, std::string const & pattern, double value)\n"
-		"void ParameterPool::setUniqueMatchValue(const std::string &pattern, double value)\n"
+	 { "IDetector2D_getIndexOfSpecular", _wrap_IDetector2D_getIndexOfSpecular, METH_VARARGS, "\n"
+		"IDetector2D_getIndexOfSpecular(IDetector2D self, Beam beam) -> size_t\n"
+		"virtual size_t IDetector2D::getIndexOfSpecular(const Beam &beam) const =0\n"
 		"\n"
-		"Sets value of the one parameter that matches  pattern ('*' allowed), or throws. \n"
+		"Returns index of pixel that contains the specular wavevector. If no pixel contains this specular wavevector, the number of pixels is returned. This corresponds to an overflow index. \n"
 		"\n"
 		""},
-	 { "ParameterPool_parameterNames", _wrap_ParameterPool_parameterNames, METH_O, "\n"
-		"ParameterPool_parameterNames(ParameterPool self) -> vector_string_t\n"
-		"std::vector< std::string > ParameterPool::parameterNames() const\n"
+	 { "IDetector2D_swigregister", IDetector2D_swigregister, METH_O, NULL},
+	 { "delete_IDetectorResolution", _wrap_delete_IDetectorResolution, METH_O, "\n"
+		"delete_IDetectorResolution(IDetectorResolution self)\n"
+		"virtual IDetectorResolution::~IDetectorResolution()\n"
 		"\n"
 		""},
-	 { "ParameterPool_removeParameter", _wrap_ParameterPool_removeParameter, METH_VARARGS, "\n"
-		"ParameterPool_removeParameter(ParameterPool self, std::string const & name)\n"
-		"void ParameterPool::removeParameter(const std::string &name)\n"
+	 { "IDetectorResolution_applyDetectorResolution", _wrap_IDetectorResolution_applyDetectorResolution, METH_VARARGS, "\n"
+		"IDetectorResolution_applyDetectorResolution(IDetectorResolution self, IntensityData p_intensity_map)\n"
+		"virtual void IDetectorResolution::applyDetectorResolution(OutputData< double > *p_intensity_map) const =0\n"
 		"\n"
-		"Removes parameter with given name from the pool. \n"
+		"Apply the resolution function to the intensity data. \n"
 		"\n"
 		""},
-	 { "ParameterPool___getitem__", _wrap_ParameterPool___getitem__, METH_VARARGS, "ParameterPool___getitem__(ParameterPool self, size_t index) -> RealParameter"},
-	 { "ParameterPool_swigregister", ParameterPool_swigregister, METH_O, NULL},
-	 { "ParameterPool_swiginit", ParameterPool_swiginit, METH_VARARGS, NULL},
-	 { "new_ParameterSample", _wrap_new_ParameterSample, METH_VARARGS, "\n"
-		"ParameterSample(double _value=0., double _weight=1.)\n"
-		"ParameterSample::ParameterSample(double _value=0., double _weight=1.)\n"
+	 { "IDetectorResolution_clone", _wrap_IDetectorResolution_clone, METH_O, "\n"
+		"IDetectorResolution_clone(IDetectorResolution self) -> IDetectorResolution\n"
+		"virtual IDetectorResolution* IDetectorResolution::clone() const =0\n"
 		"\n"
 		""},
-	 { "ParameterSample_value_set", _wrap_ParameterSample_value_set, METH_VARARGS, "ParameterSample_value_set(ParameterSample self, double value)"},
-	 { "ParameterSample_value_get", _wrap_ParameterSample_value_get, METH_O, "ParameterSample_value_get(ParameterSample self) -> double"},
-	 { "ParameterSample_weight_set", _wrap_ParameterSample_weight_set, METH_VARARGS, "ParameterSample_weight_set(ParameterSample self, double weight)"},
-	 { "ParameterSample_weight_get", _wrap_ParameterSample_weight_get, METH_O, "ParameterSample_weight_get(ParameterSample self) -> double"},
-	 { "delete_ParameterSample", _wrap_delete_ParameterSample, METH_O, "delete_ParameterSample(ParameterSample self)"},
-	 { "ParameterSample_swigregister", ParameterSample_swigregister, METH_O, NULL},
-	 { "ParameterSample_swiginit", ParameterSample_swiginit, METH_VARARGS, NULL},
-	 { "ParameterSampleVector_iterator", _wrap_ParameterSampleVector_iterator, METH_O, "ParameterSampleVector_iterator(ParameterSampleVector self) -> SwigPyIterator"},
-	 { "ParameterSampleVector___nonzero__", _wrap_ParameterSampleVector___nonzero__, METH_O, "ParameterSampleVector___nonzero__(ParameterSampleVector self) -> bool"},
-	 { "ParameterSampleVector___bool__", _wrap_ParameterSampleVector___bool__, METH_O, "ParameterSampleVector___bool__(ParameterSampleVector self) -> bool"},
-	 { "ParameterSampleVector___len__", _wrap_ParameterSampleVector___len__, METH_O, "ParameterSampleVector___len__(ParameterSampleVector self) -> std::vector< ParameterSample >::size_type"},
-	 { "ParameterSampleVector___getslice__", _wrap_ParameterSampleVector___getslice__, METH_VARARGS, "ParameterSampleVector___getslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j) -> ParameterSampleVector"},
-	 { "ParameterSampleVector___setslice__", _wrap_ParameterSampleVector___setslice__, METH_VARARGS, "\n"
-		"ParameterSampleVector___setslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j)\n"
-		"ParameterSampleVector___setslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j, ParameterSampleVector v)\n"
-		""},
-	 { "ParameterSampleVector___delslice__", _wrap_ParameterSampleVector___delslice__, METH_VARARGS, "ParameterSampleVector___delslice__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, std::vector< ParameterSample >::difference_type j)"},
-	 { "ParameterSampleVector___delitem__", _wrap_ParameterSampleVector___delitem__, METH_VARARGS, "\n"
-		"ParameterSampleVector___delitem__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i)\n"
-		"ParameterSampleVector___delitem__(ParameterSampleVector self, PySliceObject * slice)\n"
-		""},
-	 { "ParameterSampleVector___getitem__", _wrap_ParameterSampleVector___getitem__, METH_VARARGS, "\n"
-		"ParameterSampleVector___getitem__(ParameterSampleVector self, PySliceObject * slice) -> ParameterSampleVector\n"
-		"ParameterSampleVector___getitem__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i) -> ParameterSample\n"
-		""},
-	 { "ParameterSampleVector___setitem__", _wrap_ParameterSampleVector___setitem__, METH_VARARGS, "\n"
-		"ParameterSampleVector___setitem__(ParameterSampleVector self, PySliceObject * slice, ParameterSampleVector v)\n"
-		"ParameterSampleVector___setitem__(ParameterSampleVector self, PySliceObject * slice)\n"
-		"ParameterSampleVector___setitem__(ParameterSampleVector self, std::vector< ParameterSample >::difference_type i, ParameterSample x)\n"
-		""},
-	 { "ParameterSampleVector_pop", _wrap_ParameterSampleVector_pop, METH_O, "ParameterSampleVector_pop(ParameterSampleVector self) -> ParameterSample"},
-	 { "ParameterSampleVector_append", _wrap_ParameterSampleVector_append, METH_VARARGS, "ParameterSampleVector_append(ParameterSampleVector self, ParameterSample x)"},
-	 { "ParameterSampleVector_empty", _wrap_ParameterSampleVector_empty, METH_O, "ParameterSampleVector_empty(ParameterSampleVector self) -> bool"},
-	 { "ParameterSampleVector_size", _wrap_ParameterSampleVector_size, METH_O, "ParameterSampleVector_size(ParameterSampleVector self) -> std::vector< ParameterSample >::size_type"},
-	 { "ParameterSampleVector_swap", _wrap_ParameterSampleVector_swap, METH_VARARGS, "\n"
-		"ParameterSampleVector_swap(ParameterSampleVector self, ParameterSampleVector v)\n"
-		"void swap(OutputDataIterator< TValue, TContainer > &left, OutputDataIterator< TValue, TContainer > &right)\n"
-		"\n"
-		"make Swappable \n"
+	 { "IDetectorResolution_swigregister", IDetectorResolution_swigregister, METH_O, NULL},
+	 { "new_SphericalPixel", _wrap_new_SphericalPixel, METH_VARARGS, "\n"
+		"new_SphericalPixel(Bin1D alpha_bin, Bin1D phi_bin) -> SphericalPixel\n"
+		"SphericalPixel::SphericalPixel(const Bin1D &alpha_bin, const Bin1D &phi_bin)\n"
 		"\n"
 		""},
-	 { "ParameterSampleVector_begin", _wrap_ParameterSampleVector_begin, METH_O, "ParameterSampleVector_begin(ParameterSampleVector self) -> std::vector< ParameterSample >::iterator"},
-	 { "ParameterSampleVector_end", _wrap_ParameterSampleVector_end, METH_O, "ParameterSampleVector_end(ParameterSampleVector self) -> std::vector< ParameterSample >::iterator"},
-	 { "ParameterSampleVector_rbegin", _wrap_ParameterSampleVector_rbegin, METH_O, "ParameterSampleVector_rbegin(ParameterSampleVector self) -> std::vector< ParameterSample >::reverse_iterator"},
-	 { "ParameterSampleVector_rend", _wrap_ParameterSampleVector_rend, METH_O, "ParameterSampleVector_rend(ParameterSampleVector self) -> std::vector< ParameterSample >::reverse_iterator"},
-	 { "ParameterSampleVector_clear", _wrap_ParameterSampleVector_clear, METH_O, "ParameterSampleVector_clear(ParameterSampleVector self)"},
-	 { "ParameterSampleVector_get_allocator", _wrap_ParameterSampleVector_get_allocator, METH_O, "ParameterSampleVector_get_allocator(ParameterSampleVector self) -> std::vector< ParameterSample >::allocator_type"},
-	 { "ParameterSampleVector_pop_back", _wrap_ParameterSampleVector_pop_back, METH_O, "ParameterSampleVector_pop_back(ParameterSampleVector self)"},
-	 { "ParameterSampleVector_erase", _wrap_ParameterSampleVector_erase, METH_VARARGS, "\n"
-		"ParameterSampleVector_erase(ParameterSampleVector self, std::vector< ParameterSample >::iterator pos) -> std::vector< ParameterSample >::iterator\n"
-		"ParameterSampleVector_erase(ParameterSampleVector self, std::vector< ParameterSample >::iterator first, std::vector< ParameterSample >::iterator last) -> std::vector< ParameterSample >::iterator\n"
+	 { "SphericalPixel_clone", _wrap_SphericalPixel_clone, METH_O, "\n"
+		"SphericalPixel_clone(SphericalPixel self) -> SphericalPixel\n"
+		"SphericalPixel * SphericalPixel::clone() const override\n"
+		"\n"
 		""},
-	 { "new_ParameterSampleVector", _wrap_new_ParameterSampleVector, METH_VARARGS, "\n"
-		"ParameterSampleVector()\n"
-		"ParameterSampleVector(ParameterSampleVector other)\n"
-		"ParameterSampleVector(std::vector< ParameterSample >::size_type size)\n"
-		"new_ParameterSampleVector(std::vector< ParameterSample >::size_type size, ParameterSample value) -> ParameterSampleVector\n"
+	 { "SphericalPixel_createZeroSizePixel", _wrap_SphericalPixel_createZeroSizePixel, METH_VARARGS, "\n"
+		"SphericalPixel_createZeroSizePixel(SphericalPixel self, double x, double y) -> SphericalPixel\n"
+		"SphericalPixel * SphericalPixel::createZeroSizePixel(double x, double y) const override\n"
+		"\n"
 		""},
-	 { "ParameterSampleVector_push_back", _wrap_ParameterSampleVector_push_back, METH_VARARGS, "ParameterSampleVector_push_back(ParameterSampleVector self, ParameterSample x)"},
-	 { "ParameterSampleVector_front", _wrap_ParameterSampleVector_front, METH_O, "ParameterSampleVector_front(ParameterSampleVector self) -> ParameterSample"},
-	 { "ParameterSampleVector_back", _wrap_ParameterSampleVector_back, METH_O, "ParameterSampleVector_back(ParameterSampleVector self) -> ParameterSample"},
-	 { "ParameterSampleVector_assign", _wrap_ParameterSampleVector_assign, METH_VARARGS, "ParameterSampleVector_assign(ParameterSampleVector self, std::vector< ParameterSample >::size_type n, ParameterSample x)"},
-	 { "ParameterSampleVector_resize", _wrap_ParameterSampleVector_resize, METH_VARARGS, "\n"
-		"ParameterSampleVector_resize(ParameterSampleVector self, std::vector< ParameterSample >::size_type new_size)\n"
-		"ParameterSampleVector_resize(ParameterSampleVector self, std::vector< ParameterSample >::size_type new_size, ParameterSample x)\n"
+	 { "SphericalPixel_getK", _wrap_SphericalPixel_getK, METH_VARARGS, "\n"
+		"SphericalPixel_getK(SphericalPixel self, double x, double y, double wavelength) -> kvector_t\n"
+		"kvector_t SphericalPixel::getK(double x, double y, double wavelength) const override\n"
+		"\n"
 		""},
-	 { "ParameterSampleVector_insert", _wrap_ParameterSampleVector_insert, METH_VARARGS, "\n"
-		"ParameterSampleVector_insert(ParameterSampleVector self, std::vector< ParameterSample >::iterator pos, ParameterSample x) -> std::vector< ParameterSample >::iterator\n"
-		"ParameterSampleVector_insert(ParameterSampleVector self, std::vector< ParameterSample >::iterator pos, std::vector< ParameterSample >::size_type n, ParameterSample x)\n"
+	 { "SphericalPixel_getIntegrationFactor", _wrap_SphericalPixel_getIntegrationFactor, METH_VARARGS, "\n"
+		"SphericalPixel_getIntegrationFactor(SphericalPixel self, double x, double y) -> double\n"
+		"double SphericalPixel::getIntegrationFactor(double x, double y) const override\n"
+		"\n"
 		""},
-	 { "ParameterSampleVector_reserve", _wrap_ParameterSampleVector_reserve, METH_VARARGS, "ParameterSampleVector_reserve(ParameterSampleVector self, std::vector< ParameterSample >::size_type n)"},
-	 { "ParameterSampleVector_capacity", _wrap_ParameterSampleVector_capacity, METH_O, "ParameterSampleVector_capacity(ParameterSampleVector self) -> std::vector< ParameterSample >::size_type"},
-	 { "delete_ParameterSampleVector", _wrap_delete_ParameterSampleVector, METH_O, "delete_ParameterSampleVector(ParameterSampleVector self)"},
-	 { "ParameterSampleVector_swigregister", ParameterSampleVector_swigregister, METH_O, NULL},
-	 { "ParameterSampleVector_swiginit", ParameterSampleVector_swiginit, METH_VARARGS, NULL},
-	 { "new_Particle", _wrap_new_Particle, METH_VARARGS, "\n"
-		"Particle()\n"
-		"Particle(Material material)\n"
-		"Particle(Material material, IFormFactor form_factor)\n"
-		"new_Particle(Material material, IFormFactor form_factor, IRotation rotation) -> Particle\n"
-		"Particle::Particle(Material material, const IFormFactor &form_factor, const IRotation &rotation)\n"
+	 { "SphericalPixel_getSolidAngle", _wrap_SphericalPixel_getSolidAngle, METH_O, "\n"
+		"SphericalPixel_getSolidAngle(SphericalPixel self) -> double\n"
+		"double SphericalPixel::getSolidAngle() const override\n"
 		"\n"
 		""},
-	 { "Particle_clone", _wrap_Particle_clone, METH_O, "\n"
-		"Particle_clone(Particle self) -> Particle\n"
-		"Particle * Particle::clone() const override final\n"
+	 { "delete_SphericalPixel", _wrap_delete_SphericalPixel, METH_O, "delete_SphericalPixel(SphericalPixel self)"},
+	 { "SphericalPixel_swigregister", SphericalPixel_swigregister, METH_O, NULL},
+	 { "SphericalPixel_swiginit", SphericalPixel_swiginit, METH_VARARGS, NULL},
+	 { "new_SphericalDetector", _wrap_new_SphericalDetector, METH_VARARGS, "\n"
+		"SphericalDetector()\n"
+		"SphericalDetector(size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max)\n"
+		"new_SphericalDetector(SphericalDetector other) -> SphericalDetector\n"
+		"SphericalDetector::SphericalDetector(const SphericalDetector &other)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		""},
+	 { "SphericalDetector_clone", _wrap_SphericalDetector_clone, METH_O, "\n"
+		"SphericalDetector_clone(SphericalDetector self) -> SphericalDetector\n"
+		"SphericalDetector * SphericalDetector::clone() const override\n"
 		"\n"
 		""},
-	 { "Particle_accept", _wrap_Particle_accept, METH_VARARGS, "\n"
-		"Particle_accept(Particle self, INodeVisitor visitor)\n"
-		"void Particle::accept(INodeVisitor *visitor) const override final\n"
+	 { "SphericalDetector_accept", _wrap_SphericalDetector_accept, METH_VARARGS, "\n"
+		"SphericalDetector_accept(SphericalDetector self, INodeVisitor visitor)\n"
+		"void SphericalDetector::accept(INodeVisitor *visitor) const override\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "Particle_createSlicedParticle", _wrap_Particle_createSlicedParticle, METH_VARARGS, "\n"
-		"Particle_createSlicedParticle(Particle self, ZLimits limits) -> SlicedParticle\n"
-		"SlicedParticle Particle::createSlicedParticle(ZLimits limits) const override final\n"
+	 { "delete_SphericalDetector", _wrap_delete_SphericalDetector, METH_O, "\n"
+		"delete_SphericalDetector(SphericalDetector self)\n"
+		"SphericalDetector::~SphericalDetector() override\n"
 		"\n"
-		"Create a sliced form factor for this particle. \n"
+		""},
+	 { "SphericalDetector_defaultAxesUnits", _wrap_SphericalDetector_defaultAxesUnits, METH_O, "\n"
+		"SphericalDetector_defaultAxesUnits(SphericalDetector self) -> AxesUnits\n"
+		"AxesUnits SphericalDetector::defaultAxesUnits() const override\n"
+		"\n"
+		"return default axes units \n"
 		"\n"
 		""},
-	 { "Particle_setMaterial", _wrap_Particle_setMaterial, METH_VARARGS, "\n"
-		"Particle_setMaterial(Particle self, Material material)\n"
-		"void Particle::setMaterial(Material material)\n"
+	 { "SphericalDetector_swigregister", SphericalDetector_swigregister, METH_O, NULL},
+	 { "SphericalDetector_swiginit", SphericalDetector_swiginit, METH_VARARGS, NULL},
+	 { "delete_IChiSquaredModule", _wrap_delete_IChiSquaredModule, METH_O, "\n"
+		"delete_IChiSquaredModule(IChiSquaredModule self)\n"
+		"IChiSquaredModule::~IChiSquaredModule()\n"
 		"\n"
 		""},
-	 { "Particle_material", _wrap_Particle_material, METH_O, "\n"
-		"Particle_material(Particle self) -> Material\n"
-		"const Material* Particle::material() const override final\n"
+	 { "IChiSquaredModule_clone", _wrap_IChiSquaredModule_clone, METH_O, "\n"
+		"IChiSquaredModule_clone(IChiSquaredModule self) -> IChiSquaredModule\n"
+		"virtual IChiSquaredModule* IChiSquaredModule::clone() const =0\n"
 		"\n"
-		"Returns nullptr, unless overwritten to return a specific material. \n"
+		"clone method \n"
 		"\n"
 		""},
-	 { "Particle_setFormFactor", _wrap_Particle_setFormFactor, METH_VARARGS, "\n"
-		"Particle_setFormFactor(Particle self, IFormFactor form_factor)\n"
-		"void Particle::setFormFactor(const IFormFactor &form_factor)\n"
+	 { "IChiSquaredModule_varianceFunction", _wrap_IChiSquaredModule_varianceFunction, METH_O, "\n"
+		"IChiSquaredModule_varianceFunction(IChiSquaredModule self) -> IVarianceFunction\n"
+		"const IVarianceFunction * IChiSquaredModule::varianceFunction() const\n"
+		"\n"
+		"Returns squared function. \n"
 		"\n"
 		""},
-	 { "Particle_getChildren", _wrap_Particle_getChildren, METH_O, "\n"
-		"Particle_getChildren(Particle self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > Particle::getChildren() const override final\n"
+	 { "IChiSquaredModule_setVarianceFunction", _wrap_IChiSquaredModule_setVarianceFunction, METH_VARARGS, "\n"
+		"IChiSquaredModule_setVarianceFunction(IChiSquaredModule self, IVarianceFunction variance_function)\n"
+		"void IChiSquaredModule::setVarianceFunction(const IVarianceFunction &variance_function)\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		"Sets squared function. \n"
 		"\n"
 		""},
-	 { "delete_Particle", _wrap_delete_Particle, METH_O, "delete_Particle(Particle self)"},
-	 { "Particle_swigregister", Particle_swigregister, METH_O, NULL},
-	 { "Particle_swiginit", Particle_swiginit, METH_VARARGS, NULL},
-	 { "new_ParticleComposition", _wrap_new_ParticleComposition, METH_VARARGS, "\n"
-		"ParticleComposition()\n"
-		"new_ParticleComposition(IParticle particle, vector_kvector_t positions) -> ParticleComposition\n"
-		"ParticleComposition::ParticleComposition(const IParticle &particle, std::vector< kvector_t > positions)\n"
+	 { "IChiSquaredModule_getIntensityFunction", _wrap_IChiSquaredModule_getIntensityFunction, METH_O, "\n"
+		"IChiSquaredModule_getIntensityFunction(IChiSquaredModule self) -> IIntensityFunction\n"
+		"const IIntensityFunction * IChiSquaredModule::getIntensityFunction() const\n"
 		"\n"
-		""},
-	 { "delete_ParticleComposition", _wrap_delete_ParticleComposition, METH_O, "\n"
-		"delete_ParticleComposition(ParticleComposition self)\n"
-		"ParticleComposition::~ParticleComposition()\n"
+		"Returns data rescaler. \n"
 		"\n"
 		""},
-	 { "ParticleComposition_clone", _wrap_ParticleComposition_clone, METH_O, "\n"
-		"ParticleComposition_clone(ParticleComposition self) -> ParticleComposition\n"
-		"ParticleComposition * ParticleComposition::clone() const override final\n"
+	 { "IChiSquaredModule_setIntensityFunction", _wrap_IChiSquaredModule_setIntensityFunction, METH_VARARGS, "\n"
+		"IChiSquaredModule_setIntensityFunction(IChiSquaredModule self, IIntensityFunction intensity_function)\n"
+		"void IChiSquaredModule::setIntensityFunction(const IIntensityFunction &intensity_function)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"Sets data rescaler. \n"
 		"\n"
 		""},
-	 { "ParticleComposition_accept", _wrap_ParticleComposition_accept, METH_VARARGS, "\n"
-		"ParticleComposition_accept(ParticleComposition self, INodeVisitor visitor)\n"
-		"void ParticleComposition::accept(INodeVisitor *visitor) const override final\n"
-		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+	 { "IChiSquaredModule_residual", _wrap_IChiSquaredModule_residual, METH_VARARGS, "\n"
+		"IChiSquaredModule_residual(IChiSquaredModule self, double a, double b, double weight) -> double\n"
+		"virtual double IChiSquaredModule::residual(double a, double b, double weight)=0\n"
 		"\n"
 		""},
-	 { "ParticleComposition_createFormFactor", _wrap_ParticleComposition_createFormFactor, METH_O, "\n"
-		"ParticleComposition_createFormFactor(ParticleComposition self) -> IFormFactor\n"
-		"IFormFactor * ParticleComposition::createFormFactor() const override final\n"
+	 { "IChiSquaredModule_swigregister", IChiSquaredModule_swigregister, METH_O, NULL},
+	 { "delete_IIntensityNormalizer", _wrap_delete_IIntensityNormalizer, METH_O, "\n"
+		"delete_IIntensityNormalizer(IIntensityNormalizer self)\n"
+		"virtual IIntensityNormalizer::~IIntensityNormalizer()\n"
 		"\n"
-		"Create a form factor for this particle. \n"
+		""},
+	 { "IIntensityNormalizer_clone", _wrap_IIntensityNormalizer_clone, METH_O, "\n"
+		"IIntensityNormalizer_clone(IIntensityNormalizer self) -> IIntensityNormalizer\n"
+		"virtual IIntensityNormalizer* IIntensityNormalizer::clone() const =0\n"
 		"\n"
 		""},
-	 { "ParticleComposition_addParticle", _wrap_ParticleComposition_addParticle, METH_VARARGS, "\n"
-		"ParticleComposition_addParticle(ParticleComposition self, IParticle particle)\n"
-		"ParticleComposition_addParticle(ParticleComposition self, IParticle particle, kvector_t position)\n"
-		"void ParticleComposition::addParticle(const IParticle &particle, kvector_t position)\n"
+	 { "IIntensityNormalizer_createNormalizedData", _wrap_IIntensityNormalizer_createNormalizedData, METH_VARARGS, "\n"
+		"IIntensityNormalizer_createNormalizedData(IIntensityNormalizer self, IntensityData data) -> IntensityData\n"
+		"virtual OutputData<double>* IIntensityNormalizer::createNormalizedData(const OutputData< double > &data) const =0\n"
 		"\n"
 		""},
-	 { "ParticleComposition_addParticles", _wrap_ParticleComposition_addParticles, METH_VARARGS, "\n"
-		"ParticleComposition_addParticles(ParticleComposition self, IParticle particle, vector_kvector_t positions)\n"
-		"void ParticleComposition::addParticles(const IParticle &particle, std::vector< kvector_t > positions)\n"
+	 { "IIntensityNormalizer_apply", _wrap_IIntensityNormalizer_apply, METH_VARARGS, "\n"
+		"IIntensityNormalizer_apply(IIntensityNormalizer self, IntensityData data)\n"
+		"virtual void IIntensityNormalizer::apply(OutputData< double > &data) const =0\n"
 		"\n"
 		""},
-	 { "ParticleComposition_nbrParticles", _wrap_ParticleComposition_nbrParticles, METH_O, "\n"
-		"ParticleComposition_nbrParticles(ParticleComposition self) -> size_t\n"
-		"size_t ParticleComposition::nbrParticles() const\n"
+	 { "IIntensityNormalizer_setMaximumIntensity", _wrap_IIntensityNormalizer_setMaximumIntensity, METH_VARARGS, "\n"
+		"IIntensityNormalizer_setMaximumIntensity(IIntensityNormalizer self, double arg2)\n"
+		"virtual void IIntensityNormalizer::setMaximumIntensity(double)=0\n"
 		"\n"
-		"Returns number of different particles. \n"
+		""},
+	 { "IIntensityNormalizer_swigregister", IIntensityNormalizer_swigregister, METH_O, NULL},
+	 { "new_IntensityNormalizer", _wrap_new_IntensityNormalizer, METH_VARARGS, "\n"
+		"IntensityNormalizer(double scale=1.0, double shift=0.0)\n"
+		"IntensityNormalizer::IntensityNormalizer(double scale=1.0, double shift=0.0)\n"
 		"\n"
 		""},
-	 { "ParticleComposition_getChildren", _wrap_ParticleComposition_getChildren, METH_O, "\n"
-		"ParticleComposition_getChildren(ParticleComposition self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > ParticleComposition::getChildren() const override final\n"
+	 { "delete_IntensityNormalizer", _wrap_delete_IntensityNormalizer, METH_O, "\n"
+		"delete_IntensityNormalizer(IntensityNormalizer self)\n"
+		"virtual IntensityNormalizer::~IntensityNormalizer()\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		""},
+	 { "IntensityNormalizer_clone", _wrap_IntensityNormalizer_clone, METH_O, "\n"
+		"IntensityNormalizer_clone(IntensityNormalizer self) -> IntensityNormalizer\n"
+		"IntensityNormalizer * IntensityNormalizer::clone() const\n"
 		"\n"
 		""},
-	 { "ParticleComposition_decompose", _wrap_ParticleComposition_decompose, METH_O, "\n"
-		"ParticleComposition_decompose(ParticleComposition self) -> SafePointerVector< IParticle >\n"
-		"SafePointerVector< IParticle > ParticleComposition::decompose() const override final\n"
+	 { "IntensityNormalizer_accept", _wrap_IntensityNormalizer_accept, METH_VARARGS, "\n"
+		"IntensityNormalizer_accept(IntensityNormalizer self, INodeVisitor visitor)\n"
+		"void IntensityNormalizer::accept(INodeVisitor *visitor) const\n"
 		"\n"
-		"Decompose in constituent  IParticle objects. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "ParticleComposition_bottomTopZ", _wrap_ParticleComposition_bottomTopZ, METH_O, "\n"
-		"ParticleComposition_bottomTopZ(ParticleComposition self) -> ParticleLimits\n"
-		"ParticleLimits ParticleComposition::bottomTopZ() const override final\n"
-		"\n"
-		"Top and bottom z-coordinate. \n"
+	 { "IntensityNormalizer_createNormalizedData", _wrap_IntensityNormalizer_createNormalizedData, METH_VARARGS, "\n"
+		"IntensityNormalizer_createNormalizedData(IntensityNormalizer self, IntensityData data) -> IntensityData\n"
+		"OutputData< double > * IntensityNormalizer::createNormalizedData(const OutputData< double > &data) const\n"
 		"\n"
 		""},
-	 { "ParticleComposition_swigregister", ParticleComposition_swigregister, METH_O, NULL},
-	 { "ParticleComposition_swiginit", ParticleComposition_swiginit, METH_VARARGS, NULL},
-	 { "new_ParticleCoreShell", _wrap_new_ParticleCoreShell, METH_VARARGS, "\n"
-		"ParticleCoreShell(Particle shell, Particle core, kvector_t relative_core_position=kvector_t(0.0, 0.0, 0.0))\n"
-		"ParticleCoreShell::ParticleCoreShell(const Particle &shell, const Particle &core, kvector_t relative_core_position=kvector_t(0.0, 0.0, 0.0))\n"
+	 { "IntensityNormalizer_apply", _wrap_IntensityNormalizer_apply, METH_VARARGS, "\n"
+		"IntensityNormalizer_apply(IntensityNormalizer self, IntensityData data)\n"
+		"void IntensityNormalizer::apply(OutputData< double > &data) const final\n"
 		"\n"
 		""},
-	 { "delete_ParticleCoreShell", _wrap_delete_ParticleCoreShell, METH_O, "\n"
-		"delete_ParticleCoreShell(ParticleCoreShell self)\n"
-		"ParticleCoreShell::~ParticleCoreShell()\n"
+	 { "IntensityNormalizer_setMaximumIntensity", _wrap_IntensityNormalizer_setMaximumIntensity, METH_VARARGS, "\n"
+		"IntensityNormalizer_setMaximumIntensity(IntensityNormalizer self, double max_intensity)\n"
+		"virtual void IntensityNormalizer::setMaximumIntensity(double max_intensity)\n"
 		"\n"
 		""},
-	 { "ParticleCoreShell_clone", _wrap_ParticleCoreShell_clone, METH_O, "\n"
-		"ParticleCoreShell_clone(ParticleCoreShell self) -> ParticleCoreShell\n"
-		"ParticleCoreShell * ParticleCoreShell::clone() const override final\n"
+	 { "IntensityNormalizer_swigregister", IntensityNormalizer_swigregister, METH_O, NULL},
+	 { "IntensityNormalizer_swiginit", IntensityNormalizer_swiginit, METH_VARARGS, NULL},
+	 { "new_IntensityScaleAndShiftNormalizer", _wrap_new_IntensityScaleAndShiftNormalizer, METH_VARARGS, "\n"
+		"IntensityScaleAndShiftNormalizer(double scale=1.0, double shift=0.0)\n"
+		"IntensityScaleAndShiftNormalizer::IntensityScaleAndShiftNormalizer(double scale=1.0, double shift=0.0)\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		""},
+	 { "delete_IntensityScaleAndShiftNormalizer", _wrap_delete_IntensityScaleAndShiftNormalizer, METH_O, "\n"
+		"delete_IntensityScaleAndShiftNormalizer(IntensityScaleAndShiftNormalizer self)\n"
+		"IntensityScaleAndShiftNormalizer::~IntensityScaleAndShiftNormalizer() final\n"
 		"\n"
 		""},
-	 { "ParticleCoreShell_accept", _wrap_ParticleCoreShell_accept, METH_VARARGS, "\n"
-		"ParticleCoreShell_accept(ParticleCoreShell self, INodeVisitor visitor)\n"
-		"void ParticleCoreShell::accept(INodeVisitor *visitor) const override final\n"
+	 { "IntensityScaleAndShiftNormalizer_accept", _wrap_IntensityScaleAndShiftNormalizer_accept, METH_VARARGS, "\n"
+		"IntensityScaleAndShiftNormalizer_accept(IntensityScaleAndShiftNormalizer self, INodeVisitor visitor)\n"
+		"void IntensityScaleAndShiftNormalizer::accept(INodeVisitor *visitor) const final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "ParticleCoreShell_createSlicedParticle", _wrap_ParticleCoreShell_createSlicedParticle, METH_VARARGS, "\n"
-		"ParticleCoreShell_createSlicedParticle(ParticleCoreShell self, ZLimits limits) -> SlicedParticle\n"
-		"SlicedParticle ParticleCoreShell::createSlicedParticle(ZLimits limits) const override final\n"
-		"\n"
-		"Create a sliced form factor for this particle. \n"
+	 { "IntensityScaleAndShiftNormalizer_setMaximumIntensity", _wrap_IntensityScaleAndShiftNormalizer_setMaximumIntensity, METH_VARARGS, "\n"
+		"IntensityScaleAndShiftNormalizer_setMaximumIntensity(IntensityScaleAndShiftNormalizer self, double arg2)\n"
+		"void IntensityScaleAndShiftNormalizer::setMaximumIntensity(double) final\n"
 		"\n"
 		""},
-	 { "ParticleCoreShell_coreParticle", _wrap_ParticleCoreShell_coreParticle, METH_O, "\n"
-		"ParticleCoreShell_coreParticle(ParticleCoreShell self) -> Particle\n"
-		"const Particle * ParticleCoreShell::coreParticle() const\n"
+	 { "IntensityScaleAndShiftNormalizer_clone", _wrap_IntensityScaleAndShiftNormalizer_clone, METH_O, "\n"
+		"IntensityScaleAndShiftNormalizer_clone(IntensityScaleAndShiftNormalizer self) -> IntensityScaleAndShiftNormalizer\n"
+		"IntensityScaleAndShiftNormalizer* IntensityScaleAndShiftNormalizer::clone() const final\n"
 		"\n"
 		""},
-	 { "ParticleCoreShell_shellParticle", _wrap_ParticleCoreShell_shellParticle, METH_O, "\n"
-		"ParticleCoreShell_shellParticle(ParticleCoreShell self) -> Particle\n"
-		"const Particle * ParticleCoreShell::shellParticle() const\n"
+	 { "IntensityScaleAndShiftNormalizer_swigregister", IntensityScaleAndShiftNormalizer_swigregister, METH_O, NULL},
+	 { "IntensityScaleAndShiftNormalizer_swiginit", IntensityScaleAndShiftNormalizer_swiginit, METH_VARARGS, NULL},
+	 { "delete_IIntensityFunction", _wrap_delete_IIntensityFunction, METH_O, "\n"
+		"delete_IIntensityFunction(IIntensityFunction self)\n"
+		"IIntensityFunction::~IIntensityFunction()\n"
 		"\n"
 		""},
-	 { "ParticleCoreShell_getChildren", _wrap_ParticleCoreShell_getChildren, METH_O, "\n"
-		"ParticleCoreShell_getChildren(ParticleCoreShell self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > ParticleCoreShell::getChildren() const override final\n"
-		"\n"
-		"Returns a vector of children (const). \n"
+	 { "IIntensityFunction_clone", _wrap_IIntensityFunction_clone, METH_O, "\n"
+		"IIntensityFunction_clone(IIntensityFunction self) -> IIntensityFunction\n"
+		"virtual IIntensityFunction* IIntensityFunction::clone() const =0\n"
 		"\n"
 		""},
-	 { "ParticleCoreShell_swigregister", ParticleCoreShell_swigregister, METH_O, NULL},
-	 { "ParticleCoreShell_swiginit", ParticleCoreShell_swiginit, METH_VARARGS, NULL},
-	 { "new_ParticleDistribution", _wrap_new_ParticleDistribution, METH_VARARGS, "\n"
-		"new_ParticleDistribution(IParticle prototype, ParameterDistribution par_distr) -> ParticleDistribution\n"
-		"ParticleDistribution::ParticleDistribution(const IParticle &prototype, const ParameterDistribution &par_distr)\n"
+	 { "IIntensityFunction_evaluate", _wrap_IIntensityFunction_evaluate, METH_VARARGS, "\n"
+		"IIntensityFunction_evaluate(IIntensityFunction self, double value) -> double\n"
+		"virtual double IIntensityFunction::evaluate(double value) const =0\n"
 		"\n"
 		""},
-	 { "ParticleDistribution_clone", _wrap_ParticleDistribution_clone, METH_O, "\n"
-		"ParticleDistribution_clone(ParticleDistribution self) -> ParticleDistribution\n"
-		"ParticleDistribution * ParticleDistribution::clone() const override final\n"
+	 { "IIntensityFunction_swigregister", IIntensityFunction_swigregister, METH_O, NULL},
+	 { "IntensityFunctionLog_clone", _wrap_IntensityFunctionLog_clone, METH_O, "\n"
+		"IntensityFunctionLog_clone(IntensityFunctionLog self) -> IntensityFunctionLog\n"
+		"IntensityFunctionLog * IntensityFunctionLog::clone() const\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		""},
+	 { "IntensityFunctionLog_evaluate", _wrap_IntensityFunctionLog_evaluate, METH_VARARGS, "\n"
+		"IntensityFunctionLog_evaluate(IntensityFunctionLog self, double value) -> double\n"
+		"double IntensityFunctionLog::evaluate(double value) const\n"
 		"\n"
 		""},
-	 { "ParticleDistribution_accept", _wrap_ParticleDistribution_accept, METH_VARARGS, "\n"
-		"ParticleDistribution_accept(ParticleDistribution self, INodeVisitor visitor)\n"
-		"void ParticleDistribution::accept(INodeVisitor *visitor) const override final\n"
+	 { "new_IntensityFunctionLog", _wrap_new_IntensityFunctionLog, METH_NOARGS, "\n"
+		"new_IntensityFunctionLog() -> IntensityFunctionLog\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
-		""},
-	 { "ParticleDistribution_translate", _wrap_ParticleDistribution_translate, METH_VARARGS, "\n"
-		"ParticleDistribution_translate(ParticleDistribution self, kvector_t translation)\n"
-		"void ParticleDistribution::translate(kvector_t translation) override final\n"
+		"Algorithm for applying log function to the measured intensity.\n"
 		"\n"
-		"Translates the particle with the given vector. \n"
+		"C++ includes: IIntensityFunction.h\n"
 		"\n"
 		""},
-	 { "ParticleDistribution_rotate", _wrap_ParticleDistribution_rotate, METH_VARARGS, "\n"
-		"ParticleDistribution_rotate(ParticleDistribution self, IRotation rotation)\n"
-		"void ParticleDistribution::rotate(const IRotation &rotation) override final\n"
-		"\n"
-		"Applies the given rotation to the particle. \n"
+	 { "delete_IntensityFunctionLog", _wrap_delete_IntensityFunctionLog, METH_O, "delete_IntensityFunctionLog(IntensityFunctionLog self)"},
+	 { "IntensityFunctionLog_swigregister", IntensityFunctionLog_swigregister, METH_O, NULL},
+	 { "IntensityFunctionLog_swiginit", IntensityFunctionLog_swiginit, METH_VARARGS, NULL},
+	 { "IntensityFunctionSqrt_clone", _wrap_IntensityFunctionSqrt_clone, METH_O, "\n"
+		"IntensityFunctionSqrt_clone(IntensityFunctionSqrt self) -> IntensityFunctionSqrt\n"
+		"IntensityFunctionSqrt * IntensityFunctionSqrt::clone() const\n"
 		"\n"
 		""},
-	 { "ParticleDistribution_generateParticles", _wrap_ParticleDistribution_generateParticles, METH_O, "\n"
-		"ParticleDistribution_generateParticles(ParticleDistribution self) -> SafePointerVector< IParticle >\n"
-		"SafePointerVector< IParticle > ParticleDistribution::generateParticles() const\n"
+	 { "IntensityFunctionSqrt_evaluate", _wrap_IntensityFunctionSqrt_evaluate, METH_VARARGS, "\n"
+		"IntensityFunctionSqrt_evaluate(IntensityFunctionSqrt self, double value) -> double\n"
+		"double IntensityFunctionSqrt::evaluate(double value) const\n"
 		"\n"
-		"Returns list of new particles generated according to a distribution.\n"
+		""},
+	 { "new_IntensityFunctionSqrt", _wrap_new_IntensityFunctionSqrt, METH_NOARGS, "\n"
+		"new_IntensityFunctionSqrt() -> IntensityFunctionSqrt\n"
 		"\n"
-		"Returns particle clones with parameter values drawn from distribution. \n"
 		"\n"
-		""},
-	 { "ParticleDistribution_prototype", _wrap_ParticleDistribution_prototype, METH_O, "\n"
-		"ParticleDistribution_prototype(ParticleDistribution self) -> IParticle\n"
-		"const IParticle& ParticleDistribution::prototype() const\n"
+		"Algorithm for applying sqrt function to the measured intensity.\n"
 		"\n"
-		"Returns the prototype particle, used for generating multiple ones. \n"
+		"C++ includes: IIntensityFunction.h\n"
 		"\n"
 		""},
-	 { "ParticleDistribution_parameterDistribution", _wrap_ParticleDistribution_parameterDistribution, METH_O, "\n"
-		"ParticleDistribution_parameterDistribution(ParticleDistribution self) -> ParameterDistribution\n"
-		"ParameterDistribution ParticleDistribution::parameterDistribution() const\n"
-		"\n"
-		"Returns the distributed parameter data. \n"
+	 { "delete_IntensityFunctionSqrt", _wrap_delete_IntensityFunctionSqrt, METH_O, "delete_IntensityFunctionSqrt(IntensityFunctionSqrt self)"},
+	 { "IntensityFunctionSqrt_swigregister", IntensityFunctionSqrt_swigregister, METH_O, NULL},
+	 { "IntensityFunctionSqrt_swiginit", IntensityFunctionSqrt_swiginit, METH_VARARGS, NULL},
+	 { "delete_IResolutionFunction2D", _wrap_delete_IResolutionFunction2D, METH_O, "\n"
+		"delete_IResolutionFunction2D(IResolutionFunction2D self)\n"
+		"virtual IResolutionFunction2D::~IResolutionFunction2D()\n"
 		"\n"
 		""},
-	 { "ParticleDistribution_getChildren", _wrap_ParticleDistribution_getChildren, METH_O, "\n"
-		"ParticleDistribution_getChildren(ParticleDistribution self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > ParticleDistribution::getChildren() const override final\n"
+	 { "IResolutionFunction2D_evaluateCDF", _wrap_IResolutionFunction2D_evaluateCDF, METH_VARARGS, "\n"
+		"IResolutionFunction2D_evaluateCDF(IResolutionFunction2D self, double x, double y) -> double\n"
+		"virtual double IResolutionFunction2D::evaluateCDF(double x, double y) const =0\n"
 		"\n"
-		"Returns a vector of children (const). \n"
+		""},
+	 { "IResolutionFunction2D_clone", _wrap_IResolutionFunction2D_clone, METH_O, "\n"
+		"IResolutionFunction2D_clone(IResolutionFunction2D self) -> IResolutionFunction2D\n"
+		"virtual IResolutionFunction2D* IResolutionFunction2D::clone() const =0\n"
 		"\n"
 		""},
-	 { "delete_ParticleDistribution", _wrap_delete_ParticleDistribution, METH_O, "delete_ParticleDistribution(ParticleDistribution self)"},
-	 { "ParticleDistribution_swigregister", ParticleDistribution_swigregister, METH_O, NULL},
-	 { "ParticleDistribution_swiginit", ParticleDistribution_swiginit, METH_VARARGS, NULL},
-	 { "new_ParticleLayout", _wrap_new_ParticleLayout, METH_VARARGS, "\n"
-		"ParticleLayout()\n"
-		"ParticleLayout(IAbstractParticle particle, double abundance=-1.0)\n"
-		"ParticleLayout::ParticleLayout(const IAbstractParticle &particle, double abundance=-1.0)\n"
+	 { "IResolutionFunction2D_swigregister", IResolutionFunction2D_swigregister, METH_O, NULL},
+	 { "new_ChiSquaredModule", _wrap_new_ChiSquaredModule, METH_VARARGS, "\n"
+		"ChiSquaredModule()\n"
+		"new_ChiSquaredModule(ChiSquaredModule other) -> ChiSquaredModule\n"
+		"ChiSquaredModule::ChiSquaredModule(const ChiSquaredModule &other)\n"
 		"\n"
 		""},
-	 { "delete_ParticleLayout", _wrap_delete_ParticleLayout, METH_O, "\n"
-		"delete_ParticleLayout(ParticleLayout self)\n"
-		"ParticleLayout::~ParticleLayout() override\n"
+	 { "delete_ChiSquaredModule", _wrap_delete_ChiSquaredModule, METH_O, "\n"
+		"delete_ChiSquaredModule(ChiSquaredModule self)\n"
+		"virtual ChiSquaredModule::~ChiSquaredModule()\n"
 		"\n"
 		""},
-	 { "ParticleLayout_clone", _wrap_ParticleLayout_clone, METH_O, "\n"
-		"ParticleLayout_clone(ParticleLayout self) -> ParticleLayout\n"
-		"ParticleLayout * ParticleLayout::clone() const final override\n"
+	 { "ChiSquaredModule_clone", _wrap_ChiSquaredModule_clone, METH_O, "\n"
+		"ChiSquaredModule_clone(ChiSquaredModule self) -> ChiSquaredModule\n"
+		"virtual ChiSquaredModule* ChiSquaredModule::clone() const\n"
 		"\n"
-		"Returns a clone of this  ISample object. \n"
+		"clone method \n"
 		"\n"
 		""},
-	 { "ParticleLayout_accept", _wrap_ParticleLayout_accept, METH_VARARGS, "\n"
-		"ParticleLayout_accept(ParticleLayout self, INodeVisitor visitor)\n"
-		"void ParticleLayout::accept(INodeVisitor *visitor) const final override\n"
+	 { "ChiSquaredModule_residual", _wrap_ChiSquaredModule_residual, METH_VARARGS, "\n"
+		"ChiSquaredModule_residual(ChiSquaredModule self, double a, double b, double weight) -> double\n"
+		"double ChiSquaredModule::residual(double a, double b, double weight)\n"
 		"\n"
-		"Calls the  INodeVisitor's visit method. \n"
+		""},
+	 { "ChiSquaredModule_swigregister", ChiSquaredModule_swigregister, METH_O, NULL},
+	 { "ChiSquaredModule_swiginit", ChiSquaredModule_swiginit, METH_VARARGS, NULL},
+	 { "new_DetectorMask", _wrap_new_DetectorMask, METH_VARARGS, "\n"
+		"DetectorMask()\n"
+		"new_DetectorMask(DetectorMask other) -> DetectorMask\n"
+		"DetectorMask::DetectorMask(const DetectorMask &other)\n"
 		"\n"
 		""},
-	 { "ParticleLayout_addParticle", _wrap_ParticleLayout_addParticle, METH_VARARGS, "\n"
-		"ParticleLayout_addParticle(ParticleLayout self, IAbstractParticle particle, double abundance=-1.0, kvector_t position={}, IRotation rotation=IdentityRotation())\n"
-		"void ParticleLayout::addParticle(const IAbstractParticle &particle, double abundance=-1.0, const kvector_t position={}, const IRotation &rotation=IdentityRotation())\n"
+	 { "DetectorMask_addMask", _wrap_DetectorMask_addMask, METH_VARARGS, "\n"
+		"DetectorMask_addMask(DetectorMask self, IShape2D shape, bool mask_value)\n"
+		"void DetectorMask::addMask(const IShape2D &shape, bool mask_value)\n"
 		"\n"
-		"Adds particle to the layout with abundance, position and the rotation defined.\n"
+		"Add mask to the stack of detector masks. The value \"true\" means that the area will be excluded from the analysis.\n"
 		"\n"
 		"Parameters:\n"
 		"-----------\n"
 		"\n"
-		"particle: \n"
-		"to be added\n"
-		"\n"
-		"abundance: \n"
-		" Particle abundance\n"
-		"\n"
-		"position: \n"
-		" Particle position\n"
+		"shape: \n"
+		"The shape of mask.\n"
 		"\n"
-		"rotation: \n"
-		" Particle rotation \n"
+		"mask_value: \n"
+		"The value of mask \n"
 		"\n"
 		""},
-	 { "ParticleLayout_particles", _wrap_ParticleLayout_particles, METH_O, "\n"
-		"ParticleLayout_particles(ParticleLayout self) -> SafePointerVector< IParticle >\n"
-		"SafePointerVector< IParticle > ParticleLayout::particles() const final override\n"
-		"\n"
-		"Returns information on all particles (type and abundance) and generates new particles if an  IAbstractParticle denotes a collection \n"
+	 { "DetectorMask_initMaskData", _wrap_DetectorMask_initMaskData, METH_VARARGS, "\n"
+		"DetectorMask_initMaskData(DetectorMask self, IDetector2D detector)\n"
+		"DetectorMask_initMaskData(DetectorMask self, IntensityData data)\n"
+		"void DetectorMask::initMaskData(const OutputData< double > &data)\n"
 		"\n"
 		""},
-	 { "ParticleLayout_interferenceFunction", _wrap_ParticleLayout_interferenceFunction, METH_O, "\n"
-		"ParticleLayout_interferenceFunction(ParticleLayout self) -> IInterferenceFunction\n"
-		"const IInterferenceFunction * ParticleLayout::interferenceFunction() const final override\n"
-		"\n"
-		"Returns the interference function. \n"
+	 { "DetectorMask_isMasked", _wrap_DetectorMask_isMasked, METH_VARARGS, "\n"
+		"DetectorMask_isMasked(DetectorMask self, size_t index) -> bool\n"
+		"bool DetectorMask::isMasked(size_t index) const\n"
 		"\n"
 		""},
-	 { "ParticleLayout_getTotalAbundance", _wrap_ParticleLayout_getTotalAbundance, METH_O, "\n"
-		"ParticleLayout_getTotalAbundance(ParticleLayout self) -> double\n"
-		"double ParticleLayout::getTotalAbundance() const final override\n"
-		"\n"
-		"Get total abundance of all particles. \n"
+	 { "DetectorMask_getMaskData", _wrap_DetectorMask_getMaskData, METH_O, "\n"
+		"DetectorMask_getMaskData(DetectorMask self) -> OutputData< bool > const *\n"
+		"const OutputData<bool>* DetectorMask::getMaskData() const\n"
 		"\n"
 		""},
-	 { "ParticleLayout_setInterferenceFunction", _wrap_ParticleLayout_setInterferenceFunction, METH_VARARGS, "\n"
-		"ParticleLayout_setInterferenceFunction(ParticleLayout self, IInterferenceFunction interference_function)\n"
-		"void ParticleLayout::setInterferenceFunction(const IInterferenceFunction &interference_function)\n"
-		"\n"
-		"Adds interference functions. \n"
+	 { "DetectorMask_createHistogram", _wrap_DetectorMask_createHistogram, METH_O, "\n"
+		"DetectorMask_createHistogram(DetectorMask self) -> Histogram2D\n"
+		"Histogram2D * DetectorMask::createHistogram() const\n"
 		"\n"
 		""},
-	 { "ParticleLayout_totalParticleSurfaceDensity", _wrap_ParticleLayout_totalParticleSurfaceDensity, METH_O, "\n"
-		"ParticleLayout_totalParticleSurfaceDensity(ParticleLayout self) -> double\n"
-		"double ParticleLayout::totalParticleSurfaceDensity() const final override\n"
+	 { "DetectorMask_removeMasks", _wrap_DetectorMask_removeMasks, METH_O, "\n"
+		"DetectorMask_removeMasks(DetectorMask self)\n"
+		"void DetectorMask::removeMasks()\n"
 		"\n"
-		"Returns surface density of all particles. \n"
+		"remove all masks and return object to initial state \n"
 		"\n"
 		""},
-	 { "ParticleLayout_setTotalParticleSurfaceDensity", _wrap_ParticleLayout_setTotalParticleSurfaceDensity, METH_VARARGS, "\n"
-		"ParticleLayout_setTotalParticleSurfaceDensity(ParticleLayout self, double particle_density)\n"
-		"void ParticleLayout::setTotalParticleSurfaceDensity(double particle_density) final override\n"
-		"\n"
-		"Sets total particle surface density.\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
+	 { "DetectorMask_hasMasks", _wrap_DetectorMask_hasMasks, METH_O, "\n"
+		"DetectorMask_hasMasks(DetectorMask self) -> bool\n"
+		"bool DetectorMask::hasMasks() const\n"
 		"\n"
-		"particle_density: \n"
-		"number of particles per square nanometer \n"
+		"returns true if has masks \n"
 		"\n"
 		""},
-	 { "ParticleLayout_getChildren", _wrap_ParticleLayout_getChildren, METH_O, "\n"
-		"ParticleLayout_getChildren(ParticleLayout self) -> swig_dummy_type_const_inode_vector\n"
-		"std::vector< const INode * > ParticleLayout::getChildren() const final override\n"
-		"\n"
-		"Returns a vector of children (const). \n"
+	 { "DetectorMask_numberOfMaskedChannels", _wrap_DetectorMask_numberOfMaskedChannels, METH_O, "\n"
+		"DetectorMask_numberOfMaskedChannels(DetectorMask self) -> int\n"
+		"int DetectorMask::numberOfMaskedChannels() const\n"
 		"\n"
 		""},
-	 { "ParticleLayout_swigregister", ParticleLayout_swigregister, METH_O, NULL},
-	 { "ParticleLayout_swiginit", ParticleLayout_swiginit, METH_VARARGS, NULL},
-	 { "importArrayToOutputData", _wrap_importArrayToOutputData, METH_VARARGS, "\n"
-		"importArrayToOutputData(vdouble1d_t vec) -> IntensityData\n"
-		"importArrayToOutputData(vdouble2d_t vec) -> IntensityData\n"
-		"OutputData< double > * PyArrayImport::importArrayToOutputData(const std::vector< std::vector< double >> &vec)\n"
-		"\n"
-		"for importing 2D array of doubles from python into  OutputData\n"
+	 { "DetectorMask_numberOfMasks", _wrap_DetectorMask_numberOfMasks, METH_O, "\n"
+		"DetectorMask_numberOfMasks(DetectorMask self) -> size_t\n"
+		"size_t DetectorMask::numberOfMasks() const\n"
 		"\n"
 		""},
-	 { "new_PoissonNoiseBackground", _wrap_new_PoissonNoiseBackground, METH_NOARGS, "\n"
-		"new_PoissonNoiseBackground() -> PoissonNoiseBackground\n"
-		"PoissonNoiseBackground::PoissonNoiseBackground()\n"
+	 { "DetectorMask_getMaskShape", _wrap_DetectorMask_getMaskShape, METH_VARARGS, "\n"
+		"DetectorMask_getMaskShape(DetectorMask self, size_t mask_index, bool & mask_value) -> IShape2D\n"
+		"const IShape2D * DetectorMask::getMaskShape(size_t mask_index, bool &mask_value) const\n"
 		"\n"
 		""},
-	 { "delete_PoissonNoiseBackground", _wrap_delete_PoissonNoiseBackground, METH_O, "\n"
-		"delete_PoissonNoiseBackground(PoissonNoiseBackground self)\n"
-		"PoissonNoiseBackground::~PoissonNoiseBackground()\n"
+	 { "delete_DetectorMask", _wrap_delete_DetectorMask, METH_O, "delete_DetectorMask(DetectorMask self)"},
+	 { "DetectorMask_swigregister", DetectorMask_swigregister, METH_O, NULL},
+	 { "DetectorMask_swiginit", DetectorMask_swiginit, METH_VARARGS, NULL},
+	 { "new_Instrument", _wrap_new_Instrument, METH_VARARGS, "\n"
+		"Instrument()\n"
+		"new_Instrument(Instrument other) -> Instrument\n"
+		"Instrument::Instrument(const Instrument &other)\n"
 		"\n"
 		""},
-	 { "PoissonNoiseBackground_clone", _wrap_PoissonNoiseBackground_clone, METH_O, "\n"
-		"PoissonNoiseBackground_clone(PoissonNoiseBackground self) -> PoissonNoiseBackground\n"
-		"PoissonNoiseBackground * PoissonNoiseBackground::clone() const override final\n"
+	 { "delete_Instrument", _wrap_delete_Instrument, METH_O, "\n"
+		"delete_Instrument(Instrument self)\n"
+		"Instrument::~Instrument()\n"
 		"\n"
 		""},
-	 { "PoissonNoiseBackground_accept", _wrap_PoissonNoiseBackground_accept, METH_VARARGS, "\n"
-		"PoissonNoiseBackground_accept(PoissonNoiseBackground self, INodeVisitor visitor)\n"
-		"void PoissonNoiseBackground::accept(INodeVisitor *visitor) const override\n"
+	 { "Instrument_accept", _wrap_Instrument_accept, METH_VARARGS, "\n"
+		"Instrument_accept(Instrument self, INodeVisitor visitor)\n"
+		"void Instrument::accept(INodeVisitor *visitor) const final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "PoissonNoiseBackground_addBackGround", _wrap_PoissonNoiseBackground_addBackGround, METH_VARARGS, "\n"
-		"PoissonNoiseBackground_addBackGround(PoissonNoiseBackground self, double intensity) -> double\n"
-		"double PoissonNoiseBackground::addBackGround(double intensity) const override final\n"
+	 { "Instrument_getBeam", _wrap_Instrument_getBeam, METH_VARARGS, "\n"
+		"Instrument_getBeam(Instrument self) -> Beam\n"
+		"Instrument_getBeam(Instrument self) -> Beam\n"
+		"const Beam& Instrument::getBeam() const\n"
 		"\n"
 		""},
-	 { "PoissonNoiseBackground_swigregister", PoissonNoiseBackground_swigregister, METH_O, NULL},
-	 { "PoissonNoiseBackground_swiginit", PoissonNoiseBackground_swiginit, METH_VARARGS, NULL},
-	 { "new_Polygon", _wrap_new_Polygon, METH_VARARGS, "\n"
-		"Polygon(vdouble1d_t x, vdouble1d_t y)\n"
-		"Polygon(vdouble2d_t points)\n"
-		"new_Polygon(PolygonPrivate const * d) -> Polygon\n"
-		"Polygon::Polygon(const PolygonPrivate *d)\n"
+	 { "Instrument_setBeam", _wrap_Instrument_setBeam, METH_VARARGS, "\n"
+		"Instrument_setBeam(Instrument self, Beam beam)\n"
+		"void Instrument::setBeam(const Beam &beam)\n"
 		"\n"
 		""},
-	 { "delete_Polygon", _wrap_delete_Polygon, METH_O, "\n"
-		"delete_Polygon(Polygon self)\n"
-		"Polygon::~Polygon()\n"
+	 { "Instrument_setBeamParameters", _wrap_Instrument_setBeamParameters, METH_VARARGS, "\n"
+		"Instrument_setBeamParameters(Instrument self, double wavelength, double alpha_i, double phi_i)\n"
+		"void Instrument::setBeamParameters(double wavelength, double alpha_i, double phi_i)\n"
 		"\n"
-		""},
-	 { "Polygon_clone", _wrap_Polygon_clone, METH_O, "\n"
-		"Polygon_clone(Polygon self) -> Polygon\n"
-		"virtual Polygon* Polygon::clone() const\n"
+		"Sets the beam wavelength and incoming angles. \n"
 		"\n"
 		""},
-	 { "Polygon_contains", _wrap_Polygon_contains, METH_VARARGS, "\n"
-		"Polygon_contains(Polygon self, double x, double y) -> bool\n"
-		"Polygon_contains(Polygon self, Bin1D binx, Bin1D biny) -> bool\n"
-		"bool Polygon::contains(const Bin1D &binx, const Bin1D &biny) const\n"
+	 { "Instrument_setBeamIntensity", _wrap_Instrument_setBeamIntensity, METH_VARARGS, "\n"
+		"Instrument_setBeamIntensity(Instrument self, double intensity)\n"
+		"void Instrument::setBeamIntensity(double intensity)\n"
 		"\n"
-		"Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). \n"
+		"Sets the beam's intensity. \n"
 		"\n"
 		""},
-	 { "Polygon_getArea", _wrap_Polygon_getArea, METH_O, "\n"
-		"Polygon_getArea(Polygon self) -> double\n"
-		"double Polygon::getArea() const\n"
+	 { "Instrument_setBeamPolarization", _wrap_Instrument_setBeamPolarization, METH_VARARGS, "\n"
+		"Instrument_setBeamPolarization(Instrument self, kvector_t bloch_vector)\n"
+		"void Instrument::setBeamPolarization(const kvector_t bloch_vector)\n"
 		"\n"
-		""},
-	 { "Polygon_getPoints", _wrap_Polygon_getPoints, METH_VARARGS, "\n"
-		"Polygon_getPoints(Polygon self, vdouble1d_t xpos, vdouble1d_t ypos)\n"
-		"void Polygon::getPoints(std::vector< double > &xpos, std::vector< double > &ypos) const\n"
+		"Sets the beam's polarization according to the given Bloch vector. \n"
 		"\n"
 		""},
-	 { "Polygon_swigregister", Polygon_swigregister, METH_O, NULL},
-	 { "Polygon_swiginit", Polygon_swiginit, METH_VARARGS, NULL},
-	 { "new_RangedDistributionGate", _wrap_new_RangedDistributionGate, METH_VARARGS, "\n"
-		"RangedDistributionGate()\n"
-		"RangedDistributionGate(size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless())\n"
-		"new_RangedDistributionGate(size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionGate\n"
-		"RangedDistributionGate::RangedDistributionGate(size_t n_samples, double sigma_factor, double min, double max)\n"
+	 { "Instrument_getBeamIntensity", _wrap_Instrument_getBeamIntensity, METH_O, "\n"
+		"Instrument_getBeamIntensity(Instrument self) -> double\n"
+		"double Instrument::getBeamIntensity() const\n"
 		"\n"
-		"Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). \n"
+		"Returns the beam's intensity. \n"
 		"\n"
 		""},
-	 { "RangedDistributionGate_clone", _wrap_RangedDistributionGate_clone, METH_O, "\n"
-		"RangedDistributionGate_clone(RangedDistributionGate self) -> RangedDistributionGate\n"
-		"RangedDistributionGate * RangedDistributionGate::clone() const override\n"
+	 { "Instrument_getDetector", _wrap_Instrument_getDetector, METH_VARARGS, "\n"
+		"Instrument_getDetector(Instrument self) -> IDetector\n"
+		"Instrument_getDetector(Instrument self) -> IDetector\n"
+		"IDetector * Instrument::getDetector()\n"
 		"\n"
 		""},
-	 { "delete_RangedDistributionGate", _wrap_delete_RangedDistributionGate, METH_O, "\n"
-		"delete_RangedDistributionGate(RangedDistributionGate self)\n"
-		"RangedDistributionGate::~RangedDistributionGate() override=default\n"
+	 { "Instrument_getDetectorMask", _wrap_Instrument_getDetectorMask, METH_O, "\n"
+		"Instrument_getDetectorMask(Instrument self) -> DetectorMask\n"
+		"const DetectorMask * Instrument::getDetectorMask() const\n"
 		"\n"
 		""},
-	 { "RangedDistributionGate_swigregister", RangedDistributionGate_swigregister, METH_O, NULL},
-	 { "RangedDistributionGate_swiginit", RangedDistributionGate_swiginit, METH_VARARGS, NULL},
-	 { "new_RangedDistributionLorentz", _wrap_new_RangedDistributionLorentz, METH_VARARGS, "\n"
-		"RangedDistributionLorentz()\n"
-		"RangedDistributionLorentz(size_t n_samples, double hwhm_factor, RealLimits limits=RealLimits::limitless())\n"
-		"new_RangedDistributionLorentz(size_t n_samples, double hwhm_factor, double min, double max) -> RangedDistributionLorentz\n"
-		"RangedDistributionLorentz::RangedDistributionLorentz(size_t n_samples, double hwhm_factor, double min, double max)\n"
+	 { "Instrument_getDetectorAxis", _wrap_Instrument_getDetectorAxis, METH_VARARGS, "\n"
+		"Instrument_getDetectorAxis(Instrument self, size_t index) -> IAxis\n"
+		"const IAxis & Instrument::getDetectorAxis(size_t index) const\n"
 		"\n"
-		"Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  hwhm_factor = 2.0, while the limits are (-inf, +inf). \n"
+		"Returns a detector axis. \n"
 		"\n"
 		""},
-	 { "RangedDistributionLorentz_clone", _wrap_RangedDistributionLorentz_clone, METH_O, "\n"
-		"RangedDistributionLorentz_clone(RangedDistributionLorentz self) -> RangedDistributionLorentz\n"
-		"RangedDistributionLorentz * RangedDistributionLorentz::clone() const override\n"
+	 { "Instrument_getDetectorDimension", _wrap_Instrument_getDetectorDimension, METH_O, "\n"
+		"Instrument_getDetectorDimension(Instrument self) -> size_t\n"
+		"size_t Instrument::getDetectorDimension() const\n"
 		"\n"
-		""},
-	 { "delete_RangedDistributionLorentz", _wrap_delete_RangedDistributionLorentz, METH_O, "\n"
-		"delete_RangedDistributionLorentz(RangedDistributionLorentz self)\n"
-		"RangedDistributionLorentz::~RangedDistributionLorentz() override=default\n"
+		"Returns the detector's dimension. \n"
 		"\n"
 		""},
-	 { "RangedDistributionLorentz_swigregister", RangedDistributionLorentz_swigregister, METH_O, NULL},
-	 { "RangedDistributionLorentz_swiginit", RangedDistributionLorentz_swiginit, METH_VARARGS, NULL},
-	 { "new_RangedDistributionGaussian", _wrap_new_RangedDistributionGaussian, METH_VARARGS, "\n"
-		"RangedDistributionGaussian()\n"
-		"RangedDistributionGaussian(size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless())\n"
-		"new_RangedDistributionGaussian(size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionGaussian\n"
-		"RangedDistributionGaussian::RangedDistributionGaussian(size_t n_samples, double sigma_factor, double min, double max)\n"
+	 { "Instrument_setDetector", _wrap_Instrument_setDetector, METH_VARARGS, "\n"
+		"Instrument_setDetector(Instrument self, IDetector detector)\n"
+		"void Instrument::setDetector(const IDetector &detector)\n"
 		"\n"
-		"Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). \n"
+		"Sets the detector (axes can be overwritten later) \n"
 		"\n"
 		""},
-	 { "RangedDistributionGaussian_clone", _wrap_RangedDistributionGaussian_clone, METH_O, "\n"
-		"RangedDistributionGaussian_clone(RangedDistributionGaussian self) -> RangedDistributionGaussian\n"
-		"RangedDistributionGaussian * RangedDistributionGaussian::clone() const override\n"
+	 { "Instrument_setDetectorResolutionFunction", _wrap_Instrument_setDetectorResolutionFunction, METH_VARARGS, "\n"
+		"Instrument_setDetectorResolutionFunction(Instrument self, IResolutionFunction2D p_resolution_function)\n"
+		"void Instrument::setDetectorResolutionFunction(const IResolutionFunction2D &p_resolution_function)\n"
 		"\n"
-		""},
-	 { "delete_RangedDistributionGaussian", _wrap_delete_RangedDistributionGaussian, METH_O, "\n"
-		"delete_RangedDistributionGaussian(RangedDistributionGaussian self)\n"
-		"RangedDistributionGaussian::~RangedDistributionGaussian() override=default\n"
+		"Sets detector resolution function. \n"
 		"\n"
 		""},
-	 { "RangedDistributionGaussian_swigregister", RangedDistributionGaussian_swigregister, METH_O, NULL},
-	 { "RangedDistributionGaussian_swiginit", RangedDistributionGaussian_swiginit, METH_VARARGS, NULL},
-	 { "new_RangedDistributionLogNormal", _wrap_new_RangedDistributionLogNormal, METH_VARARGS, "\n"
-		"RangedDistributionLogNormal()\n"
-		"RangedDistributionLogNormal(size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless())\n"
-		"new_RangedDistributionLogNormal(size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionLogNormal\n"
-		"RangedDistributionLogNormal::RangedDistributionLogNormal(size_t n_samples, double sigma_factor, double min, double max)\n"
+	 { "Instrument_removeDetectorResolution", _wrap_Instrument_removeDetectorResolution, METH_O, "\n"
+		"Instrument_removeDetectorResolution(Instrument self)\n"
+		"void Instrument::removeDetectorResolution()\n"
 		"\n"
-		"Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). \n"
+		"Removes detector resolution function. \n"
 		"\n"
 		""},
-	 { "RangedDistributionLogNormal_clone", _wrap_RangedDistributionLogNormal_clone, METH_O, "\n"
-		"RangedDistributionLogNormal_clone(RangedDistributionLogNormal self) -> RangedDistributionLogNormal\n"
-		"RangedDistributionLogNormal * RangedDistributionLogNormal::clone() const override\n"
+	 { "Instrument_setAnalyzerProperties", _wrap_Instrument_setAnalyzerProperties, METH_VARARGS, "\n"
+		"Instrument_setAnalyzerProperties(Instrument self, kvector_t direction, double efficiency, double total_transmission)\n"
+		"void Instrument::setAnalyzerProperties(const kvector_t direction, double efficiency, double total_transmission)\n"
 		"\n"
-		""},
-	 { "delete_RangedDistributionLogNormal", _wrap_delete_RangedDistributionLogNormal, METH_O, "\n"
-		"delete_RangedDistributionLogNormal(RangedDistributionLogNormal self)\n"
-		"RangedDistributionLogNormal::~RangedDistributionLogNormal() override=default\n"
+		"Sets the polarization analyzer characteristics of the detector. \n"
 		"\n"
 		""},
-	 { "RangedDistributionLogNormal_swigregister", RangedDistributionLogNormal_swigregister, METH_O, NULL},
-	 { "RangedDistributionLogNormal_swiginit", RangedDistributionLogNormal_swiginit, METH_VARARGS, NULL},
-	 { "new_RangedDistributionCosine", _wrap_new_RangedDistributionCosine, METH_VARARGS, "\n"
-		"RangedDistributionCosine()\n"
-		"RangedDistributionCosine(size_t n_samples, double sigma_factor, RealLimits limits=RealLimits::limitless())\n"
-		"new_RangedDistributionCosine(size_t n_samples, double sigma_factor, double min, double max) -> RangedDistributionCosine\n"
-		"RangedDistributionCosine::RangedDistributionCosine(size_t n_samples, double sigma_factor, double min, double max)\n"
-		"\n"
-		"Initializes Ranged distribution with given number of samples, sigma factor (range in standard deviations to take into account during sample generation) and limits (either RealLimits object or just min and max limits). By default  n_samples = 5,  sigma_factor = 2.0, while the limits are (-inf, +inf). \n"
+	 { "Instrument_applyDetectorResolution", _wrap_Instrument_applyDetectorResolution, METH_VARARGS, "\n"
+		"Instrument_applyDetectorResolution(Instrument self, IntensityData p_intensity_map)\n"
+		"void Instrument::applyDetectorResolution(OutputData< double > *p_intensity_map) const\n"
 		"\n"
-		""},
-	 { "RangedDistributionCosine_clone", _wrap_RangedDistributionCosine_clone, METH_O, "\n"
-		"RangedDistributionCosine_clone(RangedDistributionCosine self) -> RangedDistributionCosine\n"
-		"RangedDistributionCosine * RangedDistributionCosine::clone() const override\n"
+		"apply the detector resolution to the given intensity map \n"
 		"\n"
 		""},
-	 { "delete_RangedDistributionCosine", _wrap_delete_RangedDistributionCosine, METH_O, "\n"
-		"delete_RangedDistributionCosine(RangedDistributionCosine self)\n"
-		"RangedDistributionCosine::~RangedDistributionCosine() override=default\n"
+	 { "Instrument_createDetectorIntensity", _wrap_Instrument_createDetectorIntensity, METH_VARARGS, "\n"
+		"Instrument_createDetectorIntensity(Instrument self, std::vector< SimulationElement,std::allocator< SimulationElement > > const & elements) -> IntensityData\n"
+		"OutputData< double > * Instrument::createDetectorIntensity(const std::vector< SimulationElement > &elements) const\n"
 		"\n"
-		""},
-	 { "RangedDistributionCosine_swigregister", RangedDistributionCosine_swigregister, METH_O, NULL},
-	 { "RangedDistributionCosine_swiginit", RangedDistributionCosine_swiginit, METH_VARARGS, NULL},
-	 { "new_RealParameter", _wrap_new_RealParameter, METH_VARARGS, "\n"
-		"RealParameter(std::string const & name, double * par, std::string const & parent_name=\"\", std::function< void () > const & onChange=std::function< void () >(), RealLimits limits=RealLimits::limitless(), Attributes attr=Attributes::free())\n"
-		"RealParameter::RealParameter(const std::string &name, double *par, const std::string &parent_name=\"\", const std::function< void()> &onChange=std::function< void()>(), const RealLimits &limits=RealLimits::limitless(), const Attributes &attr=Attributes::free())\n"
+		"Returns new intensity map with detector resolution applied and axes in requested units. \n"
 		"\n"
 		""},
-	 { "delete_RealParameter", _wrap_delete_RealParameter, METH_O, "\n"
-		"delete_RealParameter(RealParameter self)\n"
-		"virtual RealParameter::~RealParameter()=default\n"
+	 { "Instrument_initDetector", _wrap_Instrument_initDetector, METH_O, "\n"
+		"Instrument_initDetector(Instrument self)\n"
+		"void Instrument::initDetector()\n"
 		"\n"
-		""},
-	 { "RealParameter_clone", _wrap_RealParameter_clone, METH_VARARGS, "\n"
-		"RealParameter_clone(RealParameter self, std::string const & new_name=\"\") -> RealParameter\n"
-		"RealParameter * RealParameter::clone(const std::string &new_name=\"\") const\n"
+		"init detector with beam settings \n"
 		"\n"
 		""},
-	 { "RealParameter_setValue", _wrap_RealParameter_setValue, METH_VARARGS, "\n"
-		"RealParameter_setValue(RealParameter self, double value)\n"
-		"void RealParameter::setValue(double value)\n"
+	 { "Instrument_getChildren", _wrap_Instrument_getChildren, METH_O, "\n"
+		"Instrument_getChildren(Instrument self) -> swig_dummy_type_const_inode_vector\n"
+		"std::vector< const INode * > Instrument::getChildren() const\n"
 		"\n"
-		"Sets value of wrapped parameter and emit signal. \n"
+		"Returns a vector of children (const). \n"
 		"\n"
 		""},
-	 { "RealParameter_value", _wrap_RealParameter_value, METH_O, "\n"
-		"RealParameter_value(RealParameter self) -> double\n"
-		"double RealParameter::value() const\n"
-		"\n"
-		"Returns value of wrapped parameter. \n"
+	 { "Instrument_swigregister", Instrument_swigregister, METH_O, NULL},
+	 { "Instrument_swiginit", Instrument_swiginit, METH_VARARGS, NULL},
+	 { "RelativeDifference", _wrap_RelativeDifference, METH_VARARGS, "\n"
+		"RelativeDifference(SimulationResult dat, SimulationResult ref) -> double\n"
+		"double IntensityDataFunctions::RelativeDifference(const SimulationResult &dat, const SimulationResult &ref)\n"
 		"\n"
-		""},
-	 { "RealParameter_setLimits", _wrap_RealParameter_setLimits, METH_VARARGS, "\n"
-		"RealParameter_setLimits(RealParameter self, RealLimits limits) -> RealParameter\n"
-		"RealParameter & RealParameter::setLimits(const RealLimits &limits)\n"
+		"Returns sum of relative differences between each pair of elements: (a, b) -> 2*abs(a - b)/(a + b) ( and zero if a-b=0 )\n"
 		"\n"
-		""},
-	 { "RealParameter_limits", _wrap_RealParameter_limits, METH_O, "\n"
-		"RealParameter_limits(RealParameter self) -> RealLimits\n"
-		"RealLimits RealParameter::limits() const\n"
+		"Returns sum of relative differences between each pair of elements: (a, b) -> 2*abs(a - b)/(|a| + |b|) ( and zero if a=b=0 within epsilon ) \n"
 		"\n"
 		""},
-	 { "RealParameter_setLimited", _wrap_RealParameter_setLimited, METH_VARARGS, "\n"
-		"RealParameter_setLimited(RealParameter self, double lower, double upper) -> RealParameter\n"
-		"RealParameter & RealParameter::setLimited(double lower, double upper)\n"
+	 { "checkRelativeDifference", _wrap_checkRelativeDifference, METH_VARARGS, "\n"
+		"checkRelativeDifference(IntensityData dat, IntensityData ref, double const threshold) -> bool\n"
+		"bool IntensityDataFunctions::checkRelativeDifference(const OutputData< double > &dat, const OutputData< double > &ref, const double threshold)\n"
 		"\n"
-		""},
-	 { "RealParameter_setPositive", _wrap_RealParameter_setPositive, METH_O, "\n"
-		"RealParameter_setPositive(RealParameter self) -> RealParameter\n"
-		"RealParameter & RealParameter::setPositive()\n"
+		"Returns true is relative difference is below threshold; prints informative output. \n"
 		"\n"
 		""},
-	 { "RealParameter_setNonnegative", _wrap_RealParameter_setNonnegative, METH_O, "\n"
-		"RealParameter_setNonnegative(RealParameter self) -> RealParameter\n"
-		"RealParameter & RealParameter::setNonnegative()\n"
+	 { "getRelativeDifference", _wrap_getRelativeDifference, METH_VARARGS, "\n"
+		"getRelativeDifference(IntensityData dat, IntensityData ref) -> double\n"
+		"getRelativeDifference(IHistogram dat, IHistogram ref) -> double\n"
+		"double IntensityDataFunctions::getRelativeDifference(const IHistogram &dat, const IHistogram &ref)\n"
 		"\n"
 		""},
-	 { "RealParameter_setUnit", _wrap_RealParameter_setUnit, METH_VARARGS, "\n"
-		"RealParameter_setUnit(RealParameter self, std::string const & name) -> RealParameter\n"
-		"RealParameter & RealParameter::setUnit(const std::string &name)\n"
+	 { "coordinateToBinf", _wrap_coordinateToBinf, METH_VARARGS, "\n"
+		"coordinateToBinf(double coordinate, IAxis axis) -> double\n"
+		"coordinateToBinf(double & x, double & y, IntensityData data)\n"
+		"void IntensityDataFunctions::coordinateToBinf(double &x, double &y, const OutputData< double > &data)\n"
 		"\n"
-		""},
-	 { "RealParameter_unit", _wrap_RealParameter_unit, METH_O, "\n"
-		"RealParameter_unit(RealParameter self) -> std::string\n"
-		"std::string RealParameter::unit() const\n"
+		"Transforms x,y coordinate from  OutputData axes coordinates to bin-fraction-coordinates. \n"
 		"\n"
 		""},
-	 { "RealParameter_swigregister", RealParameter_swigregister, METH_O, NULL},
-	 { "RealParameter_swiginit", RealParameter_swiginit, METH_VARARGS, NULL},
-	 { "new_Rectangle", _wrap_new_Rectangle, METH_VARARGS, "\n"
-		"new_Rectangle(double xlow, double ylow, double xup, double yup) -> Rectangle\n"
-		"Rectangle::Rectangle(double xlow, double ylow, double xup, double yup)\n"
-		"\n"
-		"Parameters:\n"
-		"-----------\n"
-		"\n"
-		"xlow: \n"
-		"x-coordinate of lower left corner\n"
-		"\n"
-		"ylow: \n"
-		"y-coordinate of lower left corner\n"
-		"\n"
-		"xup: \n"
-		"x-coordinate of upper right corner\n"
+	 { "coordinateFromBinf", _wrap_coordinateFromBinf, METH_VARARGS, "\n"
+		"coordinateFromBinf(double value, IAxis axis) -> double\n"
+		"coordinateFromBinf(double & x, double & y, IntensityData data)\n"
+		"void IntensityDataFunctions::coordinateFromBinf(double &x, double &y, const OutputData< double > &data)\n"
 		"\n"
-		"yup: \n"
-		"y-coordinate of upper right corner \n"
+		"Transforms x,y coordinate from bin-fraction-coordinates to  OutputData's axes coordinates. \n"
 		"\n"
 		""},
-	 { "Rectangle_clone", _wrap_Rectangle_clone, METH_O, "\n"
-		"Rectangle_clone(Rectangle self) -> Rectangle\n"
-		"Rectangle* Rectangle::clone() const\n"
+	 { "create2DArrayfromOutputData", _wrap_create2DArrayfromOutputData, METH_O, "\n"
+		"create2DArrayfromOutputData(IntensityData data) -> vdouble2d_t\n"
+		"std::vector< std::vector< double > > IntensityDataFunctions::create2DArrayfromOutputData(const OutputData< double > &data)\n"
+		"\n"
+		"Creates a vector of vectors of double (2D Array) from  OutputData. \n"
 		"\n"
 		""},
-	 { "Rectangle_contains", _wrap_Rectangle_contains, METH_VARARGS, "\n"
-		"Rectangle_contains(Rectangle self, double x, double y) -> bool\n"
-		"Rectangle_contains(Rectangle self, Bin1D binx, Bin1D biny) -> bool\n"
-		"bool Rectangle::contains(const Bin1D &binx, const Bin1D &biny) const\n"
+	 { "FT2DArray", _wrap_FT2DArray, METH_O, "\n"
+		"FT2DArray(vdouble2d_t signal) -> vdouble2d_t\n"
+		"std::vector< std::vector< double > > IntensityDataFunctions::FT2DArray(const std::vector< std::vector< double >> &signal)\n"
 		"\n"
-		"Returns true if area defined by two bins is inside or on border of polygon (more precisely, if mid point of two bins satisfy this condition). \n"
+		"Creates a Fourier Transform of a 2D Array (vector of vectors). \n"
 		"\n"
 		""},
-	 { "Rectangle_getArea", _wrap_Rectangle_getArea, METH_O, "\n"
-		"Rectangle_getArea(Rectangle self) -> double\n"
-		"double Rectangle::getArea() const\n"
+	 { "ConvertData", _wrap_ConvertData, METH_VARARGS, "\n"
+		"ConvertData(Simulation simulation, IntensityData data, bool put_masked_areas_to_zero=True) -> SimulationResult\n"
+		"ConvertData(Simulation simulation, vdouble2d_t data, bool put_masked_areas_to_zero=True) -> SimulationResult\n"
+		"SimulationResult IntensityDataFunctions::ConvertData(const Simulation &simulation, const std::vector< std::vector< double >> &data, bool put_masked_areas_to_zero=true)\n"
 		"\n"
 		""},
-	 { "Rectangle_getXlow", _wrap_Rectangle_getXlow, METH_O, "\n"
-		"Rectangle_getXlow(Rectangle self) -> double\n"
-		"double Rectangle::getXlow() const\n"
+	 { "new_IsGISAXSDetector", _wrap_new_IsGISAXSDetector, METH_VARARGS, "\n"
+		"IsGISAXSDetector()\n"
+		"IsGISAXSDetector(size_t n_phi, double phi_min, double phi_max, size_t n_alpha, double alpha_min, double alpha_max)\n"
+		"new_IsGISAXSDetector(IsGISAXSDetector other) -> IsGISAXSDetector\n"
+		"IsGISAXSDetector::IsGISAXSDetector(const IsGISAXSDetector &other)\n"
 		"\n"
 		""},
-	 { "Rectangle_getYlow", _wrap_Rectangle_getYlow, METH_O, "\n"
-		"Rectangle_getYlow(Rectangle self) -> double\n"
-		"double Rectangle::getYlow() const\n"
+	 { "IsGISAXSDetector_clone", _wrap_IsGISAXSDetector_clone, METH_O, "\n"
+		"IsGISAXSDetector_clone(IsGISAXSDetector self) -> IsGISAXSDetector\n"
+		"IsGISAXSDetector * IsGISAXSDetector::clone() const override\n"
 		"\n"
 		""},
-	 { "Rectangle_getXup", _wrap_Rectangle_getXup, METH_O, "\n"
-		"Rectangle_getXup(Rectangle self) -> double\n"
-		"double Rectangle::getXup() const\n"
+	 { "IsGISAXSDetector_accept", _wrap_IsGISAXSDetector_accept, METH_VARARGS, "\n"
+		"IsGISAXSDetector_accept(IsGISAXSDetector self, INodeVisitor visitor)\n"
+		"void IsGISAXSDetector::accept(INodeVisitor *visitor) const final\n"
+		"\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "Rectangle_getYup", _wrap_Rectangle_getYup, METH_O, "\n"
-		"Rectangle_getYup(Rectangle self) -> double\n"
-		"double Rectangle::getYup() const\n"
+	 { "delete_IsGISAXSDetector", _wrap_delete_IsGISAXSDetector, METH_O, "delete_IsGISAXSDetector(IsGISAXSDetector self)"},
+	 { "IsGISAXSDetector_swigregister", IsGISAXSDetector_swigregister, METH_O, NULL},
+	 { "IsGISAXSDetector_swiginit", IsGISAXSDetector_swiginit, METH_VARARGS, NULL},
+	 { "importArrayToOutputData", _wrap_importArrayToOutputData, METH_VARARGS, "\n"
+		"importArrayToOutputData(vdouble1d_t vec) -> IntensityData\n"
+		"importArrayToOutputData(vdouble2d_t vec) -> IntensityData\n"
+		"OutputData< double > * PyArrayImport::importArrayToOutputData(const std::vector< std::vector< double >> &vec)\n"
+		"\n"
+		"for importing 2D array of doubles from python into  OutputData\n"
 		"\n"
 		""},
-	 { "delete_Rectangle", _wrap_delete_Rectangle, METH_O, "delete_Rectangle(Rectangle self)"},
-	 { "Rectangle_swigregister", Rectangle_swigregister, METH_O, NULL},
-	 { "Rectangle_swiginit", Rectangle_swiginit, METH_VARARGS, NULL},
 	 { "new_RectangularPixel", _wrap_new_RectangularPixel, METH_VARARGS, "\n"
 		"new_RectangularPixel(kvector_t corner_pos, kvector_t width, kvector_t height) -> RectangularPixel\n"
 		"RectangularPixel::RectangularPixel(kvector_t corner_pos, kvector_t width, kvector_t height)\n"
@@ -135008,301 +134322,935 @@ static PyMethodDef SwigMethods[] = {
 	 { "delete_ResolutionFunction2DGaussian", _wrap_delete_ResolutionFunction2DGaussian, METH_O, "delete_ResolutionFunction2DGaussian(ResolutionFunction2DGaussian self)"},
 	 { "ResolutionFunction2DGaussian_swigregister", ResolutionFunction2DGaussian_swigregister, METH_O, NULL},
 	 { "ResolutionFunction2DGaussian_swiginit", ResolutionFunction2DGaussian_swiginit, METH_VARARGS, NULL},
-	 { "delete_RoughnessModel", _wrap_delete_RoughnessModel, METH_O, "delete_RoughnessModel(RoughnessModel self)"},
-	 { "RoughnessModel_swigregister", RoughnessModel_swigregister, METH_O, NULL},
-	 { "new_DepthProbeSimulation", _wrap_new_DepthProbeSimulation, METH_VARARGS, "\n"
-		"DepthProbeSimulation()\n"
-		"DepthProbeSimulation(MultiLayer sample)\n"
-		"new_DepthProbeSimulation(std::shared_ptr< IMultiLayerBuilder > const sample_builder) -> DepthProbeSimulation\n"
-		"DepthProbeSimulation::DepthProbeSimulation(const std::shared_ptr< IMultiLayerBuilder > sample_builder)\n"
+	 { "delete_IVarianceFunction", _wrap_delete_IVarianceFunction, METH_O, "\n"
+		"delete_IVarianceFunction(IVarianceFunction self)\n"
+		"IVarianceFunction::~IVarianceFunction()\n"
 		"\n"
 		""},
-	 { "delete_DepthProbeSimulation", _wrap_delete_DepthProbeSimulation, METH_O, "\n"
-		"delete_DepthProbeSimulation(DepthProbeSimulation self)\n"
-		"DepthProbeSimulation::~DepthProbeSimulation() override\n"
+	 { "IVarianceFunction_clone", _wrap_IVarianceFunction_clone, METH_O, "\n"
+		"IVarianceFunction_clone(IVarianceFunction self) -> IVarianceFunction\n"
+		"virtual IVarianceFunction* IVarianceFunction::clone() const =0\n"
 		"\n"
 		""},
-	 { "DepthProbeSimulation_clone", _wrap_DepthProbeSimulation_clone, METH_O, "\n"
-		"DepthProbeSimulation_clone(DepthProbeSimulation self) -> DepthProbeSimulation\n"
-		"DepthProbeSimulation * DepthProbeSimulation::clone() const override\n"
+	 { "IVarianceFunction_variance", _wrap_IVarianceFunction_variance, METH_VARARGS, "\n"
+		"IVarianceFunction_variance(IVarianceFunction self, double real_value, double simulated_value) -> double\n"
+		"virtual double IVarianceFunction::variance(double real_value, double simulated_value) const =0\n"
 		"\n"
 		""},
-	 { "DepthProbeSimulation_accept", _wrap_DepthProbeSimulation_accept, METH_VARARGS, "\n"
-		"DepthProbeSimulation_accept(DepthProbeSimulation self, INodeVisitor visitor)\n"
-		"void DepthProbeSimulation::accept(INodeVisitor *visitor) const override final\n"
+	 { "IVarianceFunction_swigregister", IVarianceFunction_swigregister, METH_O, NULL},
+	 { "VarianceConstantFunction_clone", _wrap_VarianceConstantFunction_clone, METH_O, "\n"
+		"VarianceConstantFunction_clone(VarianceConstantFunction self) -> VarianceConstantFunction\n"
+		"VarianceConstantFunction * VarianceConstantFunction::clone() const override\n"
+		"\n"
+		""},
+	 { "VarianceConstantFunction_variance", _wrap_VarianceConstantFunction_variance, METH_VARARGS, "\n"
+		"VarianceConstantFunction_variance(VarianceConstantFunction self, double arg2, double arg3) -> double\n"
+		"double VarianceConstantFunction::variance(double, double) const override\n"
+		"\n"
+		""},
+	 { "new_VarianceConstantFunction", _wrap_new_VarianceConstantFunction, METH_NOARGS, "\n"
+		"new_VarianceConstantFunction() -> VarianceConstantFunction\n"
+		"\n"
+		"\n"
+		"Returns 1.0 as variance value\n"
+		"\n"
+		"C++ includes: VarianceFunctions.h\n"
+		"\n"
+		""},
+	 { "delete_VarianceConstantFunction", _wrap_delete_VarianceConstantFunction, METH_O, "delete_VarianceConstantFunction(VarianceConstantFunction self)"},
+	 { "VarianceConstantFunction_swigregister", VarianceConstantFunction_swigregister, METH_O, NULL},
+	 { "VarianceConstantFunction_swiginit", VarianceConstantFunction_swiginit, METH_VARARGS, NULL},
+	 { "new_VarianceSimFunction", _wrap_new_VarianceSimFunction, METH_VARARGS, "\n"
+		"VarianceSimFunction(double epsilon=1.0)\n"
+		"VarianceSimFunction::VarianceSimFunction(double epsilon=1.0)\n"
+		"\n"
+		""},
+	 { "VarianceSimFunction_clone", _wrap_VarianceSimFunction_clone, METH_O, "\n"
+		"VarianceSimFunction_clone(VarianceSimFunction self) -> VarianceSimFunction\n"
+		"VarianceSimFunction * VarianceSimFunction::clone() const override\n"
+		"\n"
+		""},
+	 { "VarianceSimFunction_variance", _wrap_VarianceSimFunction_variance, METH_VARARGS, "\n"
+		"VarianceSimFunction_variance(VarianceSimFunction self, double exp, double sim) -> double\n"
+		"double VarianceSimFunction::variance(double exp, double sim) const override\n"
+		"\n"
+		""},
+	 { "delete_VarianceSimFunction", _wrap_delete_VarianceSimFunction, METH_O, "delete_VarianceSimFunction(VarianceSimFunction self)"},
+	 { "VarianceSimFunction_swigregister", VarianceSimFunction_swigregister, METH_O, NULL},
+	 { "VarianceSimFunction_swiginit", VarianceSimFunction_swiginit, METH_VARARGS, NULL},
+	 { "new_IntensityData", _wrap_new_IntensityData, METH_NOARGS, "\n"
+		"new_IntensityData() -> IntensityData\n"
+		"OutputData< T >::OutputData(const OutputData &)=delete\n"
+		"\n"
+		""},
+	 { "delete_IntensityData", _wrap_delete_IntensityData, METH_O, "\n"
+		"delete_IntensityData(IntensityData self)\n"
+		"OutputData< T >::~OutputData()\n"
+		"\n"
+		""},
+	 { "IntensityData_clone", _wrap_IntensityData_clone, METH_O, "\n"
+		"IntensityData_clone(IntensityData self) -> IntensityData\n"
+		"OutputData< T > * OutputData< T >::clone() const\n"
+		"\n"
+		""},
+	 { "IntensityData_copyFrom", _wrap_IntensityData_copyFrom, METH_VARARGS, "\n"
+		"IntensityData_copyFrom(IntensityData self, IntensityData x)\n"
+		"void OutputData< T >::copyFrom(const OutputData< T > &x)\n"
+		"\n"
+		""},
+	 { "IntensityData_meanValues", _wrap_IntensityData_meanValues, METH_O, "\n"
+		"IntensityData_meanValues(IntensityData self) -> IntensityData\n"
+		"OutputData< double > * OutputData< T >::meanValues() const\n"
+		"\n"
+		""},
+	 { "IntensityData_addAxis", _wrap_IntensityData_addAxis, METH_VARARGS, "\n"
+		"IntensityData_addAxis(IntensityData self, IAxis new_axis)\n"
+		"IntensityData_addAxis(IntensityData self, std::string const & name, size_t size, double start, double end)\n"
+		"void OutputData< T >::addAxis(const std::string &name, size_t size, double start, double end)\n"
+		"\n"
+		""},
+	 { "IntensityData_getAxis", _wrap_IntensityData_getAxis, METH_VARARGS, "\n"
+		"IntensityData_getAxis(IntensityData self, size_t serial_number) -> IAxis\n"
+		"IntensityData_getAxis(IntensityData self, std::string const & axis_name) -> IAxis\n"
+		"const IAxis & OutputData< T >::getAxis(const std::string &axis_name) const\n"
+		"\n"
+		"returns axis with given name \n"
+		"\n"
+		""},
+	 { "IntensityData_getRank", _wrap_IntensityData_getRank, METH_O, "\n"
+		"IntensityData_getRank(IntensityData self) -> size_t\n"
+		"size_t OutputData< T >::getRank() const\n"
+		"\n"
+		"Returns number of dimensions. \n"
+		"\n"
+		""},
+	 { "IntensityData_getAllocatedSize", _wrap_IntensityData_getAllocatedSize, METH_O, "\n"
+		"IntensityData_getAllocatedSize(IntensityData self) -> size_t\n"
+		"size_t OutputData< T >::getAllocatedSize() const\n"
+		"\n"
+		"Returns total size of data buffer (product of bin number in every dimension). \n"
+		"\n"
+		""},
+	 { "IntensityData_getAllSizes", _wrap_IntensityData_getAllSizes, METH_O, "\n"
+		"IntensityData_getAllSizes(IntensityData self) -> std::vector< size_t,std::allocator< size_t > >\n"
+		"std::vector< size_t > OutputData< T >::getAllSizes() const\n"
+		"\n"
+		"Returns all sizes of its axes. \n"
+		"\n"
+		""},
+	 { "IntensityData_getRawDataVector", _wrap_IntensityData_getRawDataVector, METH_O, "\n"
+		"IntensityData_getRawDataVector(IntensityData self) -> vdouble1d_t\n"
+		"std::vector< T > OutputData< T >::getRawDataVector() const\n"
+		"\n"
+		"Returns copy of raw data vector. \n"
+		"\n"
+		""},
+	 { "IntensityData_totalSum", _wrap_IntensityData_totalSum, METH_O, "\n"
+		"IntensityData_totalSum(IntensityData self) -> double\n"
+		"T OutputData< T >::totalSum() const\n"
+		"\n"
+		"Returns sum of all values in the data structure. \n"
+		"\n"
+		""},
+	 { "IntensityData_begin", _wrap_IntensityData_begin, METH_VARARGS, "\n"
+		"IntensityData_begin(IntensityData self) -> OutputData< double >::iterator\n"
+		"IntensityData_begin(IntensityData self) -> OutputData< double >::const_iterator\n"
+		"OutputData< T >::const_iterator OutputData< T >::begin() const\n"
+		"\n"
+		"Returns read-only iterator that points to the first element. \n"
+		"\n"
+		""},
+	 { "IntensityData_end", _wrap_IntensityData_end, METH_VARARGS, "\n"
+		"IntensityData_end(IntensityData self) -> OutputData< double >::iterator\n"
+		"IntensityData_end(IntensityData self) -> OutputData< double >::const_iterator\n"
+		"const_iterator OutputData< T >::end() const\n"
+		"\n"
+		"Returns read-only iterator that points to the one past last element. \n"
+		"\n"
+		""},
+	 { "IntensityData_getAxesBinIndices", _wrap_IntensityData_getAxesBinIndices, METH_VARARGS, "\n"
+		"IntensityData_getAxesBinIndices(IntensityData self, size_t global_index) -> vector_integer_t\n"
+		"std::vector< int > OutputData< T >::getAxesBinIndices(size_t global_index) const\n"
+		"\n"
+		"Returns vector of axes indices for given global index\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"global_index: \n"
+		"The global index of this data structure.\n"
+		"\n"
+		"Vector of bin indices for all axes defined \n"
+		"\n"
+		""},
+	 { "IntensityData_getAxisBinIndex", _wrap_IntensityData_getAxisBinIndex, METH_VARARGS, "\n"
+		"IntensityData_getAxisBinIndex(IntensityData self, size_t global_index, size_t i_selected_axis) -> size_t\n"
+		"IntensityData_getAxisBinIndex(IntensityData self, size_t global_index, std::string const & axis_name) -> size_t\n"
+		"size_t OutputData< T >::getAxisBinIndex(size_t global_index, const std::string &axis_name) const\n"
+		"\n"
+		"Returns axis bin index for given global index\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"global_index: \n"
+		"The global index of this data structure.\n"
+		"\n"
+		"axis_name: \n"
+		"The name of selected axis.\n"
+		"\n"
+		"Corresponding bin index for selected axis \n"
+		"\n"
+		""},
+	 { "IntensityData_toGlobalIndex", _wrap_IntensityData_toGlobalIndex, METH_VARARGS, "\n"
+		"IntensityData_toGlobalIndex(IntensityData self, std::vector< unsigned int,std::allocator< unsigned int > > const & axes_indices) -> size_t\n"
+		"size_t OutputData< T >::toGlobalIndex(const std::vector< unsigned > &axes_indices) const\n"
+		"\n"
+		"Returns global index for specified indices of axes\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"axes_indices: \n"
+		"Vector of axes indices for all specified axes in this dataset\n"
+		"\n"
+		"Corresponding global index \n"
+		"\n"
+		""},
+	 { "IntensityData_findGlobalIndex", _wrap_IntensityData_findGlobalIndex, METH_VARARGS, "\n"
+		"IntensityData_findGlobalIndex(IntensityData self, vdouble1d_t coordinates) -> size_t\n"
+		"size_t OutputData< T >::findGlobalIndex(const std::vector< double > &coordinates) const\n"
+		"\n"
+		"Returns global index for specified axes values\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"coordinates: \n"
+		"Vector of axes coordinates for all specified axes in this dataset\n"
+		"\n"
+		"Closest global index \n"
+		"\n"
+		""},
+	 { "IntensityData_getAxisValue", _wrap_IntensityData_getAxisValue, METH_VARARGS, "\n"
+		"IntensityData_getAxisValue(IntensityData self, size_t global_index, size_t i_selected_axis) -> double\n"
+		"IntensityData_getAxisValue(IntensityData self, size_t global_index, std::string const & axis_name) -> double\n"
+		"double OutputData< T >::getAxisValue(size_t global_index, const std::string &axis_name) const\n"
+		"\n"
+		"Returns the value of selected axis for given global_index.\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"global_index: \n"
+		"The global index of this data structure.\n"
+		"\n"
+		"axis_name: \n"
+		"The name of selected axis.\n"
+		"\n"
+		"corresponding bin center of selected axis \n"
+		"\n"
+		""},
+	 { "IntensityData_getAxesValues", _wrap_IntensityData_getAxesValues, METH_VARARGS, "\n"
+		"IntensityData_getAxesValues(IntensityData self, size_t global_index) -> vdouble1d_t\n"
+		"std::vector< double > OutputData< T >::getAxesValues(size_t global_index) const\n"
+		"\n"
+		"Returns values on all defined axes for given globalbin number\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"global_index: \n"
+		"The global index of this data structure.\n"
+		"\n"
+		"Vector of corresponding bin centers \n"
+		"\n"
+		""},
+	 { "IntensityData_getAxisBin", _wrap_IntensityData_getAxisBin, METH_VARARGS, "\n"
+		"IntensityData_getAxisBin(IntensityData self, size_t global_index, size_t i_selected_axis) -> Bin1D\n"
+		"IntensityData_getAxisBin(IntensityData self, size_t global_index, std::string const & axis_name) -> Bin1D\n"
+		"Bin1D OutputData< T >::getAxisBin(size_t global_index, const std::string &axis_name) const\n"
+		"\n"
+		"Returns bin of selected axis for given global_index.\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"global_index: \n"
+		"The global index of this data structure.\n"
+		"\n"
+		"axis_name: \n"
+		"The name of selected axis.\n"
+		"\n"
+		"Corresponding  Bin1D object \n"
+		"\n"
+		""},
+	 { "IntensityData_clear", _wrap_IntensityData_clear, METH_O, "\n"
+		"IntensityData_clear(IntensityData self)\n"
+		"void OutputData< T >::clear()\n"
+		"\n"
+		"Sets object into initial state (no dimensions, data) \n"
+		"\n"
+		""},
+	 { "IntensityData_setAllTo", _wrap_IntensityData_setAllTo, METH_VARARGS, "\n"
+		"IntensityData_setAllTo(IntensityData self, double const & value)\n"
+		"void OutputData< T >::setAllTo(const T &value)\n"
+		"\n"
+		"Sets content of output data to specific value. \n"
+		"\n"
+		""},
+	 { "IntensityData_scaleAll", _wrap_IntensityData_scaleAll, METH_VARARGS, "\n"
+		"IntensityData_scaleAll(IntensityData self, double const & factor)\n"
+		"void OutputData< T >::scaleAll(const T &factor)\n"
+		"\n"
+		"multiply every item of this output data by value \n"
+		"\n"
+		""},
+	 { "IntensityData_setAxisSizes", _wrap_IntensityData_setAxisSizes, METH_VARARGS, "\n"
+		"IntensityData_setAxisSizes(IntensityData self, size_t rank, int * n_dims)\n"
+		"void OutputData< T >::setAxisSizes(size_t rank, int *n_dims)\n"
+		"\n"
+		"Adds 'rank' axes with indicated sizes. \n"
+		"\n"
+		""},
+	 { "IntensityData_setRawDataVector", _wrap_IntensityData_setRawDataVector, METH_VARARGS, "\n"
+		"IntensityData_setRawDataVector(IntensityData self, vdouble1d_t data_vector)\n"
+		"void OutputData< T >::setRawDataVector(const std::vector< T > &data_vector)\n"
+		"\n"
+		"Sets new values to raw data vector. \n"
+		"\n"
+		""},
+	 { "IntensityData_setRawDataArray", _wrap_IntensityData_setRawDataArray, METH_VARARGS, "\n"
+		"IntensityData_setRawDataArray(IntensityData self, double const * source)\n"
+		"void OutputData< T >::setRawDataArray(const T *source)\n"
+		"\n"
+		"Sets new values to raw data array. \n"
+		"\n"
+		""},
+	 { "IntensityData___iadd__", _wrap_IntensityData___iadd__, METH_VARARGS, "IntensityData___iadd__(IntensityData self, IntensityData right) -> IntensityData"},
+	 { "IntensityData___isub__", _wrap_IntensityData___isub__, METH_VARARGS, "IntensityData___isub__(IntensityData self, IntensityData right) -> IntensityData"},
+	 { "IntensityData___itruediv__", _wrap_IntensityData___itruediv__, METH_VARARGS, "IntensityData___itruediv__(IntensityData self, IntensityData right) -> IntensityData"},
+	 { "IntensityData___imul__", _wrap_IntensityData___imul__, METH_VARARGS, "IntensityData___imul__(IntensityData self, IntensityData right) -> IntensityData"},
+	 { "IntensityData_getValue", _wrap_IntensityData_getValue, METH_VARARGS, "\n"
+		"IntensityData_getValue(IntensityData self, size_t index) -> double\n"
+		"double OutputData< T >::getValue(size_t index) const\n"
+		"\n"
+		"Returns value or summed value, depending on T. \n"
+		"\n"
+		""},
+	 { "IntensityData_getArray", _wrap_IntensityData_getArray, METH_O, "\n"
+		"IntensityData_getArray(IntensityData self) -> PyObject *\n"
+		"PyObject* OutputData< T >::getArray() const\n"
+		"\n"
+		"returns data as Python numpy array \n"
+		"\n"
+		""},
+	 { "IntensityData_isInitialized", _wrap_IntensityData_isInitialized, METH_O, "\n"
+		"IntensityData_isInitialized(IntensityData self) -> bool\n"
+		"bool OutputData< T >::isInitialized() const\n"
+		"\n"
+		"returns true if object is correctly initialized \n"
+		"\n"
+		""},
+	 { "IntensityData_allocate", _wrap_IntensityData_allocate, METH_O, "\n"
+		"IntensityData_allocate(IntensityData self)\n"
+		"void OutputData< T >::allocate()\n"
+		"\n"
+		"memory allocation for current dimensions configuration \n"
+		"\n"
+		""},
+	 { "IntensityData___getitem__", _wrap_IntensityData___getitem__, METH_VARARGS, "IntensityData___getitem__(IntensityData self, unsigned int i) -> double"},
+	 { "IntensityData___setitem__", _wrap_IntensityData___setitem__, METH_VARARGS, "IntensityData___setitem__(IntensityData self, unsigned int i, double value) -> double"},
+	 { "IntensityData_swigregister", IntensityData_swigregister, METH_O, NULL},
+	 { "IntensityData_swiginit", IntensityData_swiginit, METH_VARARGS, NULL},
+	 { "delete_ILatticeOrientation", _wrap_delete_ILatticeOrientation, METH_O, "\n"
+		"delete_ILatticeOrientation(ILatticeOrientation self)\n"
+		"ILatticeOrientation::~ILatticeOrientation()\n"
+		"\n"
+		""},
+	 { "ILatticeOrientation_clone", _wrap_ILatticeOrientation_clone, METH_O, "\n"
+		"ILatticeOrientation_clone(ILatticeOrientation self) -> ILatticeOrientation\n"
+		"virtual ILatticeOrientation* ILatticeOrientation::clone() const =0\n"
+		"\n"
+		""},
+	 { "ILatticeOrientation_usePrimitiveLattice", _wrap_ILatticeOrientation_usePrimitiveLattice, METH_VARARGS, "\n"
+		"ILatticeOrientation_usePrimitiveLattice(ILatticeOrientation self, Lattice lattice)\n"
+		"virtual void ILatticeOrientation::usePrimitiveLattice(const Lattice &lattice)=0\n"
+		"\n"
+		""},
+	 { "ILatticeOrientation_transformationMatrix", _wrap_ILatticeOrientation_transformationMatrix, METH_O, "\n"
+		"ILatticeOrientation_transformationMatrix(ILatticeOrientation self) -> Transform3D\n"
+		"virtual Transform3D ILatticeOrientation::transformationMatrix() const =0\n"
+		"\n"
+		""},
+	 { "ILatticeOrientation_swigregister", ILatticeOrientation_swigregister, METH_O, NULL},
+	 { "new_MillerIndex", _wrap_new_MillerIndex, METH_VARARGS, "\n"
+		"new_MillerIndex(double h_, double k_, double l_) -> MillerIndex\n"
+		"MillerIndex::MillerIndex(double h_, double k_, double l_)\n"
+		"\n"
+		""},
+	 { "MillerIndex_h_set", _wrap_MillerIndex_h_set, METH_VARARGS, "MillerIndex_h_set(MillerIndex self, double h)"},
+	 { "MillerIndex_h_get", _wrap_MillerIndex_h_get, METH_O, "MillerIndex_h_get(MillerIndex self) -> double"},
+	 { "MillerIndex_k_set", _wrap_MillerIndex_k_set, METH_VARARGS, "MillerIndex_k_set(MillerIndex self, double k)"},
+	 { "MillerIndex_k_get", _wrap_MillerIndex_k_get, METH_O, "MillerIndex_k_get(MillerIndex self) -> double"},
+	 { "MillerIndex_l_set", _wrap_MillerIndex_l_set, METH_VARARGS, "MillerIndex_l_set(MillerIndex self, double l)"},
+	 { "MillerIndex_l_get", _wrap_MillerIndex_l_get, METH_O, "MillerIndex_l_get(MillerIndex self) -> double"},
+	 { "delete_MillerIndex", _wrap_delete_MillerIndex, METH_O, "delete_MillerIndex(MillerIndex self)"},
+	 { "MillerIndex_swigregister", MillerIndex_swigregister, METH_O, NULL},
+	 { "MillerIndex_swiginit", MillerIndex_swiginit, METH_VARARGS, NULL},
+	 { "new_MillerIndexOrientation", _wrap_new_MillerIndexOrientation, METH_VARARGS, "\n"
+		"new_MillerIndexOrientation(MillerIndexOrientation::QComponent q1, MillerIndex index1, MillerIndexOrientation::QComponent q2, MillerIndex index2) -> MillerIndexOrientation\n"
+		"MillerIndexOrientation::MillerIndexOrientation(QComponent q1, MillerIndex index1, QComponent q2, MillerIndex index2)\n"
+		"\n"
+		"This constructor is best explained by an example. Arguments QX, (1,1,0), QY, (0,2,1) mean: Rotate the lattice such that the axis [110] points into x direction, and the axis [021], projected into the yz plane, points into z direction. \n"
+		"\n"
+		""},
+	 { "delete_MillerIndexOrientation", _wrap_delete_MillerIndexOrientation, METH_O, "\n"
+		"delete_MillerIndexOrientation(MillerIndexOrientation self)\n"
+		"MillerIndexOrientation::~MillerIndexOrientation() override\n"
+		"\n"
+		""},
+	 { "MillerIndexOrientation_clone", _wrap_MillerIndexOrientation_clone, METH_O, "\n"
+		"MillerIndexOrientation_clone(MillerIndexOrientation self) -> MillerIndexOrientation\n"
+		"MillerIndexOrientation * MillerIndexOrientation::clone() const override\n"
+		"\n"
+		""},
+	 { "MillerIndexOrientation_usePrimitiveLattice", _wrap_MillerIndexOrientation_usePrimitiveLattice, METH_VARARGS, "\n"
+		"MillerIndexOrientation_usePrimitiveLattice(MillerIndexOrientation self, Lattice lattice)\n"
+		"void MillerIndexOrientation::usePrimitiveLattice(const Lattice &lattice) override\n"
+		"\n"
+		""},
+	 { "MillerIndexOrientation_transformationMatrix", _wrap_MillerIndexOrientation_transformationMatrix, METH_O, "\n"
+		"MillerIndexOrientation_transformationMatrix(MillerIndexOrientation self) -> Transform3D\n"
+		"Transform3D MillerIndexOrientation::transformationMatrix() const override\n"
+		"\n"
+		""},
+	 { "MillerIndexOrientation_swigregister", MillerIndexOrientation_swigregister, METH_O, NULL},
+	 { "MillerIndexOrientation_swiginit", MillerIndexOrientation_swiginit, METH_VARARGS, NULL},
+	 { "delete_ISelectionRule", _wrap_delete_ISelectionRule, METH_O, "\n"
+		"delete_ISelectionRule(ISelectionRule self)\n"
+		"virtual ISelectionRule::~ISelectionRule()\n"
+		"\n"
+		""},
+	 { "ISelectionRule_clone", _wrap_ISelectionRule_clone, METH_O, "\n"
+		"ISelectionRule_clone(ISelectionRule self) -> ISelectionRule\n"
+		"virtual ISelectionRule* ISelectionRule::clone() const =0\n"
+		"\n"
+		""},
+	 { "ISelectionRule_coordinateSelected", _wrap_ISelectionRule_coordinateSelected, METH_VARARGS, "\n"
+		"ISelectionRule_coordinateSelected(ISelectionRule self, ivector_t const & coordinate) -> bool\n"
+		"virtual bool ISelectionRule::coordinateSelected(const ivector_t &coordinate) const =0\n"
+		"\n"
+		""},
+	 { "ISelectionRule_swigregister", ISelectionRule_swigregister, METH_O, NULL},
+	 { "new_SimpleSelectionRule", _wrap_new_SimpleSelectionRule, METH_VARARGS, "\n"
+		"new_SimpleSelectionRule(int a, int b, int c, int modulus) -> SimpleSelectionRule\n"
+		"SimpleSelectionRule::SimpleSelectionRule(int a, int b, int c, int modulus)\n"
+		"\n"
+		""},
+	 { "delete_SimpleSelectionRule", _wrap_delete_SimpleSelectionRule, METH_O, "\n"
+		"delete_SimpleSelectionRule(SimpleSelectionRule self)\n"
+		"virtual SimpleSelectionRule::~SimpleSelectionRule()\n"
+		"\n"
+		""},
+	 { "SimpleSelectionRule_clone", _wrap_SimpleSelectionRule_clone, METH_O, "\n"
+		"SimpleSelectionRule_clone(SimpleSelectionRule self) -> SimpleSelectionRule\n"
+		"SimpleSelectionRule * SimpleSelectionRule::clone() const\n"
+		"\n"
+		""},
+	 { "SimpleSelectionRule_coordinateSelected", _wrap_SimpleSelectionRule_coordinateSelected, METH_VARARGS, "\n"
+		"SimpleSelectionRule_coordinateSelected(SimpleSelectionRule self, ivector_t const & coordinate) -> bool\n"
+		"bool SimpleSelectionRule::coordinateSelected(const ivector_t &coordinate) const\n"
+		"\n"
+		""},
+	 { "SimpleSelectionRule_swigregister", SimpleSelectionRule_swigregister, METH_O, NULL},
+	 { "SimpleSelectionRule_swiginit", SimpleSelectionRule_swiginit, METH_VARARGS, NULL},
+	 { "new_Lattice", _wrap_new_Lattice, METH_VARARGS, "\n"
+		"Lattice()\n"
+		"Lattice(kvector_t a1, kvector_t a2, kvector_t a3)\n"
+		"new_Lattice(Lattice lattice) -> Lattice\n"
+		"Lattice::Lattice(const Lattice &lattice)\n"
+		"\n"
+		""},
+	 { "delete_Lattice", _wrap_delete_Lattice, METH_O, "\n"
+		"delete_Lattice(Lattice self)\n"
+		"Lattice::~Lattice() override\n"
+		"\n"
+		""},
+	 { "Lattice_accept", _wrap_Lattice_accept, METH_VARARGS, "\n"
+		"Lattice_accept(Lattice self, INodeVisitor visitor)\n"
+		"void Lattice::accept(INodeVisitor *visitor) const override\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "DepthProbeSimulation_result", _wrap_DepthProbeSimulation_result, METH_O, "\n"
-		"DepthProbeSimulation_result(DepthProbeSimulation self) -> SimulationResult\n"
-		"SimulationResult DepthProbeSimulation::result() const override\n"
+	 { "Lattice_createTransformedLattice", _wrap_Lattice_createTransformedLattice, METH_VARARGS, "\n"
+		"Lattice_createTransformedLattice(Lattice self, Transform3D const & transform) -> Lattice\n"
+		"Lattice Lattice::createTransformedLattice(const Transform3D &transform) const\n"
 		"\n"
-		"Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays \n"
+		"Create transformed lattice. \n"
 		"\n"
 		""},
-	 { "DepthProbeSimulation_setBeamParameters", _wrap_DepthProbeSimulation_setBeamParameters, METH_VARARGS, "\n"
-		"DepthProbeSimulation_setBeamParameters(DepthProbeSimulation self, double _lambda, int nbins, double alpha_i_min, double alpha_i_max, IFootprintFactor beam_shape=None)\n"
-		"void DepthProbeSimulation::setBeamParameters(double lambda, int nbins, double alpha_i_min, double alpha_i_max, const IFootprintFactor *beam_shape=nullptr)\n"
+	 { "Lattice_initialize", _wrap_Lattice_initialize, METH_O, "\n"
+		"Lattice_initialize(Lattice self)\n"
+		"void Lattice::initialize() const\n"
 		"\n"
-		"Sets beam parameters with alpha_i of the beam defined in the range. \n"
+		"Initializes cached data. \n"
 		"\n"
 		""},
-	 { "DepthProbeSimulation_setZSpan", _wrap_DepthProbeSimulation_setZSpan, METH_VARARGS, "\n"
-		"DepthProbeSimulation_setZSpan(DepthProbeSimulation self, size_t n_bins, double z_min, double z_max)\n"
-		"void DepthProbeSimulation::setZSpan(size_t n_bins, double z_min, double z_max)\n"
+	 { "Lattice_getBasisVectorA", _wrap_Lattice_getBasisVectorA, METH_O, "\n"
+		"Lattice_getBasisVectorA(Lattice self) -> kvector_t\n"
+		"kvector_t Lattice::getBasisVectorA() const\n"
 		"\n"
-		"Set z positions for intensity calculations. Negative z's correspond to the area under sample surface. The more negative z is, the deeper layer corresponds to it. \n"
+		"Returns basis vector a. \n"
 		"\n"
 		""},
-	 { "DepthProbeSimulation_getAlphaAxis", _wrap_DepthProbeSimulation_getAlphaAxis, METH_O, "\n"
-		"DepthProbeSimulation_getAlphaAxis(DepthProbeSimulation self) -> IAxis\n"
-		"const IAxis * DepthProbeSimulation::getAlphaAxis() const\n"
+	 { "Lattice_getBasisVectorB", _wrap_Lattice_getBasisVectorB, METH_O, "\n"
+		"Lattice_getBasisVectorB(Lattice self) -> kvector_t\n"
+		"kvector_t Lattice::getBasisVectorB() const\n"
 		"\n"
-		"Returns a pointer to incident angle axis. \n"
+		"Returns basis vector b. \n"
 		"\n"
 		""},
-	 { "DepthProbeSimulation_getZAxis", _wrap_DepthProbeSimulation_getZAxis, METH_O, "\n"
-		"DepthProbeSimulation_getZAxis(DepthProbeSimulation self) -> IAxis\n"
-		"const IAxis * DepthProbeSimulation::getZAxis() const\n"
+	 { "Lattice_getBasisVectorC", _wrap_Lattice_getBasisVectorC, METH_O, "\n"
+		"Lattice_getBasisVectorC(Lattice self) -> kvector_t\n"
+		"kvector_t Lattice::getBasisVectorC() const\n"
 		"\n"
-		"Returns a pointer to z-position axis. \n"
+		"Returns basis vector c. \n"
 		"\n"
 		""},
-	 { "DepthProbeSimulation_intensityMapSize", _wrap_DepthProbeSimulation_intensityMapSize, METH_O, "\n"
-		"DepthProbeSimulation_intensityMapSize(DepthProbeSimulation self) -> size_t\n"
-		"size_t DepthProbeSimulation::intensityMapSize() const override\n"
+	 { "Lattice_resetBasis", _wrap_Lattice_resetBasis, METH_VARARGS, "\n"
+		"Lattice_resetBasis(Lattice self, kvector_t a1, kvector_t a2, kvector_t a3)\n"
+		"void Lattice::resetBasis(const kvector_t a1, const kvector_t a2, const kvector_t a3)\n"
 		"\n"
-		"Returns the total number of the intensity values in the simulation result. \n"
+		"Resets the basis vectors. \n"
 		"\n"
 		""},
-	 { "DepthProbeSimulation_swigregister", DepthProbeSimulation_swigregister, METH_O, NULL},
-	 { "DepthProbeSimulation_swiginit", DepthProbeSimulation_swiginit, METH_VARARGS, NULL},
-	 { "new_SpecularSimulation", _wrap_new_SpecularSimulation, METH_VARARGS, "\n"
-		"SpecularSimulation()\n"
-		"SpecularSimulation(MultiLayer sample)\n"
-		"new_SpecularSimulation(std::shared_ptr< IMultiLayerBuilder > const sample_builder) -> SpecularSimulation\n"
-		"SpecularSimulation::SpecularSimulation(const std::shared_ptr< IMultiLayerBuilder > sample_builder)\n"
+	 { "Lattice_getMillerDirection", _wrap_Lattice_getMillerDirection, METH_VARARGS, "\n"
+		"Lattice_getMillerDirection(Lattice self, double h, double k, double l) -> kvector_t\n"
+		"kvector_t Lattice::getMillerDirection(double h, double k, double l) const\n"
+		"\n"
+		"Returns normalized direction corresponding to the given Miller indices. \n"
 		"\n"
 		""},
-	 { "delete_SpecularSimulation", _wrap_delete_SpecularSimulation, METH_O, "\n"
-		"delete_SpecularSimulation(SpecularSimulation self)\n"
-		"SpecularSimulation::~SpecularSimulation() override\n"
+	 { "Lattice_volume", _wrap_Lattice_volume, METH_O, "\n"
+		"Lattice_volume(Lattice self) -> double\n"
+		"double Lattice::volume() const\n"
+		"\n"
+		"Returns the volume of the unit cell. \n"
 		"\n"
 		""},
-	 { "SpecularSimulation_clone", _wrap_SpecularSimulation_clone, METH_O, "\n"
-		"SpecularSimulation_clone(SpecularSimulation self) -> SpecularSimulation\n"
-		"SpecularSimulation * SpecularSimulation::clone() const override\n"
+	 { "Lattice_getReciprocalLatticeBasis", _wrap_Lattice_getReciprocalLatticeBasis, METH_VARARGS, "\n"
+		"Lattice_getReciprocalLatticeBasis(Lattice self, kvector_t b1, kvector_t b2, kvector_t b3)\n"
+		"void Lattice::getReciprocalLatticeBasis(kvector_t &b1, kvector_t &b2, kvector_t &b3) const\n"
+		"\n"
+		"Returns the reciprocal basis vectors. \n"
 		"\n"
 		""},
-	 { "SpecularSimulation_prepareSimulation", _wrap_SpecularSimulation_prepareSimulation, METH_O, "\n"
-		"SpecularSimulation_prepareSimulation(SpecularSimulation self)\n"
-		"void SpecularSimulation::prepareSimulation() override\n"
+	 { "Lattice_getNearestLatticeVectorCoordinates", _wrap_Lattice_getNearestLatticeVectorCoordinates, METH_VARARGS, "\n"
+		"Lattice_getNearestLatticeVectorCoordinates(Lattice self, kvector_t vector_in) -> ivector_t\n"
+		"ivector_t Lattice::getNearestLatticeVectorCoordinates(const kvector_t vector_in) const\n"
 		"\n"
-		"Put into a clean state for running a simulation. \n"
+		"Returns the nearest lattice point from a given vector. \n"
 		"\n"
 		""},
-	 { "SpecularSimulation_accept", _wrap_SpecularSimulation_accept, METH_VARARGS, "\n"
-		"SpecularSimulation_accept(SpecularSimulation self, INodeVisitor visitor)\n"
-		"void SpecularSimulation::accept(INodeVisitor *visitor) const override final\n"
+	 { "Lattice_getNearestReciprocalLatticeVectorCoordinates", _wrap_Lattice_getNearestReciprocalLatticeVectorCoordinates, METH_VARARGS, "\n"
+		"Lattice_getNearestReciprocalLatticeVectorCoordinates(Lattice self, kvector_t vector_in) -> ivector_t\n"
+		"ivector_t Lattice::getNearestReciprocalLatticeVectorCoordinates(const kvector_t vector_in) const\n"
+		"\n"
+		"Returns the nearest reciprocal lattice point from a given vector. \n"
+		"\n"
+		""},
+	 { "Lattice_reciprocalLatticeVectorsWithinRadius", _wrap_Lattice_reciprocalLatticeVectorsWithinRadius, METH_VARARGS, "\n"
+		"Lattice_reciprocalLatticeVectorsWithinRadius(Lattice self, kvector_t input_vector, double radius) -> vector_kvector_t\n"
+		"std::vector< kvector_t > Lattice::reciprocalLatticeVectorsWithinRadius(const kvector_t input_vector, double radius) const\n"
+		"\n"
+		"Computes a list of reciprocal lattice vectors within a specified distance of a given vector. \n"
+		"\n"
+		""},
+	 { "Lattice_setSelectionRule", _wrap_Lattice_setSelectionRule, METH_VARARGS, "\n"
+		"Lattice_setSelectionRule(Lattice self, ISelectionRule p_selection_rule)\n"
+		"void Lattice::setSelectionRule(const ISelectionRule &p_selection_rule)\n"
+		"\n"
+		"Sets a selection rule for the reciprocal vectors. \n"
+		"\n"
+		""},
+	 { "Lattice_createCubicLattice", _wrap_Lattice_createCubicLattice, METH_O, "Lattice_createCubicLattice(double a) -> Lattice"},
+	 { "Lattice_createFCCLattice", _wrap_Lattice_createFCCLattice, METH_O, "Lattice_createFCCLattice(double a) -> Lattice"},
+	 { "Lattice_createHexagonalLattice", _wrap_Lattice_createHexagonalLattice, METH_VARARGS, "Lattice_createHexagonalLattice(double a, double c) -> Lattice"},
+	 { "Lattice_createHCPLattice", _wrap_Lattice_createHCPLattice, METH_VARARGS, "Lattice_createHCPLattice(double a, double c) -> Lattice"},
+	 { "Lattice_createTetragonalLattice", _wrap_Lattice_createTetragonalLattice, METH_VARARGS, "Lattice_createTetragonalLattice(double a, double c) -> Lattice"},
+	 { "Lattice_createBCTLattice", _wrap_Lattice_createBCTLattice, METH_VARARGS, "Lattice_createBCTLattice(double a, double c) -> Lattice"},
+	 { "Lattice_onChange", _wrap_Lattice_onChange, METH_O, "\n"
+		"Lattice_onChange(Lattice self)\n"
+		"void Lattice::onChange() override\n"
+		"\n"
+		"Action to be taken in inherited class when a parameter has changed. \n"
+		"\n"
+		""},
+	 { "Lattice_swigregister", Lattice_swigregister, METH_O, NULL},
+	 { "Lattice_swiginit", Lattice_swiginit, METH_VARARGS, NULL},
+	 { "new_Lattice1DParameters", _wrap_new_Lattice1DParameters, METH_VARARGS, "\n"
+		"Lattice1DParameters()\n"
+		"new_Lattice1DParameters(double length, double xi) -> Lattice1DParameters\n"
+		"Lattice1DParameters::Lattice1DParameters(double length, double xi)\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"length: \n"
+		" Lattice constant.\n"
+		"\n"
+		"xi: \n"
+		" Lattice rotation angle. \n"
+		"\n"
+		""},
+	 { "Lattice1DParameters_m_length_set", _wrap_Lattice1DParameters_m_length_set, METH_VARARGS, "Lattice1DParameters_m_length_set(Lattice1DParameters self, double m_length)"},
+	 { "Lattice1DParameters_m_length_get", _wrap_Lattice1DParameters_m_length_get, METH_O, "Lattice1DParameters_m_length_get(Lattice1DParameters self) -> double"},
+	 { "Lattice1DParameters_m_xi_set", _wrap_Lattice1DParameters_m_xi_set, METH_VARARGS, "Lattice1DParameters_m_xi_set(Lattice1DParameters self, double m_xi)"},
+	 { "Lattice1DParameters_m_xi_get", _wrap_Lattice1DParameters_m_xi_get, METH_O, "Lattice1DParameters_m_xi_get(Lattice1DParameters self) -> double"},
+	 { "delete_Lattice1DParameters", _wrap_delete_Lattice1DParameters, METH_O, "delete_Lattice1DParameters(Lattice1DParameters self)"},
+	 { "Lattice1DParameters_swigregister", Lattice1DParameters_swigregister, METH_O, NULL},
+	 { "Lattice1DParameters_swiginit", Lattice1DParameters_swiginit, METH_VARARGS, NULL},
+	 { "Lattice2D_clone", _wrap_Lattice2D_clone, METH_O, "\n"
+		"Lattice2D_clone(Lattice2D self) -> Lattice2D\n"
+		"Lattice2D* Lattice2D::clone() const =0\n"
+		"\n"
+		""},
+	 { "Lattice2D_length1", _wrap_Lattice2D_length1, METH_O, "\n"
+		"Lattice2D_length1(Lattice2D self) -> double\n"
+		"virtual double Lattice2D::length1() const =0\n"
+		"\n"
+		""},
+	 { "Lattice2D_length2", _wrap_Lattice2D_length2, METH_O, "\n"
+		"Lattice2D_length2(Lattice2D self) -> double\n"
+		"virtual double Lattice2D::length2() const =0\n"
+		"\n"
+		""},
+	 { "Lattice2D_latticeAngle", _wrap_Lattice2D_latticeAngle, METH_O, "\n"
+		"Lattice2D_latticeAngle(Lattice2D self) -> double\n"
+		"virtual double Lattice2D::latticeAngle() const =0\n"
+		"\n"
+		""},
+	 { "Lattice2D_unitCellArea", _wrap_Lattice2D_unitCellArea, METH_O, "\n"
+		"Lattice2D_unitCellArea(Lattice2D self) -> double\n"
+		"virtual double Lattice2D::unitCellArea() const =0\n"
+		"\n"
+		""},
+	 { "Lattice2D_rotationAngle", _wrap_Lattice2D_rotationAngle, METH_O, "\n"
+		"Lattice2D_rotationAngle(Lattice2D self) -> double\n"
+		"double Lattice2D::rotationAngle() const\n"
+		"\n"
+		""},
+	 { "Lattice2D_reciprocalBases", _wrap_Lattice2D_reciprocalBases, METH_O, "\n"
+		"Lattice2D_reciprocalBases(Lattice2D self) -> Lattice2D::ReciprocalBases\n"
+		"Lattice2D::ReciprocalBases Lattice2D::reciprocalBases() const\n"
+		"\n"
+		""},
+	 { "Lattice2D_setRotationEnabled", _wrap_Lattice2D_setRotationEnabled, METH_VARARGS, "\n"
+		"Lattice2D_setRotationEnabled(Lattice2D self, bool enabled)\n"
+		"void Lattice2D::setRotationEnabled(bool enabled)\n"
+		"\n"
+		""},
+	 { "delete_Lattice2D", _wrap_delete_Lattice2D, METH_O, "delete_Lattice2D(Lattice2D self)"},
+	 { "Lattice2D_swigregister", Lattice2D_swigregister, METH_O, NULL},
+	 { "new_BasicLattice", _wrap_new_BasicLattice, METH_VARARGS, "\n"
+		"BasicLattice(double length1, double length2, double angle, double rotation_angle=0.0)\n"
+		"BasicLattice::BasicLattice(double length1, double length2, double angle, double rotation_angle=0.0)\n"
+		"\n"
+		""},
+	 { "BasicLattice_clone", _wrap_BasicLattice_clone, METH_O, "\n"
+		"BasicLattice_clone(BasicLattice self) -> BasicLattice\n"
+		"BasicLattice * BasicLattice::clone() const\n"
+		"\n"
+		""},
+	 { "BasicLattice_accept", _wrap_BasicLattice_accept, METH_VARARGS, "\n"
+		"BasicLattice_accept(BasicLattice self, INodeVisitor visitor)\n"
+		"void BasicLattice::accept(INodeVisitor *visitor) const final\n"
 		"\n"
 		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "SpecularSimulation_result", _wrap_SpecularSimulation_result, METH_O, "\n"
-		"SpecularSimulation_result(SpecularSimulation self) -> SimulationResult\n"
-		"SimulationResult SpecularSimulation::result() const override\n"
+	 { "BasicLattice_length1", _wrap_BasicLattice_length1, METH_O, "\n"
+		"BasicLattice_length1(BasicLattice self) -> double\n"
+		"virtual double BasicLattice::length1() const\n"
 		"\n"
-		"Returns the results of the simulation in a format that supports unit conversion and export to numpy arrays. If simulation was not run, returns an array of proper size filled with zeros. \n"
+		""},
+	 { "BasicLattice_length2", _wrap_BasicLattice_length2, METH_O, "\n"
+		"BasicLattice_length2(BasicLattice self) -> double\n"
+		"virtual double BasicLattice::length2() const\n"
 		"\n"
 		""},
-	 { "SpecularSimulation_setScan", _wrap_SpecularSimulation_setScan, METH_VARARGS, "\n"
-		"SpecularSimulation_setScan(SpecularSimulation self, ISpecularScan const & scan)\n"
-		"void SpecularSimulation::setScan(const ISpecularScan &scan)\n"
+	 { "BasicLattice_latticeAngle", _wrap_BasicLattice_latticeAngle, METH_O, "\n"
+		"BasicLattice_latticeAngle(BasicLattice self) -> double\n"
+		"virtual double BasicLattice::latticeAngle() const\n"
 		"\n"
-		"Sets chosen specular scan to the simulation. \n"
+		""},
+	 { "BasicLattice_unitCellArea", _wrap_BasicLattice_unitCellArea, METH_O, "\n"
+		"BasicLattice_unitCellArea(BasicLattice self) -> double\n"
+		"double BasicLattice::unitCellArea() const\n"
 		"\n"
 		""},
-	 { "SpecularSimulation_coordinateAxis", _wrap_SpecularSimulation_coordinateAxis, METH_O, "\n"
-		"SpecularSimulation_coordinateAxis(SpecularSimulation self) -> IAxis\n"
-		"const IAxis * SpecularSimulation::coordinateAxis() const\n"
+	 { "delete_BasicLattice", _wrap_delete_BasicLattice, METH_O, "delete_BasicLattice(BasicLattice self)"},
+	 { "BasicLattice_swigregister", BasicLattice_swigregister, METH_O, NULL},
+	 { "BasicLattice_swiginit", BasicLattice_swiginit, METH_VARARGS, NULL},
+	 { "new_SquareLattice", _wrap_new_SquareLattice, METH_VARARGS, "\n"
+		"SquareLattice(double length, double rotation_angle=0.0)\n"
+		"SquareLattice::SquareLattice(double length, double rotation_angle=0.0)\n"
 		"\n"
-		"Returns a pointer to coordinate axis. \n"
+		""},
+	 { "SquareLattice_clone", _wrap_SquareLattice_clone, METH_O, "\n"
+		"SquareLattice_clone(SquareLattice self) -> SquareLattice\n"
+		"SquareLattice * SquareLattice::clone() const\n"
 		"\n"
 		""},
-	 { "SpecularSimulation_footprintFactor", _wrap_SpecularSimulation_footprintFactor, METH_O, "\n"
-		"SpecularSimulation_footprintFactor(SpecularSimulation self) -> IFootprintFactor\n"
-		"const IFootprintFactor * SpecularSimulation::footprintFactor() const\n"
+	 { "SquareLattice_accept", _wrap_SquareLattice_accept, METH_VARARGS, "\n"
+		"SquareLattice_accept(SquareLattice self, INodeVisitor visitor)\n"
+		"void SquareLattice::accept(INodeVisitor *visitor) const final\n"
 		"\n"
-		"Returns a pointer to footprint factor holder. \n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "SpecularSimulation_intensityMapSize", _wrap_SpecularSimulation_intensityMapSize, METH_O, "\n"
-		"SpecularSimulation_intensityMapSize(SpecularSimulation self) -> size_t\n"
-		"size_t SpecularSimulation::intensityMapSize() const override\n"
+	 { "SquareLattice_length1", _wrap_SquareLattice_length1, METH_O, "\n"
+		"SquareLattice_length1(SquareLattice self) -> double\n"
+		"virtual double SquareLattice::length1() const\n"
 		"\n"
-		"Returns the total number of the intensity values in the simulation result. \n"
+		""},
+	 { "SquareLattice_length2", _wrap_SquareLattice_length2, METH_O, "\n"
+		"SquareLattice_length2(SquareLattice self) -> double\n"
+		"virtual double SquareLattice::length2() const\n"
 		"\n"
 		""},
-	 { "SpecularSimulation_swigregister", SpecularSimulation_swigregister, METH_O, NULL},
-	 { "SpecularSimulation_swiginit", SpecularSimulation_swiginit, METH_VARARGS, NULL},
-	 { "new_ThreadInfo", _wrap_new_ThreadInfo, METH_NOARGS, "\n"
-		"new_ThreadInfo() -> ThreadInfo\n"
-		"ThreadInfo::ThreadInfo()\n"
+	 { "SquareLattice_latticeAngle", _wrap_SquareLattice_latticeAngle, METH_O, "\n"
+		"SquareLattice_latticeAngle(SquareLattice self) -> double\n"
+		"double SquareLattice::latticeAngle() const\n"
 		"\n"
 		""},
-	 { "ThreadInfo_n_threads_set", _wrap_ThreadInfo_n_threads_set, METH_VARARGS, "ThreadInfo_n_threads_set(ThreadInfo self, unsigned int n_threads)"},
-	 { "ThreadInfo_n_threads_get", _wrap_ThreadInfo_n_threads_get, METH_O, "ThreadInfo_n_threads_get(ThreadInfo self) -> unsigned int"},
-	 { "ThreadInfo_n_batches_set", _wrap_ThreadInfo_n_batches_set, METH_VARARGS, "ThreadInfo_n_batches_set(ThreadInfo self, unsigned int n_batches)"},
-	 { "ThreadInfo_n_batches_get", _wrap_ThreadInfo_n_batches_get, METH_O, "ThreadInfo_n_batches_get(ThreadInfo self) -> unsigned int"},
-	 { "ThreadInfo_current_batch_set", _wrap_ThreadInfo_current_batch_set, METH_VARARGS, "ThreadInfo_current_batch_set(ThreadInfo self, unsigned int current_batch)"},
-	 { "ThreadInfo_current_batch_get", _wrap_ThreadInfo_current_batch_get, METH_O, "ThreadInfo_current_batch_get(ThreadInfo self) -> unsigned int"},
-	 { "delete_ThreadInfo", _wrap_delete_ThreadInfo, METH_O, "delete_ThreadInfo(ThreadInfo self)"},
-	 { "ThreadInfo_swigregister", ThreadInfo_swigregister, METH_O, NULL},
-	 { "ThreadInfo_swiginit", ThreadInfo_swiginit, METH_VARARGS, NULL},
-	 { "SampleBuilderFactoryTemp_createItem", _wrap_SampleBuilderFactoryTemp_createItem, METH_VARARGS, "SampleBuilderFactoryTemp_createItem(SampleBuilderFactoryTemp self, std::string const & item_key) -> IMultiLayerBuilder"},
-	 { "SampleBuilderFactoryTemp_registerItem", _wrap_SampleBuilderFactoryTemp_registerItem, METH_VARARGS, "SampleBuilderFactoryTemp_registerItem(SampleBuilderFactoryTemp self, std::string const & item_key, IFactory< std::string,IMultiLayerBuilder >::CreateItemCallback CreateFn) -> bool"},
-	 { "SampleBuilderFactoryTemp_contains", _wrap_SampleBuilderFactoryTemp_contains, METH_VARARGS, "SampleBuilderFactoryTemp_contains(SampleBuilderFactoryTemp self, std::string const & item_key) -> bool"},
-	 { "SampleBuilderFactoryTemp_size", _wrap_SampleBuilderFactoryTemp_size, METH_O, "SampleBuilderFactoryTemp_size(SampleBuilderFactoryTemp self) -> size_t"},
-	 { "new_SampleBuilderFactoryTemp", _wrap_new_SampleBuilderFactoryTemp, METH_NOARGS, "new_SampleBuilderFactoryTemp() -> SampleBuilderFactoryTemp"},
-	 { "delete_SampleBuilderFactoryTemp", _wrap_delete_SampleBuilderFactoryTemp, METH_O, "delete_SampleBuilderFactoryTemp(SampleBuilderFactoryTemp self)"},
-	 { "SampleBuilderFactoryTemp_swigregister", SampleBuilderFactoryTemp_swigregister, METH_O, NULL},
-	 { "SampleBuilderFactoryTemp_swiginit", SampleBuilderFactoryTemp_swiginit, METH_VARARGS, NULL},
-	 { "new_SampleBuilderFactory", _wrap_new_SampleBuilderFactory, METH_NOARGS, "\n"
-		"new_SampleBuilderFactory() -> SampleBuilderFactory\n"
-		"SampleBuilderFactory::SampleBuilderFactory()\n"
+	 { "SquareLattice_unitCellArea", _wrap_SquareLattice_unitCellArea, METH_O, "\n"
+		"SquareLattice_unitCellArea(SquareLattice self) -> double\n"
+		"double SquareLattice::unitCellArea() const\n"
 		"\n"
 		""},
-	 { "SampleBuilderFactory_createSample", _wrap_SampleBuilderFactory_createSample, METH_VARARGS, "\n"
-		"SampleBuilderFactory_createSample(SampleBuilderFactory self, std::string const & name) -> MultiLayer\n"
-		"MultiLayer * SampleBuilderFactory::createSample(const std::string &name)\n"
+	 { "delete_SquareLattice", _wrap_delete_SquareLattice, METH_O, "delete_SquareLattice(SquareLattice self)"},
+	 { "SquareLattice_swigregister", SquareLattice_swigregister, METH_O, NULL},
+	 { "SquareLattice_swiginit", SquareLattice_swiginit, METH_VARARGS, NULL},
+	 { "new_HexagonalLattice", _wrap_new_HexagonalLattice, METH_VARARGS, "\n"
+		"HexagonalLattice(double length, double rotation_angle=0.0)\n"
+		"HexagonalLattice::HexagonalLattice(double length, double rotation_angle=0.0)\n"
 		"\n"
-		"Retrieves a SampleBuilder from the registry, does the build, and returns the result. \n"
+		""},
+	 { "HexagonalLattice_clone", _wrap_HexagonalLattice_clone, METH_O, "\n"
+		"HexagonalLattice_clone(HexagonalLattice self) -> HexagonalLattice\n"
+		"HexagonalLattice * HexagonalLattice::clone() const\n"
 		"\n"
 		""},
-	 { "delete_SampleBuilderFactory", _wrap_delete_SampleBuilderFactory, METH_O, "delete_SampleBuilderFactory(SampleBuilderFactory self)"},
-	 { "SampleBuilderFactory_swigregister", SampleBuilderFactory_swigregister, METH_O, NULL},
-	 { "SampleBuilderFactory_swiginit", SampleBuilderFactory_swiginit, METH_VARARGS, NULL},
-	 { "SimulationFactoryTemp_createItem", _wrap_SimulationFactoryTemp_createItem, METH_VARARGS, "SimulationFactoryTemp_createItem(SimulationFactoryTemp self, std::string const & item_key) -> Simulation"},
-	 { "SimulationFactoryTemp_registerItem", _wrap_SimulationFactoryTemp_registerItem, METH_VARARGS, "SimulationFactoryTemp_registerItem(SimulationFactoryTemp self, std::string const & item_key, IFactory< std::string,Simulation >::CreateItemCallback CreateFn) -> bool"},
-	 { "SimulationFactoryTemp_contains", _wrap_SimulationFactoryTemp_contains, METH_VARARGS, "SimulationFactoryTemp_contains(SimulationFactoryTemp self, std::string const & item_key) -> bool"},
-	 { "SimulationFactoryTemp_size", _wrap_SimulationFactoryTemp_size, METH_O, "SimulationFactoryTemp_size(SimulationFactoryTemp self) -> size_t"},
-	 { "new_SimulationFactoryTemp", _wrap_new_SimulationFactoryTemp, METH_NOARGS, "new_SimulationFactoryTemp() -> SimulationFactoryTemp"},
-	 { "delete_SimulationFactoryTemp", _wrap_delete_SimulationFactoryTemp, METH_O, "delete_SimulationFactoryTemp(SimulationFactoryTemp self)"},
-	 { "SimulationFactoryTemp_swigregister", SimulationFactoryTemp_swigregister, METH_O, NULL},
-	 { "SimulationFactoryTemp_swiginit", SimulationFactoryTemp_swiginit, METH_VARARGS, NULL},
-	 { "new_SimulationFactory", _wrap_new_SimulationFactory, METH_NOARGS, "\n"
-		"new_SimulationFactory() -> SimulationFactory\n"
-		"SimulationFactory::SimulationFactory()\n"
+	 { "HexagonalLattice_accept", _wrap_HexagonalLattice_accept, METH_VARARGS, "\n"
+		"HexagonalLattice_accept(HexagonalLattice self, INodeVisitor visitor)\n"
+		"void HexagonalLattice::accept(INodeVisitor *visitor) const final\n"
+		"\n"
+		"Calls the  INodeVisitor's visit method. \n"
 		"\n"
 		""},
-	 { "delete_SimulationFactory", _wrap_delete_SimulationFactory, METH_O, "delete_SimulationFactory(SimulationFactory self)"},
-	 { "SimulationFactory_swigregister", SimulationFactory_swigregister, METH_O, NULL},
-	 { "SimulationFactory_swiginit", SimulationFactory_swiginit, METH_VARARGS, NULL},
-	 { "delete_AxesUnits", _wrap_delete_AxesUnits, METH_O, "delete_AxesUnits(AxesUnits self)"},
-	 { "AxesUnits_swigregister", AxesUnits_swigregister, METH_O, NULL},
-	 { "delete_IUnitConverter", _wrap_delete_IUnitConverter, METH_O, "\n"
-		"delete_IUnitConverter(IUnitConverter self)\n"
-		"IUnitConverter::~IUnitConverter()\n"
+	 { "HexagonalLattice_length1", _wrap_HexagonalLattice_length1, METH_O, "\n"
+		"HexagonalLattice_length1(HexagonalLattice self) -> double\n"
+		"virtual double HexagonalLattice::length1() const\n"
 		"\n"
 		""},
-	 { "IUnitConverter_clone", _wrap_IUnitConverter_clone, METH_O, "\n"
-		"IUnitConverter_clone(IUnitConverter self) -> IUnitConverter\n"
-		"virtual IUnitConverter* IUnitConverter::clone() const =0\n"
+	 { "HexagonalLattice_length2", _wrap_HexagonalLattice_length2, METH_O, "\n"
+		"HexagonalLattice_length2(HexagonalLattice self) -> double\n"
+		"virtual double HexagonalLattice::length2() const\n"
 		"\n"
 		""},
-	 { "IUnitConverter_dimension", _wrap_IUnitConverter_dimension, METH_O, "\n"
-		"IUnitConverter_dimension(IUnitConverter self) -> size_t\n"
-		"virtual size_t IUnitConverter::dimension() const =0\n"
+	 { "HexagonalLattice_latticeAngle", _wrap_HexagonalLattice_latticeAngle, METH_O, "\n"
+		"HexagonalLattice_latticeAngle(HexagonalLattice self) -> double\n"
+		"double HexagonalLattice::latticeAngle() const\n"
 		"\n"
 		""},
-	 { "IUnitConverter_calculateMin", _wrap_IUnitConverter_calculateMin, METH_VARARGS, "\n"
-		"IUnitConverter_calculateMin(IUnitConverter self, size_t i_axis, AxesUnits units_type) -> double\n"
-		"virtual double IUnitConverter::calculateMin(size_t i_axis, AxesUnits units_type) const =0\n"
+	 { "HexagonalLattice_unitCellArea", _wrap_HexagonalLattice_unitCellArea, METH_O, "\n"
+		"HexagonalLattice_unitCellArea(HexagonalLattice self) -> double\n"
+		"double HexagonalLattice::unitCellArea() const\n"
 		"\n"
 		""},
-	 { "IUnitConverter_calculateMax", _wrap_IUnitConverter_calculateMax, METH_VARARGS, "\n"
-		"IUnitConverter_calculateMax(IUnitConverter self, size_t i_axis, AxesUnits units_type) -> double\n"
-		"virtual double IUnitConverter::calculateMax(size_t i_axis, AxesUnits units_type) const =0\n"
+	 { "delete_HexagonalLattice", _wrap_delete_HexagonalLattice, METH_O, "delete_HexagonalLattice(HexagonalLattice self)"},
+	 { "HexagonalLattice_swigregister", HexagonalLattice_swigregister, METH_O, NULL},
+	 { "HexagonalLattice_swiginit", HexagonalLattice_swiginit, METH_VARARGS, NULL},
+	 { "CreateFCCLattice", _wrap_CreateFCCLattice, METH_VARARGS, "\n"
+		"CreateFCCLattice(double lattice_constant, ILatticeOrientation orientation) -> Lattice\n"
+		"Lattice LatticeUtils::CreateFCCLattice(double lattice_constant, const ILatticeOrientation &orientation)\n"
 		"\n"
 		""},
-	 { "IUnitConverter_axisSize", _wrap_IUnitConverter_axisSize, METH_VARARGS, "\n"
-		"IUnitConverter_axisSize(IUnitConverter self, size_t i_axis) -> size_t\n"
-		"virtual size_t IUnitConverter::axisSize(size_t i_axis) const =0\n"
+	 { "CreateHCPLattice", _wrap_CreateHCPLattice, METH_VARARGS, "\n"
+		"CreateHCPLattice(double a, double c, ILatticeOrientation orientation) -> Lattice\n"
+		"Lattice LatticeUtils::CreateHCPLattice(double a, double c, const ILatticeOrientation &orientation)\n"
 		"\n"
 		""},
-	 { "IUnitConverter_axisName", _wrap_IUnitConverter_axisName, METH_VARARGS, "\n"
-		"IUnitConverter_axisName(IUnitConverter self, size_t i_axis, AxesUnits units_type=AxesUnits::DEFAULT) -> std::string\n"
-		"std::string IUnitConverter::axisName(size_t i_axis, AxesUnits units_type=AxesUnits::DEFAULT) const\n"
+	 { "CreateBCTLattice", _wrap_CreateBCTLattice, METH_VARARGS, "\n"
+		"CreateBCTLattice(double a, double c, ILatticeOrientation orientation) -> Lattice\n"
+		"Lattice LatticeUtils::CreateBCTLattice(double a, double c, const ILatticeOrientation &orientation)\n"
 		"\n"
 		""},
-	 { "IUnitConverter_availableUnits", _wrap_IUnitConverter_availableUnits, METH_O, "\n"
-		"IUnitConverter_availableUnits(IUnitConverter self) -> std::vector< AxesUnits,std::allocator< AxesUnits > >\n"
-		"virtual std::vector<AxesUnits> IUnitConverter::availableUnits() const =0\n"
+	 { "new_Material", _wrap_new_Material, METH_VARARGS, "\n"
+		"Material(Material material)\n"
+		"new_Material(Material material) -> Material\n"
+		"Material::Material(std::unique_ptr< BaseMaterialImpl > material_impl)\n"
+		"\n"
+		"Creates material with particular material implementation. \n"
 		"\n"
 		""},
-	 { "IUnitConverter_defaultUnits", _wrap_IUnitConverter_defaultUnits, METH_O, "\n"
-		"IUnitConverter_defaultUnits(IUnitConverter self) -> AxesUnits\n"
-		"virtual AxesUnits IUnitConverter::defaultUnits() const =0\n"
+	 { "Material_inverted", _wrap_Material_inverted, METH_O, "\n"
+		"Material_inverted(Material self) -> Material\n"
+		"Material Material::inverted() const\n"
+		"\n"
+		"Constructs a material with inverted magnetization. \n"
 		"\n"
 		""},
-	 { "IUnitConverter_swigregister", IUnitConverter_swigregister, METH_O, NULL},
-	 { "new_IterationInfo", _wrap_new_IterationInfo, METH_NOARGS, "\n"
-		"new_IterationInfo() -> IterationInfo\n"
-		"IterationInfo::IterationInfo()\n"
+	 { "Material_refractiveIndex", _wrap_Material_refractiveIndex, METH_VARARGS, "\n"
+		"Material_refractiveIndex(Material self, double wavelength) -> complex_t\n"
+		"complex_t Material::refractiveIndex(double wavelength) const\n"
+		"\n"
+		"Returns refractive index. \n"
 		"\n"
 		""},
-	 { "IterationInfo_update", _wrap_IterationInfo_update, METH_VARARGS, "\n"
-		"IterationInfo_update(IterationInfo self, Parameters params, double chi2)\n"
-		"void IterationInfo::update(const Fit::Parameters &params, double chi2)\n"
+	 { "Material_refractiveIndex2", _wrap_Material_refractiveIndex2, METH_VARARGS, "\n"
+		"Material_refractiveIndex2(Material self, double wavelength) -> complex_t\n"
+		"complex_t Material::refractiveIndex2(double wavelength) const\n"
+		"\n"
+		"Returns squared refractive index. \n"
 		"\n"
 		""},
-	 { "IterationInfo_iterationCount", _wrap_IterationInfo_iterationCount, METH_O, "\n"
-		"IterationInfo_iterationCount(IterationInfo self) -> unsigned int\n"
-		"unsigned IterationInfo::iterationCount() const\n"
+	 { "Material_isScalarMaterial", _wrap_Material_isScalarMaterial, METH_O, "\n"
+		"Material_isScalarMaterial(Material self) -> bool\n"
+		"bool Material::isScalarMaterial() const\n"
 		"\n"
-		"Returns current number of minimizer iterations. \n"
+		"Indicates whether the interaction with the material is scalar. This means that different polarization states will be diffracted equally \n"
 		"\n"
 		""},
-	 { "IterationInfo_chi2", _wrap_IterationInfo_chi2, METH_O, "\n"
-		"IterationInfo_chi2(IterationInfo self) -> double\n"
-		"double IterationInfo::chi2() const\n"
+	 { "Material_isMagneticMaterial", _wrap_Material_isMagneticMaterial, METH_O, "\n"
+		"Material_isMagneticMaterial(Material self) -> bool\n"
+		"bool Material::isMagneticMaterial() const\n"
 		"\n"
 		""},
-	 { "IterationInfo_parameters", _wrap_IterationInfo_parameters, METH_O, "\n"
-		"IterationInfo_parameters(IterationInfo self) -> Parameters\n"
-		"Fit::Parameters IterationInfo::parameters() const\n"
+	 { "Material_getName", _wrap_Material_getName, METH_O, "\n"
+		"Material_getName(Material self) -> std::string\n"
+		"std::string Material::getName() const\n"
+		"\n"
+		"Returns the name of material. \n"
 		"\n"
 		""},
-	 { "IterationInfo_parameterMap", _wrap_IterationInfo_parameterMap, METH_O, "\n"
-		"IterationInfo_parameterMap(IterationInfo self) -> map_string_double_t\n"
-		"std::map< std::string, double > IterationInfo::parameterMap() const\n"
+	 { "Material_magnetization", _wrap_Material_magnetization, METH_O, "\n"
+		"Material_magnetization(Material self) -> kvector_t\n"
+		"kvector_t Material::magnetization() const\n"
 		"\n"
-		"Returns map of fit parameter names and its current values. \n"
+		"Get the magnetization (in A/m) \n"
 		"\n"
 		""},
-	 { "delete_IterationInfo", _wrap_delete_IterationInfo, METH_O, "delete_IterationInfo(IterationInfo self)"},
-	 { "IterationInfo_swigregister", IterationInfo_swigregister, METH_O, NULL},
-	 { "IterationInfo_swiginit", IterationInfo_swiginit, METH_VARARGS, NULL},
-	 { "FindPeaks", _wrap_FindPeaks, METH_VARARGS, "\n"
-		"FindPeaks(Histogram2D hist, double sigma=2, std::string const & option={}, double threshold=0.05) -> vector_pair_double_t\n"
-		"std::vector< std::pair< double, double > > SpectrumUtils::FindPeaks(const Histogram2D &hist, double sigma=2, const std::string &option={}, double threshold=0.05)\n"
+	 { "Material_materialData", _wrap_Material_materialData, METH_O, "\n"
+		"Material_materialData(Material self) -> complex_t\n"
+		"complex_t Material::materialData() const\n"
+		"\n"
+		"Returns underlying material data. The units of returned values are the same as the ones passed to material factory functions \n"
 		"\n"
 		""},
-	 { "delete_ScanResolution", _wrap_delete_ScanResolution, METH_O, "\n"
-		"delete_ScanResolution(ScanResolution self)\n"
-		"ScanResolution::~ScanResolution() override\n"
+	 { "Material_isEmpty", _wrap_Material_isEmpty, METH_O, "\n"
+		"Material_isEmpty(Material self) -> bool\n"
+		"bool Material::isEmpty() const\n"
+		"\n"
+		"Returns true if material underlying data is nullptr. \n"
 		"\n"
 		""},
-	 { "ScanResolution_scanRelativeResolution", _wrap_ScanResolution_scanRelativeResolution, METH_VARARGS, "\n"
-		"ScanResolution_scanRelativeResolution(RangedDistribution const & distr, double stddev) -> ScanResolution\n"
-		"ScanResolution_scanRelativeResolution(RangedDistribution const & distr, vdouble1d_t stddevs) -> ScanResolution\n"
+	 { "Material_isDefaultMaterial", _wrap_Material_isDefaultMaterial, METH_O, "\n"
+		"Material_isDefaultMaterial(Material self) -> bool\n"
+		"bool Material::isDefaultMaterial() const\n"
+		"\n"
+		"Returns true if material has refractive index of (1.0, 0.0) and zero magnetization. \n"
+		"\n"
 		""},
-	 { "ScanResolution_scanAbsoluteResolution", _wrap_ScanResolution_scanAbsoluteResolution, METH_VARARGS, "\n"
-		"ScanResolution_scanAbsoluteResolution(RangedDistribution const & distr, double stddev) -> ScanResolution\n"
-		"ScanResolution_scanAbsoluteResolution(RangedDistribution const & distr, vdouble1d_t stddevs) -> ScanResolution\n"
+	 { "Material_scalarSubtrSLD", _wrap_Material_scalarSubtrSLD, METH_VARARGS, "\n"
+		"Material_scalarSubtrSLD(Material self, WavevectorInfo wavevectors) -> complex_t\n"
+		"complex_t Material::scalarSubtrSLD(const WavevectorInfo &wavevectors) const\n"
+		"\n"
+		"Returns (  $ \\\\pi/\\\\lambda^2 $ - sld), sld (in  $nm^{-2}$) being the scattering length density \n"
+		"\n"
 		""},
-	 { "ScanResolution_swigregister", ScanResolution_swigregister, METH_O, NULL},
+	 { "Material_transformedMaterial", _wrap_Material_transformedMaterial, METH_VARARGS, "\n"
+		"Material_transformedMaterial(Material self, Transform3D const & transform) -> Material\n"
+		"Material Material::transformedMaterial(const Transform3D &transform) const\n"
+		"\n"
+		""},
+	 { "delete_Material", _wrap_delete_Material, METH_O, "delete_Material(Material self)"},
+	 { "Material_swigregister", Material_swigregister, METH_O, NULL},
+	 { "Material_swiginit", Material_swiginit, METH_VARARGS, NULL},
+	 { "HomogeneousMaterial", _wrap_HomogeneousMaterial, METH_VARARGS, "\n"
+		"HomogeneousMaterial() -> Material\n"
+		"HomogeneousMaterial(std::string const & name, double delta, double beta, kvector_t magnetization={}) -> Material\n"
+		"HomogeneousMaterial(std::string const & name, complex_t refractive_index, kvector_t magnetization={}) -> Material\n"
+		"BA_CORE_API_ Material HomogeneousMaterial(const std::string &name, complex_t refractive_index, kvector_t magnetization={})\n"
+		"\n"
+		"Constructs a material with  name,  refractive_index and  magnetization (in A/m). Alternatively,  $\\\\delta$ and  $\\\\beta$ for refractive index  $n = 1 - \\\\delta + i \\\\beta$ can be passed directly. With no parameters given, constructs default (vacuum) material with  $n = 1$ and zero magnetization. \n"
+		"\n"
+		""},
+	 { "MaterialBySLD", _wrap_MaterialBySLD, METH_VARARGS, "\n"
+		"MaterialBySLD() -> Material\n"
+		"MaterialBySLD(std::string const & name, double sld_real, double sld_imag, kvector_t magnetization={}) -> Material\n"
+		"BA_CORE_API_ Material MaterialBySLD(const std::string &name, double sld_real, double sld_imag, kvector_t magnetization={})\n"
+		"\n"
+		"Constructs a wavelength-independent material with a given complex-valued scattering length density (SLD). SLD values for a wide variety of materials can be found on https://sld-calculator.appspot.com/ and https://www.ncnr.nist.gov/resources/activation/ By convention, SLD imaginary part is treated as negative by default, which corresponds to attenuation of the signal. With no parameters given, MaterialBySLD constructs default (vacuum) material with zero sld and zero magnetization.\n"
+		"\n"
+		"Parameters:\n"
+		"-----------\n"
+		"\n"
+		"name: \n"
+		"material name\n"
+		"\n"
+		"sld_real: \n"
+		"real part of the scattering length density, inverse square angstroms\n"
+		"\n"
+		"sld_imag: \n"
+		"imaginary part of the scattering length density, inverse square angstroms\n"
+		"\n"
+		"magnetization: \n"
+		"magnetization (in A/m) \n"
+		"\n"
+		""},
+	 { "SampleBuilderFactoryTemp_createItem", _wrap_SampleBuilderFactoryTemp_createItem, METH_VARARGS, "SampleBuilderFactoryTemp_createItem(SampleBuilderFactoryTemp self, std::string const & item_key) -> IMultiLayerBuilder"},
+	 { "SampleBuilderFactoryTemp_registerItem", _wrap_SampleBuilderFactoryTemp_registerItem, METH_VARARGS, "SampleBuilderFactoryTemp_registerItem(SampleBuilderFactoryTemp self, std::string const & item_key, IFactory< std::string,IMultiLayerBuilder >::CreateItemCallback CreateFn) -> bool"},
+	 { "SampleBuilderFactoryTemp_contains", _wrap_SampleBuilderFactoryTemp_contains, METH_VARARGS, "SampleBuilderFactoryTemp_contains(SampleBuilderFactoryTemp self, std::string const & item_key) -> bool"},
+	 { "SampleBuilderFactoryTemp_size", _wrap_SampleBuilderFactoryTemp_size, METH_O, "SampleBuilderFactoryTemp_size(SampleBuilderFactoryTemp self) -> size_t"},
+	 { "new_SampleBuilderFactoryTemp", _wrap_new_SampleBuilderFactoryTemp, METH_NOARGS, "new_SampleBuilderFactoryTemp() -> SampleBuilderFactoryTemp"},
+	 { "delete_SampleBuilderFactoryTemp", _wrap_delete_SampleBuilderFactoryTemp, METH_O, "delete_SampleBuilderFactoryTemp(SampleBuilderFactoryTemp self)"},
+	 { "SampleBuilderFactoryTemp_swigregister", SampleBuilderFactoryTemp_swigregister, METH_O, NULL},
+	 { "SampleBuilderFactoryTemp_swiginit", SampleBuilderFactoryTemp_swiginit, METH_VARARGS, NULL},
+	 { "new_SampleBuilderFactory", _wrap_new_SampleBuilderFactory, METH_NOARGS, "\n"
+		"new_SampleBuilderFactory() -> SampleBuilderFactory\n"
+		"SampleBuilderFactory::SampleBuilderFactory()\n"
+		"\n"
+		""},
+	 { "SampleBuilderFactory_createSample", _wrap_SampleBuilderFactory_createSample, METH_VARARGS, "\n"
+		"SampleBuilderFactory_createSample(SampleBuilderFactory self, std::string const & name) -> MultiLayer\n"
+		"MultiLayer * SampleBuilderFactory::createSample(const std::string &name)\n"
+		"\n"
+		"Retrieves a SampleBuilder from the registry, does the build, and returns the result. \n"
+		"\n"
+		""},
+	 { "delete_SampleBuilderFactory", _wrap_delete_SampleBuilderFactory, METH_O, "delete_SampleBuilderFactory(SampleBuilderFactory self)"},
+	 { "SampleBuilderFactory_swigregister", SampleBuilderFactory_swigregister, METH_O, NULL},
+	 { "SampleBuilderFactory_swiginit", SampleBuilderFactory_swiginit, METH_VARARGS, NULL},
+	 { "SimulationFactoryTemp_createItem", _wrap_SimulationFactoryTemp_createItem, METH_VARARGS, "SimulationFactoryTemp_createItem(SimulationFactoryTemp self, std::string const & item_key) -> Simulation"},
+	 { "SimulationFactoryTemp_registerItem", _wrap_SimulationFactoryTemp_registerItem, METH_VARARGS, "SimulationFactoryTemp_registerItem(SimulationFactoryTemp self, std::string const & item_key, IFactory< std::string,Simulation >::CreateItemCallback CreateFn) -> bool"},
+	 { "SimulationFactoryTemp_contains", _wrap_SimulationFactoryTemp_contains, METH_VARARGS, "SimulationFactoryTemp_contains(SimulationFactoryTemp self, std::string const & item_key) -> bool"},
+	 { "SimulationFactoryTemp_size", _wrap_SimulationFactoryTemp_size, METH_O, "SimulationFactoryTemp_size(SimulationFactoryTemp self) -> size_t"},
+	 { "new_SimulationFactoryTemp", _wrap_new_SimulationFactoryTemp, METH_NOARGS, "new_SimulationFactoryTemp() -> SimulationFactoryTemp"},
+	 { "delete_SimulationFactoryTemp", _wrap_delete_SimulationFactoryTemp, METH_O, "delete_SimulationFactoryTemp(SimulationFactoryTemp self)"},
+	 { "SimulationFactoryTemp_swigregister", SimulationFactoryTemp_swigregister, METH_O, NULL},
+	 { "SimulationFactoryTemp_swiginit", SimulationFactoryTemp_swiginit, METH_VARARGS, NULL},
+	 { "new_SimulationFactory", _wrap_new_SimulationFactory, METH_NOARGS, "\n"
+		"new_SimulationFactory() -> SimulationFactory\n"
+		"SimulationFactory::SimulationFactory()\n"
+		"\n"
+		""},
+	 { "delete_SimulationFactory", _wrap_delete_SimulationFactory, METH_O, "delete_SimulationFactory(SimulationFactory self)"},
+	 { "SimulationFactory_swigregister", SimulationFactory_swigregister, METH_O, NULL},
+	 { "SimulationFactory_swiginit", SimulationFactory_swiginit, METH_VARARGS, NULL},
 	 { "new_AngularSpecScan", _wrap_new_AngularSpecScan, METH_VARARGS, "\n"
 		"AngularSpecScan(double wl, vdouble1d_t inc_angle)\n"
 		"AngularSpecScan(double wl, IAxis inc_angle)\n"
@@ -135377,6 +135325,54 @@ static PyMethodDef SwigMethods[] = {
 		""},
 	 { "AngularSpecScan_swigregister", AngularSpecScan_swigregister, METH_O, NULL},
 	 { "AngularSpecScan_swiginit", AngularSpecScan_swiginit, METH_VARARGS, NULL},
+	 { "delete_AxesUnits", _wrap_delete_AxesUnits, METH_O, "delete_AxesUnits(AxesUnits self)"},
+	 { "AxesUnits_swigregister", AxesUnits_swigregister, METH_O, NULL},
+	 { "delete_IUnitConverter", _wrap_delete_IUnitConverter, METH_O, "\n"
+		"delete_IUnitConverter(IUnitConverter self)\n"
+		"IUnitConverter::~IUnitConverter()\n"
+		"\n"
+		""},
+	 { "IUnitConverter_clone", _wrap_IUnitConverter_clone, METH_O, "\n"
+		"IUnitConverter_clone(IUnitConverter self) -> IUnitConverter\n"
+		"virtual IUnitConverter* IUnitConverter::clone() const =0\n"
+		"\n"
+		""},
+	 { "IUnitConverter_dimension", _wrap_IUnitConverter_dimension, METH_O, "\n"
+		"IUnitConverter_dimension(IUnitConverter self) -> size_t\n"
+		"virtual size_t IUnitConverter::dimension() const =0\n"
+		"\n"
+		""},
+	 { "IUnitConverter_calculateMin", _wrap_IUnitConverter_calculateMin, METH_VARARGS, "\n"
+		"IUnitConverter_calculateMin(IUnitConverter self, size_t i_axis, AxesUnits units_type) -> double\n"
+		"virtual double IUnitConverter::calculateMin(size_t i_axis, AxesUnits units_type) const =0\n"
+		"\n"
+		""},
+	 { "IUnitConverter_calculateMax", _wrap_IUnitConverter_calculateMax, METH_VARARGS, "\n"
+		"IUnitConverter_calculateMax(IUnitConverter self, size_t i_axis, AxesUnits units_type) -> double\n"
+		"virtual double IUnitConverter::calculateMax(size_t i_axis, AxesUnits units_type) const =0\n"
+		"\n"
+		""},
+	 { "IUnitConverter_axisSize", _wrap_IUnitConverter_axisSize, METH_VARARGS, "\n"
+		"IUnitConverter_axisSize(IUnitConverter self, size_t i_axis) -> size_t\n"
+		"virtual size_t IUnitConverter::axisSize(size_t i_axis) const =0\n"
+		"\n"
+		""},
+	 { "IUnitConverter_axisName", _wrap_IUnitConverter_axisName, METH_VARARGS, "\n"
+		"IUnitConverter_axisName(IUnitConverter self, size_t i_axis, AxesUnits units_type=AxesUnits::DEFAULT) -> std::string\n"
+		"std::string IUnitConverter::axisName(size_t i_axis, AxesUnits units_type=AxesUnits::DEFAULT) const\n"
+		"\n"
+		""},
+	 { "IUnitConverter_availableUnits", _wrap_IUnitConverter_availableUnits, METH_O, "\n"
+		"IUnitConverter_availableUnits(IUnitConverter self) -> std::vector< AxesUnits,std::allocator< AxesUnits > >\n"
+		"virtual std::vector<AxesUnits> IUnitConverter::availableUnits() const =0\n"
+		"\n"
+		""},
+	 { "IUnitConverter_defaultUnits", _wrap_IUnitConverter_defaultUnits, METH_O, "\n"
+		"IUnitConverter_defaultUnits(IUnitConverter self) -> AxesUnits\n"
+		"virtual AxesUnits IUnitConverter::defaultUnits() const =0\n"
+		"\n"
+		""},
+	 { "IUnitConverter_swigregister", IUnitConverter_swigregister, METH_O, NULL},
 	 { "new_QSpecScan", _wrap_new_QSpecScan, METH_VARARGS, "\n"
 		"QSpecScan(vdouble1d_t qs_nm)\n"
 		"QSpecScan(IAxis qs_nm)\n"
@@ -135421,6 +135417,20 @@ static PyMethodDef SwigMethods[] = {
 		""},
 	 { "QSpecScan_swigregister", QSpecScan_swigregister, METH_O, NULL},
 	 { "QSpecScan_swiginit", QSpecScan_swiginit, METH_VARARGS, NULL},
+	 { "delete_ScanResolution", _wrap_delete_ScanResolution, METH_O, "\n"
+		"delete_ScanResolution(ScanResolution self)\n"
+		"ScanResolution::~ScanResolution() override\n"
+		"\n"
+		""},
+	 { "ScanResolution_scanRelativeResolution", _wrap_ScanResolution_scanRelativeResolution, METH_VARARGS, "\n"
+		"ScanResolution_scanRelativeResolution(RangedDistribution const & distr, double stddev) -> ScanResolution\n"
+		"ScanResolution_scanRelativeResolution(RangedDistribution const & distr, vdouble1d_t stddevs) -> ScanResolution\n"
+		""},
+	 { "ScanResolution_scanAbsoluteResolution", _wrap_ScanResolution_scanAbsoluteResolution, METH_VARARGS, "\n"
+		"ScanResolution_scanAbsoluteResolution(RangedDistribution const & distr, double stddev) -> ScanResolution\n"
+		"ScanResolution_scanAbsoluteResolution(RangedDistribution const & distr, vdouble1d_t stddevs) -> ScanResolution\n"
+		""},
+	 { "ScanResolution_swigregister", ScanResolution_swigregister, METH_O, NULL},
 	 { NULL, NULL, 0, NULL }
 };
 
@@ -135488,15 +135498,15 @@ static void *_p_Simulation2DTo_p_Simulation(void *x, int *SWIGUNUSEDPARM(newmemo
 static void *_p_GISASSimulationTo_p_Simulation(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((Simulation *) (Simulation2D *) ((GISASSimulation *) x));
 }
-static void *_p_OffSpecSimulationTo_p_Simulation(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((Simulation *) (Simulation2D *) ((OffSpecSimulation *) x));
-}
 static void *_p_DepthProbeSimulationTo_p_Simulation(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((Simulation *)  ((DepthProbeSimulation *) x));
 }
 static void *_p_SpecularSimulationTo_p_Simulation(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((Simulation *)  ((SpecularSimulation *) x));
 }
+static void *_p_OffSpecSimulationTo_p_Simulation(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((Simulation *) (Simulation2D *) ((OffSpecSimulation *) x));
+}
 static void *_p_RangedDistributionCosineTo_p_RangedDistribution(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((RangedDistribution *)  ((RangedDistributionCosine *) x));
 }
@@ -135542,12 +135552,12 @@ static void *_p_FormFactorPolygonalPrismTo_p_IFormFactorBorn(void *x, int *SWIGU
 static void *_p_FormFactorFullSpheroidTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *)  ((FormFactorFullSpheroid *) x));
 }
-static void *_p_FormFactorDebyeBuecheTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactorBorn *)  ((FormFactorDebyeBueche *) x));
-}
 static void *_p_FormFactorTruncatedSpheroidTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *)  ((FormFactorTruncatedSpheroid *) x));
 }
+static void *_p_FormFactorDebyeBuecheTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactorBorn *)  ((FormFactorDebyeBueche *) x));
+}
 static void *_p_FormFactorRipple1BoxTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *) (ProfileRipple1 *) ((FormFactorRipple1Box *) x));
 }
@@ -135566,15 +135576,15 @@ static void *_p_FormFactorPolygonalSurfaceTo_p_IFormFactorBorn(void *x, int *SWI
 static void *_p_ProfileRipple2To_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *)  ((ProfileRipple2 *) x));
 }
+static void *_p_FormFactorTruncatedCubeTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactorBorn *) (FormFactorPolyhedron *) ((FormFactorTruncatedCube *) x));
+}
 static void *_p_FormFactorCantellatedCubeTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *) (FormFactorPolyhedron *) ((FormFactorCantellatedCube *) x));
 }
 static void *_p_FormFactorFullSphereTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *)  ((FormFactorFullSphere *) x));
 }
-static void *_p_FormFactorTruncatedCubeTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactorBorn *) (FormFactorPolyhedron *) ((FormFactorTruncatedCube *) x));
-}
 static void *_p_FormFactorTruncatedSphereTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *)  ((FormFactorTruncatedSphere *) x));
 }
@@ -135590,20 +135600,20 @@ static void *_p_FormFactorCylinderTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDP
 static void *_p_FormFactorBoxTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *) (FormFactorPolygonalPrism *) ((FormFactorBox *) x));
 }
+static void *_p_FormFactorTetrahedronTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactorBorn *) (FormFactorPolyhedron *) ((FormFactorTetrahedron *) x));
+}
 static void *_p_FormFactorIcosahedronTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *) (FormFactorPolyhedron *) ((FormFactorIcosahedron *) x));
 }
-static void *_p_FormFactorDodecahedronTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactorBorn *) (FormFactorPolyhedron *) ((FormFactorDodecahedron *) x));
-}
 static void *_p_FormFactorPolyhedronTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *)  ((FormFactorPolyhedron *) x));
 }
 static void *_p_FormFactorCuboctahedronTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *) (FormFactorPolyhedron *) ((FormFactorCuboctahedron *) x));
 }
-static void *_p_FormFactorTetrahedronTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactorBorn *) (FormFactorPolyhedron *) ((FormFactorTetrahedron *) x));
+static void *_p_FormFactorDodecahedronTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactorBorn *) (FormFactorPolyhedron *) ((FormFactorDodecahedron *) x));
 }
 static void *_p_FormFactorConeTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *)  ((FormFactorCone *) x));
@@ -135617,23 +135627,26 @@ static void *_p_FormFactorSphereGaussianRadiusTo_p_IFormFactorBorn(void *x, int
 static void *_p_FormFactorSphereLogNormalRadiusTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *)  ((FormFactorSphereLogNormalRadius *) x));
 }
+static void *_p_FormFactorHollowSphereTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactorBorn *)  ((FormFactorHollowSphere *) x));
+}
 static void *_p_FormFactorDotTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *)  ((FormFactorDot *) x));
 }
 static void *_p_FormFactorRipple2BoxTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *) (ProfileRipple2 *) ((FormFactorRipple2Box *) x));
 }
+static void *_p_FormFactorRipple2LorentzTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactorBorn *) (ProfileRipple2 *) ((FormFactorRipple2Lorentz *) x));
+}
 static void *_p_FormFactorRipple1LorentzTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *) (ProfileRipple1 *) ((FormFactorRipple1Lorentz *) x));
 }
-static void *_p_FormFactorLorentzTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactorBorn *)  ((FormFactorLorentz *) x));
-}
 static void *_p_FormFactorLongBoxLorentzTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *)  ((FormFactorLongBoxLorentz *) x));
 }
-static void *_p_FormFactorRipple2LorentzTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactorBorn *) (ProfileRipple2 *) ((FormFactorRipple2Lorentz *) x));
+static void *_p_FormFactorLorentzTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactorBorn *)  ((FormFactorLorentz *) x));
 }
 static void *_p_ProfileBarTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *)  ((ProfileBar *) x));
@@ -135647,9 +135660,6 @@ static void *_p_FormFactorAnisoPyramidTo_p_IFormFactorBorn(void *x, int *SWIGUNU
 static void *_p_FormFactorPrism3To_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *) (FormFactorPolygonalPrism *) ((FormFactorPrism3 *) x));
 }
-static void *_p_FormFactorSphereUniformRadiusTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactorBorn *)  ((FormFactorSphereUniformRadius *) x));
-}
 static void *_p_FormFactorRipple2GaussTo_p_IFormFactorBorn(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactorBorn *) (ProfileRipple2 *) ((FormFactorRipple2Gauss *) x));
 }
@@ -135719,12 +135729,12 @@ static void *_p_Histogram1DTo_p_IHistogram(void *x, int *SWIGUNUSEDPARM(newmemor
 static void *_p_DistributionTrapezoidTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IDistribution1D *) ((DistributionTrapezoid *) x));
 }
-static void *_p_ParticleLayoutTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(ILayout *) ((ParticleLayout *) x));
-}
 static void *_p_ILayoutTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *) ((ILayout *) x));
 }
+static void *_p_ParticleLayoutTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(ILayout *) ((ParticleLayout *) x));
+}
 static void *_p_FTDecayFunction2DVoigtTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IFTDecayFunction2D *) ((FTDecayFunction2DVoigt *) x));
 }
@@ -135743,12 +135753,12 @@ static void *_p_RangedDistributionGateTo_p_ICloneable(void *x, int *SWIGUNUSEDPA
 static void *_p_DistributionGateTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IDistribution1D *) ((DistributionGate *) x));
 }
-static void *_p_IdentityRotationTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IRotation *) ((IdentityRotation *) x));
-}
 static void *_p_IRotationTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *) ((IRotation *) x));
 }
+static void *_p_IdentityRotationTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IRotation *) ((IdentityRotation *) x));
+}
 static void *_p_FormFactorPolygonalSurfaceTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolygonalSurface *) x));
 }
@@ -135770,80 +135780,77 @@ static void *_p_RotationYTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)
 static void *_p_LayerRoughnessTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *) ((LayerRoughness *) x));
 }
-static void *_p_FormFactorCylinderTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorCylinder *) x));
-}
 static void *_p_FormFactorEllipsoidalCylinderTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorEllipsoidalCylinder *) x));
 }
+static void *_p_FormFactorCylinderTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorCylinder *) x));
+}
 static void *_p_RotationZTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IRotation *) ((RotationZ *) x));
 }
-static void *_p_FTDistribution1DCauchyTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (IFTDistribution1D *) ((FTDistribution1DCauchy *) x));
-}
 static void *_p_FTDecayFunction2DCauchyTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IFTDecayFunction2D *) ((FTDecayFunction2DCauchy *) x));
 }
 static void *_p_FTDecayFunction1DCauchyTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IFTDecayFunction1D *) ((FTDecayFunction1DCauchy *) x));
 }
+static void *_p_FTDistribution1DCauchyTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (IFTDistribution1D *) ((FTDistribution1DCauchy *) x));
+}
 static void *_p_FTDistribution2DCauchyTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IFTDistribution2D *) ((FTDistribution2DCauchy *) x));
 }
 static void *_p_FormFactorTetrahedronTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorTetrahedron *) x));
 }
-static void *_p_FormFactorPolyhedronTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolyhedron *) x));
-}
-static void *_p_FormFactorCuboctahedronTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorCuboctahedron *) x));
+static void *_p_FormFactorIcosahedronTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorIcosahedron *) x));
 }
 static void *_p_FormFactorDodecahedronTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorDodecahedron *) x));
 }
-static void *_p_FormFactorIcosahedronTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorIcosahedron *) x));
+static void *_p_FormFactorCuboctahedronTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorCuboctahedron *) x));
+}
+static void *_p_FormFactorPolyhedronTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolyhedron *) x));
 }
 static void *_p_MesoCrystalTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IAbstractParticle *)(IParticle *) ((MesoCrystal *) x));
 }
-static void *_p_InterferenceFunctionRadialParaCrystalTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionRadialParaCrystal *) x));
-}
-static void *_p_InterferenceFunction2DParaCrystalTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction2DParaCrystal *) x));
-}
 static void *_p_CrystalTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IClusteredParticles *) ((Crystal *) x));
 }
 static void *_p_FormFactorCrystalTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *) ((FormFactorCrystal *) x));
 }
-static void *_p_FormFactorSphereUniformRadiusTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorSphereUniformRadius *) x));
+static void *_p_InterferenceFunction2DParaCrystalTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction2DParaCrystal *) x));
 }
-static void *_p_VonMisesGaussPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IPeakShape *) ((VonMisesGaussPeakShape *) x));
+static void *_p_InterferenceFunctionRadialParaCrystalTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionRadialParaCrystal *) x));
 }
-static void *_p_VonMisesFisherGaussPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IPeakShape *) ((VonMisesFisherGaussPeakShape *) x));
+static void *_p_IPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *) ((IPeakShape *) x));
 }
-static void *_p_LorentzFisherPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IPeakShape *) ((LorentzFisherPeakShape *) x));
+static void *_p_IsotropicGaussPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IPeakShape *) ((IsotropicGaussPeakShape *) x));
+}
+static void *_p_IsotropicLorentzPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IPeakShape *) ((IsotropicLorentzPeakShape *) x));
 }
 static void *_p_GaussFisherPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IPeakShape *) ((GaussFisherPeakShape *) x));
 }
-static void *_p_IsotropicLorentzPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IPeakShape *) ((IsotropicLorentzPeakShape *) x));
+static void *_p_LorentzFisherPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IPeakShape *) ((LorentzFisherPeakShape *) x));
 }
-static void *_p_IsotropicGaussPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IPeakShape *) ((IsotropicGaussPeakShape *) x));
+static void *_p_VonMisesFisherGaussPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IPeakShape *) ((VonMisesFisherGaussPeakShape *) x));
 }
-static void *_p_IPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *) ((IPeakShape *) x));
+static void *_p_VonMisesGaussPeakShapeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IPeakShape *) ((VonMisesGaussPeakShape *) x));
 }
 static void *_p_FormFactorWeightedTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *) ((FormFactorWeighted *) x));
@@ -135851,18 +135858,18 @@ static void *_p_FormFactorWeightedTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(n
 static void *_p_LineTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IShape2D *) ((Line *) x));
 }
-static void *_p_FTDistribution1DVoigtTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (IFTDistribution1D *) ((FTDistribution1DVoigt *) x));
-}
 static void *_p_FTDecayFunction1DVoigtTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IFTDecayFunction1D *) ((FTDecayFunction1DVoigt *) x));
 }
-static void *_p_IChiSquaredModuleTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *)  ((IChiSquaredModule *) x));
+static void *_p_FTDistribution1DVoigtTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (IFTDistribution1D *) ((FTDistribution1DVoigt *) x));
 }
 static void *_p_ChiSquaredModuleTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IChiSquaredModule *) ((ChiSquaredModule *) x));
 }
+static void *_p_IChiSquaredModuleTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *)  ((IChiSquaredModule *) x));
+}
 static void *_p_Lattice2DTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *)  ((Lattice2D *) x));
 }
@@ -135887,12 +135894,12 @@ static void *_p_LayerTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
 static void *_p_IFormFactorDecoratorTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *) ((IFormFactorDecorator *) x));
 }
-static void *_p_FormFactorAnisoPyramidTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorAnisoPyramid *) x));
-}
 static void *_p_FormFactorPyramidTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorPyramid *) x));
 }
+static void *_p_FormFactorAnisoPyramidTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorAnisoPyramid *) x));
+}
 static void *_p_FormFactorTruncatedCubeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorTruncatedCube *) x));
 }
@@ -135905,12 +135912,12 @@ static void *_p_RangedDistributionTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(n
 static void *_p_ParticleDistributionTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IAbstractParticle *) ((ParticleDistribution *) x));
 }
-static void *_p_FTDistribution1DTriangleTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (IFTDistribution1D *) ((FTDistribution1DTriangle *) x));
-}
 static void *_p_FTDecayFunction1DTriangleTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IFTDecayFunction1D *) ((FTDecayFunction1DTriangle *) x));
 }
+static void *_p_FTDistribution1DTriangleTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (IFTDistribution1D *) ((FTDistribution1DTriangle *) x));
+}
 static void *_p_ProfileBarTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((ProfileBar *) x));
 }
@@ -135923,12 +135930,12 @@ static void *_p_FootprintGaussTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newme
 static void *_p_FormFactorDotTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorDot *) x));
 }
-static void *_p_FormFactorRipple2GaussTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Gauss *) x));
-}
 static void *_p_FormFactorGaussTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorGauss *) x));
 }
+static void *_p_FormFactorRipple2GaussTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Gauss *) x));
+}
 static void *_p_ResolutionFunction2DGaussianTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IResolutionFunction2D *) ((ResolutionFunction2DGaussian *) x));
 }
@@ -135971,12 +135978,12 @@ static void *_p_ParticleCompositionTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(
 static void *_p_RangedDistributionCosineTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (RangedDistribution *) ((RangedDistributionCosine *) x));
 }
-static void *_p_FTDistribution1DCosineTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (IFTDistribution1D *) ((FTDistribution1DCosine *) x));
-}
 static void *_p_DistributionCosineTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IDistribution1D *) ((DistributionCosine *) x));
 }
+static void *_p_FTDistribution1DCosineTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (IFTDistribution1D *) ((FTDistribution1DCosine *) x));
+}
 static void *_p_PolygonTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IShape2D *) ((Polygon *) x));
 }
@@ -135992,17 +135999,20 @@ static void *_p_AngularSpecScanTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newm
 static void *_p_QSpecScanTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISpecularScan *) ((QSpecScan *) x));
 }
+static void *_p_FormFactorHollowSphereTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorHollowSphere *) x));
+}
 static void *_p_VerticalLineTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IShape2D *) ((VerticalLine *) x));
 }
-static void *_p_IIntensityNormalizerTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *)  ((IIntensityNormalizer *) x));
+static void *_p_IntensityScaleAndShiftNormalizerTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (IIntensityNormalizer *)(IntensityNormalizer *) ((IntensityScaleAndShiftNormalizer *) x));
 }
 static void *_p_IntensityNormalizerTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IIntensityNormalizer *) ((IntensityNormalizer *) x));
 }
-static void *_p_IntensityScaleAndShiftNormalizerTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (IIntensityNormalizer *)(IntensityNormalizer *) ((IntensityScaleAndShiftNormalizer *) x));
+static void *_p_IIntensityNormalizerTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *)  ((IIntensityNormalizer *) x));
 }
 static void *_p_FTDecayFunction2DGaussTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IFTDecayFunction2D *) ((FTDecayFunction2DGauss *) x));
@@ -136034,36 +136044,36 @@ static void *_p_FormFactorFullSpheroidTo_p_ICloneable(void *x, int *SWIGUNUSEDPA
 static void *_p_ISpecularScanTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *)  ((ISpecularScan *) x));
 }
-static void *_p_HexagonalLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (Lattice2D *) ((HexagonalLattice *) x));
-}
 static void *_p_SquareLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (Lattice2D *) ((SquareLattice *) x));
 }
 static void *_p_BasicLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (Lattice2D *) ((BasicLattice *) x));
 }
-static void *_p_InterferenceFunctionFinite3DLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionFinite3DLattice *) x));
-}
-static void *_p_InterferenceFunctionFinite2DLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionFinite2DLattice *) x));
+static void *_p_InterferenceFunction1DLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction1DLattice *) x));
 }
-static void *_p_InterferenceFunction3DLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction3DLattice *) x));
+static void *_p_InterferenceFunction2DLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction2DLattice *) x));
 }
 static void *_p_InterferenceFunction2DSuperLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction2DSuperLattice *) x));
 }
-static void *_p_InterferenceFunction2DLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction2DLattice *) x));
+static void *_p_InterferenceFunction3DLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction3DLattice *) x));
 }
-static void *_p_InterferenceFunction1DLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction1DLattice *) x));
+static void *_p_InterferenceFunctionFinite2DLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionFinite2DLattice *) x));
+}
+static void *_p_InterferenceFunctionFinite3DLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionFinite3DLattice *) x));
 }
 static void *_p_IShape2DTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *)  ((IShape2D *) x));
 }
+static void *_p_HexagonalLatticeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (Lattice2D *) ((HexagonalLattice *) x));
+}
 static void *_p_FootprintSquareTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IFootprintFactor *) ((FootprintSquare *) x));
 }
@@ -136076,39 +136086,39 @@ static void *_p_FormFactorOrnsteinZernikeTo_p_ICloneable(void *x, int *SWIGUNUSE
 static void *_p_HorizontalLineTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IShape2D *) ((HorizontalLine *) x));
 }
-static void *_p_FTDistribution1DGaussTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (IFTDistribution1D *) ((FTDistribution1DGauss *) x));
-}
 static void *_p_FTDecayFunction1DGaussTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IFTDecayFunction1D *) ((FTDecayFunction1DGauss *) x));
 }
+static void *_p_FTDistribution1DGaussTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (IFTDistribution1D *) ((FTDistribution1DGauss *) x));
+}
 static void *_p_FormFactorCone6To_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorCone6 *) x));
 }
-static void *_p_IFTDistribution1DTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *)  ((IFTDistribution1D *) x));
+static void *_p_IDistribution1DTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *)  ((IDistribution1D *) x));
 }
 static void *_p_IFTDecayFunction1DTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *)  ((IFTDecayFunction1D *) x));
 }
-static void *_p_IDistribution1DTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *)  ((IDistribution1D *) x));
-}
-static void *_p_DepthProbeSimulationTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (Simulation *) ((DepthProbeSimulation *) x));
+static void *_p_IFTDistribution1DTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *)  ((IFTDistribution1D *) x));
 }
 static void *_p_OffSpecSimulationTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (Simulation *)(Simulation2D *) ((OffSpecSimulation *) x));
 }
+static void *_p_SpecularSimulationTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (Simulation *) ((SpecularSimulation *) x));
+}
+static void *_p_DepthProbeSimulationTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (Simulation *) ((DepthProbeSimulation *) x));
+}
 static void *_p_GISASSimulationTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (Simulation *)(Simulation2D *) ((GISASSimulation *) x));
 }
 static void *_p_SimulationTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *)  ((Simulation *) x));
 }
-static void *_p_SpecularSimulationTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (Simulation *) ((SpecularSimulation *) x));
-}
 static void *_p_FormFactorConeTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorCone *) x));
 }
@@ -136127,12 +136137,12 @@ static void *_p_FTDistribution1DGateTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM
 static void *_p_ProfileRipple1To_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((ProfileRipple1 *) x));
 }
-static void *_p_FormFactorPolygonalPrismTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolygonalPrism *) x));
-}
 static void *_p_FormFactorLongBoxGaussTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLongBoxGauss *) x));
 }
+static void *_p_FormFactorPolygonalPrismTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolygonalPrism *) x));
+}
 static void *_p_ProfileRipple2To_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((ProfileRipple2 *) x));
 }
@@ -136142,8 +136152,8 @@ static void *_p_FormFactorPrism3To_p_ICloneable(void *x, int *SWIGUNUSEDPARM(new
 static void *_p_FormFactorHemiEllipsoidTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorHemiEllipsoid *) x));
 }
-static void *_p_RangedDistributionLorentzTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (RangedDistribution *) ((RangedDistributionLorentz *) x));
+static void *_p_FormFactorLorentzTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLorentz *) x));
 }
 static void *_p_FormFactorRipple2LorentzTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Lorentz *) x));
@@ -136151,14 +136161,14 @@ static void *_p_FormFactorRipple2LorentzTo_p_ICloneable(void *x, int *SWIGUNUSED
 static void *_p_FormFactorRipple1LorentzTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple1 *) ((FormFactorRipple1Lorentz *) x));
 }
-static void *_p_DistributionLorentzTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (IDistribution1D *) ((DistributionLorentz *) x));
-}
 static void *_p_FormFactorLongBoxLorentzTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLongBoxLorentz *) x));
 }
-static void *_p_FormFactorLorentzTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLorentz *) x));
+static void *_p_RangedDistributionLorentzTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (RangedDistribution *) ((RangedDistributionLorentz *) x));
+}
+static void *_p_DistributionLorentzTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *) (IDistribution1D *) ((DistributionLorentz *) x));
 }
 static void *_p_FormFactorRipple1BoxTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple1 *) ((FormFactorRipple1Box *) x));
@@ -136193,12 +136203,12 @@ static void *_p_IResolutionFunction2DTo_p_ICloneable(void *x, int *SWIGUNUSEDPAR
 static void *_p_Simulation2DTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (Simulation *) ((Simulation2D *) x));
 }
-static void *_p_IFTDistribution2DTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ICloneable *)  ((IFTDistribution2D *) x));
-}
 static void *_p_IFTDecayFunction2DTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *)  ((IFTDecayFunction2D *) x));
 }
+static void *_p_IFTDistribution2DTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ICloneable *)  ((IFTDistribution2D *) x));
+}
 static void *_p_EllipseTo_p_ICloneable(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ICloneable *) (IShape2D *) ((Ellipse *) x));
 }
@@ -136280,50 +136290,50 @@ static void *_p_ConstantBackgroundTo_p_IParameterized(void *x, int *SWIGUNUSEDPA
 static void *_p_PoissonNoiseBackgroundTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IBackground *) ((PoissonNoiseBackground *) x));
 }
+static void *_p_MultiLayerTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *) ((MultiLayer *) x));
+}
 static void *_p_FormFactorSphereGaussianRadiusTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorSphereGaussianRadius *) x));
 }
 static void *_p_FormFactorSphereLogNormalRadiusTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorSphereLogNormalRadius *) x));
 }
-static void *_p_MultiLayerTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *) ((MultiLayer *) x));
+static void *_p_ParticleDistributionTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IAbstractParticle *) ((ParticleDistribution *) x));
 }
 static void *_p_ParameterDistributionTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *)  ((ParameterDistribution *) x));
 }
-static void *_p_ParticleDistributionTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IAbstractParticle *) ((ParticleDistribution *) x));
-}
 static void *_p_FTDecayFunction1DGaussTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDecayFunction1D *) ((FTDecayFunction1DGauss *) x));
 }
 static void *_p_FTDistribution1DGaussTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDistribution1D *) ((FTDistribution1DGauss *) x));
 }
-static void *_p_IDetector2DTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(IDetector *) ((IDetector2D *) x));
-}
 static void *_p_InterferenceFunctionNoneTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunctionNone *) x));
 }
-static void *_p_FormFactorHemiEllipsoidTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorHemiEllipsoid *) x));
+static void *_p_IDetector2DTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(IDetector *) ((IDetector2D *) x));
+}
+static void *_p_ParticleLayoutTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(ILayout *) ((ParticleLayout *) x));
 }
 static void *_p_ILayoutTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *) ((ILayout *) x));
 }
-static void *_p_ParticleLayoutTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(ILayout *) ((ParticleLayout *) x));
+static void *_p_FormFactorHemiEllipsoidTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorHemiEllipsoid *) x));
 }
-static void *_p_IntensityScaleAndShiftNormalizerTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(IIntensityNormalizer *)(IntensityNormalizer *) ((IntensityScaleAndShiftNormalizer *) x));
+static void *_p_IIntensityNormalizerTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *) ((IIntensityNormalizer *) x));
 }
 static void *_p_IntensityNormalizerTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IIntensityNormalizer *) ((IntensityNormalizer *) x));
 }
-static void *_p_IIntensityNormalizerTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *) ((IIntensityNormalizer *) x));
+static void *_p_IntensityScaleAndShiftNormalizerTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(IIntensityNormalizer *)(IntensityNormalizer *) ((IntensityScaleAndShiftNormalizer *) x));
 }
 static void *_p_INodeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *)  ((INode *) x));
@@ -136343,26 +136353,26 @@ static void *_p_RectangularDetectorTo_p_IParameterized(void *x, int *SWIGUNUSEDP
 static void *_p_FormFactorRipple2BoxTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Box *) x));
 }
-static void *_p_IPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *) ((IPeakShape *) x));
+static void *_p_VonMisesGaussPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IPeakShape *) ((VonMisesGaussPeakShape *) x));
 }
-static void *_p_IsotropicGaussPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IPeakShape *) ((IsotropicGaussPeakShape *) x));
+static void *_p_VonMisesFisherGaussPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IPeakShape *) ((VonMisesFisherGaussPeakShape *) x));
 }
-static void *_p_IsotropicLorentzPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IPeakShape *) ((IsotropicLorentzPeakShape *) x));
+static void *_p_LorentzFisherPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IPeakShape *) ((LorentzFisherPeakShape *) x));
 }
 static void *_p_GaussFisherPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IPeakShape *) ((GaussFisherPeakShape *) x));
 }
-static void *_p_LorentzFisherPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IPeakShape *) ((LorentzFisherPeakShape *) x));
+static void *_p_IsotropicLorentzPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IPeakShape *) ((IsotropicLorentzPeakShape *) x));
 }
-static void *_p_VonMisesFisherGaussPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IPeakShape *) ((VonMisesFisherGaussPeakShape *) x));
+static void *_p_IsotropicGaussPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IPeakShape *) ((IsotropicGaussPeakShape *) x));
 }
-static void *_p_VonMisesGaussPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IPeakShape *) ((VonMisesGaussPeakShape *) x));
+static void *_p_IPeakShapeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *) ((IPeakShape *) x));
 }
 static void *_p_FormFactorPrism3To_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolygonalPrism *) ((FormFactorPrism3 *) x));
@@ -136370,42 +136380,42 @@ static void *_p_FormFactorPrism3To_p_IParameterized(void *x, int *SWIGUNUSEDPARM
 static void *_p_DistributionTrapezoidTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IDistribution1D *) ((DistributionTrapezoid *) x));
 }
-static void *_p_FormFactorIcosahedronTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorIcosahedron *) x));
-}
-static void *_p_FormFactorDodecahedronTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorDodecahedron *) x));
+static void *_p_FormFactorPolyhedronTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolyhedron *) x));
 }
 static void *_p_FormFactorCuboctahedronTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorCuboctahedron *) x));
 }
-static void *_p_FormFactorPolyhedronTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolyhedron *) x));
+static void *_p_FormFactorDodecahedronTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorDodecahedron *) x));
+}
+static void *_p_FormFactorIcosahedronTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorIcosahedron *) x));
 }
 static void *_p_FormFactorTetrahedronTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorTetrahedron *) x));
 }
-static void *_p_FormFactorDebyeBuecheTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorDebyeBueche *) x));
-}
 static void *_p_FormFactorPrism6To_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolygonalPrism *) ((FormFactorPrism6 *) x));
 }
+static void *_p_FormFactorDebyeBuecheTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorDebyeBueche *) x));
+}
 static void *_p_SimulationTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *) ((Simulation *) x));
 }
 static void *_p_GISASSimulationTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(Simulation *)(Simulation2D *) ((GISASSimulation *) x));
 }
-static void *_p_OffSpecSimulationTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(Simulation *)(Simulation2D *) ((OffSpecSimulation *) x));
-}
 static void *_p_DepthProbeSimulationTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(Simulation *) ((DepthProbeSimulation *) x));
 }
 static void *_p_SpecularSimulationTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(Simulation *) ((SpecularSimulation *) x));
 }
+static void *_p_OffSpecSimulationTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(Simulation *)(Simulation2D *) ((OffSpecSimulation *) x));
+}
 static void *_p_FTDistribution2DConeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDistribution2D *) ((FTDistribution2DCone *) x));
 }
@@ -136430,11 +136440,14 @@ static void *_p_ISampleTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemor
 static void *_p_FormFactorPolygonalSurfaceTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolygonalSurface *) x));
 }
+static void *_p_FormFactorPolygonalPrismTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolygonalPrism *) x));
+}
 static void *_p_FormFactorLongBoxGaussTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLongBoxGauss *) x));
 }
-static void *_p_FormFactorPolygonalPrismTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolygonalPrism *) x));
+static void *_p_InterferenceFunctionHardDiskTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunctionHardDisk *) x));
 }
 static void *_p_FTDistribution2DGateTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDistribution2D *) ((FTDistribution2DGate *) x));
@@ -136442,32 +136455,23 @@ static void *_p_FTDistribution2DGateTo_p_IParameterized(void *x, int *SWIGUNUSED
 static void *_p_DistributionLogNormalTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IDistribution1D *) ((DistributionLogNormal *) x));
 }
-static void *_p_InterferenceFunctionHardDiskTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunctionHardDisk *) x));
-}
 static void *_p_FormFactorRipple1BoxTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple1 *) ((FormFactorRipple1Box *) x));
 }
 static void *_p_InstrumentTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *) ((Instrument *) x));
 }
-static void *_p_FTDecayFunction1DVoigtTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(IFTDecayFunction1D *) ((FTDecayFunction1DVoigt *) x));
-}
 static void *_p_FTDistribution1DVoigtTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDistribution1D *) ((FTDistribution1DVoigt *) x));
 }
-static void *_p_IRotationTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *) ((IRotation *) x));
+static void *_p_FTDecayFunction1DVoigtTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(IFTDecayFunction1D *) ((FTDecayFunction1DVoigt *) x));
 }
 static void *_p_IdentityRotationTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IRotation *) ((IdentityRotation *) x));
 }
-static void *_p_FormFactorFullSpheroidTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorFullSpheroid *) x));
-}
-static void *_p_FormFactorTruncatedSpheroidTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorTruncatedSpheroid *) x));
+static void *_p_IRotationTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *) ((IRotation *) x));
 }
 static void *_p_FootprintGaussTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFootprintFactor *) ((FootprintGauss *) x));
@@ -136475,30 +136479,36 @@ static void *_p_FootprintGaussTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(n
 static void *_p_RotationXTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IRotation *) ((RotationX *) x));
 }
+static void *_p_FormFactorFullSpheroidTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorFullSpheroid *) x));
+}
+static void *_p_FormFactorTruncatedSpheroidTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorTruncatedSpheroid *) x));
+}
 static void *_p_FTDistribution2DGaussTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDistribution2D *) ((FTDistribution2DGauss *) x));
 }
 static void *_p_FTDecayFunction2DGaussTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDecayFunction2D *) ((FTDecayFunction2DGauss *) x));
 }
+static void *_p_RotationYTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IRotation *) ((RotationY *) x));
+}
 static void *_p_FormFactorCantellatedCubeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorCantellatedCube *) x));
 }
 static void *_p_FormFactorTruncatedCubeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorTruncatedCube *) x));
 }
-static void *_p_RotationYTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IRotation *) ((RotationY *) x));
-}
 static void *_p_RotationZTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IRotation *) ((RotationZ *) x));
 }
-static void *_p_FormFactorGaussTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorGauss *) x));
-}
 static void *_p_FormFactorRipple2GaussTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Gauss *) x));
 }
+static void *_p_FormFactorGaussTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorGauss *) x));
+}
 static void *_p_IFormFactorBornTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *) ((IFormFactorBorn *) x));
 }
@@ -136517,14 +136527,11 @@ static void *_p_IAbstractParticleTo_p_IParameterized(void *x, int *SWIGUNUSEDPAR
 static void *_p_IParticleTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IAbstractParticle *) ((IParticle *) x));
 }
-static void *_p_Lattice2DTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *) ((Lattice2D *) x));
-}
 static void *_p_ParticleTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IAbstractParticle *)(IParticle *) ((Particle *) x));
 }
-static void *_p_DistributionGateTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(IDistribution1D *) ((DistributionGate *) x));
+static void *_p_Lattice2DTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *) ((Lattice2D *) x));
 }
 static void *_p_IDistribution1DTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *) ((IDistribution1D *) x));
@@ -136535,6 +136542,9 @@ static void *_p_IFTDecayFunction1DTo_p_IParameterized(void *x, int *SWIGUNUSEDPA
 static void *_p_IFTDistribution1DTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *) ((IFTDistribution1D *) x));
 }
+static void *_p_DistributionGateTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(IDistribution1D *) ((DistributionGate *) x));
+}
 static void *_p_FormFactorConeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorCone *) x));
 }
@@ -136547,21 +136557,21 @@ static void *_p_LayerTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)
 static void *_p_ProfileRipple1To_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((ProfileRipple1 *) x));
 }
-static void *_p_FormFactorPyramidTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorPyramid *) x));
+static void *_p_ProfileRipple2To_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((ProfileRipple2 *) x));
 }
 static void *_p_FormFactorAnisoPyramidTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorAnisoPyramid *) x));
 }
-static void *_p_ProfileRipple2To_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((ProfileRipple2 *) x));
-}
-static void *_p_FormFactorEllipsoidalCylinderTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorEllipsoidalCylinder *) x));
+static void *_p_FormFactorPyramidTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorPyramid *) x));
 }
 static void *_p_FormFactorCylinderTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorCylinder *) x));
 }
+static void *_p_FormFactorEllipsoidalCylinderTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorEllipsoidalCylinder *) x));
+}
 static void *_p_DistributionGaussianTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IDistribution1D *) ((DistributionGaussian *) x));
 }
@@ -136571,17 +136581,11 @@ static void *_p_ResolutionFunction2DGaussianTo_p_IParameterized(void *x, int *SW
 static void *_p_IFootprintFactorTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *) ((IFootprintFactor *) x));
 }
-static void *_p_BeamTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *) ((Beam *) x));
-}
 static void *_p_ParticleCompositionTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IAbstractParticle *)(IParticle *) ((ParticleComposition *) x));
 }
-static void *_p_FormFactorSphereUniformRadiusTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorSphereUniformRadius *) x));
-}
-static void *_p_DistributionCosineTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(IDistribution1D *) ((DistributionCosine *) x));
+static void *_p_BeamTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *) ((Beam *) x));
 }
 static void *_p_FTDistribution1DCosineTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDistribution1D *) ((FTDistribution1DCosine *) x));
@@ -136589,12 +136593,18 @@ static void *_p_FTDistribution1DCosineTo_p_IParameterized(void *x, int *SWIGUNUS
 static void *_p_FTDistribution1DGateTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDistribution1D *) ((FTDistribution1DGate *) x));
 }
+static void *_p_DistributionCosineTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(IDistribution1D *) ((DistributionCosine *) x));
+}
 static void *_p_FTDistribution2DVoigtTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDistribution2D *) ((FTDistribution2DVoigt *) x));
 }
 static void *_p_FTDecayFunction2DVoigtTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDecayFunction2D *) ((FTDecayFunction2DVoigt *) x));
 }
+static void *_p_FTDistribution2DCauchyTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(IFTDistribution2D *) ((FTDistribution2DCauchy *) x));
+}
 static void *_p_FTDecayFunction1DCauchyTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDecayFunction1D *) ((FTDecayFunction1DCauchy *) x));
 }
@@ -136604,9 +136614,6 @@ static void *_p_FTDecayFunction2DCauchyTo_p_IParameterized(void *x, int *SWIGUNU
 static void *_p_FTDistribution1DCauchyTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDistribution1D *) ((FTDistribution1DCauchy *) x));
 }
-static void *_p_FTDistribution2DCauchyTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(IFTDistribution2D *) ((FTDistribution2DCauchy *) x));
-}
 static void *_p_IInterferenceFunctionTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *) ((IInterferenceFunction *) x));
 }
@@ -136631,26 +136638,29 @@ static void *_p_FormFactorDotTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(ne
 static void *_p_LayerRoughnessTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *) ((LayerRoughness *) x));
 }
+static void *_p_InterferenceFunctionRadialParaCrystalTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunctionRadialParaCrystal *) x));
+}
+static void *_p_InterferenceFunction2DParaCrystalTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunction2DParaCrystal *) x));
+}
 static void *_p_FormFactorCrystalTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *) ((FormFactorCrystal *) x));
 }
 static void *_p_CrystalTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IClusteredParticles *) ((Crystal *) x));
 }
-static void *_p_InterferenceFunction2DParaCrystalTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunction2DParaCrystal *) x));
-}
-static void *_p_InterferenceFunctionRadialParaCrystalTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunctionRadialParaCrystal *) x));
-}
 static void *_p_MesoCrystalTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IAbstractParticle *)(IParticle *) ((MesoCrystal *) x));
 }
+static void *_p_IFTDistribution2DTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *) ((IFTDistribution2D *) x));
+}
 static void *_p_IFTDecayFunction2DTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *) ((IFTDecayFunction2D *) x));
 }
-static void *_p_IFTDistribution2DTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *) ((IFTDistribution2D *) x));
+static void *_p_FormFactorHollowSphereTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorHollowSphere *) x));
 }
 static void *_p_Simulation2DTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(Simulation *) ((Simulation2D *) x));
@@ -136661,38 +136671,38 @@ static void *_p_IResolutionFunction2DTo_p_IParameterized(void *x, int *SWIGUNUSE
 static void *_p_FormFactorWeightedTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *) ((FormFactorWeighted *) x));
 }
-static void *_p_FormFactorRipple1LorentzTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple1 *) ((FormFactorRipple1Lorentz *) x));
+static void *_p_InterferenceFunctionFinite3DLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunctionFinite3DLattice *) x));
 }
-static void *_p_FormFactorLorentzTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLorentz *) x));
+static void *_p_InterferenceFunctionFinite2DLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunctionFinite2DLattice *) x));
 }
-static void *_p_FormFactorLongBoxLorentzTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLongBoxLorentz *) x));
+static void *_p_InterferenceFunction3DLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunction3DLattice *) x));
 }
-static void *_p_DistributionLorentzTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(IDistribution1D *) ((DistributionLorentz *) x));
+static void *_p_InterferenceFunction2DSuperLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunction2DSuperLattice *) x));
 }
-static void *_p_FormFactorRipple2LorentzTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Lorentz *) x));
+static void *_p_InterferenceFunction2DLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunction2DLattice *) x));
 }
 static void *_p_InterferenceFunction1DLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunction1DLattice *) x));
 }
-static void *_p_InterferenceFunction2DLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunction2DLattice *) x));
+static void *_p_DistributionLorentzTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(IDistribution1D *) ((DistributionLorentz *) x));
 }
-static void *_p_InterferenceFunction2DSuperLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunction2DSuperLattice *) x));
+static void *_p_FormFactorLongBoxLorentzTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLongBoxLorentz *) x));
 }
-static void *_p_InterferenceFunction3DLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunction3DLattice *) x));
+static void *_p_FormFactorRipple1LorentzTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple1 *) ((FormFactorRipple1Lorentz *) x));
 }
-static void *_p_InterferenceFunctionFinite2DLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunctionFinite2DLattice *) x));
+static void *_p_FormFactorRipple2LorentzTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Lorentz *) x));
 }
-static void *_p_InterferenceFunctionFinite3DLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(ISample *)(IInterferenceFunction *) ((InterferenceFunctionFinite3DLattice *) x));
+static void *_p_FormFactorLorentzTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLorentz *) x));
 }
 static void *_p_LatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *) ((Lattice *) x));
@@ -136706,12 +136716,12 @@ static void *_p_SquareLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(ne
 static void *_p_HexagonalLatticeTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(Lattice2D *) ((HexagonalLattice *) x));
 }
-static void *_p_FTDecayFunction1DTriangleTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParameterized *) (INode *)(IFTDecayFunction1D *) ((FTDecayFunction1DTriangle *) x));
-}
 static void *_p_FTDistribution1DTriangleTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(IFTDistribution1D *) ((FTDistribution1DTriangle *) x));
 }
+static void *_p_FTDecayFunction1DTriangleTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParameterized *) (INode *)(IFTDecayFunction1D *) ((FTDecayFunction1DTriangle *) x));
+}
 static void *_p_RotationEulerTo_p_IParameterized(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameterized *) (INode *)(ISample *)(IRotation *) ((RotationEuler *) x));
 }
@@ -136733,12 +136743,12 @@ static void *_p_FormFactorPolygonalPrismTo_p_IFormFactor(void *x, int *SWIGUNUSE
 static void *_p_FormFactorFullSpheroidTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactor *) (IFormFactorBorn *) ((FormFactorFullSpheroid *) x));
 }
-static void *_p_FormFactorDebyeBuecheTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactor *) (IFormFactorBorn *) ((FormFactorDebyeBueche *) x));
-}
 static void *_p_FormFactorTruncatedSpheroidTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactor *) (IFormFactorBorn *) ((FormFactorTruncatedSpheroid *) x));
 }
+static void *_p_FormFactorDebyeBuecheTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactor *) (IFormFactorBorn *) ((FormFactorDebyeBueche *) x));
+}
 static void *_p_FormFactorRipple1BoxTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactor *) (IFormFactorBorn *)(ProfileRipple1 *) ((FormFactorRipple1Box *) x));
 }
@@ -136817,26 +136827,29 @@ static void *_p_FormFactorSphereLogNormalRadiusTo_p_IFormFactor(void *x, int *SW
 static void *_p_IFormFactorBornTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactor *)  ((IFormFactorBorn *) x));
 }
+static void *_p_FormFactorHollowSphereTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactor *) (IFormFactorBorn *) ((FormFactorHollowSphere *) x));
+}
 static void *_p_FormFactorDotTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactor *) (IFormFactorBorn *) ((FormFactorDot *) x));
 }
 static void *_p_FormFactorRipple2BoxTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactor *) (IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Box *) x));
 }
-static void *_p_FormFactorLorentzTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactor *) (IFormFactorBorn *) ((FormFactorLorentz *) x));
+static void *_p_FormFactorRipple1LorentzTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactor *) (IFormFactorBorn *)(ProfileRipple1 *) ((FormFactorRipple1Lorentz *) x));
 }
 static void *_p_FormFactorLongBoxLorentzTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactor *) (IFormFactorBorn *) ((FormFactorLongBoxLorentz *) x));
 }
-static void *_p_FormFactorRipple1LorentzTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactor *) (IFormFactorBorn *)(ProfileRipple1 *) ((FormFactorRipple1Lorentz *) x));
+static void *_p_FormFactorWeightedTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactor *)  ((FormFactorWeighted *) x));
 }
 static void *_p_FormFactorRipple2LorentzTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactor *) (IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Lorentz *) x));
 }
-static void *_p_FormFactorWeightedTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactor *)  ((FormFactorWeighted *) x));
+static void *_p_FormFactorLorentzTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactor *) (IFormFactorBorn *) ((FormFactorLorentz *) x));
 }
 static void *_p_ProfileBarTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactor *) (IFormFactorBorn *) ((ProfileBar *) x));
@@ -136850,29 +136863,26 @@ static void *_p_FormFactorAnisoPyramidTo_p_IFormFactor(void *x, int *SWIGUNUSEDP
 static void *_p_FormFactorPrism3To_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactor *) (IFormFactorBorn *)(FormFactorPolygonalPrism *) ((FormFactorPrism3 *) x));
 }
-static void *_p_FormFactorSphereUniformRadiusTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactor *) (IFormFactorBorn *) ((FormFactorSphereUniformRadius *) x));
+static void *_p_FormFactorRipple2GaussTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFormFactor *) (IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Gauss *) x));
 }
 static void *_p_FormFactorGaussTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFormFactor *) (IFormFactorBorn *) ((FormFactorGauss *) x));
 }
-static void *_p_FormFactorRipple2GaussTo_p_IFormFactor(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFormFactor *) (IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Gauss *) x));
-}
 static void *_p_SampleBuilderFactoryTo_p_IFactoryT_std__string_IMultiLayerBuilder_t(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFactory< std::string,IMultiLayerBuilder > *)  ((SampleBuilderFactory *) x));
 }
 static void *_p_FormFactorBoxTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolygonalPrism *) ((FormFactorBox *) x));
 }
-static void *_p_FormFactorSphereLogNormalRadiusTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorSphereLogNormalRadius *) x));
+static void *_p_MultiLayerTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *)  ((MultiLayer *) x));
 }
 static void *_p_FormFactorSphereGaussianRadiusTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorSphereGaussianRadius *) x));
 }
-static void *_p_MultiLayerTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *)  ((MultiLayer *) x));
+static void *_p_FormFactorSphereLogNormalRadiusTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorSphereLogNormalRadius *) x));
 }
 static void *_p_ParticleDistributionTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IAbstractParticle *) ((ParticleDistribution *) x));
@@ -136880,75 +136890,75 @@ static void *_p_ParticleDistributionTo_p_ISample(void *x, int *SWIGUNUSEDPARM(ne
 static void *_p_InterferenceFunctionNoneTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunctionNone *) x));
 }
+static void *_p_ParticleLayoutTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (ILayout *) ((ParticleLayout *) x));
+}
 static void *_p_ILayoutTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *)  ((ILayout *) x));
 }
 static void *_p_FormFactorHemiEllipsoidTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorHemiEllipsoid *) x));
 }
-static void *_p_ParticleLayoutTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (ILayout *) ((ParticleLayout *) x));
-}
 static void *_p_FormFactorRipple2BoxTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Box *) x));
 }
-static void *_p_VonMisesGaussPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IPeakShape *) ((VonMisesGaussPeakShape *) x));
+static void *_p_IPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *)  ((IPeakShape *) x));
 }
-static void *_p_VonMisesFisherGaussPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IPeakShape *) ((VonMisesFisherGaussPeakShape *) x));
+static void *_p_IsotropicGaussPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IPeakShape *) ((IsotropicGaussPeakShape *) x));
 }
-static void *_p_LorentzFisherPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IPeakShape *) ((LorentzFisherPeakShape *) x));
+static void *_p_IsotropicLorentzPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IPeakShape *) ((IsotropicLorentzPeakShape *) x));
 }
 static void *_p_GaussFisherPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IPeakShape *) ((GaussFisherPeakShape *) x));
 }
-static void *_p_IsotropicLorentzPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IPeakShape *) ((IsotropicLorentzPeakShape *) x));
+static void *_p_LorentzFisherPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IPeakShape *) ((LorentzFisherPeakShape *) x));
 }
-static void *_p_IsotropicGaussPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IPeakShape *) ((IsotropicGaussPeakShape *) x));
+static void *_p_VonMisesFisherGaussPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IPeakShape *) ((VonMisesFisherGaussPeakShape *) x));
 }
-static void *_p_IPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *)  ((IPeakShape *) x));
+static void *_p_VonMisesGaussPeakShapeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IPeakShape *) ((VonMisesGaussPeakShape *) x));
 }
 static void *_p_FormFactorPrism3To_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolygonalPrism *) ((FormFactorPrism3 *) x));
 }
-static void *_p_FormFactorTetrahedronTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorTetrahedron *) x));
+static void *_p_FormFactorIcosahedronTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorIcosahedron *) x));
 }
-static void *_p_FormFactorPolyhedronTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorPolyhedron *) x));
+static void *_p_FormFactorDodecahedronTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorDodecahedron *) x));
 }
 static void *_p_FormFactorCuboctahedronTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorCuboctahedron *) x));
 }
-static void *_p_FormFactorDodecahedronTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorDodecahedron *) x));
-}
-static void *_p_FormFactorIcosahedronTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorIcosahedron *) x));
+static void *_p_FormFactorPolyhedronTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorPolyhedron *) x));
 }
-static void *_p_FormFactorDebyeBuecheTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorDebyeBueche *) x));
+static void *_p_FormFactorTetrahedronTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorTetrahedron *) x));
 }
 static void *_p_FormFactorPrism6To_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolygonalPrism *) ((FormFactorPrism6 *) x));
 }
+static void *_p_FormFactorDebyeBuecheTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorDebyeBueche *) x));
+}
 static void *_p_ParticleCoreShellTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IAbstractParticle *)(IParticle *) ((ParticleCoreShell *) x));
 }
 static void *_p_ProfileBarTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((ProfileBar *) x));
 }
-static void *_p_FormFactorTruncatedSphereTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorTruncatedSphere *) x));
-}
 static void *_p_FormFactorFullSphereTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorFullSphere *) x));
 }
+static void *_p_FormFactorTruncatedSphereTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorTruncatedSphere *) x));
+}
 static void *_p_IFormFactorTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *)  ((IFormFactor *) x));
 }
@@ -136973,24 +136983,24 @@ static void *_p_IdentityRotationTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmem
 static void *_p_IRotationTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *)  ((IRotation *) x));
 }
+static void *_p_FormFactorFullSpheroidTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorFullSpheroid *) x));
+}
 static void *_p_RotationXTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IRotation *) ((RotationX *) x));
 }
 static void *_p_FormFactorTruncatedSpheroidTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorTruncatedSpheroid *) x));
 }
-static void *_p_FormFactorFullSpheroidTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorFullSpheroid *) x));
-}
-static void *_p_FormFactorTruncatedCubeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorTruncatedCube *) x));
-}
 static void *_p_FormFactorCantellatedCubeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorCantellatedCube *) x));
 }
 static void *_p_RotationYTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IRotation *) ((RotationY *) x));
 }
+static void *_p_FormFactorTruncatedCubeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorTruncatedCube *) x));
+}
 static void *_p_RotationZTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IRotation *) ((RotationZ *) x));
 }
@@ -137036,18 +137046,15 @@ static void *_p_FormFactorAnisoPyramidTo_p_ISample(void *x, int *SWIGUNUSEDPARM(
 static void *_p_ProfileRipple2To_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((ProfileRipple2 *) x));
 }
-static void *_p_FormFactorCylinderTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorCylinder *) x));
-}
 static void *_p_FormFactorEllipsoidalCylinderTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorEllipsoidalCylinder *) x));
 }
+static void *_p_FormFactorCylinderTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorCylinder *) x));
+}
 static void *_p_ParticleCompositionTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IAbstractParticle *)(IParticle *) ((ParticleComposition *) x));
 }
-static void *_p_FormFactorSphereUniformRadiusTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorSphereUniformRadius *) x));
-}
 static void *_p_IInterferenceFunctionTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *)  ((IInterferenceFunction *) x));
 }
@@ -137069,8 +137076,8 @@ static void *_p_FormFactorDotTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory
 static void *_p_LayerRoughnessTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *)  ((LayerRoughness *) x));
 }
-static void *_p_InterferenceFunction2DParaCrystalTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunction2DParaCrystal *) x));
+static void *_p_InterferenceFunctionRadialParaCrystalTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunctionRadialParaCrystal *) x));
 }
 static void *_p_CrystalTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IClusteredParticles *) ((Crystal *) x));
@@ -137078,44 +137085,47 @@ static void *_p_CrystalTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
 static void *_p_FormFactorCrystalTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *) ((FormFactorCrystal *) x));
 }
-static void *_p_InterferenceFunctionRadialParaCrystalTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunctionRadialParaCrystal *) x));
-}
 static void *_p_MesoCrystalTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IAbstractParticle *)(IParticle *) ((MesoCrystal *) x));
 }
+static void *_p_InterferenceFunction2DParaCrystalTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunction2DParaCrystal *) x));
+}
+static void *_p_FormFactorHollowSphereTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorHollowSphere *) x));
+}
 static void *_p_FormFactorWeightedTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *) ((FormFactorWeighted *) x));
 }
-static void *_p_FormFactorRipple2LorentzTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Lorentz *) x));
-}
 static void *_p_FormFactorRipple1LorentzTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(ProfileRipple1 *) ((FormFactorRipple1Lorentz *) x));
 }
 static void *_p_FormFactorLongBoxLorentzTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorLongBoxLorentz *) x));
 }
-static void *_p_FormFactorLorentzTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorLorentz *) x));
-}
 static void *_p_InterferenceFunctionFinite3DLatticeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunctionFinite3DLattice *) x));
 }
-static void *_p_InterferenceFunctionFinite2DLatticeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunctionFinite2DLattice *) x));
+static void *_p_InterferenceFunction1DLatticeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunction1DLattice *) x));
 }
-static void *_p_InterferenceFunction3DLatticeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunction3DLattice *) x));
+static void *_p_InterferenceFunction2DLatticeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunction2DLattice *) x));
 }
 static void *_p_InterferenceFunction2DSuperLatticeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunction2DSuperLattice *) x));
 }
-static void *_p_InterferenceFunction2DLatticeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunction2DLattice *) x));
+static void *_p_InterferenceFunction3DLatticeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunction3DLattice *) x));
 }
-static void *_p_InterferenceFunction1DLatticeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunction1DLattice *) x));
+static void *_p_InterferenceFunctionFinite2DLatticeTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IInterferenceFunction *) ((InterferenceFunctionFinite2DLattice *) x));
+}
+static void *_p_FormFactorRipple2LorentzTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Lorentz *) x));
+}
+static void *_p_FormFactorLorentzTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((ISample *) (IFormFactor *)(IFormFactorBorn *) ((FormFactorLorentz *) x));
 }
 static void *_p_RotationEulerTo_p_ISample(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((ISample *) (IRotation *) ((RotationEuler *) x));
@@ -137132,15 +137142,15 @@ static void *_p_ConstantBackgroundTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmem
 static void *_p_PoissonNoiseBackgroundTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IBackground *) ((PoissonNoiseBackground *) x));
 }
+static void *_p_MultiLayerTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *) ((MultiLayer *) x));
+}
 static void *_p_FormFactorSphereGaussianRadiusTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorSphereGaussianRadius *) x));
 }
 static void *_p_FormFactorSphereLogNormalRadiusTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorSphereLogNormalRadius *) x));
 }
-static void *_p_MultiLayerTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *) ((MultiLayer *) x));
-}
 static void *_p_ParticleDistributionTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IAbstractParticle *) ((ParticleDistribution *) x));
 }
@@ -137150,29 +137160,29 @@ static void *_p_FTDecayFunction1DGaussTo_p_INode(void *x, int *SWIGUNUSEDPARM(ne
 static void *_p_FTDistribution1DGaussTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IFTDistribution1D *) ((FTDistribution1DGauss *) x));
 }
-static void *_p_IDetector2DTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (IDetector *) ((IDetector2D *) x));
-}
 static void *_p_InterferenceFunctionNoneTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionNone *) x));
 }
-static void *_p_FormFactorHemiEllipsoidTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorHemiEllipsoid *) x));
+static void *_p_IDetector2DTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (IDetector *) ((IDetector2D *) x));
+}
+static void *_p_ParticleLayoutTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(ILayout *) ((ParticleLayout *) x));
 }
 static void *_p_ILayoutTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *) ((ILayout *) x));
 }
-static void *_p_ParticleLayoutTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(ILayout *) ((ParticleLayout *) x));
+static void *_p_FormFactorHemiEllipsoidTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorHemiEllipsoid *) x));
 }
-static void *_p_IntensityScaleAndShiftNormalizerTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (IIntensityNormalizer *)(IntensityNormalizer *) ((IntensityScaleAndShiftNormalizer *) x));
+static void *_p_IIntensityNormalizerTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *)  ((IIntensityNormalizer *) x));
 }
 static void *_p_IntensityNormalizerTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IIntensityNormalizer *) ((IntensityNormalizer *) x));
 }
-static void *_p_IIntensityNormalizerTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *)  ((IIntensityNormalizer *) x));
+static void *_p_IntensityScaleAndShiftNormalizerTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (IIntensityNormalizer *)(IntensityNormalizer *) ((IntensityScaleAndShiftNormalizer *) x));
 }
 static void *_p_IDetectorTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *)  ((IDetector *) x));
@@ -137189,26 +137199,26 @@ static void *_p_RectangularDetectorTo_p_INode(void *x, int *SWIGUNUSEDPARM(newme
 static void *_p_FormFactorRipple2BoxTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Box *) x));
 }
-static void *_p_IPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *) ((IPeakShape *) x));
+static void *_p_VonMisesGaussPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IPeakShape *) ((VonMisesGaussPeakShape *) x));
 }
-static void *_p_IsotropicGaussPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IPeakShape *) ((IsotropicGaussPeakShape *) x));
+static void *_p_VonMisesFisherGaussPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IPeakShape *) ((VonMisesFisherGaussPeakShape *) x));
 }
-static void *_p_IsotropicLorentzPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IPeakShape *) ((IsotropicLorentzPeakShape *) x));
+static void *_p_LorentzFisherPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IPeakShape *) ((LorentzFisherPeakShape *) x));
 }
 static void *_p_GaussFisherPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IPeakShape *) ((GaussFisherPeakShape *) x));
 }
-static void *_p_LorentzFisherPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IPeakShape *) ((LorentzFisherPeakShape *) x));
+static void *_p_IsotropicLorentzPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IPeakShape *) ((IsotropicLorentzPeakShape *) x));
 }
-static void *_p_VonMisesFisherGaussPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IPeakShape *) ((VonMisesFisherGaussPeakShape *) x));
+static void *_p_IsotropicGaussPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IPeakShape *) ((IsotropicGaussPeakShape *) x));
 }
-static void *_p_VonMisesGaussPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IPeakShape *) ((VonMisesGaussPeakShape *) x));
+static void *_p_IPeakShapeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *) ((IPeakShape *) x));
 }
 static void *_p_FormFactorPrism3To_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolygonalPrism *) ((FormFactorPrism3 *) x));
@@ -137216,42 +137226,42 @@ static void *_p_FormFactorPrism3To_p_INode(void *x, int *SWIGUNUSEDPARM(newmemor
 static void *_p_DistributionTrapezoidTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IDistribution1D *) ((DistributionTrapezoid *) x));
 }
-static void *_p_FormFactorIcosahedronTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorIcosahedron *) x));
-}
-static void *_p_FormFactorDodecahedronTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorDodecahedron *) x));
+static void *_p_FormFactorPolyhedronTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolyhedron *) x));
 }
 static void *_p_FormFactorCuboctahedronTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorCuboctahedron *) x));
 }
-static void *_p_FormFactorPolyhedronTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolyhedron *) x));
+static void *_p_FormFactorDodecahedronTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorDodecahedron *) x));
+}
+static void *_p_FormFactorIcosahedronTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorIcosahedron *) x));
 }
 static void *_p_FormFactorTetrahedronTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorTetrahedron *) x));
 }
-static void *_p_FormFactorDebyeBuecheTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorDebyeBueche *) x));
-}
 static void *_p_FormFactorPrism6To_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolygonalPrism *) ((FormFactorPrism6 *) x));
 }
+static void *_p_FormFactorDebyeBuecheTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorDebyeBueche *) x));
+}
 static void *_p_SimulationTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *)  ((Simulation *) x));
 }
 static void *_p_GISASSimulationTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (Simulation *)(Simulation2D *) ((GISASSimulation *) x));
 }
-static void *_p_OffSpecSimulationTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (Simulation *)(Simulation2D *) ((OffSpecSimulation *) x));
-}
 static void *_p_DepthProbeSimulationTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (Simulation *) ((DepthProbeSimulation *) x));
 }
 static void *_p_SpecularSimulationTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (Simulation *) ((SpecularSimulation *) x));
 }
+static void *_p_OffSpecSimulationTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (Simulation *)(Simulation2D *) ((OffSpecSimulation *) x));
+}
 static void *_p_FTDistribution2DConeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IFTDistribution2D *) ((FTDistribution2DCone *) x));
 }
@@ -137276,11 +137286,14 @@ static void *_p_ISampleTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
 static void *_p_FormFactorPolygonalSurfaceTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolygonalSurface *) x));
 }
+static void *_p_FormFactorPolygonalPrismTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolygonalPrism *) x));
+}
 static void *_p_FormFactorLongBoxGaussTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLongBoxGauss *) x));
 }
-static void *_p_FormFactorPolygonalPrismTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorPolygonalPrism *) x));
+static void *_p_InterferenceFunctionHardDiskTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionHardDisk *) x));
 }
 static void *_p_FTDistribution2DGateTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IFTDistribution2D *) ((FTDistribution2DGate *) x));
@@ -137288,26 +137301,29 @@ static void *_p_FTDistribution2DGateTo_p_INode(void *x, int *SWIGUNUSEDPARM(newm
 static void *_p_DistributionLogNormalTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IDistribution1D *) ((DistributionLogNormal *) x));
 }
-static void *_p_InterferenceFunctionHardDiskTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionHardDisk *) x));
-}
 static void *_p_FormFactorRipple1BoxTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple1 *) ((FormFactorRipple1Box *) x));
 }
 static void *_p_InstrumentTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *)  ((Instrument *) x));
 }
+static void *_p_FTDistribution1DVoigtTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (IFTDistribution1D *) ((FTDistribution1DVoigt *) x));
+}
 static void *_p_FTDecayFunction1DVoigtTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IFTDecayFunction1D *) ((FTDecayFunction1DVoigt *) x));
 }
-static void *_p_FTDistribution1DVoigtTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (IFTDistribution1D *) ((FTDistribution1DVoigt *) x));
+static void *_p_IdentityRotationTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IRotation *) ((IdentityRotation *) x));
 }
 static void *_p_IRotationTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *) ((IRotation *) x));
 }
-static void *_p_IdentityRotationTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IRotation *) ((IdentityRotation *) x));
+static void *_p_FootprintGaussTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (IFootprintFactor *) ((FootprintGauss *) x));
+}
+static void *_p_RotationXTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IRotation *) ((RotationX *) x));
 }
 static void *_p_FormFactorFullSpheroidTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorFullSpheroid *) x));
@@ -137315,17 +137331,14 @@ static void *_p_FormFactorFullSpheroidTo_p_INode(void *x, int *SWIGUNUSEDPARM(ne
 static void *_p_FormFactorTruncatedSpheroidTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorTruncatedSpheroid *) x));
 }
-static void *_p_FootprintGaussTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (IFootprintFactor *) ((FootprintGauss *) x));
-}
-static void *_p_RotationXTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IRotation *) ((RotationX *) x));
+static void *_p_FTDistribution2DGaussTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (IFTDistribution2D *) ((FTDistribution2DGauss *) x));
 }
 static void *_p_FTDecayFunction2DGaussTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IFTDecayFunction2D *) ((FTDecayFunction2DGauss *) x));
 }
-static void *_p_FTDistribution2DGaussTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (IFTDistribution2D *) ((FTDistribution2DGauss *) x));
+static void *_p_RotationYTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IRotation *) ((RotationY *) x));
 }
 static void *_p_FormFactorCantellatedCubeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorCantellatedCube *) x));
@@ -137333,9 +137346,6 @@ static void *_p_FormFactorCantellatedCubeTo_p_INode(void *x, int *SWIGUNUSEDPARM
 static void *_p_FormFactorTruncatedCubeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorTruncatedCube *) x));
 }
-static void *_p_RotationYTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IRotation *) ((RotationY *) x));
-}
 static void *_p_RotationZTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IRotation *) ((RotationZ *) x));
 }
@@ -137360,12 +137370,12 @@ static void *_p_IAbstractParticleTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemo
 static void *_p_IParticleTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IAbstractParticle *) ((IParticle *) x));
 }
-static void *_p_Lattice2DTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *)  ((Lattice2D *) x));
-}
 static void *_p_ParticleTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IAbstractParticle *)(IParticle *) ((Particle *) x));
 }
+static void *_p_Lattice2DTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *)  ((Lattice2D *) x));
+}
 static void *_p_DistributionGateTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IDistribution1D *) ((DistributionGate *) x));
 }
@@ -137390,21 +137400,21 @@ static void *_p_LayerTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
 static void *_p_ProfileRipple1To_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((ProfileRipple1 *) x));
 }
-static void *_p_FormFactorPyramidTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorPyramid *) x));
+static void *_p_ProfileRipple2To_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((ProfileRipple2 *) x));
 }
 static void *_p_FormFactorAnisoPyramidTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorAnisoPyramid *) x));
 }
-static void *_p_ProfileRipple2To_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((ProfileRipple2 *) x));
-}
-static void *_p_FormFactorEllipsoidalCylinderTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorEllipsoidalCylinder *) x));
+static void *_p_FormFactorPyramidTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(FormFactorPolyhedron *) ((FormFactorPyramid *) x));
 }
 static void *_p_FormFactorCylinderTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorCylinder *) x));
 }
+static void *_p_FormFactorEllipsoidalCylinderTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorEllipsoidalCylinder *) x));
+}
 static void *_p_DistributionGaussianTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IDistribution1D *) ((DistributionGaussian *) x));
 }
@@ -137414,17 +137424,11 @@ static void *_p_ResolutionFunction2DGaussianTo_p_INode(void *x, int *SWIGUNUSEDP
 static void *_p_IFootprintFactorTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *)  ((IFootprintFactor *) x));
 }
-static void *_p_BeamTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *)  ((Beam *) x));
-}
 static void *_p_ParticleCompositionTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IAbstractParticle *)(IParticle *) ((ParticleComposition *) x));
 }
-static void *_p_FormFactorSphereUniformRadiusTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorSphereUniformRadius *) x));
-}
-static void *_p_DistributionCosineTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (IDistribution1D *) ((DistributionCosine *) x));
+static void *_p_BeamTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *)  ((Beam *) x));
 }
 static void *_p_FTDistribution1DCosineTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IFTDistribution1D *) ((FTDistribution1DCosine *) x));
@@ -137432,12 +137436,18 @@ static void *_p_FTDistribution1DCosineTo_p_INode(void *x, int *SWIGUNUSEDPARM(ne
 static void *_p_FTDistribution1DGateTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IFTDistribution1D *) ((FTDistribution1DGate *) x));
 }
+static void *_p_DistributionCosineTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (IDistribution1D *) ((DistributionCosine *) x));
+}
 static void *_p_FTDistribution2DVoigtTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IFTDistribution2D *) ((FTDistribution2DVoigt *) x));
 }
 static void *_p_FTDecayFunction2DVoigtTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IFTDecayFunction2D *) ((FTDecayFunction2DVoigt *) x));
 }
+static void *_p_FTDistribution2DCauchyTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (IFTDistribution2D *) ((FTDistribution2DCauchy *) x));
+}
 static void *_p_FTDecayFunction1DCauchyTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IFTDecayFunction1D *) ((FTDecayFunction1DCauchy *) x));
 }
@@ -137447,9 +137457,6 @@ static void *_p_FTDecayFunction2DCauchyTo_p_INode(void *x, int *SWIGUNUSEDPARM(n
 static void *_p_FTDistribution1DCauchyTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IFTDistribution1D *) ((FTDistribution1DCauchy *) x));
 }
-static void *_p_FTDistribution2DCauchyTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (IFTDistribution2D *) ((FTDistribution2DCauchy *) x));
-}
 static void *_p_IInterferenceFunctionTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *) ((IInterferenceFunction *) x));
 }
@@ -137474,26 +137481,29 @@ static void *_p_FormFactorDotTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory))
 static void *_p_LayerRoughnessTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *) ((LayerRoughness *) x));
 }
-static void *_p_FormFactorCrystalTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *) ((FormFactorCrystal *) x));
-}
-static void *_p_CrystalTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IClusteredParticles *) ((Crystal *) x));
+static void *_p_InterferenceFunctionRadialParaCrystalTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionRadialParaCrystal *) x));
 }
 static void *_p_InterferenceFunction2DParaCrystalTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction2DParaCrystal *) x));
 }
-static void *_p_InterferenceFunctionRadialParaCrystalTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionRadialParaCrystal *) x));
+static void *_p_CrystalTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IClusteredParticles *) ((Crystal *) x));
+}
+static void *_p_FormFactorCrystalTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *) ((FormFactorCrystal *) x));
 }
 static void *_p_MesoCrystalTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IAbstractParticle *)(IParticle *) ((MesoCrystal *) x));
 }
+static void *_p_IFTDistribution2DTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *)  ((IFTDistribution2D *) x));
+}
 static void *_p_IFTDecayFunction2DTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *)  ((IFTDecayFunction2D *) x));
 }
-static void *_p_IFTDistribution2DTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *)  ((IFTDistribution2D *) x));
+static void *_p_FormFactorHollowSphereTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorHollowSphere *) x));
 }
 static void *_p_Simulation2DTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (Simulation *) ((Simulation2D *) x));
@@ -137504,38 +137514,38 @@ static void *_p_IResolutionFunction2DTo_p_INode(void *x, int *SWIGUNUSEDPARM(new
 static void *_p_FormFactorWeightedTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IFormFactor *) ((FormFactorWeighted *) x));
 }
-static void *_p_FormFactorRipple1LorentzTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple1 *) ((FormFactorRipple1Lorentz *) x));
-}
-static void *_p_FormFactorLorentzTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLorentz *) x));
-}
-static void *_p_FormFactorLongBoxLorentzTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLongBoxLorentz *) x));
-}
 static void *_p_DistributionLorentzTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (IDistribution1D *) ((DistributionLorentz *) x));
 }
-static void *_p_FormFactorRipple2LorentzTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Lorentz *) x));
+static void *_p_InterferenceFunctionFinite3DLatticeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionFinite3DLattice *) x));
 }
-static void *_p_InterferenceFunction1DLatticeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction1DLattice *) x));
+static void *_p_InterferenceFunctionFinite2DLatticeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionFinite2DLattice *) x));
 }
-static void *_p_InterferenceFunction2DLatticeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction2DLattice *) x));
+static void *_p_InterferenceFunction3DLatticeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction3DLattice *) x));
 }
 static void *_p_InterferenceFunction2DSuperLatticeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction2DSuperLattice *) x));
 }
-static void *_p_InterferenceFunction3DLatticeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction3DLattice *) x));
+static void *_p_InterferenceFunction2DLatticeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction2DLattice *) x));
 }
-static void *_p_InterferenceFunctionFinite2DLatticeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionFinite2DLattice *) x));
+static void *_p_InterferenceFunction1DLatticeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunction1DLattice *) x));
 }
-static void *_p_InterferenceFunctionFinite3DLatticeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((INode *) (ISample *)(IInterferenceFunction *) ((InterferenceFunctionFinite3DLattice *) x));
+static void *_p_FormFactorLongBoxLorentzTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLongBoxLorentz *) x));
+}
+static void *_p_FormFactorRipple1LorentzTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple1 *) ((FormFactorRipple1Lorentz *) x));
+}
+static void *_p_FormFactorRipple2LorentzTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *)(ProfileRipple2 *) ((FormFactorRipple2Lorentz *) x));
+}
+static void *_p_FormFactorLorentzTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((INode *) (ISample *)(IFormFactor *)(IFormFactorBorn *) ((FormFactorLorentz *) x));
 }
 static void *_p_LatticeTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *)  ((Lattice *) x));
@@ -137558,18 +137568,6 @@ static void *_p_FTDistribution1DTriangleTo_p_INode(void *x, int *SWIGUNUSEDPARM(
 static void *_p_RotationEulerTo_p_INode(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((INode *) (ISample *)(IRotation *) ((RotationEuler *) x));
 }
-static void *_p_ParticleCompositionTo_p_IParticle(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParticle *)  ((ParticleComposition *) x));
-}
-static void *_p_MesoCrystalTo_p_IParticle(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParticle *)  ((MesoCrystal *) x));
-}
-static void *_p_ParticleTo_p_IParticle(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParticle *)  ((Particle *) x));
-}
-static void *_p_ParticleCoreShellTo_p_IParticle(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IParticle *)  ((ParticleCoreShell *) x));
-}
 static void *_p_ParticleCompositionTo_p_IAbstractParticle(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IAbstractParticle *) (IParticle *) ((ParticleComposition *) x));
 }
@@ -137588,6 +137586,18 @@ static void *_p_ParticleTo_p_IAbstractParticle(void *x, int *SWIGUNUSEDPARM(newm
 static void *_p_ParticleCoreShellTo_p_IAbstractParticle(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IAbstractParticle *) (IParticle *) ((ParticleCoreShell *) x));
 }
+static void *_p_ParticleCompositionTo_p_IParticle(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParticle *)  ((ParticleComposition *) x));
+}
+static void *_p_MesoCrystalTo_p_IParticle(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParticle *)  ((MesoCrystal *) x));
+}
+static void *_p_ParticleTo_p_IParticle(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParticle *)  ((Particle *) x));
+}
+static void *_p_ParticleCoreShellTo_p_IParticle(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IParticle *)  ((ParticleCoreShell *) x));
+}
 static void *_p_RealParameterTo_p_IParameterT_double_t(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IParameter< double > *)  ((RealParameter *) x));
 }
@@ -137624,23 +137634,23 @@ static void *_p_IsGISAXSDetectorTo_p_IDetector2D(void *x, int *SWIGUNUSEDPARM(ne
 static void *_p_RectangularDetectorTo_p_IDetector2D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IDetector2D *)  ((RectangularDetector *) x));
 }
-static void *_p_DistributionCosineTo_p_IDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IDistribution1D *)  ((DistributionCosine *) x));
+static void *_p_FTDistribution1DCauchyTo_p_IFTDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFTDistribution1D *)  ((FTDistribution1DCauchy *) x));
 }
-static void *_p_DistributionLorentzTo_p_IDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IDistribution1D *)  ((DistributionLorentz *) x));
+static void *_p_FTDistribution1DCosineTo_p_IFTDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFTDistribution1D *)  ((FTDistribution1DCosine *) x));
 }
-static void *_p_DistributionGaussianTo_p_IDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IDistribution1D *)  ((DistributionGaussian *) x));
+static void *_p_FTDistribution1DGaussTo_p_IFTDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFTDistribution1D *)  ((FTDistribution1DGauss *) x));
 }
-static void *_p_DistributionGateTo_p_IDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IDistribution1D *)  ((DistributionGate *) x));
+static void *_p_FTDistribution1DGateTo_p_IFTDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFTDistribution1D *)  ((FTDistribution1DGate *) x));
 }
-static void *_p_DistributionTrapezoidTo_p_IDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IDistribution1D *)  ((DistributionTrapezoid *) x));
+static void *_p_FTDistribution1DTriangleTo_p_IFTDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFTDistribution1D *)  ((FTDistribution1DTriangle *) x));
 }
-static void *_p_DistributionLogNormalTo_p_IDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IDistribution1D *)  ((DistributionLogNormal *) x));
+static void *_p_FTDistribution1DVoigtTo_p_IFTDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFTDistribution1D *)  ((FTDistribution1DVoigt *) x));
 }
 static void *_p_FTDecayFunction1DCauchyTo_p_IFTDecayFunction1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFTDecayFunction1D *)  ((FTDecayFunction1DCauchy *) x));
@@ -137654,23 +137664,23 @@ static void *_p_FTDecayFunction1DTriangleTo_p_IFTDecayFunction1D(void *x, int *S
 static void *_p_FTDecayFunction1DVoigtTo_p_IFTDecayFunction1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFTDecayFunction1D *)  ((FTDecayFunction1DVoigt *) x));
 }
-static void *_p_FTDistribution1DCauchyTo_p_IFTDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFTDistribution1D *)  ((FTDistribution1DCauchy *) x));
+static void *_p_DistributionCosineTo_p_IDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IDistribution1D *)  ((DistributionCosine *) x));
 }
-static void *_p_FTDistribution1DCosineTo_p_IFTDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFTDistribution1D *)  ((FTDistribution1DCosine *) x));
+static void *_p_DistributionLorentzTo_p_IDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IDistribution1D *)  ((DistributionLorentz *) x));
 }
-static void *_p_FTDistribution1DGaussTo_p_IFTDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFTDistribution1D *)  ((FTDistribution1DGauss *) x));
+static void *_p_DistributionGaussianTo_p_IDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IDistribution1D *)  ((DistributionGaussian *) x));
 }
-static void *_p_FTDistribution1DGateTo_p_IFTDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFTDistribution1D *)  ((FTDistribution1DGate *) x));
+static void *_p_DistributionGateTo_p_IDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IDistribution1D *)  ((DistributionGate *) x));
 }
-static void *_p_FTDistribution1DTriangleTo_p_IFTDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFTDistribution1D *)  ((FTDistribution1DTriangle *) x));
+static void *_p_DistributionTrapezoidTo_p_IDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IDistribution1D *)  ((DistributionTrapezoid *) x));
 }
-static void *_p_FTDistribution1DVoigtTo_p_IFTDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFTDistribution1D *)  ((FTDistribution1DVoigt *) x));
+static void *_p_DistributionLogNormalTo_p_IDistribution1D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IDistribution1D *)  ((DistributionLogNormal *) x));
 }
 static void *_p_CrystalTo_p_IClusteredParticles(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IClusteredParticles *)  ((Crystal *) x));
@@ -137702,18 +137712,6 @@ static void *_p_FormFactorAnisoPyramidTo_p_FormFactorPolyhedron(void *x, int *SW
 static void *_p_FormFactorPyramidTo_p_FormFactorPolyhedron(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((FormFactorPolyhedron *)  ((FormFactorPyramid *) x));
 }
-static void *_p_ResolutionFunction2DGaussianTo_p_IResolutionFunction2D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IResolutionFunction2D *)  ((ResolutionFunction2DGaussian *) x));
-}
-static void *_p_FTDecayFunction2DCauchyTo_p_IFTDecayFunction2D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFTDecayFunction2D *)  ((FTDecayFunction2DCauchy *) x));
-}
-static void *_p_FTDecayFunction2DGaussTo_p_IFTDecayFunction2D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFTDecayFunction2D *)  ((FTDecayFunction2DGauss *) x));
-}
-static void *_p_FTDecayFunction2DVoigtTo_p_IFTDecayFunction2D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
-    return (void *)((IFTDecayFunction2D *)  ((FTDecayFunction2DVoigt *) x));
-}
 static void *_p_FTDistribution2DCauchyTo_p_IFTDistribution2D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFTDistribution2D *)  ((FTDistribution2DCauchy *) x));
 }
@@ -137729,6 +137727,18 @@ static void *_p_FTDistribution2DGateTo_p_IFTDistribution2D(void *x, int *SWIGUNU
 static void *_p_FTDistribution2DConeTo_p_IFTDistribution2D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((IFTDistribution2D *)  ((FTDistribution2DCone *) x));
 }
+static void *_p_FTDecayFunction2DCauchyTo_p_IFTDecayFunction2D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFTDecayFunction2D *)  ((FTDecayFunction2DCauchy *) x));
+}
+static void *_p_FTDecayFunction2DGaussTo_p_IFTDecayFunction2D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFTDecayFunction2D *)  ((FTDecayFunction2DGauss *) x));
+}
+static void *_p_FTDecayFunction2DVoigtTo_p_IFTDecayFunction2D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IFTDecayFunction2D *)  ((FTDecayFunction2DVoigt *) x));
+}
+static void *_p_ResolutionFunction2DGaussianTo_p_IResolutionFunction2D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
+    return (void *)((IResolutionFunction2D *)  ((ResolutionFunction2DGaussian *) x));
+}
 static void *_p_GISASSimulationTo_p_Simulation2D(void *x, int *SWIGUNUSEDPARM(newmemory)) {
     return (void *)((Simulation2D *)  ((GISASSimulation *) x));
 }
@@ -137816,6 +137826,7 @@ static swig_type_info _swigt__p_FormFactorFullSphere = {"_p_FormFactorFullSphere
 static swig_type_info _swigt__p_FormFactorFullSpheroid = {"_p_FormFactorFullSpheroid", "FormFactorFullSpheroid *", 0, 0, (void*)0, 0};
 static swig_type_info _swigt__p_FormFactorGauss = {"_p_FormFactorGauss", "FormFactorGauss *", 0, 0, (void*)0, 0};
 static swig_type_info _swigt__p_FormFactorHemiEllipsoid = {"_p_FormFactorHemiEllipsoid", "FormFactorHemiEllipsoid *", 0, 0, (void*)0, 0};
+static swig_type_info _swigt__p_FormFactorHollowSphere = {"_p_FormFactorHollowSphere", "FormFactorHollowSphere *", 0, 0, (void*)0, 0};
 static swig_type_info _swigt__p_FormFactorIcosahedron = {"_p_FormFactorIcosahedron", "FormFactorIcosahedron *", 0, 0, (void*)0, 0};
 static swig_type_info _swigt__p_FormFactorLongBoxGauss = {"_p_FormFactorLongBoxGauss", "FormFactorLongBoxGauss *", 0, 0, (void*)0, 0};
 static swig_type_info _swigt__p_FormFactorLongBoxLorentz = {"_p_FormFactorLongBoxLorentz", "FormFactorLongBoxLorentz *", 0, 0, (void*)0, 0};
@@ -137835,7 +137846,6 @@ static swig_type_info _swigt__p_FormFactorRipple2Gauss = {"_p_FormFactorRipple2G
 static swig_type_info _swigt__p_FormFactorRipple2Lorentz = {"_p_FormFactorRipple2Lorentz", "FormFactorRipple2Lorentz *", 0, 0, (void*)0, 0};
 static swig_type_info _swigt__p_FormFactorSphereGaussianRadius = {"_p_FormFactorSphereGaussianRadius", "FormFactorSphereGaussianRadius *", 0, 0, (void*)0, 0};
 static swig_type_info _swigt__p_FormFactorSphereLogNormalRadius = {"_p_FormFactorSphereLogNormalRadius", "FormFactorSphereLogNormalRadius *", 0, 0, (void*)0, 0};
-static swig_type_info _swigt__p_FormFactorSphereUniformRadius = {"_p_FormFactorSphereUniformRadius", "FormFactorSphereUniformRadius *", 0, 0, (void*)0, 0};
 static swig_type_info _swigt__p_FormFactorTetrahedron = {"_p_FormFactorTetrahedron", "FormFactorTetrahedron *", 0, 0, (void*)0, 0};
 static swig_type_info _swigt__p_FormFactorTruncatedCube = {"_p_FormFactorTruncatedCube", "FormFactorTruncatedCube *", 0, 0, (void*)0, 0};
 static swig_type_info _swigt__p_FormFactorTruncatedSphere = {"_p_FormFactorTruncatedSphere", "FormFactorTruncatedSphere *", 0, 0, (void*)0, 0};
@@ -138162,6 +138172,7 @@ static swig_type_info *swig_type_initial[] = {
   &_swigt__p_FormFactorFullSpheroid,
   &_swigt__p_FormFactorGauss,
   &_swigt__p_FormFactorHemiEllipsoid,
+  &_swigt__p_FormFactorHollowSphere,
   &_swigt__p_FormFactorIcosahedron,
   &_swigt__p_FormFactorLongBoxGauss,
   &_swigt__p_FormFactorLongBoxLorentz,
@@ -138181,7 +138192,6 @@ static swig_type_info *swig_type_initial[] = {
   &_swigt__p_FormFactorRipple2Lorentz,
   &_swigt__p_FormFactorSphereGaussianRadius,
   &_swigt__p_FormFactorSphereLogNormalRadius,
-  &_swigt__p_FormFactorSphereUniformRadius,
   &_swigt__p_FormFactorTetrahedron,
   &_swigt__p_FormFactorTruncatedCube,
   &_swigt__p_FormFactorTruncatedSphere,
@@ -138508,6 +138518,7 @@ static swig_cast_info _swigc__p_FormFactorFullSphere[] = {  {&_swigt__p_FormFact
 static swig_cast_info _swigc__p_FormFactorFullSpheroid[] = {  {&_swigt__p_FormFactorFullSpheroid, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_FormFactorGauss[] = {  {&_swigt__p_FormFactorGauss, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_FormFactorHemiEllipsoid[] = {  {&_swigt__p_FormFactorHemiEllipsoid, 0, 0, 0},{0, 0, 0, 0}};
+static swig_cast_info _swigc__p_FormFactorHollowSphere[] = {  {&_swigt__p_FormFactorHollowSphere, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_FormFactorIcosahedron[] = {  {&_swigt__p_FormFactorIcosahedron, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_FormFactorLongBoxGauss[] = {  {&_swigt__p_FormFactorLongBoxGauss, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_FormFactorLongBoxLorentz[] = {  {&_swigt__p_FormFactorLongBoxLorentz, 0, 0, 0},{0, 0, 0, 0}};
@@ -138527,7 +138538,6 @@ static swig_cast_info _swigc__p_FormFactorRipple2Gauss[] = {  {&_swigt__p_FormFa
 static swig_cast_info _swigc__p_FormFactorRipple2Lorentz[] = {  {&_swigt__p_FormFactorRipple2Lorentz, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_FormFactorSphereGaussianRadius[] = {  {&_swigt__p_FormFactorSphereGaussianRadius, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_FormFactorSphereLogNormalRadius[] = {  {&_swigt__p_FormFactorSphereLogNormalRadius, 0, 0, 0},{0, 0, 0, 0}};
-static swig_cast_info _swigc__p_FormFactorSphereUniformRadius[] = {  {&_swigt__p_FormFactorSphereUniformRadius, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_FormFactorTetrahedron[] = {  {&_swigt__p_FormFactorTetrahedron, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_FormFactorTruncatedCube[] = {  {&_swigt__p_FormFactorTruncatedCube, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_FormFactorTruncatedSphere[] = {  {&_swigt__p_FormFactorTruncatedSphere, 0, 0, 0},{0, 0, 0, 0}};
@@ -138543,7 +138553,7 @@ static swig_cast_info _swigc__p_IAbstractParticle[] = {  {&_swigt__p_ParticleCom
 static swig_cast_info _swigc__p_IAxis[] = {  {&_swigt__p_IAxis, 0, 0, 0},  {&_swigt__p_VariableBinAxis, _p_VariableBinAxisTo_p_IAxis, 0, 0},  {&_swigt__p_ConstKBinAxis, _p_ConstKBinAxisTo_p_IAxis, 0, 0},  {&_swigt__p_CustomBinAxis, _p_CustomBinAxisTo_p_IAxis, 0, 0},  {&_swigt__p_FixedBinAxis, _p_FixedBinAxisTo_p_IAxis, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IBackground[] = {  {&_swigt__p_IBackground, 0, 0, 0},  {&_swigt__p_ConstantBackground, _p_ConstantBackgroundTo_p_IBackground, 0, 0},  {&_swigt__p_PoissonNoiseBackground, _p_PoissonNoiseBackgroundTo_p_IBackground, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IChiSquaredModule[] = {  {&_swigt__p_IChiSquaredModule, 0, 0, 0},  {&_swigt__p_ChiSquaredModule, _p_ChiSquaredModuleTo_p_IChiSquaredModule, 0, 0},{0, 0, 0, 0}};
-static swig_cast_info _swigc__p_ICloneable[] = {  {&_swigt__p_Line, _p_LineTo_p_ICloneable, 0, 0},  {&_swigt__p_DistributionTrapezoid, _p_DistributionTrapezoidTo_p_ICloneable, 0, 0},  {&_swigt__p_ParticleLayout, _p_ParticleLayoutTo_p_ICloneable, 0, 0},  {&_swigt__p_ILayout, _p_ILayoutTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction2DVoigt, _p_FTDecayFunction2DVoigtTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution2DVoigt, _p_FTDistribution2DVoigtTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunctionNone, _p_InterferenceFunctionNoneTo_p_ICloneable, 0, 0},  {&_swigt__p_RotationEuler, _p_RotationEulerTo_p_ICloneable, 0, 0},  {&_swigt__p_RangedDistributionGate, _p_RangedDistributionGateTo_p_ICloneable, 0, 0},  {&_swigt__p_DistributionGate, _p_DistributionGateTo_p_ICloneable, 0, 0},  {&_swigt__p_IdentityRotation, _p_IdentityRotationTo_p_ICloneable, 0, 0},  {&_swigt__p_IRotation, _p_IRotationTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorPolygonalSurface, _p_FormFactorPolygonalSurfaceTo_p_ICloneable, 0, 0},  {&_swigt__p_IUnitConverter, _p_IUnitConverterTo_p_ICloneable, 0, 0},  {&_swigt__p_IFormFactor, _p_IFormFactorTo_p_ICloneable, 0, 0},  {&_swigt__p_MultiLayer, _p_MultiLayerTo_p_ICloneable, 0, 0},  {&_swigt__p_RotationX, _p_RotationXTo_p_ICloneable, 0, 0},  {&_swigt__p_RotationY, _p_RotationYTo_p_ICloneable, 0, 0},  {&_swigt__p_LayerRoughness, _p_LayerRoughnessTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorCylinder, _p_FormFactorCylinderTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorEllipsoidalCylinder, _p_FormFactorEllipsoidalCylinderTo_p_ICloneable, 0, 0},  {&_swigt__p_RotationZ, _p_RotationZTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution2DCauchy, _p_FTDistribution2DCauchyTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction1DCauchy, _p_FTDecayFunction1DCauchyTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction2DCauchy, _p_FTDecayFunction2DCauchyTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution1DCauchy, _p_FTDistribution1DCauchyTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorTetrahedron, _p_FormFactorTetrahedronTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorPolyhedron, _p_FormFactorPolyhedronTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorCuboctahedron, _p_FormFactorCuboctahedronTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorDodecahedron, _p_FormFactorDodecahedronTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorIcosahedron, _p_FormFactorIcosahedronTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorCrystal, _p_FormFactorCrystalTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunction2DParaCrystal, _p_InterferenceFunction2DParaCrystalTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunctionRadialParaCrystal, _p_InterferenceFunctionRadialParaCrystalTo_p_ICloneable, 0, 0},  {&_swigt__p_MesoCrystal, _p_MesoCrystalTo_p_ICloneable, 0, 0},  {&_swigt__p_Crystal, _p_CrystalTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorSphereUniformRadius, _p_FormFactorSphereUniformRadiusTo_p_ICloneable, 0, 0},  {&_swigt__p_IPeakShape, _p_IPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_IsotropicGaussPeakShape, _p_IsotropicGaussPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_IsotropicLorentzPeakShape, _p_IsotropicLorentzPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_GaussFisherPeakShape, _p_GaussFisherPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_LorentzFisherPeakShape, _p_LorentzFisherPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_VonMisesFisherGaussPeakShape, _p_VonMisesFisherGaussPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_VonMisesGaussPeakShape, _p_VonMisesGaussPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorWeighted, _p_FormFactorWeightedTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction1DVoigt, _p_FTDecayFunction1DVoigtTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution1DVoigt, _p_FTDistribution1DVoigtTo_p_ICloneable, 0, 0},  {&_swigt__p_ChiSquaredModule, _p_ChiSquaredModuleTo_p_ICloneable, 0, 0},  {&_swigt__p_IChiSquaredModule, _p_IChiSquaredModuleTo_p_ICloneable, 0, 0},  {&_swigt__p_Lattice2D, _p_Lattice2DTo_p_ICloneable, 0, 0},  {&_swigt__p_ParticleCoreShell, _p_ParticleCoreShellTo_p_ICloneable, 0, 0},  {&_swigt__p_IAbstractParticle, _p_IAbstractParticleTo_p_ICloneable, 0, 0},  {&_swigt__p_IParticle, _p_IParticleTo_p_ICloneable, 0, 0},  {&_swigt__p_Particle, _p_ParticleTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution2DGate, _p_FTDistribution2DGateTo_p_ICloneable, 0, 0},  {&_swigt__p_IFormFactorDecorator, _p_IFormFactorDecoratorTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorAnisoPyramid, _p_FormFactorAnisoPyramidTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorPyramid, _p_FormFactorPyramidTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorTruncatedCube, _p_FormFactorTruncatedCubeTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorCantellatedCube, _p_FormFactorCantellatedCubeTo_p_ICloneable, 0, 0},  {&_swigt__p_RangedDistribution, _p_RangedDistributionTo_p_ICloneable, 0, 0},  {&_swigt__p_ParticleDistribution, _p_ParticleDistributionTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction1DTriangle, _p_FTDecayFunction1DTriangleTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution1DTriangle, _p_FTDistribution1DTriangleTo_p_ICloneable, 0, 0},  {&_swigt__p_ProfileBar, _p_ProfileBarTo_p_ICloneable, 0, 0},  {&_swigt__p_ParameterPool, _p_ParameterPoolTo_p_ICloneable, 0, 0},  {&_swigt__p_FootprintGauss, _p_FootprintGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_ICloneable, 0, 0, 0},  {&_swigt__p_FormFactorDot, _p_FormFactorDotTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorRipple2Gauss, _p_FormFactorRipple2GaussTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorGauss, _p_FormFactorGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_ResolutionFunction2DGaussian, _p_ResolutionFunction2DGaussianTo_p_ICloneable, 0, 0},  {&_swigt__p_DistributionGaussian, _p_DistributionGaussianTo_p_ICloneable, 0, 0},  {&_swigt__p_RangedDistributionGaussian, _p_RangedDistributionGaussianTo_p_ICloneable, 0, 0},  {&_swigt__p_PoissonNoiseBackground, _p_PoissonNoiseBackgroundTo_p_ICloneable, 0, 0},  {&_swigt__p_ConstantBackground, _p_ConstantBackgroundTo_p_ICloneable, 0, 0},  {&_swigt__p_IBackground, _p_IBackgroundTo_p_ICloneable, 0, 0},  {&_swigt__p_IDetectorResolution, _p_IDetectorResolutionTo_p_ICloneable, 0, 0},  {&_swigt__p_ScanResolution, _p_ScanResolutionTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorTruncatedSphere, _p_FormFactorTruncatedSphereTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorFullSphere, _p_FormFactorFullSphereTo_p_ICloneable, 0, 0},  {&_swigt__p_IClusteredParticles, _p_IClusteredParticlesTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunctionHardDisk, _p_InterferenceFunctionHardDiskTo_p_ICloneable, 0, 0},  {&_swigt__p_ParticleComposition, _p_ParticleCompositionTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution1DCosine, _p_FTDistribution1DCosineTo_p_ICloneable, 0, 0},  {&_swigt__p_DistributionCosine, _p_DistributionCosineTo_p_ICloneable, 0, 0},  {&_swigt__p_RangedDistributionCosine, _p_RangedDistributionCosineTo_p_ICloneable, 0, 0},  {&_swigt__p_Polygon, _p_PolygonTo_p_ICloneable, 0, 0},  {&_swigt__p_IInterferenceFunction, _p_IInterferenceFunctionTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunctionTwin, _p_InterferenceFunctionTwinTo_p_ICloneable, 0, 0},  {&_swigt__p_AngularSpecScan, _p_AngularSpecScanTo_p_ICloneable, 0, 0},  {&_swigt__p_QSpecScan, _p_QSpecScanTo_p_ICloneable, 0, 0},  {&_swigt__p_VerticalLine, _p_VerticalLineTo_p_ICloneable, 0, 0},  {&_swigt__p_IIntensityNormalizer, _p_IIntensityNormalizerTo_p_ICloneable, 0, 0},  {&_swigt__p_IntensityNormalizer, _p_IntensityNormalizerTo_p_ICloneable, 0, 0},  {&_swigt__p_IntensityScaleAndShiftNormalizer, _p_IntensityScaleAndShiftNormalizerTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction2DGauss, _p_FTDecayFunction2DGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution2DGauss, _p_FTDistribution2DGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_IFormFactorBorn, _p_IFormFactorBornTo_p_ICloneable, 0, 0},  {&_swigt__p_RectangularDetector, _p_RectangularDetectorTo_p_ICloneable, 0, 0},  {&_swigt__p_IsGISAXSDetector, _p_IsGISAXSDetectorTo_p_ICloneable, 0, 0},  {&_swigt__p_SphericalDetector, _p_SphericalDetectorTo_p_ICloneable, 0, 0},  {&_swigt__p_IDetector, _p_IDetectorTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorTruncatedSpheroid, _p_FormFactorTruncatedSpheroidTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorFullSpheroid, _p_FormFactorFullSpheroidTo_p_ICloneable, 0, 0},  {&_swigt__p_ISpecularScan, _p_ISpecularScanTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunctionFinite3DLattice, _p_InterferenceFunctionFinite3DLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunctionFinite2DLattice, _p_InterferenceFunctionFinite2DLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunction3DLattice, _p_InterferenceFunction3DLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunction2DSuperLattice, _p_InterferenceFunction2DSuperLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunction2DLattice, _p_InterferenceFunction2DLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunction1DLattice, _p_InterferenceFunction1DLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_HexagonalLattice, _p_HexagonalLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_SquareLattice, _p_SquareLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_BasicLattice, _p_BasicLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_IShape2D, _p_IShape2DTo_p_ICloneable, 0, 0},  {&_swigt__p_FootprintSquare, _p_FootprintSquareTo_p_ICloneable, 0, 0},  {&_swigt__p_Rectangle, _p_RectangleTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorOrnsteinZernike, _p_FormFactorOrnsteinZernikeTo_p_ICloneable, 0, 0},  {&_swigt__p_HorizontalLine, _p_HorizontalLineTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution1DGauss, _p_FTDistribution1DGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction1DGauss, _p_FTDecayFunction1DGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorCone6, _p_FormFactorCone6To_p_ICloneable, 0, 0},  {&_swigt__p_IFTDistribution1D, _p_IFTDistribution1DTo_p_ICloneable, 0, 0},  {&_swigt__p_IFTDecayFunction1D, _p_IFTDecayFunction1DTo_p_ICloneable, 0, 0},  {&_swigt__p_IDistribution1D, _p_IDistribution1DTo_p_ICloneable, 0, 0},  {&_swigt__p_DepthProbeSimulation, _p_DepthProbeSimulationTo_p_ICloneable, 0, 0},  {&_swigt__p_OffSpecSimulation, _p_OffSpecSimulationTo_p_ICloneable, 0, 0},  {&_swigt__p_GISASSimulation, _p_GISASSimulationTo_p_ICloneable, 0, 0},  {&_swigt__p_Simulation, _p_SimulationTo_p_ICloneable, 0, 0},  {&_swigt__p_SpecularSimulation, _p_SpecularSimulationTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorCone, _p_FormFactorConeTo_p_ICloneable, 0, 0},  {&_swigt__p_DistributionLogNormal, _p_DistributionLogNormalTo_p_ICloneable, 0, 0},  {&_swigt__p_RangedDistributionLogNormal, _p_RangedDistributionLogNormalTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorBox, _p_FormFactorBoxTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution1DGate, _p_FTDistribution1DGateTo_p_ICloneable, 0, 0},  {&_swigt__p_ProfileRipple1, _p_ProfileRipple1To_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorPolygonalPrism, _p_FormFactorPolygonalPrismTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorLongBoxGauss, _p_FormFactorLongBoxGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_ProfileRipple2, _p_ProfileRipple2To_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorPrism3, _p_FormFactorPrism3To_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorHemiEllipsoid, _p_FormFactorHemiEllipsoidTo_p_ICloneable, 0, 0},  {&_swigt__p_DistributionLorentz, _p_DistributionLorentzTo_p_ICloneable, 0, 0},  {&_swigt__p_RangedDistributionLorentz, _p_RangedDistributionLorentzTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorRipple1Lorentz, _p_FormFactorRipple1LorentzTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorRipple2Lorentz, _p_FormFactorRipple2LorentzTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorLorentz, _p_FormFactorLorentzTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorLongBoxLorentz, _p_FormFactorLongBoxLorentzTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorRipple1Box, _p_FormFactorRipple1BoxTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorPrism6, _p_FormFactorPrism6To_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorDebyeBueche, _p_FormFactorDebyeBuecheTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution2DCone, _p_FTDistribution2DConeTo_p_ICloneable, 0, 0},  {&_swigt__p_IDetector2D, _p_IDetector2DTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorRipple2Box, _p_FormFactorRipple2BoxTo_p_ICloneable, 0, 0},  {&_swigt__p_IFootprintFactor, _p_IFootprintFactorTo_p_ICloneable, 0, 0},  {&_swigt__p_ISample, _p_ISampleTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorRipple1Gauss, _p_FormFactorRipple1GaussTo_p_ICloneable, 0, 0},  {&_swigt__p_Simulation2D, _p_Simulation2DTo_p_ICloneable, 0, 0},  {&_swigt__p_Ellipse, _p_EllipseTo_p_ICloneable, 0, 0},  {&_swigt__p_IResolutionFunction2D, _p_IResolutionFunction2DTo_p_ICloneable, 0, 0},  {&_swigt__p_IFTDistribution2D, _p_IFTDistribution2DTo_p_ICloneable, 0, 0},  {&_swigt__p_IFTDecayFunction2D, _p_IFTDecayFunction2DTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorSphereLogNormalRadius, _p_FormFactorSphereLogNormalRadiusTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorSphereGaussianRadius, _p_FormFactorSphereGaussianRadiusTo_p_ICloneable, 0, 0},  {&_swigt__p_Layer, _p_LayerTo_p_ICloneable, 0, 0},{0, 0, 0, 0}};
+static swig_cast_info _swigc__p_ICloneable[] = {  {&_swigt__p_Line, _p_LineTo_p_ICloneable, 0, 0},  {&_swigt__p_DistributionTrapezoid, _p_DistributionTrapezoidTo_p_ICloneable, 0, 0},  {&_swigt__p_ILayout, _p_ILayoutTo_p_ICloneable, 0, 0},  {&_swigt__p_ParticleLayout, _p_ParticleLayoutTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction2DVoigt, _p_FTDecayFunction2DVoigtTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution2DVoigt, _p_FTDistribution2DVoigtTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunctionNone, _p_InterferenceFunctionNoneTo_p_ICloneable, 0, 0},  {&_swigt__p_RotationEuler, _p_RotationEulerTo_p_ICloneable, 0, 0},  {&_swigt__p_RangedDistributionGate, _p_RangedDistributionGateTo_p_ICloneable, 0, 0},  {&_swigt__p_DistributionGate, _p_DistributionGateTo_p_ICloneable, 0, 0},  {&_swigt__p_IdentityRotation, _p_IdentityRotationTo_p_ICloneable, 0, 0},  {&_swigt__p_IRotation, _p_IRotationTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorPolygonalSurface, _p_FormFactorPolygonalSurfaceTo_p_ICloneable, 0, 0},  {&_swigt__p_IUnitConverter, _p_IUnitConverterTo_p_ICloneable, 0, 0},  {&_swigt__p_IFormFactor, _p_IFormFactorTo_p_ICloneable, 0, 0},  {&_swigt__p_MultiLayer, _p_MultiLayerTo_p_ICloneable, 0, 0},  {&_swigt__p_RotationX, _p_RotationXTo_p_ICloneable, 0, 0},  {&_swigt__p_RotationY, _p_RotationYTo_p_ICloneable, 0, 0},  {&_swigt__p_LayerRoughness, _p_LayerRoughnessTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorCylinder, _p_FormFactorCylinderTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorEllipsoidalCylinder, _p_FormFactorEllipsoidalCylinderTo_p_ICloneable, 0, 0},  {&_swigt__p_RotationZ, _p_RotationZTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution2DCauchy, _p_FTDistribution2DCauchyTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution1DCauchy, _p_FTDistribution1DCauchyTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction1DCauchy, _p_FTDecayFunction1DCauchyTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction2DCauchy, _p_FTDecayFunction2DCauchyTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorTetrahedron, _p_FormFactorTetrahedronTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorPolyhedron, _p_FormFactorPolyhedronTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorCuboctahedron, _p_FormFactorCuboctahedronTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorDodecahedron, _p_FormFactorDodecahedronTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorIcosahedron, _p_FormFactorIcosahedronTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorCrystal, _p_FormFactorCrystalTo_p_ICloneable, 0, 0},  {&_swigt__p_Crystal, _p_CrystalTo_p_ICloneable, 0, 0},  {&_swigt__p_MesoCrystal, _p_MesoCrystalTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunction2DParaCrystal, _p_InterferenceFunction2DParaCrystalTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunctionRadialParaCrystal, _p_InterferenceFunctionRadialParaCrystalTo_p_ICloneable, 0, 0},  {&_swigt__p_VonMisesGaussPeakShape, _p_VonMisesGaussPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_VonMisesFisherGaussPeakShape, _p_VonMisesFisherGaussPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_LorentzFisherPeakShape, _p_LorentzFisherPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_GaussFisherPeakShape, _p_GaussFisherPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_IsotropicLorentzPeakShape, _p_IsotropicLorentzPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_IsotropicGaussPeakShape, _p_IsotropicGaussPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_IPeakShape, _p_IPeakShapeTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorWeighted, _p_FormFactorWeightedTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution1DVoigt, _p_FTDistribution1DVoigtTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction1DVoigt, _p_FTDecayFunction1DVoigtTo_p_ICloneable, 0, 0},  {&_swigt__p_IChiSquaredModule, _p_IChiSquaredModuleTo_p_ICloneable, 0, 0},  {&_swigt__p_ChiSquaredModule, _p_ChiSquaredModuleTo_p_ICloneable, 0, 0},  {&_swigt__p_Lattice2D, _p_Lattice2DTo_p_ICloneable, 0, 0},  {&_swigt__p_ParticleCoreShell, _p_ParticleCoreShellTo_p_ICloneable, 0, 0},  {&_swigt__p_IAbstractParticle, _p_IAbstractParticleTo_p_ICloneable, 0, 0},  {&_swigt__p_IParticle, _p_IParticleTo_p_ICloneable, 0, 0},  {&_swigt__p_Particle, _p_ParticleTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution2DGate, _p_FTDistribution2DGateTo_p_ICloneable, 0, 0},  {&_swigt__p_IFormFactorDecorator, _p_IFormFactorDecoratorTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorAnisoPyramid, _p_FormFactorAnisoPyramidTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorPyramid, _p_FormFactorPyramidTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorTruncatedCube, _p_FormFactorTruncatedCubeTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorCantellatedCube, _p_FormFactorCantellatedCubeTo_p_ICloneable, 0, 0},  {&_swigt__p_RangedDistribution, _p_RangedDistributionTo_p_ICloneable, 0, 0},  {&_swigt__p_ParticleDistribution, _p_ParticleDistributionTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution1DTriangle, _p_FTDistribution1DTriangleTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction1DTriangle, _p_FTDecayFunction1DTriangleTo_p_ICloneable, 0, 0},  {&_swigt__p_ProfileBar, _p_ProfileBarTo_p_ICloneable, 0, 0},  {&_swigt__p_ParameterPool, _p_ParameterPoolTo_p_ICloneable, 0, 0},  {&_swigt__p_FootprintGauss, _p_FootprintGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_ICloneable, 0, 0, 0},  {&_swigt__p_FormFactorDot, _p_FormFactorDotTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorRipple2Gauss, _p_FormFactorRipple2GaussTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorGauss, _p_FormFactorGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_DistributionGaussian, _p_DistributionGaussianTo_p_ICloneable, 0, 0},  {&_swigt__p_ResolutionFunction2DGaussian, _p_ResolutionFunction2DGaussianTo_p_ICloneable, 0, 0},  {&_swigt__p_RangedDistributionGaussian, _p_RangedDistributionGaussianTo_p_ICloneable, 0, 0},  {&_swigt__p_PoissonNoiseBackground, _p_PoissonNoiseBackgroundTo_p_ICloneable, 0, 0},  {&_swigt__p_ConstantBackground, _p_ConstantBackgroundTo_p_ICloneable, 0, 0},  {&_swigt__p_IBackground, _p_IBackgroundTo_p_ICloneable, 0, 0},  {&_swigt__p_IDetectorResolution, _p_IDetectorResolutionTo_p_ICloneable, 0, 0},  {&_swigt__p_ScanResolution, _p_ScanResolutionTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorTruncatedSphere, _p_FormFactorTruncatedSphereTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorFullSphere, _p_FormFactorFullSphereTo_p_ICloneable, 0, 0},  {&_swigt__p_IClusteredParticles, _p_IClusteredParticlesTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunctionHardDisk, _p_InterferenceFunctionHardDiskTo_p_ICloneable, 0, 0},  {&_swigt__p_ParticleComposition, _p_ParticleCompositionTo_p_ICloneable, 0, 0},  {&_swigt__p_DistributionCosine, _p_DistributionCosineTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution1DCosine, _p_FTDistribution1DCosineTo_p_ICloneable, 0, 0},  {&_swigt__p_RangedDistributionCosine, _p_RangedDistributionCosineTo_p_ICloneable, 0, 0},  {&_swigt__p_Polygon, _p_PolygonTo_p_ICloneable, 0, 0},  {&_swigt__p_IInterferenceFunction, _p_IInterferenceFunctionTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunctionTwin, _p_InterferenceFunctionTwinTo_p_ICloneable, 0, 0},  {&_swigt__p_AngularSpecScan, _p_AngularSpecScanTo_p_ICloneable, 0, 0},  {&_swigt__p_QSpecScan, _p_QSpecScanTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorHollowSphere, _p_FormFactorHollowSphereTo_p_ICloneable, 0, 0},  {&_swigt__p_VerticalLine, _p_VerticalLineTo_p_ICloneable, 0, 0},  {&_swigt__p_IntensityScaleAndShiftNormalizer, _p_IntensityScaleAndShiftNormalizerTo_p_ICloneable, 0, 0},  {&_swigt__p_IntensityNormalizer, _p_IntensityNormalizerTo_p_ICloneable, 0, 0},  {&_swigt__p_IIntensityNormalizer, _p_IIntensityNormalizerTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction2DGauss, _p_FTDecayFunction2DGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution2DGauss, _p_FTDistribution2DGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_IFormFactorBorn, _p_IFormFactorBornTo_p_ICloneable, 0, 0},  {&_swigt__p_RectangularDetector, _p_RectangularDetectorTo_p_ICloneable, 0, 0},  {&_swigt__p_IsGISAXSDetector, _p_IsGISAXSDetectorTo_p_ICloneable, 0, 0},  {&_swigt__p_SphericalDetector, _p_SphericalDetectorTo_p_ICloneable, 0, 0},  {&_swigt__p_IDetector, _p_IDetectorTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorTruncatedSpheroid, _p_FormFactorTruncatedSpheroidTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorFullSpheroid, _p_FormFactorFullSpheroidTo_p_ICloneable, 0, 0},  {&_swigt__p_ISpecularScan, _p_ISpecularScanTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunctionFinite3DLattice, _p_InterferenceFunctionFinite3DLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunctionFinite2DLattice, _p_InterferenceFunctionFinite2DLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunction3DLattice, _p_InterferenceFunction3DLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunction2DSuperLattice, _p_InterferenceFunction2DSuperLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunction2DLattice, _p_InterferenceFunction2DLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_InterferenceFunction1DLattice, _p_InterferenceFunction1DLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_HexagonalLattice, _p_HexagonalLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_SquareLattice, _p_SquareLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_BasicLattice, _p_BasicLatticeTo_p_ICloneable, 0, 0},  {&_swigt__p_IShape2D, _p_IShape2DTo_p_ICloneable, 0, 0},  {&_swigt__p_FootprintSquare, _p_FootprintSquareTo_p_ICloneable, 0, 0},  {&_swigt__p_Rectangle, _p_RectangleTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorOrnsteinZernike, _p_FormFactorOrnsteinZernikeTo_p_ICloneable, 0, 0},  {&_swigt__p_HorizontalLine, _p_HorizontalLineTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDecayFunction1DGauss, _p_FTDecayFunction1DGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution1DGauss, _p_FTDistribution1DGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorCone6, _p_FormFactorCone6To_p_ICloneable, 0, 0},  {&_swigt__p_IDistribution1D, _p_IDistribution1DTo_p_ICloneable, 0, 0},  {&_swigt__p_IFTDecayFunction1D, _p_IFTDecayFunction1DTo_p_ICloneable, 0, 0},  {&_swigt__p_IFTDistribution1D, _p_IFTDistribution1DTo_p_ICloneable, 0, 0},  {&_swigt__p_SpecularSimulation, _p_SpecularSimulationTo_p_ICloneable, 0, 0},  {&_swigt__p_DepthProbeSimulation, _p_DepthProbeSimulationTo_p_ICloneable, 0, 0},  {&_swigt__p_OffSpecSimulation, _p_OffSpecSimulationTo_p_ICloneable, 0, 0},  {&_swigt__p_GISASSimulation, _p_GISASSimulationTo_p_ICloneable, 0, 0},  {&_swigt__p_Simulation, _p_SimulationTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorCone, _p_FormFactorConeTo_p_ICloneable, 0, 0},  {&_swigt__p_DistributionLogNormal, _p_DistributionLogNormalTo_p_ICloneable, 0, 0},  {&_swigt__p_RangedDistributionLogNormal, _p_RangedDistributionLogNormalTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorBox, _p_FormFactorBoxTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution1DGate, _p_FTDistribution1DGateTo_p_ICloneable, 0, 0},  {&_swigt__p_ProfileRipple1, _p_ProfileRipple1To_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorPolygonalPrism, _p_FormFactorPolygonalPrismTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorLongBoxGauss, _p_FormFactorLongBoxGaussTo_p_ICloneable, 0, 0},  {&_swigt__p_ProfileRipple2, _p_ProfileRipple2To_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorPrism3, _p_FormFactorPrism3To_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorHemiEllipsoid, _p_FormFactorHemiEllipsoidTo_p_ICloneable, 0, 0},  {&_swigt__p_DistributionLorentz, _p_DistributionLorentzTo_p_ICloneable, 0, 0},  {&_swigt__p_RangedDistributionLorentz, _p_RangedDistributionLorentzTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorRipple1Lorentz, _p_FormFactorRipple1LorentzTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorRipple2Lorentz, _p_FormFactorRipple2LorentzTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorLongBoxLorentz, _p_FormFactorLongBoxLorentzTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorLorentz, _p_FormFactorLorentzTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorRipple1Box, _p_FormFactorRipple1BoxTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorPrism6, _p_FormFactorPrism6To_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorDebyeBueche, _p_FormFactorDebyeBuecheTo_p_ICloneable, 0, 0},  {&_swigt__p_FTDistribution2DCone, _p_FTDistribution2DConeTo_p_ICloneable, 0, 0},  {&_swigt__p_IDetector2D, _p_IDetector2DTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorRipple2Box, _p_FormFactorRipple2BoxTo_p_ICloneable, 0, 0},  {&_swigt__p_IFootprintFactor, _p_IFootprintFactorTo_p_ICloneable, 0, 0},  {&_swigt__p_ISample, _p_ISampleTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorRipple1Gauss, _p_FormFactorRipple1GaussTo_p_ICloneable, 0, 0},  {&_swigt__p_Simulation2D, _p_Simulation2DTo_p_ICloneable, 0, 0},  {&_swigt__p_Ellipse, _p_EllipseTo_p_ICloneable, 0, 0},  {&_swigt__p_IResolutionFunction2D, _p_IResolutionFunction2DTo_p_ICloneable, 0, 0},  {&_swigt__p_IFTDecayFunction2D, _p_IFTDecayFunction2DTo_p_ICloneable, 0, 0},  {&_swigt__p_IFTDistribution2D, _p_IFTDistribution2DTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorSphereLogNormalRadius, _p_FormFactorSphereLogNormalRadiusTo_p_ICloneable, 0, 0},  {&_swigt__p_FormFactorSphereGaussianRadius, _p_FormFactorSphereGaussianRadiusTo_p_ICloneable, 0, 0},  {&_swigt__p_Layer, _p_LayerTo_p_ICloneable, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IClusteredParticles[] = {  {&_swigt__p_IClusteredParticles, 0, 0, 0},  {&_swigt__p_Crystal, _p_CrystalTo_p_IClusteredParticles, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IDetector[] = {  {&_swigt__p_IDetector, 0, 0, 0},  {&_swigt__p_SphericalDetector, _p_SphericalDetectorTo_p_IDetector, 0, 0},  {&_swigt__p_IsGISAXSDetector, _p_IsGISAXSDetectorTo_p_IDetector, 0, 0},  {&_swigt__p_RectangularDetector, _p_RectangularDetectorTo_p_IDetector, 0, 0},  {&_swigt__p_IDetector2D, _p_IDetector2DTo_p_IDetector, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IDetector2D[] = {  {&_swigt__p_SphericalDetector, _p_SphericalDetectorTo_p_IDetector2D, 0, 0},  {&_swigt__p_IsGISAXSDetector, _p_IsGISAXSDetectorTo_p_IDetector2D, 0, 0},  {&_swigt__p_RectangularDetector, _p_RectangularDetectorTo_p_IDetector2D, 0, 0},  {&_swigt__p_IDetector2D, 0, 0, 0},{0, 0, 0, 0}};
@@ -138556,8 +138566,8 @@ static swig_cast_info _swigc__p_IFTDistribution2D[] = {  {&_swigt__p_FTDistribut
 static swig_cast_info _swigc__p_IFactoryT_std__string_IMultiLayerBuilder_t[] = {  {&_swigt__p_IFactoryT_std__string_IMultiLayerBuilder_t, 0, 0, 0},  {&_swigt__p_SampleBuilderFactory, _p_SampleBuilderFactoryTo_p_IFactoryT_std__string_IMultiLayerBuilder_t, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IFactoryT_std__string_Simulation_t[] = {  {&_swigt__p_SimulationFactory, _p_SimulationFactoryTo_p_IFactoryT_std__string_Simulation_t, 0, 0},  {&_swigt__p_IFactoryT_std__string_Simulation_t, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IFootprintFactor[] = {  {&_swigt__p_FootprintSquare, _p_FootprintSquareTo_p_IFootprintFactor, 0, 0},  {&_swigt__p_IFootprintFactor, 0, 0, 0},  {&_swigt__p_FootprintGauss, _p_FootprintGaussTo_p_IFootprintFactor, 0, 0},{0, 0, 0, 0}};
-static swig_cast_info _swigc__p_IFormFactor[] = {  {&_swigt__p_FormFactorPrism6, _p_FormFactorPrism6To_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorHemiEllipsoid, _p_FormFactorHemiEllipsoidTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorPolygonalPrism, _p_FormFactorPolygonalPrismTo_p_IFormFactor, 0, 0},  {&_swigt__p_IFormFactor, 0, 0, 0},  {&_swigt__p_FormFactorFullSpheroid, _p_FormFactorFullSpheroidTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorTruncatedSpheroid, _p_FormFactorTruncatedSpheroidTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorDebyeBueche, _p_FormFactorDebyeBuecheTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorRipple1Box, _p_FormFactorRipple1BoxTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorLongBoxGauss, _p_FormFactorLongBoxGaussTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorOrnsteinZernike, _p_FormFactorOrnsteinZernikeTo_p_IFormFactor, 0, 0},  {&_swigt__p_ProfileRipple1, _p_ProfileRipple1To_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorPolygonalSurface, _p_FormFactorPolygonalSurfaceTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorCrystal, _p_FormFactorCrystalTo_p_IFormFactor, 0, 0},  {&_swigt__p_ProfileRipple2, _p_ProfileRipple2To_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorCantellatedCube, _p_FormFactorCantellatedCubeTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorTruncatedCube, _p_FormFactorTruncatedCubeTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorFullSphere, _p_FormFactorFullSphereTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorTruncatedSphere, _p_FormFactorTruncatedSphereTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorRipple1Gauss, _p_FormFactorRipple1GaussTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorEllipsoidalCylinder, _p_FormFactorEllipsoidalCylinderTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorCylinder, _p_FormFactorCylinderTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorBox, _p_FormFactorBoxTo_p_IFormFactor, 0, 0},  {&_swigt__p_IFormFactorDecorator, _p_IFormFactorDecoratorTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorIcosahedron, _p_FormFactorIcosahedronTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorDodecahedron, _p_FormFactorDodecahedronTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorCuboctahedron, _p_FormFactorCuboctahedronTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorPolyhedron, _p_FormFactorPolyhedronTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorTetrahedron, _p_FormFactorTetrahedronTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorCone, _p_FormFactorConeTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorCone6, _p_FormFactorCone6To_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorSphereLogNormalRadius, _p_FormFactorSphereLogNormalRadiusTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorSphereGaussianRadius, _p_FormFactorSphereGaussianRadiusTo_p_IFormFactor, 0, 0},  {&_swigt__p_IFormFactorBorn, _p_IFormFactorBornTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorDot, _p_FormFactorDotTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorRipple2Box, _p_FormFactorRipple2BoxTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorRipple2Lorentz, _p_FormFactorRipple2LorentzTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorRipple1Lorentz, _p_FormFactorRipple1LorentzTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorLorentz, _p_FormFactorLorentzTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorLongBoxLorentz, _p_FormFactorLongBoxLorentzTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorWeighted, _p_FormFactorWeightedTo_p_IFormFactor, 0, 0},  {&_swigt__p_ProfileBar, _p_ProfileBarTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorPrism3, _p_FormFactorPrism3To_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorAnisoPyramid, _p_FormFactorAnisoPyramidTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorPyramid, _p_FormFactorPyramidTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorSphereUniformRadius, _p_FormFactorSphereUniformRadiusTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorRipple2Gauss, _p_FormFactorRipple2GaussTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorGauss, _p_FormFactorGaussTo_p_IFormFactor, 0, 0},{0, 0, 0, 0}};
-static swig_cast_info _swigc__p_IFormFactorBorn[] = {  {&_swigt__p_FormFactorPrism6, _p_FormFactorPrism6To_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorHemiEllipsoid, _p_FormFactorHemiEllipsoidTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorPolygonalPrism, _p_FormFactorPolygonalPrismTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorFullSpheroid, _p_FormFactorFullSpheroidTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorTruncatedSpheroid, _p_FormFactorTruncatedSpheroidTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorDebyeBueche, _p_FormFactorDebyeBuecheTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorRipple1Box, _p_FormFactorRipple1BoxTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorLongBoxGauss, _p_FormFactorLongBoxGaussTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorOrnsteinZernike, _p_FormFactorOrnsteinZernikeTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_ProfileRipple1, _p_ProfileRipple1To_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorPolygonalSurface, _p_FormFactorPolygonalSurfaceTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_ProfileRipple2, _p_ProfileRipple2To_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorCantellatedCube, _p_FormFactorCantellatedCubeTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorTruncatedCube, _p_FormFactorTruncatedCubeTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorFullSphere, _p_FormFactorFullSphereTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorTruncatedSphere, _p_FormFactorTruncatedSphereTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorRipple1Gauss, _p_FormFactorRipple1GaussTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorEllipsoidalCylinder, _p_FormFactorEllipsoidalCylinderTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorCylinder, _p_FormFactorCylinderTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorBox, _p_FormFactorBoxTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorIcosahedron, _p_FormFactorIcosahedronTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorDodecahedron, _p_FormFactorDodecahedronTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorPolyhedron, _p_FormFactorPolyhedronTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorCuboctahedron, _p_FormFactorCuboctahedronTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorTetrahedron, _p_FormFactorTetrahedronTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorCone, _p_FormFactorConeTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorCone6, _p_FormFactorCone6To_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorSphereLogNormalRadius, _p_FormFactorSphereLogNormalRadiusTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorSphereGaussianRadius, _p_FormFactorSphereGaussianRadiusTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_IFormFactorBorn, 0, 0, 0},  {&_swigt__p_FormFactorDot, _p_FormFactorDotTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorRipple2Box, _p_FormFactorRipple2BoxTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorRipple2Lorentz, _p_FormFactorRipple2LorentzTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorRipple1Lorentz, _p_FormFactorRipple1LorentzTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorLorentz, _p_FormFactorLorentzTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorLongBoxLorentz, _p_FormFactorLongBoxLorentzTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_ProfileBar, _p_ProfileBarTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorPyramid, _p_FormFactorPyramidTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorAnisoPyramid, _p_FormFactorAnisoPyramidTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorPrism3, _p_FormFactorPrism3To_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorSphereUniformRadius, _p_FormFactorSphereUniformRadiusTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorRipple2Gauss, _p_FormFactorRipple2GaussTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorGauss, _p_FormFactorGaussTo_p_IFormFactorBorn, 0, 0},{0, 0, 0, 0}};
+static swig_cast_info _swigc__p_IFormFactor[] = {  {&_swigt__p_FormFactorPrism6, _p_FormFactorPrism6To_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorHemiEllipsoid, _p_FormFactorHemiEllipsoidTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorPolygonalPrism, _p_FormFactorPolygonalPrismTo_p_IFormFactor, 0, 0},  {&_swigt__p_IFormFactor, 0, 0, 0},  {&_swigt__p_FormFactorFullSpheroid, _p_FormFactorFullSpheroidTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorTruncatedSpheroid, _p_FormFactorTruncatedSpheroidTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorDebyeBueche, _p_FormFactorDebyeBuecheTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorRipple1Box, _p_FormFactorRipple1BoxTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorLongBoxGauss, _p_FormFactorLongBoxGaussTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorOrnsteinZernike, _p_FormFactorOrnsteinZernikeTo_p_IFormFactor, 0, 0},  {&_swigt__p_ProfileRipple1, _p_ProfileRipple1To_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorPolygonalSurface, _p_FormFactorPolygonalSurfaceTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorCrystal, _p_FormFactorCrystalTo_p_IFormFactor, 0, 0},  {&_swigt__p_ProfileRipple2, _p_ProfileRipple2To_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorCantellatedCube, _p_FormFactorCantellatedCubeTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorTruncatedCube, _p_FormFactorTruncatedCubeTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorFullSphere, _p_FormFactorFullSphereTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorTruncatedSphere, _p_FormFactorTruncatedSphereTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorRipple1Gauss, _p_FormFactorRipple1GaussTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorEllipsoidalCylinder, _p_FormFactorEllipsoidalCylinderTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorCylinder, _p_FormFactorCylinderTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorBox, _p_FormFactorBoxTo_p_IFormFactor, 0, 0},  {&_swigt__p_IFormFactorDecorator, _p_IFormFactorDecoratorTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorIcosahedron, _p_FormFactorIcosahedronTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorDodecahedron, _p_FormFactorDodecahedronTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorCuboctahedron, _p_FormFactorCuboctahedronTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorPolyhedron, _p_FormFactorPolyhedronTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorTetrahedron, _p_FormFactorTetrahedronTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorCone, _p_FormFactorConeTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorCone6, _p_FormFactorCone6To_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorSphereLogNormalRadius, _p_FormFactorSphereLogNormalRadiusTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorSphereGaussianRadius, _p_FormFactorSphereGaussianRadiusTo_p_IFormFactor, 0, 0},  {&_swigt__p_IFormFactorBorn, _p_IFormFactorBornTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorHollowSphere, _p_FormFactorHollowSphereTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorDot, _p_FormFactorDotTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorRipple2Box, _p_FormFactorRipple2BoxTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorRipple2Lorentz, _p_FormFactorRipple2LorentzTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorRipple1Lorentz, _p_FormFactorRipple1LorentzTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorLongBoxLorentz, _p_FormFactorLongBoxLorentzTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorLorentz, _p_FormFactorLorentzTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorWeighted, _p_FormFactorWeightedTo_p_IFormFactor, 0, 0},  {&_swigt__p_ProfileBar, _p_ProfileBarTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorPrism3, _p_FormFactorPrism3To_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorAnisoPyramid, _p_FormFactorAnisoPyramidTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorPyramid, _p_FormFactorPyramidTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorRipple2Gauss, _p_FormFactorRipple2GaussTo_p_IFormFactor, 0, 0},  {&_swigt__p_FormFactorGauss, _p_FormFactorGaussTo_p_IFormFactor, 0, 0},{0, 0, 0, 0}};
+static swig_cast_info _swigc__p_IFormFactorBorn[] = {  {&_swigt__p_FormFactorPrism6, _p_FormFactorPrism6To_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorHemiEllipsoid, _p_FormFactorHemiEllipsoidTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorPolygonalPrism, _p_FormFactorPolygonalPrismTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorFullSpheroid, _p_FormFactorFullSpheroidTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorTruncatedSpheroid, _p_FormFactorTruncatedSpheroidTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorDebyeBueche, _p_FormFactorDebyeBuecheTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorRipple1Box, _p_FormFactorRipple1BoxTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorLongBoxGauss, _p_FormFactorLongBoxGaussTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorOrnsteinZernike, _p_FormFactorOrnsteinZernikeTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_ProfileRipple1, _p_ProfileRipple1To_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorPolygonalSurface, _p_FormFactorPolygonalSurfaceTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_ProfileRipple2, _p_ProfileRipple2To_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorTruncatedCube, _p_FormFactorTruncatedCubeTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorCantellatedCube, _p_FormFactorCantellatedCubeTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorFullSphere, _p_FormFactorFullSphereTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorTruncatedSphere, _p_FormFactorTruncatedSphereTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorRipple1Gauss, _p_FormFactorRipple1GaussTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorEllipsoidalCylinder, _p_FormFactorEllipsoidalCylinderTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorCylinder, _p_FormFactorCylinderTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorBox, _p_FormFactorBoxTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorTetrahedron, _p_FormFactorTetrahedronTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorIcosahedron, _p_FormFactorIcosahedronTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorPolyhedron, _p_FormFactorPolyhedronTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorCuboctahedron, _p_FormFactorCuboctahedronTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorDodecahedron, _p_FormFactorDodecahedronTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorCone, _p_FormFactorConeTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorCone6, _p_FormFactorCone6To_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorSphereLogNormalRadius, _p_FormFactorSphereLogNormalRadiusTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorSphereGaussianRadius, _p_FormFactorSphereGaussianRadiusTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_IFormFactorBorn, 0, 0, 0},  {&_swigt__p_FormFactorHollowSphere, _p_FormFactorHollowSphereTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorDot, _p_FormFactorDotTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorRipple2Box, _p_FormFactorRipple2BoxTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorRipple2Lorentz, _p_FormFactorRipple2LorentzTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorRipple1Lorentz, _p_FormFactorRipple1LorentzTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorLongBoxLorentz, _p_FormFactorLongBoxLorentzTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorLorentz, _p_FormFactorLorentzTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_ProfileBar, _p_ProfileBarTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorPyramid, _p_FormFactorPyramidTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorAnisoPyramid, _p_FormFactorAnisoPyramidTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorPrism3, _p_FormFactorPrism3To_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorRipple2Gauss, _p_FormFactorRipple2GaussTo_p_IFormFactorBorn, 0, 0},  {&_swigt__p_FormFactorGauss, _p_FormFactorGaussTo_p_IFormFactorBorn, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IFormFactorDecorator[] = {  {&_swigt__p_IFormFactorDecorator, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IHistogram[] = {  {&_swigt__p_IHistogram, 0, 0, 0},  {&_swigt__p_Histogram2D, _p_Histogram2DTo_p_IHistogram, 0, 0},  {&_swigt__p_Histogram1D, _p_Histogram1DTo_p_IHistogram, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IIntensityFunction[] = {  {&_swigt__p_IntensityFunctionSqrt, _p_IntensityFunctionSqrtTo_p_IIntensityFunction, 0, 0},  {&_swigt__p_IIntensityFunction, 0, 0, 0},  {&_swigt__p_IntensityFunctionLog, _p_IntensityFunctionLogTo_p_IIntensityFunction, 0, 0},{0, 0, 0, 0}};
@@ -138566,18 +138576,18 @@ static swig_cast_info _swigc__p_IInterferenceFunction[] = {  {&_swigt__p_Interfe
 static swig_cast_info _swigc__p_ILatticeOrientation[] = {  {&_swigt__p_ILatticeOrientation, 0, 0, 0},  {&_swigt__p_MillerIndexOrientation, _p_MillerIndexOrientationTo_p_ILatticeOrientation, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_ILayout[] = {  {&_swigt__p_ILayout, 0, 0, 0},  {&_swigt__p_ParticleLayout, _p_ParticleLayoutTo_p_ILayout, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IMultiLayerBuilder[] = {  {&_swigt__p_IMultiLayerBuilder, 0, 0, 0},{0, 0, 0, 0}};
-static swig_cast_info _swigc__p_INode[] = {  {&_swigt__p_FormFactorBox, _p_FormFactorBoxTo_p_INode, 0, 0},  {&_swigt__p_IBackground, _p_IBackgroundTo_p_INode, 0, 0},  {&_swigt__p_ConstantBackground, _p_ConstantBackgroundTo_p_INode, 0, 0},  {&_swigt__p_PoissonNoiseBackground, _p_PoissonNoiseBackgroundTo_p_INode, 0, 0},  {&_swigt__p_FormFactorSphereGaussianRadius, _p_FormFactorSphereGaussianRadiusTo_p_INode, 0, 0},  {&_swigt__p_FormFactorSphereLogNormalRadius, _p_FormFactorSphereLogNormalRadiusTo_p_INode, 0, 0},  {&_swigt__p_MultiLayer, _p_MultiLayerTo_p_INode, 0, 0},  {&_swigt__p_ParticleDistribution, _p_ParticleDistributionTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction1DGauss, _p_FTDecayFunction1DGaussTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution1DGauss, _p_FTDistribution1DGaussTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunctionNone, _p_InterferenceFunctionNoneTo_p_INode, 0, 0},  {&_swigt__p_IDetector2D, _p_IDetector2DTo_p_INode, 0, 0},  {&_swigt__p_ILayout, _p_ILayoutTo_p_INode, 0, 0},  {&_swigt__p_ParticleLayout, _p_ParticleLayoutTo_p_INode, 0, 0},  {&_swigt__p_FormFactorHemiEllipsoid, _p_FormFactorHemiEllipsoidTo_p_INode, 0, 0},  {&_swigt__p_IntensityScaleAndShiftNormalizer, _p_IntensityScaleAndShiftNormalizerTo_p_INode, 0, 0},  {&_swigt__p_IntensityNormalizer, _p_IntensityNormalizerTo_p_INode, 0, 0},  {&_swigt__p_IIntensityNormalizer, _p_IIntensityNormalizerTo_p_INode, 0, 0},  {&_swigt__p_SphericalDetector, _p_SphericalDetectorTo_p_INode, 0, 0},  {&_swigt__p_IsGISAXSDetector, _p_IsGISAXSDetectorTo_p_INode, 0, 0},  {&_swigt__p_RectangularDetector, _p_RectangularDetectorTo_p_INode, 0, 0},  {&_swigt__p_IDetector, _p_IDetectorTo_p_INode, 0, 0},  {&_swigt__p_INode, 0, 0, 0},  {&_swigt__p_FormFactorRipple2Box, _p_FormFactorRipple2BoxTo_p_INode, 0, 0},  {&_swigt__p_IPeakShape, _p_IPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_IsotropicGaussPeakShape, _p_IsotropicGaussPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_IsotropicLorentzPeakShape, _p_IsotropicLorentzPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_GaussFisherPeakShape, _p_GaussFisherPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_LorentzFisherPeakShape, _p_LorentzFisherPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_VonMisesFisherGaussPeakShape, _p_VonMisesFisherGaussPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_VonMisesGaussPeakShape, _p_VonMisesGaussPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_FormFactorPrism3, _p_FormFactorPrism3To_p_INode, 0, 0},  {&_swigt__p_DistributionTrapezoid, _p_DistributionTrapezoidTo_p_INode, 0, 0},  {&_swigt__p_FormFactorIcosahedron, _p_FormFactorIcosahedronTo_p_INode, 0, 0},  {&_swigt__p_FormFactorDodecahedron, _p_FormFactorDodecahedronTo_p_INode, 0, 0},  {&_swigt__p_FormFactorCuboctahedron, _p_FormFactorCuboctahedronTo_p_INode, 0, 0},  {&_swigt__p_FormFactorPolyhedron, _p_FormFactorPolyhedronTo_p_INode, 0, 0},  {&_swigt__p_FormFactorTetrahedron, _p_FormFactorTetrahedronTo_p_INode, 0, 0},  {&_swigt__p_FormFactorDebyeBueche, _p_FormFactorDebyeBuecheTo_p_INode, 0, 0},  {&_swigt__p_FormFactorPrism6, _p_FormFactorPrism6To_p_INode, 0, 0},  {&_swigt__p_Simulation, _p_SimulationTo_p_INode, 0, 0},  {&_swigt__p_GISASSimulation, _p_GISASSimulationTo_p_INode, 0, 0},  {&_swigt__p_OffSpecSimulation, _p_OffSpecSimulationTo_p_INode, 0, 0},  {&_swigt__p_DepthProbeSimulation, _p_DepthProbeSimulationTo_p_INode, 0, 0},  {&_swigt__p_SpecularSimulation, _p_SpecularSimulationTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution2DCone, _p_FTDistribution2DConeTo_p_INode, 0, 0},  {&_swigt__p_ParticleCoreShell, _p_ParticleCoreShellTo_p_INode, 0, 0},  {&_swigt__p_ProfileBar, _p_ProfileBarTo_p_INode, 0, 0},  {&_swigt__p_FormFactorFullSphere, _p_FormFactorFullSphereTo_p_INode, 0, 0},  {&_swigt__p_FormFactorTruncatedSphere, _p_FormFactorTruncatedSphereTo_p_INode, 0, 0},  {&_swigt__p_IFormFactor, _p_IFormFactorTo_p_INode, 0, 0},  {&_swigt__p_FormFactorPolygonalSurface, _p_FormFactorPolygonalSurfaceTo_p_INode, 0, 0},  {&_swigt__p_ISample, _p_ISampleTo_p_INode, 0, 0},  {&_swigt__p_FormFactorLongBoxGauss, _p_FormFactorLongBoxGaussTo_p_INode, 0, 0},  {&_swigt__p_FormFactorPolygonalPrism, _p_FormFactorPolygonalPrismTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunctionHardDisk, _p_InterferenceFunctionHardDiskTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution2DGate, _p_FTDistribution2DGateTo_p_INode, 0, 0},  {&_swigt__p_DistributionLogNormal, _p_DistributionLogNormalTo_p_INode, 0, 0},  {&_swigt__p_FormFactorRipple1Box, _p_FormFactorRipple1BoxTo_p_INode, 0, 0},  {&_swigt__p_Instrument, _p_InstrumentTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution1DVoigt, _p_FTDistribution1DVoigtTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction1DVoigt, _p_FTDecayFunction1DVoigtTo_p_INode, 0, 0},  {&_swigt__p_IRotation, _p_IRotationTo_p_INode, 0, 0},  {&_swigt__p_IdentityRotation, _p_IdentityRotationTo_p_INode, 0, 0},  {&_swigt__p_FormFactorTruncatedSpheroid, _p_FormFactorTruncatedSpheroidTo_p_INode, 0, 0},  {&_swigt__p_FormFactorFullSpheroid, _p_FormFactorFullSpheroidTo_p_INode, 0, 0},  {&_swigt__p_RotationX, _p_RotationXTo_p_INode, 0, 0},  {&_swigt__p_FootprintGauss, _p_FootprintGaussTo_p_INode, 0, 0},  {&_swigt__p_FormFactorTruncatedCube, _p_FormFactorTruncatedCubeTo_p_INode, 0, 0},  {&_swigt__p_FormFactorCantellatedCube, _p_FormFactorCantellatedCubeTo_p_INode, 0, 0},  {&_swigt__p_RotationY, _p_RotationYTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution2DGauss, _p_FTDistribution2DGaussTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction2DGauss, _p_FTDecayFunction2DGaussTo_p_INode, 0, 0},  {&_swigt__p_RotationZ, _p_RotationZTo_p_INode, 0, 0},  {&_swigt__p_FormFactorRipple2Gauss, _p_FormFactorRipple2GaussTo_p_INode, 0, 0},  {&_swigt__p_FormFactorGauss, _p_FormFactorGaussTo_p_INode, 0, 0},  {&_swigt__p_IFormFactorBorn, _p_IFormFactorBornTo_p_INode, 0, 0},  {&_swigt__p_IDetectorResolution, _p_IDetectorResolutionTo_p_INode, 0, 0},  {&_swigt__p_IClusteredParticles, _p_IClusteredParticlesTo_p_INode, 0, 0},  {&_swigt__p_Particle, _p_ParticleTo_p_INode, 0, 0},  {&_swigt__p_IAbstractParticle, _p_IAbstractParticleTo_p_INode, 0, 0},  {&_swigt__p_IParticle, _p_IParticleTo_p_INode, 0, 0},  {&_swigt__p_Lattice2D, _p_Lattice2DTo_p_INode, 0, 0},  {&_swigt__p_DistributionGate, _p_DistributionGateTo_p_INode, 0, 0},  {&_swigt__p_IDistribution1D, _p_IDistribution1DTo_p_INode, 0, 0},  {&_swigt__p_IFTDecayFunction1D, _p_IFTDecayFunction1DTo_p_INode, 0, 0},  {&_swigt__p_IFTDistribution1D, _p_IFTDistribution1DTo_p_INode, 0, 0},  {&_swigt__p_FormFactorCone, _p_FormFactorConeTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunctionTwin, _p_InterferenceFunctionTwinTo_p_INode, 0, 0},  {&_swigt__p_ProfileRipple1, _p_ProfileRipple1To_p_INode, 0, 0},  {&_swigt__p_Layer, _p_LayerTo_p_INode, 0, 0},  {&_swigt__p_FormFactorPyramid, _p_FormFactorPyramidTo_p_INode, 0, 0},  {&_swigt__p_FormFactorAnisoPyramid, _p_FormFactorAnisoPyramidTo_p_INode, 0, 0},  {&_swigt__p_ProfileRipple2, _p_ProfileRipple2To_p_INode, 0, 0},  {&_swigt__p_FormFactorEllipsoidalCylinder, _p_FormFactorEllipsoidalCylinderTo_p_INode, 0, 0},  {&_swigt__p_FormFactorCylinder, _p_FormFactorCylinderTo_p_INode, 0, 0},  {&_swigt__p_DistributionGaussian, _p_DistributionGaussianTo_p_INode, 0, 0},  {&_swigt__p_ResolutionFunction2DGaussian, _p_ResolutionFunction2DGaussianTo_p_INode, 0, 0},  {&_swigt__p_IFootprintFactor, _p_IFootprintFactorTo_p_INode, 0, 0},  {&_swigt__p_ParticleComposition, _p_ParticleCompositionTo_p_INode, 0, 0},  {&_swigt__p_FormFactorSphereUniformRadius, _p_FormFactorSphereUniformRadiusTo_p_INode, 0, 0},  {&_swigt__p_DistributionCosine, _p_DistributionCosineTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution1DCosine, _p_FTDistribution1DCosineTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution1DGate, _p_FTDistribution1DGateTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution2DVoigt, _p_FTDistribution2DVoigtTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction2DVoigt, _p_FTDecayFunction2DVoigtTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction1DCauchy, _p_FTDecayFunction1DCauchyTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution1DCauchy, _p_FTDistribution1DCauchyTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction2DCauchy, _p_FTDecayFunction2DCauchyTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution2DCauchy, _p_FTDistribution2DCauchyTo_p_INode, 0, 0},  {&_swigt__p_IInterferenceFunction, _p_IInterferenceFunctionTo_p_INode, 0, 0},  {&_swigt__p_FootprintSquare, _p_FootprintSquareTo_p_INode, 0, 0},  {&_swigt__p_FormFactorCone6, _p_FormFactorCone6To_p_INode, 0, 0},  {&_swigt__p_FormFactorRipple1Gauss, _p_FormFactorRipple1GaussTo_p_INode, 0, 0},  {&_swigt__p_Beam, _p_BeamTo_p_INode, 0, 0},  {&_swigt__p_IFormFactorDecorator, _p_IFormFactorDecoratorTo_p_INode, 0, 0},  {&_swigt__p_FormFactorOrnsteinZernike, _p_FormFactorOrnsteinZernikeTo_p_INode, 0, 0},  {&_swigt__p_FormFactorDot, _p_FormFactorDotTo_p_INode, 0, 0},  {&_swigt__p_LayerRoughness, _p_LayerRoughnessTo_p_INode, 0, 0},  {&_swigt__p_FormFactorCrystal, _p_FormFactorCrystalTo_p_INode, 0, 0},  {&_swigt__p_Crystal, _p_CrystalTo_p_INode, 0, 0},  {&_swigt__p_MesoCrystal, _p_MesoCrystalTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunction2DParaCrystal, _p_InterferenceFunction2DParaCrystalTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunctionRadialParaCrystal, _p_InterferenceFunctionRadialParaCrystalTo_p_INode, 0, 0},  {&_swigt__p_Simulation2D, _p_Simulation2DTo_p_INode, 0, 0},  {&_swigt__p_IFTDecayFunction2D, _p_IFTDecayFunction2DTo_p_INode, 0, 0},  {&_swigt__p_IFTDistribution2D, _p_IFTDistribution2DTo_p_INode, 0, 0},  {&_swigt__p_IResolutionFunction2D, _p_IResolutionFunction2DTo_p_INode, 0, 0},  {&_swigt__p_FormFactorWeighted, _p_FormFactorWeightedTo_p_INode, 0, 0},  {&_swigt__p_FormFactorRipple2Lorentz, _p_FormFactorRipple2LorentzTo_p_INode, 0, 0},  {&_swigt__p_FormFactorRipple1Lorentz, _p_FormFactorRipple1LorentzTo_p_INode, 0, 0},  {&_swigt__p_FormFactorLorentz, _p_FormFactorLorentzTo_p_INode, 0, 0},  {&_swigt__p_FormFactorLongBoxLorentz, _p_FormFactorLongBoxLorentzTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunction1DLattice, _p_InterferenceFunction1DLatticeTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunction2DLattice, _p_InterferenceFunction2DLatticeTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunction2DSuperLattice, _p_InterferenceFunction2DSuperLatticeTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunction3DLattice, _p_InterferenceFunction3DLatticeTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunctionFinite2DLattice, _p_InterferenceFunctionFinite2DLatticeTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunctionFinite3DLattice, _p_InterferenceFunctionFinite3DLatticeTo_p_INode, 0, 0},  {&_swigt__p_BasicLattice, _p_BasicLatticeTo_p_INode, 0, 0},  {&_swigt__p_SquareLattice, _p_SquareLatticeTo_p_INode, 0, 0},  {&_swigt__p_HexagonalLattice, _p_HexagonalLatticeTo_p_INode, 0, 0},  {&_swigt__p_DistributionLorentz, _p_DistributionLorentzTo_p_INode, 0, 0},  {&_swigt__p_Lattice, _p_LatticeTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction1DTriangle, _p_FTDecayFunction1DTriangleTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution1DTriangle, _p_FTDistribution1DTriangleTo_p_INode, 0, 0},  {&_swigt__p_RotationEuler, _p_RotationEulerTo_p_INode, 0, 0},{0, 0, 0, 0}};
+static swig_cast_info _swigc__p_INode[] = {  {&_swigt__p_FormFactorBox, _p_FormFactorBoxTo_p_INode, 0, 0},  {&_swigt__p_IBackground, _p_IBackgroundTo_p_INode, 0, 0},  {&_swigt__p_ConstantBackground, _p_ConstantBackgroundTo_p_INode, 0, 0},  {&_swigt__p_PoissonNoiseBackground, _p_PoissonNoiseBackgroundTo_p_INode, 0, 0},  {&_swigt__p_FormFactorSphereGaussianRadius, _p_FormFactorSphereGaussianRadiusTo_p_INode, 0, 0},  {&_swigt__p_FormFactorSphereLogNormalRadius, _p_FormFactorSphereLogNormalRadiusTo_p_INode, 0, 0},  {&_swigt__p_MultiLayer, _p_MultiLayerTo_p_INode, 0, 0},  {&_swigt__p_ParticleDistribution, _p_ParticleDistributionTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction1DGauss, _p_FTDecayFunction1DGaussTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution1DGauss, _p_FTDistribution1DGaussTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunctionNone, _p_InterferenceFunctionNoneTo_p_INode, 0, 0},  {&_swigt__p_IDetector2D, _p_IDetector2DTo_p_INode, 0, 0},  {&_swigt__p_ParticleLayout, _p_ParticleLayoutTo_p_INode, 0, 0},  {&_swigt__p_ILayout, _p_ILayoutTo_p_INode, 0, 0},  {&_swigt__p_FormFactorHemiEllipsoid, _p_FormFactorHemiEllipsoidTo_p_INode, 0, 0},  {&_swigt__p_IIntensityNormalizer, _p_IIntensityNormalizerTo_p_INode, 0, 0},  {&_swigt__p_IntensityNormalizer, _p_IntensityNormalizerTo_p_INode, 0, 0},  {&_swigt__p_IntensityScaleAndShiftNormalizer, _p_IntensityScaleAndShiftNormalizerTo_p_INode, 0, 0},  {&_swigt__p_SphericalDetector, _p_SphericalDetectorTo_p_INode, 0, 0},  {&_swigt__p_IsGISAXSDetector, _p_IsGISAXSDetectorTo_p_INode, 0, 0},  {&_swigt__p_RectangularDetector, _p_RectangularDetectorTo_p_INode, 0, 0},  {&_swigt__p_IDetector, _p_IDetectorTo_p_INode, 0, 0},  {&_swigt__p_INode, 0, 0, 0},  {&_swigt__p_FormFactorRipple2Box, _p_FormFactorRipple2BoxTo_p_INode, 0, 0},  {&_swigt__p_VonMisesGaussPeakShape, _p_VonMisesGaussPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_VonMisesFisherGaussPeakShape, _p_VonMisesFisherGaussPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_LorentzFisherPeakShape, _p_LorentzFisherPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_GaussFisherPeakShape, _p_GaussFisherPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_IsotropicLorentzPeakShape, _p_IsotropicLorentzPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_IsotropicGaussPeakShape, _p_IsotropicGaussPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_IPeakShape, _p_IPeakShapeTo_p_INode, 0, 0},  {&_swigt__p_FormFactorPrism3, _p_FormFactorPrism3To_p_INode, 0, 0},  {&_swigt__p_DistributionTrapezoid, _p_DistributionTrapezoidTo_p_INode, 0, 0},  {&_swigt__p_FormFactorPolyhedron, _p_FormFactorPolyhedronTo_p_INode, 0, 0},  {&_swigt__p_FormFactorCuboctahedron, _p_FormFactorCuboctahedronTo_p_INode, 0, 0},  {&_swigt__p_FormFactorDodecahedron, _p_FormFactorDodecahedronTo_p_INode, 0, 0},  {&_swigt__p_FormFactorIcosahedron, _p_FormFactorIcosahedronTo_p_INode, 0, 0},  {&_swigt__p_FormFactorTetrahedron, _p_FormFactorTetrahedronTo_p_INode, 0, 0},  {&_swigt__p_FormFactorDebyeBueche, _p_FormFactorDebyeBuecheTo_p_INode, 0, 0},  {&_swigt__p_FormFactorPrism6, _p_FormFactorPrism6To_p_INode, 0, 0},  {&_swigt__p_Simulation, _p_SimulationTo_p_INode, 0, 0},  {&_swigt__p_GISASSimulation, _p_GISASSimulationTo_p_INode, 0, 0},  {&_swigt__p_DepthProbeSimulation, _p_DepthProbeSimulationTo_p_INode, 0, 0},  {&_swigt__p_SpecularSimulation, _p_SpecularSimulationTo_p_INode, 0, 0},  {&_swigt__p_OffSpecSimulation, _p_OffSpecSimulationTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution2DCone, _p_FTDistribution2DConeTo_p_INode, 0, 0},  {&_swigt__p_ParticleCoreShell, _p_ParticleCoreShellTo_p_INode, 0, 0},  {&_swigt__p_ProfileBar, _p_ProfileBarTo_p_INode, 0, 0},  {&_swigt__p_FormFactorFullSphere, _p_FormFactorFullSphereTo_p_INode, 0, 0},  {&_swigt__p_FormFactorTruncatedSphere, _p_FormFactorTruncatedSphereTo_p_INode, 0, 0},  {&_swigt__p_IFormFactor, _p_IFormFactorTo_p_INode, 0, 0},  {&_swigt__p_FormFactorPolygonalSurface, _p_FormFactorPolygonalSurfaceTo_p_INode, 0, 0},  {&_swigt__p_ISample, _p_ISampleTo_p_INode, 0, 0},  {&_swigt__p_FormFactorLongBoxGauss, _p_FormFactorLongBoxGaussTo_p_INode, 0, 0},  {&_swigt__p_FormFactorPolygonalPrism, _p_FormFactorPolygonalPrismTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunctionHardDisk, _p_InterferenceFunctionHardDiskTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution2DGate, _p_FTDistribution2DGateTo_p_INode, 0, 0},  {&_swigt__p_DistributionLogNormal, _p_DistributionLogNormalTo_p_INode, 0, 0},  {&_swigt__p_FormFactorRipple1Box, _p_FormFactorRipple1BoxTo_p_INode, 0, 0},  {&_swigt__p_Instrument, _p_InstrumentTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction1DVoigt, _p_FTDecayFunction1DVoigtTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution1DVoigt, _p_FTDistribution1DVoigtTo_p_INode, 0, 0},  {&_swigt__p_IRotation, _p_IRotationTo_p_INode, 0, 0},  {&_swigt__p_IdentityRotation, _p_IdentityRotationTo_p_INode, 0, 0},  {&_swigt__p_FormFactorTruncatedSpheroid, _p_FormFactorTruncatedSpheroidTo_p_INode, 0, 0},  {&_swigt__p_FormFactorFullSpheroid, _p_FormFactorFullSpheroidTo_p_INode, 0, 0},  {&_swigt__p_RotationX, _p_RotationXTo_p_INode, 0, 0},  {&_swigt__p_FootprintGauss, _p_FootprintGaussTo_p_INode, 0, 0},  {&_swigt__p_FormFactorTruncatedCube, _p_FormFactorTruncatedCubeTo_p_INode, 0, 0},  {&_swigt__p_FormFactorCantellatedCube, _p_FormFactorCantellatedCubeTo_p_INode, 0, 0},  {&_swigt__p_RotationY, _p_RotationYTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction2DGauss, _p_FTDecayFunction2DGaussTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution2DGauss, _p_FTDistribution2DGaussTo_p_INode, 0, 0},  {&_swigt__p_RotationZ, _p_RotationZTo_p_INode, 0, 0},  {&_swigt__p_FormFactorRipple2Gauss, _p_FormFactorRipple2GaussTo_p_INode, 0, 0},  {&_swigt__p_FormFactorGauss, _p_FormFactorGaussTo_p_INode, 0, 0},  {&_swigt__p_IFormFactorBorn, _p_IFormFactorBornTo_p_INode, 0, 0},  {&_swigt__p_IDetectorResolution, _p_IDetectorResolutionTo_p_INode, 0, 0},  {&_swigt__p_IClusteredParticles, _p_IClusteredParticlesTo_p_INode, 0, 0},  {&_swigt__p_Particle, _p_ParticleTo_p_INode, 0, 0},  {&_swigt__p_IAbstractParticle, _p_IAbstractParticleTo_p_INode, 0, 0},  {&_swigt__p_IParticle, _p_IParticleTo_p_INode, 0, 0},  {&_swigt__p_Lattice2D, _p_Lattice2DTo_p_INode, 0, 0},  {&_swigt__p_DistributionGate, _p_DistributionGateTo_p_INode, 0, 0},  {&_swigt__p_IDistribution1D, _p_IDistribution1DTo_p_INode, 0, 0},  {&_swigt__p_IFTDecayFunction1D, _p_IFTDecayFunction1DTo_p_INode, 0, 0},  {&_swigt__p_IFTDistribution1D, _p_IFTDistribution1DTo_p_INode, 0, 0},  {&_swigt__p_FormFactorCone, _p_FormFactorConeTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunctionTwin, _p_InterferenceFunctionTwinTo_p_INode, 0, 0},  {&_swigt__p_ProfileRipple1, _p_ProfileRipple1To_p_INode, 0, 0},  {&_swigt__p_Layer, _p_LayerTo_p_INode, 0, 0},  {&_swigt__p_FormFactorPyramid, _p_FormFactorPyramidTo_p_INode, 0, 0},  {&_swigt__p_FormFactorAnisoPyramid, _p_FormFactorAnisoPyramidTo_p_INode, 0, 0},  {&_swigt__p_ProfileRipple2, _p_ProfileRipple2To_p_INode, 0, 0},  {&_swigt__p_FormFactorEllipsoidalCylinder, _p_FormFactorEllipsoidalCylinderTo_p_INode, 0, 0},  {&_swigt__p_FormFactorCylinder, _p_FormFactorCylinderTo_p_INode, 0, 0},  {&_swigt__p_DistributionGaussian, _p_DistributionGaussianTo_p_INode, 0, 0},  {&_swigt__p_ResolutionFunction2DGaussian, _p_ResolutionFunction2DGaussianTo_p_INode, 0, 0},  {&_swigt__p_IFootprintFactor, _p_IFootprintFactorTo_p_INode, 0, 0},  {&_swigt__p_ParticleComposition, _p_ParticleCompositionTo_p_INode, 0, 0},  {&_swigt__p_DistributionCosine, _p_DistributionCosineTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution1DCosine, _p_FTDistribution1DCosineTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution1DGate, _p_FTDistribution1DGateTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution2DVoigt, _p_FTDistribution2DVoigtTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction2DVoigt, _p_FTDecayFunction2DVoigtTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction1DCauchy, _p_FTDecayFunction1DCauchyTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution1DCauchy, _p_FTDistribution1DCauchyTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution2DCauchy, _p_FTDistribution2DCauchyTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction2DCauchy, _p_FTDecayFunction2DCauchyTo_p_INode, 0, 0},  {&_swigt__p_IInterferenceFunction, _p_IInterferenceFunctionTo_p_INode, 0, 0},  {&_swigt__p_FootprintSquare, _p_FootprintSquareTo_p_INode, 0, 0},  {&_swigt__p_FormFactorCone6, _p_FormFactorCone6To_p_INode, 0, 0},  {&_swigt__p_FormFactorRipple1Gauss, _p_FormFactorRipple1GaussTo_p_INode, 0, 0},  {&_swigt__p_Beam, _p_BeamTo_p_INode, 0, 0},  {&_swigt__p_IFormFactorDecorator, _p_IFormFactorDecoratorTo_p_INode, 0, 0},  {&_swigt__p_FormFactorOrnsteinZernike, _p_FormFactorOrnsteinZernikeTo_p_INode, 0, 0},  {&_swigt__p_FormFactorDot, _p_FormFactorDotTo_p_INode, 0, 0},  {&_swigt__p_LayerRoughness, _p_LayerRoughnessTo_p_INode, 0, 0},  {&_swigt__p_FormFactorCrystal, _p_FormFactorCrystalTo_p_INode, 0, 0},  {&_swigt__p_Crystal, _p_CrystalTo_p_INode, 0, 0},  {&_swigt__p_MesoCrystal, _p_MesoCrystalTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunction2DParaCrystal, _p_InterferenceFunction2DParaCrystalTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunctionRadialParaCrystal, _p_InterferenceFunctionRadialParaCrystalTo_p_INode, 0, 0},  {&_swigt__p_Simulation2D, _p_Simulation2DTo_p_INode, 0, 0},  {&_swigt__p_FormFactorHollowSphere, _p_FormFactorHollowSphereTo_p_INode, 0, 0},  {&_swigt__p_IFTDistribution2D, _p_IFTDistribution2DTo_p_INode, 0, 0},  {&_swigt__p_IFTDecayFunction2D, _p_IFTDecayFunction2DTo_p_INode, 0, 0},  {&_swigt__p_IResolutionFunction2D, _p_IResolutionFunction2DTo_p_INode, 0, 0},  {&_swigt__p_FormFactorWeighted, _p_FormFactorWeightedTo_p_INode, 0, 0},  {&_swigt__p_FormFactorRipple2Lorentz, _p_FormFactorRipple2LorentzTo_p_INode, 0, 0},  {&_swigt__p_FormFactorRipple1Lorentz, _p_FormFactorRipple1LorentzTo_p_INode, 0, 0},  {&_swigt__p_FormFactorLongBoxLorentz, _p_FormFactorLongBoxLorentzTo_p_INode, 0, 0},  {&_swigt__p_FormFactorLorentz, _p_FormFactorLorentzTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunction1DLattice, _p_InterferenceFunction1DLatticeTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunction2DLattice, _p_InterferenceFunction2DLatticeTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunction2DSuperLattice, _p_InterferenceFunction2DSuperLatticeTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunction3DLattice, _p_InterferenceFunction3DLatticeTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunctionFinite2DLattice, _p_InterferenceFunctionFinite2DLatticeTo_p_INode, 0, 0},  {&_swigt__p_InterferenceFunctionFinite3DLattice, _p_InterferenceFunctionFinite3DLatticeTo_p_INode, 0, 0},  {&_swigt__p_BasicLattice, _p_BasicLatticeTo_p_INode, 0, 0},  {&_swigt__p_SquareLattice, _p_SquareLatticeTo_p_INode, 0, 0},  {&_swigt__p_HexagonalLattice, _p_HexagonalLatticeTo_p_INode, 0, 0},  {&_swigt__p_DistributionLorentz, _p_DistributionLorentzTo_p_INode, 0, 0},  {&_swigt__p_Lattice, _p_LatticeTo_p_INode, 0, 0},  {&_swigt__p_FTDecayFunction1DTriangle, _p_FTDecayFunction1DTriangleTo_p_INode, 0, 0},  {&_swigt__p_FTDistribution1DTriangle, _p_FTDistribution1DTriangleTo_p_INode, 0, 0},  {&_swigt__p_RotationEuler, _p_RotationEulerTo_p_INode, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_INodeVisitor[] = {  {&_swigt__p_INodeVisitor, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IObservable[] = {  {&_swigt__p_IObservable, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IObserver[] = {  {&_swigt__p_IObserver, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IParameterT_double_t[] = {  {&_swigt__p_IParameterT_double_t, 0, 0, 0},  {&_swigt__p_RealParameter, _p_RealParameterTo_p_IParameterT_double_t, 0, 0},{0, 0, 0, 0}};
-static swig_cast_info _swigc__p_IParameterized[] = {  {&_swigt__p_FormFactorBox, _p_FormFactorBoxTo_p_IParameterized, 0, 0},  {&_swigt__p_IBackground, _p_IBackgroundTo_p_IParameterized, 0, 0},  {&_swigt__p_ConstantBackground, _p_ConstantBackgroundTo_p_IParameterized, 0, 0},  {&_swigt__p_PoissonNoiseBackground, _p_PoissonNoiseBackgroundTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorSphereGaussianRadius, _p_FormFactorSphereGaussianRadiusTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorSphereLogNormalRadius, _p_FormFactorSphereLogNormalRadiusTo_p_IParameterized, 0, 0},  {&_swigt__p_MultiLayer, _p_MultiLayerTo_p_IParameterized, 0, 0},  {&_swigt__p_ParameterDistribution, _p_ParameterDistributionTo_p_IParameterized, 0, 0},  {&_swigt__p_ParticleDistribution, _p_ParticleDistributionTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction1DGauss, _p_FTDecayFunction1DGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution1DGauss, _p_FTDistribution1DGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunctionNone, _p_InterferenceFunctionNoneTo_p_IParameterized, 0, 0},  {&_swigt__p_IDetector2D, _p_IDetector2DTo_p_IParameterized, 0, 0},  {&_swigt__p_ILayout, _p_ILayoutTo_p_IParameterized, 0, 0},  {&_swigt__p_ParticleLayout, _p_ParticleLayoutTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorHemiEllipsoid, _p_FormFactorHemiEllipsoidTo_p_IParameterized, 0, 0},  {&_swigt__p_IntensityScaleAndShiftNormalizer, _p_IntensityScaleAndShiftNormalizerTo_p_IParameterized, 0, 0},  {&_swigt__p_IntensityNormalizer, _p_IntensityNormalizerTo_p_IParameterized, 0, 0},  {&_swigt__p_IIntensityNormalizer, _p_IIntensityNormalizerTo_p_IParameterized, 0, 0},  {&_swigt__p_SphericalDetector, _p_SphericalDetectorTo_p_IParameterized, 0, 0},  {&_swigt__p_IsGISAXSDetector, _p_IsGISAXSDetectorTo_p_IParameterized, 0, 0},  {&_swigt__p_RectangularDetector, _p_RectangularDetectorTo_p_IParameterized, 0, 0},  {&_swigt__p_IDetector, _p_IDetectorTo_p_IParameterized, 0, 0},  {&_swigt__p_INode, _p_INodeTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorRipple2Box, _p_FormFactorRipple2BoxTo_p_IParameterized, 0, 0},  {&_swigt__p_IPeakShape, _p_IPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_IsotropicGaussPeakShape, _p_IsotropicGaussPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_IsotropicLorentzPeakShape, _p_IsotropicLorentzPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_GaussFisherPeakShape, _p_GaussFisherPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_LorentzFisherPeakShape, _p_LorentzFisherPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_VonMisesFisherGaussPeakShape, _p_VonMisesFisherGaussPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_VonMisesGaussPeakShape, _p_VonMisesGaussPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorPrism3, _p_FormFactorPrism3To_p_IParameterized, 0, 0},  {&_swigt__p_DistributionTrapezoid, _p_DistributionTrapezoidTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorIcosahedron, _p_FormFactorIcosahedronTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorDodecahedron, _p_FormFactorDodecahedronTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorCuboctahedron, _p_FormFactorCuboctahedronTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorPolyhedron, _p_FormFactorPolyhedronTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorTetrahedron, _p_FormFactorTetrahedronTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorDebyeBueche, _p_FormFactorDebyeBuecheTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorPrism6, _p_FormFactorPrism6To_p_IParameterized, 0, 0},  {&_swigt__p_Simulation, _p_SimulationTo_p_IParameterized, 0, 0},  {&_swigt__p_GISASSimulation, _p_GISASSimulationTo_p_IParameterized, 0, 0},  {&_swigt__p_OffSpecSimulation, _p_OffSpecSimulationTo_p_IParameterized, 0, 0},  {&_swigt__p_DepthProbeSimulation, _p_DepthProbeSimulationTo_p_IParameterized, 0, 0},  {&_swigt__p_SpecularSimulation, _p_SpecularSimulationTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution2DCone, _p_FTDistribution2DConeTo_p_IParameterized, 0, 0},  {&_swigt__p_ParticleCoreShell, _p_ParticleCoreShellTo_p_IParameterized, 0, 0},  {&_swigt__p_ProfileBar, _p_ProfileBarTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorFullSphere, _p_FormFactorFullSphereTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorTruncatedSphere, _p_FormFactorTruncatedSphereTo_p_IParameterized, 0, 0},  {&_swigt__p_IFormFactor, _p_IFormFactorTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorPolygonalSurface, _p_FormFactorPolygonalSurfaceTo_p_IParameterized, 0, 0},  {&_swigt__p_ISample, _p_ISampleTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorLongBoxGauss, _p_FormFactorLongBoxGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorPolygonalPrism, _p_FormFactorPolygonalPrismTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunctionHardDisk, _p_InterferenceFunctionHardDiskTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution2DGate, _p_FTDistribution2DGateTo_p_IParameterized, 0, 0},  {&_swigt__p_DistributionLogNormal, _p_DistributionLogNormalTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorRipple1Box, _p_FormFactorRipple1BoxTo_p_IParameterized, 0, 0},  {&_swigt__p_Instrument, _p_InstrumentTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution1DVoigt, _p_FTDistribution1DVoigtTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction1DVoigt, _p_FTDecayFunction1DVoigtTo_p_IParameterized, 0, 0},  {&_swigt__p_IRotation, _p_IRotationTo_p_IParameterized, 0, 0},  {&_swigt__p_IdentityRotation, _p_IdentityRotationTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorTruncatedSpheroid, _p_FormFactorTruncatedSpheroidTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorFullSpheroid, _p_FormFactorFullSpheroidTo_p_IParameterized, 0, 0},  {&_swigt__p_RotationX, _p_RotationXTo_p_IParameterized, 0, 0},  {&_swigt__p_FootprintGauss, _p_FootprintGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorTruncatedCube, _p_FormFactorTruncatedCubeTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorCantellatedCube, _p_FormFactorCantellatedCubeTo_p_IParameterized, 0, 0},  {&_swigt__p_RotationY, _p_RotationYTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution2DGauss, _p_FTDistribution2DGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction2DGauss, _p_FTDecayFunction2DGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_RotationZ, _p_RotationZTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorRipple2Gauss, _p_FormFactorRipple2GaussTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorGauss, _p_FormFactorGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_IFormFactorBorn, _p_IFormFactorBornTo_p_IParameterized, 0, 0},  {&_swigt__p_IDetectorResolution, _p_IDetectorResolutionTo_p_IParameterized, 0, 0},  {&_swigt__p_IClusteredParticles, _p_IClusteredParticlesTo_p_IParameterized, 0, 0},  {&_swigt__p_IMultiLayerBuilder, _p_IMultiLayerBuilderTo_p_IParameterized, 0, 0},  {&_swigt__p_Particle, _p_ParticleTo_p_IParameterized, 0, 0},  {&_swigt__p_IAbstractParticle, _p_IAbstractParticleTo_p_IParameterized, 0, 0},  {&_swigt__p_IParticle, _p_IParticleTo_p_IParameterized, 0, 0},  {&_swigt__p_Lattice2D, _p_Lattice2DTo_p_IParameterized, 0, 0},  {&_swigt__p_DistributionGate, _p_DistributionGateTo_p_IParameterized, 0, 0},  {&_swigt__p_IDistribution1D, _p_IDistribution1DTo_p_IParameterized, 0, 0},  {&_swigt__p_IFTDecayFunction1D, _p_IFTDecayFunction1DTo_p_IParameterized, 0, 0},  {&_swigt__p_IFTDistribution1D, _p_IFTDistribution1DTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorCone, _p_FormFactorConeTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunctionTwin, _p_InterferenceFunctionTwinTo_p_IParameterized, 0, 0},  {&_swigt__p_ProfileRipple1, _p_ProfileRipple1To_p_IParameterized, 0, 0},  {&_swigt__p_Layer, _p_LayerTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorPyramid, _p_FormFactorPyramidTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorAnisoPyramid, _p_FormFactorAnisoPyramidTo_p_IParameterized, 0, 0},  {&_swigt__p_ProfileRipple2, _p_ProfileRipple2To_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorCylinder, _p_FormFactorCylinderTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorEllipsoidalCylinder, _p_FormFactorEllipsoidalCylinderTo_p_IParameterized, 0, 0},  {&_swigt__p_DistributionGaussian, _p_DistributionGaussianTo_p_IParameterized, 0, 0},  {&_swigt__p_ResolutionFunction2DGaussian, _p_ResolutionFunction2DGaussianTo_p_IParameterized, 0, 0},  {&_swigt__p_IFootprintFactor, _p_IFootprintFactorTo_p_IParameterized, 0, 0},  {&_swigt__p_ParticleComposition, _p_ParticleCompositionTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorSphereUniformRadius, _p_FormFactorSphereUniformRadiusTo_p_IParameterized, 0, 0},  {&_swigt__p_DistributionCosine, _p_DistributionCosineTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution1DCosine, _p_FTDistribution1DCosineTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution1DGate, _p_FTDistribution1DGateTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution2DVoigt, _p_FTDistribution2DVoigtTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction2DVoigt, _p_FTDecayFunction2DVoigtTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction1DCauchy, _p_FTDecayFunction1DCauchyTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution1DCauchy, _p_FTDistribution1DCauchyTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction2DCauchy, _p_FTDecayFunction2DCauchyTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution2DCauchy, _p_FTDistribution2DCauchyTo_p_IParameterized, 0, 0},  {&_swigt__p_IInterferenceFunction, _p_IInterferenceFunctionTo_p_IParameterized, 0, 0},  {&_swigt__p_FootprintSquare, _p_FootprintSquareTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorCone6, _p_FormFactorCone6To_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorRipple1Gauss, _p_FormFactorRipple1GaussTo_p_IParameterized, 0, 0},  {&_swigt__p_Beam, _p_BeamTo_p_IParameterized, 0, 0},  {&_swigt__p_IFormFactorDecorator, _p_IFormFactorDecoratorTo_p_IParameterized, 0, 0},  {&_swigt__p_IParameterized, 0, 0, 0},  {&_swigt__p_FormFactorOrnsteinZernike, _p_FormFactorOrnsteinZernikeTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorDot, _p_FormFactorDotTo_p_IParameterized, 0, 0},  {&_swigt__p_LayerRoughness, _p_LayerRoughnessTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorCrystal, _p_FormFactorCrystalTo_p_IParameterized, 0, 0},  {&_swigt__p_Crystal, _p_CrystalTo_p_IParameterized, 0, 0},  {&_swigt__p_MesoCrystal, _p_MesoCrystalTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunction2DParaCrystal, _p_InterferenceFunction2DParaCrystalTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunctionRadialParaCrystal, _p_InterferenceFunctionRadialParaCrystalTo_p_IParameterized, 0, 0},  {&_swigt__p_Simulation2D, _p_Simulation2DTo_p_IParameterized, 0, 0},  {&_swigt__p_IFTDecayFunction2D, _p_IFTDecayFunction2DTo_p_IParameterized, 0, 0},  {&_swigt__p_IFTDistribution2D, _p_IFTDistribution2DTo_p_IParameterized, 0, 0},  {&_swigt__p_IResolutionFunction2D, _p_IResolutionFunction2DTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorWeighted, _p_FormFactorWeightedTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorRipple2Lorentz, _p_FormFactorRipple2LorentzTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorRipple1Lorentz, _p_FormFactorRipple1LorentzTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorLorentz, _p_FormFactorLorentzTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorLongBoxLorentz, _p_FormFactorLongBoxLorentzTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunction1DLattice, _p_InterferenceFunction1DLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunction2DLattice, _p_InterferenceFunction2DLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunction2DSuperLattice, _p_InterferenceFunction2DSuperLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunction3DLattice, _p_InterferenceFunction3DLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunctionFinite2DLattice, _p_InterferenceFunctionFinite2DLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunctionFinite3DLattice, _p_InterferenceFunctionFinite3DLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_BasicLattice, _p_BasicLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_SquareLattice, _p_SquareLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_HexagonalLattice, _p_HexagonalLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_DistributionLorentz, _p_DistributionLorentzTo_p_IParameterized, 0, 0},  {&_swigt__p_Lattice, _p_LatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction1DTriangle, _p_FTDecayFunction1DTriangleTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution1DTriangle, _p_FTDistribution1DTriangleTo_p_IParameterized, 0, 0},  {&_swigt__p_RotationEuler, _p_RotationEulerTo_p_IParameterized, 0, 0},{0, 0, 0, 0}};
+static swig_cast_info _swigc__p_IParameterized[] = {  {&_swigt__p_FormFactorBox, _p_FormFactorBoxTo_p_IParameterized, 0, 0},  {&_swigt__p_IBackground, _p_IBackgroundTo_p_IParameterized, 0, 0},  {&_swigt__p_ConstantBackground, _p_ConstantBackgroundTo_p_IParameterized, 0, 0},  {&_swigt__p_PoissonNoiseBackground, _p_PoissonNoiseBackgroundTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorSphereGaussianRadius, _p_FormFactorSphereGaussianRadiusTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorSphereLogNormalRadius, _p_FormFactorSphereLogNormalRadiusTo_p_IParameterized, 0, 0},  {&_swigt__p_MultiLayer, _p_MultiLayerTo_p_IParameterized, 0, 0},  {&_swigt__p_ParticleDistribution, _p_ParticleDistributionTo_p_IParameterized, 0, 0},  {&_swigt__p_ParameterDistribution, _p_ParameterDistributionTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction1DGauss, _p_FTDecayFunction1DGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution1DGauss, _p_FTDistribution1DGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunctionNone, _p_InterferenceFunctionNoneTo_p_IParameterized, 0, 0},  {&_swigt__p_IDetector2D, _p_IDetector2DTo_p_IParameterized, 0, 0},  {&_swigt__p_ParticleLayout, _p_ParticleLayoutTo_p_IParameterized, 0, 0},  {&_swigt__p_ILayout, _p_ILayoutTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorHemiEllipsoid, _p_FormFactorHemiEllipsoidTo_p_IParameterized, 0, 0},  {&_swigt__p_IIntensityNormalizer, _p_IIntensityNormalizerTo_p_IParameterized, 0, 0},  {&_swigt__p_IntensityNormalizer, _p_IntensityNormalizerTo_p_IParameterized, 0, 0},  {&_swigt__p_IntensityScaleAndShiftNormalizer, _p_IntensityScaleAndShiftNormalizerTo_p_IParameterized, 0, 0},  {&_swigt__p_SphericalDetector, _p_SphericalDetectorTo_p_IParameterized, 0, 0},  {&_swigt__p_IsGISAXSDetector, _p_IsGISAXSDetectorTo_p_IParameterized, 0, 0},  {&_swigt__p_RectangularDetector, _p_RectangularDetectorTo_p_IParameterized, 0, 0},  {&_swigt__p_IDetector, _p_IDetectorTo_p_IParameterized, 0, 0},  {&_swigt__p_INode, _p_INodeTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorRipple2Box, _p_FormFactorRipple2BoxTo_p_IParameterized, 0, 0},  {&_swigt__p_VonMisesGaussPeakShape, _p_VonMisesGaussPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_VonMisesFisherGaussPeakShape, _p_VonMisesFisherGaussPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_LorentzFisherPeakShape, _p_LorentzFisherPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_GaussFisherPeakShape, _p_GaussFisherPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_IsotropicLorentzPeakShape, _p_IsotropicLorentzPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_IsotropicGaussPeakShape, _p_IsotropicGaussPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_IPeakShape, _p_IPeakShapeTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorPrism3, _p_FormFactorPrism3To_p_IParameterized, 0, 0},  {&_swigt__p_DistributionTrapezoid, _p_DistributionTrapezoidTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorPolyhedron, _p_FormFactorPolyhedronTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorCuboctahedron, _p_FormFactorCuboctahedronTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorDodecahedron, _p_FormFactorDodecahedronTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorIcosahedron, _p_FormFactorIcosahedronTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorTetrahedron, _p_FormFactorTetrahedronTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorDebyeBueche, _p_FormFactorDebyeBuecheTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorPrism6, _p_FormFactorPrism6To_p_IParameterized, 0, 0},  {&_swigt__p_Simulation, _p_SimulationTo_p_IParameterized, 0, 0},  {&_swigt__p_GISASSimulation, _p_GISASSimulationTo_p_IParameterized, 0, 0},  {&_swigt__p_DepthProbeSimulation, _p_DepthProbeSimulationTo_p_IParameterized, 0, 0},  {&_swigt__p_SpecularSimulation, _p_SpecularSimulationTo_p_IParameterized, 0, 0},  {&_swigt__p_OffSpecSimulation, _p_OffSpecSimulationTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution2DCone, _p_FTDistribution2DConeTo_p_IParameterized, 0, 0},  {&_swigt__p_ParticleCoreShell, _p_ParticleCoreShellTo_p_IParameterized, 0, 0},  {&_swigt__p_ProfileBar, _p_ProfileBarTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorFullSphere, _p_FormFactorFullSphereTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorTruncatedSphere, _p_FormFactorTruncatedSphereTo_p_IParameterized, 0, 0},  {&_swigt__p_IFormFactor, _p_IFormFactorTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorPolygonalSurface, _p_FormFactorPolygonalSurfaceTo_p_IParameterized, 0, 0},  {&_swigt__p_ISample, _p_ISampleTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorLongBoxGauss, _p_FormFactorLongBoxGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorPolygonalPrism, _p_FormFactorPolygonalPrismTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunctionHardDisk, _p_InterferenceFunctionHardDiskTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution2DGate, _p_FTDistribution2DGateTo_p_IParameterized, 0, 0},  {&_swigt__p_DistributionLogNormal, _p_DistributionLogNormalTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorRipple1Box, _p_FormFactorRipple1BoxTo_p_IParameterized, 0, 0},  {&_swigt__p_Instrument, _p_InstrumentTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction1DVoigt, _p_FTDecayFunction1DVoigtTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution1DVoigt, _p_FTDistribution1DVoigtTo_p_IParameterized, 0, 0},  {&_swigt__p_IRotation, _p_IRotationTo_p_IParameterized, 0, 0},  {&_swigt__p_IdentityRotation, _p_IdentityRotationTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorTruncatedSpheroid, _p_FormFactorTruncatedSpheroidTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorFullSpheroid, _p_FormFactorFullSpheroidTo_p_IParameterized, 0, 0},  {&_swigt__p_RotationX, _p_RotationXTo_p_IParameterized, 0, 0},  {&_swigt__p_FootprintGauss, _p_FootprintGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorTruncatedCube, _p_FormFactorTruncatedCubeTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorCantellatedCube, _p_FormFactorCantellatedCubeTo_p_IParameterized, 0, 0},  {&_swigt__p_RotationY, _p_RotationYTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction2DGauss, _p_FTDecayFunction2DGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution2DGauss, _p_FTDistribution2DGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_RotationZ, _p_RotationZTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorRipple2Gauss, _p_FormFactorRipple2GaussTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorGauss, _p_FormFactorGaussTo_p_IParameterized, 0, 0},  {&_swigt__p_IFormFactorBorn, _p_IFormFactorBornTo_p_IParameterized, 0, 0},  {&_swigt__p_IDetectorResolution, _p_IDetectorResolutionTo_p_IParameterized, 0, 0},  {&_swigt__p_IClusteredParticles, _p_IClusteredParticlesTo_p_IParameterized, 0, 0},  {&_swigt__p_IMultiLayerBuilder, _p_IMultiLayerBuilderTo_p_IParameterized, 0, 0},  {&_swigt__p_Particle, _p_ParticleTo_p_IParameterized, 0, 0},  {&_swigt__p_IAbstractParticle, _p_IAbstractParticleTo_p_IParameterized, 0, 0},  {&_swigt__p_IParticle, _p_IParticleTo_p_IParameterized, 0, 0},  {&_swigt__p_Lattice2D, _p_Lattice2DTo_p_IParameterized, 0, 0},  {&_swigt__p_DistributionGate, _p_DistributionGateTo_p_IParameterized, 0, 0},  {&_swigt__p_IDistribution1D, _p_IDistribution1DTo_p_IParameterized, 0, 0},  {&_swigt__p_IFTDecayFunction1D, _p_IFTDecayFunction1DTo_p_IParameterized, 0, 0},  {&_swigt__p_IFTDistribution1D, _p_IFTDistribution1DTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorCone, _p_FormFactorConeTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunctionTwin, _p_InterferenceFunctionTwinTo_p_IParameterized, 0, 0},  {&_swigt__p_ProfileRipple1, _p_ProfileRipple1To_p_IParameterized, 0, 0},  {&_swigt__p_Layer, _p_LayerTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorPyramid, _p_FormFactorPyramidTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorAnisoPyramid, _p_FormFactorAnisoPyramidTo_p_IParameterized, 0, 0},  {&_swigt__p_ProfileRipple2, _p_ProfileRipple2To_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorCylinder, _p_FormFactorCylinderTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorEllipsoidalCylinder, _p_FormFactorEllipsoidalCylinderTo_p_IParameterized, 0, 0},  {&_swigt__p_DistributionGaussian, _p_DistributionGaussianTo_p_IParameterized, 0, 0},  {&_swigt__p_ResolutionFunction2DGaussian, _p_ResolutionFunction2DGaussianTo_p_IParameterized, 0, 0},  {&_swigt__p_IFootprintFactor, _p_IFootprintFactorTo_p_IParameterized, 0, 0},  {&_swigt__p_ParticleComposition, _p_ParticleCompositionTo_p_IParameterized, 0, 0},  {&_swigt__p_DistributionCosine, _p_DistributionCosineTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution1DCosine, _p_FTDistribution1DCosineTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution1DGate, _p_FTDistribution1DGateTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution2DVoigt, _p_FTDistribution2DVoigtTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction2DVoigt, _p_FTDecayFunction2DVoigtTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction1DCauchy, _p_FTDecayFunction1DCauchyTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution1DCauchy, _p_FTDistribution1DCauchyTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution2DCauchy, _p_FTDistribution2DCauchyTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction2DCauchy, _p_FTDecayFunction2DCauchyTo_p_IParameterized, 0, 0},  {&_swigt__p_IInterferenceFunction, _p_IInterferenceFunctionTo_p_IParameterized, 0, 0},  {&_swigt__p_FootprintSquare, _p_FootprintSquareTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorCone6, _p_FormFactorCone6To_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorRipple1Gauss, _p_FormFactorRipple1GaussTo_p_IParameterized, 0, 0},  {&_swigt__p_Beam, _p_BeamTo_p_IParameterized, 0, 0},  {&_swigt__p_IFormFactorDecorator, _p_IFormFactorDecoratorTo_p_IParameterized, 0, 0},  {&_swigt__p_IParameterized, 0, 0, 0},  {&_swigt__p_FormFactorOrnsteinZernike, _p_FormFactorOrnsteinZernikeTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorDot, _p_FormFactorDotTo_p_IParameterized, 0, 0},  {&_swigt__p_LayerRoughness, _p_LayerRoughnessTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorCrystal, _p_FormFactorCrystalTo_p_IParameterized, 0, 0},  {&_swigt__p_Crystal, _p_CrystalTo_p_IParameterized, 0, 0},  {&_swigt__p_MesoCrystal, _p_MesoCrystalTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunction2DParaCrystal, _p_InterferenceFunction2DParaCrystalTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunctionRadialParaCrystal, _p_InterferenceFunctionRadialParaCrystalTo_p_IParameterized, 0, 0},  {&_swigt__p_Simulation2D, _p_Simulation2DTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorHollowSphere, _p_FormFactorHollowSphereTo_p_IParameterized, 0, 0},  {&_swigt__p_IFTDistribution2D, _p_IFTDistribution2DTo_p_IParameterized, 0, 0},  {&_swigt__p_IFTDecayFunction2D, _p_IFTDecayFunction2DTo_p_IParameterized, 0, 0},  {&_swigt__p_IResolutionFunction2D, _p_IResolutionFunction2DTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorWeighted, _p_FormFactorWeightedTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorRipple2Lorentz, _p_FormFactorRipple2LorentzTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorRipple1Lorentz, _p_FormFactorRipple1LorentzTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorLongBoxLorentz, _p_FormFactorLongBoxLorentzTo_p_IParameterized, 0, 0},  {&_swigt__p_FormFactorLorentz, _p_FormFactorLorentzTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunction1DLattice, _p_InterferenceFunction1DLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunction2DLattice, _p_InterferenceFunction2DLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunction2DSuperLattice, _p_InterferenceFunction2DSuperLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunction3DLattice, _p_InterferenceFunction3DLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunctionFinite2DLattice, _p_InterferenceFunctionFinite2DLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_InterferenceFunctionFinite3DLattice, _p_InterferenceFunctionFinite3DLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_BasicLattice, _p_BasicLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_SquareLattice, _p_SquareLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_HexagonalLattice, _p_HexagonalLatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_DistributionLorentz, _p_DistributionLorentzTo_p_IParameterized, 0, 0},  {&_swigt__p_Lattice, _p_LatticeTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDecayFunction1DTriangle, _p_FTDecayFunction1DTriangleTo_p_IParameterized, 0, 0},  {&_swigt__p_FTDistribution1DTriangle, _p_FTDistribution1DTriangleTo_p_IParameterized, 0, 0},  {&_swigt__p_RotationEuler, _p_RotationEulerTo_p_IParameterized, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IParticle[] = {  {&_swigt__p_ParticleComposition, _p_ParticleCompositionTo_p_IParticle, 0, 0},  {&_swigt__p_MesoCrystal, _p_MesoCrystalTo_p_IParticle, 0, 0},  {&_swigt__p_IParticle, 0, 0, 0},  {&_swigt__p_Particle, _p_ParticleTo_p_IParticle, 0, 0},  {&_swigt__p_ParticleCoreShell, _p_ParticleCoreShellTo_p_IParticle, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IPeakShape[] = {  {&_swigt__p_IPeakShape, 0, 0, 0},  {&_swigt__p_IsotropicGaussPeakShape, _p_IsotropicGaussPeakShapeTo_p_IPeakShape, 0, 0},  {&_swigt__p_IsotropicLorentzPeakShape, _p_IsotropicLorentzPeakShapeTo_p_IPeakShape, 0, 0},  {&_swigt__p_GaussFisherPeakShape, _p_GaussFisherPeakShapeTo_p_IPeakShape, 0, 0},  {&_swigt__p_LorentzFisherPeakShape, _p_LorentzFisherPeakShapeTo_p_IPeakShape, 0, 0},  {&_swigt__p_VonMisesFisherGaussPeakShape, _p_VonMisesFisherGaussPeakShapeTo_p_IPeakShape, 0, 0},  {&_swigt__p_VonMisesGaussPeakShape, _p_VonMisesGaussPeakShapeTo_p_IPeakShape, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IPixel[] = {  {&_swigt__p_RectangularPixel, _p_RectangularPixelTo_p_IPixel, 0, 0},  {&_swigt__p_SphericalPixel, _p_SphericalPixelTo_p_IPixel, 0, 0},  {&_swigt__p_IPixel, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IResolutionFunction2D[] = {  {&_swigt__p_IResolutionFunction2D, 0, 0, 0},  {&_swigt__p_ResolutionFunction2DGaussian, _p_ResolutionFunction2DGaussianTo_p_IResolutionFunction2D, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IRotation[] = {  {&_swigt__p_RotationY, _p_RotationYTo_p_IRotation, 0, 0},  {&_swigt__p_RotationEuler, _p_RotationEulerTo_p_IRotation, 0, 0},  {&_swigt__p_RotationZ, _p_RotationZTo_p_IRotation, 0, 0},  {&_swigt__p_IRotation, 0, 0, 0},  {&_swigt__p_IdentityRotation, _p_IdentityRotationTo_p_IRotation, 0, 0},  {&_swigt__p_RotationX, _p_RotationXTo_p_IRotation, 0, 0},{0, 0, 0, 0}};
-static swig_cast_info _swigc__p_ISample[] = {  {&_swigt__p_FormFactorBox, _p_FormFactorBoxTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorSphereLogNormalRadius, _p_FormFactorSphereLogNormalRadiusTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorSphereGaussianRadius, _p_FormFactorSphereGaussianRadiusTo_p_ISample, 0, 0},  {&_swigt__p_MultiLayer, _p_MultiLayerTo_p_ISample, 0, 0},  {&_swigt__p_ParticleDistribution, _p_ParticleDistributionTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunctionNone, _p_InterferenceFunctionNoneTo_p_ISample, 0, 0},  {&_swigt__p_ILayout, _p_ILayoutTo_p_ISample, 0, 0},  {&_swigt__p_ParticleLayout, _p_ParticleLayoutTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorHemiEllipsoid, _p_FormFactorHemiEllipsoidTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorRipple2Box, _p_FormFactorRipple2BoxTo_p_ISample, 0, 0},  {&_swigt__p_VonMisesGaussPeakShape, _p_VonMisesGaussPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_VonMisesFisherGaussPeakShape, _p_VonMisesFisherGaussPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_LorentzFisherPeakShape, _p_LorentzFisherPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_GaussFisherPeakShape, _p_GaussFisherPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_IsotropicLorentzPeakShape, _p_IsotropicLorentzPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_IsotropicGaussPeakShape, _p_IsotropicGaussPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_IPeakShape, _p_IPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorPrism3, _p_FormFactorPrism3To_p_ISample, 0, 0},  {&_swigt__p_FormFactorTetrahedron, _p_FormFactorTetrahedronTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorPolyhedron, _p_FormFactorPolyhedronTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorCuboctahedron, _p_FormFactorCuboctahedronTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorDodecahedron, _p_FormFactorDodecahedronTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorIcosahedron, _p_FormFactorIcosahedronTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorDebyeBueche, _p_FormFactorDebyeBuecheTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorPrism6, _p_FormFactorPrism6To_p_ISample, 0, 0},  {&_swigt__p_ParticleCoreShell, _p_ParticleCoreShellTo_p_ISample, 0, 0},  {&_swigt__p_ProfileBar, _p_ProfileBarTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorFullSphere, _p_FormFactorFullSphereTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorTruncatedSphere, _p_FormFactorTruncatedSphereTo_p_ISample, 0, 0},  {&_swigt__p_IFormFactor, _p_IFormFactorTo_p_ISample, 0, 0},  {&_swigt__p_ISample, 0, 0, 0},  {&_swigt__p_FormFactorPolygonalSurface, _p_FormFactorPolygonalSurfaceTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorLongBoxGauss, _p_FormFactorLongBoxGaussTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorPolygonalPrism, _p_FormFactorPolygonalPrismTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunctionHardDisk, _p_InterferenceFunctionHardDiskTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorRipple1Box, _p_FormFactorRipple1BoxTo_p_ISample, 0, 0},  {&_swigt__p_IdentityRotation, _p_IdentityRotationTo_p_ISample, 0, 0},  {&_swigt__p_IRotation, _p_IRotationTo_p_ISample, 0, 0},  {&_swigt__p_RotationX, _p_RotationXTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorTruncatedSpheroid, _p_FormFactorTruncatedSpheroidTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorFullSpheroid, _p_FormFactorFullSpheroidTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorCantellatedCube, _p_FormFactorCantellatedCubeTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorTruncatedCube, _p_FormFactorTruncatedCubeTo_p_ISample, 0, 0},  {&_swigt__p_RotationY, _p_RotationYTo_p_ISample, 0, 0},  {&_swigt__p_RotationZ, _p_RotationZTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorGauss, _p_FormFactorGaussTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorRipple2Gauss, _p_FormFactorRipple2GaussTo_p_ISample, 0, 0},  {&_swigt__p_IFormFactorBorn, _p_IFormFactorBornTo_p_ISample, 0, 0},  {&_swigt__p_IClusteredParticles, _p_IClusteredParticlesTo_p_ISample, 0, 0},  {&_swigt__p_IAbstractParticle, _p_IAbstractParticleTo_p_ISample, 0, 0},  {&_swigt__p_Particle, _p_ParticleTo_p_ISample, 0, 0},  {&_swigt__p_IParticle, _p_IParticleTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorCone, _p_FormFactorConeTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunctionTwin, _p_InterferenceFunctionTwinTo_p_ISample, 0, 0},  {&_swigt__p_ProfileRipple1, _p_ProfileRipple1To_p_ISample, 0, 0},  {&_swigt__p_Layer, _p_LayerTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorAnisoPyramid, _p_FormFactorAnisoPyramidTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorPyramid, _p_FormFactorPyramidTo_p_ISample, 0, 0},  {&_swigt__p_ProfileRipple2, _p_ProfileRipple2To_p_ISample, 0, 0},  {&_swigt__p_FormFactorEllipsoidalCylinder, _p_FormFactorEllipsoidalCylinderTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorCylinder, _p_FormFactorCylinderTo_p_ISample, 0, 0},  {&_swigt__p_ParticleComposition, _p_ParticleCompositionTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorSphereUniformRadius, _p_FormFactorSphereUniformRadiusTo_p_ISample, 0, 0},  {&_swigt__p_IInterferenceFunction, _p_IInterferenceFunctionTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorCone6, _p_FormFactorCone6To_p_ISample, 0, 0},  {&_swigt__p_FormFactorRipple1Gauss, _p_FormFactorRipple1GaussTo_p_ISample, 0, 0},  {&_swigt__p_IFormFactorDecorator, _p_IFormFactorDecoratorTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorOrnsteinZernike, _p_FormFactorOrnsteinZernikeTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorDot, _p_FormFactorDotTo_p_ISample, 0, 0},  {&_swigt__p_LayerRoughness, _p_LayerRoughnessTo_p_ISample, 0, 0},  {&_swigt__p_MesoCrystal, _p_MesoCrystalTo_p_ISample, 0, 0},  {&_swigt__p_Crystal, _p_CrystalTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorCrystal, _p_FormFactorCrystalTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunction2DParaCrystal, _p_InterferenceFunction2DParaCrystalTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunctionRadialParaCrystal, _p_InterferenceFunctionRadialParaCrystalTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorWeighted, _p_FormFactorWeightedTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorLongBoxLorentz, _p_FormFactorLongBoxLorentzTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorLorentz, _p_FormFactorLorentzTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorRipple2Lorentz, _p_FormFactorRipple2LorentzTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorRipple1Lorentz, _p_FormFactorRipple1LorentzTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunction1DLattice, _p_InterferenceFunction1DLatticeTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunction2DLattice, _p_InterferenceFunction2DLatticeTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunction2DSuperLattice, _p_InterferenceFunction2DSuperLatticeTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunction3DLattice, _p_InterferenceFunction3DLatticeTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunctionFinite2DLattice, _p_InterferenceFunctionFinite2DLatticeTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunctionFinite3DLattice, _p_InterferenceFunctionFinite3DLatticeTo_p_ISample, 0, 0},  {&_swigt__p_RotationEuler, _p_RotationEulerTo_p_ISample, 0, 0},{0, 0, 0, 0}};
+static swig_cast_info _swigc__p_ISample[] = {  {&_swigt__p_FormFactorBox, _p_FormFactorBoxTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorSphereGaussianRadius, _p_FormFactorSphereGaussianRadiusTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorSphereLogNormalRadius, _p_FormFactorSphereLogNormalRadiusTo_p_ISample, 0, 0},  {&_swigt__p_MultiLayer, _p_MultiLayerTo_p_ISample, 0, 0},  {&_swigt__p_ParticleDistribution, _p_ParticleDistributionTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunctionNone, _p_InterferenceFunctionNoneTo_p_ISample, 0, 0},  {&_swigt__p_ParticleLayout, _p_ParticleLayoutTo_p_ISample, 0, 0},  {&_swigt__p_ILayout, _p_ILayoutTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorHemiEllipsoid, _p_FormFactorHemiEllipsoidTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorRipple2Box, _p_FormFactorRipple2BoxTo_p_ISample, 0, 0},  {&_swigt__p_IPeakShape, _p_IPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_IsotropicGaussPeakShape, _p_IsotropicGaussPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_IsotropicLorentzPeakShape, _p_IsotropicLorentzPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_GaussFisherPeakShape, _p_GaussFisherPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_LorentzFisherPeakShape, _p_LorentzFisherPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_VonMisesFisherGaussPeakShape, _p_VonMisesFisherGaussPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_VonMisesGaussPeakShape, _p_VonMisesGaussPeakShapeTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorPrism3, _p_FormFactorPrism3To_p_ISample, 0, 0},  {&_swigt__p_FormFactorIcosahedron, _p_FormFactorIcosahedronTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorDodecahedron, _p_FormFactorDodecahedronTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorCuboctahedron, _p_FormFactorCuboctahedronTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorPolyhedron, _p_FormFactorPolyhedronTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorTetrahedron, _p_FormFactorTetrahedronTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorDebyeBueche, _p_FormFactorDebyeBuecheTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorPrism6, _p_FormFactorPrism6To_p_ISample, 0, 0},  {&_swigt__p_ParticleCoreShell, _p_ParticleCoreShellTo_p_ISample, 0, 0},  {&_swigt__p_ProfileBar, _p_ProfileBarTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorTruncatedSphere, _p_FormFactorTruncatedSphereTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorFullSphere, _p_FormFactorFullSphereTo_p_ISample, 0, 0},  {&_swigt__p_IFormFactor, _p_IFormFactorTo_p_ISample, 0, 0},  {&_swigt__p_ISample, 0, 0, 0},  {&_swigt__p_FormFactorPolygonalSurface, _p_FormFactorPolygonalSurfaceTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorLongBoxGauss, _p_FormFactorLongBoxGaussTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorPolygonalPrism, _p_FormFactorPolygonalPrismTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunctionHardDisk, _p_InterferenceFunctionHardDiskTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorRipple1Box, _p_FormFactorRipple1BoxTo_p_ISample, 0, 0},  {&_swigt__p_IdentityRotation, _p_IdentityRotationTo_p_ISample, 0, 0},  {&_swigt__p_IRotation, _p_IRotationTo_p_ISample, 0, 0},  {&_swigt__p_RotationX, _p_RotationXTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorTruncatedSpheroid, _p_FormFactorTruncatedSpheroidTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorFullSpheroid, _p_FormFactorFullSpheroidTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorCantellatedCube, _p_FormFactorCantellatedCubeTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorTruncatedCube, _p_FormFactorTruncatedCubeTo_p_ISample, 0, 0},  {&_swigt__p_RotationY, _p_RotationYTo_p_ISample, 0, 0},  {&_swigt__p_RotationZ, _p_RotationZTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorGauss, _p_FormFactorGaussTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorRipple2Gauss, _p_FormFactorRipple2GaussTo_p_ISample, 0, 0},  {&_swigt__p_IFormFactorBorn, _p_IFormFactorBornTo_p_ISample, 0, 0},  {&_swigt__p_IClusteredParticles, _p_IClusteredParticlesTo_p_ISample, 0, 0},  {&_swigt__p_IAbstractParticle, _p_IAbstractParticleTo_p_ISample, 0, 0},  {&_swigt__p_Particle, _p_ParticleTo_p_ISample, 0, 0},  {&_swigt__p_IParticle, _p_IParticleTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorCone, _p_FormFactorConeTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunctionTwin, _p_InterferenceFunctionTwinTo_p_ISample, 0, 0},  {&_swigt__p_ProfileRipple1, _p_ProfileRipple1To_p_ISample, 0, 0},  {&_swigt__p_Layer, _p_LayerTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorAnisoPyramid, _p_FormFactorAnisoPyramidTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorPyramid, _p_FormFactorPyramidTo_p_ISample, 0, 0},  {&_swigt__p_ProfileRipple2, _p_ProfileRipple2To_p_ISample, 0, 0},  {&_swigt__p_FormFactorEllipsoidalCylinder, _p_FormFactorEllipsoidalCylinderTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorCylinder, _p_FormFactorCylinderTo_p_ISample, 0, 0},  {&_swigt__p_ParticleComposition, _p_ParticleCompositionTo_p_ISample, 0, 0},  {&_swigt__p_IInterferenceFunction, _p_IInterferenceFunctionTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorCone6, _p_FormFactorCone6To_p_ISample, 0, 0},  {&_swigt__p_FormFactorRipple1Gauss, _p_FormFactorRipple1GaussTo_p_ISample, 0, 0},  {&_swigt__p_IFormFactorDecorator, _p_IFormFactorDecoratorTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorOrnsteinZernike, _p_FormFactorOrnsteinZernikeTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorDot, _p_FormFactorDotTo_p_ISample, 0, 0},  {&_swigt__p_LayerRoughness, _p_LayerRoughnessTo_p_ISample, 0, 0},  {&_swigt__p_MesoCrystal, _p_MesoCrystalTo_p_ISample, 0, 0},  {&_swigt__p_Crystal, _p_CrystalTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorCrystal, _p_FormFactorCrystalTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunction2DParaCrystal, _p_InterferenceFunction2DParaCrystalTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunctionRadialParaCrystal, _p_InterferenceFunctionRadialParaCrystalTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorHollowSphere, _p_FormFactorHollowSphereTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorWeighted, _p_FormFactorWeightedTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorLorentz, _p_FormFactorLorentzTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorLongBoxLorentz, _p_FormFactorLongBoxLorentzTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorRipple2Lorentz, _p_FormFactorRipple2LorentzTo_p_ISample, 0, 0},  {&_swigt__p_FormFactorRipple1Lorentz, _p_FormFactorRipple1LorentzTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunction1DLattice, _p_InterferenceFunction1DLatticeTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunction2DLattice, _p_InterferenceFunction2DLatticeTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunction2DSuperLattice, _p_InterferenceFunction2DSuperLatticeTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunction3DLattice, _p_InterferenceFunction3DLatticeTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunctionFinite2DLattice, _p_InterferenceFunctionFinite2DLatticeTo_p_ISample, 0, 0},  {&_swigt__p_InterferenceFunctionFinite3DLattice, _p_InterferenceFunctionFinite3DLatticeTo_p_ISample, 0, 0},  {&_swigt__p_RotationEuler, _p_RotationEulerTo_p_ISample, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_ISelectionRule[] = {  {&_swigt__p_ISelectionRule, 0, 0, 0},  {&_swigt__p_SimpleSelectionRule, _p_SimpleSelectionRuleTo_p_ISelectionRule, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_IShape2D[] = {  {&_swigt__p_Polygon, _p_PolygonTo_p_IShape2D, 0, 0},  {&_swigt__p_Line, _p_LineTo_p_IShape2D, 0, 0},  {&_swigt__p_VerticalLine, _p_VerticalLineTo_p_IShape2D, 0, 0},  {&_swigt__p_Ellipse, _p_EllipseTo_p_IShape2D, 0, 0},  {&_swigt__p_HorizontalLine, _p_HorizontalLineTo_p_IShape2D, 0, 0},  {&_swigt__p_Rectangle, _p_RectangleTo_p_IShape2D, 0, 0},  {&_swigt__p_IShape2D, 0, 0, 0},{0, 0, 0, 0}};
 static swig_cast_info _swigc__p_ISpecularScan[] = {  {&_swigt__p_AngularSpecScan, _p_AngularSpecScanTo_p_ISpecularScan, 0, 0},  {&_swigt__p_QSpecScan, _p_QSpecScanTo_p_ISpecularScan, 0, 0},  {&_swigt__p_ISpecularScan, 0, 0, 0},{0, 0, 0, 0}};
@@ -138854,6 +138864,7 @@ static swig_cast_info *swig_cast_initial[] = {
   _swigc__p_FormFactorFullSpheroid,
   _swigc__p_FormFactorGauss,
   _swigc__p_FormFactorHemiEllipsoid,
+  _swigc__p_FormFactorHollowSphere,
   _swigc__p_FormFactorIcosahedron,
   _swigc__p_FormFactorLongBoxGauss,
   _swigc__p_FormFactorLongBoxLorentz,
@@ -138873,7 +138884,6 @@ static swig_cast_info *swig_cast_initial[] = {
   _swigc__p_FormFactorRipple2Lorentz,
   _swigc__p_FormFactorSphereGaussianRadius,
   _swigc__p_FormFactorSphereLogNormalRadius,
-  _swigc__p_FormFactorSphereUniformRadius,
   _swigc__p_FormFactorTetrahedron,
   _swigc__p_FormFactorTruncatedCube,
   _swigc__p_FormFactorTruncatedSphere,
@@ -139869,6 +139879,11 @@ SWIG_init(void) {
   SWIG_addvarlink(globals, "minor_version_number", Swig_var_minor_version_number_get, Swig_var_minor_version_number_set);
   SWIG_addvarlink(globals, "patch_version_number", Swig_var_patch_version_number_get, Swig_var_patch_version_number_set);
   SWIG_addvarlink(globals, "INF", Swig_var_INF_get, Swig_var_INF_set);
+  SWIG_Python_SetConstant(d, "FORWARD_FFT",SWIG_From_int(static_cast< int >(MathFunctions::FORWARD_FFT)));
+  SWIG_Python_SetConstant(d, "BACKWARD_FFT",SWIG_From_int(static_cast< int >(MathFunctions::BACKWARD_FFT)));
+  SWIG_Python_SetConstant(d, "RoughnessModel_DEFAULT",SWIG_From_int(static_cast< int >(RoughnessModelWrap::DEFAULT)));
+  SWIG_Python_SetConstant(d, "RoughnessModel_TANH",SWIG_From_int(static_cast< int >(RoughnessModelWrap::TANH)));
+  SWIG_Python_SetConstant(d, "RoughnessModel_NEVOT_CROCE",SWIG_From_int(static_cast< int >(RoughnessModelWrap::NEVOT_CROCE)));
   SWIG_addvarlink(globals, "nanometer", Swig_var_nanometer_get, Swig_var_nanometer_set);
   SWIG_addvarlink(globals, "angstrom", Swig_var_angstrom_get, Swig_var_angstrom_set);
   SWIG_addvarlink(globals, "micrometer", Swig_var_micrometer_get, Swig_var_micrometer_set);
@@ -139887,23 +139902,18 @@ SWIG_init(void) {
   SWIG_addvarlink(globals, "deg", Swig_var_deg_get, Swig_var_deg_set);
   SWIG_addvarlink(globals, "tesla", Swig_var_tesla_get, Swig_var_tesla_set);
   SWIG_addvarlink(globals, "gauss", Swig_var_gauss_get, Swig_var_gauss_set);
-  SWIG_Python_SetConstant(d, "FORWARD_FFT",SWIG_From_int(static_cast< int >(MathFunctions::FORWARD_FFT)));
-  SWIG_Python_SetConstant(d, "BACKWARD_FFT",SWIG_From_int(static_cast< int >(MathFunctions::BACKWARD_FFT)));
   SWIG_Python_SetConstant(d, "IHistogram_INTEGRAL",SWIG_From_int(static_cast< int >(IHistogram::INTEGRAL)));
   SWIG_Python_SetConstant(d, "IHistogram_AVERAGE",SWIG_From_int(static_cast< int >(IHistogram::AVERAGE)));
   SWIG_Python_SetConstant(d, "IHistogram_STANDARD_ERROR",SWIG_From_int(static_cast< int >(IHistogram::STANDARD_ERROR)));
   SWIG_Python_SetConstant(d, "IHistogram_NENTRIES",SWIG_From_int(static_cast< int >(IHistogram::NENTRIES)));
-  SWIG_Python_SetConstant(d, "MillerIndexOrientation_QX",SWIG_From_int(static_cast< int >(MillerIndexOrientation::QX)));
-  SWIG_Python_SetConstant(d, "MillerIndexOrientation_QY",SWIG_From_int(static_cast< int >(MillerIndexOrientation::QY)));
-  SWIG_Python_SetConstant(d, "MillerIndexOrientation_QZ",SWIG_From_int(static_cast< int >(MillerIndexOrientation::QZ)));
   SWIG_Python_SetConstant(d, "RectangularDetector_GENERIC",SWIG_From_int(static_cast< int >(RectangularDetector::GENERIC)));
   SWIG_Python_SetConstant(d, "RectangularDetector_PERPENDICULAR_TO_SAMPLE",SWIG_From_int(static_cast< int >(RectangularDetector::PERPENDICULAR_TO_SAMPLE)));
   SWIG_Python_SetConstant(d, "RectangularDetector_PERPENDICULAR_TO_DIRECT_BEAM",SWIG_From_int(static_cast< int >(RectangularDetector::PERPENDICULAR_TO_DIRECT_BEAM)));
   SWIG_Python_SetConstant(d, "RectangularDetector_PERPENDICULAR_TO_REFLECTED_BEAM",SWIG_From_int(static_cast< int >(RectangularDetector::PERPENDICULAR_TO_REFLECTED_BEAM)));
   SWIG_Python_SetConstant(d, "RectangularDetector_PERPENDICULAR_TO_REFLECTED_BEAM_DPOS",SWIG_From_int(static_cast< int >(RectangularDetector::PERPENDICULAR_TO_REFLECTED_BEAM_DPOS)));
-  SWIG_Python_SetConstant(d, "RoughnessModel_DEFAULT",SWIG_From_int(static_cast< int >(RoughnessModelWrap::DEFAULT)));
-  SWIG_Python_SetConstant(d, "RoughnessModel_TANH",SWIG_From_int(static_cast< int >(RoughnessModelWrap::TANH)));
-  SWIG_Python_SetConstant(d, "RoughnessModel_NEVOT_CROCE",SWIG_From_int(static_cast< int >(RoughnessModelWrap::NEVOT_CROCE)));
+  SWIG_Python_SetConstant(d, "MillerIndexOrientation_QX",SWIG_From_int(static_cast< int >(MillerIndexOrientation::QX)));
+  SWIG_Python_SetConstant(d, "MillerIndexOrientation_QY",SWIG_From_int(static_cast< int >(MillerIndexOrientation::QY)));
+  SWIG_Python_SetConstant(d, "MillerIndexOrientation_QZ",SWIG_From_int(static_cast< int >(MillerIndexOrientation::QZ)));
   SWIG_Python_SetConstant(d, "AxesUnits_DEFAULT",SWIG_From_int(static_cast< int >(AxesUnitsWrap::DEFAULT)));
   SWIG_Python_SetConstant(d, "AxesUnits_NBINS",SWIG_From_int(static_cast< int >(AxesUnitsWrap::NBINS)));
   SWIG_Python_SetConstant(d, "AxesUnits_RADIANS",SWIG_From_int(static_cast< int >(AxesUnitsWrap::RADIANS)));
diff --git a/auto/Wrap/libBornAgainCore_wrap.h b/auto/Wrap/libBornAgainCore_wrap.h
index 2aff509233d..23c4ceae280 100644
--- a/auto/Wrap/libBornAgainCore_wrap.h
+++ b/auto/Wrap/libBornAgainCore_wrap.h
@@ -158,12 +158,35 @@ private:
 };
 
 
-class SwigDirector_PyBuilderCallback : public PyBuilderCallback, public Swig::Director {
+class SwigDirector_IFormFactor : public IFormFactor, public Swig::Director {
 
 public:
-    SwigDirector_PyBuilderCallback(PyObject *self);
-    virtual ~SwigDirector_PyBuilderCallback();
-    virtual Simulation *build_simulation(Fit::Parameters arg0);
+    SwigDirector_IFormFactor(PyObject *self);
+    SwigDirector_IFormFactor(PyObject *self, INode const *parent, std::vector< char const *, std::allocator< char const * > > const PName, std::vector< char const *, std::allocator< char const * > > const PUnit, std::vector< double, std::allocator< double > > const PMin, std::vector< double, std::allocator< double > > const PMax, std::vector< double, std::allocator< double > > const PDefault, std::vector< double, std::allocator< double > > P);
+    virtual ~SwigDirector_IFormFactor();
+    virtual IFormFactor *clone() const;
+    virtual void transferToCPP();
+    virtual ParameterPool *createParameterTree() const;
+    virtual void onChange();
+    virtual void accept(INodeVisitor *visitor) const;
+    virtual std::string treeToString() const;
+    virtual std::vector< INode const *, std::allocator< INode const * > > getChildren() const;
+    virtual void setParent(INode const *newParent);
+    virtual Material const *material() const;
+    virtual void setAmbientMaterial(Material arg0);
+    virtual complex_t evaluate(WavevectorInfo const &wavevectors) const;
+    virtual double volume() const;
+    virtual double radialExtension() const;
+    virtual double bottomZ(IRotation const &rotation) const;
+    virtual double topZ(IRotation const &rotation) const;
+    virtual bool canSliceAnalytically(IRotation const &rot) const;
+    virtual bool canSliceAnalyticallySwigPublic(IRotation const &rot) const {
+      return IFormFactor::canSliceAnalytically(rot);
+    }
+    virtual IFormFactor *sliceFormFactor(ZLimits limits, IRotation const &rot, kvector_t translation) const;
+    virtual IFormFactor *sliceFormFactorSwigPublic(ZLimits limits, IRotation const &rot, kvector_t translation) const {
+      return IFormFactor::sliceFormFactor(limits,rot,translation);
+    }
 
 /* Internal director utilities */
 public:
@@ -185,7 +208,7 @@ private:
         swig::SwigVar_PyObject name = SWIG_Python_str_FromChar(method_name);
         method = PyObject_GetAttr(swig_get_self(), name);
         if (!method) {
-          std::string msg = "Method in class PyBuilderCallback doesn't exist, undefined ";
+          std::string msg = "Method in class IFormFactor doesn't exist, undefined ";
           msg += method_name;
           Swig::DirectorMethodException::raise(msg.c_str());
         }
@@ -194,18 +217,42 @@ private:
       return method;
     }
 private:
-    mutable swig::SwigVar_PyObject vtable[1];
+    mutable swig::SwigVar_PyObject vtable[17];
 #endif
 
 };
 
 
-class SwigDirector_PyObserverCallback : public PyObserverCallback, public Swig::Director {
+class SwigDirector_IFormFactorBorn : public IFormFactorBorn, public Swig::Director {
 
 public:
-    SwigDirector_PyObserverCallback(PyObject *self);
-    virtual ~SwigDirector_PyObserverCallback();
-    virtual void update(FitObjective const &arg0);
+    SwigDirector_IFormFactorBorn(PyObject *self);
+    SwigDirector_IFormFactorBorn(PyObject *self, INode const *parent, std::vector< char const *, std::allocator< char const * > > const PName, std::vector< char const *, std::allocator< char const * > > const PUnit, std::vector< double, std::allocator< double > > const PMin, std::vector< double, std::allocator< double > > const PMax, std::vector< double, std::allocator< double > > const PDefault, std::vector< double, std::allocator< double > > P);
+    virtual ~SwigDirector_IFormFactorBorn();
+    virtual IFormFactorBorn *clone() const;
+    virtual void transferToCPP();
+    virtual ParameterPool *createParameterTree() const;
+    virtual void onChange();
+    virtual void accept(INodeVisitor *visitor) const;
+    virtual std::string treeToString() const;
+    virtual std::vector< INode const *, std::allocator< INode const * > > getChildren() const;
+    virtual void setParent(INode const *newParent);
+    virtual Material const *material() const;
+    virtual void setAmbientMaterial(Material arg0);
+    virtual complex_t evaluate(WavevectorInfo const &wavevectors) const;
+    virtual double volume() const;
+    virtual double radialExtension() const;
+    virtual double bottomZ(IRotation const &rotation) const;
+    virtual double topZ(IRotation const &rotation) const;
+    virtual bool canSliceAnalytically(IRotation const &rot) const;
+    virtual bool canSliceAnalyticallySwigPublic(IRotation const &rot) const {
+      return IFormFactorBorn::canSliceAnalytically(rot);
+    }
+    virtual IFormFactor *sliceFormFactor(ZLimits limits, IRotation const &rot, kvector_t translation) const;
+    virtual IFormFactor *sliceFormFactorSwigPublic(ZLimits limits, IRotation const &rot, kvector_t translation) const {
+      return IFormFactor::sliceFormFactor(limits,rot,translation);
+    }
+    virtual complex_t evaluate_for_q(cvector_t q) const;
 
 /* Internal director utilities */
 public:
@@ -227,7 +274,7 @@ private:
         swig::SwigVar_PyObject name = SWIG_Python_str_FromChar(method_name);
         method = PyObject_GetAttr(swig_get_self(), name);
         if (!method) {
-          std::string msg = "Method in class PyObserverCallback doesn't exist, undefined ";
+          std::string msg = "Method in class IFormFactorBorn doesn't exist, undefined ";
           msg += method_name;
           Swig::DirectorMethodException::raise(msg.c_str());
         }
@@ -236,19 +283,18 @@ private:
       return method;
     }
 private:
-    mutable swig::SwigVar_PyObject vtable[1];
+    mutable swig::SwigVar_PyObject vtable[18];
 #endif
 
 };
 
 
-class SwigDirector_FitObjective : public FitObjective, public Swig::Director {
+class SwigDirector_PyBuilderCallback : public PyBuilderCallback, public Swig::Director {
 
 public:
-    SwigDirector_FitObjective(PyObject *self);
-    virtual ~SwigDirector_FitObjective();
-    virtual double evaluate(Fit::Parameters const &params);
-    virtual std::vector< double, std::allocator< double > > evaluate_residuals(Fit::Parameters const &params);
+    SwigDirector_PyBuilderCallback(PyObject *self);
+    virtual ~SwigDirector_PyBuilderCallback();
+    virtual Simulation *build_simulation(Fit::Parameters arg0);
 
 /* Internal director utilities */
 public:
@@ -270,7 +316,7 @@ private:
         swig::SwigVar_PyObject name = SWIG_Python_str_FromChar(method_name);
         method = PyObject_GetAttr(swig_get_self(), name);
         if (!method) {
-          std::string msg = "Method in class FitObjective doesn't exist, undefined ";
+          std::string msg = "Method in class PyBuilderCallback doesn't exist, undefined ";
           msg += method_name;
           Swig::DirectorMethodException::raise(msg.c_str());
         }
@@ -279,22 +325,18 @@ private:
       return method;
     }
 private:
-    mutable swig::SwigVar_PyObject vtable[2];
+    mutable swig::SwigVar_PyObject vtable[1];
 #endif
 
 };
 
 
-class SwigDirector_IMultiLayerBuilder : public IMultiLayerBuilder, public Swig::Director {
+class SwigDirector_PyObserverCallback : public PyObserverCallback, public Swig::Director {
 
 public:
-    SwigDirector_IMultiLayerBuilder(PyObject *self);
-    virtual ~SwigDirector_IMultiLayerBuilder();
-    virtual ParameterPool *createParameterTree() const;
-    virtual void onChange();
-    virtual MultiLayer *buildSample() const;
-    virtual MultiLayer *createSample(size_t index = 0);
-    virtual size_t size();
+    SwigDirector_PyObserverCallback(PyObject *self);
+    virtual ~SwigDirector_PyObserverCallback();
+    virtual void update(FitObjective const &arg0);
 
 /* Internal director utilities */
 public:
@@ -316,7 +358,7 @@ private:
         swig::SwigVar_PyObject name = SWIG_Python_str_FromChar(method_name);
         method = PyObject_GetAttr(swig_get_self(), name);
         if (!method) {
-          std::string msg = "Method in class IMultiLayerBuilder doesn't exist, undefined ";
+          std::string msg = "Method in class PyObserverCallback doesn't exist, undefined ";
           msg += method_name;
           Swig::DirectorMethodException::raise(msg.c_str());
         }
@@ -325,41 +367,19 @@ private:
       return method;
     }
 private:
-    mutable swig::SwigVar_PyObject vtable[6];
+    mutable swig::SwigVar_PyObject vtable[1];
 #endif
 
 };
 
 
-class SwigDirector_IFormFactor : public IFormFactor, public Swig::Director {
+class SwigDirector_FitObjective : public FitObjective, public Swig::Director {
 
 public:
-    SwigDirector_IFormFactor(PyObject *self);
-    SwigDirector_IFormFactor(PyObject *self, INode const *parent, std::vector< char const *, std::allocator< char const * > > const PName, std::vector< char const *, std::allocator< char const * > > const PUnit, std::vector< double, std::allocator< double > > const PMin, std::vector< double, std::allocator< double > > const PMax, std::vector< double, std::allocator< double > > const PDefault, std::vector< double, std::allocator< double > > P);
-    virtual ~SwigDirector_IFormFactor();
-    virtual IFormFactor *clone() const;
-    virtual void transferToCPP();
-    virtual ParameterPool *createParameterTree() const;
-    virtual void onChange();
-    virtual void accept(INodeVisitor *visitor) const;
-    virtual std::string treeToString() const;
-    virtual std::vector< INode const *, std::allocator< INode const * > > getChildren() const;
-    virtual void setParent(INode const *newParent);
-    virtual Material const *material() const;
-    virtual void setAmbientMaterial(Material arg0);
-    virtual complex_t evaluate(WavevectorInfo const &wavevectors) const;
-    virtual double volume() const;
-    virtual double radialExtension() const;
-    virtual double bottomZ(IRotation const &rotation) const;
-    virtual double topZ(IRotation const &rotation) const;
-    virtual bool canSliceAnalytically(IRotation const &rot) const;
-    virtual bool canSliceAnalyticallySwigPublic(IRotation const &rot) const {
-      return IFormFactor::canSliceAnalytically(rot);
-    }
-    virtual IFormFactor *sliceFormFactor(ZLimits limits, IRotation const &rot, kvector_t translation) const;
-    virtual IFormFactor *sliceFormFactorSwigPublic(ZLimits limits, IRotation const &rot, kvector_t translation) const {
-      return IFormFactor::sliceFormFactor(limits,rot,translation);
-    }
+    SwigDirector_FitObjective(PyObject *self);
+    virtual ~SwigDirector_FitObjective();
+    virtual double evaluate(Fit::Parameters const &params);
+    virtual std::vector< double, std::allocator< double > > evaluate_residuals(Fit::Parameters const &params);
 
 /* Internal director utilities */
 public:
@@ -381,7 +401,7 @@ private:
         swig::SwigVar_PyObject name = SWIG_Python_str_FromChar(method_name);
         method = PyObject_GetAttr(swig_get_self(), name);
         if (!method) {
-          std::string msg = "Method in class IFormFactor doesn't exist, undefined ";
+          std::string msg = "Method in class FitObjective doesn't exist, undefined ";
           msg += method_name;
           Swig::DirectorMethodException::raise(msg.c_str());
         }
@@ -390,19 +410,19 @@ private:
       return method;
     }
 private:
-    mutable swig::SwigVar_PyObject vtable[17];
+    mutable swig::SwigVar_PyObject vtable[2];
 #endif
 
 };
 
 
-class SwigDirector_IFormFactorBorn : public IFormFactorBorn, public Swig::Director {
+class SwigDirector_IInterferenceFunction : public IInterferenceFunction, public Swig::Director {
 
 public:
-    SwigDirector_IFormFactorBorn(PyObject *self);
-    SwigDirector_IFormFactorBorn(PyObject *self, INode const *parent, std::vector< char const *, std::allocator< char const * > > const PName, std::vector< char const *, std::allocator< char const * > > const PUnit, std::vector< double, std::allocator< double > > const PMin, std::vector< double, std::allocator< double > > const PMax, std::vector< double, std::allocator< double > > const PDefault, std::vector< double, std::allocator< double > > P);
-    virtual ~SwigDirector_IFormFactorBorn();
-    virtual IFormFactorBorn *clone() const;
+    SwigDirector_IInterferenceFunction(PyObject *self);
+    SwigDirector_IInterferenceFunction(PyObject *self, IInterferenceFunction const &other);
+    virtual ~SwigDirector_IInterferenceFunction();
+    virtual IInterferenceFunction *clone() const;
     virtual void transferToCPP();
     virtual ParameterPool *createParameterTree() const;
     virtual void onChange();
@@ -411,21 +431,10 @@ public:
     virtual std::vector< INode const *, std::allocator< INode const * > > getChildren() const;
     virtual void setParent(INode const *newParent);
     virtual Material const *material() const;
-    virtual void setAmbientMaterial(Material arg0);
-    virtual complex_t evaluate(WavevectorInfo const &wavevectors) const;
-    virtual double volume() const;
-    virtual double radialExtension() const;
-    virtual double bottomZ(IRotation const &rotation) const;
-    virtual double topZ(IRotation const &rotation) const;
-    virtual bool canSliceAnalytically(IRotation const &rot) const;
-    virtual bool canSliceAnalyticallySwigPublic(IRotation const &rot) const {
-      return IFormFactorBorn::canSliceAnalytically(rot);
-    }
-    virtual IFormFactor *sliceFormFactor(ZLimits limits, IRotation const &rot, kvector_t translation) const;
-    virtual IFormFactor *sliceFormFactorSwigPublic(ZLimits limits, IRotation const &rot, kvector_t translation) const {
-      return IFormFactor::sliceFormFactor(limits,rot,translation);
-    }
-    virtual complex_t evaluate_for_q(cvector_t q) const;
+    virtual double evaluate(kvector_t const q, double outer_iff = 1.0) const;
+    virtual double getParticleDensity() const;
+    virtual bool supportsMultilayer() const;
+    virtual double iff_without_dw(kvector_t const q) const;
 
 /* Internal director utilities */
 public:
@@ -447,7 +456,7 @@ private:
         swig::SwigVar_PyObject name = SWIG_Python_str_FromChar(method_name);
         method = PyObject_GetAttr(swig_get_self(), name);
         if (!method) {
-          std::string msg = "Method in class IFormFactorBorn doesn't exist, undefined ";
+          std::string msg = "Method in class IInterferenceFunction doesn't exist, undefined ";
           msg += method_name;
           Swig::DirectorMethodException::raise(msg.c_str());
         }
@@ -456,31 +465,22 @@ private:
       return method;
     }
 private:
-    mutable swig::SwigVar_PyObject vtable[18];
+    mutable swig::SwigVar_PyObject vtable[14];
 #endif
 
 };
 
 
-class SwigDirector_IInterferenceFunction : public IInterferenceFunction, public Swig::Director {
+class SwigDirector_IMultiLayerBuilder : public IMultiLayerBuilder, public Swig::Director {
 
 public:
-    SwigDirector_IInterferenceFunction(PyObject *self);
-    SwigDirector_IInterferenceFunction(PyObject *self, IInterferenceFunction const &other);
-    virtual ~SwigDirector_IInterferenceFunction();
-    virtual IInterferenceFunction *clone() const;
-    virtual void transferToCPP();
+    SwigDirector_IMultiLayerBuilder(PyObject *self);
+    virtual ~SwigDirector_IMultiLayerBuilder();
     virtual ParameterPool *createParameterTree() const;
     virtual void onChange();
-    virtual void accept(INodeVisitor *visitor) const;
-    virtual std::string treeToString() const;
-    virtual std::vector< INode const *, std::allocator< INode const * > > getChildren() const;
-    virtual void setParent(INode const *newParent);
-    virtual Material const *material() const;
-    virtual double evaluate(kvector_t const q, double outer_iff = 1.0) const;
-    virtual double getParticleDensity() const;
-    virtual bool supportsMultilayer() const;
-    virtual double iff_without_dw(kvector_t const q) const;
+    virtual MultiLayer *buildSample() const;
+    virtual MultiLayer *createSample(size_t index = 0);
+    virtual size_t size();
 
 /* Internal director utilities */
 public:
@@ -502,7 +502,7 @@ private:
         swig::SwigVar_PyObject name = SWIG_Python_str_FromChar(method_name);
         method = PyObject_GetAttr(swig_get_self(), name);
         if (!method) {
-          std::string msg = "Method in class IInterferenceFunction doesn't exist, undefined ";
+          std::string msg = "Method in class IMultiLayerBuilder doesn't exist, undefined ";
           msg += method_name;
           Swig::DirectorMethodException::raise(msg.c_str());
         }
@@ -511,7 +511,7 @@ private:
       return method;
     }
 private:
-    mutable swig::SwigVar_PyObject vtable[14];
+    mutable swig::SwigVar_PyObject vtable[6];
 #endif
 
 };
-- 
GitLab