diff --git a/Core/FormFactors/src/FormFactorTetrahedron.cpp b/Core/FormFactors/src/FormFactorTetrahedron.cpp
index 0120af53b64eb16eff1291420afa005e2e8c0b9c..37d2942764b94009d3ff95b96b92f7472810e18e 100644
--- a/Core/FormFactors/src/FormFactorTetrahedron.cpp
+++ b/Core/FormFactors/src/FormFactorTetrahedron.cpp
@@ -86,120 +86,6 @@ complex_t FormFactorTetrahedron::Integrand(double Z, void* params) const
     return xy_part *std::exp(complex_t(0.0, 1.0)*m_q.z()*Z);
 }
 
-/*complex_t FormFactorTetrahedron::evaluate_for_q(const cvector_t& q) const
-{   m_q = q;
-
-  if ( std::abs(m_q.mag()) < Numeric::double_epsilon) {
-        double R = m_length/2.;
-        double H = m_height;
-        double tga = std::tan(m_alpha);
-        double sqrt3HdivRtga = m_root3*H/R/tga;
-        return tga/3.*R*R*R*(1. -
-                    (1.-sqrt3HdivRtga)*(1.-sqrt3HdivRtga)*(1.-sqrt3HdivRtga));
-
-    } else {
-        complex_t integral = m_integrator->integrate(0., m_height);
-        return integral;
-    }
-}*/
-
-//complex_t FormFactorTetrahedron::evaluate_for_q(const cvector_t& q) const
-//{
-//   double H = m_height;
-//    double R = m_length/2.0;
-//    double tga = std::tan(m_alpha);
- //   double L = 2.*tga*R/m_root3-H;
-
- //   complex_t qx = q.x();
- //   complex_t qy = q.y();
- //   complex_t qz = q.z();
-
-   // complex_t q1, q2, q3;
-   // q1=(1./2.)*((m_root3*qx - qy)/tga - qz);
-   // q2=(1./2.)*((m_root3*qx + qy)/tga + qz);
-   // q3 = (qy/tga - qz/2.);
-
-    //complex_t F;
-    //const complex_t im(0.0,1.0);
-
-    //if (std::abs(qx*qx-3.0*qy*qy) <= Numeric::double_epsilon) {
-  //      if (std::abs(qx) <= Numeric::double_epsilon) {
-  //          if (std::abs(qz) <= Numeric::double_epsilon) {
-               //volume
-  //             double sqrt3HdivRtga = m_root3*H/R/tga;
-  //              F = tga/3.*R*R*R*(1. -
-  //                 (1.-sqrt3HdivRtga)*(1.-sqrt3HdivRtga)*(1.-sqrt3HdivRtga));
-  //          } else {
-  //           // qx=qy=0 qz!=0
-  //              complex_t qzH_half = qz*H/2.0;
-  //              F = m_root3*H*std::exp(im*qzH_half)*(
-  //                          MathFunctions::Sinc(qzH_half)*
-  //                         (R*R-im*2.*m_root3*R/(qz*tga)-6./(qz*qz*tga*tga))
-  //                         + m_root3*std::exp(im*qzH_half)/(qz*tga)*(
-  //                          2.*im*R - im*m_root3*H/tga + 2.*m_root3/(qz*tga)));
-  //          }
-
-   //     } else {
-            // qx**2-3qy**2
-    //        complex_t qa = 2.0*qy/tga + qz/2.0;
-    //        F = H*m_root3*std::exp(im*2.0*qy*R/m_root3)*(
-    //            MathFunctions::Sinc(q3*H)
-    //              *(1.0 +m_root3*qy*(-im*2.0*R + m_root3/(q3*tga)))
-    //          - 3.0*qy*std::exp(-im*2.0*q3*H)/(q3*tga)
-   //           - std::exp(im*qa*H-im*2.0*m_root3*qy*R)*MathFunctions::Sinc(qa*H)
-   //             )/(2.0*qx*qx);
-
-        //}
-   // } else {
-     //   if (std::abs(qx) <= Numeric::double_epsilon) {
-            //qx=0 qy!=0 case with pb
-           ////F =  m_integrator->integrate(0., m_height);
-
-       //     complex_t q2x0  =(1./2.)*(qy/tga + qz);
-      //if (std::abs(q2x0) >= Numeric::double_epsilon) {
-             //  F=  2.*H/(m_root3)*std::exp(im*qz*(L+H)/2.)*(
-             //                  std::exp(-im*q2x0*L)*(
-              //                     MathFunctions::Sinc(q2x0*H)
-               //                *(1./qy/qy+im*m_root3*R/qy+3./(qy*q2x0*tga))-
-                //                   3./(qy*q2x0*tga)*std::exp(im*q2x0*H)
-                 //                  )
-                   //      -std::exp(im*q3*L)*MathFunctions::Sinc(q3*H)/qy/qy
-                     //    );
-
-//             } else {
-  //             // q2==0
-    //            F = 2.*H/(m_root3*qy*qy)*(
-      //                      -std::exp(im*2.*qy*R/m_root3)*MathFunctions::Sinc(qz*3.*H/2.)
-        //                    +std::exp(-im*qy*R/m_root3)*(1.0+im*3.*qy*L/(2.*tga)));
-
-       // } else {
-            //general case
-            //F =-(1.+m_root3*qy/qx)*MathFunctions::Sinc(q1*H)*std::exp(im*q1*L)
-            //   -(1.-m_root3*qy/qx)*MathFunctions::Sinc(q2*H)*std::exp(-im*q2*L)
-            //   +2.*MathFunctions::Sinc(q3*H)*std::exp(im*q3*L);
-           // F = H*m_root3*std::exp(im*qz*R*tga/m_root3)/(qx*qx-3.*qy*qy)*F;
-        //}
-   // }
-   // return F;
-//}
-
-// New expression
-/*complex_t FormFactorTetrahedron::evaluate_for_q(const cvector_t& q) const
-{   m_q = q;
-  if ( std::abs(m_q.mag()) < Numeric::double_epsilon) {
-        double R = m_length/2.;
-        double H = m_height;
-        double tga = std::tan(m_alpha);
-        double sqrt3HdivRtga = m_root3*H/R/tga;
-        return tga/3.*R*R*R*(1. -
-                    (1.-sqrt3HdivRtga)*(1.-sqrt3HdivRtga)*(1.-sqrt3HdivRtga));
-
-    } else {
-        complex_t integral = m_integrator->integrate(0., m_height);
-        return integral;
-    }
-}*/
-
 complex_t FormFactorTetrahedron::evaluate_for_q(const cvector_t& q) const
 {
     m_q =q ;
@@ -240,178 +126,3 @@ complex_t FormFactorTetrahedron::evaluate_for_q(const cvector_t& q) const
  }
 }
 
-/*complex_t FormFactorTetrahedron::evaluate_for_q(const cvector_t& q) const
-        {
-            double H = m_height;
-            double R = m_length/2.0;
-            double tga = std::tan(m_alpha);
-            double L = 2.*tga*R/m_root3-H;
-            complex_t qx = q.x();
-            complex_t qy = q.y();
-            complex_t qz = q.z();
-            complex_t q1, q2, q3;
-            q1=(1./2.)*((m_root3*qx - qy)/tga - qz);
-            q2=(1./2.)*((m_root3*qx + qy)/tga + qz);
-            q3 = (qy/tga - qz/2.);
-            complex_t F;
-            const complex_t im(0.0,1.0);
-
-            if (std::abs(qx) <= Numeric::double_epsilon) {
-                if (std::abs(qy) <=Numeric::double_epsilon) {
-                    if (std::abs(qz) <= Numeric::double_epsilon) {
-*/
-                        // qx=qy=qz=0 OK
-             //           double sqrt3HdivRtga = m_root3*H/R/tga;
-            //            F = tga/3.*R*R*R*(1. -
-            //               (1.-sqrt3HdivRtga)*(1.-sqrt3HdivRtga)*(1.-sqrt3HdivRtga));
-            //        } else {
-            //            //qx=qy=0 qz!=0 OK with Maple
-             //           complex_t qzH_half = qz*H/2.0;
-             //           F = m_root3*H*std::exp(im*qzH_half)*(
-             //                       MathFunctions::Sinc(qzH_half)*
-             //                      (R*R-im*2.*m_root3*R/(qz*tga)-6./(qz*qz*tga*tga))
-             //                      + m_root3*std::exp(im*qzH_half)/(qz*tga)*(
-             //                       2.*im*R - im*m_root3*H/tga + 2.*m_root3/(qz*tga)));
-             //       } }
-            //    else {
-                    // qx=0 qy!=0 TO CHECK
-             //      complex_t q2x0  =(1./2.)*(qy/tga + qz);
-
-             //      if (std::abs(q2x0) >= Numeric::double_epsilon) {
-                        /* F= 2.*H/(m_root3)*std::exp(im*qz*(L+H)/2.)*(
-                                      std::exp(-im*q2x0*L)*(
-           MathFunctions::Sinc(q2x0*H)*(1./qy/qy+im*m_root3*R/qy+3./(qy*q2x0*tga))-
-                                          3./(qy*q2x0*tga)*std::exp(im*q2x0*H))
-                                -std::exp(im*q3*L)*MathFunctions::Sinc(q3*H)/qy/qy);*/
-                       //Maple
-               /*     F= -2./m_root3*(std::exp(im*(-qy/m_root3*R
-+ H * qz +H*qy/tga))* m_root3 * R * qy*qz*qz*tga*tga*tga
-- std::exp(-im* R * qy /m_root3) * m_root3 *R * qy * qz *qz * tga*tga*tga
-- std::exp(im* (-qy / m_root3 * R
-+ H * qz  + H * qy /tga))* m_root3*R*qy*qy*qz*tga*tga
-+ std::exp(-im *R*qy/ m_root3) * m_root3 * R * qy*qy * qz * tga *tga
-- 3.* H * std::exp(im * (-qy/m_root3 * R+ H * qz  + H * qy/tga)) * qy * qz*qz * tga*tga
-- 2.*std::exp(im *(-qy/m_root3*R*tga + H * qz * tga
-+ H * qy)/ tga) * m_root3 * R * qy*qy*qy * tga+ 2.*std::exp(-im*R*qy/m_root3) * m_root3 * R * qy*qy*qy * tga
- + im * std::exp(-im * R * qy / m_root3) * qz*qz  * tga*tga*tga -2.*im * std::exp(2.*im * qy / m_root3 * R) * qy * qz * tga *tga
- + 2.*im * std::exp(-im * R * qy / m_root3) * qy * qz * tga*tga + 2.*im * std::exp(-im * (-2. * qy / m_root3 * R * tga
-- H * qz * tga + 2.* H * qy) / tga) * qy * qz * tga*tga + 3. * H * std::exp(im * (-qy / m_root3 * R * tga
-+ H * qz * tga + H * qy) / tga) * qy*qy  * qz * tga
- -im* std::exp(im * (-qy / m_root3 * R * tga + H * qz * tga + H * qy) / tga) * qz*qz * tga*tga*tga
--2.*im* std::exp(im * (-qy / m_root3 * R * tga +  H * qz * tga + H * qy) / tga) *qz*qz*tga*tga
-+ im*std::exp(-im * (-2. * qy / m_root3 * R * tga - H * qz * tga + 2. * H * qy) / tga) * qz *qz * tga*tga*tga
-- im * std::exp( 2.*im * qy /m_root3 * R) * qz*qz* tga*tga*tga
-+ 6. * (qy* qy*qy) * std::exp(im * (-qy / m_root3 * R * tga +  H * qz * tga + H * qy) / tga) * H
-+ 8.*im * std::exp(im* (-qy / m_root3 * R * tga + H * qz * tga + H * qy) / tga) * qy *qy * tga
-+ im * std::exp(im*(2.*qy/m_root3*R *tga + H * qz * tga - 2. * H *qy) /tga) *qy*qy*tga - im*std::exp(2./3.*im * qy * m_root3 * R)
-* qy*qy * tga -8.*im * std::exp(-im * R *qy/m_root3) * qy *qy *tga
-                                   ) / ((qz * tga + qy) *(qz*tga+qy)) / (-qz * tga + 2.* qy)  / (qy *qy);*/
-          //      }    else {
-                      // q2==0
-          //             F = 2.*H/(m_root3*qy*qy)*(
-          //                -std::exp(im*2.*qy*R/m_root3)*MathFunctions::Sinc(qz*3.*H/2.)
-          //                +std::exp(-im*qy*R/m_root3)*(1.0+im*3.*qy*L/(2.*tga)) );
-          //         }
-          //      }
-          //  } else {
-                // qx!=0
-           //      if (std::abs(qx*qx-3.0*qy*qy)<=Numeric::double_epsilon) {
-           //         // qx**2= 3qy**2
-           //         complex_t qa = 2.0*qy/tga + qz/2.0;
-           //         F = H*m_root3*std::exp(im*2.0*qy*R/m_root3)*(
-           //              MathFunctions::Sinc(q3*H)
-           //                *(1.0 +m_root3*qy*(-im*2.0*R + m_root3/(q3*tga)))
-           //           - 3.0*qy*std::exp(-im*2.0*q3*H)/(q3*tga)
-           //            - std::exp(im*qa*H-im*2.0*m_root3*qy*R)*MathFunctions::Sinc(qa*H)
-           //              )/(2.0*qx*qx);
-         //       } else {
-        //             F =-(1.+m_root3*qy/qx)*MathFunctions::Sinc(q1*H)*std::exp(im*q1*L)
-        //                -(1.-m_root3*qy/qx)*MathFunctions::Sinc(q2*H)*std::exp(-im*q2*L)
-       //                 +2.*MathFunctions::Sinc(q3*H)*std::exp(im*q3*L);
-       //              F = H*m_root3*std::exp(im*qz*R*tga/m_root3)/(qx*qx-3.*qy*qy)*F;
-       // } }
-      //      return F;
-      //  }
-
-
-/*complex_t FormFactorTetrahedron::evaluate_for_q(const cvector_t& q) const
-        {
-           double H = m_height;
-            double R = m_length/2.0;
-            double tga = std::tan(m_alpha);
-            double L = 2.*tga*R/m_root3-H;
-
-            complex_t qx = q.x();
-            complex_t qy = q.y();
-            complex_t qz = q.z();
-
-            complex_t q1, q2, q3;
-            q1=(1./2.)*((m_root3*qx - qy)/tga - qz);
-            q2=(1./2.)*((m_root3*qx + qy)/tga + qz);
-            q3 = (qy/tga - qz/2.);
-
-            complex_t F;
-            const complex_t im(0.0,1.0);
-
-            if (std::abs(qx*qx-3.0*qy*qy) <= Numeric::double_epsilon) {
-                if (std::abs(qx) <= Numeric::double_epsilon) {
-                    if (std::abs(qz) <= Numeric::double_epsilon) {*/
-                        //volume
-                      /*  double sqrt3HdivRtga = m_root3*H/R/tga;
-                        F = tga/3.*R*R*R*(1. -
-                           (1.-sqrt3HdivRtga)*(1.-sqrt3HdivRtga)*(1.-sqrt3HdivRtga));
-                    } else {*/
-                     // qx=qy=0 qz!=0
-                       /* complex_t qzH_half = qz*H/2.0;
-                        F = m_root3*H*std::exp(im*qzH_half)*(
-                                    MathFunctions::Sinc(qzH_half)*
-                                   (R*R-im*2.*m_root3*R/(qz*tga)-6./(qz*qz*tga*tga))
-                                   + m_root3*std::exp(im*qzH_half)/(qz*tga)*(
-                                 2.*im*R - im*m_root3*H/tga + 2.*m_root3/(qz*tga)));
-                    }
-                } else {*/
-                    // qx**2-3qy**2
-                    /*complex_t qa = 2.0*qy/tga + qz/2.0;
-                    F = H*m_root3*std::exp(im*2.0*qy*R/m_root3)*(
-                        MathFunctions::Sinc(q3*H)
-                          *(1.0 +m_root3*qy*(-im*2.0*R + m_root3/(q3*tga)))
-                      - 3.0*qy*std::exp(-im*2.0*q3*H)/(q3*tga)
-                      - std::exp(im*qa*H-im*2.0*m_root3*qy*R)*MathFunctions::Sinc(qa*H)
-                        )/(2.0*qx*qx);
-
-                }
-            } else {
-   ß             if (std::abs(qx) <= Numeric::double_epsilon) {*/
-                    //qx=0 qy!=0 case with pb
-                   // F =  m_integrator->integrate(0., m_height);
-
-                 /*   complex_t q2x0  =(1./2.)*(qy/tga + qz);
-
-                    if (std::abs(q2x0) >= Numeric::double_epsilon)
-                       F=  2.*H/(m_root3)*std::exp(im*qz*(L+H)/2.)*(
-                           std::exp(-im*q2x0*L)*(MathFunctions::Sinc(q2x0*H)
-                          *(1./qy/qy+im*m_root3*R/qy+3./(qy*q2x0*tga))-
-                                 3./(qy*q2x0*tga)*std::exp(im*q2x0*H))
-                                 -std::exp(im*q3*L)*MathFunctions::Sinc(q3*H)/qy/qy);*/
-          //2./3.*im *(-6.*im * std::exp((1./3.*im) * (-qy*R*m_root3*tga +3.*qz*H*tga + 3.*qy*H)/tga) *R*(qy*qy*qy)* tga-3.*im *std::exp((1./3.*im)*(-qy*R*m_root3*tga+3.*qz*H*tga + 3.*qy*H)/tga)*R*(qy*qy)*qz*(tga*tga)
-          //+ (6.*im)*H* std::exp((1./3.*im)* (-qy * R * m_root3 * tga + 3. * qz * H * tga + 3. * qy * H) / tga)* (2. / 3.*im)* ((-6.*im) * std::exp((1. / 3.*im) * (-qy * R * m_root3 * tga + 3. * qz * H * tga + 3. * qy * H) / tga) * R * (qy*qy*qy) * tga + (-3.*im) * std::exp((1. / 3.*im) * (-qy * R * m_root3 * tga + 3. * qz * H * tga + 3. * qy * H) / tga) * R * (qy*qy) * qz * (tga*tga) + (6.*im) * H * std::exp((1./3.*im)* (-qy * R * m_root3 * tga + 3. * qz * H * tga + 3. * qy * H) / tga) * m_root3 * (qy*qy*qy) + (6.*im) * std::exp((-1./3.*im) * qy * R * m_root3) * R * (qy*qy*qy) * tga + (-3.*im) * H* std::exp((1. / 3.*im) * (-qy * R * m_root3 * tga + 3. * qz * H * tga + 3. * qy * H) / tga) * m_root3 * qy * (qz*qz) * (tga*tga) + (3.*im) * std::exp((1. / 3.*im) * (-qy * R * m_root3 * tga + 3. * qz * H * tga + 3. * qy * H) / tga) * R * qy * (qz*qz) * (tga*tga*tga)+ (3.*im) * H * std::exp((1./ 3.*im) * (-qy * R * m_root3 * tga + 3. * qz * H * tga + 3. * qy * H) / tga) * m_root3 * (qy*qy) * qz * tga + (-3.*im) * std::exp((-1. / 3.*im) * qy * R * m_root3) * R * qy * (qz*qz) * (tga*tga*tga) + std::exp((1. / 3.*im) * (-qy * R * m_root3 * tga + 3. * qz * H * tga + 3. * qy * H) / tga) * m_root3 * (qz*qz) * (tga*tga*tga)- std::exp((-1. / 3.*im) * (-2. * qy * R * m_root3 * tga - 3. * qz * H * tga + 6. * qy * H) / tga) * m_root3 * (qz*qz)) * (tga*tga*tga) + (3.*im) * std::exp((-1. / 3.*im) * qy * R * m_root3) * R * (qy*qy) * qz * (tga*tga) - std::exp((-1. / 3.*im) * qy * R * m_root3) * m_root3 * (qz*qz) * (tga*tga*tga) + m_root3 * std::exp((2. / 3.*im) * qy * R * m_root3) * (qz*qz) * (tga*tga*tga) + 2. * std::exp((1. / 3.*im) * (-qy * R * m_root3 * tga + 3. * qz * H * tga + 3. * qy * H) / tga) * m_root3 * qy * qz * (tga*tga) - 2. * std::exp((-1. / 3.*im) * (-2. * qy * R * m_root3 * tga - 3. * qz * H * tga + 6. * qy * H) / tga) * m_root3 * qy * qz * (tga*tga) - 2. * std::exp((-1. / 3.*im) * qy * R * m_root3) * m_root3 * qy * qz * (tga*tga) + 2.*m_root3 * std::exp((2. / 3.*im) * qy * R * m_root3) * qy * qz * (tga*tga) - 8. * std::exp((1. / 3.*im) * (-qy * R * m_root3 * tga + 3. * qz * H * tga + 3. * qy * H) / tga) * m_root3 * (qy*qy) * tga - std::exp((-1. / 3.*im) * (-2. * qy * R * m_root3* tga - 3. * qz * H * tga + 6. * qy * H) / tga) * m_root3 * (qy*qy) * tga + 8. * std::exp((-1./3.*im) * qy * R * m_root3) * m_root3 * (qy*qy) * tga + m_root3*std::exp((2./3.*im) * qy * R * m_root3)*(qy*qy) * tga)/((qz * tga +qy)*(qz*tga+qy))/(-qz*tga+2.*qy)/(qy*qy);
-
-                   //  else {
-                       // q2==0
-                  /* F = 2.*H/(m_root3*qy*qy)*(-std::exp(im*2.*qy*R/m_root3)*MathFunctions::Sinc(qz*3.*H/2.)
-                        +std::exp(-im*qy*R/m_root3)*(1.0+im*3.*qy*L/(2.*tga)));
-        }
-                } else {*/
-                    //general case
-                   /* F =-(1.+m_root3*qy/qx)*MathFunctions::Sinc(q1*H)*std::exp(im*q1*L)
-                       -(1.-m_root3*qy/qx)*MathFunctions::Sinc(q2*H)*std::exp(-im*q2*L)
-                       +2.*MathFunctions::Sinc(q3*H)*std::exp(im*q3*L);
-                    F = H*m_root3*std::exp(im*qz*R*tga/m_root3)/(qx*qx-3.*qy*qy)*F;
-                }}
-            return F;
-        }*/
-
-
-
-
-
diff --git a/Doc/UserManual/BornAgainManual.pdf b/Doc/UserManual/BornAgainManual.pdf
index e896d4341fdaa8daceae9a9d31b611844fc8c792..bd38fbf62f22e6a1300e4bb66a10cbd8c1c45afe 100644
Binary files a/Doc/UserManual/BornAgainManual.pdf and b/Doc/UserManual/BornAgainManual.pdf differ
diff --git a/Doc/UserManual/ff.tex b/Doc/UserManual/ff.tex
index 5eea9191a2d1ebfda2ec12271a2d80f697a8742d..a2f26997b3e828cd590bea13a7a088b2709d51a6 100755
--- a/Doc/UserManual/ff.tex
+++ b/Doc/UserManual/ff.tex
@@ -156,8 +156,8 @@ This shape is a truncated tetrahedron as shown in fig.~\ref{fig:tetrahedron}.
 \hfill
 \caption{Sketch of a Tetrahedron. The implementation of this shape uses angle
   $\alpha$, which is linked to $\beta$ via $\tan \alpha = 2 \tan 
-  \beta$. $\alpha$ is measured along one of the base lines and $\beta$
-  at one of the base vertices.}
+  \beta$. $\alpha$ is the angle between the base and a side face and $\beta$
+  the angle between the base and a side edge.}
 \label{fig:tetrahedron}
 \end{figure}
 
@@ -168,7 +168,7 @@ This shape is a truncated tetrahedron as shown in fig.~\ref{fig:tetrahedron}.
 \item length of one side of the equilateral triangular base $L$,
 \item height $H$,
 \item angle $\alpha$ is the angle between the base and the
-  side faces, taken in the middle of the base lines.
+  side faces.
 \end{itemize}
 
 \paragraph{Restrictions on the parameters:} 
@@ -185,9 +185,9 @@ $\dfrac{H}{L}< \dfrac{\tan{\alpha}}{2\sqrt{3}}$.
 
 \begin{align*}
 &F(\mathbf{q}, L, H, \alpha)=\frac{\sqrt{3}H}{q_x (q_x^2-3q_y^2)}
-\exp\left(i\frac{q_z L}{2\tan (\alpha)\sqrt{3}}\right) \times \\
+\exp\left(i\frac{q_z L\tan (\alpha)}{2\sqrt{3}}\right) \times \\
 &\Big\{2q_x \exp(iq_3 D)\sinc(q_3 H) - (q_x +\sqrt{3}q_y)
-\exp(iq_1 D)\sinc(q_1 D) -(q_x-\sqrt{3}q_y)\exp(-iq_2
+\exp(iq_1 D)\sinc(q_1 H) -(q_x-\sqrt{3}q_y)\exp(-iq_2
 D)\sinc(q_2 H) \Big\}, 
 \end{align*}
 with $\sinc(x)=\sin(x)/x$,