diff --git a/Core/HardParticle/FormFactorTruncatedSpheroid.cpp b/Core/HardParticle/FormFactorTruncatedSpheroid.cpp
index 2f7c2199158892eab2e4b92eb48680674143277a..0b828f39555d812437f2b4930fb99ef28a529fd4 100644
--- a/Core/HardParticle/FormFactorTruncatedSpheroid.cpp
+++ b/Core/HardParticle/FormFactorTruncatedSpheroid.cpp
@@ -70,7 +70,7 @@ complex_t FormFactorTruncatedSpheroid::Integrand(double Z) const
     complex_t qrRz = std::sqrt(m_q.x() * m_q.x() + m_q.y() * m_q.y()) * Rz;
     complex_t J1_qrRz_div_qrRz = MathFunctions::Bessel_J1c(qrRz);
 
-    return Rz * Rz * J1_qrRz_div_qrRz * std::exp(I * m_q.z() * Z);
+    return Rz * Rz * J1_qrRz_div_qrRz * exp_I(m_q.z() * Z);
 }
 
 complex_t FormFactorTruncatedSpheroid::evaluate_for_q(cvector_t q) const
@@ -82,7 +82,7 @@ complex_t FormFactorTruncatedSpheroid::evaluate_for_q(cvector_t q) const
 
     if (std::abs(m_q.mag()) <= std::numeric_limits<double>::epsilon())
         return M_PI / 3. / fp * (H * H * (3. * R - H / fp) - m_dh * m_dh * (3. * R - m_dh / fp));
-    complex_t z_part = std::exp(I * m_q.z() * (H - fp * R));
+    complex_t z_part = exp_I(m_q.z() * (H - fp * R));
     return M_TWOPI * z_part
            * ComplexIntegrator().integrate([&](double Z) { return Integrand(Z); }, fp * R - H,
                                            fp * R - m_dh);
diff --git a/Core/HardParticle/Ripples.cpp b/Core/HardParticle/Ripples.cpp
index f1e301c79672ae5277c9e76b165b726935442535..c884c643a0526e6d7f9bf63b03ec56cd85d76087 100644
--- a/Core/HardParticle/Ripples.cpp
+++ b/Core/HardParticle/Ripples.cpp
@@ -60,13 +60,13 @@ complex_t ripples::profile_yz_cosine(complex_t qy, complex_t qz, double width, d
 
     // numerical integration otherwise
     const complex_t ay = qy * width / M_TWOPI;
-    const complex_t az = I * qz * (height / 2);
+    const complex_t az = qz * (height / 2);
 
     const auto integrand = [&](double u) -> complex_t {
-        return sin(u) * exp(az * std::cos(u)) * (ay == 0. ? u : sin(ay * u) / ay);
+        return sin(u) * exp_I(az * std::cos(u)) * (ay == 0. ? u : sin(ay * u) / ay);
     };
     complex_t integral = ComplexIntegrator().integrate(integrand, 0, M_PI);
-    return factor * integral * exp(az) * (height / 2);
+    return factor * integral * exp_I(az) * (height / 2);
 }
 
 //! Complex form factor of triangular ripple.