diff --git a/Core/Tools/src/MathFunctions.cpp b/Core/Tools/src/MathFunctions.cpp index 4f0d95e5ff899c295c516155d8685948437295d3..798a6579bd8601b6e7b2909643b193e593b09c3d 100644 --- a/Core/Tools/src/MathFunctions.cpp +++ b/Core/Tools/src/MathFunctions.cpp @@ -24,24 +24,24 @@ double MathFunctions::Gaussian(double value, double average, double std_dev) { - return StandardNormal((value-average)/std_dev) / std_dev; + return StandardNormal((value - average) / std_dev) / std_dev; } double MathFunctions::IntegratedGaussian(double value, double average, double std_dev) { - double normalized_value = (value - average)/std_dev; + double normalized_value = (value - average) / std_dev; double root2 = std::sqrt(2.0); - return (gsl_sf_erf(normalized_value/root2) + 1.0)/2.0; + return (gsl_sf_erf(normalized_value / root2) + 1.0) / 2.0; } double MathFunctions::StandardNormal(double value) { - return std::exp(- value*value / 2.0) / std::sqrt(2*M_PI); + return std::exp(-value * value / 2.0) / std::sqrt(2 * M_PI); } -double MathFunctions::GenerateStandardNormalRandom() // using GSL +double MathFunctions::GenerateStandardNormalRandom() // using GSL { - gsl_rng * r; + gsl_rng *r; r = gsl_rng_alloc(gsl_rng_ranlxs2); double result = gsl_ran_ugaussian(r); gsl_rng_free(r); @@ -51,42 +51,43 @@ double MathFunctions::GenerateStandardNormalRandom() // using GSL //! @brief simple (and unoptimized) wrapper function //! for the discrete fast Fourier transformation library (fftw3) -std::vector<complex_t > MathFunctions::FastFourierTransform(const std::vector<complex_t >& data, MathFunctions::EFFTDirection ftCase) +std::vector<complex_t> MathFunctions::FastFourierTransform(const std::vector<complex_t> &data, + MathFunctions::EFFTDirection ftCase) { double scale(1.); size_t npx = data.size(); - fftw_complex *ftData = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * npx); - fftw_complex *ftResult = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * npx); + fftw_complex *ftData = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * npx); + fftw_complex *ftResult = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * npx); memset(ftData, 0, sizeof(fftw_complex) * npx); memset(ftResult, 0, sizeof(fftw_complex) * npx); - for(size_t i=0; i<npx; i++){ + for (size_t i = 0; i < npx; i++) { ftData[i][0] = data[i].real(); ftData[i][1] = data[i].imag(); } fftw_plan plan; - switch (ftCase) - { - case MathFunctions::FORWARD_FFT: - plan = fftw_plan_dft_1d( (int)npx, ftData, ftResult, FFTW_FORWARD, FFTW_ESTIMATE ); - break; - case MathFunctions::BACKWARD_FFT: - plan = fftw_plan_dft_1d( (int)npx, ftData, ftResult, FFTW_BACKWARD, FFTW_ESTIMATE ); - scale = 1./double(npx); - break; - default: - throw std::runtime_error("MathFunctions::FastFourierTransform -> Panic! Unknown transform case."); + switch (ftCase) { + case MathFunctions::FORWARD_FFT: + plan = fftw_plan_dft_1d((int)npx, ftData, ftResult, FFTW_FORWARD, FFTW_ESTIMATE); + break; + case MathFunctions::BACKWARD_FFT: + plan = fftw_plan_dft_1d((int)npx, ftData, ftResult, FFTW_BACKWARD, FFTW_ESTIMATE); + scale = 1. / double(npx); + break; + default: + throw std::runtime_error( + "MathFunctions::FastFourierTransform -> Panic! Unknown transform case."); } fftw_execute(plan); // saving data for user - std::vector<complex_t > outData; + std::vector<complex_t> outData; outData.resize(npx); - for(size_t i=0; i<npx; i++){ - outData[i] = scale*complex_t(ftResult[i][0], ftResult[i][1]); + for (size_t i = 0; i < npx; i++) { + outData[i] = scale * complex_t(ftResult[i][0], ftResult[i][1]); } fftw_destroy_plan(plan); @@ -100,36 +101,42 @@ std::vector<complex_t > MathFunctions::FastFourierTransform(const std::vector<co //! for the discrete fast Fourier transformation library (fftw3); //! transforms real to complex -std::vector<complex_t > MathFunctions::FastFourierTransform(const std::vector<double >& data, MathFunctions::EFFTDirection ftCase) +std::vector<complex_t> MathFunctions::FastFourierTransform(const std::vector<double> &data, + MathFunctions::EFFTDirection ftCase) { std::vector<complex_t> cdata; cdata.resize(data.size()); - for(size_t i=0; i<data.size(); i++) { cdata[i] = complex_t(data[i], 0); } + for (size_t i = 0; i < data.size(); i++) { + cdata[i] = complex_t(data[i], 0); + } return MathFunctions::FastFourierTransform(cdata, ftCase); } //! convolution of two real vectors of equal size -std::vector<complex_t> MathFunctions::ConvolveFFT(const std::vector<double>& signal, const std::vector<double>& resfunc) +std::vector<complex_t> MathFunctions::ConvolveFFT(const std::vector<double> &signal, + const std::vector<double> &resfunc) { - if(signal.size() != resfunc.size() ) { - throw std::runtime_error("MathFunctions::ConvolveFFT() -> This convolution works only for two vectors of equal size. Use Convolve class instead."); + if (signal.size() != resfunc.size()) { + throw std::runtime_error("MathFunctions::ConvolveFFT() -> This convolution works only for " + "two vectors of equal size. Use Convolve class instead."); } - std::vector<complex_t > fft_signal = MathFunctions::FastFourierTransform(signal, MathFunctions::FORWARD_FFT); - std::vector<complex_t > fft_resfunc = MathFunctions::FastFourierTransform(resfunc, MathFunctions::FORWARD_FFT); + std::vector<complex_t> fft_signal + = MathFunctions::FastFourierTransform(signal, MathFunctions::FORWARD_FFT); + std::vector<complex_t> fft_resfunc + = MathFunctions::FastFourierTransform(resfunc, MathFunctions::FORWARD_FFT); - std::vector<complex_t > fft_prod; + std::vector<complex_t> fft_prod; fft_prod.resize(fft_signal.size()); - for(size_t i=0; i<fft_signal.size(); i++){ + for (size_t i = 0; i < fft_signal.size(); i++) { fft_prod[i] = fft_signal[i] * fft_resfunc[i]; } - std::vector<complex_t > result = MathFunctions::FastFourierTransform(fft_prod, MathFunctions::BACKWARD_FFT); + std::vector<complex_t> result + = MathFunctions::FastFourierTransform(fft_prod, MathFunctions::BACKWARD_FFT); return result; } - - //! Complex Bessel function of 1st kind, 0st order //! //! Taken from http://www.crbond.com/math.htm @@ -140,73 +147,58 @@ std::vector<complex_t> MathFunctions::ConvolveFFT(const std::vector<double>& sig complex_t MathFunctions::crbond_bessel_J0(const complex_t &z) { complex_t cj0; - static const complex_t cone(1.0,0.0); - static const complex_t czero(0.0,0.0); - static const double eps=1e-15; - static double a[] = { - -7.03125e-2, - 0.112152099609375, - -0.5725014209747314, - 6.074042001273483, - -1.100171402692467e2, - 3.038090510922384e3, - -1.188384262567832e5, - 6.252951493434797e6, - -4.259392165047669e8, - 3.646840080706556e10, - -3.833534661393944e12, - 4.854014686852901e14, - -7.286857349377656e16, - 1.279721941975975e19}; - static double b[] = { - 7.32421875e-2, - -0.2271080017089844, - 1.727727502584457, - -2.438052969955606e1, - 5.513358961220206e2, - -1.825775547429318e4, - 8.328593040162893e5, - -5.006958953198893e7, - 3.836255180230433e9, - -3.649010818849833e11, - 4.218971570284096e13, - -5.827244631566907e15, - 9.476288099260110e17, - -1.792162323051699e20}; + static const complex_t cone(1.0, 0.0); + static const complex_t czero(0.0, 0.0); + static const double eps = 1e-15; + static double a[] = { -7.03125e-2, 0.112152099609375, -0.5725014209747314, + 6.074042001273483, -1.100171402692467e2, 3.038090510922384e3, + -1.188384262567832e5, 6.252951493434797e6, -4.259392165047669e8, + 3.646840080706556e10, -3.833534661393944e12, 4.854014686852901e14, + -7.286857349377656e16, 1.279721941975975e19 }; + static double b[] = { 7.32421875e-2, -0.2271080017089844, 1.727727502584457, + -2.438052969955606e1, 5.513358961220206e2, -1.825775547429318e4, + 8.328593040162893e5, -5.006958953198893e7, 3.836255180230433e9, + -3.649010818849833e11, 4.218971570284096e13, -5.827244631566907e15, + 9.476288099260110e17, -1.792162323051699e20 }; double a0 = std::abs(z); complex_t z1 = z; - if (a0 == 0.0) return cone; - if (std::real(z) < 0.0) z1 = -z; + if (a0 == 0.0) + return cone; + if (std::real(z) < 0.0) + z1 = -z; if (a0 <= 12.0) { - complex_t z2 = z*z; + complex_t z2 = z * z; cj0 = cone; complex_t cr = cone; - for (size_t k=1; k<=40; ++k) { - cr *= -0.25*z2/(double)(k*k); + for (size_t k = 1; k <= 40; ++k) { + cr *= -0.25 * z2 / (double)(k * k); cj0 += cr; - if (std::abs(cr) < std::abs(cj0)*eps) break; + if (std::abs(cr) < std::abs(cj0) * eps) + break; } } else { size_t kz; - if (a0 >= 50.0) kz = 8; // can be changed to 10 - else if (a0 >= 35.0) kz = 10; // " " " 12 - else kz = 12; // " " " 14 + if (a0 >= 50.0) + kz = 8; // can be changed to 10 + else if (a0 >= 35.0) + kz = 10; // " " " 12 + else + kz = 12; // " " " 14 complex_t ct1 = z1 - M_PI_4; complex_t cp0 = cone; - complex_t cq0 = -0.125/z1; - complex_t ptmp=std::pow(z1,-2.0); - for (size_t k=0; k<kz; ++k) { - cp0 += a[k]*ptmp; - cq0 += b[k]*ptmp/z1; - ptmp /= (z1*z1); + complex_t cq0 = -0.125 / z1; + complex_t ptmp = std::pow(z1, -2.0); + for (size_t k = 0; k < kz; ++k) { + cp0 += a[k] * ptmp; + cq0 += b[k] * ptmp / z1; + ptmp /= (z1 * z1); } - cj0 = std::sqrt(M_2_PI/z1)*(cp0*std::cos(ct1)-cq0*std::sin(ct1)); + cj0 = std::sqrt(M_2_PI / z1) * (cp0 * std::cos(ct1) - cq0 * std::sin(ct1)); } return cj0; } - //! Complex Bessel function of 1st kind, 1st order //! //! Taken from http://www.crbond.com/math.htm @@ -217,88 +209,74 @@ complex_t MathFunctions::crbond_bessel_J0(const complex_t &z) complex_t MathFunctions::crbond_bessel_J1(const complex_t &z) { complex_t cj1; - static const complex_t cone(1.0,0.0); - static const complex_t czero(0.0,0.0); - static const double eps=1e-15; + static const complex_t cone(1.0, 0.0); + static const complex_t czero(0.0, 0.0); + static const double eps = 1e-15; - static double a1[] = { - 0.1171875, - -0.1441955566406250, - 0.6765925884246826, - -6.883914268109947, - 1.215978918765359e2, - -3.302272294480852e3, - 1.276412726461746e5, - -6.656367718817688e6, - 4.502786003050393e8, - -3.833857520742790e10, - 4.011838599133198e12, - -5.060568503314727e14, - 7.572616461117958e16, - -1.326257285320556e19}; - static double b1[] = { - -0.1025390625, - 0.2775764465332031, - -1.993531733751297, - 2.724882731126854e1, - -6.038440767050702e2, - 1.971837591223663e4, - -8.902978767070678e5, - 5.310411010968522e7, - -4.043620325107754e9, - 3.827011346598605e11, - -4.406481417852278e13, - 6.065091351222699e15, - -9.833883876590679e17, - 1.855045211579828e20}; + static double a1[] = { 0.1171875, -0.1441955566406250, 0.6765925884246826, + -6.883914268109947, 1.215978918765359e2, -3.302272294480852e3, + 1.276412726461746e5, -6.656367718817688e6, 4.502786003050393e8, + -3.833857520742790e10, 4.011838599133198e12, -5.060568503314727e14, + 7.572616461117958e16, -1.326257285320556e19 }; + static double b1[] = { -0.1025390625, 0.2775764465332031, -1.993531733751297, + 2.724882731126854e1, -6.038440767050702e2, 1.971837591223663e4, + -8.902978767070678e5, 5.310411010968522e7, -4.043620325107754e9, + 3.827011346598605e11, -4.406481417852278e13, 6.065091351222699e15, + -9.833883876590679e17, 1.855045211579828e20 }; double a0 = std::abs(z); - if (a0 == 0.0) return czero; + if (a0 == 0.0) + return czero; complex_t z1 = z; - if (std::real(z) < 0.0) z1 = -z; + if (std::real(z) < 0.0) + z1 = -z; if (a0 <= 12.0) { - complex_t z2 = z*z; + complex_t z2 = z * z; cj1 = cone; complex_t cr = cone; - for (size_t k=1; k<=40; ++k) { - cr *= -0.25*z2/(k*(k+1.0)); + for (size_t k = 1; k <= 40; ++k) { + cr *= -0.25 * z2 / (k * (k + 1.0)); cj1 += cr; - if (std::abs(cr) < std::abs(cj1)*eps) break; + if (std::abs(cr) < std::abs(cj1) * eps) + break; } - cj1 *= 0.5*z1; + cj1 *= 0.5 * z1; } else { size_t kz; - if (a0 >= 50.0) kz = 8; // can be changed to 10 - else if (a0 >= 35.0) kz = 10; // " " " 12 - else kz = 12; // " " " 14 + if (a0 >= 50.0) + kz = 8; // can be changed to 10 + else if (a0 >= 35.0) + kz = 10; // " " " 12 + else + kz = 12; // " " " 14 complex_t cp1 = cone; - complex_t cq1 = 0.375/z1; - complex_t ptmp=std::pow(z1,-2.0); - for (size_t k=0; k<kz; ++k) { - cp1 += a1[k]*ptmp; - cq1 += b1[k]*ptmp/z1; - ptmp /= (z1*z1); + complex_t cq1 = 0.375 / z1; + complex_t ptmp = std::pow(z1, -2.0); + for (size_t k = 0; k < kz; ++k) { + cp1 += a1[k] * ptmp; + cq1 += b1[k] * ptmp / z1; + ptmp /= (z1 * z1); } - complex_t ct2 = z1 - 0.75*M_PI; - cj1 = std::sqrt(M_2_PI/z1)*(cp1*std::cos(ct2)-cq1*std::sin(ct2)); + complex_t ct2 = z1 - 0.75 * M_PI; + cj1 = std::sqrt(M_2_PI / z1) * (cp1 * std::cos(ct2) - cq1 * std::sin(ct2)); } - if (std::real(z) < 0.0) cj1 = -cj1; + if (std::real(z) < 0.0) + cj1 = -cj1; return cj1; } complex_t MathFunctions::geometricSum(complex_t z, int exponent) { - if (exponent<1) { - throw LogicErrorException( - "MathFunctions::geometricSeries:" - " exponent should be > 0"); + if (exponent < 1) { + throw LogicErrorException("MathFunctions::geometricSeries:" + " exponent should be > 0"); } complex_t result(0.0, 0.0); double nd = (double)exponent; --exponent; - while (exponent>0) { - result += std::pow(z, exponent)*(nd-exponent); + while (exponent > 0) { + result += std::pow(z, exponent) * (nd - exponent); --exponent; } return result;