
Abstract

This document describes the general architecture of the BornAgain
project.

1 Data classes for simulations and fits
This section will give an overview of the classes that are used to describe all
the data needed to perform a single simulation. The prime elements of this
data are formed by the sample, the experimental conditions (beam and detector
parameters) and simulation parameters.

These classes constitute the main interface to the software’s users, since they
will mostly be interacting with the program by creating samples and running
simulations with specific parameters. Since it is not the intent to explain in-
ternals of classes in this document, the text and figures will only mention the
most important methods and fields of the classes discussed. Furthermore, get-
ters and setters of private member fields will not be indicated, although these
do belong to the public interface. For more detailed information about the
project’s classes, their methods and fields, the reader is referred to the source
code documentation. REF?

1.1 The Experiment object
The Experiment class holds all references to data objects that are needed to per-
form a simulation. These consist of a sample description, possibly implemented
by a builder object, detector and beam parameters and finally, a simulation pa-
rameter class that defines the different approximations that can be used during
a simulation. Besides getters and setters for these fields, the class also contains
a runSimulation() method that will generate an ISimulation object that will
perform the actual computations. The class diagram for Experiment is shown
in figure 1.

1



Simulation Data

Experiment

– mp_sample : ISample*
– mp_sample_builder : ISampleBuilder*
– m_detector : Detector
– m_beam : Beam
– m_intensity_map : OutputData<double>
– m_sim_params : SimulationParameters

+ clone() : Experiment*
+ runSimulation() : void
+ normalize() : void

ISample

Detector

Beam

SimulationParameters

GISASExperiment

The “runSimulation()” method retrieves
an ISimulation object from the top-
most ISample object and calls its “run()”
method to perform the actual computa-
tions.

The “runSimulation()” method retrieves
an ISimulation object from the top-
most ISample object and calls its “run()”
method to perform the actual computa-
tions.

Figure 1: The Experiment class as a container for sample, beam, detector and
simulation parameters.

1.2 The ISample class hiërarchy
Samples are described by a hiërarchy tree of objects which all adhere to the
ISample interface. The composite pattern is used to achieve a common inter-
face for all objects in the sample tree. The sample description is maximally
decoupled from all computational classes, with the exception of the “createDW-
BASimulation()” method. This method will create a new object of type “DW-
BASimulation” that is capable of calculating the scattering contributions orig-
inating from the sample in question. The coupling is however not very tight,
since the ISample subclasses only need to know about which class to instantiate
and return.

This interface and two of its subclasses are sketched in figure 2.

2



Sample description

n

«interface»
ISample

+ clone() : ISample*
+ createDWBASimulation() : DWBASimulation*

MultiLayer

– m_layers : std::vector<Layer *>
– m_interfaces : std::vector<LayerInterface *>

+ getNumberOfLayers() : size_t
+ getNumberOfInterfaces() : size_t
+ addLayer(const Layer &layer) : void

Layer

– mp_material : IMaterial*
– m_thickness : double

+ getThickness() : double
+ setThickness(double thickness) : void

Figure 2: The ISample interface

3


