
BornAgain - simulating and fitting X-ray and neutron
small angle scattering at grazing incidence.

User Guide
version 0.1

C. Durniak, G. Pospelov, W. Van Herck, J. Wuttke

Scientific Computing Group at MLZ

License: Creative Common CC-BY-SA
August 28, 2013

Contents Contents

Contents

1 Installation 3
1.1 Quick start . 3
1.2 Software architecture . 4
1.3 Installation . 5

1.3.1 Third-party software. 5
1.3.2 Getting source code . 6
1.3.3 Building and installing the code . 7
1.3.4 What is next? . 8

2 Examples 9
2.1 General methodology . 9
2.2 Conventions . 9

2.2.1 Geometry of the sample . 9
2.2.2 Units . 10
2.2.3 Programs . 11

2.3 Example 1: Two types of islands on top of substrate. No interference function 11
2.4 Example 2 . 16

Page 1

Contents Contents

Introduction

BornAgain is a software to simulate and fit small-angle scattering at grazing incidence (GISAS).
It supports analysis of both X-ray (GISAXS) and neutron (GISANS) data. The name of the soft-
ware, BornAgain, indicates the central role of the distorted-wave Born approximation (DWBA) in
the physical description of the scattering process. The software provides a generic framework for
modeling multilayer samples with smooth or rough interfaces and with various types of embedded
nanoparticles. In this way, it reproduces and enhances the functionality of the present reference
software, IsGISAXS by R. Lazzari [1], and lays a solid base for future extensions in response to spe-
cific user needs.

To meet the growing demand for GISAS simulation of more complex structured materials, BornAgain
has extended the IsGISAXS program’s functionality by removing the restrictions on the number of
layers and particles, by providing diffuse reflection from rough layer interfaces and by adding parti-
cles with inner structures.

BornAgain is a platform independent software, with active support for Linux, MacOS and Mi-
crosoft Windows (planned for October, 2013). It is a free and open source software provided under
terms of GNU General Public License (GPL). The authors will be grateful for all kind of feedback:
criticism, praise, bug reports, feature requests or contributed modules. When BornAgain is used in
preparing scientific papers, please cite this manual as follows:

C. Durniak, G. Pospelov, W. Van Herck, J. Wuttke,
BornAgain - simulating and fitting X-ray and neutron small angle scattering at grazing incidence,

http://apps.jcns.fz-juelich.de/BornAgain

This user guide starts with a brief description of the steps necessary for compiling the source
code and running the simulation in Section 1.1. More detailed overview of software architecture and
installation procedure are given in Section 1.2 and Section 1.3. General methodology of simulation
with BornAgain and detailed usage examples are given in Chapter 2.

Icons used in this manual:

P: this sign highlights further remarks.

B: this sign highlights essential points.

Page 2

Chapter 1. Installation

Chapter 1

Installation

1.1 Quick start

This section shortly describes how to build BornAgain from source and run the first simulation.
More details about software architecture and installation procedure are given in Section 1.2 and
Section 1.3.

Step I: installing third party software

• compilers: clang versions ≥ 3.1 or GCC versions ≥ 4.2

• cmake (≥ 2.8)

• boost library (≥ 1.48)

• GNU scientific library (≥ 1.15)

• fftw3 library (≥ 3.3.1)

• python-2.7, python-devel, python-numpy-devel

Step II: getting the source

git clone git:// apps.jcns.fz-juelich.de/BornAgain.git

Step III: building the source

mkdir <build_dir>; cd <build_dir>;
cmake <source_dir> -DCMAKE_INSTALL_PREFIX=<install_dir>
make
make check
make install

Step IV: running example

cd <install_dir>/Examples/python/ex001_CylindersAndPrisms
python CylindersAndPrisms.py

Page 3

Chapter 1. Installation 1.2. Software architecture

1.2 Software architecture

interface to minimizers

libFit

Figure 1.1: Structure of BornAgain libraries.

Page 4

Chapter 1. Installation 1.3. Installation

1.3 Installation

This section describes how to build and install BornAgain libraries from the source. At the moment
we support building on x86/x86_64 Linux and Mac OS X operating systems. Support for Windows
systems is planned in next releases. There are three major steps to building BornAgain :

1. Acquire required third-party libraries.

2. Get BornAgain source code.

3. Use cmake to build and install software.

The remainder of this section explains each step in detail.

1.3.1 Third-party software.

To successfully build BornAgain a number of prerequisite packages must be installed.

• compilers: clang versions ≥ 3.1 or GCC versions ≥ 4.2

• cmake (≥ 2.8)

• boost library (≥ 1.48)

• GNU scientific library (≥ 1.15)

• fftw3 library (≥ 3.3)

• python (≥ 2.7, < 3.0), python-devel, python-numpy-devel

Other packages are optional

• ROOT framework (adds several additional fitting algorithms to BornAgain)

• python-matplotlib (allows to run usage examples with graphics)

All required packages can be easily installed on most Linux distributions using the system’s pack-
age manager. Below we give a few examples for several selected operation systems. Please note, that
other distributions (Fedora, Mint, etc) may have different commands for invoking the package man-
ager and slightly different names of packages (like “boost” instead of “libboost” etc). Besides that,
the installation should be very similar.

OpenSuse 12.3
Adding “scientific” repository

sudo zypper ar http :// download.opensuse.org/repositories/science/
openSUSE_12 .3 science

Installing required packages

sudo zypper install git -core cmake gsl -devel boost -devel fftw3 -devel
python -devel python -numpy -devel

Installing optional packages

sudo zypper install libroot -* root -plugin -* root -system -* root -ttf
libeigen3 -devel python -matplotlib

Page 5

Chapter 1. Installation 1.3. Installation

Ubuntu 12.10, 13.04
Installing required packages

sudo apt -get install git cmake libgsl0 -dev libboost -all -dev libfftw3 -dev
python -dev python -numpy

Installing optional packages

sudo apt -get install libroot -* root -plugin -* root -system -* ttf -root -
installer libeigen3 -dev python -matplotlib python -matplotlib -tk

Mac OS X 10.8
To simplify the installation of third party open-source software on a Mac OS X system we recom-
mend the use of MacPorts package manager. The easiest way to install MacPorts is by downloading
the dmg from www.macports.org/install.php and running the system’s installer. After the instal-
lation new command “port” will be available in terminal window of your Mac.
Installing required packages

sudo port -v selfupdate
sudo port install git -core cmake
sudo port install fftw -3 gsl
sudo port install boost -no_single -no_static+python27

Installing optional packages

sudo port install py27 -matplotlib py27 -numpy py27 -scipy
sudo port install root +fftw3+python27
sudo port install eigen3

1.3.2 Getting source code

BornAgain source can be downloaded at http://apps.jcns.fz-juelich.de/BornAgain and
unpacked with

tar xfz bornagain -<version>.tgz

Alternatively one can obtain BornAgain source from our public Git repository.

git clone git:// apps.jcns.fz-juelich.de/BornAgain.git

More about Git
Our Git repository holds two main branches called “master” and “develop”. We consider “master”
branch to be the main branch where the source code of HEAD always reflects latest stable release.
git clone command shown above

1. gives you a source code snapshot corresponding to the latest stable release,

2. automatically sets up your local master branch to track our remote master branch, so you will be
able to fetch changes from the remote branch at any time using “git pull” command.

Master branch is updating approximately once per month. The second branch, “develop” branch,
is a snapshot of the current development. This is where any automatic nightly builds are built from.
The develop branch is always expected to work, so to get the most recent features one can switch
source code to it by

Page 6

www.macports.org/install.php
http://apps.jcns.fz-juelich.de/BornAgain

Chapter 1. Installation 1.3. Installation

cd BornAgain
git checkout develop
git pull

1.3.3 Building and installing the code

BornAgain should be build using CMake cross platform build system. Having third-party libraries
installed on the system and BornAgain source code acquired as was explained in previous sections,
type build commands

mkdir <build_dir >
cd <build_dir >
cmake <source_dir > -DCMAKE_INSTALL_PREFIX=<install_dir >
make

Here <source_dir> is the name of directory, where BornAgain source code has been copied,
<install_dir> is the directory, where user wants the package to be installed, and <build_dir> is
the directory where building will occur.

P

About CMake
Having dedicated directory <build_dir> for build process is recommended by CMake. That
allows several builds with different compilers/options from the same source and keeps source
directory clean from build remnants.

Compilation process invoked by the command “make” lasts about 10 min for an average lap-
top of 2012 edition. On multi-core machines the compilation time can be decreased by invoking
command “make” with the parameter “make -j[N]”, where N is the number of cores.

Running functional tests is an optional but recommended step. Command “make check” will
compile several additional tests and run them one by one. Every test contains the simulation of a
typical GISAS geometry and the comparison on numerical level of simulation results with reference
files. Having 100% tests passed ensures that your local installation is correct.

make check
...
100% tests passed , 0 tests failed out of 26
Total Test time (real) = 89.19 sec
[100%] Build target check

The last command “make install” copies compiled libraries and some usage examples into the
installation directory.

make install

Troubleshooting

In the case of complex system setup, with variety of libraries of different versions scattered across
multiple places (/opt/local, /usr etc.), you may want to help CMake to find libraries in proper
place. In example below two system variables are defined to force CMake to prefer libraries found in
/opt/local to other places.

Page 7

Chapter 1. Installation 1.3. Installation

export CMAKE_LIBRARY_PATH =/opt/local/lib:$CMAKE_LIBRARY_PATH
export CMAKE_INCLUDE_PATH =/opt/local/include:$CMAKE_INCLUDE_PATH

If compilation fails for some reason, please submit your bug report including compilation errors
at http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

1.3.4 What is next?

In your installation directory you will find

./ include - header files for compilation of your C++ program

./lib - libraries to import into python or link with your C++ program

./ Examples - directory with examples

Run your first example and enjoy first BornAgain simulation plot.

cd <install_dir >/ Examples/python/ex001_CylindersAndPrisms
python CylindersAndPrisms.py

Page 8

http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

Chapter 2. Examples

Chapter 2

Examples

2.1 General methodology

A simulation of GISAXS using BornAgain platform can be decomposed into the following points:

• definition of the materials by specifying their names and their refractive indices,

• definition of particles: shapes, sizes, constituting materials, interference functions,

• definition of the layers: thicknesses, roughnesses, associations with the previously defined
materials,

• inclusion of the particles in layers: density, positions, orientations,

• assembling the sample: generation of a multilayered system,

• specifying the input beam and the detector’s characteristics,

• running the simulation,

• saving the data.

The sample is built from object oriented building blocks instead of loading data files.

2.2 Conventions

2.2.1 Geometry of the sample

The geometry used to describe the sample is shown in figure 2.1. The z-axis is perpendicular to the
sample’s surface and pointing upwards. The x-axis is perpendicular to the plane of the detector and
the y-axis is along it. The input and the scattered output beams are each characterized by two angles
αi , φi and α f , φ f respectively. Our choice of orientation for the angles αi and α f is so that they are
positive as shown in figure 2.1.

The layers are defined by their thicknesses (parallel to the z-direction), their possible roughnesses
(equal to 0 by default) and the material they are made of. We do not define any dimensions in the x,
y directions. And, except for roughness, the layer’s vertical boundaries are plane and perpendicular
to the z-axis. There is also no limitation to the number of layers that could be defined in BornAgain.

Page 9

Chapter 2. Examples 2.2. Conventions

Note that the thickness of the top and bottom layer are not defined.

B
Remark: - Order of the different steps for the simulation:
When assembling the sample, the layers are defined from top to bottom. So in most cases the
first layer will be the air layer.

The particles are characterized by their form factors (i.e. the Fourier transform of the shape function
- see the list of form factors implemented in BornAgain) and the composing material. The number
of input parameters for the form factor depends on the particle symmetry; it ranges from one pa-
rameter for a sphere (its radius) to three for an ellipsoid (its three main axis lengths).
By placing the particles inside or on top of a layer, we impose their vertical positions, whose values
corresponds to the bottoms of the particles. The in-plane distribution of particles is linked with the
way the particles interfere with each other, which is therefore implemented when dealing with the
interference function.

The complex refractive index associated with a layer or a particle is written as n = 1−δ+ iβ, with
δ,β ∈R. In our program, we input δ and β directly.

Figure 2.1: Representation of the scattering geometry. n j is the refractive index of layer j and αi and
φi are the incident angle of the wave propagating. α f is the exit angle with respect to the sample’s
surface and φ f is the scattering angle with respect to the scattering plane.

The input beam is assumed to be monochromatic without any spatial divergence.

2.2.2 Units

By default the angles are expressed in radians and the lengths are given in nanometers. But it is
possible to use other units by specifying them right after the value of the corresponding parameter
like, for example, 20.0*micrometer.

Page 10

Chapter 2. Examples 2.2. Example 1

2.2.3 Programs

The examples presented in the next paragraphs are written in Python. For tutorials about this pro-
gramming language, the users are referred to [2].

2.3 Example 1: Two types of islands on top of substrate. No inter-
ference function

In this example, we simulate the scattering from a mixture of cylindrical and prismatic nanoparti-
cles without any interference between them. These particles are placed in air, on top of a substrate.
We are going to go through each step of the simulation. The Python script specific to each stage will
be given at the beginning of the description. But for the sake of completeness the full code is given
at the end of this section (Listing 2.1).

We start by importing different functions from external modules (line 1), for example NumPy, which
is a fundamental package for scientific computing with Python [3]. In particular, line 3 imports the
features of BornAgain software.

1 import sys , os , numpy
2
3 from libBornAgainCore import *

First step: Defining materials

4 def RunSimulation ():
5 # defining materials
6 mAmbience = MaterialManager.getHomogeneousMaterial("Air", 0.0, 0.0)

7 mSubstrate = MaterialManager.getHomogeneousMaterial("Substrate",
8 6e-6, 2e-8)
9 mParticle = MaterialManager.getHomogeneousMaterial("Particle", 6e-4,

10 2e-8)

Line 4 marks the beginning of the function to define and run the simulation.
Lines 6, 8 and 10 define different materials using function getHomogeneousMaterial from class
MaterialManager. The general syntax is the following

<material_name > = MaterialManager.getHomogeneousMaterial("name", delta ,
beta)

where name is the name of the material associated with its complex refractive index n=1-delta +i
beta. <material_name> is later used when referring to this particular material. The three defined
materials in this example are Air with a refractive index of 1 (delta = beta =0), a Substrate as-
sociated with a complex refractive index equal to 1−6×10−6+i 2×10−8, and the material of particles,
whose refractive index is n= 1−6×10−4 + i 2×10−8.

Page 11

Chapter 2. Examples 2.3. Example 1

Second step: Defining the particles

11 # collection of particles
12 cylinder_ff = FormFactorCylinder (5* nanometer , 5* nanometer)
13 cylinder = Particle(mParticle , cylinder_ff)
14 prism_ff = FormFactorPrism3 (5* nanometer , 5* nanometer)
15 prism = Particle(mParticle , prism_ff)

We implement two different shapes of particles: cylinders and prisms (i.e. elongated particles with
a constant equilateral triangular cross section).
All particles implemented in BornAgain are defined by their form factors, their sizes and the mate-
rial they are made of. Here, for the cylindrical particle, we input its radius and height. For the prism,
the possible inputs are the length of one side of its equilateral triangular base and its height.

In order to define a particle, we proceed in two steps. For example for the cylindrical particle, we first
specify the form factor of a cylinder with its radius and height, both equal to 5 nanometers in this
particular case (see line 12). Then we associate this shape with the constituting material as in line 13.

The same procedure has been applied for the prism in lines 14 and 15 respectively.

Third step: Characterizing the layers and assembling the sample

Particle decoration

16 particle_decoration = ParticleDecoration ()
17 particle_decoration.addParticle(cylinder , 0.0, 0.5)
18 particle_decoration.addParticle(prism , 0.0, 0.5)
19 interference = InterferenceFunctionNone ()
20 particle_decoration.addInterferenceFunction(interference)

The object which holds the information about the positions and densities of particles in our sample
is called ParticleDecoration (line 16). We use the associated function addParticle for each
particle shape (lines 17, 18). Its general syntax is

addParticle(<particle_name >, depth , abundance)

where <particle_name> is the name used to define the particles (lines 13 and 15), depth (default
value =0) is the vertical position, expressed in nanometers, of the particles in a given layer (the as-
sociation with a particular layer will be done during the next step) and abundance is the proportion
of this type of particles, normalized to the total number of particles. Here we have 50% of cylinders
and 50% of prisms.

B

Remark: Depth of particles
The vertical positions of particles in a layer are given in relative coordinates. For the top layer,
the bottom corresponds to depth=0 and negative values would correspond to particles float-
ing above layer 1 since the vertical axis, shown in figure 2.1 is pointing upwards. But for all the
other layers, it is the top of the layer which corresponds to depth=0.

Finally lines 19 and 20 specify that there is no coherent interference between the waves scattered
by these particles. The intensity is calculated by the incoherent sum of the scattered waves: 〈|Fn |2〉,
where Fn is the form factor associated with the particle of type n. The way these waves interfere im-
poses the horizontal distribution of the particles as the interference reflects the long or short-range

Page 12

Chapter 2. Examples 2.3. Example 1

order of the particles distribution (see Theory). On the contrary, the vertical position is imposed
when we add the particles in a given layer by parameter depth, as shown in lines 17 and 18.

Multilayer

21 # air layer with particles and substrate form multi layer
22 air_layer = Layer(mAmbience)
23 air_layer.setDecoration(particle_decoration)
24 substrate_layer = Layer(mSubstrate , 0)
25 multi_layer = MultiLayer ()
26 multi_layer.addLayer(air_layer)
27 multi_layer.addLayer(substrate_layer)

We now have to configure our sample. For this first example, the particles, i.e. cylinders and prisms,
are on top of a substrate in an air layer. The order in which we define these layers is important: we
start from the top layer down to the bottom one.

Let us start with the air layer. It contains the particles. In line 22, we use the previously defined
mAmbience (="air" material) (line 6). The command written in line 23 shows that this layer is deco-
rated by adding the particles using the function particle_decoration defined in lines 16-20. The
substrate layer only contains the substrate material (line 24).

There are different possible syntaxes to define a layer. As shown in lines 22 and 24, we can use
Layer(<material_name>,thickness)orLayer(<material_name>). The second case corresponds
to the default value of the thickness, equal to 0. The thickness is expressed in nanometers.

Our two layers are now fully characterized. The sample is assembled using MultiLayer() construc-
tor (line 25): we start with the air layer decorated with the particles (line 26), which is the layer at the
top and end with the bottom layer, which is the substrate (line 27).

Fourth step: Characterizing the input beam and output detector and running the simulation

28 # run simulation
29 simulation = Simulation ()
30 simulation.setDetectorParameters (100 , -1.0* degree , 1.0* degree ,
31 100, 0.0* degree , 2.0* degree , True)
32 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0* degree)
33 simulation.setSample(multi_layer)
34 simulation.runSimulation ()

The first stage is to define the Simulation() object (line 29). Then we define the detector (line 31)
and beam parameters (line 32), which are associated with the sample previously defined (line 33).
Finally we run the simulation (line 34). Those functions are part of the Simulation class. The differ-
ent incident and exit angles are shown in figure 2.1.

The detector parameters are set using ranges of angles via the function:

setDetectorParameters(n_phi, phi_f_min, phi_f_max,
n_alpha, alpha_f_min, alpha_f_max, isgisaxs_style=false),

Page 13

Chapter 2. Examples 2.3. Example 1

where n_phi=100 is the number of iterations for φ f ,
phi_f_min=-1.0*degree and phi_f_max=1.0*degree are the minimum and maximum values
respectively of φ f ,
n_alpha=100 is the number of iterations for α f ,
alpha_f_min=0.0*degree and alpha_f_max=2.0*degree are the minimum and maximum val-
ues respectively of α f .
isgisaxs_style=True (default value = False) is a boolean used to characterise the structure of
the output data. If isgisaxs_style=True, the output data is binned at constant values of the sine
of the output angles, α f and φ f , otherwise it is binned at constant values of these two angles.

For the beam the function to use is setBeamParameters(lambda, alpha_i, phi_i), where
lambda=1.0*angstrom is the incident beam wavelength, alpha_i=0.2*degree is the incident
grazing angle on the surface of the sample, phi_i=0.0*degree is the in-plane direction of the inci-
dent beam (measured with respect to the x-axis).

Remark: Note that, except for isgisaxs_style, there are no default values implemented for the
parameters of the beam and detector.

Line 34 shows the command to run the simulation using the previously defined setup.

Fifth step: Saving the data

35 # retrieving intensity data
36 return GetOutputData(simulation)

In line 36 we obtain the simulated intensity as a function of outgoing angles α f and φ f for further
uses (plots, fits,. . .) as a NumPy array containing n_phi×n_alpha datapoints. Some options are
provided by BornAgain. For example, figure 2.2 shows the two-dimensional contourplot of the in-
tensity as a function of α f and φ f .

Page 14

Chapter 2. Examples 2.3. Example 1

phi_f
0 20 40 60 80 100

a
lp

h
a

_
f

0

20

40

60

80

100

1

10

210

3
10

410

5
10

Figure 2.2: Figure of example 1: Simulated grazing-incidence small-angle X-ray scattering from a
mixture of cylindrical and prismatic nanoparticles without any interference, deposited on top of a
substrate. The input beam is characterized by a wavelength λ of 1 Å and incident angles αi = 0.2◦,
φi = 0◦. The cylinders have a radius and a height both equal to 5 nm, the prisms are characterized by
a side length equal to 5 nm and they are also 5 nm high. The material of the particles has a refractive
index of 1−6×10−4+ i 2×10−8. For the substrate it is equal to 1−6×10−6+ i 2×10−8. The colorscale
is associated with the output intensity in arbitrary units.

import sys , os , numpy

sys.path.append(os.path.abspath(os.path.join(os.path.split(__file__)[0],
’..’, ’..’, ’..’, ’lib’)))

from libBornAgainCore import *

def RunSimulation ():
defining materials
mAmbience = MaterialManager.getHomogeneousMaterial("Air", 0.0, 0.0)
mSubstrate = MaterialManager.getHomogeneousMaterial("Substrate",
6e-6, 2e-8)
mParticle = MaterialManager.getHomogeneousMaterial("Particle", 6e-4,

2e-8)
collection of particles
cylinder_ff = FormFactorCylinder (5* nanometer , 5* nanometer)
cylinder = Particle(mParticle , cylinder_ff)
prism_ff = FormFactorPrism3 (5* nanometer , 5* nanometer)
prism = Particle(mParticle , prism_ff)
particle_decoration = ParticleDecoration ()

Page 15

Chapter 2. Examples 2.4. Example 2

particle_decoration.addParticle(cylinder , 0.0, 0.5)
particle_decoration.addParticle(prism , 0.0, 0.5)
interference = InterferenceFunctionNone ()
particle_decoration.addInterferenceFunction(interference)
air layer with particles and substrate form multi layer
air_layer = Layer(mAmbience)
air_layer.setDecoration(particle_decoration)
substrate_layer = Layer(mSubstrate , 0)
multi_layer = MultiLayer ()
multi_layer.addLayer(air_layer)
multi_layer.addLayer(substrate_layer)

build and run simulation
simulation = Simulation ()
simulation.setDetectorParameters (100 , -1.0* degree , 1.0* degree ,

100, 0.0* degree , 2.0* degree , True)
simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0* degree)
simulation.setSample(multi_layer)
simulation.runSimulation ()

retrieving intensity data
return GetOutputData(simulation)

Listing 2.1: Python script of example 1

2.4 Example 2

Page 16

Bibliography Bibliography

Bibliography

[1] Rémi Lazzari. IsGISAXS: a program for grazing-incidence small-angle X-ray scattering analysis
of supported islands. Journal of Applied Crystallography, 35(4):406–421, Aug 2002.

[2] Mark Lutz. Python pocket reference. O’Reilly media, fourth edition edition, 2009.

[3] http://www.numpy.org/.

Page 17

http://www.numpy.org/

	Installation
	Quick start
	Software architecture
	Installation
	Third-party software.
	Getting source code
	Building and installing the code
	What is next?

	Examples
	General methodology
	Conventions
	Geometry of the sample
	Units
	Programs

	Example 1: Two types of islands on top of substrate. No interference function
	Example 2

