BornAgain.

July 18, 2013

Contents Contents

Contents

1 Example
[1.1 Generalmethodology|

[1.2.1 Geometryofthesample|
..

2. Programs|. o o e e e e e e e e e e e e e e e

1.3 Example 1: Two types of islands on top of substrate. No interference function|

1.4 Examﬁ!e 2 13

[ocleRe-le)RNe>RNepIN«]

Page 1

Listings Listings

Listings

[I.1 Pythonscriptofexamplel| 13

Page 2

List of Figures List of Figures

List of Figures

1.1 Representation of the scattering geometry for multilayer specular reflectivity| 7
1.2_Example 1: Simulated grazing-incidence small-angle X-ray scattering from a mixture

of cylindrical and prismatic nanoparticles without any interference, deposited on top

Page 3

List of Tables List of Tables

List of Tables

Page 4

List of Tables List of Tables

BornAgain is a software to simulate and fit neutron and X-ray scattering at grazing incidence. It
is a multi-platform open—source project that aims at supporting scientists in the analysis and fitting
of their GISAS data, both for synchrotron (GISAXS) and neutron (GISANS) facilities. The name of the
software, BornAgain, indicates the central role of the distorted-wave Born approximation (DWBA)
in the physical description of the scattering process. The software provides a generic framework for
modeling multilayer samples with smooth or rough interfaces and with various types of embedded
nanoparticles. In this way, it reproduces and enhances the functionality of the present reference
software, IsGISAXS by R. Lazzari [1], and lays a solid base for future extensions in response to specific
user needs.

To meet the growing demand for GISAS simulation of more complex structured materials, Bor-
nAgain has extended the IsGISAXS program’s functionality by removing the restrictions on the num-
ber of layers and particles, by providing diffuse reflection from rough layer interfaces and by adding
particles with inner structure.

For details about the theory (DWBA,...), please refer to IsGISAXS manual (http://ln-www.insp.
upmc . fr/axe4/0xydes/IsGISAXS/figures/doc/manual.html).

Icons used in this manual:

N this sign highlights further references.

A: this sign highlights essential points.

Page 5

http://ln-www.insp.upmc.fr/axe4/Oxydes/IsGISAXS/figures/doc/manual.html
http://ln-www.insp.upmc.fr/axe4/Oxydes/IsGISAXS/figures/doc/manual.html

Chapter 1. Examples

Chapter 1

Examples

1.1 General methodology

A simulation of GISAXS using BornAgain platform can be decomposed into the following points:
* Definition of the materials by specifying their names and their refractive indices,

* Definition of particles: shapes, sizes, refractive indices of the constituting material, interfer-
ence functions,

* Definition of the layers: thicknesses, roughnesses, associations with the previously defined
materials,

¢ Inclusion of the particles in layers: density or proportion, positions, orientations,
* Assembling the sample: generation of a multilayered system,

» Specifying the input beam and the output detector’s characteristics,

* Running the simulation,

¢ Saving the data.

The sample is built from object oriented building blocks instead of loading data files.

1.2 Conventions

1.2.1 Geometry of the sample

The geometry used to describe the sample is shown in Fig. The z-axis is perpendicular to the
sample’s surface and pointing upwards. The x-axis is perpendicular to the plane of the detector and
the y-axis is along it. The input and the scattered output beams are each by two angles ay, ¢po and
ar, ¢ respectively. Then for each other layer j = 1,..., N — 1, the incident angles a; and ¢; are de-
fined with respect to the bottom of the layer. The angles are oriented considering the detector plane
as the reference. This results in, for example, a ¢, ¢ ¢ being positive and a and a(negative in fig.

The layers are defined by their thicknesses (parallel to the z-direction), their possible roughnesses
(equal to 0 by default) and the refractive index of the material. We do not define any dimensions

Page 6

Chapter 1. Examples 1.2. Conventions

in the x, y directions. And, except for roughness, the layer’s vertical boundaries are plane and per-
pendicular to the z-axis. There is also no limitation to the number of layers that could be defined in
BornAgain.

Remark - Order of the different steps for the simulation:
When assembling the sample, the layers are defined from top to bottom. So in most cases the
first layer will be the air layer.

The particles are characterized by their form factors (i.e. the Fourier transform of the shape function
- see the list of form factors implemented in BornAgain) and the refractive index of the composing
material. The number of input parameters for the form factor depends on the particle symmetry;
it ranges from one parameter for a sphere (its radius) to three for an ellipsoid (its three main axis
lengths).

By placing the particles inside or on top of a layer, we impose their vertical positions. The in-plane
distribution of particles is linked with the way the particles interfere with each other, which is there-
fore implemented when dealing with the interference function.

Remark - Depth of particles

The vertical positions of particles in a layer are given in relative coordinates. For the top layer,
the bottom corresponds to depth=0. But for all the other layers, it is the top of the layer which
corresponds to depth=0.

The complex refractive index associated with a layer or a particle is written as n = 1 -6 — i 8, with
6,BeR.

Layer 0 : (ng, ap)
ko

Qo

[
®o

Layer 1 : (ny, o)

Layer 2 : (ng, o)

Figure 1.1: Representation of the scattering geometry for multilayer specular reflectivity. n; is the
refractive index of layer j and a; is the incident angle of the wave propagating in layer j and incident
on layer j + 1. ay is the exit angle with respect to the sample’s surface and ¢ is the scattering angle
with respect to the scattering plane.

The input beam is assumed to be monochromatic without any spatial divergence.
polarization term?

Page 7

Chapter 1. Examples 1.2. Example 1

1.2.2 Units

By default angles are expressed in radians and lengths are given in nanometers. But it is possible
to use other units by specifying them right after the value of the corresponding parameter like, for
example, 20.0xUnits: :micrometer in C++.

1.2.3 Programs

Programming: The examples presented in the next paragraphs are written in C++ or Python.
For tutorials about these programming languages, the users are referred to [2] and [3] respec-
tively.

Note about the version of C++ and Python to run the examples.
Where can the following examples be found?

What is the command to run the examples?

1.3 Example 1: Two types of islands on top of substrate. No inter-
ference function

In this example, using Python language, we simulate the scattering from a mixture of cylindrical and
prismatic nanoparticles without any interference between them. These particles are placed in air,
on top of a substrate.

We are going to go through each step of the simulation. The Python script specific to each stage will
be given at the beginning of the description. But for the sake of completeness the full code is given
at the end of this section (Listing.

We start by importing different functions from external modules (lines[IH7). For example, line[3]im-
ports NumPy, which is a fundamental package for scientific computing with Python (http://www.
numpy . org/). In particular, line[7imports the features of BornAgain software.

1 |import sys

2 | import os

3 | import numpy

4

5 | sys.path.append(os.path.abspath(os.path.join(os.path.split(__file__)[0],"..", '..", '..", 'lib
"))

6

7 | from libBornAgainCore import x

First step: Defining materials

defining materials
mAmbience = MaterialManager.getHomogeneousMaterial("Air", 1.0, 0.0)

mSubstrate = MaterialManager.getHomogeneousMaterial("Substrate", 1.0-6e-6, 2e-8)

Page 8

http://www.numpy.org/
http://www.numpy.org/

Chapter 1. Examples 1.3. Example 1

11
12
13
14
15
16

Lines |§| and [10| define two different materials using function getHomogeneousMaterial from class
MaterialManager. The general syntax is the following

Interface material name = MaterialManager.getHomogeneousMaterial("name", Re(n), Im(n))

where name is the name of the material associated with its complex refractive index n decomposed
into its real and imaginary parts. Interface material name islater used when referring to this par-
ticular material. The two defined materials in this example are Air with a refractive index of 1 and a
Substrate associated with a complex refractive index equal to 1 —6 x 1076 — j2 x 1078.

Remark: there is no condition on the choice of name.

Second step: Defining the particles

collection of particles

n_particle = complex(1l.0-6e-4, 2e-8)

cylinder_ff = FormFactorCylinder(5*nanometer, 5*nanometer)
cylinder = Particle(n_particle, cylinder_ff)

prism_ff = FormFactorPrism3(5xnanometer, 5*nanometer)
prism = Particle(n_particle, prism_ff)

We implement two different shapes of particles: cylinders and prisms (i.e. elongated particles with
a constant equilateral triangular cross section).

All particles implemented in BornAgain are defined by their form factors, their sizes and the refrac-
tive index of the material they are made of. Here, for the cylindrical particle, we input its radius and
its height. For the prism, the possible inputs are the length of one side of its equilateral triangular
base and its height.

In line we define the complex refractive index associated with both particle shapes: n=1-6 x
1074 -i2x1078.

In order to define a particle, we proceed in two steps. For example for the cylindrical particle, we
first specify the form factor of a cylinder with its radius and height, both equal to 5 nanometers in
this particular case (see line[L3). Then we associate this shape with the refractive index of the con-
stituting material as in line

The same procedure has been applied for the prism in lines[I5|and[I6|respectively.

Third step: Characterizing the layers and assembling the sample

Particle decoration

particle_decoration = ParticleDecoration()
particle_decoration.addParticle(cylinder, 0.0, 0.5)
particle_decoration.addParticle(prism, 0.0, 0.5)

interference = InterferenceFunctionNone()
particle_decoration.addInterferenceFunction(interference)

The process of defining the positions and densities of particles in our sample is called “particle dec-
oration”. We use the function ParticleDecoration() (line[I7) and the associated addParticle for
each particle shape (lines[18}[19). The general syntax is

Page 9

Chapter 1. Examples 1.3. Example 1

particledecoration.addParticle(particle_name, depth, abundance)

where particle_name is the name used to define the particles (linesand, depth (default value
=0) is the vertical position, expressed in nanometers, of the particles in a given layer (the association
with a particular layer will be done during the next step) and abundance is the proportion of this type
of particles, normalized to the total number of particles. Here we have 50% of cylinders and 50% of
prisms.

Remark - Depth of particles

The vertical positions of particles in a layer are given in relative coordinates. For the top layer,
the bottom corresponds to depth=0 and negative values would correspond to particles floating
above layer 1 since the vertical axis, shown in fig.[I.1]is pointing upwards. But for all the other
layers, it is the top of the layer which corresponds to depth=0.

Finally lines [20] and [21] specify that there is no coherent interference between the waves scattered
by these particles. The intensity is calculated by the incoherent sum of the scattered waves: (|F, 12y,
where F), is the form factor associated with the particle of type n. The way these waves interfere im-
poses the horizontal distribution of the particles as the interference reflects the long or short-range
order of the particles distribution (see Theory). On the contrary, the vertical position is imposed
when we add the particles in a given layer by parameter depth, as shown in lines[18|and[I9}

Multilayer

22 |# air layer with particles and substrate form multi layer

23 |air_layer = Layer(mAmbience)

24 |air_layer_decorator = LayerDecorator(air_layer, particle_decoration)
25 | substrate_layer = Layer(mSubstrate, 0)

26 |multi_layer = Multilayer()

27 |multi_layer.addLayer(air_layer_decorator)

28 |multi_layer.addLayer(substrate_layer)

We now have to configure our sample. For this first example, the particles, i.e. cylinders and prisms,
are on top of a substrate in an air layer. The order in which we define these layers is important: we
start from the top layer down to the bottom one.

Let us start with the air layer. It contains the particles. In line we use the previously defined
mAmbience (="air" material) (line@. The command written in lineshows that this layer is deco-
rated by adding the particles using the function particledecoration defined in lines Note
that the depth is referenced to the bottom of the top layer (negative values would correspond to
particles floating above layer 1 as the vertical axis is pointing upwards). The substrate layer only
contains the substrate material (line[25).

There are different possible syntaxes to define a layer. As shown in lines [23| and we can use
Layer(Interface material name,thickness) or Layer(Interface material name). The second
case corresponds to the default value of the thickness, equal to 0. The thickness is expressed in
nanometers.

Our two layers are now fully characterized. The sample is assembled using MultiLayer () construc-
tor (line[26): we start with the air layer decorated with the particles (line[27), which is the layer at the
top and end with the bottom layer, which is the substrate (line[28).

Page 10

Chapter 1. Examples 1.3. Example 1

Fourth step: Characterizing the input beam and output detector and running the simulation

29 [# run simulation

30 | simulation = Simulation()

31 |simulation.setDetectorParameters(100,-1.0xdegree, 1.0xdegree,

32 100, 0.0xdegree, 2.0xdegree, True)
33 | simulation.setBeamParameters(1l.0xangstrom, -0.2xdegree, 0.0xdegree)
34 |simulation.setSample(multi_layer)

35 [simulation.runSimulation()

The first stage is to define the Simulation() object (line[30). Then we define the detector (line[32)
and beam parameters (line[33), which are associated with the sample previously defined (line[34).
Finally we run the simulation (line[35). Those functions are part of the Simulation class. The differ-
ent incident and exit angles are shown in Fig.[L.1]

The detector parameters are set using ranges of angles via the function:

setDetectorParameters(n_phi, phi_f_min, phi_f_max,
n_alpha, alpha_f_min, alpha_f_max, isgisaxs_style=false),

where n_phi=100 is the number of points in the range of variations of angle ¢,
phi_f_min=-1.0+degree and phi_f_max=1.0xdegree are the minimum and maximum values re-
spectively of ¢ ¢, which is the in-plane direction of the scattered beam (measured with respect to
the x-axis),

n_alpha=100 is the number of points in the range of variations of the exit angle a r measured from
the x, y-plane in the z-direction,

alpha_f_min=0.0xdegree and alpha_f_max=2.0xdegree are the minimum and maximum values re-
spectively of a,

isgisaxs_style=True (default value = False) is a boolean used to characterise the structure of the
output data. If isgisaxs_style=True, the output data is binned at constant values of the sine of the
output angles, ay and ¢ ¢, otherwise it is binned at constant values of these two angles.

For the beam the function to use is simulation.setBeamParameters(lambda, alpha_i, phi_i),
where lambda=1.0*angstrom is the incident beam wavelength,

alpha_i=-0.2xdegree is the incident grazing angle on the surface of the sample, phi_i=0.0xdegree
is the in-plane direction of the incident beam (measured with respect to the x-axis). Note that in

Fig[T.1]a; = ag and ¢; = ¢o.

Remark: Note that, except for isgisaxs_style, there are no default values implemented for the pa-
rameters of the beam and detector.

Line[35]shows the command to run the simulation using the previously defined setup.

Fifth step: Saving the data

retrieving intensity data

arr = GetOutputData(simulation)

Page 11

Chapter 1. Examples 1.3. Example 1

In linewe record the simulated intensity as a function of outgoing angles a s and ¢ for further
uses (plots, fits,...) as a NumPy array containing n_phixn_alpha datapoints. Some options are pro-
vided by BornAgain. For example, figure[I.2]shows the two-dimensional contourplot of the intensity
as a function of a ¢ and ¢y.

10°

10*

10°

102

10

Figure 1.2: Figure of example 1: Simulated grazing-incidence small-angle X-ray scattering from a
mixture of cylindrical and prismatic nanoparticles without any interference, deposited on top of a
substrate. The input beam is characterized by a wavelength A of 1 A and incident angles a; = —0.2°,
¢; =0°. The cylinders have aradius and a height both equal to 5 nm, the prisms are characterized by
aside length equal to 5 nm and they are also 5 nm high. The material of the particles has a refractive
index of 1-6x 107% - i2 x 1078, For the substrate it is equal to 1 —6 x 1078 — i2 x 1078, The colorscale
is associated with the output intensity in arbitrary units.

Page 12

Chapter 1. Examples 1.4. Example 2

import sys
import os
import numpy

sys.path.append(os.path.abspath(os.path.join(os.path.split(__file__)[0O],"..", "..", "..’, 'lib
"))

from libBornAgainCore import *

defining materials

mAmbience = MaterialManager.getHomogeneousMaterial("Air", 1.0, 0.0)
mSubstrate = MaterialManager.getHomogeneousMaterial("Substrate", 1.0-6e-6, 2e-8)
collection of particles

n_particle = complex(1l.0-6e-4, 2e-8)

cylinder_ff = FormFactorCylinder(5+*nanometer, 5*xnanometer)

cylinder = Particle(n_particle, cylinder_ff)

prism_ff = FormFactorPrism3(5*nanometer, 5*nanometer)

prism = Particle(n_particle, prism_ff)

particle_decoration = ParticleDecoration()
particle_decoration.addParticle(cylinder, 0.0, 0.5)
particle_decoration.addParticle(prism, 0.0, 0.5)

interference = InterferenceFunctionNone()
particle_decoration.addInterferenceFunction(interference)

air layer with particles and substrate form multi layer

air_layer = Layer(mAmbience)

air_layer_decorator = LayerDecorator(air_layer, particle_decoration)
substrate_layer = Layer(mSubstrate, 0)

multi_layer = MultilLayer()

multi_layer.addLayer(air_layer_decorator)
multi_layer.addLayer(substrate_layer)

run simulation
simulation = Simulation()
simulation.setDetectorParameters(100,-1.0xdegree, 1.0xdegree,

100, 0.0xdegree, 2.0xdegree, True)
simulation.setBeamParameters(1l.0*angstrom, -0.2xdegree, 0.0xdegree)
simulation.setSample(multi_layer)
simulation.runSimulation()

retrieving intensity data
arr = GetOutputData(simulation)

Listing 1.1: Python script of example 1

1.4 Example 2

Page 13

Bibliography Bibliography

Bibliography

[1] Rémi Lazzari. IsGISAXS: a program for grazing-incidence small-angle X-ray scattering analysis
of supported islands. Journal of Applied Crystallography, 35(4):406-421, Aug 2002.

[2] Kyle Loudon. C++ pocket reference. O'Reilly media, 2008.

[3]1 Mark Lutz. Python pocket reference. O’'Reilly media, fourth edition edition, 2009.

Page 14

	Examples
	General methodology
	Conventions
	Geometry of the sample
	Units
	Programs

	Example 1: Two types of islands on top of substrate. No interference function
	Example 2

