
BornAgain.

July 15, 2013



Contents Contents

Contents

1 Examples 6
1.1 General methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Geometry of the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Example 1: Two types of islands on top of substrate. No interference function . . . . . 8
1.4 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Page 1



Listings Listings

Listings

1.1 Python script of example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Page 2



List of Figures List of Figures

List of Figures

1.1 Representation of the scattering geometry for multilayer specular reflectivity. . . . . . 7
1.2 Example 1: Simulated grazing-incidence small-angle X-ray scattering from a mixture

of cylindrical and prismatic nanoparticles without any interference, deposited on top
of a substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Page 3



List of Tables List of Tables

List of Tables

1.1 List of form factors implemented in BornAgain. . . . . . . . . . . . . . . . . . . . . . . . 8

Page 4



List of Tables List of Tables

BornAgain is a software to simulate and fit neutron and X-ray scattering at grazing incidence. It
is a multi–platform open–source project that aims at supporting scientists in the analysis and fitting
of their GISAS data, both for synchrotron (GISAXS) and neutron (GISANS) facilities. The name of the
software, BornAgain, indicates the central role of the distorted-wave Born approximation (DWBA)
in the physical description of the scattering process. The software provides a generic framework for
modeling multilayer samples with smooth or rough interfaces and with various types of embedded
nanoparticles. In this way, it reproduces and enhances the functionality of the present reference
software, IsGISAXS by R. Lazzari [1], and lays a solid base for future extensions in response to specific
user needs.

To meet the growing demand for GISAS simulation of more complex structured materials, Bor-
nAgain has extended the IsGISAXS program’s functionality by removing the restrictions on the num-
ber of layers and particles, by providing diffuse reflection from rough layer interfaces and by adding
particles with inner structure.

For details about the theory (DWBA,. . . ), please refer to IsGISAXS manual (http://ln-www.insp.
upmc.fr/axe4/Oxydes/IsGISAXS/figures/doc/manual.html).

Icons used in this manual:

P: this sign highlights further references.

B: this sign highlights essential points.

Page 5

http://ln-www.insp.upmc.fr/axe4/Oxydes/IsGISAXS/figures/doc/manual.html
http://ln-www.insp.upmc.fr/axe4/Oxydes/IsGISAXS/figures/doc/manual.html


Chapter 1. Examples

Chapter 1

Examples

1.1 General methodology

A simulation of GISAXS using BornAgain platform can be decomposed into the following points:

• Definition of the materials, specifying their names and their refractive indices,

• Definition of particles: shapes, sizes, refractive indices of the constituting material, interfer-
ence functions,

• Definition of the layers: thicknesses, links with the previously defined materials,

• Inclusion of the particles in layers: density, positions, orientations,

• Assembling the sample: generation of a mulitlayered system,

• Specifying the input beam and the output detector’s characteristics,

• Running the simulation,

• Saving the data.

The sample is built from object oriented building blocks instead of the more common imple-
mentation of loading data files.

1.2 Conventions

polarization term

1.2.1 Geometry of the sample

- Definitions of the angles:
- Definitions of the layers:
- Definitions of the particles:

vertical position in each layer.

horizontal distribution of particles.

Page 6



Chapter 1. Examples 1.2. Conventions

The complex refractive index associated with a layer or a particle is written as n = 1−δ− iβ, with
δ,β ∈R+ and δ,β¿ 1.

B
Remark - Order of the different steps:
When assembling the sample, the layers are defined from top to bottom. So in most cases the
first layer will be the air layer.

Figure 1.1: Representation of the scattering geometry for multilayer specular reflectivity. ni is the
refractive index of layer i and αi is the incident angle of the wave propagating in layer i and incident
on layer i +1. α f is the exit angle with respect to the sample’s surface and φ f is the scattering angle
with respect to the scattering plane.

The input beam is assumed to be monochromatic without any spatial divergence.

1.2.2 Units

By default angles are expressed in radians and lengths are given in nanometers. But it is possible to
use other units by specifying them right after the value of the corresponding parameter.

1.2.3 Programs

P
Programming: The examples presented in the next paragraphs are written in C++ or Python.
For tutorials about these programming languages, the users are referred to [2] and [3] respec-
tively.

Note about the version of C++ and Python to run the examples.

Where can the following examples be found?

List of examples:

Page 7



Chapter 1. Examples 1.2. Example 1

ex-1 Two types of islands (cylinder, prism3) on top of substrate.
No interference function

ex-2 Bimodal cylinders on top of substrate.
Two gaussian size cylinder distribution

ex-3 Cylinder formfactor in BA and DWBA
ex-4 1D and 2D paracrystal
ex-5 1D paracrystal fit example
ex-6 2D lattice with different disorder
ex-7 Mixture of different particles defined in morphology

file
ex-8 2DDL paracrystal
ex-9 Pyramids on top of substrate

Rotated pyramids on top of substrate
ex-10 Cylinders with interference on top of substrate
ex-11 Core shell nano particles
ex-12 Constrained fit example

Mixture of two cylinder types
ex-13 Simulated annealing fit example
ex-14 Layered spheres on graded interface
ex-15 Size spacing correlation approximation

Table 1.1: List of form factors implemented in BornAgain.

What is the command to run the examples?

1.3 Example 1: Two types of islands on top of substrate. No inter-
ference function

In this example, using Python language, we simulate the scattering from a mixture of cylindrical and
prismatic nanoparticles without any interference between them. These particles are placed on top
of a substrate. We are going to go through each step of the simulation. The Python script specific to
one stage will be given at the beginning. But for the sake of completeness the full code is given at
the end of this section (Listing 1.1).

It starts by importing different functions from external modules (lines 1-7). For example, line 3
imports NumPy, which is the fundamental package for scientific computing with Python (http:
//www.numpy.org/). In particular, line 7 imports the features of BornAgain software.

1 import sys

2 import os

3 import numpy

4

5 sys.path.append(os.path.abspath(os.path.join(os.path.split(__file__)[0],’..’, ’..’, ’..’, ’lib

’)))

6

7 from libBornAgainCore import *

Page 8

http://www.numpy.org/
http://www.numpy.org/


Chapter 1. Examples 1.3. Example 1

First step: Defining materials

9 # defining materials

10 mAmbience = MaterialManager.getHomogeneousMaterial("Air", 1.0, 0.0 )

11 mSubstrate = MaterialManager.getHomogeneousMaterial("Substrate", 1.0-6e-6, 2e-8)

Lines 10 and 11 define two different materials using function getHomogeneousMaterial from class
MaterialManager. The general syntax is the following

Interface material name = MaterialManager.getHomogeneousMaterial("name", Re(n), Im(n))

where name is the name of the material associated with its complex refractive index n decomposed
into its real and imaginary parts. Interface material name is later used when referring to this par-
ticular material. The two defined materials in this example are Air with a refractive index of 1 and a
Substrate associated with a complex refractive index equal to 1−6×10−6 − i 2×10−8.

Remark: there is no condition on the choice of name.

Second step: Defining the particles

12 # collection of particles

13 n_particle = complex(1.0-6e-4, 2e-8)

14 cylinder_ff = FormFactorCylinder(5*nanometer, 5*nanometer)

15 cylinder = Particle(n_particle, cylinder_ff)

16 prism_ff = FormFactorPrism3(5*nanometer, 5*nanometer)

17 prism = Particle(n_particle, prism_ff)

We implement two different shapes of particles: cylinders and prisms (elongated particle with a
constant equilateral triangular cross section).
All particles implemented in BornAgain are defined by their form factors (i.e. The Fourier transform
of the shape function - see the list of form factors implemented in BornAgain), their sizes and the
refractive index of the material they are made of. The number of input parameters for the form fac-
tor depends on the particle symmetry; it ranges from one parameter for a sphere (its radius) to three
for an ellipsoid (its three main axis lengths). Here, for the cylinders we can input its radius and its
height. For the prism, the possible inputs are the length of one side of its equilateral triangular base
and its height.

In line 13, we define the complex refractive index associated with both particle shapes: n= 1−6×
10−4 − i 2×10−8.

In order to define a particle, we proceed in two steps. For example for the cylindrical particle, we
first specify the form factor of a cylinder with its radius and height, both equal to 5 nanometers in
this particular case (see line 14). Then we associate this shape with the refractive index of the con-
stituting material in line 15.

The same procedure has been applied for the prism in line 16 and 17 respectively.

Third step: Characterizing the layers and assembling the sample

Particle decoration

Page 9



Chapter 1. Examples 1.3. Example 1

18 particle_decoration = ParticleDecoration()

19 particle_decoration.addParticle(cylinder, 0.0, 0.5)

20 particle_decoration.addParticle(prism, 0.0, 0.5)

21 interference = InterferenceFunctionNone()

22 particle_decoration.addInterferenceFunction(interference)

The process of defining the positions and densities of particles in our sample is called “particle
decoration”. We use the functions ParticleDecoration() (line 18) and the associated addParticle

(lines 19, 20). The general syntax is

particledecoration.addParticle(particle_name, depth, abundance)

where particle_name is the name used to define the particles (lines 15 and 17), depth (default value
=0) is the vertical positions, expressed in nanometers, of the particles in a given layer (the associa-
tion with a particular layer will be done during the next step) and abundance is the proportion of this
type of particles, normalized to the total number of particles, i.e. here we have 50% of cylinders and
50% of prisms.

B
Remark - Depth of particles
The vertical positions of particles in a layer are given in relative coordinates. For the top layer,
the bottom corresponds to depth=0. But for all the other layers, it is the top of the layer which
corresponds to depth=0.

Finally lines 21 and 22 specify that there is no coherent interference between the waves scattered
by these particles. The intensity is calculated by the incoherent sum of the scattered waves: 〈|Fn |2〉,
where Fn is the form factor associated with the particle of type n. The way these waves interfere im-
poses the horizontal distribution of the particles as the interference reflects the long or short-range
order of the particles distribution. On the opposite, the vertical position is imposed when we add
the particles in a given layer by parameter depth, as shown in line 19 and 20.

Multilayer

23 # air layer with particles and substrate form multi layer

24 air_layer = Layer(mAmbience)

25 air_layer_decorator = LayerDecorator(air_layer, particle_decoration)

26 substrate_layer = Layer(mSubstrate, 0)

27 multi_layer = MultiLayer()

28 multi_layer.addLayer(air_layer_decorator)

29 multi_layer.addLayer(substrate_layer)

We now have to configure our sample. For this first example, the particles, cylinders and prisms, are
on top of a substrate in an air layer. The order in which we define these layers is important: we
start from the top layer up to the bottom one.

Let us start with the air layer. It contains the particles. In line 24, we use the previously defined
mAmbience (="air” material) (line 10). The command written in line 25 shows that this layer is dec-
orated by adding the particles using the function particledecoration defined in lines 18-22. Note
that the depth is referenced to the bottom of the top layer (negative alues would correspond to par-
ticles floating above the first layer as the vertical axis is pointing upwards) . The substrate layer only
contains the substrate material (line 26).

Page 10



Chapter 1. Examples 1.3. Example 1

There are different possible syntaxes to define a layer. As shown in lines 24 and 26, we can use
Layer(Interface material name,thickness)or Layer(Interface material name). The thickness
is expressed in nanometers.

Our two layers are now fully characterized. The sample is assembled using MultiLayer() construc-
tor (line 27): we start with the air layer decorated with the particles (line 29), which is the layer at the
top and end with the bottom layer, which is the substrate (line 29).

Fourth step: Characterizing the input beam and output detector and running the simulation

30 # run simulation

31 simulation = Simulation()

32 simulation.setDetectorParameters(100,-1.0*degree, 1.0*degree,

33 100, 0.0*degree, 2.0*degree, True)

34 simulation.setBeamParameters(1.0*angstrom, -0.2*degree, 0.0*degree)

35 simulation.setSample(multi_layer)

36 simulation.runSimulation()

The first stage is to define the Simulation() object (line 31). Then we define the detector (line 33)
and beam parameters (line 34) to finally run the simulation using the sample previously defined
(line 35). Those functions are part of the Simulation class. The different incident and exit angles are
shown in Fig. 1.1.

The detector parameters are set using ranges of angles via the function

setDetectorParameters(n_phi, phi_f_min, phi_f_max,

n_alpha, alpha_f_min, alpha_f_max, isgisaxs_style=false),

where n_phi=100 is the number of points in the range of variations of angle φ f ,
phi_f_min=-1.0*degree and phi_f_max=1.0*degree are the minimum and maximum values re-
spectively of φ f , which is the in-plane direction of the scattering beam (measured with respect to
the x-axis),
n_alpha=100 is the number of points in the range of variations of the exit angle α f measured from
the x-axis in the z-direction,
alpha_f_min=0.0*degree and alpha_f_max=2.0*degree are the minimum and maximum values re-
spectively of α f ,
isgisaxs_style=True (default value = False) is a boolean used to characterise the structure of the
output data. If isgisaxs_style=True, the output data is binned at constant values of the sine of
α f and φ f otherwise it is binned at constant values of these two angles.

For the beam the function is simulation.setBeamParameters(lambda, alpha_i, phi_i), where
lambda=1.0*angstrom is the incident beam wavelength,
alpha_i=-0.2*degree is the incident grazing angle on the surface of the sample, phi_i=0.0*degree
is the in-plane direction of the incident beam (measured with respect to the x-axis).

Remark: Note that, except for isgisaxs_style, there are no default values implemented for the pa-
rameters of the beam and detector.

Line 36 shows the command to run the simulation using the previously defined setup.

Page 11



Chapter 1. Examples 1.3. Example 1

Fifth step: Saving the data

37 # retrieving intensity data

38 arr = GetOutputData(simulation)

In line 38 we record the simulated intensity as a function of outgoing angles α f and φ f for further
uses (plots, fits,. . . ) as a NumPy array containing n_phi×n_alpha datapoints. Some options are pro-
vided by BornAgain. For example, figure 1.2 shows the two-dimensional contourplot of the intensity
as a function of α f and φ f .

phi_f
0 20 40 60 80 100

a
lp

h
a

_
f

0

20

40

60

80

100

1

10

210

3
10

410

5
10

Figure 1.2: Figure of example 1: Simulated grazing-incidence small-angle X-ray scattering from a
mixture of cylindrical and prismatic nanoparticles without any interference, deposited on top of
a substrate. The input beam is characterized by a wavelength λ equal to 1 Å and incident angles
αi = −0.2◦, φi = 0◦. The cylinders have a radius and a height both equal to 5 nm, the prisms are
characterized by a side length equal to 5 nm and they are also 5 nm high. The material of the particles
has a refractive index of 1−6×10−4−i 2×10−8. For the substrate it is equal to 1−6×10−6−i 2×10−8.
The colorscale is associated with the output intensity.

Page 12



Chapter 1. Examples 1.4. Example 2

import sys

import os

import numpy

sys.path.append(os.path.abspath(os.path.join(os.path.split(__file__)[0],’..’, ’..’, ’..’, ’lib

’)))

from libBornAgainCore import *

# defining materials

mAmbience = MaterialManager.getHomogeneousMaterial("Air", 1.0, 0.0 )

mSubstrate = MaterialManager.getHomogeneousMaterial("Substrate", 1.0-6e-6, 2e-8)

# collection of particles

n_particle = complex(1.0-6e-4, 2e-8)

cylinder_ff = FormFactorCylinder(5*nanometer, 5*nanometer)

cylinder = Particle(n_particle, cylinder_ff)

prism_ff = FormFactorPrism3(5*nanometer, 5*nanometer)

prism = Particle(n_particle, prism_ff)

particle_decoration = ParticleDecoration()

particle_decoration.addParticle(cylinder, 0.0, 0.5)

particle_decoration.addParticle(prism, 0.0, 0.5)

interference = InterferenceFunctionNone()

particle_decoration.addInterferenceFunction(interference)

# air layer with particles and substrate form multi layer

air_layer = Layer(mAmbience)

air_layer_decorator = LayerDecorator(air_layer, particle_decoration)

substrate_layer = Layer(mSubstrate, 0)

multi_layer = MultiLayer()

multi_layer.addLayer(air_layer_decorator)

multi_layer.addLayer(substrate_layer)

# run simulation

simulation = Simulation()

simulation.setDetectorParameters(100,-1.0*degree, 1.0*degree,

100, 0.0*degree, 2.0*degree, True)

simulation.setBeamParameters(1.0*angstrom, -0.2*degree, 0.0*degree)

simulation.setSample(multi_layer)

simulation.runSimulation()

# retrieving intensity data

arr = GetOutputData(simulation)

Listing 1.1: Python script of example 1

1.4 Example 2

Bugs
License agreement
Directory layout
FAQ
Future development.

Page 13



Bibliography Bibliography

Bibliography

[1] Rémi Lazzari. IsGISAXS: a program for grazing-incidence small-angle X-ray scattering analysis
of supported islands. Journal of Applied Crystallography, 35(4):406–421, Aug 2002.

[2] Kyle Loudon. C++ pocket reference. O’Reilly media, 2008.

[3] Mark Lutz. Python pocket reference. O’Reilly media, fourth edition edition, 2009.

Page 14


	Examples
	General methodology
	Conventions
	Geometry of the sample
	Units
	Programs

	Example 1: Two types of islands on top of substrate. No interference function
	Example 2


