BornAgain - simulating and fitting X-ray and neutron
scattering at grazing incidence.

User Guide

version 0.1

Scientific Computing Group at FRM-II

July 24, 2013

Contents Contents

Contents

I Introduction| 2
3

4

5

5

6

7

8

2 Example 9
21 Generalmethodology] oo oot 9
2.2 Conventionsl L e e e e 9
[2.2.1 Geometryofthesample| o L 9
.. 11
.. 11

[2.3 _Example 1: Two types of islands on top of substrate. No interference function| 11
2.4 Example2| e 16

Page 1

Chapter 1. Introduction

Chapter 1

Introduction

BornAgain is a software to simulate and fit neutron and X-ray scattering at grazing incidence. Itis a
multi-platform open-source project that aims at supporting scientists in the analysis and fitting of
their GISAS data, both for synchrotron (GISAXS) and neutron (GISANS) facilities. The name of the
software, BornAgain indicates the central role of the distorted-wave Born approximation (DWBA)
in the physical description of the scattering process. The software provides a generic framework for
modeling multilayer samples with smooth or rough interfaces and with various types of embedded
nanoparticles. In this way, it reproduces and enhances the functionality of the present reference
software, IsGISAXS by R. Lazzari [?], and lays a solid base for future extensions in response to spe-
cific user needs.

To meet the growing demand for GISAS simulation of more complex structured materials, Bor-
nAgain has extended the IsGISAXS program’s functionality by removing the restrictions on the num-
ber of layers and particles, by providing diffuse reflection from rough layer interfaces and by adding
particles with inner structure.

The user guide starts with a brief description of steps necessary for compiling and running the
simulation, Section More detailed overview of software architecture and installation procedure
is given in Section ?2. General methodology of simulation with BornAgain and detailed usage ex-
amples are given in Section ?2. Fitting tools provided by the frame work are presented in Section 2.

Icons used in this manual:

AY : this sign highlights further references.

A: this sign highlights essential points.

Page 2

Chapter 1. Introduction 1.1. Quick start

1.1 Quick start

This section shortly describes how to build BornAgain from source and run first simulation. More
details about software architecture and installation procedure are given in Section |1.2| and Sec-

tion[T.3]

Step I: installing third party software
¢ compilers: clang versions = 3.1 or GCC versions = 4.2
¢ cmake (=2.8)
* boost library (= 1.48)

¢ GNU scientific library (= 1.15)

fftw3 library (= 3.3.1)

e python-2.7, python-devel, python-numpy-devel

Step II: getting the source

[
‘git clone git://apps.jcns.fz-juelich.de/BornAgain.git
L

Step III: building the source

mkdir <build_dir>; cd <build_dir>;

cmake <source_dir> -DCMAKE_INSTALL_PREFIX=<install_dir>
make

make check

make install

Step IV: running example

cd <install_dir>/Examples/python/ex001_CylindersAndPrisms
python CylindersAndPrisms.py

Page 3

Chapter 1. Introduction 1.2. Software architecture
1.2 Software architecture
User External
python script [~~~ graphics |7 :
BornAgain ¥
i matplotlib

python bindings

python bindings

libCore

samples and algorithms

libFit

interface to minimizers

v v v

GSL ' | Boost: : Eigen

\

ROOT - - -

Figure 1.1: Left:

Page 4

Chapter 1. Introduction 1.3. Installation

1.3 Installation

This section describes how to build and install BornAgain libraries from source. At the moment
we support building on x86/x86_64 Linux and Mac OS X operating systems. Support for Windows
systems is planned in next releases. There are three major steps to building BornAgain :

1. Acquire required third-party libraries.
2. Get BornAgain source code.
3. Invoke cmake to build and install software.

The remainder of this section explains each step in details.

1.3.1 Third-party software.
To successfully build BornAgain a number of prerequisite packages must be installed.
» compilers: clang versions = 3.1 or GCC versions = 4.2
¢ cmake (=2.8)
¢ boost library (= 1.48)
¢ GNU scientific library (= 1.15)
e fftw3 library (= 3.3)

e python (= 2.7), python-devel, python-numpy-devel

Other packages are optional
¢ ROOT framework (adds bunch of additional fitting algorithms to BornAgain)
¢ python-matplotlib (allows to run usage examples with graphics)

All required packages can be easily installed on most Linux distributions using system’s pack-
age manager. Below we give few examples for several selected operation systems. Please note, that
other distributions (Fedora, Mint, etc) may have different commands for invoking the package man-
ager and slightly different names of packages (like “boost” instead of “libboost” etc). Besides that,
installation should be very similar.

OpenSuse 12.3
Adding “scientific” repository

sudo zypper ar http://download.opensuse.org/repositories/science/
openSUSE_12.3 science

Installing obligatory packages

sudo zypper install git-core cmake gsl-devel boost-devel fftw3-devel
python-devel python-numpy-devel

Installing optional packages

sudo zypper install libroot-* root-plugin-* root-system-* root-ttf
libeigen3 -devel python-matplotlib

Page 5

Chapter 1. Introduction 1.3. Installation

Ubuntu 13.04
Installing obligatory packages

sudo apt-get install git cmake libgslO-dev libboost-all-dev libfftw3-dev
python-devel python-numpy

Installing optional packages

sudo apt-get install libroot-* root-plugin-* root-system-* ttf-root-
installer libeigen3-dev python-matplotlib python-matplotlib-tk

Mac 0§ X10.8

To simplify installation of third party open-source software on a Mac OS X system we recommend
the use of MacPorts package manager. The easiest way to install MacPorts is by downloading the
dmg from www.macports.org/install.php|/and running the system’s installer. After installation
new command “port” will be available in terminal window of your Mac.

Installing obligatory packages

sudo port -v selfupdate

sudo port install git-core cmake

sudo port install fftw-3 gsl

sudo port install boost -no_single-no_static+python27

Installing optional packages

sudo port install py27-matplotlib py27-numpy py27-scipy
sudo port install root +fftw3+python27
sudo port install eigen3

1.3.2 Getting source code

BornAgain source can be downloaded at http://apps.jcns.fz-juelich.de/BornAgain|and
unpacked with

[|
‘tar xfz bornagain-<version>.tgz
L |

Alternatively one can obtain BornAgain source from our public Git repository.
[|
‘git clone git://apps.jcns.fz-juelich.de/BornAgain.git

More about Git

Our Git repository holds two main branches called “master” and “develop”. We consider “master”
branch to be the main branch where the source code of HEAD always reflect latest stable release.
Git clone command shown above

1. Gives you source code snapshot corresponding to the latest stable release

2. Automatically sets up your local master branch to track our remote master branch, so you will be
able to fetch changes from remote branch at any time using “git pull” command.

Master branch is updating approximately once per month, that reflects our release cycle. The
second main branch, “develop” branch, is a snapshot of current development. This is where any
automatic nightly builds are built from. The develop branch is expected always to work, so to get
the most recent features one can switch source tree to it by

Page 6

www.macports.org/install.php
http://apps.jcns.fz-juelich.de/BornAgain

Chapter 1. Introduction 1.3. Installation

cd BornAgain
git checkout develop
git pull

1.3.3 Building and installing the code

BornAgain should be build using CMake cross platform build system. Having third-party libraries
installed on the system and BornAgain source code acquired as was explained in previous sections,
type build commands

mkdir <build_dir>

cd <build_dir>

cmake <source_dir> -DCMAKE_INSTALL_PREFIX=<install_dir>
make

Here <source_dir> is the name of directory, where BornAgain source code has been copied,
<install_dir> is the directory, where user wants the package to be installed, and <build_dir>is
the directory where building will occur.

About CMake

Having dedicated directory <build_dir> for build process is recommended by CMake. That
allows several builds with different compilers/options from the same source and keeps source
directory clean from build remnants.

Compilation process invoked by the command “make” lasts about 10 min for average laptop of
2012 edition. On multi-core machines the compilation can be speed up by invoking command make
with the parameter “make -j[N]”, where N is the number of cores.

Running functional tests is an optional but recommended step. Command “make check” will
compile several additional tests and run them one by one. Every tests contains simulation of typ-
ical GISAS geometry and comparison of simulation results with reference files on numerical level.
Having 100% tests passed ensures that your local installation is correct.

make check

100% tests passed, O tests failed out of 26
Total Test time (real) = 89.19 sec
[100%] Build target check

The last command “make install” copies compiled libraries and some usage examples into in-
stallation directory.

[
‘make install
L

1.3.4 Whatis the next?

In your installation directory you will find

./include - header files for compilation of your C++ program
./1lib - libraries to import into python or link with your C++ program
./Examples - directory with examples

Page 7

Chapter 1. Introduction 1.3. Installation

Run your first example and enjoy your first BornAgain simulation plot.

cd <install_dir>/Examples/python/ex001_CylindersAndPrisms
python CylindersAndPrisms.py

Page 8

Chapter 2. Examples

Chapter 2

Examples

2.1 General methodology

A simulation of GISAXS using BornAgain platform can be decomposed into the following points:
* Definition of the materials by specifying their names and their refractive indices,

* Definition of particles: shapes, sizes, refractive indices of the constituting material, interfer-
ence functions,

* Definition of the layers: thicknesses, roughnesses, associations with the previously defined
materials,

¢ Inclusion of the particles in layers: density or proportion, positions, orientations,
* Assembling the sample: generation of a multilayered system,

» Specifying the input beam and the output detector’s characteristics,

* Running the simulation,

¢ Saving the data.

The sample is built from object oriented building blocks instead of loading data files.

2.2 Conventions

2.2.1 Geometry of the sample

The geometry used to describe the sample is shown in Fig. The z-axis is perpendicular to the
sample’s surface and pointing upwards. The x-axis is perpendicular to the plane of the detector and
the y-axis is along it. The input and the scattered output beams are each by two angles ay, ¢po and
ar, ¢ respectively. Then for each other layer j = 1,..., N — 1, the incident angles a; and ¢; are de-
fined with respect to the bottom of the layer. The angles are oriented considering the detector plane
as the reference. This results in, for example, a ¢, ¢ ¢ being positive and a and a(negative in fig.

The layers are defined by their thicknesses (parallel to the z-direction), their possible roughnesses
(equal to 0 by default) and the refractive index of the material. We do not define any dimensions

Page 9

Chapter 2. Examples 2.2. Conventions

in the x, y directions. And, except for roughness, the layer’s vertical boundaries are plane and per-
pendicular to the z-axis. There is also no limitation to the number of layers that could be defined in
BornAgain.

Remark - Order of the different steps for the simulation:
When assembling the sample, the layers are defined from top to bottom. So in most cases the
first layer will be the air layer.

The particles are characterized by their form factors (i.e. the Fourier transform of the shape function
- see the list of form factors implemented in BornAgain) and the refractive index of the composing
material. The number of input parameters for the form factor depends on the particle symmetry;
it ranges from one parameter for a sphere (its radius) to three for an ellipsoid (its three main axis
lengths).

By placing the particles inside or on top of a layer, we impose their vertical positions. The in-plane
distribution of particles is linked with the way the particles interfere with each other, which is there-
fore implemented when dealing with the interference function.

Remark - Depth of particles

The vertical positions of particles in a layer are given in relative coordinates. For the top layer,
the bottom corresponds to depth=0. But for all the other layers, it is the top of the layer which
corresponds to depth=0.

The complex refractive index associated with a layer or a particle is written as n =1 -6 — i 8, with
d,BeR.

Layer 0 : (ng, o)
ko

Qo

(
b0

Layer 1 : (ny, o)

Layer 2 : (ng, as)

Figure 2.1: Representation of the scattering geometry for multilayer specular reflectivity. n; is the
refractive index of layer j and a ; is the incident angle of the wave propagating in layer j and incident
onlayer j + 1. ay is the exit angle with respect to the sample’s surface and ¢ is the scattering angle
with respect to the scattering plane.

The input beam is assumed to be monochromatic without any spatial divergence.
polarization term?

Page 10

Chapter 2. Examples 2.2. Example 1

2.2.2 Units

By default angles are expressed in radians and lengths are given in nanometers. But it is possible
to use other units by specifying them right after the value of the corresponding parameter like, for
example, 20.0*Units: :micrometer in C++.

2.2.3 Programs

Programming: The examples presented in the next paragraphs are written in C++ or Python.
For tutorials about these programming languages, the users are referred to [?] and [?] respec-
tively.

Note about the version of C++ and Python to run the examples.
Where can the following examples be found?

What is the command to run the examples?

2.3 Example 1: Two types of islands on top of substrate. No inter-
ference function

In this example, using Python language, we simulate the scattering from a mixture of cylindrical and
prismatic nanoparticles without any interference between them. These particles are placed in air,
on top of a substrate.

We are going to go through each step of the simulation. The Python script specific to each stage will
be given at the beginning of the description. But for the sake of completeness the full code is given
at the end of this section (Listing.

We start by importing different functions from external modules (lines[IH7). For example, line[3]im-
ports NumPy, which is a fundamental package for scientific computing with Python (http://www.
numpy . org/). In particular, line[7]imports the features of BornAgain software.

1 | import sys

2 | import os

3 |import numpy

4

5 | sys.path.append(os.path.abspath(os.path. join(os.path.split(__file__) [0],
P .7, 7.'7’ 7“,’ ’lib’)))

6

7 | from libBornAgainCore import x*

First step: Defining materials

defining materials
mAmbience = Materialllanager.getHomogeneousMaterial ("Air", 1.0,

mSubstrate = MateriallManager.getHomogeneousMaterial ("Substrate",
-6, 2e-8)

Page 11

http://www.numpy.org/
http://www.numpy.org/

Chapter 2. Examples 2.3. Example 1

Lines[9]and[10]define two different materials using function getHomogeneousMaterial from class
MaterialManager. The general syntax is the following

Interface material name = MateriallManager.getHomogeneousMaterial ("name",
Re(n), Im(n))

where name is the name of the material associated with its complex refractive index n decomposed
into its real and imaginary parts. Interface material name is later used when referring to this
particular material. The two defined materials in this example are Air with a refractive index of 1
and a Substrate associated with a complex refractive index equal to 1 -6 x 1076 — j2 x 1078,

Remark: there is no condition on the choice of name.

Second step: Defining the particles

11 |# collection of particles
12 |n_particle = complex(1.0-6e-4, 2e-8)

13 | cylinder_ff = FormFactorCylinder (5*%nanometer , 5*nanometer)
14 | cylinder = Particle(n_particle, cylinder_£ff)

15 |prism_ff = FormFactorPrism3 (5*nanometer, 5*nanometer)

16 |prism = Particle(n_particle, prism_f£ff)

We implement two different shapes of particles: cylinders and prisms (i.e. elongated particles with
a constant equilateral triangular cross section).

All particles implemented in BornAgain are defined by their form factors, their sizes and the refrac-
tive index of the material they are made of. Here, for the cylindrical particle, we input its radius and
its height. For the prism, the possible inputs are the length of one side of its equilateral triangular
base and its height.

In line (12} we define the complex refractive index associated with both particle shapes: n=1 -6 x
107 -i2x1078.

In order to define a particle, we proceed in two steps. For example for the cylindrical particle, we
first specify the form factor of a cylinder with its radius and height, both equal to 5 nanometers in
this particular case (see line[I3). Then we associate this shape with the refractive index of the con-
stituting material as in line

The same procedure has been applied for the prism in lines[I5|and[I6|respectively.

Third step: Characterizing the layers and assembling the sample

Particle decoration

particle_decoration = ParticleDecoration ()
particle_decoration.addParticle(cylinder, 0
particle_decoration.addParticle(prism, 0.0,
interference = InterferenceFunctionNone ()
particle_decoration.addInterferenceFunction(interference)

.0,
0

.5)

Page 12

Chapter 2. Examples 2.3. Example 1

The process of defining the positions and densities of particles in our sample is called “particle dec-
oration”. We use the function ParticleDecoration() (line[l7) and the associated addParticle
for each particle shape (lines[18}[19). The general syntax is

particledecoration.addParticle (particle_name, depth, abundance)

where particle_name is the name used to define the particles (lines [I14]and[16), depth (default
value =0) is the vertical position, expressed in nanometers, of the particles in a given layer (the as-
sociation with a particular layer will be done during the next step) and abundance is the proportion
of this type of particles, normalized to the total number of particles. Here we have 50% of cylinders
and 50% of prisms.

Remark - Depth of particles

The vertical positions of particles in a layer are given in relative coordinates. For the top layer,
the bottom corresponds to depth=0 and negative values would correspond to particles float-
ing above layer 1 since the vertical axis, shown in fig. [2.1|is pointing upwards. But for all the
other layers, it is the top of the layer which corresponds to depth=0.

Finally lines[20] and [21] specify that there is no coherent interference between the waves scattered
by these particles. The intensity is calculated by the incoherent sum of the scattered waves: (|Fj, 12y,
where F;, is the form factor associated with the particle of type n. The way these waves interfere im-
poses the horizontal distribution of the particles as the interference reflects the long or short-range
order of the particles distribution (see Theory). On the contrary, the vertical position is imposed
when we add the particles in a given layer by parameter depth, as shown in lines[18|and|[19}

Multilayer

22 |# air layer with particles and substrate form multi layer

23 |air_layer = Layer (mAmbience)

24 |air_layer_decorator = LayerDecorator (air_layer, particle_decoration)
25 | substrate_layer = Layer (mSubstrate, 0)

26 |multi_layer = MultilLayer ()

27 |multi_layer.addLayer (air_layer_decorator)

28 |multi_layer.addLayer (substrate_layer)

We now have to configure our sample. For this first example, the particles, i.e. cylinders and prisms,
are on top of a substrate in an air layer. The order in which we define these layers is important: we
start from the top layer down to the bottom one.

Let us start with the air layer. It contains the particles. In line we use the previously defined
mAmbience (="air" material) (line@). The command written in line shows that this layer is deco-
rated by adding the particles using the function particledecoration defined in lines[17{21} Note
that the depth is referenced to the bottom of the top layer (negative values would correspond to
particles floating above layer 1 as the vertical axis is pointing upwards). The substrate layer only
contains the substrate material (line25).

There are different possible syntaxes to define a layer. As shown in lines [23| and we can use
Layer (Interface material name,thickness) orLayer(Interface material name). Thesec-
ond case corresponds to the default value of the thickness, equal to 0. The thickness is expressed
in nanometers.

Page 13

Chapter 2. Examples 2.3. Example 1

Our two layers are now fully characterized. The sample is assembled using MultiLayer () construc-
tor (line[26): we start with the air layer decorated with the particles (line[27), which is the layer at the
top and end with the bottom layer, which is the substrate (line[28).

Fourth step: Characterizing the input beam and output detector and running the simulation

29 |# run simulation

30 | simulation = Simulation ()
31 | simulation.setDetectorParameters (100,-1.0*degree, 1.0xdegree,
32 100, 0.0*degree, 2.0*degree, True)

33 | simulation.setBeamParameters (1.0*angstrom, -0.2*degree, 0.0xdegree)
34 | simulation.setSample (multi_layer)
35 | simulation.runSimulation ()

The first stage is to define the Simulation() object (line. Then we define the detector (line
and beam parameters (line[33), which are associated with the sample previously defined (line[34).
Finally we run the simulation (line[35). Those functions are part of the Simulation class. The differ-
ent incident and exit angles are shown in Fig.[2.1]

The detector parameters are set using ranges of angles via the function:

setDetectorParameters(n_phi, phi_f_min, phi_f_max,
n_alpha, alpha_f_min, alpha_f_max, isgisaxs_style=false),

where n_phi=100 is the number of points in the range of variations of angle ¢,
phi_f_min=-1.0*degree and phi_f_max=1.0*degree are the minimum and maximum values
respectively of ¢, which is the in-plane direction of the scattered beam (measured with respect to
the x-axis),

n_alpha=100 is the number of points in the range of variations of the exit angle a ; measured from
the x, y-plane in the z-direction,

alpha_f_min=0.0*degree and alpha_f_max=2.0*degree are the minimum and maximum val-
ues respectively of af,

isgisaxs_style=True (default value = False) is a boolean used to characterise the structure of the
output data. If isgisaxs_style=True, the output data is binned at constant values of the sine of
the output angles, a y and ¢, otherwise it is binned at constant values of these two angles.

For the beam the function to useis simulation. setBeamParameters(lambda, alpha_i, phi_i),
where lambda=1.0*angstromis the incident beam wavelength,

alpha_i=-0.2x*degree is the incident grazing angle on the surface of the sample, phi_i=0.0*degree
is the in-plane direction of the incident beam (measured with respect to the x-axis). Note that in

Fig.d|a; = ag and ¢; = ¢o.

Remark: Note that, except for isgisaxs_style, there are no default values implemented for the
parameters of the beam and detector.

Line[35|shows the command to run the simulation using the previously defined setup.

Fifth step: Saving the data

Page 14

Chapter 2. Examples 2.3. Example 1

36 |# retrieving intensity data
37 |arr = GetOutputData(simulation)

In linewe record the simulated intensity as a function of outgoing angles a s and ¢ for further
uses (plots, fits,...) as a NumPy array containing n_phixn_alpha datapoints. Some options are
provided by BornAgain. For example, figure[2.2|shows the two-dimensional contourplot of the in-
tensity as a function of a r and ¢y.

Figure 2.2: Figure of example 1: Simulated grazing-incidence small-angle X-ray scattering from a
mixture of cylindrical and prismatic nanoparticles without any interference, deposited on top of a
substrate. The input beam is characterized by a wavelength A of 1 A and incident angles a; = —0.2°,
¢; =0°. The cylinders have aradius and a height both equal to 5 nm, the prisms are characterized by
aside length equal to 5 nm and they are also 5 nm high. The material of the particles has a refractive
indexof 1—6x 107*—i2 x 1078, For the substrate it is equal to 1—6 x 1078 — j2 x 1078, The colorscale
is associated with the output intensity in arbitrary units.

Page 15

Chapter 2. Examples 2.4. Example 2

import sys
import os
import numpy

sys.path.append(os.path.abspath(os.path. join(os.path.split(__file__) [0],
oL, 2o, 200, 71ib)

from libBornAgainCore import *

defining materials

mAmbience = MateriallManager.getHomogeneousMaterial ("Air", 1.0, 0.0)

mSubstrate = MateriallManager.getHomogeneousMaterial ("Substrate",
1.0-6e-6, 2e-8)

collection of particles

n_particle = complex(1.0-6e-4, 2e-8)

cylinder_ff = FormFactorCylinder (5*nanometer, 5*nanometer)
cylinder = Particle(n_particle, cylinder_£ff)

prism_ff = FormFactorPrism3 (5*nanometer , 5*nanometer)
prism = Particle(n_particle, prism_£ff)

particle_decoration = ParticleDecoration ()

particle_decoration.addParticle(cylinder, 0.0, 0.5)
particle_decoration.addParticle(prism, 0.0, 0.5)
interference = InterferenceFunctionNone ()
particle_decoration.addInterferenceFunction(interference)
air layer with particles and substrate form multi layer

air_layer = Layer (mAmbience)
air_layer_decorator = LayerDecorator(air_layer, particle_decoration)
substrate_layer = Layer (mSubstrate, 0)

multi_layer = Multilayer ()
multi_layer.addLayer (air_layer_decorator)
multi_layer.addLayer (substrate_layer)

run simulation
simulation = Simulation ()
simulation.setDetectorParameters (100, -1.0*degree, 1.0xdegree,

100, 0.0xdegree, 2.0*degree, True)
simulation.setBeamParameters (1.0*%angstrom, -0.2*degree, 0.0xdegree)
simulation.setSample (multi_layer)
simulation.runSimulation ()

retrieving intensity data
arr = GetOutputData(simulation)

Listing 2.1: Python script of example 1

2.4 Example 2

Page 16

	Introduction
	Quick start
	Software architecture
	Installation
	Third-party software.
	Getting source code
	Building and installing the code
	What is the next?

	Examples
	General methodology
	Conventions
	Geometry of the sample
	Units
	Programs

	Example 1: Two types of islands on top of substrate. No interference function
	Example 2

