
BornAgain

Software for simulating and fitting
X-ray and neutron small-angle scattering

at grazing incidence

User Manual
0.2.1

December 16, 2013

C. Durniak, G. Pospelov, W. Van Herck, J. Wuttke

Scientific Computing Group

Jülich Centre for Neutron Science

outstation at Heinz Maier-Leibnitz Zentrum Garching

Forschungszentrum Jülich GmbH

Disclaimer

This manual is under development and does not yet constitute a comprehensive
listing of BornAgain features and functionality. The included information and in-
structions are subject to substantial changes and are provided only as a preview.

Page 1

Contents Contents

Contents

Introduction 4

1 Quick start 6
1.1 Quick start on Unix Platforms . 6
1.2 Quick start on Windows Platforms . 7
1.3 Getting help . 7

2 Installation 8
2.1 Building and installing on Unix Platforms . 8

2.1.1 Third-party software . 9
2.1.2 Getting BornAgain source code . 10
2.1.3 Building and installing the code . 11
2.1.4 Running the first simulation . 12

2.2 Installing on Windows Platforms . 12

3 Simulation 14
3.1 General methodology . 14
3.2 Geometry of the sample . 14

3.2.1 Units . 16
3.3 Example 1: two types of islands on top of substrate without interference . . . 16
3.4 Example 2: working with sample parameters . 21

4 Fitting 24
4.1 Implementation in BornAgain . 24

4.1.1 Preparing the sample and the simulation description 26
4.1.2 Choice of parameters to be fitted . 26
4.1.3 Associating reference and simulated data 27
4.1.4 Minimizer settings . 27
4.1.5 Running the fitting ant retrieving the results 29

4.2 Basic Python fitting example . 29
4.3 Advanced fitting . 33

4.3.1 Affecting χ2 calculations . 33
4.3.2 Simultaneous fits of several data sets . 33
4.3.3 Using fitting strategies . 33

Page 2

Contents Contents

4.3.4 Masking the real data . 33
4.3.5 Tuning fitting algorithms . 33
4.3.6 Fitting with correlated sample parameters 33

4.4 How to get the right answer from fitting . 33

5 Software architecture 35
5.1 Data classes for simulations and fits . 36

5.1.1 The Experiment object . 36
5.1.2 The ISample class hierarchy . 37
5.1.3 The FitSuite class . 38
5.1.4 The IMinimizer class . 38
5.1.5 The MinimizerOptions class . 38

A Listings 39
A.1 Python simulation example . 39
A.2 Python fitting example . 41

B Formfactors 43
B.1 Formfactor Cut-off Sphere . 44

B.1.1 Real-space geometry . 44
B.1.2 Computing the formfactor . 44
B.1.3 Exemplary formfactor . 45
B.1.4 Parameter dependence . 45
B.1.5 Related particle shapes . 45
B.1.6 References . 45

B.2 Formfactor Pyramid . 46
B.2.1 Real-space geometry . 46
B.2.2 Computing the formfactor . 46
B.2.3 Exemplary formfactor . 47
B.2.4 Parameter dependence . 47
B.2.5 Related particle shapes . 47
B.2.6 References . 48

B.3 Formfactor Full Sphere . 49

Page 3

Contents Contents

Introduction

BornAgain is a free software package to simulate and fit small-angle scattering at graz-
ing incidence (GISAS). It supports analysis of both X-ray (GISAXS) and neutron (GISANS)
data. Its name, BornAgain, indicates the central role of the distorted-wave Born approxi-
mation (DWBA) in the physical description of the scattering process. The software provides
a generic framework for modeling multilayer samples with smooth or rough interfaces and
with various types of embedded nanoparticles.

BornAgain almost completely reproduces the functionality of the widely used program
IsGISAXS by R. Lazzari [1].

BornAgain goes beyond IsGISAXS by supporting an unrestricted number of layers and
particles, diffuse reflection from rough layer interfaces, particles with inner structures, neu-
tron polarization and magnetic scattering. Adhering to a strict object-oriented design,
BornAgain provides a solid base for future extensions in response to specific user needs.

BornAgain is a platform-independent software, with active support for Linux, MacOS
and Microsoft Windows. It is a free and open source software provided under the terms of
the GNU General Public License (GPL). This documentation is released under the Creative
Commons license CC-BY-SA.

The authors will be grateful for all kind of feedback: criticism, praise, bug reports, fea-
ture requests or contributed modules. When BornAgain is used in preparing scientific pa-
pers, please cite this manual as follows:

C. Durniak, G. Pospelov, W. Van Herck, J. Wuttke (2013),
BornAgain - Software for simulating and fitting X-ray and neutron small-angle
scattering at grazing incidence, version 0.2.1,
http://apps.jcns.fz-juelich.de/BornAgain

This user guide starts with a brief description of the steps necessary for installing the
software and running a simulation on Unix and Windows platforms in Section 1. A more
detailed description of the installation procedure is given in Section 2. The general method-
ology of a simulation with BornAgain and detailed simulation usage examples are given in
Section 3. The fitting toolkit, provided by the framework, is presented in Section 4, while

Page 4

http://apps.jcns.fz-juelich.de/BornAgain

Contents Contents

Section 5 provides a brief overview of the software architecture.

Icons used in this manual:

P: this sign highlights further remarks.

B: this sign highlights essential points.

Page 5

Chapter 1. Quick start

Chapter 1

Quick start

1.1 Quick start on Unix Platforms

This section shortly describes how to build and install BornAgain from source and run
the first simulation on Unix Platforms. Further details about the installation procedure are
given in Section 2.

Step I: install the third party software

• compilers: clang versions ≥ 3.1 or GCC versions ≥ 4.2

• cmake (≥ 2.8)

• boost library (≥ 1.48)

• GNU scientific library (≥ 1.15)

• fftw3 library (≥ 3.3.1)

• Python-2.7, python-devel, python-numpy-devel

Step II: get the source
Download BornAgain source tarball from http://apps.jcns.fz-juelich.de/BornAgain

or use the following git repository

git clone git :// apps.jcns.fz-juelich.de/BornAgain.git

Step III: build the libraries and executable

mkdir <build_dir>; cd <build_dir>;

cmake -DCMAKE_INSTALL_PREFIX=<install_dir> <source_dir>

make

make check

make install

Page 6

http://apps.jcns.fz-juelich.de/BornAgain

Chapter 1. Quick start 1.2. Quick start on Windows Platforms

Step IV: run an example

python <install_dir>/share/BornAgain/Examples/python/simulation/

ex001_CylindersAndPrisms/CylindersAndPrisms.py

1.2 Quick start on Windows Platforms

Step I: install the third party software
The current version of BornAgain requires Python, numpy, matplotlib to be installed
on the system. If you don’t have them already installed, you can use PythonXY installer
available at https://code.google.com/p/pythonxy which, with default installation op-
tions, contains at least these three packages.

Step II: use BornAgain installation package
Windows installation package can be downloaded from http://apps.jcns.fz-juelich.

de/BornAgain. Double-click on it to start the installation process. Then follow the instruc-
tions.

Step III: run the example
Run an example located in BornAgain installation directory:

python C:/BornAgain -0.9.2/ Examples/python/simulation/

ex001_CylindersAndPrisms/CylindersAndPrisms.py

1.3 Getting help

Users of the software who encounter problems during the installation of the framework
or during the run of a simulation can use the web-based issue tracking system at http:
//apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues to report a bug.
The same system can be used to request new features. This system is open for all users
in read mode, while submitting bug reports and feature requests are possible only after a
simple registration procedure.

Page 7

https://code.google.com/p/pythonxy
http://apps.jcns.fz-juelich.de/BornAgain
http://apps.jcns.fz-juelich.de/BornAgain
http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues
http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

Chapter 2. Installation

Chapter 2

Installation

BornAgain is supported under x86/x86_64 Linux, Mac OS X and Windows operating sys-
tems. It has been successfully compiled and tested on

• Microsoft Windows 7 64-bit, Windows 8 64-bit

• Mac OS X 10.8 (Mountain Lion)

• OpenSuse 12.3 64-bit

• Ubuntu 12.10, 13.04 64-bit

• Debian 7.1.0, 32-bit, 64-bit

At the moment we support build and installation from source on Unix Platforms (Linux,
Mac OS) and installation using binary installer packages on MS Windows 7, 8 (see Sec-
tion 2.1 and Section 2.2, respectively). In the next releases we are planning to provide binary
installers for Mac OS X and Debian.

We welcome feedback and bug reports related to installation and use of BornAgain via
http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

2.1 Building and installing on Unix Platforms

BornAgain uses CMake to configure a build system for compiling and installing the frame-
work. There are three major steps to build BornAgain :

1. Acquiring the required third-party libraries.

2. Getting BornAgain source code.

3. Using CMake to build and install the software.

The remainder of this section explains each step in detail.

Page 8

http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

Chapter 2. Installation 2.1. Building and installing on Unix Platforms

2.1.1 Third-party software

To successfully build BornAgain a number of prerequisite packages must be installed.

• compilers: clang versions ≥ 3.1 or GCC versions ≥ 4.2

• cmake (≥ 2.8.3)

• boost library (≥ 1.48)

• GNU scientific library (≥ 1.15)

• fftw3 library (≥ 3.3)

• Python (≥ 2.7, < 3.0), python-devel, python-numpy-devel

Other packages are optional

• ROOT framework (adds several additional fitting algorithms to BornAgain)

• python-matplotlib (allows to run usage examples with graphics)

All required packages can be easily installed on most Linux distributions using the sys-
tem’s package manager. Below we give examples for a few selected operation systems.
Please note, that other distributions (Fedora, Mint, etc) may have different commands for
invoking the package manager as well as slightly different names of packages (like “boost”
instead of “libboost” etc). Besides the installation should be very similar.

Ubuntu (12.10, 13.04), Debian (7.1)
Installing the required packages

sudo apt -get install git cmake libgsl0 -dev libboost -all -dev

libfftw3 -dev python -dev python -numpy

Installing the optional packages

sudo apt -get install libroot -* root -plugin -* root -system -* ttf -

root -installer libeigen3 -dev python -matplotlib python -

matplotlib -tk

OpenSuse 12.3
Adding the “scientific” repository

sudo zypper ar http :// download.opensuse.org/repositories/science/

openSUSE_12 .3 science

Installing the required packages

sudo zypper install git -core cmake gsl -devel boost -devel fftw3 -

devel python -devel python -numpy -devel

Page 9

Chapter 2. Installation 2.1. Building and installing on Unix Platforms

Installing the optional packages

sudo zypper install libroot -* root -plugin -* root -system -* root -

ttf libeigen3 -devel python -matplotlib

Mac OS X 10.8
To simplify the installation of third party open-source software on a Mac OS X system we
recommend the use of MacPorts package manager. The easiest way to install MacPorts is
by downloading the dmg from www.macports.org/install.php and running the system’s
installer. After the installation new command “port” will be available in a terminal window
of your Mac.
Installing the required packages

sudo port -v selfupdate

sudo port install git -core cmake

sudo port install fftw -3 gsl

sudo port install boost -no_single -no_static+python27

sudo port select --set python python27

Installing the optional packages

sudo port install py27 -matplotlib py27 -numpy py27 -scipy

sudo port install root +fftw3+python27

sudo port install eigen3

2.1.2 Getting BornAgain source code

BornAgain source can be downloaded at http://apps.jcns.fz-juelich.de/BornAgain
and unpacked with

tar xfz bornagain -<version>.tar.gz

Alternatively one can obtain BornAgain source from our public Git repository.

git clone git :// apps.jcns.fz-juelich.de/BornAgain.git

More about Git
Our Git repository holds two main branches called “master” and “develop”. We consider
“master” branch to be the main branch where the source code of HEAD always reflects the
latest stable release. git clone command shown above

1. gives you a source code snapshot corresponding to the latest stable release,

2. automatically sets up your local master branch to track our remote master branch, so
you will be able to fetch changes from the remote branch at any time using git pull

command.

Page 10

www.macports.org/install.php
http://apps.jcns.fz-juelich.de/BornAgain

Chapter 2. Installation 2.1. Building and installing on Unix Platforms

“Master” branch is updated approximately once per month. The second branch, “de-
velop” branch, is a snapshot of the current development. This is where any automatic
nightly builds are built from. The develop branch is always expected to work. So in order to
get the most recent features of the source code, one can switch to it by

cd BornAgain

git checkout develop

git pull

2.1.3 Building and installing the code

BornAgain should be built using CMake cross platform build system. Having the third-party
libraries installed on your system and BornAgain source code acquired as explained in the
previous sections, type the build commands

mkdir <build_dir>

cd <build_dir>

cmake -DCMAKE_INSTALL_PREFIX=<install_dir> <source_dir>

make

Here <source_dir> is the name of the directory, where BornAgain source code has
been copied, <install_dir> is the directory, where you want the package to be installed,
and <build_dir> is the directory where the building will occur.

P

About CMake
Having a dedicated directory <build_dir> for the build process is recommended
by CMake. This allows several builds with different compilers/options from the same
source and keeps the source directory clean from build remnants.

The compilation process invoked by the command “make” lasts about 10 minutes on
an average laptop of 2012 edition. On multi-core machines the compilation time can be
decreased by invoking command “make” with the parameter “make -j[N]”, where N is the
number of cores.

Running functional tests is an optional but recommended step. Command “make check”
will compile several additional tests and run them one by one. Each test contains the sim-
ulation of a typical GISAS geometry and the comparison on numerical level of simulation
results with reference files. Having 100% tests passed ensures that your local installation is
correct.

make check

...

100% tests passed , 0 tests failed out of 26

Total Test time (real) = 89.19 sec

[100%] Build target check

Page 11

Chapter 2. Installation 2.2. Installing on Windows Platforms

The last command “make install” copies the compiled libraries and some usage exam-
ples into the installation directory.

make install

After installation is completed, the location of BornAgain libraries needs to be included
into LD_LIBRARY_PATH and PYTHONPATH environment variables. This can be done by run-
ning BornAgain setup script in the terminal session

source <install_dir>/bin/thisbornagain.sh

Conveniently, given call can be placed in your .bashrc file.

Troubleshooting

In the case of a complex system setup, with libraries of different versions scattered across
multiple places (/opt/local, /usr/local etc.), you may want to help CMake in finding the
correct library paths by running cmake with additional parameter

cmake -DCMAKE_PREFIX_PATH =/usr/local -DCMAKE_INSTALL_PREFIX=<

install_dir> <source_dir>

2.1.4 Running the first simulation

In your installation directory you will find

./ include/BornAgain - header files for compilation of your C++

program

./lib - libraries to import into python or link with your C++

program

./ share/BornAgain/Examples - directory with examples

Run your first example and enjoy the first BornAgain simulation plot.

python <install_dir>/share/BornAgain/Examples/python/simulation/

ex001_CylindersAndPrisms/CylindersAndPrisms.py

2.2 Installing on Windows Platforms

Step I: install the third party software
The current version of BornAgain requires Python, numpy, matplotlib to be installed
on the system.

Page 12

Chapter 2. Installation 2.2. Installing on Windows Platforms

If you do not have have Python installed

You can use PythonXY installer at https://code.google.com/p/pythonxy which, with
the default installation options, contains at least these three packages. The user has to
download and install this package before proceeding to the installation of BornAgain.

If you have Python already installed

You might want to keep using this installation and to install missed modules. Required
libraries can be found at

matlab:

http :// matplotlib.org/downloads.html

numpy , dateutil , pyparsing:

http :// www.lfd.uci.edu/~ gohlke/pythonlibs

Step II: use the installation package
BornAgain installation package for Windows can be downloaded from http://apps.jcns.

fz-juelich.de/BornAgain. Double-click on it to start the installation process. And then
follow the instructions.

Step IV: run an example
Run an example located in BornAgain installation directory:

python C:/BornAgain -0.9.2/ Examples/python/simulation/

ex001_CylindersAndPrisms/CylindersAndPrisms.py

Page 13

https://code.google.com/p/pythonxy
http://apps.jcns.fz-juelich.de/BornAgain
http://apps.jcns.fz-juelich.de/BornAgain

Chapter 3. Simulation

Chapter 3

Simulation

3.1 General methodology

A simulation of GISAXS using BornAgain consists of following steps:

• define materials by specifying name and refractive index,

• define embedded particles by specifying shape, size, constituting material, interfer-
ence function,

• define layers by specifying thickness, roughness, material,

• include particles in layers, specifying density, position, orientation,

• assemble a multilayered sample,

• specify input beam and detector characteristics,

• run the simulation,

• save the simulated detector image.

We are planing to organize all these steps in a graphical user interface (GUI). For the time
being, however, BornAgain must be involved via C++ program or Python scripts. In the
following, we describe how to write a Python script which runs a BornAgain simulation.
For tutorials about this programming language, the users are referred to [2].

More information about the general software architecture and BornAgain internal de-
sign are given in Section 5.

3.2 Geometry of the sample

The geometry used to describe the sample is shown in figure 3.1. The z-axis is perpen-
dicular to the sample’s surface and pointing upwards. The x-axis is perpendicular to the
detector plane. The input and the scattered output beams are each characterized by two

Page 14

Chapter 3. Simulation 3.2. Geometry of the sample

angles αi , φi and α f , φ f , respectively. Our choice of orientation for the angles αi and α f is
so that they are positive as shown in figure 3.1.

Figure 3.1: Representation of the scattering geometry. n j is the refractive index of layer j
and αi and φi are the incident angles of the wave propagating. α f is the exit angle with
respect to the sample’s surface and φ f is the scattering angle with respect to the scattering
plane.

The layers are defined by their thicknesses (parallel to the z-direction), their possible
roughnesses (equal to 0 by default) and the material they are made of. They have infinite
extension in the x, y directions. And, except for roughness, they interfaces are plane and
perpendicular to the z-axis. There is also no limitation to the number of layers that could be
defined in BornAgain. Note that the thickness of the top and bottom layer are not defined.

The nanoparticles are characterized by their form factors (i.e. the Fourier transform
of the shape function - see the list of form factors implemented in BornAgain) and the
composing material. The number of input parameters for the form factor depends on the
particle symmetry; it ranges from one parameter for a sphere (its radius) to three for an
ellipsoid (its three main axis lengths).

By placing the particles inside or on top of a layer, we impose their vertical positions,
whose values correspond to the bottoms of the particles. The in-plane distribution of par-
ticles is linked with the way the particles interfere with each other. It is therefore imple-
mented when dealing with the interference function.

The complex refractive index associated with a layer or a particle is written as n = 1−
δ+ iβ, with δ,β ∈R. In our program, we input δ and β directly.
The input beam is assumed to be monochromatic without any spatial divergence.

Page 15

Chapter 3. Simulation 3.2. Example 1: two types of islands on a substrate without interference

3.2.1 Units

By default the angles are expressed in radians and the lengths are given in nanometers. But
it is possible to use other units by specifying them right after the value of the corresponding
parameter like, for example, 20.0*micrometer.

3.3 Example 1: two types of islands on top of substrate without
interference

In this example, we simulate the scattering from a mixture of cylindrical and prismatic
nanoparticles without any interference between them. These particles are placed in air,
on top of a substrate.
We are going to go through each step of the simulation. The Python script specific to each
stage will be given at the beginning of the description. But for the sake of completeness the
full code is given in Appendix A.1.

Importing Python modules

1 import numpy

2 import matplotlib

3 import pylab

4 from libBornAgainCore import *

We start by importing different functions from external modules, for example NumPy (lines 1-
3), which is a fundamental package for scientific computing with Python [3]. In particular,
line 4 imports the features of BornAgain software.

Defining the materials

5 def get_sample ():

6 """

7 Build and return the sample representing cylinders and

pyramids on top of

8 substrate without interference.

9 """

10 # defining materials

11 m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,

0.0)

12 m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)

13 m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)

Page 16

Chapter 3. Simulation 3.3. Example 1: two types of islands on a substrate without interference

Line 5 marks the beginning of the function to define our sample. Lines 11, 12 and 13 define
different materials using function getHomogeneousMaterial from class MaterialManager.
The general syntax is the following

<material_name > = MaterialManager.getHomogeneousMaterial("name",

delta , beta)

where name is the name of the material associated with its complex refractive index n=1-
delta +i beta. <material_name> is later used when referring to this particular material.
The three defined materials in this example are Air with a refractive index of 1 (delta =

beta = 0), a Substrate associated with a complex refractive index equal to 1−6×10−6 +
i 2×10−8, and the material of particles, whose refractive index is n= 1−6×10−4 + i 2×10−8.

Defining the particles

15 # collection of particles

16 cylinder_ff = FormFactorCylinder (5* nanometer , 5* nanometer)

17 cylinder = Particle(m_particle , cylinder_ff)

18 prism_ff = FormFactorPrism3 (5* nanometer , 5* nanometer)

19 prism = Particle(m_particle , prism_ff)

We implement two different shapes of particles: cylinders and prisms (i.e. elongated parti-
cles with a constant equilateral triangular cross section).

All particles implemented in BornAgain are defined by their form factors, their sizes
and the material they are made of. Here, for the cylindrical particle, we input its radius
and height. For the prism, the possible inputs are the length of one side of its equilateral
triangular base and its height.

In order to define a particle, we proceed in two steps. For example for the cylindrical
particle, we first specify the form factor of a cylinder with its radius and height, both equal
to 5 nanometers in this particular case (see line 16). Then we associate this shape with the
constituting material as in line 17. The same procedure has been applied for the prism in
lines 18 and 19, respectively.

Characterizing particles assembly

20 particle_decoration = ParticleDecoration ()

21 particle_decoration.addParticle(cylinder , 0.0, 0.5)

22 particle_decoration.addParticle(prism , 0.0, 0.5)

23 interference = InterferenceFunctionNone ()

24 particle_decoration.addInterferenceFunction(interference)

The object which holds the information about the positions and densities of particles in our
sample is called ParticleDecoration (line 20). We use the associated function addParticle

for each particle shape (lines 21, 22). Its general syntax is

addParticle(<particle_name >, depth , abundance)

Page 17

Chapter 3. Simulation 3.3. Example 1: two types of islands on a substrate without interference

where <particle_name> is the name used to define the particles (lines 17 and 19), depth
(default value =0) is the vertical position, expressed in nanometers, of the particles in a
given layer (the association with a particular layer will be done during the next step) and
abundance is the proportion of this type of particles, normalized to the total number of
particles. Here we have 50% of cylinders and 50% of prisms.

B

Remark: Depth of particles
The vertical positions of the particles in a layer are given in relative coordinates. For
the top layer, the bottom of the layer corresponds to depth=0 and negative values
would correspond to particles floating above layer 1 since the vertical axis, shown in
figure 3.1 is pointing upwards. But for all the other layers, it is the top of the layer
which corresponds to depth=0.

Finally, lines 23 and 24 specify that there is no coherent interference between the waves
scattered by these particles. In this case, the intensity is calculated by the incoherent sum
of the scattered waves: 〈|F j |2〉, where F j is the form factor associated with the particle of
type j . The way these waves interfere imposes the horizontal distribution of the particles
as the interference reflects the long or short-range order of the particles distribution (see
Theory). On the contrary, the vertical position is imposed when we add the particles in a
given layer by parameter depth, as shown in lines 21 and 22.

Multilayer

25 # air layer with particles and substrate form multi layer

26 air_layer = Layer(m_air)

27 air_layer.setDecoration(particle_decoration)

28 substrate_layer = Layer(m_substrate , 0)

29 multi_layer = MultiLayer ()

30 multi_layer.addLayer(air_layer)

31 multi_layer.addLayer(substrate_layer)

32 return multi_layer

We now have to configure our sample. For this first example, the particles, i.e. cylinders and
prisms, are on top of a substrate in an air layer. The order in which we define these layers
is important: we start from the top layer down to the bottom one.

Let us start with the air layer. It contains the particles. In line 26, we use the previously
defined mAmbience (="air" material) (line 11). The command in line 27 shows that this
layer is decorated by adding the particles using particle decoration object defined earlier.
The substrate layer only contains the substrate material (line 28).

There are different possible syntaxes to define a layer. As shown in lines 26 and 28, we
can use Layer(<material_name>,thickness) or Layer(<material_name>). The sec-
ond case corresponds to the default value of the thickness, equal to 0. The thickness is
expressed in nanometers.

Our two layers are now fully characterized. The sample is assembled using MultiLayer()
constructor (line 29): we start with the air layer decorated with the particles (line 30), which
is the layer at the top and end with the bottom layer, which is the substrate (line 31).

Page 18

Chapter 3. Simulation 3.3. Example 1: two types of islands on a substrate without interference

Characterizing the input beam and output detector

33 def get_simulation ():

34 """

35 Create and return GISAXS simulation with beam and detector

defined

36 """

37 simulation = Simulation ()

38 simulation.setDetectorParameters (100, -1.0*degree , 1.0* degree

, 100, 0.0* degree , 2.0* degree , True)

39 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)

40 return simulation

The first stage is to create the Simulation() object (line 37). Then we define the detector
(line 38) and beam parameters (line 39). Those functions are part of the Simulation class.
The different incident and exit angles are shown in figure 3.1.

The detector parameters are set using ranges of angles via the function:

setDetectorParameters(n_phi , phi_f_min , phi_f_max , n_alpha ,

alpha_f_min , alpha_f_max , isgisaxs_style=false)},

where n_phi=100 is the number of iterations for φ f ,
phi_f_min=-1.0*degree and phi_f_max=1.0*degree are the minimum and maximum
values respectively of φ f ,
n_alpha=100 is the number of iterations for α f ,
alpha_f_min=0.0*degree and alpha_f_max=2.0*degree are the minimum and maxi-
mum values respectively of α f .
isgisaxs_style=True (default value = False) is a boolean used to characterise the struc-
ture of the output data. If isgisaxs_style=True, the output data is binned at constant
values of the sine of the output angles, α f and φ f , otherwise it is binned at constant values
of these two angles.

For the beam the function to use is setBeamParameters(lambda, alpha_i, phi_i), where
lambda=1.0*angstrom is the incident beam wavelength, alpha_i=0.2*degree is the in-
cident grazing angle on the surface of the sample, phi_i=0.0*degree is the in-plane di-
rection of the incident beam (measured with respect to the x-axis).

Running the simulation and plotting the results

41 def run_simulation ():

42 """

43 Run simulation and plot results

44 """

45 sample = get_sample ()

46 simulation = get_simulation ()

47 simulation.setSample(sample))

Page 19

Chapter 3. Simulation 3.3. Example 1: two types of islands on a substrate without interference

48 simulation.runSimulation ()

49 result = simulation.getIntensityData ().getArray () + 1 # for

log scale

50 pylab.imshow(numpy.rot90(result , 1), norm=matplotlib.colors.

LogNorm (), extent =[-1.0, 1.0, 0, 2.0])

51 pylab.show()

In function defined starting from the line 41 we bring all items together. We create the sam-
ple and the simulation objects at the lines 45 and 46, using calls to the previously defined
functions. We assign the sample to the simulation at line 47 and finally launch the simula-
tion at line 48.

In line 49 we obtain the simulated intensity as a function of outgoing angles α f and
φ f for further uses (plots, fits,. . .) as a NumPy array containing n_phi×n_alpha datapoints.
Lines 50-51 produces the two-dimensional contourplot of the intensity as a function of α f

and φ f shown in figure 3.2.

phi_f
0 20 40 60 80 100

a
lp

h
a

_
f

0

20

40

60

80

100

1

10

210

3
10

410

5
10

Figure 3.2: Simulated grazing-incidence small-angle X-ray scattering from a mixture of
cylindrical and prismatic nanoparticles without any interference, deposited on top of a
substrate. The input beam is characterized by a wavelength λ of 1 Å and incident angles
αi = 0.2◦, φi = 0◦. The cylinders have a radius and a height both equal to 5 nm, the prisms
are characterized by a side length equal to 5 nm and they are also 5 nm high. The material
of the particles has a refractive index of 1−6×10−4 + i 2×10−8. For the substrate it is equal
to 1−6×10−6+ i 2×10−8. The colorscale is associated with the output intensity in arbitrary
units.

Page 20

Chapter 3. Simulation 3.4. Example 2: working with sample parameters

3.4 Example 2: working with sample parameters

This section gives additional details about the manipulation of sample parameters during
run time; that is after the sample has already been constructed. For a single simulation this
is normally not necessary. However it might be useful during interactive work when the
user tries to find optimal sample parameters by running a series of simulations. A similar
task also arises when the theoretical model, composed of the description of the sample
and of the simulation, is used for fitting real data. In this case, the fitting kernel requires
a list of the existing sample parameters and a mechanism for changing the values of these
parameters in order to find their optima.

In BornAgain this is done using the so-called sample parameter pool mechanism. We
are going to briefly explain this approach using the example of Section 3.3.

In BornAgain a sample is described by a hierarchical tree of objects. For the multilayer
created in the previous section this tree can be graphically represented as shown in Fig. 3.3.
Similar trees can be printed in a Python session by running multi_layer.printSampleTree()

The top MultiLayer object is composed of three children, namely Layer #0, Layer

Interface #0 and Layer #1. The children objects might themselves also be decomposed
into tree-like structures. For example, Layer #0 contains a ParticleDecoration object,
which holds information related to the two types of particles populating the layer. All nu-
merical values used during the sample construction (thickness of layers, size of particles,
roughness parameters) are part of the same tree structure. They are marked in the figure
with shaded gray boxes.

These values are registered in the sample parameter pool using the name composed of
the corresponding nodes’ names. And they can be accessed/changed during run time. For
example, the height of the cylinders populating the first layer can be changed from the
current value of 5 nm to 1 nm by running the command

multi_layer.setParameterValue ('/ MultiLayer/Layer0/

ParticleDecoration/ParticleInfo0/Particle/FormFactorCylinder/

height ', 1.0)

A list of the names and values of all registered sample’s parameters can be displayed
using the command

> multi_layer.printParameters ()

The sample contains following parameters ('name ':value)

'/MultiLayer/Layer0/ParticleDecoration/ParticleInfo0/Particle/

FormFactorCylinder/height ':5

'/MultiLayer/Layer0/ParticleDecoration/ParticleInfo0/Particle/

FormFactorCylinder/radius ':5

'/MultiLayer/Layer0/ParticleDecoration/ParticleInfo0/abundance

':0.5

'/MultiLayer/Layer0/ParticleDecoration/ParticleInfo0/depth ':0

'/MultiLayer/Layer0/ParticleDecoration/ParticleInfo1/Particle/

FormFactorPrism3/half_side ':5

'/MultiLayer/Layer0/ParticleDecoration/ParticleInfo1/Particle/

FormFactorPrism3/height ':5

Page 21

Chapter 3. Simulation 3.4. Example 2: working with sample parameters

MultiLayer

Layer #0

ParticleDecoration

Particle Info 0

Particle

FormFactorCylinder

height:5.0

radius:5.0

abundance:0.5

depth:0.0

Particle Info 1

Particle

FormFactorPrism3

half_side:5.0

height:5.0

abundance:0.5

depth:0.0

thickness:0.0

Layer interface #0

roughness

corrlength:0.0

hurst:0.0

sigma:0.0Layer #1

thickness:0.0

CrossCorrLength:0.0

Figure 3.3: Tree representation of the sample structure.

Page 22

Chapter 3. Simulation 3.4. Example 2: working with sample parameters

'/MultiLayer/Layer0/ParticleDecoration/ParticleInfo1/abundance

':0.5

'/MultiLayer/Layer0/ParticleDecoration/ParticleInfo1/depth ':0

'/MultiLayer/Layer0/thickness ':0

'/MultiLayer/Layer1/thickness ':0

'/MultiLayer/LayerInterface/roughness/corrlength ':0

'/MultiLayer/LayerInterface/roughness/hurst ':0

'/MultiLayer/LayerInterface/roughness/sigma ':0

'/MultiLayer/crossCorrLength ':0

Wildcards '*' can be used to reduce typing or to work on a group of parameters. In the
example below, the first command will change the height of all cylinders in the same way,
as in the previous example. The second line will change simultaneously the height of both
cylinders and prisms.

multi_layer.setParameterValue ('* FormFactorCylinder/height ', 1.0)

multi_layer.setParameterValue ('*height ', 1.0)

The complete example described in this section can be found at

./ Examples/python/fitting/ex001_SampleParametersIntro/

SampleParametersIntro.py

Page 23

Chapter 4. Fitting

Chapter 4

Fitting

In addition to the simulation of grazing incidence X-ray and neutron scattering by multi-
layered samples, BornAgain also offers the option to fit the numerical model to reference
data by modifying a selection of sample parameters from the numerical model. This aspect
of the software is discussed in the current chapter.

Section 4.1 details the implementation of fittings in BornAgain . Python fitting exam-
ples with detailed explanations of every fitting step are given in Section 4.2. Advanced fitting
techniques, including fine tuning of minimization algorithms, simultaneous fit of different
data sets, parameters correlation, are covered in Section 4.3. Section 4.4 contains some
practical advice which might help the user to get right answers from BornAgain fitting.

4.1 Implementation in BornAgain

Fitting in BornAgaindeals with estimating the optimum parameters in the numerical model
by minimizing the difference between numerical and reference data. The features include

• a variety of multidimensional minimization algorithms and strategies.

• the choice over possible fitting parameters, their properties and correlations.

• the full control on objective function calculations, including applications of different
normalizations and assignments of different masks and weights to different areas of
reference data.

• the possibility to fit simultaneously an arbitrary number of data sets.

Figure 4.1 shows general work flow of a typical fitting procedure.
Before running the fitting the user is required to prepare some data and to configure the

fitting kernel of BornAgain . The required stages are

• Preparing the sample and the simulation description (multilayer, beam, detector pa-
rameters).

Page 24

Chapter 4. Fitting 4.1. Implementation in BornAgain

Fitting

results

FitSuite
Simulated

data

Minimization

Adjusted

parameters
Simulation

2

value
2

calculations

Sample

User information BornAgain fitting

Figure 4.1: Fitting work flow.

• Choosing the fitting parameters.

• Loading the reference data.

• Defining the minimization settings.

The class FitSuite contains the main functionalities to be used for the fit and serves as
the main interface between the user and the fitting work flow. The later involves iterations
during which

• The minimizer makes an assumption about the optimal sample parameters.

• These parameters are propagated to the sample.

• The simulation is performed for the given state of the sample.

• The simulated data (intensities) are propagated to the χ2 module.

• The later calculates χ2 using the simulated and reference data.

• The value of χ2 is propagated to the minimizer, which makes new assumptions about
optimal sample parameters.

The iteration process is going on under the control of the selected minimization algo-
rithm, without any intervention from the user. It stops

• when the maximum number of iteration steps has been exceeded,

Page 25

Chapter 4. Fitting 4.1. Implementation in BornAgain

• when the function’s minimum has been reached within the tolerance window,

• if the minimizer could not improve the values of the parameters.

After the control is returned, fitting results can be retrieved. They consist in the best χ2

value found, the corresponding optimal sample parameters and the intensity map simu-
lated with this set of parameters.

Details of FitSuite class implementation and description of each interface are given
in Section 5.1.3. The following parts of this section will detail each of the main stages nec-
essary to run a fitting procedure.

4.1.1 Preparing the sample and the simulation description

This step is similar for any simulation using BornAgain (see Section 3). It consists in first
characterizing the geometry of the system: the particles (shapes, sizes, refractive indices),
the different layers (thickness, order, refractive index, a possible roughness of the interface),
the interference between the particles and the way they are distributed in the layers (buried
particles or particles sitting on top of a layer). Then we specify the parameters of the input
beam and of the output detector.

4.1.2 Choice of parameters to be fitted

In principle, every parameter used in the construction of the sample can be used as a fit-
ting parameter. For example, the particles’ heights, radii or the layer’s roughness or thick-
ness could be selected using the parameter pool mechanism. This mechanism is explained
in detail in Section 3.4 and it is therefore recommended to read it before proceeding any
further.

The user specifies selected sample parameters as fit parameters using FitSuite and its
addFitParameter method

fit_suite = FitSuite ()

fit_suite.addFitParameter(<name> , <initial value> , <step> , <

limits>)

where <name> corresponds to the parameter name in the sample’s parameter pool. By us-
ing wildcards in the parameter name, a group of sample parameters, corresponding to the
given pattern, can be associated with a single fitting parameter and fitted simultaneously
to get a common optimal value (see Section 3.4).

The second parameter <initial value> correspond to the initial value of the fitting pa-
rameter, while the third one is responsible to the initial iteration steps size. The last pa-
rameter <AttLimits> corresponds to the boundaries imposed on parameter value. It can
be

• limitless() by default,

• fixed(),

• lowerLimited(<min_value>),

Page 26

Chapter 4. Fitting 4.1. Implementation in BornAgain

• upperLimited(<max_value>),

• limited(<min_value>, <max_value>).

where <min_value> and <max_value> are double values corresponding to the lower and
higher boundary, respectively.

4.1.3 Associating reference and simulated data

The minimization procedure deals with a pair of reference data (normally associated with
experimental data) and the theoretical model (presented by the sample and the simulation
descriptions).

We assume that the experimental data are a two-dimensional intensity matrix as func-
tion of the output scattering angles α f and φ f (see Fig. 3.1). The user is required to provide
the data in the form of an ASCII file containing an axes binning description and the inten-
sity data itself.

B
Remark: We recognize the importance of supporting the most common data formats.
We are going to provide this feature in the following releases and welcome users’ re-
quests on this subject.

To associate the simulation and the reference data to the fitting engine, method
addSimulationAndRealData has to be used as shown

fit_suite = FitSuite ()

fit_suite.addSimulationAndRealData(<simulation >, <reference >, <

chi2_module >)

Here <simulation> corresponds to a BornAgain simulation object with the sample,
beam and detector fully defined, <reference> corresponds to the experimental data object
obtained from the ASCII file and <chi2_module> is an optional parameter for advanced
control of χ2 calculations.

It is possible to call this given method more than once to submit more than one pair
of <simulation>, <reference> to the fitting procedure. In this way, simultaneous fits of
some combined data sets are performed.

By using the third <chi2_module> parameter, different normalizations and weights can
be applied to give user full control of the way χ2 is calculated. This feature will be explained
in Section 4.3.

4.1.4 Minimizer settings

BornAgain contains a variety of minimization engines from ROOT and GSL libraries. They
are listed in Table 4.1. By default Minuit2 minimizer with default settings will be used and
no additional configuration needs to be done. The remainder of this section explains some
of the expert settings, which can be applied to get better fit results.

The default minimization algorithm can be changed using MinimizerFactory as shown
below

Page 27

Chapter 4. Fitting 4.1. Implementation in BornAgain

fit_suite = FitSuite ()

minimizer = MinimizerFactory.createMinimizer("<Minimizer name >","

<algorithm >")

fit_suite.setMinimizer(minimizer)

where <Minimizer name> and <algorithm> can be chosen from the first and sec-
ond column of Table 4.1 respectively. The list of minimization algorithms implemented
in BornAgain can also be obtained using MinimizerFactory.printCatalogue() com-
mand.

Minimizer name Algorithm Description

Minuit2 [4] Migrad According to [5] best minimizer for nearly all functions,

variable-metric method with inexact line search,

a stable metric updating scheme,

and checks for positive-definiteness.

Simplex simplex method of Nelder and Mead

usually slower than Migrad,

rather robust with respect to gross fluctuations in the

function value, gives no reliable information about

parameter errors,

Combined minimization with Migrad

but switches to Simplex if Migrad fails to converge.

Scan not intended to minimize, just scans the function,

one parameter at a time, retains the best value after

each scan

Fumili optimized method for least square and log likelihood

minimizations

GSLMultiMin [6] ConjugateFR Fletcher-Reeves conjugate gradient algorithm,

ConjugatePR Polak-Ribiere conjugate gradient algorithm,

BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm,

BFGS2 improved version of BFGS,

SteepestDescent follows the downhill gradient of the function at each step

GSLMultiFit [7] Levenberg-Marquardt Algorithm

GSLSimAn [8] Simulated Annealing Algorithm

Table 4.1: List of minimizers implemented in BornAgain.

Page 28

Chapter 4. Fitting 4.2. Basic Python fitting example

There are several options common to every minimization algorithm, which can be changed
before starting the minimization. They are handled by MinimizerOptions class:

options = MinimizerOptions ()

options.setMaxFunctionCalls (10)

fit_suite.getMinimizer ().setOptions(options)

In the above code snippet, a number of “maximum function calls”, namely the maximum
number of times the minimizer is allowed to call the simulation, is limited to 10.

There are also expert-level options common for all minimizers as well as a number of
options to tune individual minimization algorithms. They will be explained in Section 4.3.

4.1.5 Running the fitting ant retrieving the results

After the initial configuration of FitSuite has been performed, the fitting can be started
using the command

fit_suite.runFit ()

Depending on the complexity of the sample and the number of free sample parameters
the fitting process can take from tens to thousands of iterations. The results of the fit can
be printed on the screen using the command

fit_suite.printResults ()

Section 4.2 gives more details about how to access the fitting results.

4.2 Basic Python fitting example

In this section we are going to go through a complete example of fitting using BornAgain.
Each step will be associated with a detailed piece of code written in Python. The complete
listing of the script is given in Appendix (see Listing A.2). The script can also be found at

./ Examples/python/fitting/ex002_FitCylindersAndPrisms/

FitCylindersAndPrisms.py

This example uses the same sample geometry as in Section 3.3. Cylindrical and prismatic
particles in equal proportion are deposited on a substrate layer, with no interference be-
tween the particles. We consider the following parameters to be unkown

• the radius of cylinders,

• the height of cylinders,

• the half side length of the prisms’ triangular basis,

• the height of prisms.

Page 29

Chapter 4. Fitting 4.2. Basic Python fitting example

Our reference data are a “noisy” two-dimensional intensity map obtained from the sim-
ulation of the same geometry with a fixed value of 5nm for all four of these parameters.
Then we run our fitting using default minimizer settings starting with a cylinder’s height of
4nm, a cylinder’s radius of 6nm, a prism’s half side of 6nm and a length equal to 4nm. As a
result, the fitting procedure is able to find the correct value of 5nm for all four parameters.

Importing Python libraries

1 from libBornAgainCore import *

2 from libBornAgainFit import *

We start from importing two BornAgain libraries required to create the sample description
and to run the fitting.

Building the sample

5 def get_sample ():

6 """

7 Build the sample representing cylinders and pyramids on top

of substrate without interference.

8 """

9 # defining materials

10 m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,

0.0)

11 m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)

12 m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)

13

14 # collection of particles

15 cylinder_ff = FormFactorCylinder (1.0* nanometer , 1.0* nanometer

)

16 cylinder = Particle(m_particle , cylinder_ff)

17 prism_ff = FormFactorPrism3 (1.0* nanometer , 1.0* nanometer)

18 prism = Particle(m_particle , prism_ff)

19 particle_decoration = ParticleDecoration ()

20 particle_decoration.addParticle(cylinder , 0.0, 0.5)

21 particle_decoration.addParticle(prism , 0.0, 0.5)

22 interference = InterferenceFunctionNone ()

23 particle_decoration.addInterferenceFunction(interference)

24

25 # air layer with particles and substrate form multi layer

26 air_layer = Layer(m_air)

27 air_layer.setDecoration(particle_decoration)

28 substrate_layer = Layer(m_substrate)

29 multi_layer = MultiLayer ()

30 multi_layer.addLayer(air_layer)

31 multi_layer.addLayer(substrate_layer)

Page 30

Chapter 4. Fitting 4.2. Basic Python fitting example

32 return multi_layer

The function starting at line 5 creates a multilayered sample with cylinders and prisms us-
ing arbitrary 1nm value for all size’s of particles. The details about the generation of this
multilayered sample are given in Section 3.3.

Creating the simulation

35 def get_simulation ():

36 """

37 Create GISAXS simulation with beam and detector defined

38 """

39 simulation = Simulation ()

40 simulation.setDetectorParameters (100, -1.0*degree , 1.0* degree

, 100, 0.0* degree , 2.0* degree , True)

41 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)

42 return simulation

The function starting at line 35 creates the simulation object with the definition of the beam
and detector parameters.

Preparing the fitting pair

45 def run_fitting ():

46 """

47 run fitting

48 """

49 sample = get_sample ()

50 simulation = get_simulation ()

51 simulation.setSample(sample)

52

53 real_data = OutputDataIOFactory.readIntensityData('

refdata_fitcylinderprisms.txt')

Lines 49- 51 generate the sample and simulation description and assign the sample to the
simulation. Our reference data are contained in the file 'refdata_fitcylinderprisms.txt'.
This reference had been generated by adding noise on the scattered intensity from a numer-
ical sample with a fixed length of 5 nm for the four fitting parameters (i.e. the dimensions
of the cylinders and prisms). Line 53 creates the real data object by loading the ASCII data
from the input file.

Setting up FitSuite

55 fit_suite = FitSuite ()

56 fit_suite.addSimulationAndRealData(simulation , real_data)

57 fit_suite.initPrint (10)

Page 31

Chapter 4. Fitting 4.2. Basic Python fitting example

Line 55 creates a FitSuite object which provides the main interface to the minimization
kernel of BornAgain . Line 56 submits simulation description and real data pair to the
subsequent fitting. Line 57 sets up FitSuite to print on the screen the information about
fit progress once per 10 iterations.

60 fit_suite.addFitParameter("*FormFactorCylinder/height", 4.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

61 fit_suite.addFitParameter("*FormFactorCylinder/radius", 6.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

62 fit_suite.addFitParameter("*FormFactorPrism3/height", 4.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

63 fit_suite.addFitParameter("*FormFactorPrism3/half_side", 6.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

Lines 60– 63 enter the list of fitting parameters. Here we use the cylinders’ height and radius
and the prisms’ height and half side length. The cylinder’s length and prism half side are
initially equal to 4nm, whereas the cylinder’s radius and the prism length are equal to 6nm
before the minimization. The iteration step is equal to 0.01nm and only the lower boundary
is imposed to be equal to 0.01nm.

Running the fit and accessing results

66 fit_suite.runFit ()

67

68 print "Fitting completed."

69 fit_suite.printResults ()

70 print "chi2:", fit_suite.getMinimizer ().getMinValue ()

71 fitpars = fit_suite.getFitParameters ()

72 for i in range(0, fitpars.size()):

73 print fitpars[i]. getName (), fitpars[i]. getValue (),

fitpars[i]. getError ()

Line 66 shows the command to start the fitting process. During the fitting the progress will
be displayed on the screen. Lines 69– 73 shows different ways of accessing the fit results.

More details about fitting, access to its results and visualization of the fit progress using
matplotlib libraries can be learned from the following detailed example

./ Examples/python/fitting/ex002_FitCylindersAndPrisms/

FitCylindersAndPrisms_detailed.py

Page 32

Chapter 4. Fitting 4.3. Advanced fitting

4.3 Advanced fitting

4.3.1 Affecting χ2 calculations

4.3.2 Simultaneous fits of several data sets

4.3.3 Using fitting strategies

4.3.4 Masking the real data

4.3.5 Tuning fitting algorithms

4.3.6 Fitting with correlated sample parameters

4.4 How to get the right answer from fitting

One of the main difficulties in fitting the data with the model is the presence of multiple
local minima in the objective function. Many problems can cause the fit to fail, for example:

• an unreliable physical model,

• an unappropriate choice of objective function

• multiple local minima,

• an unphysical behavior of the objective function, unphysical regions in the parame-
ters space,

• an unreliable parameter error calculation in the presence of limits on the parameter
value,

• an exponential behavior of the objective function and the corresponding numerical
inaccuracies, excessive numerical roundoff in the calculation of its value and deriva-
tives,

• large correlations between parameters,

• very different scales of parameters involved in the calculation,

• not positive definite error matrix even at minimum.

The given list, of course, is not only related to BornAgain fitting. It remains applicable
to any fitting program and any kind of theoretical model. Below we give some recommen-
dations which might help the user to achieve reliable fit results.

General recommendations

• initially choose a small number of free fitting parameters,

• eliminate redundant parameters,

Page 33

Chapter 4. Fitting 4.4. How to get the right answer from fitting

• provide a good initial guess for the fit parameters,

• start from the default minimizer settings and perform some fine tuning after some
experience has been acquired,

• repeat the fit using different starting values for the parameters or their limits,

• repeat the fit, fixing and varying different groups of parameters,

to be continued...

Page 34

Chapter 5. Software architecture

Chapter 5

Software architecture

BornAgain is written in C++ and uses an object oriented approach to achieve modular-
ity, extensibility and transparency. This leads to the task driven rather than the command
driven approach in different aspects of the simulation and fitting of GISAS data. The user
defines the sample structure, beam and detector characteristics and fit parameters using
building blocks – classes – defined in core libraries of the framework. These buildings
blocks are combined by the user according to his current task using one the following ap-
proaches:

• The user creates a Python script with a sample description and simulation settings
using the BornAgainAPI. The user then runs the simulation by executing the script in
the Python interpreter and assesses the simulation results using his preferred graph-
ics or analysis library, e.g. Python + numpy + matplotlib.

• The user may write a standalone C++ application linked to the BornAgain libraries.

• The user interacts with the framework through a graphical user interface (forthcom-
ing).

The object oriented approach in the software design allows users to have a much higher
level of flexibility in the sample construction; it also decouples the building blocks used in
the internal calculations and thereby facilitates the creation of new models, with little or no
modification to the existing code.

The general structure of BornAgain and the way the user interacts with it are shown in
Fig. 5.1. The framework consists of two shared libraries, libBornAgainCore and libBornAgainFit.
Thanks to the Python interface they can be imported into Python as external modules. The
library libBornAgainCore contains a number of classes, grouped into several class cat-
egories, necessary for the description of a model and running a simulation. The library
libBornAgainFit contains a number of minimization engines and interfaces to them, al-
lowing the user to fit real data with the model previously defined.

BornAgaindepends on a few external and well established open-source libraries: boost,
GNU scientific library, Eigen and Fast Fourier Transformation libraries. They are required
to be installed on the system to run BornAgain on Unix Platforms. In the case of Windows

Page 35

Chapter 5. Software architecture 5.1. Data classes for simulations and fits

minimizers

libFit

Figure 5.1: Structure of BornAgain libraries.

Platform they are added to the system automatically during BornAgain installation. Other
libraries shown on the plot (ROOT, matplotlib) are optional.

5.1 Data classes for simulations and fits

This section will give an overview of the classes that are used to describe all the data needed
to perform a single simulation. The prime elements of this data are formed by the sample,
the experimental conditions (beam and detector parameters) and simulation parameters.

These classes constitute the main interface to the software’s users, since they will mostly
be interacting with the program by creating samples and running simulations with specific
parameters. Since it is not the intent to explain internals of classes in this document, the
text and figures will only mention the most important methods and fields of the classes
discussed. Furthermore, getters and setters of private member fields will not be indicated,
although these do belong to the public interface. For more detailed information about the
project’s classes, their methods and fields, the reader is referred to the source code docu-
mentation. REF?

5.1.1 The Experiment object

The Experiment class holds all references to data objects that are needed to perform a sim-
ulation. These consist in a sample description, possibly implemented by a builder object,
detector and beam parameters and finally, a simulation parameter class that defines the
different approximations that can be used during a simulation. Besides getters and set-
ters for these fields, the class also contains a runSimulation() method that will generate

Page 36

Chapter 5. Software architecture 5.1. Data classes for simulations and fits

an ISimulation object that will perform the actual computations. The class diagram for
Experiment is shown in figure 5.2.

Simulation Data

Experiment

– mp_sample : ISample*

– mp_sample_builder : ISampleBuilder*

– m_detector : Detector

– m_beam : Beam

– m_intensity_map : OutputData<double>

– m_sim_params : SimulationParameters

+ clone() : Experiment*

+ runSimulation() : void

+ normalize() : void

ISample

Detector

Beam

SimulationParameters

GISASExperiment

The “runSimulation()” method retrieves
an ISimulation object from the topmost
ISample object and calls its “run()”
method to perform the actual computa-
tions.

The “runSimulation()” method retrieves
an ISimulation object from the topmost
ISample object and calls its “run()”
method to perform the actual computa-
tions.

Figure 5.2: The Experiment class as a container for sample, beam, detector and simulation
parameters.

5.1.2 The ISample class hierarchy

Samples are described by a hierarchical tree of objects which all adhere to the ISample in-
terface. The composite pattern is used to achieve a common interface for all objects in
the sample tree. The sample description is maximally decoupled from all computational
classes, with the exception of the “createDWBASimulation()” method. This method will
create a new object of type “DWBASimulation” that is capable of calculating the scattering
contributions originating from the sample part in question. This coupling is not very tight
however, since the ISample subclasses only need to know about which class to instantiate
and return.

Page 37

Chapter 5. Software architecture 5.1. Data classes for simulations and fits

This interface and two of its subclasses are sketched in figure 5.3.

Sample description

n

«interface»

ISample

+ clone() : ISample*

+ createDWBASimulation() : DWBASimulation*

MultiLayer

– m_layers : std::vector<Layer *>

– m_interfaces : std::vector<LayerInterface *>

+ getNumberOfLayers() : size_t

+ getNumberOfInterfaces() : size_t

+ addLayer(const Layer &layer) : void

Layer

– mp_material : IMaterial*

– m_thickness : double

+ getThickness() : double

+ setThickness(double thickness) : void

Figure 5.3: The ISample interface

5.1.3 The FitSuite class

5.1.4 The IMinimizer class

5.1.5 The MinimizerOptions class

Page 38

Appendix A. Listings

Appendix A

Listings

A.1 Python simulation example

The following script can be found at

./ Examples/python/simulation/ex001_CylindersAndPrisms/

CylindersAndPrisms.py

1 import numpy

2 import matplotlib

3 import pylab

4 from libBornAgainCore import *

5

6

7 def get_sample ():

8 """

9 Build and return the sample representing cylinders and

pyramids on top of

10 substrate without interference.

11 """

12 # defining materials

13 m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,

0.0)

14 m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)

15 m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)

16

17 # collection of particles

18 cylinder_ff = FormFactorCylinder (5* nanometer , 5* nanometer)

19 cylinder = Particle(m_particle , cylinder_ff)

20 prism_ff = FormFactorPrism3 (5* nanometer , 5* nanometer)

21 prism = Particle(m_particle , prism_ff)

22 particle_decoration = ParticleDecoration ()

23 particle_decoration.addParticle(cylinder , 0.0, 0.5)

Page 39

Appendix A. Listings A.1. Python simulation example

24 particle_decoration.addParticle(prism , 0.0, 0.5)

25 interference = InterferenceFunctionNone ()

26 particle_decoration.addInterferenceFunction(interference)

27

28 # air layer with particles and substrate form multi layer

29 air_layer = Layer(m_air)

30 air_layer.setDecoration(particle_decoration)

31 substrate_layer = Layer(m_substrate , 0)

32 multi_layer = MultiLayer ()

33 multi_layer.addLayer(air_layer)

34 multi_layer.addLayer(substrate_layer)

35 return multi_layer

36

37

38 def get_simulation ():

39 """

40 Create and return GISAXS simulation with beam and detector

defined

41 """

42 simulation = Simulation ()

43 simulation.setDetectorParameters (100, -1.0*degree , 1.0* degree

, 100, 0.0* degree , 2.0* degree , True)

44 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)

45 return simulation

46

47

48 def run_simulation ():

49 """

50 Run simulation and plot results

51 """

52 sample = get_sample ()

53 simulation = get_simulation ()

54 simulation.setSample(sample)

55 simulation.runSimulation ()

56 result = simulation.getIntensityData ().getArray () + 1 # for

log scale

57 pylab.imshow(numpy.rot90(result , 1), norm=matplotlib.colors.

LogNorm (), extent =[-1.0, 1.0, 0, 2.0])

58 pylab.show()

59

60

61 if __name__ == '__main__ ':

62 run_simulation ()

Page 40

Appendix A. Listings A.2. Python fitting example

A.2 Python fitting example

The following script can be found at

./ Examples/python/fitting/ex002_FitCylindersAndPrisms/

FitCylindersAndPrisms.py

1 from libBornAgainCore import *

2 from libBornAgainFit import *

3

4

5 def get_sample ():

6 """

7 Build the sample representing cylinders and pyramids on top

of substrate without interference.

8 """

9 # defining materials

10 m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,

0.0)

11 m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)

12 m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)

13

14 # collection of particles

15 cylinder_ff = FormFactorCylinder (1.0* nanometer , 1.0* nanometer

)

16 cylinder = Particle(m_particle , cylinder_ff)

17 prism_ff = FormFactorPrism3 (1.0* nanometer , 1.0* nanometer)

18 prism = Particle(m_particle , prism_ff)

19 particle_decoration = ParticleDecoration ()

20 particle_decoration.addParticle(cylinder , 0.0, 0.5)

21 particle_decoration.addParticle(prism , 0.0, 0.5)

22 interference = InterferenceFunctionNone ()

23 particle_decoration.addInterferenceFunction(interference)

24

25 # air layer with particles and substrate form multi layer

26 air_layer = Layer(m_air)

27 air_layer.setDecoration(particle_decoration)

28 substrate_layer = Layer(m_substrate , 0)

29 multi_layer = MultiLayer ()

30 multi_layer.addLayer(air_layer)

31 multi_layer.addLayer(substrate_layer)

32 return multi_layer

33

34

35 def get_simulation ():

36 """

37 Create GISAXS simulation with beam and detector defined

38 """

Page 41

Appendix A. Listings A.2. Python fitting example

39 simulation = Simulation ()

40 simulation.setDetectorParameters (100, -1.0*degree , 1.0* degree

, 100, 0.0* degree , 2.0* degree , True)

41 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)

42 return simulation

43

44

45 def run_fitting ():

46 """

47 run fitting

48 """

49 sample = get_sample ()

50 simulation = get_simulation ()

51 simulation.setSample(sample)

52

53 real_data = OutputDataIOFactory.readIntensityData('

refdata_fitcylinderprisms.txt')

54

55 fit_suite = FitSuite ()

56 fit_suite.addSimulationAndRealData(simulation , real_data)

57 fit_suite.initPrint (10)

58

59 # setting fitting parameters with starting values

60 fit_suite.addFitParameter("*FormFactorCylinder/height", 4.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

61 fit_suite.addFitParameter("*FormFactorCylinder/radius", 6.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

62 fit_suite.addFitParameter("*FormFactorPrism3/height", 4.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

63 fit_suite.addFitParameter("*FormFactorPrism3/half_side", 6.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

64

65 # running fit

66 fit_suite.runFit ()

67

68 print "Fitting completed."

69 fit_suite.printResults ()

70 print "chi2:", fit_suite.getMinimizer ().getMinValue ()

71 fitpars = fit_suite.getFitParameters ()

72 for i in range(0, fitpars.size()):

73 print fitpars[i]. getName (), fitpars[i]. getValue (),

fitpars[i]. getError ()

74

75 if __name__ == '__main__ ':

76 run_fitting ()

Page 42

Appendix B. Formfactors

Appendix B

Formfactors

• Parallelepiped

• Pyramid, Section B.2

• Cylinder

• Cone

• Prism3

• Tethraedron

• Prism6

• Cone6

• Cut-off sphere, Section B.1

• Cybooctaedron

• Facetted sphere

• Full sphere, Section B.3

• Full spheroid

• Box

• Anisotropic pyramid

• Ellipsoid

• Anisotropic hemi-spheroid

• Spheroid

Page 43

Appendix B. Formfactors B.1. Formfactor Cut-off Sphere

B.1 Formfactor Cut-off Sphere

B.1.1 Real-space geometry

A sphere, with a planar cut-off.

H 2R

Parameters:

• radius R

• heigth H

Restrictions:

• H ≤ 2R

Properties:

• volume V =πR3
[

2

3
+ H −R

R
− 1

3

(
H −R

R

)3]

• particle surface seen from above S =
 πR2, H > R

π
(
2RH −H 2

)
, H < R

.

• gyration radius along z axis Rg =
 R, H > Rp

2RH −H 2, H < R
.

B.1.2 Computing the formfactor

The formfactor can be computed analytically upto a 1-dimensional quadrature:

F (q,R, H) = exp
[
i qz (H −R)

] R∫
R−H

2πR2
z

J1(q||Rz)

q||Rz
exp

[
i qz z

]
d z (B.1)

with abbreviations

q|| =
√

q2
x +q2

y (B.2)

Rz =
√

R2 − z2 (B.3)

Page 44

Appendix B. Formfactors B.1. Formfactor Cut-off Sphere

B.1.3 Exemplary formfactor

|F |2/V 2, computed for R = 10 nm and H = 13 nm:

] ­1 [nm
y

 q
­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
z

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

] ­1 [nm
x

 q

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
y

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

B.1.4 Parameter dependence

|F |2/V 2, computed for R = 10 nm and H = 5, 10 and 15 nm:

] ­1 [nm
y

 q
­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
z

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2
H = 5 nm

] ­1 [nm
y

 q
­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
z

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2
H = 10 nm

] ­1 [nm
y

 q
­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
z

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2
H = 15 nm

B.1.5 Related particle shapes

Full sphere (Section B.3), Ellipsoid, Full spheroid, Hemi-ellipsoid.

B.1.6 References

Equation (B.1) agrees with the “sphere” formfactor of IsGISAXS [1].

Page 45

Appendix B. Formfactors B.2. Formfactor Pyramid

B.2 Formfactor Pyramid

B.2.1 Real-space geometry

A truncated square pyramid.

Parameters:

• size of the basemend side 2R

• heigth H

• angle α

Restrictions:

•
H

R
< tan(α)

Properties:

• volume V = 4

3
tan(α)

[
R3 −

(
R − H

tan(α)

)3]
• particle surface seen from above S = 4R2

• gyration radius along z axis Rg =p
2R

B.2.2 Computing the formfactor

The formfactor can be computed analytically upto a 1-dimensional quadrature:

F (q,R, H ,α) =
H∫

0

4R2
z sinc (qy Rz)exp(i qz z)d z (B.4)

or

F (q,R, H ,α) = H

qx qy
×[

cos[(qx −qy)R]K1 + sin[(qx −qy)]K2 −cos[(qx +qy)R]K3 − sin[(qx +qy)R]K4
] (B.5)

Page 46

Appendix B. Formfactors B.2. Formfactor Pyramid

with abbreviations

Rz = R − z

tan(α)
(B.6)

K1 = sinc (q1H)exp(i q1H)+ sinc (q2H)exp(−i q2H) (B.7)

K2 = −i sinc (q1H)exp(i q1H)+ i sinc (q2H)exp(−i q2H) (B.8)

K3 = sinc (q3H)exp(i q3H)+ sinc (q4H)exp(−i q4H) (B.9)

K4 = −i sinc (q3H)exp(i q3H)+ i sinc (q4H)exp(−i q4H) (B.10)

q1 = 1

2

[
qx −qy

tan(α)
+qz

]
(B.11)

q2 = 1

2

[
qx −qy

tan(α)
−qz

]
(B.12)

q3 = 1

2

[
qx +qy

tan(α)
+qz

]
(B.13)

q4 = 1

2

[
qx +qy

tan(α)
−qz

]
(B.14)

B.2.3 Exemplary formfactor

|F |2/V 2, computed for R = 10 nm, H = 13 nm and α= 60◦:

] ­1 [nm
y

 q
­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
z

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

] ­1 [nm
x

 q

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
y

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

B.2.4 Parameter dependence

|F |2/V 2, computed for R = 5 nm, α= 60◦ and H = 2.5, 5 and 7.5 nm:

Page 47

Appendix B. Formfactors B.2. Formfactor Pyramid

] ­1 [nm
y

 q
­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
z

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2
H = 2.5 nm

] ­1 [nm
y

 q
­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
z

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2
H = 5.0 nm

] ­1 [nm
y

 q
­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
z

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2
H = 7.5 nm

|F |2/V 2, computed for R = 5 nm, H = 5 nm and α= 50◦, 65◦ and 80◦:

] ­1 [nm
y

 q
­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
z

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2
 o = 50α

] ­1 [nm
y

 q
­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
z

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2
 o = 65α

] ­1 [nm
y

 q
­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
z

 q
­2

­1.5

­1

­0.5

0

0.5

1

1.5

2
 o = 80α

B.2.5 Related particle shapes

Cubooctaedron, Anisotropic pyramid.

B.2.6 References

Equation (B.4) agrees with the “pyramid” formfactor of IsGISAXS [1].

Page 48

Appendix B. Formfactors B.3. Formfactor Full Sphere

B.3 Formfactor Full Sphere

Formfactor full sphere is represented as a sphere with radius R.

2R
2R

Figure B.1: Sketch of the formfactor full sphere. Left: front view, right: top view.

F (q,R) = 4πR × sin(qR)−qR cos(qR)

(qR)3 ×exp
(
i qz R

)
(B.15)

Page 49

Appendix B. Formfactors B.3. Formfactor Full Sphere

]
­1

 [nm
z

 q

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
y

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2 2
 |

F
|

1

10

2
10

3
10

4
10

5
10

6
10

7
10

a]
­1

 [nm
x

 q

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

]
­1

 [
n

m
y

 q

­2

­1.5

­1

­0.5

0

0.5

1

1.5

2 2
 |

F
|

1

10

2
10

3
10

4
10

5
10

6
10

7
10

b

]
­1

 [nm
z

 q

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

 2
 |

F
|

10

2
10

3
10

4
10

5
10

6
10

7
10

c]
­1

 [nm
x

 q

­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2

 2
 |

F
|

10

2
10

3
10

4
10

5
10

6
10

7
10

d

Figure B.2: a: |F |2 plotted against qz and qy , b: |F |2 plotted against qx and qy , c: slice of the
picture a along the qz axis, d: slice of the picture b along the qx axis.

Page 50

Bibliography Bibliography

Bibliography

[1] R. Lazzari, J. Appl. Cryst. 35, 406–421 (2002).

[2] M. Lutz, Python pocket reference, O’Reilly media (42009).

[3] http://www.numpy.org.

[4] Minuit user’s guide, http://seal.web.cern.ch/seal/documents/minuit/

mnusersguide.pdf.

[5] http://seal.web.cern.ch/seal/documents/minuit/mntutorial.pdf.

[6] http://www.gnu.org/software/gsl/manual/html_node/

Multidimensional-Minimization.html.

[7] http://www.gnu.org/software/gsl/manual/html_node/Nonlinear-Least_

002dSquares-Fitting.html#Nonlinear-Least_002dSquares-Fitting.

[8] http://www.gnu.org/software/gsl/manual/html_node/Simulated-Annealing.

html.

Page 51

http://www.numpy.org
http://seal.web.cern.ch/seal/documents/minuit/mnusersguide.pdf
http://seal.web.cern.ch/seal/documents/minuit/mnusersguide.pdf
http://seal.web.cern.ch/seal/documents/minuit/mntutorial.pdf
http://www.gnu.org/software/gsl/manual/html_node/Multidimensional-Minimization.html
http://www.gnu.org/software/gsl/manual/html_node/Multidimensional-Minimization.html
http://www.gnu.org/software/gsl/manual/html_node/Nonlinear-Least_002dSquares-Fitting.html#Nonlinear-Least_002dSquares-Fitting
http://www.gnu.org/software/gsl/manual/html_node/Nonlinear-Least_002dSquares-Fitting.html#Nonlinear-Least_002dSquares-Fitting
http://www.gnu.org/software/gsl/manual/html_node/Simulated-Annealing.html
http://www.gnu.org/software/gsl/manual/html_node/Simulated-Annealing.html

	Introduction
	Quick start
	Quick start on Unix Platforms
	Quick start on Windows Platforms
	Getting help

	Installation
	Building and installing on Unix Platforms
	Third-party software
	Getting BornAgain source code
	Building and installing the code
	Running the first simulation

	Installing on Windows Platforms

	Simulation
	General methodology
	Geometry of the sample
	Units

	Example 1: two types of islands on top of substrate without interference
	Example 2: working with sample parameters

	Fitting
	Implementation in BornAgain
	Preparing the sample and the simulation description
	Choice of parameters to be fitted
	Associating reference and simulated data
	Minimizer settings
	Running the fitting ant retrieving the results

	Basic Python fitting example
	Advanced fitting
	Affecting 2 calculations
	Simultaneous fits of several data sets
	Using fitting strategies
	Masking the real data
	Tuning fitting algorithms
	Fitting with correlated sample parameters

	How to get the right answer from fitting

	Software architecture
	Data classes for simulations and fits
	The Experiment object
	The ISample class hierarchy
	The FitSuite class
	The IMinimizer class
	The MinimizerOptions class

	Listings
	Python simulation example
	Python fitting example

	Formfactors
	Formfactor Cut-off Sphere
	Real-space geometry
	Computing the formfactor
	Exemplary formfactor
	Parameter dependence
	Related particle shapes
	References

	Formfactor Pyramid
	Real-space geometry
	Computing the formfactor
	Exemplary formfactor
	Parameter dependence
	Related particle shapes
	References

	Formfactor Full Sphere

