BornAgain

Software for simulating and fitting
X-ray and neutron small-angle scattering
at grazing incidence

User Manual
0.2.1
January 28, 2014

C. Durniak, M. Ganeva, G. Pospelov, W. Van Herck, J. Wuttke

Scientific Computing Group
Jiilich Centre for Neutron Science
outstation at Heinz Maier-Leibnitz Zentrum Garching

Forschungszentrum Jiilich GmbH

Disclaimer

This manual is under development and does not yet constitute a comprehensive
listing of BornAgain features and functionality. The included information and in-
structions are subject to substantial changes and are provided only as a preview.

Page 1

Contents Contents

Contents

Introduction| 4
6
(1.1 Quick start on Unix Platforms|. 6
(1.2 Quick start on Windows Platforms| 7
1.3 Gettinghelp| 7
2_Installation| 8
[2.1 Building and installing on Unix Platforms|. 8
[2.1.1 Third-partysoftware| 9

[2.1.2 Getting BornAgain sourcecode| 10

[2.1.3 Building and installingthecode| 11

[2.1.4 Runningthe first simulation| 12

[2.2 Installing on Windows Platforms| 12

14
[3.1 General methodology| 14
[3.2 Geometryofthesample| 14
[3.3 Example 1: two types of islands on top of substrate without interference| . . . 16
[3.4 Example 2: working with sample parameters|. 20

4 Fitting 24
[4.1 Implementationin BornAgain| 24
[4.1.1 Preparing the sample and the simulation description| 26

[4.1.2 Choice of parametersto befitted|. 26

[4.1.3 Associating reference and simulated datal. 27

[4.1.4 Minimizersettings| e 27

[4.1.5 Running the fitting ant retrieving theresults| 29

[4.2 Basic Python fittingexample| 29
[4.3 Advancedfitting|. 33
[4.3.1 Affecting y2 calculations|. L 0 .. 33

[4.3.2 Simultaneous fits of several datasets| 33

[4.3.3 Using fitting strategies| e 33

[4.3.4 Maskingtherealdatal. 33

Page 2

Contents Contents

[4.3.5 Tuning fitting algorithms| 33
[4.3.6 Fitting with correlated sample parameters| 33

[4.4 How to get the right answer from fitting| 33
f hi r 35
5.1 Data classes for simulationsand fits| 36
[5.1.1 The Experimentobject|. 36
[5.1.2 The ISample class hierarchy|. 37
[5.1.3 TheFitSuiteclass| 38
5.1.4 ThelMinimizerclassl 38
[5.1.5 The MinimizerOptionsclass| 38

A _Listings 39
[A.1 Pythonsimulationexample|, 39
[A.2 Python fittingexample| L o 41
B_Form factors 43
[B.1 Parallelepiped| 45
B.2 BOXl e e e e e 47
B3 PrSmM3l . . . o e 49
B4 Tetrahedron| 51
BE Prsmblo ot 53
B.6 Conebl. e 55
B.7 Pyramid| 57
[B.8 Anisotropicpyramid| e 59
B.9 Cuboctahedronl 61
... 63
(B.11 Ellipsoidal cylinder| 65
BI2Conel e 67
[B.13 Full sphere| e 69
[B.14 Truncated Sphere| 71
[B.15 Full spheroid|. e 73
[B.16 Truncated spheroid|. 75
[B.17 Hemiellipsoid| 77
.. 79
B.19 Ripple2| 80

Page 3

Contents Contents

Introduction

BornAgain is a free software package to simulate and fit small-angle scattering at graz-
ing incidence (GISAS). It supports analysis of both X-ray (GISAXS) and neutron (GISANS)
data. Its name, BornAgain, indicates the central role of the distorted-wave Born approxi-
mation (DWBA) in the physical description of the scattering process. The software provides
a generic framework for modeling multilayer samples with smooth or rough interfaces and
with various types of embedded nanoparticles.

BornAgain almost completely reproduces the functionality of the widely used program
IsGISAXS by R. Lazzari [1].

BornAgain goes beyond IsGISAXS by supporting an unrestricted number of layers and
particles, diffuse reflection from rough layer interfaces, particles with inner structures, neu-
tron polarization and magnetic scattering. Adhering to a strict object-oriented design,
BornAgain provides a solid base for future extensions in response to specific user needs.

BornAgain is a platform-independent software, with active support for Linux, MacOS
and Microsoft Windows. It is a free and open source software provided under the terms of
the GNU General Public License (GPL). This documentation is released under the Creative
Commons license CC-BY-SA.

The authors will be grateful for all kind of feedback: criticism, praise, bug reports, fea-
ture requests or contributed modules. When BornAgain is used in preparing scientific pa-
pers, please cite this manual as follows:

C. Durniak, M. Ganeva, G. Pospelov, W. Van Herck, J. Wuttke (2013),

BornAgain - Software for simulating and fitting X-ray and neutron small-angle
scattering at grazing incidence, version 0.2.1,

http://apps. jcns.fz-juelich.de/BornAgain

This user guide starts with a brief description of the steps necessary for installing the
software and running a simulation on Unix and Windows platforms in Section|l} A more
detailed description of the installation procedure is given in Section[2} The general method-
ology of a simulation with BornAgain and detailed simulation usage examples are given in
Section 3| The fitting toolkit, provided by the framework, is presented in Section while

Page 4

http://apps.jcns.fz-juelich.de/BornAgain

Contents Contents

Section 5| provides a brief overview of the software architecture.

Icons used in this manual:

N this sign highlights further remarks.

A: this sign highlights essential points.

Page 5

Chapter 1. Quick start

Chapter 1

Quick start

1.1 Quick start on Unix Platforms

This section shortly describes how to build and install BornAgain from source and run
the first simulation on Unix Platforms. Further details about the installation procedure are

given in Section

Step I: installing the third party software
» compilers: clang versions = 3.1 or GCC versions = 4.2
e cmake (=2.8)
* boost library (= 1.48)
e GNU scientific library (= 1.15)
e fftw3 library (= 3.3.1)

e Python-2.7, python-devel, python-numpy-devel

Step II: getting the source

Download BornAgain source tarball fromhttp://apps. jcns.fz-juelich.de/BornAgain

or use the following git repository

git clone git://apps.jcns.fz-juelich.de/BornAgain.git

Step III: building the libraries and executable

mkdir <build_dir>; cd <build_dir>;

cmake -DCMAKE_INSTALL_PREFIX=<install_dir> <source_dir>
make

make check

make install

http://apps.jcns.fz-juelich.de/BornAgain

Chapter 1. Quick start 1.2. Quick start on Windows Platforms

Step IV: running an example

python <install_dir>/share/BornAgain/Examples/python/simulation/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

1.2 Quick start on Windows Platforms

Step I: installing the third party software

The current version of BornAgain requires Python, numpy, matplotlib to be installed
on the system. If you don’t have them already installed, you can use PythonXY installer
available at https://code.google. com/p/pythonxy which, with default installation op-
tions, contains at least these three packages.

Step II: using BornAgain installation package

Windows installation package can be downloaded fromhttp://apps. jens.fz-juelich.
de/BornAgain. Double-click on it to start the installation process. Then follow the instruc-
tions.

Step III: running the example
Run an example located in BornAgain installation directory:

python C:/BornAgain-0.9.2/Examples/python/simulation/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

1.3 Getting help

Users of the software who encounter problems during the installation of the framework
or during the run of a simulation can use the web-based issue tracking system at http:
//apps.jcns.fz-juelich.de/redmine/projects/bornagain/issuesto report a bug.
The same system can be used to request new features. This system is open for all users
in read mode, while submitting bug reports and feature requests are possible only after a
simple registration procedure.

Page 7

https://code.google.com/p/pythonxy
http://apps.jcns.fz-juelich.de/BornAgain
http://apps.jcns.fz-juelich.de/BornAgain
http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues
http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

Chapter 2. Installation

Chapter 2

Installation

BornAgain is supported under x86/x86_64 Linux, Mac OS X and Windows operating sys-
tems. It has been successfully compiled and tested on

e Microsoft Windows 7 64-bit, Windows 8 64-bit
¢ Mac OS X 10.8 (Mountain Lion)

e OpenSuse 12.3 64-bit

e Ubuntu 12.10, 13.04 64-bit

¢ Debian 7.1.0, 32-bit, 64-bit

At the moment we support build and installation from source on Unix Platforms (Linux,
Mac OS) and installation using binary installer packages on MS Windows 7, 8 (see Sec-
tion[2.1and Section[2.2} respectively). In the next releases we are planning to provide binary
installers for Mac OS X and Debian.

We welcome feedback and bug reports related to installation and use of BornAgain via
http://apps. jcns.fz-juelich.de/redmine/projects/bornagain/issues

2.1 Building and installing on Unix Platforms

BornAgain uses CMake to configure a build system for compiling and installing the frame-
work. There are three major steps to build BornAgain :

1. Acquiring the required third-party libraries.
2. Getting BornAgain source code.
3. Using CMake to build and install the software.

The remainder of this section explains each step in detail.

Page 8

http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

Chapter 2. Installation 2.1. Building and installing on Unix Platforms

2.1.1 Third-party software
To successfully build BornAgain a number of prerequisite packages must be installed.
» compilers: clang versions = 3.1 or GCC versions = 4.2
* cmake (= 2.8.3)
* boost library (= 1.48)
e GNU scientific library (= 1.15)
e fftw3 library (= 3.3)

e Python (= 2.7, < 3.0), python-devel, python-numpy-devel

Other packages are optional
* ROOT framework (adds several additional fitting algorithms to BornAgain)
* python-matplotlib (allows to run usage examples with graphics)

All required packages can be easily installed on most Linux distributions using the sys-
tem’s package manager. Below we give examples for a few selected operation systems.
Please note, that other distributions (Fedora, Mint, etc) may have different commands for
invoking the package manager as well as slightly different names of packages (like “boost”
instead of “libboost” etc). Besides the installation should be very similar.

Ubuntu (12.10, 13.04), Debian (7.1)
Installing the required packages

sudo apt-get install git cmake libgslO-dev libboost-all-dev
libfftw3-dev python-dev python-numpy

Installing the optional packages

sudo apt-get install libroot-* root-plugin-* root-system-*x ttf-
root-installer libeigen3-dev python-matplotlib python-
matplotlib -tk

OpenSuse 12.3
Adding the “scientific” repository

sudo zypper ar http://download.opensuse.org/repositories/science/
openSUSE_12.3 science

Installing the required packages

sudo zypper install git-core cmake gsl-devel boost-devel fftw3-
devel python-devel python-numpy-devel

Page 9

Chapter 2. Installation 2.1. Building and installing on Unix Platforms

Installing the optional packages

sudo zypper install libroot-* root-plugin-* root-system-* root-
ttf libeigen3-devel python-matplotlib

Mac 0§X10.8

To simplify the installation of third party open-source software on a Mac OS X system we
recommend the use of MacPorts package manager. The easiest way to install MacPorts is
by downloading the dmg from www.macports.org/install.php/and running the system’s
installer. After the installation new command “port” will be available in a terminal window
of your Mac.

Installing the required packages

sudo port -v selfupdate

sudo port install git-core cmake

sudo port install fftw-3 gsl

sudo port install boost -no_single-no_static+python27
sudo port select --set python python27

Installing the optional packages

sudo port install py27-matplotlib py27 -numpy py27-scipy
sudo port install root +fftw3+python27
sudo port install eigen3

2.1.2 Getting BornAgain source code

BornAgain source can be downloaded athttp://apps.jcns.fz-juelich.de/BornAgain
and unpacked with

tar xfz bornagain-<version>.tar.gz

Alternatively one can obtain BornAgain source from our public Git repository.

git clone git://apps.jcns.fz-juelich.de/BornAgain.git

More about Git

Our Git repository holds two main branches called “master” and “develop”. We consider
“master” branch to be the main branch where the source code of HEAD always reflects the
latest stable release. git clone command shown above

1. gives you a source code snapshot corresponding to the latest stable release,

2. automatically sets up your local master branch to track our remote master branch, so
you will be able to fetch changes from the remote branch at any time using git pull
command.

Page 10

www.macports.org/install.php
http://apps.jcns.fz-juelich.de/BornAgain

Chapter 2. Installation 2.1. Building and installing on Unix Platforms

“Master” branch is updated approximately once per month. The second branch, “de-
velop” branch, is a snapshot of the current development. This is where any automatic
nightly builds are built from. The develop branch is always expected to work. So in order to
get the most recent features of the source code, one can switch to it by

cd BornAgain
git checkout develop
git pull

2.1.3 Building and installing the code

BornAgain should be built using CMake cross platform build system. Having the third-party
libraries installed on your system and BornAgain source code acquired as explained in the
previous sections, type the build commands

mkdir <build_dir>

cd <build_dir>

cmake -DCMAKE_INSTALL_PREFIX=<install_dir> <source_dir>
make

Here <source_dir> is the name of the directory, where BornAgain source code has
been copied, <install_dir> is the directory, where you want the package to be installed,
and <build_dir> is the directory where the building will occur.

About CMake

Having a dedicated directory <build_dir> for the build process is recommended
%\ by CMake. This allows several builds with different compilers/options from the same

source and keeps the source directory clean from build remnants.

The compilation process invoked by the command “make” lasts about 10 minutes on
an average laptop of 2012 edition. On multi-core machines the compilation time can be
decreased by invoking command “make” with the parameter “make -j[N]”, where N is the
number of cores.

Running functional tests is an optional but recommended step. Command “make check”
will compile several additional tests and run them one by one. Each test contains the sim-
ulation of a typical GISAS geometry and the comparison on numerical level of simulation
results with reference files. Having 100% tests passed ensures that your local installation is
correct.

make check

100% tests passed, O tests failed out of 26
Total Test time (real) = 89.19 sec
[100%] Build target check

Page 11

Chapter 2. Installation 2.2, Installing on Windows Platforms

The last command “make install” copies the compiled libraries and some usage exam-
ples into the installation directory.

make install

After installation is completed, the location of BornAgain libraries needs to be included
into LD_LIBRARY_PATH and PYTHONPATH environment variables. This can be done by run-
ning BornAgain setup script in the terminal session

source <install_dir>/bin/thisbornagain.sh

Conveniently, given call can be placed in your . bashrc file.

Troubleshooting

In the case of a complex system setup, with libraries of different versions scattered across
multiple places (/opt/local, /usr/local etc.), you may want to help CMake in finding the
correct library paths by running cmake with additional parameter

cmake -DCMAKE_PREFIX_PATH=/usr/local -DCMAKE_INSTALL_PREFIX=<
install_dir> <source_dir>

2.1.4 Running the first simulation

In your installation directory you will find

./include/BornAgain - header files for compilation of your C++
program

./1lib - libraries to import into python or link with your C++
program

./share/BornAgain/Examples - directory with examples

Run your first example and enjoy the first BornAgain simulation plot.

python <install_dir>/share/BornAgain/Examples/python/simulation/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

2.2 Installing on Windows Platforms

Step I: install the third party software
The current version of BornAgain requires Python, numpy, matplotlib to be installed
on the system.

Page 12

Chapter 2. Installation 2.2, Installing on Windows Platforms

If you do not have have Python installed

You can use PythonXY installer at https://code.google.com/p/pythonxy which, with
the default installation options, contains at least these three packages. The user has to
download and install this package before proceeding to the installation of BornAgain.

If you have Python already installed

You might want to keep using this installation and to install missed modules. Required
libraries can be found at

matlab:
http://matplotlib.org/downloads.html

numpy , dateutil, pyparsing:
http://www.1lfd.uci.edu/ " gohlke/pythonlibs

Step II: use the installation package

BornAgain installation package for Windows can be downloaded fromhttp://apps. jcns |
fz-juelich.de/BornAgain. Double-click on it to start the installation process. And then
follow the instructions.

Step IV: run an example
Run an example located in BornAgain installation directory:

python C:/BornAgain-0.9.2/Examples/python/simulation/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

Page 13

https://code.google.com/p/pythonxy
http://apps.jcns.fz-juelich.de/BornAgain
http://apps.jcns.fz-juelich.de/BornAgain

Chapter 3. Simulation

Chapter 3

Simulation

3.1 General methodology

A simulation of GISAXS using BornAgain consists of following steps:
* define materials by specifying name and refractive index,

* define embedded particles by specifying shape, size, constituting material, interfer-
ence function,

* define layers by specifying thickness, roughness, material,

* include particles in layers, specifying density, position, orientation,
* assemble a multilayered sample,

* specify input beam and detector characteristics,

e run the simulation,

e save the simulated detector image.

We are planing to organize all these steps in a graphical user interface (GUI). For the time
being, however, BornAgain must be involved via C++ program or Python scripts. In the
following, we describe how to write a Python script which runs a BornAgain simulation.
For tutorials about this programming language, the users are referred to [2].

More information about the general software architecture and BornAgain internal de-
sign are given in Section |5

3.2 Geometry of the sample

The geometry used to describe the sample is shown in figure The z-axis is perpen-
dicular to the sample’s surface and pointing upwards. The x-axis is perpendicular to the
detector plane. The input and the scattered output beams are each characterized by two

Page 14

Chapter 3. Simulation 3.2. Geometry of the sample

angles a;, ¢; and ay, ¢, respectively. Our choice of orientation for the angles a; and a ¢ is
so that they are positive as shown in figure

Layer 0 : ng
ki

Q;

|
i

Layer1:ny

Layer 2 : noy

Layer N : ny

Figure 3.1: Representation of the scattering geometry. n; is the refractive index of layer j
and «; and ¢; are the incident angles of the wave propagating. « is the exit angle with
respect to the sample’s surface and ¢ ¢ is the scattering angle with respect to the scattering
plane.

The layers are defined by their thicknesses (parallel to the z-direction), their possible
roughnesses (equal to 0 by default) and the material they are made of. They have infinite
extension in the x, y directions. And, except for roughness, they interfaces are plane and
perpendicular to the z-axis. There is also no limitation to the number of layers that could be
defined in BornAgain. Note that the thickness of the top and bottom layer are not defined.

The nanoparticles are characterized by their form factors (i.e. the Fourier transform of
the shape function - see Appendix B for a list of form factors implemented in BornAgain)
and the composing material. The number of input parameters for the form factor depends
on the particle symmetry; it ranges from one parameter for a sphere (its radius) to three for
an ellipsoid (its three main axis lengths).

By placing the particles inside or on top of a layer, we impose their vertical positions,
whose values correspond to the bottoms of the particles. The in-plane distribution of par-
ticles is linked with the way the particles interfere with each other. It is therefore imple-
mented when dealing with the interference function.

The complex refractive index associated with a layer or a particle is written as n =1 —
6 +if, with 6, 8 € R. In our program, we input § and g directly.

The input beam is assumed to be monochromatic without any spatial divergence.

Page 15

Chapter 3. Simulation 3.2. Example 1: two types of islands on a substrate without interference

Units: By default the angles are expressed in radians and the lengths are given in nanome-
ters. But it is possible to use other units by specifying them right after the value of the cor-
responding parameter like, for example, 20 . 0*micrometer.

3.3 Example 1: two types of islands on top of substrate without
interference

In this example, we simulate the scattering from a mixture of cylindrical and prismatic
nanoparticles without any interference between them. These particles are placed in air,
on top of a substrate.

We are going to go through each step of the simulation. The Python script specific to each
stage will be given at the beginning of the description. But for the sake of completeness the
full code is given in Appendix[A.1}

Importing Python modules

import numpy

import matplotlib

import pylab

from libBornAgainCore import =

DS W N -

We start by importing different functions from external modules, for example NumPy (lines[I}
B), which is a fundamental package for scientific computing with Python [3]. In particular,
line[4]imports the features of BornAgain software.

Defining the materials

5 |def get_sample():

6 nnn

7 Build and return the sample representing cylinders and
pyramids on top of

8 substrate without interference.

9 nnn

10 # defining materials

11 m_air = MaterialManager.getHomogeneousMaterial ("Air", 0.0,
0.0)

12 m_substrate = MateriallManager.getHomogeneousMaterial ("
Substrate", 6e-6, 2e-8)

13 m_particle = lMateriallManager.getHomogeneousMaterial ("Particle
", 6e-4, 2e-8)

Line[5|marks the beginning of the function to define our sample. Lines[11}[12|and[13|define
different materials using function getHomogeneousMaterial from classMaterialManager.
The general syntax is the following

Page 16

Chapter 3. Simulation

15
16
17
18
19

20
21
22
23
24

<material_name> = MateriallManager.getHomogeneousMaterial ("name",
delta, beta)

where name is the name of the material associated with its complex refractive index n=1-
delta +i beta. <material_name> is later used when referring to this particular material.
The three defined materials in this example are Air with a refractive index of 1 (delta =
beta = 0), a Substrate associated with a complex refractive index equal to 1 —6 x 1076 +
i2x 1078 and the material of particles, whose refractive indexisn=1-6 x 1074 +i2x 1078,

Defining the particles
collection of particles
cylinder_ff = FormFactorCylinder (5%nanometer, 5*nanometer)
cylinder = Particle(m_particle, cylinder_f£ff)
prism_ff = FormFactorPrism3 (10*nanometer, 5*nanometer)
prism = Particle(m_particle, prism_£ff)

We implement two different shapes of particles: cylinders and prisms (i.e. elongated parti-
cles with a constant equilateral triangular cross section).

All particles implemented in BornAgain are defined by their form factors (see Appendix[B),
their sizes and the material they are made of. Here, for the cylindrical particle, we input its
radius and height. For the prism, the possible inputs are the length of one side of its equi-
lateral triangular base and its height.

In order to define a particle, we proceed in two steps. For example for the cylindrical
particle, we first specify the form factor of a cylinder with its radius and height, both equal
to 5 nanometers in this particular case (see line[16). Then we associate this shape with the
constituting material as in line The same procedure has been applied for the prism in

lines[18|and[19] respectively.

Characterizing particles assembly

particle_decoration = ParticleDecoration ()
particle_decoration.addParticle(cylinder, 0.0, 0.5)
particle_decoration.addParticle(prism, 0.0, 0.5)
interference = InterferenceFunctionNone ()
particle_decoration.addInterferenceFunction(interference)

The object which holds the information about the positions and densities of particles in our
sample is called ParticleDecoration (line[20). We use the associated function addParticle
for each particle shape (lines[21}[22). Its general syntax is

addParticle(<particle_name>, depth, abundance)

where <particle_name> is the name used to define the particles (lines[17]and[19), depth
(default value =0) is the vertical position, expressed in nanometers, of the particles in a
given layer (the association with a particular layer will be done during the next step) and

Page 17

3.3. Example 1: two types of islands on a substrate without interference

Chapter 3. Simulation

25
26
27
28
29
30
31
32

abundance is the proportion of this type of particles, normalized to the total number of
particles. Here we have 50% of cylinders and 50% of prisms.
Remark: Depth of particles
The vertical positions of the particles in a layer are given in relative coordinates. For
the top layer, the bottom of the layer corresponds to depth=0 and negative values
would correspond to particles floating above layer 1 since the vertical axis, shown in
figure is pointing upwards. But for all the other layers, it is the top of the layer
which corresponds to depth=0.

Finally, lines [23| and [24] specify that there is no coherent interference between the waves
scattered by these particles. In this case, the intensity is calculated by the incoherent sum
of the scattered waves: (|F jlz), where F; is the form factor associated with the particle of
type j. The way these waves interfere imposes the horizontal distribution of the particles
as the interference reflects the long or short-range order of the particles distribution (see
Theory). On the contrary, the vertical position is imposed when we add the particles in a
given layer by parameter depth, as shown in lines[21]and[22]

Multilayer

air layer with particles and substrate form multi layer

air_layer = Layer (m_air)
air_layer.setDecoration(particle_decoration)
substrate_layer = Layer (m_substrate, 0)

multi_layer = MultilLayer ()
multi_layer.addLayer (air_layer)
multi_layer.addLayer (substrate_layer)
return multi_layer

We now have to configure our sample. For this first example, the particles, i.e. cylinders and
prisms, are on top of a substrate in an air layer. The order in which we define these layers
is important: we start from the top layer down to the bottom one.

Let us start with the air layer. It contains the particles. In line[26] we use the previously
defined mAmbience (="air" material) (line [11). The command in line 27] shows that this
layer is decorated by adding the particles using particle decoration object defined earlier.
The substrate layer only contains the substrate material (line|28).

There are different possible syntaxes to define a layer. As shown in lines[26|and [28} we
can use Layer (<material_name>,thickness) or Layer (<material_name>). The sec-
ond case corresponds to the default value of the thickness, equal to 0. The thickness is
expressed in nanometers.

Our two layers are now fully characterized. The sample is assembled usingMultiLayer ()
constructor (line: we start with the air layer decorated with the particles (line, which
is the layer at the top and end with the bottom layer, which is the substrate (line[31).

Characterizing the input beam and output detector

Page 18

3.3. Example 1: two types of islands on a substrate without interference

Chapter 3. Simulation

33
34
35

36
37
38
39

40

def get_simulation():

Create and return GISAXS simulation with beam and detector

defined
nnn
simulation = Simulation ()
simulation.setDetectorParameters (100, -1.0*xdegree, 1.0*degree

, 100, 0.0*xdegree, 2.0*degree, True)
simulation.setBeamParameters (1.0*%angstrom, 0.2*xdegree, 0.0
degree)
return simulation

The first stage is to create the Simulation() object (line[37). Then we define the detector
(line and beam parameters (line . Those functions are part of the Simulation class.
The different incident and exit angles are shown in figure

The detector parameters are set using ranges of angles via the function:

setDetectorParameters(n_phi, phi_f_min, phi_f_max, n_alpha,
alpha_f_min, alpha_f_max, isgisaxs_style=false)l},

where n_phi=100 is the number of iterations for ¢ ¢,

phi_f_min=-1.0*degree and phi_f_max=1.0*degree are the minimum and maximum
values respectively of ¢ ,

n_alpha=100 is the number of iterations for af,

alpha_f_min=0.0*degree and alpha_f_max=2.0*degree are the minimum and maxi-
mum values respectively of af.

isgisaxs_style=True (default value = False) is a boolean used to characterise the struc-
ture of the output data. If isgisaxs_style=True, the output data is binned at constant
values of the sine of the output angles, a ¢ and ¢ ¢, otherwise it is binned at constant values
of these two angles.

For the beam the function to use is setBeamParameters(lambda, alpha_i, phi_i),where
lambda=1.0*angstrom is the incident beam wavelength, alpha_i=0.2*degree is the in-
cident grazing angle on the surface of the sample, phi_i=0.0*degree is the in-plane di-
rection of the incident beam (measured with respect to the x-axis).

Remark: Scattering vector

In BornAgain the wave vector q is defined as k; — kg, where k; is the incident wave

vector and ky the scattered one.

Running the simulation and plotting the results

[
41 |def run_simulation ():

42
43
44
45

Run simulation and plot results
nnn

sample = get_sample ()

Page 19

3.3. Example 1: two types of islands on a substrate without interference

Chapter 3. Simulation 3.4. Example 2: working with sample parameters

46 simulation = get_simulation ()

47 simulation.setSample (sample)

48 simulation.runSimulation ()

49 result = simulation.getIntensityData().getArray() + 1 # for
log scale

50 pylab.imshow (numpy.rot90 (result, 1), norm=matplotlib.colors.
LogNorm(), extent=[-1.0, 1.0, 0, 2.0])

51 pylab.show ()

The function, whose definition starts from line 41} gathers all items. We create the sample
and the simulation objects at the lines [45|and[46} using calls to the previously defined func-
tions. We assign the sample to the simulation at line [47|and finally launch the simulation
atline [48]

In line 49| we obtain the simulated intensity as a function of outgoing angles a r and
¢ for further uses (plots, fits,...) as a NumPy array containing n_phixn_alpha datapoints.
Lines produces the two-dimensional contourplot of the intensity as a function of a ¢

and ¢ ¢ shown in figure[3.2}

3.4 Example 2: working with sample parameters

This section gives additional details about the manipulation of sample parameters during
run time; that is after the sample has already been constructed. For a single simulation this
is normally not necessary. However it might be useful during interactive work when the
user tries to find optimal sample parameters by running a series of simulations. A similar
task also arises when the theoretical model, composed of the description of the sample
and of the simulation, is used for fitting real data. In this case, the fitting kernel requires
a list of the existing sample parameters and a mechanism for changing the values of these
parameters in order to find their optima.

In BornAgain this is done using the so-called sample parameter pool mechanism. We
are going to briefly explain this approach using the example of Section[3.3]

In BornAgain a sample is described by a hierarchical tree of objects. For the multilayer
created in the previous section this tree can be graphically represented as shown in Fig.
Similar trees can be printed in a Python session by runningmulti_layer.printSampleTree ()

The top MultiLayer object is composed of three children, namely Layer #0, Layer
Interface #0andLayer #1. The children objects might themselves also be decomposed
into tree-like structures. For example, Layer #0 contains a ParticleDecoration object,
which holds information related to the two types of particles populating the layer. All nu-
merical values used during the sample construction (thickness of layers, size of particles,
roughness parameters) are part of the same tree structure. They are marked in the figure
with shaded gray boxes.

These values are registered in the sample parameter pool using the name composed of
the corresponding nodes’ names. And they can be accessed/changed during run time. For
example, the height of the cylinders populating the first layer can be changed from the
current value of 5 nm to 1 nm by running the command

Page 20

Chapter 3. Simulation 3.4. Example 2: working with sample parameters

10°

10*

10°

102

Figure 3.2: Simulated grazing-incidence small-angle X-ray scattering from a mixture of
cylindrical and prismatic nanoparticles without any interference, deposited on top of a
substrate. The input beam is characterized by a wavelength A of 1 A and incident angles
a; =0.2° ¢; = 0°. The cylinders have a radius and a height both equal to 5 nm, the prisms
are characterized by a side length equal to 10 nm and they are 5 nm high. The material of
the particles has a refractive index of 1 —6 x 107 + i2 x 1078, For the substrate it is equal to
1-6x107%+i2 x 1078, The colorscale is associated with the output intensity in arbitrary
units.

Page 21

Chapter 3. Simulation 3.4. Example 2: working with sample parameters

MultiLayer

—| Layer #0

L{ ParticleDecoration |

Particle Info 0

FormFactorCylinder |

—| Particle Info 1

FormFactorPrism3 |

length 10.0
oo
—abundance:0.5
i depth:0 'o'J
! corrlength:0.0
'hurst:0.0'!

Figure 3.3: Tree representation of the sample structure.

Page 22

Chapter 3. Simulation 3.4. Example 2: working with sample parameters

multi_layer.setParameterValue(’/Multilayer/Layer0/

ParticleDecoration/ParticleInfoO/Particle/FormFactorCylinder/
height’, 1.0)

A list of the names and values of all registered sample’s parameters can be displayed
using the command

> multi_layer.printParameters ()
The sample contains following parameters (’name’:value)
>/Multilayer/LayerO/ParticleDecoration/ParticleInfoO/Particle/
FormFactorCylinder/height ’:5
>/Multilayer/LayerO/ParticleDecoration/ParticleInfoO/Particle/
FormFactorCylinder/radius ’:5
>/Multilayer/Layer0/ParticleDecoration/ParticleInfo0/abundance
’:0.5
>/Multilayer/LayerO/ParticleDecoration/ParticleInfo0/depth’:0
>/Multilayer/LayerO/ParticleDecoration/ParticleInfol/Particle/
FormFactorPrism3/length’:5
>/Multilayer/Layer0O/ParticleDecoration/ParticleInfol/Particle/
FormFactorPrism3/height >:5
>/Multilayer/LayerO/ParticleDecoration/ParticleInfol/abundance
’:0.5
>/Multilayer/LayerO/ParticleDecoration/ParticleInfol/depth’:0
>/Multilayer/Layer0O/thickness ’:0
>/Multilayer/Layerl/thickness ’:0
>/Multilayer/LayerInterface/roughness/corrlength’:0
>/Multilayer/LayerInterface/roughness/hurst’:0
>/Multilayer/LayerInterface/roughness/sigma’:0
>/Multilayer/crossCorrLength’:0

Wildcards ’*’ can be used to reduce typing or to work on a group of parameters. In the
example below, the first command will change the height of all cylinders in the same way,
as in the previous example. The second line will change simultaneously the height of both
cylinders and prisms.

multi_layer.setParameterValue (’>*FormFactorCylinder/height’, 1.0)
multi_layer.setParameterValue (’*height’, 1.0)

The complete example described in this section can be found at

./Examples/python/fitting/ex001_SampleParametersIntro/
SampleParametersIntro.py

Page 23

Chapter 4. Fitting

Chapter 4
Fitting

In addition to the simulation of grazing incidence X-ray and neutron scattering by multi-
layered samples, BornAgain also offers the option to fit the numerical model to reference
data by modifying a selection of sample parameters from the numerical model. This aspect
of the software is discussed in the current chapter.

Section[4.1] details the implementation of fittings in BornAgain . Python fitting exam-
ples with detailed explanations of every fitting step are given in Section[4.2} Advanced fitting
techniques, including fine tuning of minimization algorithms, simultaneous fits of differ-
ent data sets, parameters correlation, are covered in Section Section contains some
practical advice, which might help the user to get right answers from BornAgain fitting.

4.1 Implementation in BornAgain

Fittingin BornAgain deals with estimating the optimum parameters in the numerical model
by minimizing the difference between numerical and reference data. The features include

e avariety of multidimensional minimization algorithms and strategies.

* the choice over possible fitting parameters, their properties and correlations.

the full control on objective function calculations, including applications of different
normalizations and assignments of different masks and weights to different areas of
reference data.

* the possibility to fit simultaneously an arbitrary number of data sets.

Figure [4.1]shows the general work flow of a typical fitting procedure.
Before running the fitting the user is required to prepare some data and to configure the
fitting kernel of BornAgain . The required stages are

* Preparing the sample and the simulation description (multilayer, beam, detector pa-
rameters).

Page 24

Chapter 4. Fitting

4.1. Implementation in BornAgain

User information

Sample
description

Simulation
description

Fitting

BornAgain fitting

Adjusted
parameters

parameters

Reference
data

Minimizer
settings

FitSuite

Simulation

L . Reference
4—{M|n|m|zatlon} I ki l

NV /Y

Simulated
data
XZ
calculations

/

Fitting
results

* Choosing the fitting parameters.

Figure 4.1: Fitting work flow.

* Loading the reference data.

* Defining the minimization settings.

The class FitSuite contains the main functionalities to be used for the fit and serves as
the main interface between the user and the fitting work flow. The later involves iterations

during which

e The minimizer makes an assumption about the optimal sample parameters.

* These parameters are propagated to the sample.

e The simulation is performed for the given state of the sample.

* The simulated data (intensities) are propagated to the XZ module.

« The later calculates y? using the simulated and reference data.

* The value of y? is propagated to the minimizer, which makes new assumptions about
optimal sample parameters.

The iteration process is going on under the control of the selected minimization algo-
rithm, without any intervention from the user. It stops

* when the maximum number of iteration steps has been exceeded,

Page 25

Chapter 4. Fitting 4.1. Implementation in BornAgain

¢ when the function’s minimum has been reached within the tolerance window,
¢ if the minimizer could not improve the values of the parameters.

After the control is returned, fitting results can be retrieved. They consist in the best y?
value found, the corresponding optimal sample parameters and the intensity map simu-
lated with this set of parameters.

Details of FitSuite class implementation and description of each interface are given
in Section5.1.3] The following parts of this section will detail each of the main stages nec-
essary to run a fitting procedure.

4.1.1 Preparing the sample and the simulation description

This step is similar for any simulation using BornAgain (see Section[3). It consists in first
characterizing the geometry of the system: the particles (shapes, sizes, refractive indices),
the different layers (thickness, order, refractive index, a possible roughness of the interface),
the interference between the particles and the way they are distributed in the layers (buried
particles or particles sitting on top of a layer). Then we specify the parameters of the input
beam and of the output detector.

4.1.2 Choice of parameters to be fitted

In principle, every parameter used in the construction of the sample can be used as a fit-
ting parameter. For example, the particles’ heights, radii or the layer’s roughness or thick-
ness could be selected using the parameter pool mechanism. This mechanism is explained
in detail in Section and it is therefore recommended to read it before proceeding any
further.

The user specifies selected sample parameters as fit parameters using FitSuite and its
addFitParameter method

fit_suite = FitSuite ()
fit_suite.addFitParameter (<name>, <initial value>, <step>, <
limits>)

where <name> corresponds to the parameter name in the sample’s parameter pool. By us-
ing wildcards in the parameter name, a group of sample parameters, corresponding to the
given pattern, can be associated with a single fitting parameter and fitted simultaneously
to get a common optimal value (see Section 3.4).

The second parameter <initial value> correspond to the initial value of the fitting pa-
rameter, while the third one is responsible to the initial iteration steps size. The last pa-
rameter <AttLimits> corresponds to the boundaries imposed on parameter value. It can
be

e limitless() by default,
e fixed(),

¢ lowerLimited(<min_value>),

Page 26

Chapter 4. Fitting 4.1. Implementation in BornAgain

e upperLimited(<max_value>),
e limited(<min_value>, <max_value>).

where <min_value> and <max_value> are double values corresponding to the lower and
higher boundary, respectively.

4.1.3 Associating reference and simulated data

The minimization procedure deals with a pair of reference data (normally associated with
experimental data) and the theoretical model (presented by the sample and the simulation
descriptions).

We assume that the experimental data are a two-dimensional intensity matrix as func-
tion of the output scattering angles a r and ¢ ¢ (see Fig. . The user is required to provide
the data in the form of an ASCII file containing an axes binning description and the inten-
sity data itself.

Remark: We recognize the importance of supporting the most common data formats.
We are going to provide this feature in the following releases and welcome users’ re-
quests on this subject.

To associate the simulation and the reference data to the fitting engine, method
addSimulationAndRealData has to be used as shown

fit_suite = FitSuite ()
fit_suite.addSimulationAndRealData(<simulation>, <reference>, <
chi2_module >)

Here <simulation> corresponds to a BornAgain simulation object with the sample,
beam and detector fully defined, <reference> corresponds to the experimental data object
obtained from the ASCII file and <chi2_module> is an optional parameter for advanced
control of ¥? calculations.

It is possible to call this given method more than once to submit more than one pair
of <simulation>, <reference> to the fitting procedure. In this way, simultaneous fits of
some combined data sets are performed.

By using the third parameter, <chi2_module>, different normalizations and weights
can be applied to give user full control of the way y? is calculated. This feature will be
explained in Section 4.3

4.1.4 Minimizer settings

BornAgain contains a variety of minimization engines from ROOT and GSL libraries. They
are listed in Table[4.1] By default Minuit2 minimizer with default settings will be used and
no additional configuration needs to be done. The remainder of this section explains some
of the expert settings, which can be applied to get better fit results.

The default minimization algorithm can be changed usingMinimizerFactory as shown
below

Page 27

Chapter 4. Fitting 4.1. Implementation in BornAgain

fit_suite = FitSuite ()

minimizer = MinimizerFactory.createMinimizer ("<Minimizer name>",
<algorithm>")

fit_suite.setMinimizer (minimizer)

where <Minimizer name> and <algorithm> can be chosen from the first and sec-
ond column of Table respectively. The list of minimization algorithms implemented
in BornAgain can also be obtained using MinimizerFactory.printCatalogue() com-

mand.
Minimizer name Algorithm Description
Minuit2 [4] Migrad According to [5] best minimizer for nearly all functions,
variable-metric method with inexact line search,
a stable metric updating scheme,
and checks for positive-definiteness.
Simplex simplex method of Nelder and Mead
usually slower than Migrad,
rather robust with respect to gross fluctuations in the
function value, gives no reliable information about
parameter errors,
Combined minimization with Migrad
but switches to Simplex if Migrad fails to converge.
Scan not intended to minimize, just scans the function,
one parameter at a time, retains the best value after
each scan
Fumili optimized method for least square and log likelihood
minimizations
GSLMultiMin [6] ConjugateFR Fletcher-Reeves conjugate gradient algorithm,
ConjugatePR Polak-Ribiere conjugate gradient algorithm,
BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm,
BFGS2 improved version of BFGS,
SteepestDescent follows the downhill gradient of the function at each step
GSLMultiFit [7] Levenberg-Marquardt Algorithm
GSLSimAn [8] Simulated Annealing Algorithm

Table 4.1: List of minimizers implemented in BornAgain.

Page 28

Chapter 4. Fitting 4.2. Basic Python fitting example

There are several options common to every minimization algorithm, which can be changed
before starting the minimization. They are handled by MinimizerOptions class:

options = MinimizerOptions ()
options.setMaxFunctionCalls (10)
fit_suite.getMinimizer () .setOptions (options)

In the above code snippet, a number of “maximum function calls”, namely the maximum
number of times the minimizer is allowed to call the simulation, is limited to 10.

There are also expert-level options common for all minimizers as well as a number of
options to tune individual minimization algorithms. They will be explained in Section[4.3]

4.1.5 Running the fitting ant retrieving the results

After the initial configuration of FitSuite has been performed, the fitting can be started
using the command

fit_suite.runFit ()

Depending on the complexity of the sample and the number of free sample parameters
the fitting process can take from tens to thousands of iterations. The results of the fit can
be printed on the screen using the command

fit_suite.printResults ()

Section [4.2]gives more details about how to access the fitting results.

4.2 Basic Python fitting example

In this section we are going to go through a complete example of fitting using BornAgain.
Each step will be associated with a detailed piece of code written in Python. The complete
listing of the script is given in Appendix (see Listing[A.2). The script can also be found at

./Examples/python/fitting/ex002_FitCylindersAndPrisms/
FitCylindersAndPrisms.py

This example uses the same sample geometry as in Section[3.3] Cylindrical and prismatic
particles in equal proportion are deposited on a substrate layer, with no interference be-
tween the particles. We consider the following parameters to be unkown

* the radius of cylinders,
* the height of cylinders,
* the length of the prisms’ triangular basis,

e the height of prisms.

Page 29

Chapter 4. Fitting 4.2. Basic Python fitting example

10

11

12

13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Our reference data are a “noisy” two-dimensional intensity map obtained from the sim-
ulation of the same geometry with a fixed value of 5nm for the height and radius of cylinders
and for the height of prisms which have a 10-nanometer-long side length. Then we run our
fitting using default minimizer settings starting with a cylinder’s height of 4nm, a cylinder’s
radius of 6nm, a prism’s half side of 6nm and a height equal to 4nm. As a result, the fitting
procedure is able to find the correct value of 5nm for all four parameters.

Importing Python libraries

from libBornAgainCore import x*
from libBornAgainFit import *

We start from importing two BornAgain libraries required to create the sample description
and to run the fitting.

Building the sample

def get_sample():

Build the sample representing cylinders and pyramids on top
of substrate without interference.

defining materials

m_air = MaterialManager.getHomogeneousMaterial ("Air", 0.0,
0.0)

m_substrate = MaterialManager.getHomogeneousMaterial ("
Substrate", 6e-6, 2e-8)

m_particle = MateriallManager.getHomogeneousMaterial ("Particle

", 6e-4, 2e-8)

collection of particles

cylinder_ff = FormFactorCylinder (1.0*nanometer, 1.0*nanometer
)

cylinder = Particle(m_particle, cylinder_f£ff)

prism_ff = FormFactorPrism3(2.0*nanometer, 1.0*nanometer)

prism = Particle(m_particle, prism_£ff)

particle_decoration = ParticleDecoration ()

particle_decoration.addParticle(cylinder, 0.0, 0.5)

particle_decoration.addParticle (prism, 0.0, 0.5)

interference = InterferenceFunctionNone ()

particle_decoration.addInterferenceFunction(interference)

air layer with particles and substrate form multi layer
air_layer = Layer(m_air)
air_layer.setDecoration(particle_decoration)
substrate_layer = Layer (m_substrate)

multi_layer = MultilLayer ()

multi_layer.addLayer (air_layer)

Page 30

Chapter 4. Fitting 4.2. Basic Python fitting example

31
32

35
36
37
38
39
40

41

42

45
46
47
48
49
50
51
52
53

55
56

multi_layer.addLayer (substrate_layer)

return multi_layer
|

The function starting at line |5|creates a multilayered sample with cylinders and prisms us-
ing arbitrary 1 nm value for all size’s of particles. The details about the generation of this
multilayered sample are given in Section|3.3}

Creating the simulation

def get_simulation():

Create GISAXS simulation with beam and detector defined

nnn

simulation = Simulation ()

simulation.setDetectorParameters (100, -1.0*xdegree, 1.0*degree
, 100, 0.0xdegree, 2.0*degree, True)

simulation.setBeamParameters (1.0*angstrom, 0.2xdegree, 0.0%
degree)

return simulation

The function starting at line[35|creates the simulation object with the definition of the beam
and detector parameters.

Preparing the fitting pair

def run_fitting():

run fitting

nnn

sample = get_sample ()
simulation = get_simulation ()
simulation.setSample (sample)

real_data = QOutputDatalIOFactory.readIntensityData(’
refdata_fitcylinderprisms.txt’)

Lines generate the sample and simulation description and assign the sample to the
simulation. Our reference data are contained in the file ’refdata_fitcylinderprisms.txt’.
This reference had been generated by adding noise on the scattered intensity from a numer-
ical sample with a fixed length of 5 nm for the four fitting parameters (i.e. the dimensions

of the cylinders and prisms). Line [53|creates the real data object by loading the ASCII data
from the input file.

Setting up FitSuite

fit_suite = FitSuite ()
fit_suite.addSimulationAndRealData(simulation, real_data)

Page 31

Chapter 4. Fitting

4.2. Basic Python fitting example

57

60

61

62

63

66
67
68
69
70
71
72
73

‘ fit_suite.initPrint (10)

Line [55|creates a FitSuite object which provides the main interface to the minimization
kernel of BornAgain . Line submits simulation description and real data pair to the
subsequent fitting. Line [57|sets up FitSuite to print on the screen the information about

fit progress once per 10 iterations.

fit_suite.addFitParameter ("*FormFactorPrism3/height",

fit_suite.addFitParameter ("*FormFactorPrism3/length",

fit_suite.addFitParameter ("*FormFactorCylinder/height",
nanometer, 0.0l*nanometer, AttLimits.lowerLimited (0.01))
fit_suite.addFitParameter ("*FormFactorCylinder/radius",
nanometer , 0.0l*nanometer , AttLimits.lowerLimited (0.01))

nanometer , O0.0l*nanometer, AttLimits.lowerLimited (0.01))

nanometer , 0.02*nanometer , AttLimits.lowerLimited (0.01))

Lines enter the list of fitting parameters. Here we use the cylinders’ height and
radius and the prisms’ height and side length. The cylinder’s length and prism half side are
initially equal to 4nm, whereas the cylinder’s radius and the prism half side length are equal
to 6nm before the minimization. The iteration step is equal to 0.01 nm and only the lower

boundary is imposed to be equal to 0.01 nm.

Running the fit and accessing results

fit_suite.runFit ()

print "Fitting completed."
fit_suite.printResults ()
print "chi2:", fit_suite.getMinimizer ().getMinValue ()
fitpars = fit_suite.getFitParameters ()
for i in range(0, fitpars.size()):
print fitpars[i].getName (), fitpars[i].getValue(),

fitpars[i].getError ()

Line [66]shows the command to start the fitting process. During the fitting the progress will
be displayed on the screen. Lines shows different ways of accessing the fit results.
More details about fitting, access to its results and visualization of the fit progress using

matplotlib libraries can be learned from the following detailed example

./Examples/python/fitting/ex002_FitCylindersAndPrisms/

FitCylindersAndPrisms_detailed.py

Page 32

Chapter 4. Fitting 4.3. Advanced fitting
4.3 Advanced fitting
4.3.1 Affecting y2 calculations
4.3.2 Simultaneous fits of several data sets
4.3.3 Using fitting strategies
4.3.4 Masking the real data
4.3.5 Tuning fitting algorithms
4.3.6 Fitting with correlated sample parameters
4.4 How to get the right answer from fitting

One of the main difficulties in fitting the data with the model is the presence of multiple
local minima in the objective function. Many problems can cause the fit to fail, for example:

an unreliable physical model,
an unappropriate choice of objective function
multiple local minima,

an unphysical behavior of the objective function, unphysical regions in the parame-
ters space,

an unreliable parameter error calculation in the presence of limits on the parameter
value,

an exponential behavior of the objective function and the corresponding numerical
inaccuracies, excessive numerical roundoff in the calculation of its value and deriva-
tives,

large correlations between parameters,
very different scales of parameters involved in the calculation,

not positive definite error matrix even at minimum.

The given list, of course, is not only related to BornAgain fitting. It remains applicable
to any fitting program and any kind of theoretical model. Below we give some recommen-
dations which might help the user to achieve reliable fit results.

General recommendations

initially choose a small number of free fitting parameters,

eliminate redundant parameters,

Page 33

Chapter 4. Fitting 4.4. How to get the right answer from fitting

* provide a good initial guess for the fit parameters,

e start from the default minimizer settings and perform some fine tuning after some
experience has been acquired,

* repeat the fit using different starting values for the parameters or their limits,

* repeat the fit, fixing and varying different groups of parameters,

to be continued...

Page 34

Chapter 5. Software architecture

Chapter 5

Software architecture

BornAgain is written in C++ and uses an object oriented approach to achieve modular-
ity, extensibility and transparency. This leads to the task driven rather than the command
driven approach in different aspects of the simulation and fitting of GISAS data. The user
defines the sample structure, beam and detector characteristics and fit parameters using
building blocks — classes — defined in core libraries of the framework. These buildings
blocks are combined by the user according to his current task using one the following ap-
proaches:

* The user creates a Python script with a sample description and simulation settings
using the BornAgain API. The user then runs the simulation by executing the scriptin
the Python interpreter and assesses the simulation results using his preferred graph-
ics or analysis library, e.g. Python + numpy + matplotlib.

e The user may write a standalone C++ application linked to the BornAgain libraries.

* The user interacts with the framework through a graphical user interface (forthcom-
ing).

The object oriented approach in the software design allows users to have a much higher
level of flexibility in the sample construction; it also decouples the building blocks used in
the internal calculations and thereby facilitates the creation of new models, with little or no
modification to the existing code.

The general structure of BornAgain and the way the user interacts with it are shown in
Fig.[5.1] The framework consists of two shared libraries, 1ibBornAgainCore and 1ibBornAgainFit.
Thanks to the Python interface they can be imported into Python as external modules. The
library 1ibBornAgainCore contains a number of classes, grouped into several class cat-
egories, necessary for the description of a model and running a simulation. The library
libBornAgainFit contains a number of minimization engines and interfaces to them, al-
lowing the user to fit real data with the model previously defined.

BornAgain depends on a few external and well established open-source libraries: boost,
GNU scientific library, Eigen and Fast Fourier Transformation libraries. They are required
to be installed on the system to run BornAgain on Unix Platforms. In the case of Windows

Page 35

Chapter 5. Software architecture 5.1. Data classes for simulations and fits

User External
python script > graphics |

BornAgain

matplotlib

python bindings python bindings

libCore libFit

samples and algorithms minimizers
T
__________ :
fftw <« P gsl Y
ROOT <-----

boost <« > eigen

Figure 5.1: Structure of BornAgain libraries.

Platform they are added to the system automatically during BornAgain installation. Other
libraries shown on the plot (ROOT, matplotlib) are optional.

5.1 Data classes for simulations and fits

This section will give an overview of the classes that are used to describe all the data needed
to perform a single simulation. The prime elements of this data are formed by the sample,
the experimental conditions (beam and detector parameters) and simulation parameters.

These classes constitute the main interface to the software’s users, since they will mostly
be interacting with the program by creating samples and running simulations with specific
parameters. Since it is not the intent to explain internals of classes in this document, the
text and figures will only mention the most important methods and fields of the classes
discussed. Furthermore, getters and setters of private member fields will not be indicated,
although these do belong to the public interface. For more detailed information about the
project’s classes, their methods and fields, the reader is referred to the source code docu-
mentation. REF?

5.1.1 The Experiment object

The Experiment class holds all references to data objects that are needed to perform a sim-
ulation. These consist in a sample description, possibly implemented by a builder object,
detector and beam parameters and finally, a simulation parameter class that defines the
different approximations that can be used during a simulation. Besides getters and set-
ters for these fields, the class also contains a runSimulation() method that will generate

Page 36

Chapter 5. Software architecture 5.1. Data classes for simulations and fits

an ISimulation object that will perform the actual computations. The class diagram for
Experiment is shown in figure[5.2]

Simulation Data

Experiment

—mp_sample : ISample*
—mp_sample_builder : ISampleBuilder*

—m_detector : Detector

—m_beam : Beam ISample

—m_intensity_map : OutputData<double>

—m_sim_params : SimulationParameters

+ clone() : Experiment* Detector
+ runSimulation() : void
+ normalize() : void
GISASExperiment Beam
AN
The “runSimulation()” method retrieves SimulationParameters

an ISimulation object from the topmost
ISample object and calls its “run()”

L—| method to perform the actual computa-
tions.

Figure 5.2: The Experiment class as a container for sample, beam, detector and simulation
parameters.

5.1.2 The ISample class hierarchy

Samples are described by a hierarchical tree of objects which all adhere to the ISample in-
terface. The composite pattern is used to achieve a common interface for all objects in
the sample tree. The sample description is maximally decoupled from all computational
classes, with the exception of the “createDWBASimulation()” method. This method will
create a new object of type “DWBASimulation” that is capable of calculating the scattering
contributions originating from the sample part in question. This coupling is not very tight

however, since the ISample subclasses only need to know about which class to instantiate
and return.

Page 37

Chapter 5. Software architecture 5.1. Data classes for simulations and fits

This interface and two of its subclasses are sketched in figure[5.3}

Sample description

«interface»

ISample

+ clone() : ISample*
+ createDWBASimulation() : DWBASimulation*

?

MultiLayer

Layer

—m_layers : std::vector<Layer *>

] —mp_material : IMaterial*
—m_interfaces : std::vector<LayerInterface *>

—m_thickness : double

+ getNumberOfLayers() : size_t

] + getThickness() : double
+ getNumberOfInterfaces() : size_t

+ setThickness(double thickness) : void

+ addLayer(const Layer &layer) : void

Figure 5.3: The ISample interface

5.1.3 The FitSuite class
5.1.4 The IMinimizer class

5.1.5 The MinimizerOptions class

Page 38

Appendix A. Listings

© 0 N O WN =

10

12
13

14

15

16
17
18
19
20
21
22
23

Appendix A

Listings

A.1 Python simulation example

The following script can be found at

./Examples/python/simulation/ex001_CylindersAndPrisms/
CylindersAndPrisms.py

import numpy

import matplotlib

import pylab

from libBornAgainCore import *

def get_sample():
nnn
Build and return the sample representing cylinders and
pyramids on top of
substrate without interference.

defining materials

m_air = MaterialManager.getHomogeneousMaterial ("Air", 0.0,
0.0)

m_substrate = MaterialManager.getHomogeneousMaterial ("
Substrate", 6e-6, 2e-8)

m_particle = MaterialManager.getHomogeneousMaterial ("Particle

", 6e-4, 2e-8)

collection of particles

cylinder_ff = FormFactorCylinder (6*xnanometer , 5*nanometer)
cylinder = Particle(m_particle, cylinder_f£ff)

prism_ff = FormFactorPrism3 (10*nanometer , 5*xnanometer)
prism = Particle(m_particle, prism_£ff)

particle_decoration = ParticleDecoration ()

particle_decoration.addParticle(cylinder, 0.0, 0.5)

Page 39

Appendix A. Listings A.1. Python simulation example

24 particle_decoration.addParticle(prism, 0.0, 0.5)

25 interference = InterferenceFunctionNone ()

26 particle_decoration.addInterferenceFunction(interference)

27

28 # air layer with particles and substrate form multi layer

29 air_layer = Layer (m_air)

30 air_layer.setDecoration(particle_decoration)

31 substrate_layer = Layer (m_substrate, 0)

32 multi_layer = MultiLayer ()

33 multi_layer.addLayer (air_layer)

34 multi_layer.addLayer (substrate_layer)

35 return multi_layer

36

37

38 def get_simulation():

39 e

40 Create and return GISAXS simulation with beam and detector
defined

41 e

42 simulation = Simulation ()

43 simulation.setDetectorParameters (100, -1.0*xdegree, 1.0*degree
, 100, 0.0xdegree, 2.0*xdegree, True)

44 simulation.setBeamParameters (1.0*angstrom, 0.2*xdegree, 0.0
degree)

45 return simulation

46

47

48 def run_simulation():

49 e

50 Run simulation and plot results

51 e

52 sample = get_sample ()

53 simulation = get_simulation()

54 simulation.setSample (sample)

55 simulation.runSimulation ()

56 result = simulation.getIntensityData().getArray() + 1 # for
log scale

57 pylab.imshow (numpy.rot90 (result, 1), norm=matplotlib.colors.
LogNorm(), extent=[-1.0, 1.0, 0, 2.0])

58 pylab.show ()

59

60

61 if __name__ == ’__main__":

62 run_simulation ()

Page 40

Appendix A. Listings A.2. Python fitting example

~NOo Ok WwN -

© 00

10

11

12

13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

A.2 Python fitting example

The following script can be found at

./Examples/python/fitting/ex002_FitCylindersAndPrisms/
FitCylindersAndPrisms.py

from libBornAgainCore import
from libBornAgainFit import =

def get_sample():

Build the sample representing cylinders and pyramids on top

of substrate without interference.
nunn

defining materials

m_air = MateriallManager.getHomogeneousMaterial ("Air", 0.0,
0.0)

m_substrate = MaterialManager.getHomogeneousMaterial ("
Substrate", 6e-6, 2e-8)

m_particle = lMateriallManager.getHomogeneousMaterial ("Particle

", 6e-4, 2e-8)

collection of particles

cylinder_ff = FormFactorCylinder (1.0*nanometer, 1.0*nanometer
)

cylinder = Particle(m_particle, cylinder_f£ff)

prism_ff = FormFactorPrism3(2.0*nanometer, 1.0*nanometer)

prism = Particle(m_particle, prism_ff)

particle_decoration = ParticleDecoration ()

particle_decoration.addParticle(cylinder, 0.0, 0.5)
particle_decoration.addParticle(prism, 0.0, 0.5)
interference = InterferenceFunctionNone ()
particle_decoration.addInterferenceFunction(interference)

air layer with particles and substrate form multi layer

air_layer = Layer (m_air)
air_layer.setDecoration(particle_decoration)
substrate_layer = Layer (m_substrate, 0)

multi_layer = Multilayer ()
multi_layer.addLayer (air_layer)
multi_layer.addLayer (substrate_layer)
return multi_layer

def get_simulation():

Create GISAXS simulation with beam and detector defined

Page 41

Appendix A. Listings A.2. Python fitting example

39
40

41

42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60

61

62

63

64
65
66
67
68
69
70
71
72
73

74
75
76

def

if

simulation = Simulation ()

simulation.setDetectorParameters (100, -1.0*xdegree, 1.0*degree
, 100, 0.0*xdegree, 2.0*degree, True)

simulation.setBeamParameters (1.0*%angstrom, 0.2+xdegree, 0.0
degree)

return simulation

run_fitting():

run fitting

nnn

sample = get_sample ()
simulation = get_simulation ()
simulation.setSample (sample)

real_data = OutputDatalOFactory.readIntensityData(’
refdata_fitcylinderprisms.txt’)

fit_suite = FitSuite ()
fit_suite.addSimulationAndRealData(simulation, real_data)
fit_suite.initPrint (10)

setting fitting parameters with starting values
fit_suite.addFitParameter ("*FormFactorCylinder/height", 4.x%
nanometer, O0.0l*nanometer, AttLimits.lowerLimited (0.01))
fit_suite.addFitParameter ("*FormFactorCylinder/radius", 6.%
nanometer , O0.0l*nanometer, AttLimits.lowerLimited (0.01))
fit_suite.addFitParameter ("*FormFactorPrism3/height", 4.%
nanometer, 0.0l*nanometer, AttLimits.lowerLimited (0.01))
fit_suite.addFitParameter ("*FormFactorPrism3/length", 12.x*
nanometer , 0.02*nanometer, AttLimits.lowerLimited (0.01))

running fit
fit_suite.runFit ()

print "Fitting completed."
fit_suite.printResults ()
print "chi2:", fit_suite.getMinimizer () .getMinValue ()
fitpars = fit_suite.getFitParameters ()
for i in range(0, fitpars.size()):
print fitpars[i].getName(), fitpars[i].getValue(),
fitpars[i].getError ()

name == 2 main__":

run_fitting ()

Page 42

Appendix B. Form factors

Appendix B

Form factors

The form factors of the following shapes have been implemented in BornAgain :
* Parallelepiped, Section|B.1
¢ Box, Section|B.2
* Prism3, Section|B.3
e Tetrahedron, Section|B.4
¢ Prism6, Section|B.5
* Cones6, Section[B.6|
* Pyramid, Section[B.7]
* Anisotropic pyramid, Section
¢ Cuboctahedron, Section[B.9]
* Cylinder, Section[B.10]
* Ellipsoidal cylinder, Sectionm
¢ Cone, Section(B.12
e Full sphere, Section|(B.13
e Truncated sphere, Section|B.14
e Full spheroid, Section|B.15
e Truncated spheroid. Section|B.16)
* Hemi-ellipsoid, Section(B.17,

e Ripplel, Section|B.18

Page 43

Appendix B. Form factors

* Ripple2, Section|(B.19

In BornAgain the form factor is defined as

F(q) =f exp(iq.r)d?’r,
14

where V is the volume of the particle’s shape, q = k; — kg is the scattering vector with k¢ and
k; the scattered and incident wave vector, respectively.

The particle’s shape is parametrized in a cartesian frame, with its z-axis pointing up-
wards and its origin at the center of the bottom of the particle: r = (x, y, z). In the followings,
a schematic view will depict this layout for each form factor.

All form factors have been implemented with complex scattering vectors in order to
take any material absorption into account.

The particles can be rotated in a different direction by using one of the following tranfor-
mations: CreateRotateX(0), CreateRotateY(f), CreateRotateZ(0), where 0 is the
angle of rotation considered from... and capital X, Y, Z mark rotations around the associ-
ated axis. For example, in order to rotate a pyramid by 45° around z-axis, the user could use
the following Python script:

pyramid_£ff = FormFactorPyramid(10*nanometer, 5*%*nanometer,
deg2rad (54.73))

pyramid = Particle(m_particle, pyramid_f£ff)

angle_around_z = 45.x*degree

transform = Transform3D.createRotateZ(angle_around_z)

particle_decoration = ParticleDecoration ()

particle_decoration.addParticle (pyramid, transform)

Page 44

Appendix B. Form factors B.1. Parallelepiped

B.1 Parallelepiped

B.1.1 Real-space geometry
It is a square cuboid (see fig.

Figure B.1: Sketch of a Parallelepiped.

Parameters:
* length of one side of the square base L,

* height H.

Properties:

e volume V = I2H,

« particle surface seen from above S = 2.
B.1.2 Expression of the form factor

9 . H_ . L . L . H
Fparallelepiped (@, L, H) = L°H eXp(lng) SlnC(sz) sinc(gy 5) 81n6(6/z3).
Syntax: FormFactorParallelepiped(length, height)

B.1.3 Examples

Figure shows the normalized intensity |F|?/V?, computed with L = 10 nm and H =
13 nm.

B.1.4 References

The parameters characterizing a Parallelepiped are different from those used in IsGISAXS.
We use the full side length of the square base: L = 2R15¢1saxs-

Page 45

Appendix B. Form factors B.1. Parallelepiped

2 4 T T T T T I1 2 3t + + e 1
10"
E s i i S
= i i -
1= b 5 g3 i e 1= =
= 1. =]
£ 1> € 1>
£ 0 qE & 0F -
o q107 57 ~4107
1S i i 5 -
Sy = 5t B e i
4 it 3 i
ol +o ! ot + ol B 1 i *
-2 -1 0 1 2 -2 -1 0 1 2
g,) g, [

Figure B.2: Normalized intensity for the form factor of a Parallelepiped |F|?/V?, plotted
against (q., qy) and (gx, qy) and computed with L =10 nm and H = 13 nm.

Page 46

Appendix B. Form factors B.2. Box

B.2 Box

B.2.1 Real-space geometry
This shape is a rectangular cuboid or a right rectangular prism as shown in fig.

Figure B.3: Sketch of a Box.

Parameters:
e length of the base L,
e width of the base W,

* height H.

Properties:
e volume V =LWH,

* particle surface seen from above S = LWW.

B.2.2 Expression of the form factor

. H_ . L . w. . H
Fpox(q, L, W, H) = LWHeXp(lqu) smC(qu) smdqy?) SlnC(CIzE)

where sinc(x) = sin(x)/x is the cardinal sine.
Syntax: FormFactorBox(length, width, height)

B.2.3 Examples

Figureshows the normalized intensity |F 12/v2, computed with L =20 nm, W = 16 nm,
H =13 nm, and a =60°:

Page 47

Appendix B. Form factors

B.2. Box

N

q, [nm7]
=

-1

g, [nm)

=y

IFV? S

ey
<

q, [nm7]

N

=

| I S N Y N |
—
IEIVE S
(3,

Figure B.4: Normalized intensity for the form factor of a Box |F|?/V?2, plotted against (g,
dy) and (qy, qy) and computed with L =20 nm, W =16 nm, and H = 13 nm.

B.2.4 References

BornAgain uses a different convention for the parameters in comparison with IsGISAXS,
where the half length values are used (see fig.[B.2.1).

Page 48

Appendix B. Form factors B.3. Prism3

B.3 Prism3

B.3.1 Real-space geometry

This shape is a triangular prism, whose base is an equilateral triangle as shown in fig.

Figure B.5: Sketch of a Prism3.

Parameters:
* length L of one side of the base,

* height H.
Properties:

V3

e volume V = — HI?,

3
* particle surface seen from above S = %LZ.

B.3.2 Expression of the form factor

x y
x Hsinc(q,H/2)exp(iq,H/2),

2V/3 L
Frrisms (q, L, H) = qz—‘/;qz exp(—i%) [exp(iV3qyL/2) — cos(qxL/2) — iV3qyLI2sinc(q,L/2)

where sinc(x) = sin(x)/x is the cardinal sine.
Syntax: FormFactorPrism3(length, height)

B.3.3 Examples

Figure shows the normalized intensity |F|?/V?, computed with L = 10 nm and H =
13 nm.

B.3.4 References

In the x, y plane , we use the full side length of the triangular base instead of half as imple-
mented in IsGISAXS: L = 2R1sa1SAXS-

Page 49

Appendix B. Form factors B.3. Prism3

q, [nm"]
 |F/V?

-
(=]
&

q [nm7]

Figure B.6: Normalized intensity for the form factor of a Prism3 | F|?/ V2, plotted against (¢,
dy) and (qyx,) and computed with L =10 nm and H = 13 nm.

Page 50

Appendix B. Form factors B.4. Tetrahedron

B.4 Tetrahedron

B.4.1 Real-space geometry
This shape is a truncated tetrahedron as shown in fig.

Figure B.7: Sketch of a tetrahedron.

Parameters:

* length of one side of the equilateral triangular base L,

* height H,
e angle «a is the angle between the base and the side faces, taken in the middle of the
base lines.
_ H tana
Restrictions on the parameters: — < .
L 2y3
Properties:
tan(a 2H
-volumeV=JL3 1-(1-v3 2|,
24 Ltan(a)

3
* particle surface seen from above S = \/T_LZ.

B.4.2 Expression of the form factor

Fretrahedron (@, L, H, @) = xp(iq

— % . 5.¢ =)

9x(q% —3q3) 2tan(a)v/3

{qu exp(igsD) sinc(qs H) — (qx + V3q,) exp(iq D) sinc(q) D) — (4 — V34,) exp(=igz D) sinc(ng)}
with sinc(x) = sin(x)/ x,

axV3-aqy
tana

dxV3+qy .
tana

Ltana
) q3 = qy _&) D=
tana 2 V3

1 1
6]1—2 qz |, 6]2—2 qz

Syntax: FormFactorTetrahedron(length, height, alpha)

B.4.3 Examples

Figure shows the normalized intensity |F 12/V2, computed with L = 15 nm, H = 6 nm
and a = 60°.

Page 51

Appendix B. Form factors B.4. Tetrahedron

N

10
1_
E of > £ 1B
" 10° o E
10°
1T 1 -
- s N
o . . . _ \ |
2 -1 1 2 <2 1 2

0
g, [nm)

Figure B.8: Normalized intensity for the form factor of a Tetrahedron |F|?/V?, plotted
against (¢, qy) and (gy, qy) and computed with L =15nm, H =6 nm and a = 60°.

B.4.4 References

In the x, y plane , we use the full side length of the triangular base instead of half as imple-
mented in IsGISAXS: L= 2RISGISAXS'

Page 52

Appendix B. Form factors B.5. Prism6

B.5 Prism6

B.5.1 Real-space geometry
This shape is an hexagonal prism (see fig.[B.5.1).

Figure B.9: Sketch of a Prism6.

Parameters:

e radius of the hexagonal base R,

* height H.
Properties:
e volume V = ?HRZ,
* particle surface seen from above S = 3\/2§R2 .

B.5.2 Expression of the form factor

¥y qx
3q2R? R V3qyR 3R R
{ CIZ sinc(q;)sinc(;Iy)+cos(qu)—cos(qy\/_T)cos(q;)}

Syntax: FormFactorPrism6(radius, height)

4HV3 H —ig,H
FPrismG(QrR,H)quz 2smc(qz2)exp(ZZ)x

B.5.3 Examples

Figure shows the normalized intensity |F|?>/V?, computed with R = 5 nm and H =
13 nm.

Page 53

Appendix B. Form factors B.5. Prism6

= 4. = E
E qx E s
= o B E_ L o- — “_-
o" 07 o ~108

R + + + -1+

S ot + B
_2 + 1ot 1 i + _2 : 1 /| 1
-2 -1 0 1 2 -2 -1 0 1 2
q, [nm’! o, [nm]

Figure B.10: Normalized intensity for the form factor of a Prism6 |F|?/V?, plotted against
(42, qy) and (qy, qy) and computed with R =5nm and H = 13 nm.

B.5.4 References

The hexagonal base is parametrized in the different way compared with IsGISXAXS. In
BornAgain we use R = 2/\/§RIsGiSaXs-

Page 54

Appendix B. Form factors B.6. Cone6

B.6 Cone6

B.6.1 Real-space geometry
It is a truncated hexagonal pyramid (see fig.[B.6.1).

Figure B.11: Sketch of a Cone6.

Parameters:

* radius of the regular hexagonal base R,
* height H,

* angle a is considered between one of the side faces and the middle of a base length.

. L. 2H
Restrictions on the parameters: —— <tana.

V3R
Properties:
3 2H
e volume V = = tan(a)R3 [1 - (1 — —)3],
4 tan(a)RvV3
3v/3R?

e particle surface seen from above S = 5

B.6.2 Expression of the form factor

The calculation can be derived from “Prism6” (Section by considering a side length
varying with the vertical position:

H
Fcones(q, R, H,) = [) Frrisme(Rz)dz

4V73 H) 3) R, . V3 /3 .
:?wq}z,——q,zc | eXp(lqzz)[ZRquZ,mnc(.‘lxz Z')SlnC(TqYRZ)+COS(6IXR2)_COS(76]sz)cos(qx?Z) dz
2z
withR,=R— ——.
? v3tan(a)

Syntax: FormFactorCone6(radius,height, alpha)

B.6.3 Examples

Figure shows the normalized intensity | F 12/V?, computed with R =10nm, H = 13 nm,
and a = 60°.

Page 55

Appendix B. Form factors

2 0 1 2
q, [nm7]

B.6. Cone6
1 2 Q 1
10 . -
— v' .’ ‘. 10
o ; -
-7 N
L.

Figure B.12: Normalized intensity for the form factor of a Cone6 |F|?/V?, plotted against
(g2, qy) and (qy, qy) and computed with R =10 nm, H = 13 nm, and a = 60°.

B.6.4 References

The convention of the base length is different from the one implemented in IsGISAXS: R =
2/V3R1gaisaxs-

Page 56

Appendix B. Form factors B.7. Pyramid

B.7 Pyramid

B.7.1 Real-space geometry
This shape is a truncated pyramid with a square base as shown in fig.

2R

AN

Figure B.13: Sketch of a Pyramid.

2R

Parameters:
* length of one side of the square base L,
* height H,

* a is the angle between the base and the side faces, taken in the middle of the base
lines.

2H
Restrictions on the parameters: T < tan(a).

Properties:

2H)3],

1
e volume V = = tan(a)L3 [1 -(1-
6 tan(a)L

« particle surface seen from above S = 2.

B.7.2 Expression of the form factor

X

FPyramid QL H a)= xdy

{Kl cos[(qx — q,)L/2] + Kz sin[(qx — gy) L12] = K3 cos[(qy + q,) L/2] — Ky sin[(qx + qy)L/z]}
(B.1)

Page 57

Appendix B. Form factors B.7. Pyramid

with sinc(x) = sin(x)/x,

:1 CIx_CIy_I_] :1 dx—dy]
N 2| tan(a) 2 42 2 | tan(a) “
_1 dx+4qy _1 dx=+dqy
B=3 tan(a) Z]’ =3 tan(a) Z]

Ky =sinc(q1 H) exp(iqy H) + sinc(q2 H) exp(—iqg2 H)
K> = —isinc(g; H)exp(iq1 H) + i sinc(q. H) exp(—iq. H)
K3 =sinc(gs H) exp(iq3 H) + sinc(qs H) exp(—iqs H)
Ky =—isinc(gzH)exp(iqs H) + isinc(qs H) exp(—iqs H)

Syntax: FormFactorPyramid(length, height, alpha)

B.7.3 Examples

Figure shows the normalized intensity |F|?/V?, computed with L = 20 nm, H = 13 nm
and a = 60°.

2 ; 5 1 2 m .1
=10 o 7
1 . 1 -
.E. o- | - E .E. o - E
N 1= > =107
o q10° © |]
1 a4
0 vl | S ol 2 L] e
<2 -1 0 1 2 <2 -1 0 1 2
q, [nm] q, [nm]

Figure B.14: Normalized intensity for the form factor of a pyramid |F|?/V?, plotted against
(42, qy) and (qy, qy) and computed with L =20 nm and H = 13 nm, and a = 60°.

B.7.4 References

The output of equation (B.1) agrees with the “pyramid” form factor of IsGISAXS [I].
In BornAgain the base of the pyramid is characterized by the full length of one of its
side and not by half this value: L = 2R1sg1sxax8-

Page 58

Appendix B. Form factors B.8. Anisotropic pyramid

B.8 Anisotropic pyramid

B.8.1 Real-space geometry
This shape is a truncated right pyramid with a rectangular base as shown in fig.

Figure B.15: Sketch of an Anisotropic Pyramid.

Parameters:

e full length of the base L,
e full width of the base W,
* height H,

* a is the angle between the base and the side faces, taken in the middle of the base
lines.

.. 2H 2H
Restrictions on the parameters: T < tan(a) and W < tan(a).

Properties:

(L+ WH 4 H?

e volume V=H|LW - - ,
tan(a) 3 tan2(a)

e particle surface seen from above S = LWW.

B.8.2 Expression of the form factor

X

FAnisoPyramid (q,L,W,H,a) =
qxqy

{Kl cos (qx£ - qyw) + K, sin(qx£ - qyﬂ) — K3 cos (qx£ + qyy) - I(Alsin(qx£ + qyy)}
2 2 2 2 2 2 2 2
with sinc(x) = sin(x)/x,
Kj =exp(—iqg. H)sinc(q2 H) + exp(iq1 H) sinc(q; H)
K> =iexp(—iqgoH)sinc(g. H) — iexp(iq; H) sinc(q, H)
K3 =exp(-iqsH)sinc(qs H) + exp(iqs H) sinc(gs H)
Ky =iexp(iqsH)sinc(gs H) — iexp(iqgs H) sinc(qgs H)

:1 (f7x—67y+ :1 dx—dy]
D=3 Tana) 273 | @na
_1 ax+qy] _l[axtay]
=3 Tana ¥ "7 | @na P

Page 59

Appendix B. Form factors B.8. Anisotropic pyramid

Syntax: FormFactorAnisoPyramid(length, width, height, alpha)

B.8.3 Examples

Figure shows the normalized intensity |F|?/ V?, computed with L = 20 nm, W = 16 nm,
H=13nm, and a =60°.

4102

N
|
=y
N
IIIIIIIIII-
=y

= 4= 10°
£ o) UHE = o £
O_N - °-> 10-1
10°
-1 -1
107
.2 1 | I .2 1 | I
=) -1 0 1 2 =) -1 0 1 2
q, [nm] q, [nm7]

Figure B.16: Normalized intensity for the form factor of an anisotropic pyramid |F|?/V?,
plotted against (g., g) and (qy, gy) and computed with L =20 nm, W =16 nm, H = 13 nm,
and a =60°.

B.8.4 References

Like in IsGISAXS, the base angle «a is the same for both unequal side. This means that a full
anisotropic pyramid is not a limit case.

But BornAgain uses a different convention of the parameters relative to the base. We input
the full length and width instead of half values.

Page 60

Appendix B. Form factors B.9. Cuboctahedron

B.9 Cuboctahedron

B.9.1 Real-space geometry

It is a combination of two pyramids with squared bases, as shown in fig. the bottom
one is upside down with an height H and the top one has the opposite orientation (the
standard one) and an height ry H.

Figure B.17: Sketch of a Cuboctahedron.

Parameters:
* length of the shared squared base L,
* height H,
* height_ratio rg,

* a is the angle between the base and the side faces, taken in the middle of the base
lines.

2rgH

2H
Restrictions on the parameters: T < tan(a) and < tan(a).

Properties:
@) " T |

1
e volume V = = tan(a)L3 [2 - (1 -
6 Ltan(a) Ltan(a)

« particle surface seen from above S = 2.

B.9.2 Expression of the form factor

Fcuboctahedron (@, L, H, 71, @) = exp(iqz H) | Fpyramid (9x, Gy, Gz, L, T H, @)+ Fpyramid (9x, 4y, —qz, L, H, @)
Syntax: FormFactorCuboctahedron(length, height, height_ratio, alpha)

B.9.3 Examples

Figure shows the normalized intensity |F 12/v2, computed with L =20 nm, H =13 nm,
rg=0.7,and a = 60°.

Page 61

Appendix B. Form factors B.9. Cuboctahedron

=y
e
&

|F/V

=y
S

Figure B.18: Normalized intensity for the form factor of a cuboctahedron |F|?/V?, plotted
against (q;, qy) and (gx, qy) and computed with L = 20 nm, H = 13 nm, ry = 0.7, and
a=60°.

B.9.4 References

In comparison with IsGISAXS, as for the form factor of a Pyramid, we use the full length of
a side of the squared base: L = 2Rrsc1saxs-

Page 62

Appendix B. Form factors B.10. Cylinder

B.10 Cylinder

B.10.1 Real-space geometry
This shape is a right circular cylinder (see fig.[B.10.1).

Figure B.19: Sketch of a Cylinder.

Parameters:
e radius of the circular base R.

* height H.

Properties:
e volume V = nR?H,

« particle surface seen from above S = 7R?.

B.10.2 Expression of the form factor

H J1(qR) (B.2)

. H .
Feylinder(, R, H) = 2nR*H sinc(q.) exp(iqz=) OR

with gy = \/ g% + g3 and J1 (x) is the first order Bessel function of the first kind [2].

Syntax: FormFactorCylinder(radius, height)

B.10.3 Examples

Figure shows the normalized intensity |F|?/V?, computed with R = 8 nm and H =
16 nm.

Page 63

Appendix B. Form factors B.10. Cylinder

2 1 2 1
107 ._10-1

T1 1 T 1]
- e 3
£ =< E 3 ES
£ o 4T = o+ B
D'N __10-9 °_> __10_7

-1_ - - - + - — -1_

_2 1 1 i | _2 1 1 1

-2 -1 0 1 2 -2 -1 0 1 2

g, (Y g, [}

Figure B.20: Normalized intensity for the form factor of a cylinder |F|>/V?, plotted against
(42, qy) and (qy, qy.) It has been computed with R =8 nm and H = 16 nm.

B.10.4 References

Page 64

Appendix B. Form factors B.11. Ellipsoidal cylinder

B.11 Ellipsoidal cylinder

B.11.1 Real-space geometry

This is a cylinder whose cross section is an ellipse.

Figure B.21: Sketch of an Ellipsoidal Cylinder.

Parameters:
* r, =halflength of the ellipse main axis parallel to x,
* rp = halflength of the ellipse main axis parallel to y,

* height H.

Properties:
e volume V =nr,rpH,

e particle surface seen from above S = r,71y,.

B.11.2 Expression of the form factor

The total form factor is given by

y

qu) J1(y)

q:H) .
FriipsoidalCylinder (@, R, W, H) = 27tr 41 H exp (l ZT) sinc (2 y

withy = \/ (Gxra)®+ (ay rp)2 and J1(x) is the first order Bessel function of the first kind [2].
Syntax: FormFactorEllipsoidalCylinder(r,, rp, height).

B.11.3 Examples

Figure shows the normalized intensity | F 12/Vv?, computed with r; =13 nm, r, =8 nm,
and H = 16 nm.

B.11.4 References

This form factor is referred to as "Ellipsoid” in ISGISAXS.

Page 65

Appendix B. Form factors B.11. Ellipsoidal cylinder

2 1 2 1
10" .10-1

1] | 1 7
= 4. = §
£ 45 £ 15
£ or 45 £ O 42
o 410° o —410°®

RS . 13 AF

.2 1 I 1 -2 1 | 1

-2 -1 0 1 2 -2 -1 0 1 2

q, [nm q, [nm']

Figure B.22: Normalized intensity for the form factor of an ellipsoidal cylinder | F|?/ V2, plot-
ted against (q., gy) and (gx, g,) and computed with r, =8 nm, r, =13 nm, and H = 16 nm.

Page 66

Appendix B. Form factors B.12. Cone

B.12 Cone

B.12.1 Real-space geometry
This shape is a truncated cone as shown in fig.[B.12.1

Figure B.23: Sketch of a Cone.

Parameters:
e radius R,
* height H,

* ais the angle between the side and the circular base.

H
Restrictions on the parameters: 7 <tan(a).

Properties:

n 3 H
e volume V= —tan(a)R’|1-(1- ——)°|,
3 tan(a)R

« particle surface seen from above S = 7R?.

B.12.2 Expression of the form factor

LR J1(qRz)

H
Fcone(q, R, H, @) =f 2 exp(iq.z)dz,
0

|z

with R, = R— %, q) = \/ g% + g5 and J1 (x) is the first order Bessel function of the first kind
[?].

Syntax: FormFactorCone(radius, height, alpha).

B.12.3 Examples

Figure shows the normalized intensity | F 12/v?, computed with R =10nm, H =13 nm,
and a = 60°.

B.12.4 References

Page 67

Appendix B. Form factors B.12. Cone

102

q, [nm"]
3 VP
q, [nm’]
3 IFVP S

q [nm7]

Figure B.24: Normalized intensity for the form factor of a Cone |F|?/ V2, plotted against (¢,
dy) and (qx, qy.) It has been computed with R =10 nm, H = 13 nm, and a = 60°.

Page 68

Appendix B. Form factors

B.13. Full sphere

B.13 Full sphere

B.13.1 Real-space geometry

The full sphere is parametrized by its radius R.

§ %

Figure B.25: Sketch of a Full Sphere.

Parameters: radius R.

Properties:
am o
e volume V = ?R ,

e particle surface seen from above S = TR?.

B.13.2 Expression of the form factor

sin(gR) — qRcos(qR)
(qR)®

Frulisphere (@, R) = 4mR3 exp(iq.R)

where g = /g5 + G5+ q>.

Syntax: FormFactorFullSphere(radius)

’

B.13.3 Examples

Figure shows the normalized intensity | F|?/ V2, computed with R = 8 nm.

(B.3)

Page 69

Appendix B. Form factors B.13. Full sphere

()
08
- =
S

N
|
- —d
(=]

1_ 7 1_ -
=] =]
E o 'H E o s
o 4107 o 107

-1= -1=

-2 - 1 1 1 ; -2 ; 1 1 1 i

-2 -1 0 1 2 -2 -1 0 1 2

q, [nm’] q [nm

Figure B.26: Normalized intensity for the form factor of a Full Sphere |F|?/V?, plotted
against (¢, qy) and (gy, qy) and computed with R = 8 nm.

B.13.4 References

Page 70

Appendix B. Form factors B.14. Truncated Sphere

B.14 Truncated Sphere

B.14.1 Real-space geometry

This shape is a spherical dome, i.e. a portion of a sphere cut off by a plane (perpendicular

to z-axis) as shown in fig.|B.14.1

_

Figure B.27: Sketch of a (truncated) Sphere.

Parameters:
e radius R,

* height H.
Restrictions on the parameters: 0< H <2R.

Properties:

e volume V = 7R3

2+H—R 1(H—R)3]
R 3\ R ’

TR?, H=R

e particle surface seen from above S = .
n(2RH-H?), H<R

B.14.2 Expression of the form factor

R J1(q|Rz)

exp(ig,z)dz (B.4)
q1R- pliqg;

R
Fsphere(q, R,H) =2mexpliq,(H - R)]fR Y

with J1(x) the first order Bessel function of the first kind [?], g = / quc + qu,, and R, =

R2 - 72
Syntax: FormFactorSphere(radius, height)

B.14.3 Examples

Figure shows the normalized intensity |F|>/V?, computed with R = 5 nm and H =
7 nm:

Page 71

Appendix B. Form factors B.14. Truncated Sphere

2 1 2 1
107
107
1T 1=
- -
E of | = E o =
o o 107
i ' : i E i 10-5 i
= o -1
-2 L 1 G -2 i 1 i
-2 -1 0 1 2 -2 -1 0 1 2
q, [nm] q, [nmy

Figure B.28: Normalized intensity for the form factor of a truncated Sphere |F|?/ V2, plotted
against (¢, qy) and (gx, qy) and computed with R =5nm and H =7 nm.

B.14.4 References

Equation (B.4) agrees with the “Sphere” form factor of IsGISAXS [I].

Page 72

Appendix B. Form factors B.15. Full spheroid

B.15 Full spheroid

B.15.1 Real-space geometry
A full spheroid is generated by rotating an ellipse around the vertical axis (see fig.[B.15.1).

Figure B.29: Sketch of a Full Spheroid.

Parameters:
e radius R,

* height H.
Properties:
2
e volume V = §R H,

« particle surface seen from above S = 7R?.

B.15.2 Expression of the form factor

H/2R§ J1(qRz)

cos(gy2)dz, with
q|R; I

FFullSpheroid (q,R,H)=4nexp(iq,H/2) /‘0

with J; (x) the first order Bessel function of the firstkind [2], R, = R\/1— %2, Yz= \/(qxll?z)2 +(gyR2)2.

Syntax: FormFactorFullSpheroid(radius,height)

B.15.3 Examples

Figure shows the normalized intensity |F 12/v2, computed with R = 10 nm, and H =
13 nm.

B.15.4 References

Page 73

Appendix B. Form factors B.15. Full spheroid

2 1 2 1
.10'1 .101
1 e 1]
— 1 = k
.E. oF 42 .E. oF 12
N 47 > 1
o 10 o 4107
1 1
.2 I | 1 .2 | | 1
-2 -1 0 1 2 -2 -1 0 1 2
q, Inm’! q, [nm]

Figure B.30: Normalized intensity for the form factor of a full spheroid |F|?/V?, plotted
against (q., qy) and (gx, qy) and computed with R =10 nm and H = 13 nm.

Page 74

Appendix B. Form factors B.16. Truncated spheroid

B.16 Truncated spheroid

B.16.1 Real-space geometry

This shape is a spheroidal dome: a portion of a full spheroid cut off by a plane perpendicular
to the z-axis.

Figure B.31: Sketch of a truncated Spheroid.

Parameters:
e radius R,
* height H,

* height_flattening coeeficient in the perpendicular direction f).

- H
Restrictions on the parameters: 0 < 7 <2fp.

Properties:

e volume V = R (1 H),

fp 3fpR
nR?, Hz= f,R

2RH H?
B

e particle surface seen from above S =
7

), H<R

B.16.2 Expression of the form factor

R (g R2)
F, Wd @, R, H, f,) =2nexpliq,(H—- f,R)] Rz
spheroid q fp pliqg: fp fR-H z qi Rz

with J; (x) the first order Bessel function of the firstkind [?], g = 1/ qfc + qJZ, andR, = /R?-z2/ fﬁ.

exp(iqgzz)dz

Syntax: FormFactorSpheroid(radius, height, height_flattening)

B.16.3 Examples

Figure shows the normalized intensity |F 12/V?, computed with R =7 nm, H =9 nm
and f, = 1.2.

Page 75

Appendix B. Form factors B.16. Truncated spheroid

2 1 2 1
I 10"
1t E 1 .
- E - :
E. Vs E E .E. oF - E
o q10° & 107
-1 -1
-2 T 1 i -2 1 il 1
-2 -1 0 1 2 -2 -1 0 1 2
q, [nm] q, [nm]

Figure B.32: Normalized intensity for the form factor of a truncated Spheroid |F|?/ V2, plot-
ted against (¢, gy) and (gx, qy) and computed with R =7 nm, H =9 nm, and f, = 1.2.

B.16.4 References

Page 76

Appendix B. Form factors B.17. Hemi ellipsoid

B.17 Hemi ellipsoid

B.17.1 Real-space geometry
This shape is a truncated ellipsoid as shown in fig.

Figure B.33: Sketch of an Hemi-ellipsoid.

Parameters:
* r, =halflength of the ellipse main axis parallel to x,
* rp = halflength of the ellipse main axis parallel to y,

* H = height (half length of the vertical main axis of a full ellipsoid).
Properties:

2
e volume V = gnrarbH,

e particle surface seen from above S = wr,ry,.

B.17.2 Expression of the form factor

H

J1(yz2)
Fhemi—ellipsoid(qv Ta Tp, H) =27Tf0 Ta,zl'b,z y z
z

exp(iq;z)dz,

2
with J;(x) the first order Bessel function of the first kind [?], r,; = r41/1— (%) , Thz =

Z\2
rb\/l_(ﬁ) ande:\/(era,z)z'f‘(erb,z)z-

Syntax: FormFactorHemiEllipsoid(r,, rp, height)

B.17.3 Examples

Figure shows the normalized intensity |F 12/v?, computed with r, = 10 nm, r, = 6 nm
and H = 8 nm.

Page 77

Appendix B. Form factors B.17. Hemi ellipsoid

2 1 2 1
10"
_10-1 i
1 | 1k]
= 1. = b
£ o - HHE £ oo H
o 1 o 107
10° E
-k -k
-2 1 1 1 _2 1 1 1
-2 -1 0 1 2 -2 -1 0 1 2
g, (Y g, [}

Figure B.34: Normalized intensity for the form factor of an Hemi-Ellipsoid | F|?/V?, plotted
against (¢, qy) and (gx, qy) computed with r;, =10 nm, r, =6 nm, and H = 8 nm.

B.17.4 References

This shape is referred to as “Anisotropic hemi ellipsoid” in ISGISAXS.

Page 78

Appendix B. Form factors B.18. Ripplel

B.18 Ripplel

B.18.1 Real-space geometry

Figure B.35: Sketch

Parameters:
e [=Ilength
* W =width
* H =height
Properties:

e volume V=05LWH,

e particle surface seen from above S = LW.
B.18.2 Expression of the form factor

L

X

w
Fripplel (@=L- ? +SInc

H 2z w
f dzarccos | — —1 4y
0 H

Zﬂ exp ig.]

sinc arccos|— —1
H

Syntax: FormFactorRipplel(,,)

B.18.3 Examples
B.18.4 References

Page 79

Appendix B. Form factors B.19. Ripple2

B.19 Ripple2

B.19.1 Real-space geometry

Figure B.36: Sketch

Parameters:
e [=Ilength
e W =width
* H =height
* d =asymetry

Restriction on the parameters: |d| < %

Properties:
e volume V =0.5LWH,

e particle surface seen from above S = LW.
B.19.2 Expression of the form factor

. L
Fiipple2(q) = LW sinc Sx

fOHdz(l - %)sinc

Syntax: FormFactorRipple2(,,)

X

exp i{g:2- gy (1-)]

w
zqy (1 - %) H

B.19.3 Examples
B.19.4 References

Page 80

Bibliography Bibliography

Bibliography

[1] R.Lazzari, J. Appl. Cryst. 35, 406-421 (2002).
[2] M. Lutz, Python pocket reference, O'Reilly media (*2009).
[3] http://www.numpy.org.

[4] Minuit wuser’s guide, http://seal.web.cern.ch/seal/documents/minuit/
mnusersguide.pdfl

[5] http://seal.web.cern.ch/seal/documents/minuit/mntutorial.pdf.

[6] http://www.gnu.org/software/gsl/manual/html_node/
Multidimensional-Minimization.html.

[7] http://www.gnu.org/software/gsl/manual/html_node/Nonlinear-Least_
002dSquares-Fitting.html#Nonlinear-Least_002dSquares-Fitting,

[8] http://www.gnu.org/software/gsl/manual/html_node/Simulated-Annealing.
html.

Page 81

http://www.numpy.org
http://seal.web.cern.ch/seal/documents/minuit/mnusersguide.pdf
http://seal.web.cern.ch/seal/documents/minuit/mnusersguide.pdf
http://seal.web.cern.ch/seal/documents/minuit/mntutorial.pdf
http://www.gnu.org/software/gsl/manual/html_node/Multidimensional-Minimization.html
http://www.gnu.org/software/gsl/manual/html_node/Multidimensional-Minimization.html
http://www.gnu.org/software/gsl/manual/html_node/Nonlinear-Least_002dSquares-Fitting.html#Nonlinear-Least_002dSquares-Fitting
http://www.gnu.org/software/gsl/manual/html_node/Nonlinear-Least_002dSquares-Fitting.html#Nonlinear-Least_002dSquares-Fitting
http://www.gnu.org/software/gsl/manual/html_node/Simulated-Annealing.html
http://www.gnu.org/software/gsl/manual/html_node/Simulated-Annealing.html

	Introduction
	Quick start
	Quick start on Unix Platforms
	Quick start on Windows Platforms
	Getting help

	Installation
	Building and installing on Unix Platforms
	Installing on Windows Platforms

	Simulation
	General methodology
	Geometry of the sample
	Example 1: two types of islands on top of substrate without interference
	Example 2: working with sample parameters

	Fitting
	Implementation in BornAgain
	Basic Python fitting example
	Advanced fitting
	How to get the right answer from fitting

	Software architecture
	Data classes for simulations and fits

	Listings
	Python simulation example
	Python fitting example

	Form factors
	Parallelepiped
	Box
	Prism3
	Tetrahedron
	Prism6
	Cone6
	Pyramid
	Anisotropic pyramid
	Cuboctahedron
	Cylinder
	Ellipsoidal cylinder
	Cone
	Full sphere
	Truncated Sphere
	Full spheroid
	Truncated spheroid
	Hemi ellipsoid
	Ripple1
	Ripple2

