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Disclaimer

This manual is under development and does not yet constitute a comprehensive
listing of BornAgain features and functionality. The included information and in-
structions are subject to substantial changes and are provided only as a preview.
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Introduction

BornAgain is a free software package to simulate and fit small-angle scattering at graz-
ing incidence (GISAS). It supports analysis of both X-ray (GISAXS) and neutron (GISANS)
data. Its name, BornAgain, indicates the central role of the distorted-wave Born approxi-
mation (DWBA) in the physical description of the scattering process. The software provides
a generic framework for modeling multilayer samples with smooth or rough interfaces and
with various types of embedded nanoparticles.

BornAgain almost completely reproduces the functionality of the widely used program
IsGISAXS by R. Lazzari [1].

BornAgain goes beyond IsGISAXS by supporting an unrestricted number of layers and
particles, diffuse reflection from rough layer interfaces, particles with inner structures, neu-
tron polarization and magnetic scattering. Adhering to a strict object-oriented design,
BornAgain provides a solid base for future extensions in response to specific user needs.

BornAgain is a platform-independent software, with active support for Linux, MacOS
and Microsoft Windows. It is a free and open source software provided under the terms of
the GNU General Public License (GPL). This documentation is released under the Creative
Commons license CC-BY-SA.

The authors will be grateful for all kind of feedback: criticism, praise, bug reports, fea-
ture requests or contributed modules. When BornAgain is used in preparing scientific pa-
pers, please cite this manual as follows:

C. Durniak, M. Ganeva, G. Pospelov, W. Van Herck, J. Wuttke (2013),
BornAgain - Software for simulating and fitting X-ray and neutron small-angle
scattering at grazing incidence, version 0.2.2,
http://apps.jcns.fz-juelich.de/BornAgain

This user guide starts with a brief description of the steps necessary for installing the
software and running a simulation on Unix and Windows platforms in Section 1. A more
detailed description of the installation procedure is given in Section 2. The general method-
ology of a simulation with BornAgain and detailed simulation usage examples are given in
Section 3. The fitting toolkit, provided by the framework, is presented in Section 4, while
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Section 5 provides a brief overview of the software architecture.

Icons used in this manual:

P: this sign highlights further remarks.

B: this sign highlights essential points.
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Chapter 1

Quick start

1.1 Quick start on Unix Platforms

This section shortly describes how to build and install BornAgain from source and run
the first simulation on Unix Platforms. Further details about the installation procedure are
given in Section 2.

Step I: installing the third party software

• compilers: clang versions ≥ 3.1 or GCC versions ≥ 4.2

• cmake (≥ 2.8)

• boost library (≥ 1.48)

• GNU scientific library (≥ 1.15)

• fftw3 library (≥ 3.3.1)

• Python-2.7, python-devel, python-numpy-devel

Step II: getting the source
Download BornAgain source tarball from http://apps.jcns.fz-juelich.de/BornAgain
or use the following git repository

git clone git:// apps.jcns.fz-juelich.de/BornAgain.git

Step III: building the libraries and executable

mkdir <build_dir>; cd <build_dir>;
cmake -DCMAKE_INSTALL_PREFIX=<install_dir> <source_dir>
make
make check
make install
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Chapter 1. Quick start 1.2. Quick start on Windows Platforms

Step IV: running an example

python <install_dir>/share/BornAgain/Examples/python/simulation/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

1.2 Quick start on Windows Platforms

Step I: installing the third party software
The current version of BornAgain requires Python, numpy, matplotlib to be installed
on the system. If you don’t have them already installed, you can use PythonXY installer
available at https://code.google.com/p/pythonxy which, with default installation op-
tions, contains at least these three packages.

Step II: using BornAgain installation package
Windows installation package can be downloaded from http://apps.jcns.fz-juelich.
de/BornAgain. Double-click on it to start the installation process. Then follow the instruc-
tions.

Step III: running the example
Run an example located in BornAgain installation directory:

python C:/BornAgain -0.9.4/ Examples/python/simulation/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

1.3 Getting help

Users of the software who encounter problems during the installation of the framework
or during the run of a simulation can use the web-based issue tracking system at http:
//apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues to report a bug.
The same system can be used to request new features. This system is open for all users
in read mode, while submitting bug reports and feature requests are possible only after a
simple registration procedure.
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Chapter 2

Installation

BornAgain is supported under x86/x86_64 Linux, Mac OS X and Windows operating sys-
tems. It has been successfully compiled and tested on

• Microsoft Windows 7 64-bit, Windows 8 64-bit

• Mac OS X 10.8 (Mountain Lion), 10.9 (Maverick)

• OpenSuse 12.3 64-bit

• Ubuntu 12.10, 13.04 64-bit

• Debian 7.1.0, 32-bit, 64-bit

At the moment we support build and installation from source on Unix Platforms (Linux,
Mac OS) and installation using binary installer packages on MS Windows 7, 8 (see Sec-
tion 2.1 and Section 2.2, respectively). In the next releases we are planning to provide binary
installers for Mac OS X and Debian.

We welcome feedback and bug reports related to installation and use of BornAgain via
http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

2.1 Building and installing on Unix Platforms

BornAgain uses CMake to configure a build system for compiling and installing the frame-
work. There are three major steps to build BornAgain :

1. Acquiring the required third-party libraries.

2. Getting BornAgain source code.

3. Using CMake to build and install the software.

The remainder of this section explains each step in detail.
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Chapter 2. Installation 2.1. Building and installing on Unix Platforms

2.1.1 Third-party software

To successfully build BornAgain a number of prerequisite packages must be installed.

• compilers: clang versions ≥ 3.1 or GCC versions ≥ 4.1.2

• cmake (≥ 2.8.3)

• boost library (≥ 1.48)

• GNU scientific library (≥ 1.15)

• fftw3 library (≥ 3.3)

• Python (≥ 2.7, < 3.0), python-devel, python-numpy-devel

Other packages are optional

• ROOT framework (adds several additional fitting algorithms to BornAgain)

• python-matplotlib (allows to run usage examples with graphics)

All required packages can be easily installed on most Linux distributions using the sys-
tem’s package manager. Below we give examples for a few selected operation systems.
Please note, that other distributions (Fedora, Mint, etc) may have different commands for
invoking the package manager as well as slightly different names of packages (like “boost”
instead of “libboost” etc). Besides the installation should be very similar.

Ubuntu (12.10, 13.04), Debian (7.1)
Installing the required packages

sudo apt -get install git cmake libgsl0 -dev libboost -all -dev
libfftw3 -dev python -dev python -numpy

Installing the optional packages

sudo apt -get install libroot -* root -plugin -* root -system -* ttf -
root -installer libeigen3 -dev python -matplotlib python -
matplotlib -tk

OpenSuse 12.3
Adding the “scientific” repository

sudo zypper ar http :// download.opensuse.org/repositories/science/
openSUSE_12 .3 science

Installing the required packages

sudo zypper install git -core cmake gsl -devel boost -devel fftw3 -
devel python -devel python -numpy -devel
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Installing the optional packages

sudo zypper install libroot -* root -plugin -* root -system -* root -
ttf libeigen3 -devel python -matplotlib

Mac OS X 10.8, 10.9
To simplify the installation of third party open-source software on a Mac OS X system we
recommend the use of MacPorts package manager. The easiest way to install MacPorts is
by downloading the dmg from www.macports.org/install.php and running the system’s
installer. After the installation new command “port” will be available in a terminal window
of your Mac.
Installing the required packages

sudo port -v selfupdate
sudo port install git -core cmake
sudo port install fftw -3 gsl
sudo port install boost -no_single -no_static+python27
sudo port select --set python python27

Installing the optional packages

sudo port install py27 -matplotlib py27 -numpy py27 -scipy
sudo port install root +fftw3+python27
sudo port install eigen3

2.1.2 Getting BornAgain source code

BornAgain source can be downloaded at http://apps.jcns.fz-juelich.de/BornAgain
and unpacked with

tar xfz bornagain -<version>.tar.gz

Alternatively one can obtain BornAgain source from our public Git repository.

git clone git:// apps.jcns.fz-juelich.de/BornAgain.git

More about Git
Our Git repository holds two main branches called “master” and “develop”. We consider
“master” branch to be the main branch where the source code of HEAD always reflects the
latest stable release. git clone command shown above

1. gives you a source code snapshot corresponding to the latest stable release,

2. automatically sets up your local master branch to track our remote master branch, so
you will be able to fetch changes from the remote branch at any time using git pull
command.
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Chapter 2. Installation 2.1. Building and installing on Unix Platforms

“Master” branch is updated approximately once per month. The second branch, “de-
velop” branch, is a snapshot of the current development. This is where any automatic
nightly builds are built from. The develop branch is always expected to work. So in order to
get the most recent features of the source code, one can switch to it by

cd BornAgain
git checkout develop
git pull

2.1.3 Building and installing the code

BornAgain should be built using CMake cross platform build system. Having the third-party
libraries installed on your system and BornAgain source code acquired as explained in the
previous sections, type the build commands

mkdir <build_dir>
cd <build_dir>
cmake -DCMAKE_INSTALL_PREFIX=<install_dir> <source_dir>
make

Here <source_dir> is the name of the directory, where BornAgain source code has
been copied, <install_dir> is the directory, where you want the package to be installed,
and <build_dir> is the directory where the building will occur.

P

About CMake
Having a dedicated directory <build_dir> for the build process is recommended
by CMake. This allows several builds with different compilers/options from the same
source and keeps the source directory clean from build remnants.

The compilation process invoked by the command “make” lasts about 10 minutes on
an average laptop of 2012 edition. On multi-core machines the compilation time can be
decreased by invoking command “make” with the parameter “make -j[N]”, where N is the
number of cores.

Running functional tests is an optional but recommended step. Command “make check”
will compile several additional tests and run them one by one. Each test contains the sim-
ulation of a typical GISAS geometry and the comparison on numerical level of simulation
results with reference files. Having 100% tests passed ensures that your local installation is
correct.

make check
...
100% tests passed , 0 tests failed out of 26
Total Test time (real) = 89.19 sec
[100%] Build target check
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The last command “make install” copies the compiled libraries and some usage exam-
ples into the installation directory.

make install

After installation is completed, the location of BornAgain libraries needs to be included
into LD_LIBRARY_PATH and PYTHONPATH environment variables. This can be done by run-
ning BornAgain setup script in the terminal session

source <install_dir>/bin/thisbornagain.sh

Conveniently, given call can be placed in your .bashrc file.

Troubleshooting

In the case of a complex system setup, with libraries of different versions scattered across
multiple places (/opt/local, /usr/local etc.), you may want to help CMake in finding the
correct library paths by running cmake with additional parameter

cmake -DCMAKE_PREFIX_PATH =/usr/local -DCMAKE_INSTALL_PREFIX=<
install_dir> <source_dir>

2.1.4 Running the first simulation

In your installation directory you will find

./ include/BornAgain - header files for compilation of your C++
program

./lib - libraries to import into python or link with your C++
program

./share/BornAgain/Examples - directory with examples

Run your first example and enjoy the first BornAgain simulation plot.

python <install_dir>/share/BornAgain/Examples/python/simulation/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

2.2 Installing on Windows Platforms

Step I: install the third party software
The current version of BornAgain requires Python, numpy, matplotlib to be installed
on the system.
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If you do not have have Python installed

You can use PythonXY installer at https://code.google.com/p/pythonxy which, with
the default installation options, contains at least these three packages. The user has to
download and install this package before proceeding to the installation of BornAgain.

If you have Python already installed

You might want to keep using this installation and to install missed modules. Required
libraries can be found at

matlab:
http :// matplotlib.org/downloads.html

numpy , dateutil , pyparsing:
http ://www.lfd.uci.edu/~ gohlke/pythonlibs

Step II: use the installation package
BornAgain installation package for Windows can be downloaded from http://apps.jcns.
fz-juelich.de/BornAgain. Double-click on it to start the installation process. And then
follow the instructions.

Step IV: run an example
Run an example located in BornAgain installation directory:

python C:/BornAgain -0.9.4/ Examples/python/simulation/
ex001_CylindersAndPrisms/CylindersAndPrisms.py
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Chapter 3. Simulation

Chapter 3

Simulation

3.1 General methodology

A simulation of GISAXS using BornAgain consists of following steps:

• define materials by specifying name and refractive index,

• define embedded particles by specifying shape, size, constituting material, interfer-
ence function,

• define layers by specifying thickness, roughness, material,

• include particles in layers, specifying density, position, orientation,

• assemble a multilayered sample,

• specify input beam and detector characteristics,

• run the simulation,

• save the simulated detector image.

We are planing to organize all these steps in a graphical user interface (GUI). For the time
being, however, BornAgain must be involved via C++ program or Python scripts. In the
following, we describe how to write a Python script which runs a BornAgain simulation.
For tutorials about this programming language, the users are referred to [2].

More information about the general software architecture and BornAgain internal de-
sign are given in Section 5.

3.2 Geometry of the sample

The geometry used to describe the sample is shown in figure 3.1. The z-axis is perpen-
dicular to the sample’s surface and pointing upwards. The x-axis is perpendicular to the
detector plane. The input and the scattered output beams are each characterized by two
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Chapter 3. Simulation 3.2. Geometry of the sample

angles αi , φi and α f , φ f , respectively. Our choice of orientation for the angles αi and α f is
so that they are positive as shown in figure 3.1.

Figure 3.1: Representation of the scattering geometry. n j is the refractive index of layer j
and αi and φi are the incident angles of the wave propagating. α f is the exit angle with
respect to the sample’s surface and φ f is the scattering angle with respect to the scattering
plane.

The layers are defined by their thicknesses (parallel to the z-direction), their possible
roughnesses (equal to 0 by default) and the material they are made of. They have infinite
extension in the x, y directions. And, except for roughness, they interfaces are plane and
perpendicular to the z-axis. There is also no limitation to the number of layers that could be
defined in BornAgain. Note that the thickness of the top and bottom layer are not defined.

The nanoparticles are characterized by their form factors (i.e. the Fourier transform of
the shape function - see Appendix B for a list of form factors implemented in BornAgain)
and the composing material. The number of input parameters for the form factor depends
on the particle symmetry; it ranges from one parameter for a sphere (its radius) to three for
an ellipsoid (its three main axis lengths).

By placing the particles inside or on top of a layer, we impose their vertical positions,
whose values correspond to the bottoms of the particles. The in-plane distribution of par-
ticles is linked with the way the particles interfere with each other. It is therefore imple-
mented when dealing with the interference function.

The complex refractive index associated with a layer or a particle is written as n = 1−
δ+ iβ, with δ,β ∈R. In our program, we input δ and β directly.
The input beam is assumed to be monochromatic without any spatial divergence.
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Chapter 3. Simulation 3.2. Example 1: two types of islands on a substrate without interference

Units: By default the angles are expressed in radians and the lengths are given in nanome-
ters. But it is possible to use other units by specifying them right after the value of the cor-
responding parameter like, for example, 20.0*micrometer.

3.3 Example 1: two types of islands on top of substrate without
interference

In this example, we simulate the scattering from a mixture of cylindrical and prismatic
nanoparticles without any interference between them. These particles are placed in air,
on top of a substrate.
We are going to go through each step of the simulation. The Python script specific to each
stage will be given at the beginning of the description. But for the sake of completeness the
full code is given in Appendix A.1.

Importing Python modules

1 import numpy
2 import matplotlib
3 import pylab
4 from libBornAgainCore import *

We start by importing different functions from external modules, for example NumPy (lines 1-
3), which is a fundamental package for scientific computing with Python [3]. In particular,
line 4 imports the features of BornAgain software.

Defining the materials

5 def get_sample ():
6 """
7 Build and return the sample representing cylinders and

pyramids on top of
8 substrate without interference.
9 """

10 # defining materials
11 m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,

0.0)
12 m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)
13 m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)

Line 5 marks the beginning of the function to define our sample. Lines 11, 12 and 13 define
different materials using function getHomogeneousMaterial from class MaterialManager.
The general syntax is the following
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Chapter 3. Simulation 3.3. Example 1: two types of islands on a substrate without interference

<material_name > = MaterialManager.getHomogeneousMaterial("name",
delta , beta)

where name is the name of the material associated with its complex refractive index n=1-
delta +i beta. <material_name> is later used when referring to this particular material.
The three defined materials in this example are Air with a refractive index of 1 (delta =
beta = 0), a Substrate associated with a complex refractive index equal to 1−6×10−6 +
i 2×10−8, and the material of particles, whose refractive index is n= 1−6×10−4 + i 2×10−8.

Defining the particles

15 # collection of particles
16 cylinder_ff = FormFactorCylinder (5* nanometer , 5* nanometer)
17 cylinder = Particle(m_particle , cylinder_ff)
18 prism_ff = FormFactorPrism3 (10* nanometer , 5* nanometer)
19 prism = Particle(m_particle , prism_ff)

We implement two different shapes of particles: cylinders and prisms (i.e. elongated parti-
cles with a constant equilateral triangular cross section).

All particles implemented in BornAgain are defined by their form factors (see Appendix B),
their sizes and the material they are made of. Here, for the cylindrical particle, we input its
radius and height. For the prism, the possible inputs are the length of one side of its equi-
lateral triangular base and its height.

In order to define a particle, we proceed in two steps. For example for the cylindrical
particle, we first specify the form factor of a cylinder with its radius and height, both equal
to 5 nanometers in this particular case (see line 16). Then we associate this shape with the
constituting material as in line 17. The same procedure has been applied for the prism in
lines 18 and 19, respectively.

Characterizing particles assembly

20 particle_decoration = ParticleDecoration ()
21 particle_decoration.addParticle(cylinder , 0.0, 0.5)
22 particle_decoration.addParticle(prism , 0.0, 0.5)
23 interference = InterferenceFunctionNone ()
24 particle_decoration.addInterferenceFunction(interference)

The object which holds the information about the positions and densities of particles in our
sample is called ParticleDecoration (line 20). We use the associated function addParticle
for each particle shape (lines 21, 22). Its general syntax is

addParticle(<particle_name >, depth , abundance)

where <particle_name> is the name used to define the particles (lines 17 and 19), depth
(default value =0) is the vertical position, expressed in nanometers, of the particles in a
given layer (the association with a particular layer will be done during the next step) and
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abundance is the proportion of this type of particles, normalized to the total number of
particles. Here we have 50% of cylinders and 50% of prisms.

B

Remark: Depth of particles
The vertical positions of the particles in a layer are given in relative coordinates. For
the top layer, the bottom of the layer corresponds to depth=0 and negative values
would correspond to particles floating above layer 1 since the vertical axis, shown in
figure 3.1 is pointing upwards. But for all the other layers, it is the top of the layer
which corresponds to depth=0.

Finally, lines 23 and 24 specify that there is no coherent interference between the waves
scattered by these particles. In this case, the intensity is calculated by the incoherent sum
of the scattered waves: 〈|F j |2〉, where F j is the form factor associated with the particle of
type j . The way these waves interfere imposes the horizontal distribution of the particles
as the interference reflects the long or short-range order of the particles distribution (see
Theory). On the contrary, the vertical position is imposed when we add the particles in a
given layer by parameter depth, as shown in lines 21 and 22.

Multilayer

25 # air layer with particles and substrate form multi layer
26 air_layer = Layer(m_air)
27 air_layer.setDecoration(particle_decoration)
28 substrate_layer = Layer(m_substrate , 0)
29 multi_layer = MultiLayer ()
30 multi_layer.addLayer(air_layer)
31 multi_layer.addLayer(substrate_layer)
32 return multi_layer

We now have to configure our sample. For this first example, the particles, i.e. cylinders and
prisms, are on top of a substrate in an air layer. The order in which we define these layers
is important: we start from the top layer down to the bottom one.

Let us start with the air layer. It contains the particles. In line 26, we use the previously
defined mAmbience (="air" material) (line 11). The command in line 27 shows that this
layer is decorated by adding the particles using particle decoration object defined earlier.
The substrate layer only contains the substrate material (line 28).

There are different possible syntaxes to define a layer. As shown in lines 26 and 28, we
can use Layer(<material_name>,thickness) or Layer(<material_name>). The sec-
ond case corresponds to the default value of the thickness, equal to 0. The thickness is
expressed in nanometers.

Our two layers are now fully characterized. The sample is assembled using MultiLayer()
constructor (line 29): we start with the air layer decorated with the particles (line 30), which
is the layer at the top and end with the bottom layer, which is the substrate (line 31).

Characterizing the input beam and output detector
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33 def get_simulation ():
34 """
35 Create and return GISAXS simulation with beam and detector

defined
36 """
37 simulation = Simulation ()
38 simulation.setDetectorParameters (100, -1.0*degree , 1.0* degree

, 100, 0.0* degree , 2.0* degree , True)
39 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)
40 return simulation

The first stage is to create the Simulation() object (line 37). Then we define the detector
(line 38) and beam parameters (line 39). Those functions are part of the Simulation class.
The different incident and exit angles are shown in figure 3.1.

The detector parameters are set using ranges of angles via the function:

setDetectorParameters(n_phi , phi_f_min , phi_f_max , n_alpha ,
alpha_f_min , alpha_f_max , isgisaxs_style=false)},

where n_phi=100 is the number of iterations for φ f ,
phi_f_min=-1.0*degree and phi_f_max=1.0*degree are the minimum and maximum
values respectively of φ f ,
n_alpha=100 is the number of iterations for α f ,
alpha_f_min=0.0*degree and alpha_f_max=2.0*degree are the minimum and maxi-
mum values respectively of α f .
isgisaxs_style=True (default value = False) is a boolean used to characterise the struc-
ture of the output data. If isgisaxs_style=True, the output data is binned at constant
values of the sine of the output angles, α f and φ f , otherwise it is binned at constant values
of these two angles.

For the beam the function to use is setBeamParameters(lambda, alpha_i, phi_i), where
lambda=1.0*angstrom is the incident beam wavelength, alpha_i=0.2*degree is the in-
cident grazing angle on the surface of the sample, phi_i=0.0*degree is the in-plane di-
rection of the incident beam (measured with respect to the x-axis).

B
Remark: Scattering vector
In BornAgain the wave vector q is defined as ki −k f , where ki is the incident wave
vector and k f the scattered one.

Running the simulation and plotting the results

41 def run_simulation ():
42 """
43 Run simulation and plot results
44 """
45 sample = get_sample ()
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46 simulation = get_simulation ()
47 simulation.setSample(sample)
48 simulation.runSimulation ()
49 result = simulation.getIntensityData ().getArray () + 1 # for

log scale
50 pylab.imshow(numpy.rot90(result , 1), norm=matplotlib.colors.

LogNorm (), extent =[-1.0, 1.0, 0, 2.0])
51 pylab.show()

The function, whose definition starts from line 41, gathers all items. We create the sample
and the simulation objects at the lines 45 and 46, using calls to the previously defined func-
tions. We assign the sample to the simulation at line 47 and finally launch the simulation
at line 48.

In line 49 we obtain the simulated intensity as a function of outgoing angles α f and
φ f for further uses (plots, fits,. . . ) as a NumPy array containing n_phi×n_alpha datapoints.
Lines 50-51 produces the two-dimensional contourplot of the intensity as a function of α f

and φ f shown in figure 3.2.

3.4 Example 2: working with sample parameters

This section gives additional details about the manipulation of sample parameters during
run time; that is after the sample has already been constructed. For a single simulation this
is normally not necessary. However it might be useful during interactive work when the
user tries to find optimal sample parameters by running a series of simulations. A similar
task also arises when the theoretical model, composed of the description of the sample
and of the simulation, is used for fitting real data. In this case, the fitting kernel requires
a list of the existing sample parameters and a mechanism for changing the values of these
parameters in order to find their optima.

In BornAgain this is done using the so-called sample parameter pool mechanism. We
are going to briefly explain this approach using the example of Section 3.3.

In BornAgain a sample is described by a hierarchical tree of objects. For the multilayer
created in the previous section this tree can be graphically represented as shown in Fig. 3.3.
Similar trees can be printed in a Python session by running multi_layer.printSampleTree()

The top MultiLayer object is composed of three children, namely Layer #0, Layer
Interface #0 and Layer #1. The children objects might themselves also be decomposed
into tree-like structures. For example, Layer #0 contains a ParticleDecoration object,
which holds information related to the two types of particles populating the layer. All nu-
merical values used during the sample construction (thickness of layers, size of particles,
roughness parameters) are part of the same tree structure. They are marked in the figure
with shaded gray boxes.

These values are registered in the sample parameter pool using the name composed of
the corresponding nodes’ names. And they can be accessed/changed during run time. For
example, the height of the cylinders populating the first layer can be changed from the
current value of 5 nm to 1 nm by running the command
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Figure 3.2: Simulated grazing-incidence small-angle X-ray scattering from a mixture of
cylindrical and prismatic nanoparticles without any interference, deposited on top of a
substrate. The input beam is characterized by a wavelength λ of 1 Å and incident angles
αi = 0.2◦, φi = 0◦. The cylinders have a radius and a height both equal to 5 nm, the prisms
are characterized by a side length equal to 10 nm and they are 5 nm high. The material of
the particles has a refractive index of 1−6×10−4 + i 2×10−8. For the substrate it is equal to
1−6×10−6 + i 2×10−8. The colorscale is associated with the output intensity in arbitrary
units.
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Figure 3.3: Tree representation of the sample structure.
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multi_layer.setParameterValue (’/ MultiLayer/Layer0/
ParticleDecoration/ParticleInfo0/Particle/FormFactorCylinder/
height ’, 1.0)

A list of the names and values of all registered sample’s parameters can be displayed
using the command

> multi_layer.printParameters ()
The sample contains following parameters (’name ’:value)
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo0/Particle/

FormFactorCylinder/height ’:5
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo0/Particle/

FormFactorCylinder/radius ’:5
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo0/abundance

’:0.5
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo0/depth ’:0
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo1/Particle/

FormFactorPrism3/length ’:5
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo1/Particle/

FormFactorPrism3/height ’:5
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo1/abundance

’:0.5
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo1/depth ’:0
’/MultiLayer/Layer0/thickness ’:0
’/MultiLayer/Layer1/thickness ’:0
’/MultiLayer/LayerInterface/roughness/corrlength ’:0
’/MultiLayer/LayerInterface/roughness/hurst ’:0
’/MultiLayer/LayerInterface/roughness/sigma ’:0
’/MultiLayer/crossCorrLength ’:0

Wildcards ’*’ can be used to reduce typing or to work on a group of parameters. In the
example below, the first command will change the height of all cylinders in the same way,
as in the previous example. The second line will change simultaneously the height of both
cylinders and prisms.

multi_layer.setParameterValue (’* FormFactorCylinder/height ’, 1.0)
multi_layer.setParameterValue (’*height ’, 1.0)

The complete example described in this section can be found at

./ Examples/python/fitting/ex001_SampleParametersIntro/
SampleParametersIntro.py
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Chapter 4

Fitting

In addition to the simulation of grazing incidence X-ray and neutron scattering by multi-
layered samples, BornAgain also offers the option to fit the numerical model to reference
data by modifying a selection of sample parameters from the numerical model. This aspect
of the software is discussed in the current chapter.

Section 4.1 details the implementation of fittings in BornAgain . Python fitting exam-
ples with detailed explanations of every fitting step are given in Section 4.2. Advanced fitting
techniques, including fine tuning of minimization algorithms, simultaneous fits of differ-
ent data sets, parameters correlation, are covered in Section 4.3. Section 4.4 contains some
practical advice, which might help the user to get right answers from BornAgain fitting.

4.1 Implementation in BornAgain

Fitting in BornAgaindeals with estimating the optimum parameters in the numerical model
by minimizing the difference between numerical and reference data. The features include

• a variety of multidimensional minimization algorithms and strategies.

• the choice over possible fitting parameters, their properties and correlations.

• the full control on objective function calculations, including applications of different
normalizations and assignments of different masks and weights to different areas of
reference data.

• the possibility to fit simultaneously an arbitrary number of data sets.

Figure 4.1 shows the general work flow of a typical fitting procedure.
Before running the fitting the user is required to prepare some data and to configure the

fitting kernel of BornAgain . The required stages are

• Preparing the sample and the simulation description (multilayer, beam, detector pa-
rameters).
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Figure 4.1: Fitting work flow.

• Choosing the fitting parameters.

• Loading the reference data.

• Defining the minimization settings.

The class FitSuite contains the main functionalities to be used for the fit and serves as
the main interface between the user and the fitting work flow. The later involves iterations
during which

• The minimizer makes an assumption about the optimal sample parameters.

• These parameters are propagated to the sample.

• The simulation is performed for the given state of the sample.

• The simulated data (intensities) are propagated to the χ2 module.

• The later calculates χ2 using the simulated and reference data.

• The value of χ2 is propagated to the minimizer, which makes new assumptions about
optimal sample parameters.

The iteration process is going on under the control of the selected minimization algo-
rithm, without any intervention from the user. It stops

• when the maximum number of iteration steps has been exceeded,
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• when the function’s minimum has been reached within the tolerance window,

• if the minimizer could not improve the values of the parameters.

After the control is returned, fitting results can be retrieved. They consist in the best χ2

value found, the corresponding optimal sample parameters and the intensity map simu-
lated with this set of parameters.

Details of FitSuite class implementation and description of each interface are given
in Section 5.1.3. The following parts of this section will detail each of the main stages nec-
essary to run a fitting procedure.

4.1.1 Preparing the sample and the simulation description

This step is similar for any simulation using BornAgain (see Section 3). It consists in first
characterizing the geometry of the system: the particles (shapes, sizes, refractive indices),
the different layers (thickness, order, refractive index, a possible roughness of the interface),
the interference between the particles and the way they are distributed in the layers (buried
particles or particles sitting on top of a layer). Then we specify the parameters of the input
beam and of the output detector.

4.1.2 Choice of parameters to be fitted

In principle, every parameter used in the construction of the sample can be used as a fit-
ting parameter. For example, the particles’ heights, radii or the layer’s roughness or thick-
ness could be selected using the parameter pool mechanism. This mechanism is explained
in detail in Section 3.4 and it is therefore recommended to read it before proceeding any
further.

The user specifies selected sample parameters as fit parameters using FitSuite and its
addFitParameter method

fit_suite = FitSuite ()
fit_suite.addFitParameter(<name> , <initial value> , <step> , <

limits>)

where <name> corresponds to the parameter name in the sample’s parameter pool. By us-
ing wildcards in the parameter name, a group of sample parameters, corresponding to the
given pattern, can be associated with a single fitting parameter and fitted simultaneously
to get a common optimal value (see Section 3.4).

The second parameter <initial value> correspond to the initial value of the fitting pa-
rameter, while the third one is responsible to the initial iteration steps size. The last pa-
rameter <AttLimits> corresponds to the boundaries imposed on parameter value. It can
be

• limitless() by default,

• fixed(),

• lowerLimited(<min_value>),
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• upperLimited(<max_value>),

• limited(<min_value>, <max_value>).

where <min_value> and <max_value> are double values corresponding to the lower and
higher boundary, respectively.

4.1.3 Associating reference and simulated data

The minimization procedure deals with a pair of reference data (normally associated with
experimental data) and the theoretical model (presented by the sample and the simulation
descriptions).

We assume that the experimental data are a two-dimensional intensity matrix as func-
tion of the output scattering angles α f and φ f (see Fig. 3.1). The user is required to provide
the data in the form of an ASCII file containing an axes binning description and the inten-
sity data itself.

B
Remark: We recognize the importance of supporting the most common data formats.
We are going to provide this feature in the following releases and welcome users’ re-
quests on this subject.

To associate the simulation and the reference data to the fitting engine, method
addSimulationAndRealData has to be used as shown

fit_suite = FitSuite ()
fit_suite.addSimulationAndRealData(<simulation >, <reference >, <

chi2_module >)

Here <simulation> corresponds to a BornAgain simulation object with the sample,
beam and detector fully defined, <reference> corresponds to the experimental data object
obtained from the ASCII file and <chi2_module> is an optional parameter for advanced
control of χ2 calculations.

It is possible to call this given method more than once to submit more than one pair
of <simulation>, <reference> to the fitting procedure. In this way, simultaneous fits of
some combined data sets are performed.

By using the third parameter, <chi2_module>, different normalizations and weights
can be applied to give user full control of the way χ2 is calculated. This feature will be
explained in Section 4.3.

4.1.4 Minimizer settings

BornAgain contains a variety of minimization engines from ROOT and GSL libraries. They
are listed in Table 4.1. By default Minuit2 minimizer with default settings will be used and
no additional configuration needs to be done. The remainder of this section explains some
of the expert settings, which can be applied to get better fit results.

The default minimization algorithm can be changed using MinimizerFactory as shown
below
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fit_suite = FitSuite ()
minimizer = MinimizerFactory.createMinimizer("<Minimizer name >","

<algorithm >")
fit_suite.setMinimizer(minimizer)

where <Minimizer name> and <algorithm> can be chosen from the first and sec-
ond column of Table 4.1 respectively. The list of minimization algorithms implemented
in BornAgain can also be obtained using MinimizerFactory.printCatalogue() com-
mand.

Minimizer name Algorithm Description

Minuit2 [4] Migrad According to [5] best minimizer for nearly all functions,

variable-metric method with inexact line search,

a stable metric updating scheme,

and checks for positive-definiteness.

Simplex simplex method of Nelder and Mead

usually slower than Migrad,

rather robust with respect to gross fluctuations in the

function value, gives no reliable information about

parameter errors,

Combined minimization with Migrad

but switches to Simplex if Migrad fails to converge.

Scan not intended to minimize, just scans the function,

one parameter at a time, retains the best value after

each scan

Fumili optimized method for least square and log likelihood

minimizations

GSLMultiMin [6] ConjugateFR Fletcher-Reeves conjugate gradient algorithm,

ConjugatePR Polak-Ribiere conjugate gradient algorithm,

BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm,

BFGS2 improved version of BFGS,

SteepestDescent follows the downhill gradient of the function at each step

GSLLMA [7] Levenberg-Marquardt Algorithm

GSLSimAn [8] Simulated Annealing Algorithm

Table 4.1: List of minimizers implemented in BornAgain.
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There are several options common to every minimization algorithm, which can be changed
before starting the minimization. They are handled by MinimizerOptions class:

fit_suite.getMinimizer ().getOptions ().setMaxFunctionCalls (10)

In the above code snippet, a number of “maximum function calls”, namely the maximum
number of times the minimizer is allowed to call the simulation, is limited to 10.

There are also expert-level options common for all minimizers as well as a number of
options to tune individual minimization algorithms. They will be explained in Section 4.3.

4.1.5 Running the fitting ant retrieving the results

After the initial configuration of FitSuite has been performed, the fitting can be started
using the command

fit_suite.runFit ()

Depending on the complexity of the sample and the number of free sample parameters
the fitting process can take from tens to thousands of iterations. The results of the fit can
be printed on the screen using the command

fit_suite.printResults ()

Section 4.2 gives more details about how to access the fitting results.

4.2 Basic Python fitting example

In this section we are going to go through a complete example of fitting using BornAgain.
Each step will be associated with a detailed piece of code written in Python. The complete
listing of the script is given in Appendix (see Listing A.2). The script can also be found at

./ Examples/python/fitting/ex002_FitCylindersAndPrisms/
FitCylindersAndPrisms.py

This example uses the same sample geometry as in Section 3.3. Cylindrical and prismatic
particles in equal proportion are deposited on a substrate layer, with no interference be-
tween the particles. We consider the following parameters to be unkown

• the radius of cylinders,

• the height of cylinders,

• the length of the prisms’ triangular basis,

• the height of prisms.

Our reference data are a “noisy” two-dimensional intensity map obtained from the sim-
ulation of the same geometry with a fixed value of 5nm for the height and radius of cylinders
and for the height of prisms which have a 10-nanometer-long side length. Then we run our
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fitting using default minimizer settings starting with a cylinder’s height of 4nm, a cylinder’s
radius of 6nm, a prism’s half side of 6nm and a height equal to 4nm. As a result, the fitting
procedure is able to find the correct value of 5nm for all four parameters.

Importing Python libraries

1 from libBornAgainCore import *
2 from libBornAgainFit import *

We start from importing two BornAgain libraries required to create the sample description
and to run the fitting.

Building the sample

5 def get_sample ():
6 """
7 Build the sample representing cylinders and pyramids on top

of substrate without interference.
8 """
9 # defining materials

10 m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,
0.0)

11 m_substrate = MaterialManager.getHomogeneousMaterial("
Substrate", 6e-6, 2e-8)

12 m_particle = MaterialManager.getHomogeneousMaterial("Particle
", 6e-4, 2e-8)

13
14 # collection of particles
15 cylinder_ff = FormFactorCylinder (1.0* nanometer , 1.0* nanometer

)
16 cylinder = Particle(m_particle , cylinder_ff)
17 prism_ff = FormFactorPrism3 (2.0* nanometer , 1.0* nanometer)
18 prism = Particle(m_particle , prism_ff)
19 particle_decoration = ParticleDecoration ()
20 particle_decoration.addParticle(cylinder , 0.0, 0.5)
21 particle_decoration.addParticle(prism , 0.0, 0.5)
22 interference = InterferenceFunctionNone ()
23 particle_decoration.addInterferenceFunction(interference)
24
25 # air layer with particles and substrate form multi layer
26 air_layer = Layer(m_air)
27 air_layer.setDecoration(particle_decoration)
28 substrate_layer = Layer(m_substrate)
29 multi_layer = MultiLayer ()
30 multi_layer.addLayer(air_layer)
31 multi_layer.addLayer(substrate_layer)
32 return multi_layer
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The function starting at line 5 creates a multilayered sample with cylinders and prisms us-
ing arbitrary 1nm value for all size’s of particles. The details about the generation of this
multilayered sample are given in Section 3.3.

Creating the simulation

35 def get_simulation ():
36 """
37 Create GISAXS simulation with beam and detector defined
38 """
39 simulation = Simulation ()
40 simulation.setDetectorParameters (100, -1.0*degree , 1.0* degree

, 100, 0.0* degree , 2.0* degree , True)
41 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)
42 return simulation

The function starting at line 35 creates the simulation object with the definition of the beam
and detector parameters.

Preparing the fitting pair

45 def run_fitting ():
46 """
47 run fitting
48 """
49 sample = get_sample ()
50 simulation = get_simulation ()
51 simulation.setSample(sample)
52
53 real_data = OutputDataIOFactory.readIntensityData(’

refdata_fitcylinderprisms.txt’)

Lines 49- 51 generate the sample and simulation description and assign the sample to the
simulation. Our reference data are contained in the file ’refdata_fitcylinderprisms.txt’.
This reference had been generated by adding noise on the scattered intensity from a numer-
ical sample with a fixed length of 5 nm for the four fitting parameters (i.e. the dimensions
of the cylinders and prisms). Line 53 creates the real data object by loading the ASCII data
from the input file.

Setting up FitSuite

55 fit_suite = FitSuite ()
56 fit_suite.addSimulationAndRealData(simulation , real_data)
57 fit_suite.initPrint (10)
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Line 55 creates a FitSuite object which provides the main interface to the minimization
kernel of BornAgain . Line 56 submits simulation description and real data pair to the
subsequent fitting. Line 57 sets up FitSuite to print on the screen the information about
fit progress once per 10 iterations.

60 fit_suite.addFitParameter("*FormFactorCylinder/height", 4.*
nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

61 fit_suite.addFitParameter("*FormFactorCylinder/radius", 6.*
nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

62 fit_suite.addFitParameter("*FormFactorPrism3/height", 4.*
nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

63 fit_suite.addFitParameter("*FormFactorPrism3/length", 12.*
nanometer , 0.02* nanometer , AttLimits.lowerLimited (0.01))

Lines 60– 63 enter the list of fitting parameters. Here we use the cylinders’ height and
radius and the prisms’ height and side length. The cylinder’s length and prism half side are
initially equal to 4nm, whereas the cylinder’s radius and the prism half side length are equal
to 6nm before the minimization. The iteration step is equal to 0.01nm and only the lower
boundary is imposed to be equal to 0.01nm.

Running the fit and accessing results

66 fit_suite.runFit ()
67
68 print "Fitting completed."
69 fit_suite.printResults ()
70 print "chi2:", fit_suite.getMinimizer ().getMinValue ()
71 fitpars = fit_suite.getFitParameters ()
72 for i in range(0, fitpars.size()):
73 print fitpars[i]. getName (), fitpars[i]. getValue (),

fitpars[i]. getError ()

Line 66 shows the command to start the fitting process. During the fitting the progress will
be displayed on the screen. Lines 69– 73 shows different ways of accessing the fit results.

More details about fitting, access to its results and visualization of the fit progress using
matplotlib libraries can be learned from the following detailed example

./ Examples/python/fitting/ex002_FitCylindersAndPrisms/
FitCylindersAndPrisms_detailed.py
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4.3 Advanced fitting

4.3.1 Affecting χ2 calculations

4.3.2 Simultaneous fits of several data sets

4.3.3 Using fitting strategies

4.3.4 Masking the real data

4.3.5 Tuning fitting algorithms

4.3.6 Fitting with correlated sample parameters

4.4 How to get the right answer from fitting

One of the main difficulties in fitting the data with the model is the presence of multiple
local minima in the objective function. Many problems can cause the fit to fail, for example:

• an unreliable physical model,

• an unappropriate choice of objective function

• multiple local minima,

• an unphysical behavior of the objective function, unphysical regions in the parame-
ters space,

• an unreliable parameter error calculation in the presence of limits on the parameter
value,

• an exponential behavior of the objective function and the corresponding numerical
inaccuracies, excessive numerical roundoff in the calculation of its value and deriva-
tives,

• large correlations between parameters,

• very different scales of parameters involved in the calculation,

• not positive definite error matrix even at minimum.

The given list, of course, is not only related to BornAgain fitting. It remains applicable
to any fitting program and any kind of theoretical model. Below we give some recommen-
dations which might help the user to achieve reliable fit results.

General recommendations

• initially choose a small number of free fitting parameters,

• eliminate redundant parameters,
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• provide a good initial guess for the fit parameters,

• start from the default minimizer settings and perform some fine tuning after some
experience has been acquired,

• repeat the fit using different starting values for the parameters or their limits,

• repeat the fit, fixing and varying different groups of parameters,

to be continued...
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Chapter 5

Software architecture

BornAgain is written in C++ and uses an object oriented approach to achieve modular-
ity, extensibility and transparency. This leads to the task driven rather than the command
driven approach in different aspects of the simulation and fitting of GISAS data. The user
defines the sample structure, beam and detector characteristics and fit parameters using
building blocks – classes – defined in core libraries of the framework. These buildings
blocks are combined by the user according to his current task using one the following ap-
proaches:

• The user creates a Python script with a sample description and simulation settings
using the BornAgainAPI. The user then runs the simulation by executing the script in
the Python interpreter and assesses the simulation results using his preferred graph-
ics or analysis library, e.g. Python + numpy + matplotlib.

• The user may write a standalone C++ application linked to the BornAgain libraries.

• The user interacts with the framework through a graphical user interface (forthcom-
ing).

The object oriented approach in the software design allows users to have a much higher
level of flexibility in the sample construction; it also decouples the building blocks used in
the internal calculations and thereby facilitates the creation of new models, with little or no
modification to the existing code.

The general structure of BornAgain and the way the user interacts with it are shown in
Fig. 5.1. The framework consists of two shared libraries, libBornAgainCore and libBornAgainFit.
Thanks to the Python interface they can be imported into Python as external modules. The
library libBornAgainCore contains a number of classes, grouped into several class cat-
egories, necessary for the description of a model and running a simulation. The library
libBornAgainFit contains a number of minimization engines and interfaces to them, al-
lowing the user to fit real data with the model previously defined.

BornAgaindepends on a few external and well established open-source libraries: boost,
GNU scientific library, Eigen and Fast Fourier Transformation libraries. They are required
to be installed on the system to run BornAgain on Unix Platforms. In the case of Windows
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minimizers

libFit

Figure 5.1: Structure of BornAgain libraries.

Platform they are added to the system automatically during BornAgain installation. Other
libraries shown on the plot (ROOT, matplotlib) are optional.

5.1 Data classes for simulations and fits

This section will give an overview of the classes that are used to describe all the data needed
to perform a single simulation. The prime elements of this data are formed by the sample,
the experimental conditions (beam and detector parameters) and simulation parameters.

These classes constitute the main interface to the software’s users, since they will mostly
be interacting with the program by creating samples and running simulations with specific
parameters. Since it is not the intent to explain internals of classes in this document, the
text and figures will only mention the most important methods and fields of the classes
discussed. Furthermore, getters and setters of private member fields will not be indicated,
although these do belong to the public interface. For more detailed information about the
project’s classes, their methods and fields, the reader is referred to the source code docu-
mentation. REF?

5.1.1 The Experiment object

The Experiment class holds all references to data objects that are needed to perform a sim-
ulation. These consist in a sample description, possibly implemented by a builder object,
detector and beam parameters and finally, a simulation parameter class that defines the
different approximations that can be used during a simulation. Besides getters and set-
ters for these fields, the class also contains a runSimulation() method that will generate
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an ISimulation object that will perform the actual computations. The class diagram for
Experiment is shown in figure 5.2.

Simulation Data

Experiment

– mp_sample : ISample*

– mp_sample_builder : ISampleBuilder*

– m_detector : Detector

– m_beam : Beam

– m_intensity_map : OutputData<double>

– m_sim_params : SimulationParameters

+ clone() : Experiment*

+ runSimulation() : void

+ normalize() : void

ISample

Detector

Beam

SimulationParameters

GISASExperiment

The “runSimulation()” method retrieves
an ISimulation object from the topmost
ISample object and calls its “run()”
method to perform the actual computa-
tions.

The “runSimulation()” method retrieves
an ISimulation object from the topmost
ISample object and calls its “run()”
method to perform the actual computa-
tions.

Figure 5.2: The Experiment class as a container for sample, beam, detector and simulation
parameters.

5.1.2 The ISample class hierarchy

Samples are described by a hierarchical tree of objects which all adhere to the ISample in-
terface. The composite pattern is used to achieve a common interface for all objects in
the sample tree. The sample description is maximally decoupled from all computational
classes, with the exception of the “createDWBASimulation()” method. This method will
create a new object of type “DWBASimulation” that is capable of calculating the scattering
contributions originating from the sample part in question. This coupling is not very tight
however, since the ISample subclasses only need to know about which class to instantiate
and return.
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This interface and two of its subclasses are sketched in figure 5.3.

Sample description

n

«interface»

ISample

+ clone() : ISample*

+ createDWBASimulation() : DWBASimulation*

MultiLayer

– m_layers : std::vector<Layer *>

– m_interfaces : std::vector<LayerInterface *>

+ getNumberOfLayers() : size_t

+ getNumberOfInterfaces() : size_t

+ addLayer(const Layer &layer) : void

Layer

– mp_material : IMaterial*

– m_thickness : double

+ getThickness() : double

+ setThickness(double thickness) : void

Figure 5.3: The ISample interface

5.1.3 The FitSuite class

5.1.4 The IMinimizer class

5.1.5 The MinimizerOptions class
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Appendix A

Listings

A.1 Python simulation example

The following script can be found at

./ Examples/python/simulation/ex001_CylindersAndPrisms/
CylindersAndPrisms.py

1 import numpy
2 import matplotlib
3 import pylab
4 from libBornAgainCore import *
5
6
7 def get_sample ():
8 """
9 Build and return the sample representing cylinders and

pyramids on top of
10 substrate without interference.
11 """
12 # defining materials
13 m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,

0.0)
14 m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)
15 m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)
16
17 # collection of particles
18 cylinder_ff = FormFactorCylinder (5* nanometer , 5* nanometer)
19 cylinder = Particle(m_particle , cylinder_ff)
20 prism_ff = FormFactorPrism3 (10* nanometer , 5* nanometer)
21 prism = Particle(m_particle , prism_ff)
22 particle_decoration = ParticleDecoration ()
23 particle_decoration.addParticle(cylinder , 0.0, 0.5)
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24 particle_decoration.addParticle(prism , 0.0, 0.5)
25 interference = InterferenceFunctionNone ()
26 particle_decoration.addInterferenceFunction(interference)
27
28 # air layer with particles and substrate form multi layer
29 air_layer = Layer(m_air)
30 air_layer.setDecoration(particle_decoration)
31 substrate_layer = Layer(m_substrate , 0)
32 multi_layer = MultiLayer ()
33 multi_layer.addLayer(air_layer)
34 multi_layer.addLayer(substrate_layer)
35 return multi_layer
36
37
38 def get_simulation ():
39 """
40 Create and return GISAXS simulation with beam and detector

defined
41 """
42 simulation = Simulation ()
43 simulation.setDetectorParameters (100, -1.0*degree , 1.0* degree

, 100, 0.0* degree , 2.0* degree , True)
44 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)
45 return simulation
46
47
48 def run_simulation ():
49 """
50 Run simulation and plot results
51 """
52 sample = get_sample ()
53 simulation = get_simulation ()
54 simulation.setSample(sample)
55 simulation.runSimulation ()
56 result = simulation.getIntensityData ().getArray () + 1 # for

log scale
57 pylab.imshow(numpy.rot90(result , 1), norm=matplotlib.colors.

LogNorm (), extent =[-1.0, 1.0, 0, 2.0])
58 pylab.show()
59
60
61 if __name__ == ’__main__ ’:
62 run_simulation ()
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A.2 Python fitting example

The following script can be found at

./ Examples/python/fitting/ex002_FitCylindersAndPrisms/
FitCylindersAndPrisms.py

1 from libBornAgainCore import *
2 from libBornAgainFit import *
3
4
5 def get_sample ():
6 """
7 Build the sample representing cylinders and pyramids on top

of substrate without interference.
8 """
9 # defining materials

10 m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,
0.0)

11 m_substrate = MaterialManager.getHomogeneousMaterial("
Substrate", 6e-6, 2e-8)

12 m_particle = MaterialManager.getHomogeneousMaterial("Particle
", 6e-4, 2e-8)

13
14 # collection of particles
15 cylinder_ff = FormFactorCylinder (1.0* nanometer , 1.0* nanometer

)
16 cylinder = Particle(m_particle , cylinder_ff)
17 prism_ff = FormFactorPrism3 (2.0* nanometer , 1.0* nanometer)
18 prism = Particle(m_particle , prism_ff)
19 particle_decoration = ParticleDecoration ()
20 particle_decoration.addParticle(cylinder , 0.0, 0.5)
21 particle_decoration.addParticle(prism , 0.0, 0.5)
22 interference = InterferenceFunctionNone ()
23 particle_decoration.addInterferenceFunction(interference)
24
25 # air layer with particles and substrate form multi layer
26 air_layer = Layer(m_air)
27 air_layer.setDecoration(particle_decoration)
28 substrate_layer = Layer(m_substrate , 0)
29 multi_layer = MultiLayer ()
30 multi_layer.addLayer(air_layer)
31 multi_layer.addLayer(substrate_layer)
32 return multi_layer
33
34
35 def get_simulation ():
36 """
37 Create GISAXS simulation with beam and detector defined
38 """
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39 simulation = Simulation ()
40 simulation.setDetectorParameters (100, -1.0*degree , 1.0* degree

, 100, 0.0* degree , 2.0* degree , True)
41 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)
42 return simulation
43
44
45 def run_fitting ():
46 """
47 run fitting
48 """
49 sample = get_sample ()
50 simulation = get_simulation ()
51 simulation.setSample(sample)
52
53 real_data = OutputDataIOFactory.readIntensityData(’

refdata_fitcylinderprisms.txt’)
54
55 fit_suite = FitSuite ()
56 fit_suite.addSimulationAndRealData(simulation , real_data)
57 fit_suite.initPrint (10)
58
59 # setting fitting parameters with starting values
60 fit_suite.addFitParameter("*FormFactorCylinder/height", 4.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))
61 fit_suite.addFitParameter("*FormFactorCylinder/radius", 6.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))
62 fit_suite.addFitParameter("*FormFactorPrism3/height", 4.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))
63 fit_suite.addFitParameter("*FormFactorPrism3/length", 12.*

nanometer , 0.02* nanometer , AttLimits.lowerLimited (0.01))
64
65 # running fit
66 fit_suite.runFit ()
67
68 print "Fitting completed."
69 fit_suite.printResults ()
70 print "chi2:", fit_suite.getMinimizer ().getMinValue ()
71 fitpars = fit_suite.getFitParameters ()
72 for i in range(0, fitpars.size()):
73 print fitpars[i]. getName (), fitpars[i]. getValue (),

fitpars[i]. getError ()
74
75 if __name__ == ’__main__ ’:
76 run_fitting ()
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Appendix B

Form factors

Table B.1 lists the particles shapes whose form factors have been implemented in BornAgain.

Table B.1: Table of form factors implemented in BornAgain.

Shape Shape Shape

Box,Section B.1 Prism3, Section B.2 Tetrahedron,
Section B.3

Prism6, Section B.4 Cone6, Section B.5 Pyramid, Section B.6

Anisotropic pyramid,
Section B.7

Cuboctahedron,
Section B.8

Cylinder, Section B.9
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Shape Shape Shape

Ellipsoidal cylinder,
Section B.10

Cone, Section B.11 Full Sphere, Section B.12

Truncated Sphere,
Section B.13

Full Spheroid,
Section B.14

Truncated Spheroid,
Section B.15

Hemi Ellipsoid,
Section B.16

Ripple1, Section B.17 Ripple2, Section B.18

In BornAgain the form factor is defined as

F (q) =
∫

V
exp(i q.r)d 3r, (B.1)

where V is the volume of the particle’s shape, q = ki −k f is the scattering vector with k f and
ki the scattered and incident wave vector, respectively.

The particle’s shape is parametrized in a cartesian frame, with its z-axis pointing up-
wards and its origin at the center of the bottom of the particle: r = (x, y, z). In the followings,
a schematic view will depict this layout for each form factor.

All form factors have been implemented with complex scattering vectors in order to
take any material absorption into account.

The particles can be rotated in a different direction by using one of the following trans-
formations: CreateRotateX(θ), CreateRotateY(θ), CreateRotateZ(θ), where capi-
tal X, Y, Z mark rotations around the associated axis and θ is the angle of rotation from this
axis. For example, in order to rotate a pyramid by 45◦ around z-axis, the user could use the
following Python script:
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pyramid_ff = FormFactorPyramid (10* nanometer , 5*nanometer ,
deg2rad (54.73 ) )

pyramid = Particle(m_particle , pyramid_ff)
angle_around_z = 45.* degree
transform = Transform3D.createRotateZ(angle_around_z)
particle_decoration = ParticleDecoration ()
particle_decoration.addParticle(pyramid , transform)
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B.1 Box

B.1.1 Real-space geometry

This shape is a rectangular cuboid as shown in fig. B.1.

H

x

z

(a) Side view

W

L

x

y

(b) Top view

Figure B.1: Sketch of a Box.

Parameters:

• length of the base L,

• width of the base W ,

• height H .

Properties:

• volume V = LW H ,

• particle surface seen from above S = LW .

B.1.2 Expression of the form factor

FBox(q,L,W, H) = LW H exp

(
i qz

H

2

)
sinc

(
qx

L

2

)
sinc

(
qy

W

2

)
sinc

(
qz

H

2

)
,

where sinc(x) = sin(x)/x is the cardinal sine.

Syntax: FormFactorBox(length, width, height)
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B.1.3 Examples

Figure B.2 shows the normalized intensity |F |2/V 2, computed with L = 20 nm, W = 16 nm,
H = 13 nm, and α= 60◦:
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Figure B.2: Normalized intensity for the form factor of a Box |F |2/V 2, plotted against (qz ,
qy ) and (qx , qy ) and computed with L = 20 nm, W = 16 nm, and H = 13 nm.
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B.2 Prism3

B.2.1 Real-space geometry

This shape is a triangular prism, whose base is an equilateral triangle as shown in fig. B.3.

H

x

z

(a) Side view

L

y

x

(b) Top view

Figure B.3: Sketch of a Prism3.

Parameters:

• length L of one side of the base,

• height H .

Properties:

• volume V =
p

3

4
HL2,

• particle surface seen from above S =
p

3

4
L2.

B.2.2 Expression of the form factor

FPrism3(q,L, H) = 2
p

3

q2
x −3q2

y
exp

(
−i qy

L

2
p

3

)[
exp

(
i
p

3qy
L

2

)
−cos

(
qx

L

2

)
− i

p
3qy

L

2
sinc

(
qx

L

2

)]
×H sinc

(
qz

H

2

)
exp

(
i qz

H

2

)
,

where sinc(x) = sin(x)/x is the cardinal sine.

Syntax: FormFactorPrism3(length, height)
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B.2.3 Examples

Figure B.4 shows the normalized intensity |F |2/V 2, computed with L = 10 nm and H = 13 nm.
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Figure B.4: Normalized intensity for the form factor of a Prism3 |F |2/V 2, plotted against (qz ,
qy ) and (qx , qy ) and computed with L = 10 nm and H = 13 nm.
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B.3 Tetrahedron

B.3.1 Real-space geometry

This shape is a truncated tetrahedron as shown in fig. B.5.

H

b

z

x

(a) Side view

L

y

x

(b) Top view

Figure B.5: Sketch of a Tetrahedron. The implementation of this shape uses angle α, which
is linked to β via tanα = 2tanβ. α is measured along one of the base lines and β at one of
the base vertices.

Parameters:

• length of one side of the equilateral triangular base L,

• height H ,

• angle α is the angle between the base and the side faces, taken in the middle of the
base lines.

Restrictions on the parameters:
H

L
< tanα

2
p

3
.

Properties:

• volume V = tan(α)

24
L3

[
1− (1−p

3
2H

L tan(α)
)3

]
,

• particle surface seen from above S =
p

3

4
L2.
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B.3.2 Expression of the form factor

FTetrahedron(q,L, H ,α) =
p

3H

qx (q2
x −3q2

y )
exp

(
i qz

L

2tan(α)
p

3

)
×{

2qx exp(i q3D)sinc(q3H)− (qx +
p

3qy )exp(i q1D)sinc(q1D)− (qx −
p

3qy )exp(−i q2D)sinc(q2H)
}

,

with sinc(x) = sin(x)/x,

q1 = 1

2

[
qx

p
3−qy

tanα
−qz

]
, q2 = 1

2

[
qx

p
3+qy

tanα
+qz

]
, q3 =

qy

tanα
− qz

2
, D = L tanαp

3
−H .

Syntax: FormFactorTetrahedron(length, height, alpha)

B.3.3 Examples

Figure B.6 shows the normalized intensity |F |2/V 2, computed with L = 15 nm, H = 6 nm
and α= 60◦.

] -1 [nm
y

 q
-2 -1 0 1 2

] 
-1

 [
n

m
z

 q

-2

-1

0

1

2

2
|F

/V
|

-410

1

] -1 [nm
x

 q
-2 -1 0 1 2

] 
-1

 [
n

m
y

 q

-2

-1

0

1

2

2
|F

/V
|

-510

-110

1

Figure B.6: Normalized intensity for the form factor of a Tetrahedron |F |2/V 2, plotted
against (qz , qy ) and (qx , qy ) and computed with L = 15 nm, H = 6 nm and α= 60◦.
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B.4 Prism6

B.4.1 Real-space geometry

This shape is an hexagonal prism (see fig. B.7).

H

z
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(a) Side view

R

y

x

(b) Top view

Figure B.7: Sketch of a Prism6.

Parameters:

• radius of the hexagonal base R,

• height H .

Properties:

• volume V = 3
p

3

2
HR2,

• particle surface seen from above S = 3
p

3R2

2
.

B.4.2 Expression of the form factor

FPrism6(q,R, H) = 4H
p

3

3q2
y −q2

x
sinc

(
qz

H

2

)
exp

(
−i qz

H

2

)
×{

3q2
y R2

4
sinc

(
qx R

2

)
sinc

(p
3qy R

2

)
+cos(qx R)−cos

(
qy

p
3R

2

)
cos

(
qx R

2

)}
,

with sinc(x) = sin(x)/x.

Syntax: FormFactorPrism6(radius, height)

Page 52



Appendix B. Form factors B.4. Prism6

B.4.3 Examples

Figure B.8 shows the normalized intensity |F |2/V 2, computed with R = 5 nm and H = 11 nm.
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Figure B.8: Normalized intensity for the form factor of a Prism6 |F |2/V 2, plotted against (qz ,
qy ) and (qx , qy ) and computed with R = 5 nm and H = 11 nm.
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B.5 Cone6

B.5.1 Real-space geometry

It is a truncated hexagonal pyramid (see fig. B.9).

H

x

z

b

(a) Side view

R

x

y

(b) Top view

Figure B.9: Sketch of a Cone6. The implementation of this shape uses angle α, which is

linked to β via tanα = 2p
3

tanβ. α is measured along one of the base lines and β at one of

the base vertices.

Parameters:

• radius of the regular hexagonal base R,

• height H ,

• angle α is considered between one of the side faces and the middle of a base length.

Restrictions on the parameters:
2Hp

3R
< tanα.

Properties:

• volume V = 3

4
tan(α)R3

[
1− (

1− 2H

tan(α)R
p

3

)3
]

,

• particle surface seen from above S = 3
p

3R2

2
.
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B.5.2 Expression of the form factor

The calculation can be derived from “Prism6” (Section B.4) by considering a side length
varying with the vertical position:

FCone6(q,R, H ,α) = 4
p

3

3q2
y −q2

x

∫ H

0
exp(i qz z)

[3

4
R2

z q2
y sinc

(
qx Rz

2

)
sinc

(p
3qy Rz

2

)

+cos(qx Rz )−cos

(p
3qy Rz

2

)
cos

(
qx Rz

2

)]
d z

with Rz = R − 2zp
3tan(α)

and sinc(x) = sin(x)/x.

Syntax: FormFactorCone6(radius,height, alpha)

B.5.3 Examples

Figure B.10 shows the normalized intensity |F |2/V 2, computed with R = 10 nm, H = 13 nm,
and α= 60◦.
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Figure B.10: Normalized intensity for the form factor of a Cone6 |F |2/V 2, plotted against
(qz , qy ) and (qx , qy ) and computed with R = 10 nm, H = 13 nm, and α= 60◦.
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Appendix B. Form factors B.6. Pyramid

B.6 Pyramid

B.6.1 Real-space geometry

This shape is a truncated pyramid with a square base as shown in fig. B.11.

H

x

z

a

(a) Side view

L

L

x

y

(b) Top view

Figure B.11: Sketch of a Pyramid

Parameters:

• length of one side of the square base L,

• height H ,

• α is the angle between the base and the side faces, taken in the middle of the base
lines.

Restrictions on the parameters:
2H

L
< tan(α).

Properties:

• volume V = 1

6
tan(α)L3

[
1− (

1− 2H

tan(α)L

)3
]

,

• particle surface seen from above S = L2.

B.6.2 Expression of the form factor

FPyramid(q,L, H ,α) = H

qx qy
×{

K1 cos

[
(qx −qy )

L

2

]
+K2 sin

[
(qx −qy )

L

2

]
−K3 cos

[
(qx +qy )

L

2

]
−K4 sin

[
(qx +qy )

L

2

]}
,
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Appendix B. Form factors B.6. Pyramid

with sinc(x) = sin(x)/x,

q1 = 1

2

[ qx −qy

tan(α)
+qz

]
, q2 = 1

2

[ qx −qy

tan(α)
−qz

]
q3 = 1

2

[ qx +qy

tan(α)
+qz

]
, q4 = 1

2

[ qx +qy

tan(α)
−qz

]
K1 = sinc(q1H)exp(i q1H)+ sinc(q2H)exp(−i q2H)

K2 =−i sinc(q1H)exp(i q1H)+ i sinc(q2H)exp(−i q2H)

K3 = sinc(q3H)exp(i q3H)+ sinc(q4H)exp(−i q4H)

K4 =−i sinc(q3H)exp(i q3H)+ i sinc(q4H)exp(−i q4H)

Syntax: FormFactorPyramid(length, height, alpha)

B.6.3 Examples

Figure B.12 shows the normalized intensity |F |2/V 2, computed with L = 18 nm, H = 13 nm
and α= 60◦.
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Figure B.12: Normalized intensity for the form factor of a pyramid |F |2/V 2, plotted against
(qz , qy ) and (qx , qy ) and computed with L = 18 nm and H = 13 nm, and α= 60◦.
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Appendix B. Form factors B.7. Anisotropic pyramid

B.7 Anisotropic pyramid

B.7.1 Real-space geometry

This shape is a truncated right pyramid with a rectangular base as shown in fig. B.13.
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x

a

(a) Side view

L

W

y

x

(b) Top view

Figure B.13: Sketch of an Anisotropic Pyramid.

Parameters:

• full length of the base L,

• full width of the base W ,

• height H ,

• α is the angle between the base and the side faces, taken in the middle of the base
lines.

Restrictions on the parameters:
2H

L
< tan(α) and

2H

W
< tan(α).

Properties:

• volume V = H
[

LW − (L+W )H

tan(α)
+ 4

3

H 2

tan2(α)

]
,

• particle surface seen from above S = LW .

B.7.2 Expression of the form factor

FAnisoPyramid(q,L,W, H ,α) = H

qx qy
×{

K1 cos
(
qx

L

2
−qy

W

2

)
+K2 sin

(
qx

L

2
−qy

W

2

)
−K3 cos

(
qx

L

2
+qy

W

2

)
−K4 sin

(
qx

L

2
+qy

W

2

)}
,
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Appendix B. Form factors B.7. Anisotropic pyramid

with sinc(x) = sin(x)/x,

K1 = exp(−i q2H)sinc(q2H)+exp(i q1H)sinc(q1H)

K2 = i exp(−i q2H)sinc(q2H)− i exp(i q1H)sinc(q1H)

K3 = exp(−i q4H)sinc(q4H)+exp(i q3H)sinc(q3H)

K4 = i exp(i q4H)sinc(q4H)− i exp(i q3H)sinc(q3H)

q1 = 1

2

[
qx −qy

tanα
+qz

]
, q2 = 1

2

[
qx −qy

tanα
−qz

]
q3 = 1

2

[
qx +qy

tanα
+qz

]
, q4 = 1

2

[
qx +qy

tanα
−qz

]

Syntax: FormFactorAnisoPyramid(length, width, height, alpha)

B.7.3 Examples

Figure B.14 shows the normalized intensity |F |2/V 2, computed with L = 20 nm, W = 16 nm,
H = 13 nm, and α= 60◦.
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Figure B.14: Normalized intensity for the form factor of an anisotropic pyramid |F |2/V 2,
plotted against (qz , qy ) and (qx , qy ) and computed with L = 20 nm, W = 16 nm, H = 13 nm,
and α= 60◦.
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Appendix B. Form factors B.8. Cuboctahedron

B.8 Cuboctahedron

B.8.1 Real-space geometry

It is a combination of two pyramids with square bases, as shown in fig. B.15: the bottom one
is upside down with an height H and the top one has the opposite orientation (the standard
one) and an height rH H .

rHH

H

z

x

(a) Side view

L

L

x

y

(b) Top view

Figure B.15: Sketch of a Cuboctahedron.

Parameters:

• length of the shared square base L,

• height H ,

• height_ratio rH ,

• α is the angle between the base and the side faces, taken in the middle of the base
lines (see fig. B.11 in Section B.6).

Restrictions on the parameters:
2H

L
< tan(α) and

2rH H

L
< tan(α).

Properties:

• volume V = 1

6
tan(α)L3

[
2−

(
1− 2H

L tan(α)

)3 −
(
1− 2rH H

L tan(α)

)3]
,

• particle surface seen from above S = L2.

B.8.2 Expression of the form factor

FCuboctahedron(q,L, H ,rH ,α) = exp(i qz H)
[

FPyramid(qx , qy , qz ,L,rH H ,α)+FPyramid(qx , qy ,−qz ,L, H ,α))
]

Page 60



Appendix B. Form factors B.8. Cuboctahedron

Syntax: FormFactorCuboctahedron(length, height, height_ratio, alpha)

B.8.3 Examples

Figure B.16 shows the normalized intensity |F |2/V 2, computed with L = 20 nm, H = 13 nm,
rH = 0.7, and α= 60◦.
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Figure B.16: Normalized intensity for the form factor of a cuboctahedron |F |2/V 2, plotted
against (qz , qy ) and (qx , qy ) and computed with L = 20 nm, H = 13 nm, rH = 0.7, and
α= 60◦.
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Appendix B. Form factors B.9. Cylinder

B.9 Cylinder

B.9.1 Real-space geometry

This shape is a right circular cylinder (see fig. B.17).

H

z

x

(a) Side view

2R

y

x

(b) Top view

Figure B.17: Sketch of a Cylinder.

Parameters:

• radius of the circular base R.

• height H .

Properties:

• volume V =πR2H ,

• particle surface seen from above S =πR2.

B.9.2 Expression of the form factor

FCylinder(q,R, H) = 2πR2H sinc

(
qz

H

2

)
exp

(
i qz

H

2

)
J1(q∥R)

q∥R
,

with q∥ =
√

q2
x +q2

y and J1(x) is the first order Bessel function of the first kind [9].

Syntax: FormFactorCylinder(radius, height)

Page 62



Appendix B. Form factors B.9. Cylinder

B.9.3 Examples

Figure B.18 shows the normalized intensity |F |2/V 2, computed with R = 8 nm and H = 16 nm.
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Figure B.18: Normalized intensity for the form factor of a cylinder |F |2/V 2, plotted against
(qz , qy ) and (qx , qy .) It has been computed with R = 8 nm and H = 16 nm.
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Appendix B. Form factors B.10. Ellipsoidal cylinder

B.10 Ellipsoidal cylinder

B.10.1 Real-space geometry

This is a cylinder whose cross section is an ellipse.

H

z

x

(a) Side view

2rb

2ra

y

x

(b) Top view

Figure B.19: Sketch of an Ellipsoidal Cylinder.

Parameters:

• ra = half length of the ellipse main axis parallel to x,

• rb = half length of the ellipse main axis parallel to y ,

• height H .

Properties:

• volume V =πrarb H ,

• particle surface seen from above S = rarb .

B.10.2 Expression of the form factor

The total form factor is given by

FEllipsoidalCylinder(q,R,W, H) = 2πrarb H exp

(
i

qz H

2

)
sinc

(
qz H

2

)
J1(γ)

γ
,

with γ=
√

(qx ra)2 + (qy rb)2 and J1(x) is the first order Bessel function of the first kind [9].

Syntax: FormFactorEllipsoidalCylinder(ra, rb, height)
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Appendix B. Form factors B.10. Ellipsoidal cylinder

B.10.3 Examples

Figure B.20 shows the normalized intensity |F |2/V 2, computed with ra = 13 nm, rb = 8 nm,
and H = 16 nm.
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Figure B.20: Normalized intensity for the form factor of an ellipsoidal cylinder |F |2/V 2, plot-
ted against (qz , qy ) and (qx , qy ) and computed with ra = 8 nm, rb = 13 nm, and H = 16 nm.
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Appendix B. Form factors B.11. Cone

B.11 Cone

B.11.1 Real-space geometry

This shape is a truncated cone as shown in fig. B.21.

H

z

x

(a) Side view

2R

y

x

(b) Top view

Figure B.21: Sketch of a Cone.

Parameters:

• radius R,

• height H ,

• α is the angle between the side and the circular base.

Restrictions on the parameters:
H

R
< tan(α).

Properties:

• volume V = π

3
tan(α)R3

[
1− (1− H

tan(α)R
)3

]
,

• particle surface seen from above S =πR2.

B.11.2 Expression of the form factor

FCone(q,R, H ,α) =
∫ H

0
2πR2

z
J1(q∥Rz )

q∥Rz
exp(i qz z)d z,

with Rz = R− z
tanα , q∥ =

√
q2

x +q2
y and J1(x) is the first order Bessel function of the first kind

[9].
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Appendix B. Form factors B.11. Cone

Syntax: FormFactorCone(radius, height, alpha).

B.11.3 Examples

Figure B.22 shows the normalized intensity |F |2/V 2, computed with R = 10 nm, H = 13 nm,
and α= 60◦.
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Figure B.22: Normalized intensity for the form factor of a Cone |F |2/V 2, plotted against (qz ,
qy ) and (qx , qy .) It has been computed with R = 10 nm, H = 13 nm, and α= 60◦.
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Appendix B. Form factors B.12. Full Sphere

B.12 Full Sphere

B.12.1 Real-space geometry

The full sphere is parametrized by its radius R.

2R

z

x

(a) Side view

2R

y

x

(b) Top view

Figure B.23: Sketch of a Full Sphere.

Parameters: radius R.

Properties:

• volume V = 4π

3
R3,

• particle surface seen from above S =πR2.

B.12.2 Expression of the form factor

FFullSphere(q,R) = 4πR3 exp(i qz R)
sin(qR)−qR cos(qR)

(qR)3 , (B.2)

where q =
√

q2
x +q2

y +q2
z .

Syntax: FormFactorFullSphere(radius)
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Appendix B. Form factors B.12. Full Sphere

B.12.3 Examples

Figure B.24 shows the normalized intensity |F |2/V 2, computed with R = 8 nm.
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Figure B.24: Normalized intensity for the form factor of a Full Sphere |F |2/V 2, plotted
against (qz , qy ) and (qx , qy ) and computed with R = 8 nm.
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Appendix B. Form factors B.13. Truncated Sphere

B.13 Truncated Sphere

B.13.1 Real-space geometry

This shape is a spherical dome, i.e. a portion of a sphere cut off by a plane (perpendicular
to z-axis) as shown in fig. B.25.

H

z

x

(a) Side view

2R

y

x

(b) Top view

Figure B.25: Sketch of a Truncated Sphere.

Parameters:

• radius R,

• height H .

Restrictions on the parameters: 0 ≤ H ≤ 2R.

Properties:

• volume V =πR3
[

2

3
+ H −R

R
− 1

3

(
H −R

R

)3]
,

• particle surface seen from above S =
 πR2, H ≥ R

π
(
2RH −H 2

)
, H < R

.

B.13.2 Expression of the form factor

FTruncatedSphere(q,R, H) = 2πexp[i qz (H −R)]
∫ R

R−H
R2

z
J1(q∥Rz )

q∥Rz
exp(i qz z)d z,

with J1(x) the first order Bessel function of the first kind [9], q∥ =
√

q2
x +q2

y , and Rz =p
R2 − z2
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Appendix B. Form factors B.13. Truncated Sphere

Syntax: FormFactorTruncatedSphere(radius, height)

B.13.3 Examples

Figure B.26 shows the normalized intensity |F |2/V 2, computed with R = 5 nm and H =
7 nm:
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Figure B.26: Normalized intensity for the form factor of a Truncated Sphere |F |2/V 2, plotted
against (qz , qy ) and (qx , qy ) and computed with R = 5 nm and H = 7 nm.
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Appendix B. Form factors B.14. Full Spheroid

B.14 Full Spheroid

B.14.1 Real-space geometry

A full spheroid is generated by rotating an ellipse around the vertical axis (see fig. B.27).
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z
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(a) Side view

2R

y

x

(b) Top view

Figure B.27: Sketch of a Full Spheroid.

Parameters:

• radius R,

• height H .

Properties:

• volume V = 2

3
R2H ,

• particle surface seen from above S =πR2.

B.14.2 Expression of the form factor

FFullSpheroid(q,R, H) = 4πexp(i qz H/2)
∫ H/2

0
R2

z
J1(q∥Rz )

q∥Rz
cos(qz z)d z, wi th

with J1(x) the first order Bessel function of the first kind [9], Rz = R
√

1− 4z2

H 2 , γz =
√

(qx Rz )2 + (qy Rz )2.
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Appendix B. Form factors B.14. Full Spheroid

Syntax: FormFactorFullSpheroid(radius,height)

B.14.3 Examples

Figure B.28 shows the normalized intensity |F |2/V 2, computed with R = 10 nm, and H =
13 nm.
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Figure B.28: Normalized intensity for the form factor of a full spheroid |F |2/V 2, plotted
against (qz , qy ) and (qx , qy ) and computed with R = 10 nm and H = 13 nm.
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Appendix B. Form factors B.15. Truncated Spheroid

B.15 Truncated Spheroid

B.15.1 Real-space geometry

This shape is a spheroidal dome: a portion of a full spheroid cut off by a plane perpendicular
to the z-axis.

2R

H

fpR

z

x

(a) Side view

2R

y

x

(b) Top view

Figure B.29: Sketch of a Truncated Spheroid.

Parameters:

• radius R,

• height H ,

• height_flattening coefficient in the perpendicular direction fp .

Restrictions on the parameters: 0 < H

R
< 2 fp .

Properties:

• volume V = πRH 2

fp

(
1− H

3 fp R

)
,

• particle surface seen from above S =


πR2, H ≥ fp R

π

(
2RH

fp
− H 2

f 2
p

)
, H < R

.
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Appendix B. Form factors B.15. Truncated Spheroid

B.15.2 Expression of the form factor

FTruncatedSpheroid(q,R, H , fp ) = 2πexp[i qz (H − fp R)]
∫ fp R

fp R−H
R2

z
J1(q∥Rz )

q∥Rz
exp(i qz z)d z

with J1(x) the first order Bessel function of the first kind [9], q∥ =
√

q2
x +q2

y and Rz =
√

R2 − z2/ f 2
p .

Syntax: FormFactorTruncatedSpheroid(radius, height, height_flattening)

B.15.3 Examples

Figure B.30 shows the normalized intensity |F |2/V 2, computed with R = 7.5 nm, H = 9 nm
and fp = 1.2.

] -1 [nm
y

 q
-2 -1 0 1 2

] 
-1

 [
n

m
z

 q

-2

-1

0

1

2

2
|F

/V
|

-610

-410

-210

1

] -1 [nm
x

 q
-2 -1 0 1 2

] 
-1

 [
n

m
y

 q

-2

-1

0

1

2

2
|F

/V
|

-810

-410

1

Figure B.30: Normalized intensity for the form factor of a Truncated Spheroid |F |2/V 2, plot-
ted against (qz , qy ) and (qx , qy ) and computed with R = 7.5 nm, H = 9 nm, and fp = 1.2.
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Appendix B. Form factors B.16. Hemi ellipsoid

B.16 Hemi ellipsoid

B.16.1 Real-space geometry

This shape is a truncated ellipsoid as shown in fig. B.31.
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x

(a) Side view

2rb

2ra

y

x

(b) Top view

Figure B.31: Sketch of an Hemi-ellipsoid.

Parameters:

• ra = half length of the ellipse main axis parallel to x,

• rb = half length of the ellipse main axis parallel to y ,

• H = height (half length of the vertical main axis of a full ellipsoid).

Properties:

• volume V = 2

3
πrarb H ,

• particle surface seen from above S =πrarb .

B.16.2 Expression of the form factor

Fhemi−ellipsoid(q,ra ,rb , H) = 2π
∫ H

0
ra,z rb,z

J1(γz )

γz
exp(i qz z)d z,

with J1(x) the first order Bessel function of the first kind [9], ra,z = ra

√
1−

( z

H

)2
, rb,z = rb

√
1−

( z

H

)2

and γz =
√

(qx ra,z )2 + (qy rb,z )2.

Syntax: FormFactorHemiEllipsoid(ra, rb, height)
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Appendix B. Form factors B.16. Hemi ellipsoid

B.16.3 Examples

Figure B.32 shows the normalized intensity |F |2/V 2, computed with ra = 10 nm, rb = 6 nm
and H = 8 nm.
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Figure B.32: Normalized intensity for the form factor of an Hemi-Ellipsoid |F |2/V 2, plotted
against (qz , qy ) and (qx , qy ) computed with ra = 10 nm, rb = 6 nm, and H = 8 nm.
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Appendix B. Form factors B.17. Ripple1

B.17 Ripple1

B.17.1 Real-space geometry

This shape has a sinusoidal profile (see fig. B.33).

W

H

y

z

(a) Side view

y

x

L

W

(b) Top view

Figure B.33: Sketch of a Ripple1.

Parameters:

• length L,

• width W ,

• height H .

Properties:

• volume V = LW H

2
,

• particle surface seen from above S = LW .
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B.17.2 Expression of the form factor

Fripple1(q,L,W, H) = L · W

π
· sinc

(
qx L

2

)
×∫ H

0
d z arccos

(
2z

H
−1

)
sinc

[
qyW

2π
arccos

(
2z

H
−1

)]
exp

(
i qz z

)
,

where arccos is the arc cosine (i.e. the inverse operation of cosine).

Syntax: FormFactorRipple1(length, width, height)

B.17.3 Examples

Figure B.34 shows the normalized intensity |F |2/V 2, computed with L = 27 nm, W = 20 nm
and H = 14 nm.
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Figure B.34: Normalized intensity for the form factor of a ripple1 |F |2/V 2, plotted against
(qz , qy ) and (qx , qy ) computed with L = 27 nm, W = 20 nm, and H = 14 nm.
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B.18 Ripple2

B.18.1 Real-space geometry

This shape has an asymmetric sawtooth profile.

H

y

z

d

W/2

(a) Side view

L

W

x

y

(b) Top view

Figure B.35: Sketch of a Ripple2.

Parameters:

• length L,

• width W ,

• height H ,

• asymmetry d .

Restriction on the parameters: |d | < W
2 .

Properties:

• volume V = LW H

2
,

• particle surface seen from above S = LW .
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B.18.2 Expression of the form factor

Fripple2(q,L,W, H ,d) = LW sinc

(
qx L

2

)
×∫ H

0

(
1− z

H

)
sinc

[
qyW

2

(
1− z

H

)]
exp

{
i
[

qz z −qy d
(
1− z

H

)]}
d z

Syntax: FormFactorRipple2(length, width, height, asymmetry)

B.18.3 Examples

Figure B.36 shows the normalized intensity |F |2/V 2, computed with L = 36 nm, W = 25 nm,
H = 14 nm, and d = 3 mm.
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Figure B.36: Normalized intensity for the form factor of a ripple2 |F |2/V 2, plotted against
(qz , qy ) and (qx , qy ) computed with L = 36 nm, W = 25 nm, H = 14 nm, and d = 3 mm.
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B.19 Distorted Wave Born Approximation

The previous sections of this appendix on form factors have dealt with the Born approx-
imation. In this case the form factor is given by a single integral over the particle shape
(see equation B.1). But this approximation fails when multiple reflections and refractions
have to be taken into account at interfaces because of the presence of underlying layers of
materials and the closeness of the incident angle αi to the critical angle of total external
reflection αc . The first order correction to the scattering theory is the Distorted Wave Born
Approximation (DWBA), whereas the Born approximation is the zeroth order.
The collective effects between the particles are not considered in this section. They will be
dealt with in... We also do not take any polarization effects into account.

In the DWBA, the form factor of a particle in a multilayer system is given by

FDWBA(ki ,k f ,rz ) = Ti T f FBA(ki −k f )e i (ki ,z−k f ,z )rz +Ri T f FBA(k̃i −k f )e i (−ki ,z−k f ,z )rz

+Ti R f FBA(ki − k̃ f )e i (ki ,z+k f ,z )rz +Ri R f FBA(k̃i − k̃ f )e i (−ki ,z+k f ,z )rz , (B.3)

where FBA is the expression of the form factor in the Born approximation, rz is the z-
coordinate of the particle’s position, ki = (ki ,x ,ki ,y ,ki ,z ) k f = (k f ,x ,k f ,y ,k f ,z ) are the in-
cident and scattered wave vectors in air, respectively. With a tilde (˜), these wavevectors
components are evaluated in the multilayer system (the refractive indices of the different
constituting materials have to be taken into account). Ti , T f , Ri , R f are the transmission
and reflection coefficients for the incident wave (index i ) or the scattered one (index f ).
These coefficients can be calculated using the Parratt formalism [10] or the matrix method
[11]. ki −k f is equal to the scattering vector q and the z-axis is pointing upwards.

B Remark: The particles cannot sit in between layers. At most they can be sitting on any
inner interfaces.

In the followings, the DWBA will be illustrated for two different layouts of particles:

• particles deposited on a substrate,

• particles buried in a layer on a substrate.

B.19.1 Particles deposited on a substrate

In this configuration, the particles are sitting on top of a substrate layer, in the air as shown
in fig. B.37. In the DWBA the expression of a form factor becomes

FDWBA(q∥,ki ,z ,k f ,z ) = FBA(q∥,ki ,z −k f ,z )+Ri FBA(q∥,−ki ,z −k f ,z )

+R f FBA(q∥,ki ,z +k f ,z )+Ri R f FBA(q∥,−ki ,z +k f ,z ), (B.4)

where q∥ is the component of the scattering beam in the plane of the interface (q = ki −k f ),
ki ,z and k f ,z are the z-component of the incident and scattered beam, respectively. Ri ,
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R f are the reflection coefficients in incidence and reflection. They are defined as R =
kz +

√
n2

s k2
0 −|k∥|2

kz −
√

n2
s k2

0 −|k∥|2
, where ns = 1−δs − iβs is the refractive index of the substrate, k0 is the

wavelength in vacuum (2π/λ), kz and k∥ are the z-component and the in-plane component
of ki or k f .

B
Remark: If the particles are sitting on a multilayered system, the expression of the form
factor in the DWBA is obtained by replacing the Fresnel coefficient by the correspond-
ing coefficients of the underlying layers [10, 11].

Figure B.37 illustrates the four scattering processes for a supported particle, taken into
account in the DWBA. The first term of eq. B.4 corresponds to the Born approximation.
Each term is weighted by a Fresnel coefficient.

Term 1 Term 2 Term 3 Term 4

z

air

substrate

Figure B.37: Schematic views of the different terms appearing in the expression of the form
factor under DWBA for particles sitting on a substrate layer.

Script B.1 illustrates the difference between BA and DWBA in BornAgainand figure B.38
shows the intensity contourplot generated using this script with (full) spheroids as particles.
This script considers the simple case of:

• one kind of particles’ shape,

• no interference between the particles,

• in the DWBA, a sample made of a layer of substrate on which are deposited the parti-
cles,

• in the BA, a sample composed of the particles in air.

Listing B.1: Python script to generate figure B.38. The difference between BA and DWBA in
this simple case is the absence or presence of a substrate layer in the sample.

import numpy
import matplotlib
import pylab
from libBornAgainCore import *
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def get_sample ():
"""
Build and return the sample to calculate formfactor in Born

or Distorted Wave Born Approximation.
"""
# defining materials
m_ambience = MaterialManager.getHomogeneousMaterial("Air",

0.0, 0.0)
m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)
m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)

# collection of particles
ff= FormFactorSpheroid (7.5* nanometer , 9.0* nanometer , 1.2)
particleshape = Particle(m_particle , ff)
particle_decoration = ParticleDecoration ()
particle_decoration.addParticle(particleshape , 0.0, 1.0)
interference = InterferenceFunctionNone ()
particle_decoration.addInterferenceFunction(interference)
air_layer = Layer(m_ambience)
air_layer.setDecoration(particle_decoration)
substrate_layer = Layer(m_substrate , 0)

# Sample = particles in air for BA or particles in air and
sitting on a substrate for DWBA

multi_layer = MultiLayer ()
multi_layer.addLayer(air_layer)
# Add substrate layer for DWBA
# Comment the following line out for BA
multi_layer.addLayer(substrate_layer)
return multi_layer

def get_simulation ():
"""
Create and return GISAXS simulation with beam and detector

defined
"""
simulation = Simulation ()
simulation.setDetectorParameters (200, 0.0* degree , 2.0* degree ,

200, 0.0* degree , 2.0* degree , True)
simulation.setBeamParameters (1.0* angstrom , 0.5* degree , 0.0*

degree)
return simulation

def run_simulation ():
"""
Run simulation and plot results

Page 84



Appendix B. Form factors B.19. Distorted Wave Born Approximation

"""
sample = get_sample ()
simulation = get_simulation ()
simulation.setSample(sample)
simulation.runSimulation ()
pylab.imshow(numpy.rot90(result , 1), norm=matplotlib.colors.

LogNorm (), extent =[0.0, 2.0, 0, 2.0])
pylab.show()

if __name__ == ’__main__ ’:
run_simulation ()
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(b) DWB Approximation

Figure B.38: Intensity map of Spheroid form factor in BA and DWBA computing using
script B.1 and FormFactorSpheroid(7.5*nanometer, 9.0*nanometer, 1.2).

B Remark: In BornAgain, the DWBA is implemented automatically when assembling
the sample with more than the air layer.

B.19.2 Buried particles

The system considered in this section consists of particles encapsulated in a layer, which is
sitting on a substrate (see fig. B.39). In this case the form factor in the DWBA is given by

FDWBA(q∥,ki ,z ,k f ,z ) = Ti T f FBA(q∥,ki ,z −k f ,z )e i (ki ,z−k f ,z )d +Ri T f FBA(q∥,−ki ,z −k f ,z )e i (−ki ,z−k f ,z )d

+R f Ti FBA(q∥,ki ,z +k f ,z )e i (ki ,z+k f ,z )d +R f Ri FBA(q∥,−ki ,z +k f ,z )e i (−ki ,z+k f ,z )d ,
(B.5)

R j =
t j

0,1r j
1,2 exp(2i k j ,z )t

1+ r j
0,1r j

1,2 exp(2i k j ,z t )
, T j =

t j
0,1

1+ r j
0,1r j

1,2 exp(2i k j ,z t )
, j = i , f
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where q∥ is the component of the scattering beam in the plane of the interface, ki ,z and k f ,z

are the z-component of the incident and scattered beams, respectively. d is the depth at
which the particles are sitting in the layer. Note that this value is given relative to the top of
this layer and it is not the coordinate in the absolute referential (linked with the full sample)
and it is measured up to the bottom of the particle. t is the thickness of the intermediate
layer containing the particles. Ri , f and Ti , f are the reflection and transmission coefficients

in incidence and reflection (they can be calculated using Parratt or matrix formalism). r j
0,1,

r j
1,2 t j

0,1 are the reflection and transmission coefficients between layers; the indices are re-
lated to different boundaries with 0: air, 1: intermediate layer and 2: substrate layer and the
superscript j is associated with the incident or scattered beams:

r j
n,n+1 =

k j ,z,n −k j ,z,n+1

k j ,z,n −k j ,z,n+1
, t j

n,n+1 =
2k j ,z,n

k j ,z,n −k j ,z,n+1
, n = 0,1, j = i , f ,

where n is related to the layers, z to the vertical component, and j to the beams.

Term 1 Term 2 Term 3 Term 4

z

d t

substrate

air

Figure B.39: Schematic views of the different terms appearing in the expression of the form
factor under the DWBA for buried particles.

Figure B.40 shows a typical example of the output intensity scattered from a sample
made of 3 layers: air, substrate, and in between, spherical particles embedded in the middle
of a 30 nm-thick layer. This figure had been generated using listing B.2.

Listing B.2: Python script to generate fig.B.40. Spherical particles are embedded in the
middle of a layer on a substrate.

import numpy
import matplotlib
import pylab
from libBornAgainCore import *

def get_sample ():
"""
Build and return the sample in Distorted Wave Born

Approximation.
"""
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# defining materials
m_ambience = MaterialManager.getHomogeneousMaterial("Air",

0.0, 0.0)
m_interm_layer = MaterialManager.getHomogeneousMaterial("

IntermLayer" ,3.45e-6, 5.24e-9)
m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 7.43e-6, 1.72e-7)
m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 0.0, 0.0)

# collection of particles
ff = FormFactorFullSphere (10.2* nanometer)
particleshape = Particle(m_particle , ff)
particle_decoration = ParticleDecoration ()
particle_decoration.addParticle(particleshape ,20.1 ,1.0)
interference = InterferenceFunctionNone ()
particle_decoration.addInterferenceFunction(interference)
air_layer = Layer(m_ambience)
intermediate_layer = Layer(m_interm_layer , 30.* nanometer)
intermediate_layer.setDecoration(particle_decoration)
substrate_layer = Layer(m_substrate , 0)

multi_layer = MultiLayer ()
multi_layer.addLayer(air_layer)
multi_layer.addLayer(intermediate_layer)
multi_layer.addLayer(substrate_layer)
return multi_layer

def get_simulation ():
"""
Create and return GISAXS simulation with beam and detector

defined
"""
simulation = Simulation ()
simulation.setDetectorParameters (400, 0., 1.*degree , 400, 0.,

1.* degree , True)
simulation.setBeamParameters (1.5* angstrom , 0.15* degree , 0.)
return simulation

def run_simulation ():
"""
Run simulation and plot results
"""
sample = get_sample ()
simulation = get_simulation ()
simulation.setSample(sample)
simulation.runSimulation ()
result = simulation.getIntensityData ().getArray () + 1 # for
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log scale

pylab.imshow(numpy.rot90(result , 1), norm=matplotlib.colors.
LogNorm (), extent =[0.0, 1.0, 0, 1.0])

pylab.show()

if __name__ == ’__main__ ’:
run_simulation ()
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Figure B.40: Map of intensity scattered from a sample made of spherical particles embed-
ded in the middle of a 30 nm-thick layer on a substrate (see Script B.2 for details).

B

Remark: For layers different from the air layer, the top interface is considered as the
reference level to position the encapsulated particles. For example, spheres posi-
tioned at depth d (positive) are located at a distance d from the top of the layer up to
the bottom of these particles. This convention is different for the top air layer, where
particles sitting at the interface with an underlying layer (i.e. the bottom of the air
layer) are located at depth 0 (see fig. B.41).
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Layer 0: Air

Layer N: Substrate

...

Layer 1

...

z

Layer j

depth=0

depth=d>0

depth=t

thickness=t>0

Figure B.41: Illustration of the convention about depth used in BornAgain to encapsulate
particles in layers.
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B.20 Core-shell particles

BornAgain also offers the possibility to simulate more complicated shapes of particles by
combining those listed in the previous sections. To generate a core-shell particle, the com-
bination is performed using the following command:
ParticleCoreShell(shell_particle, core_particle, relative_core_position),
where shell_particle and core_particle are the outer and inner parts of the core-shell
particle, respectively. They refer to one of the form factors defined previously and to an as-
sociated material. For example, for the outer part,
shell_particle=Particle(material_shell, outer_form_factor),
where material_shell is the material of the shell and outer_form_factor is the shape
of the outer part (cf. listing B.3).
relative_core_position defines the position of the centre of gravity of the inner shape
with respect to the outer one. An example in fig. B.42 shows a core shell particle made of a
box for the outer part and of a shifted pyramidal shape for the inner one.

Figure B.43 displays the output intensity scattered in the Born Approximation using the
code listed in B.3 to generate the sample, and the incident angles αi = 0.2◦ and φi = 0◦.

z

x

(a) Side view

x

y

(b) Top view

Figure B.42: Example of a core-shell particle composed of a box with a pyramidal inset. The
relative core shell position is marked by the position of its center of gravity (blue point •)
with respect to the center of gravity of the box (red point •).

Listing B.3: Python script to create a core-shell particle made of a box with a pyramidal
shifted inset.

def get_sample ():
"""
Build and return the sample to calculate core -shell

formfactor in Born Approximation.
"""
# defining materials

Page 90



Appendix B. Form factors B.20. Core-shell particles

m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,
0.0)

m_shell = MaterialManager.getHomogeneousMaterial("Shell", 1e
-4, 2e-8)

m_core = MaterialManager.getHomogeneousMaterial("Core", 6e-5,
2e-8)

# collection of particles
outer_ff = FormFactorBox (16.0* nanometer , 16.0* nanometer , 8.0*

nanometer)
inner_ff = FormFactorPyramid (12.0* nanometer , 7.0* nanometer ,

60.0* degree)
shell_particle = Particle(m_shell , outer_ff)
core_particle = Particle(m_core , inner_ff)
core_position = kvector_t (1.5, 0.0, 0.0)

particle = ParticleCoreShell(shell_particle , core_particle ,
core_position)

particle_decoration= ParticleDecoration ()
particle_decoration.addParticle(particle)
interference = InterferenceFunctionNone ()
particle_decoration.addInterferenceFunction(interference)

air_layer = Layer(m_air)
air_layer.setDecoration(particle_decoration)

multi_layer = MultiLayer ()
multi_layer.addLayer(air_layer)

return multi_layer
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Figure B.43: Intensity map of a core-shell form factor in Born Approxima-
tion using FormFactorBox(16*nanometer, 16*nanometer, 8*nanometer) and
FormFactorPyramid(12*nanometer, 7*nanometer, 60*degree) for the outer and
inner shells, respectively. The core particle is shifted by 1.5 nm in the x-direction with
respect to the centre of the outer shell. The sample used to generate this figure is listed
in B.3. There is no substrate and no interference between the particles.
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Appendix C

Collection of particles

In the section we are going to describe how to simulate collections of particles using BornAgain
i.e. the way their spatial distributions and the distribution of shapes and their correlations
can influence the output scattered intensity. The samples generated with BornAgain are
made of different material layers characterized by their thicknesses, refractive indices, and
possible surface roughnesses. Except for the thickness, the other dimensions of the lay-
ers are infinite. Particles can be embedded or deposited on the top of any layers. Those
particles are characterized by their shapes, refractive indices, their spatial distribution and
concentration in the sample. When the particles are densely packed, the distance relative
to each other becomes of the same order as the particles’ sizes. The radiation scattered
from these various particles are going to interfere together. The influence of the particles’
shapes has been described in the previous section about form factors.

We do not consider any multiple scattering, polarisation (see Section...), nor layers’
roughness (see Section...).
We are first going to give a short overview of the theory involved, mostly in order to de-
fine the terminology. For a more complete theoretical description, the user is referred to,
for example, [12]. Then we are going to describe how the interference features have been
implemented in BornAgain and give some detailed examples.

C.1 Theory

Considering a set of N particles labeled with index i , located at Ri and having shapes Si (r)
(Si = 0 outside the particle and 1 inside), the scattered intensity per particle is given by:

I (q) = 1

N

〈∣∣∣∣∣∑
i

Fi (q)e i q·Ri

∣∣∣∣∣
2〉

= 1

N

〈∑
i
|Fi (q)|2 + ∑

i 6= j
Fi (q)F∗

j (q)exp(i q · (Ri −R j ))

〉
, (C.1)

where 〈. . .〉 denotes a spatial and temporal average, q is the wave vector (reciprocal
space) and Fi is the form factor of particle i evaluated using the Distorted Wave Born Ap-
proximation.

If only the statistical quantities of the system are known (particles’ positions and sizes),
the discrete sums in equation C.1 can be replaced by continuous integrals using some prob-
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ability densities. For example, in two dimensions (which is the case for particles deposited
on a surface), the probability per unit surface to find a particle of class α in Ri knowing that
there is a particle of type β in R j can be written as ρ2

S gαβ(Ri ,α,R j ,β) where ρS is the number
of particles per unit surface and gαβ is the partial pair correlation function, which tends
towards 1 as the distance between the particles increases.

P

Terminology
For collections of particles, the scattered intensity contains contributions from neigh-
boring particles. This additional pattern can be called the structure factor, the inter-
ference function or even in crystallography, the lattice factor. In this manual, we use
the term "interference function" or interferences.

C.1.1 Size-distribution models

To proceed further, when the morphology and topology are not exactly known, some hy-
potheses needs to be made since the correlation between the kinds of scatterers and their
relative positions included in gαβ are difficult to estimate. Several options are available:

Decoupling approximation (DA) neglects all correlations. It supposes that the particles
are positioned in a way that is completely independent on their kinds (shapes, sizes). Thus
the kind of scattering objects and their positions are not correlated. This leads to the fol-
lowing expression of the scattered intensity:

I (q) = |〈F (q)〉|2S(q)+〈|F (q)|2〉− |〈F (q)〉|2︸ ︷︷ ︸
incoherent term

where S(q) is the total interference function (i.e. the Fourier transform of the particle posi-
tion autocorrelation function).
In concentrated systems, DA breaks down because of correlations. One solution is to rein-
troduce some correlations between particles sizes and distributions (using for example the
Size spacing correlation approximation described below).

Local monodisperse approximation (LMA) partially accounts for some coupling between
the positions and the kinds of the particles [13]. It requires a subdivision of the layers of par-
ticles into monodisperse domains. The contributions of these subdomains are then inco-
herently summed up and weighted by the size-shape probabilities. In this approximation,
a particle is supposed to be surrounded by particles of the same size and shape, within the
coherence length of the input beam. The scattered intensity is expressed as

I (q) = 〈|F (q)|2S(q)〉

One has to remember that in most cases, this approximation corresponds to an unphysical
description of the investigated systems.
DA and LMA separate the contributions of the form factors and of the interference function.
For disordered systems DA and LMA give the same result as the scattering vector gets larger
i.e. the scattered intensity is dominated by the contribution of the form factor.
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Size spacing correlation approximation (SSCA) introduces correlations between poly-
disperse particles and is derived from the paracrystal model (see description below and
[14]).

C.1.2 Layout of particles

B Remark: The particles are positioned in the same vertical layer.

The uncorrelated or disordered lattice

For very diluted distributions of particles, the particles are too far apart from each other
to lead to any interference between the waves scattered by each of them. In this case the
interference function is equal to 1. The scattered intensity is then entirely determined by
the form factors of the particles distributed in the sample.

The regular lattice

The particles are positioned at regular intervals generating a layout characterised by its base
vectors a and b (in direct space) and the angle between these two vectors. This lattice can
be two or one-dimensional depending on the characteristics of the particles. For exam-
ple when they are infinitely long, the implementation can be simplified and reduced to a
"pseudo" 1D system.

The ideal paracrystal

A paracrystal, whose notion was developed by Hosemann[15], allows fluctuations of the
lengths and orientations of lattice vectors. Paracrystals can be defined as distorted crystals
in which the crystalline order has not disappeared and for which the behavior of the inter-
ference functions at small angles is coherent. It is a transition between the regular lattice
and the disordered state.
For example, in one dimension, a paracrystal is generated using the following method:
we place a particle at the origin. The second one is put at a distance x with a density prob-
ability p(x) that is peaked at a mean value D :

∫ ∞
−∞ p(x)d x = 1 and

∫ ∞
−∞ xp(x)d x = D . The

third one is added at a distance y from the second site using the same rule with a density
probability p2(y) = ∫ ∞

−∞ p(x)p(y −x)d x = p ⊗p(y).
With such a method, the pair correlation function g (x) is built step by step. Its expression
and the one of its Fourier transform, which is the interference function are

g (x) = δ(x)+p(x)+p(x)⊗p(x)+ . . .+p(−x)+ . . . and S(q) = Re

(
1+P (q)

1−P (q)

)
,

where P (q) is the Fourier transform of the density probability p(x).
In two dimensions, the paracrystal is constructed on a pseudo-regular lattice with base vec-
tors a and b using the following conditions for the densities of probabilities:∫

pa(r)d 2r = ∫
pb(r)d 2r = 1,

∫
apa(r)d 2r = a,

∫
bpb(r)d 2r = b.
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Function One dimension Two dimensions

Cauchy (1+q2ω2)−3/2 (1+q2
x cl 2

x +q2
y cl 2

y )−3/2

Gauss
1

2
exp(−q2ω2

4
) 1

2 exp

(
−

q2
x cl 2

x +q2
y cl 2

y

4

)

Voigt
η

2
exp

(
−q2ω2

4

)
+ 1−η

(1+q2ω2)3/2

η

2
exp

(
−

q2
x cl 2

x +q2
y cl 2

y

4

)
+ 1−η

(1+q2
x cl 2

x +q2
y cl 2

y )3/2

Table C.1: List of probability distribution functions in reciprocal space. ω, cl stand for co-
herence lengths and η is a weighting coefficient.

In the ideal case the two axes are decoupled and each unit cell should retain a parallelo-

gram shape. The interference function is given by S(q∥) = ∏
k=a,b Re

(
1+Pk (q∥)

1−Pk (q∥)

)
with Pk

the Fourier transform of pk , k = a,b.

Probability distributions

The scattering by an ordered lattice gives rise to a series of Bragg peaks situated at the nodes
of the reciprocal lattice defined. Any divergence from the ideal crystalline case modifies the
output spectrum by, for example, widening or attenuating the Bragg peaks. The influence
of these "defects" can be accounted for in direct space using correlation functions or by
truncating the lattice or, in reciprocal space with structure factors or interference functions
by convoluting the scattered pics with a function which could reproduce the experimental
shapes. The later option has been implemented in BornAgain. The Fourier transforms of
the probability distribution functions in 1 and 2D are listed in Table C.1. They are used in 1
and 2D lattices, and 2D paracrystals.

The Cauchy distribution corresponds to exp(−r ) in real space and the Voigt one is a
linear combination of the Gaussian and Cauchy probability distribution functions.

C.2 Implementation in BornAgain

C.2.1 Size-distribution models

The decoupled approximation, local monodisperse approximation and size spacing cor-
relation approximation can be used in BornAgain. The selection is made using function
SimulationParameters() when defining the characteristics of the simulation. For exam-
ple,

simulation = Simulation ()
....
sim_params = SimulationParameters ()

# interference approx chosen between: DA (default), LMA and SSCA
sim_params.me_if_approx = SimulationParameters.LMA
simulation.setSimulationParameters(sim_params)
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The users can refer to Script C.5 for a more detailed implementation. By default, the
decoupled approximation (DA) is used.

C.2.2 Probability distribution functions

The expressions in the reciprocal space are given in Table C.1.

One dimension

• FTDistribution1DCauchy(ω),

• FTDistribution1DGauss(ω),

• FTDistribution1DVoigt(ω,η).

where ω is the coherence length and η is a weighting factor.

Two dimensions

• FTDistribution2DCauchy(clx, cly),

• FTDistribution2DGauss(clx, cly),

• FTDistribution2DVoigt(clx, cly)

where clx,y are the coherence lengths in the x or y direction, respectively.
These functions can be used with all interference functions except the case without any

interference and the one dimensional paracrystal, for which only the Gaussian case has
already been implemented.

C.2.3 Interferences

The interference function is specified when building the sample. It is linked with the par-
ticles (shape, material). Examples of implementation are given at the end of each descrip-
tion.

Syntax: particle_layout.addInterferenceFunction(interference_function), where
particle_layout holds the information about the different shapes and their proportions
for a given layer of particles, and interference_function is one of the following expres-
sions:

• InterferenceFunctionNone()

• InterferenceFunction1DLattice(lattice_parameters)

• InterferenceFunction1DParaCrystal(peak_distance, width,corr_length)

• InterferenceFunction2DLattice(lattice_parameters)
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• InterferenceFunction2DParaCrystal(length_1, length_2, α_lattice, ξ, corr_length)

We are now going to describe these interference functions.

B
Remark: InterferenceFunction1DLattice can only be used for particles which are
infinitely long in one of scattering plane’s directions like for example a rectangular
grating.
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ý InterferenceFunctionNone()

The particles are placed randomly in the dilute limit and are considered as individual, non-
interacting scatterers. The scattered intensity is function of the form factors only.

Example The sample is made of a substrate on which are deposited half-spheres. Script C.1
details the commands necessary to reproduce the output shown in fig. C.1.

Listing C.1: Python script to simulate a sample made of half-spheres deposited on a sub-
strate layer without any interference. The part specific to the interferences is marked in red
italic font.

import numpy
import matplotlib
import pylab
from libBornAgainCore import *

def get_sample ():
"""
Build and return the sample representing particles with no

interference
"""
# defining materials
m_ambience = MaterialManager.getHomogeneousMaterial("Air",

0.0, 0.0)
m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)
m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)
# collection of particles
sphere_ff = FormFactorTruncatedSphere (5* nanometer , 5*

nanometer)
sphere = Particle(m_particle , sphere_ff)
particle_layout = ParticleLayout ()
particle_layout.addParticle(sphere , 0.0, 1.0)
interference = InterferenceFunctionNone ()
particle_layout.addInterferenceFunction(interference)

air_layer = Layer(m_ambience)
air_layer.setLayout(particle_layout)
substrate_layer = Layer(m_substrate , 0)

multi_layer = MultiLayer ()
multi_layer.addLayer(air_layer)
multi_layer.addLayer(substrate_layer)
return multi_layer

def get_simulation ():
"""
Create and return GISAXS simulation with beam and detector
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"""
simulation = Simulation ()
simulation.setDetectorParameters (100, 0.0* degree , 2.0* degree ,

100, 0.0* degree , 2.0* degree , True)
simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)
return simulation

def run_simulation ():
"""
Run simulation and plot results
"""
sample = get_sample ()
simulation = get_simulation ()
simulation.setSample(sample)
simulation.runSimulation ()
result = simulation.getIntensityData ().getArray () + 1 # for

log scale
pylab.imshow(numpy.rot90(result , 1), norm=matplotlib.colors.

LogNorm (), extent =[0.0, 2.0, 0, 2.0])
pylab.show()

if __name__ == ’__main__ ’:
run_simulation ()
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Figure C.1: Output intensity scattered from a sample made of half-spheres with no inter-
ference between them.
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ý InterferenceFunction1DLattice(lattice_parameters)

where lattice_parameters=(lattice_length, ξ) with lattice_length is the lattice constant
and ξ the angle in radian between the lattice unit vector and the x-axis of the "GISAS exper-
iment" referential as shown in fig. C.2.

z

lattice length

a

x

a

y
x

Figure C.2: Schematic representation of a 1D lattice (side and top views). Such a lattice is
characterized by a lattice length and the angle ξ.

B Remark: By default the long axis of the particles in this 1D lattice is along the beam
axis: ξ= 90◦.

A probability distribution function pdf has to be chosen from the list in section C.2.2 in
order to apply some modifications to the scattering peaks. This function is implemented
using setProbabilityDistributions(pdf).

Example Instead of giving a full script, whose output is the scattered intensity, we are
focusing on how to build a sample using InterferenceFunction1DLattice as the inter-
ference function in BornAgainṠcript C.2 details this procedure in Python. As mentioned
previously, this interference function can only be used with infinitely wide or long particles.
Here the sample is made of infinitely long boxes deposited on a substrate (these particles
are characterized by their widths and heights). They are also rotated by 90◦ in the scattering
plane in order to have their long axis perpendicular to the input beam, which is along the
x-axis. The lattice parameters (the lattice lengths and angle between the lattice main axis
and the x-axis) are specified using Lattice1DIFParameters() and are then used as input
parameters of the interference function.

Listing C.2: Python script to generate a sample made of half-spheres deposited on a sub-
strate layer with the 1DLatticeInterference function. The part specific to the interferences
is marked in red italic font.

def get_sample ():
"""
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Build and return the sample with 1DLatticeInterference
function .

"""
# defining materials
m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,

0.0)
m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)
m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)

# collection of particles
ff = FormFactorInfLongBox (10.* nanometer , 15.0* nanometer)
box = Particle(m_particle , ff)
particle_layout = ParticleLayout ()
transform = Transform3D.createRotateZ (90.0* degree)

particle_layout.addParticle(box , transform)

# lattice parameters
lattice_params = Lattice1DIFParameters ()
lattice_params.m_length = 30.0* nanometer
lattice_params.m_xi = 0.0* degree

# interference function
interference = InterferenceFunction1DLattice(lattice_params)
pdf = FTDistribution1DCauchy (200./2./ M_PI*nanometer)
interference.setProbabilityDistribution(pdf)
particle_decoration.addInterferenceFunction(interference)

# air layer with particles and substrate form multi layer
air_layer = Layer(m_air)
air_layer.setDecoration(particle_decoration)
substrate_layer = Layer(m_substrate , 0)

multi_layer = MultiLayer ()
multi_layer.addLayer(air_layer)
multi_layer.addLayer(substrate_layer)
return multi_layer
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ý InterferenceFunction1DParaCrystal(peak_distance, width, corr_length)

where peak_distance is the average distance to the first neighbor peak,

width is the width parameter of the probability distribution,

corr_length is the correlation length (equal to 0 by default).

For this particular interference function, the implemented probability distribution func-
tion is Gaussian:

p(x) = 1

ω
p

2π
exp

(
(x −D)2

ω2

)
, P (q∥) = exp

(
−

q2
∥ω

2

2

)
exp(i q∥D)

where ω≡width, D ≡ peak_distance, and q∥ =
√

Re2(qx )+Re2(qy ) (see fig. C.3).

D DDD

1 2 3 4 5

x

Figure C.3: Schematic representation of a 1D paracrystal in real space (side view). D is the
average spacing between the particles.

S1DParaCrystal(q∥) = Re

(
1+Φ(q∥)

1−Φ(q∥)

)
,

where Φ(q∥) =
 P (q∥) if corr_length= 0

P (q∥)exp
(
− D
corr_length

)
otherwise

Example To illustrate the 1D paracrystal interference function, we use the same sample
as in the case without interference: half-spheres deposited on a substrate.

Listing C.3: Python script to simulate a sample made of half-spheres deposited on a sub-
strate layer and interfering with the "1D paracrystal" model. The part specific to the inter-
ferences is marked in red italic font.

import numpy
import matplotlib
import pylab
from libBornAgainCore import *

def get_sample ():
"""
Build and return the sample representing particles with 1D

paracrystal
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"""
# defining materials
m_ambience = MaterialManager.getHomogeneousMaterial("Air",

0.0, 0.0)
m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)
m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)
# collection of particles
sphere_ff = FormFactorTruncatedSphere (5* nanometer , 5*

nanometer)
sphere = Particle(m_particle , sphere_ff)
particle_layout = ParticleLayout ()
particle_layout.addParticle(sphere , 0.0, 1.0)
interference = InterferenceFunction1DParaCrystal (25.0*

nanometer , 7*nanometer , 1e3*nanometer)
particle_layout.addInterferenceFunction(interference)

air_layer = Layer(m_ambience)
air_layer.setLayout(particle_layout)
substrate_layer = Layer(m_substrate , 0)

multi_layer = MultiLayer ()
multi_layer.addLayer(air_layer)
multi_layer.addLayer(substrate_layer)
return multi_layer

def get_simulation ():
"""
Create and return GISAXS simulation with beam and detector
"""
simulation = Simulation ()
simulation.setDetectorParameters (100, 0.0* degree , 2.0* degree ,

100, 0.0* degree , 2.0* degree , True)
simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)
return simulation

def run_simulation ():
"""
Run simulation and plot results
"""
sample = get_sample ()
simulation = get_simulation ()
simulation.setSample(sample)
simulation.runSimulation ()
result = simulation.getIntensityData ().getArray () + 1 # for

log scale
pylab.imshow(numpy.rot90(result , 1), norm=matplotlib.colors.
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LogNorm (), extent =[0.0, 2.0, 0, 2.0])
pylab.show()

if __name__ == ’__main__ ’:
run_simulation ()
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Figure C.4: Output intensity scattered from a sample made of half-spheres with
"1Dparacrystal" interference between them. This figure has been generated using
Script C.3.

Page 105



Appendix C. Collection of particles C.2. Implementation in BornAgain

ý InterferenceFunction2DLattice(lattice_parameters)

where lattice_parameters corresponds to (L1, L2, α, ξ) (see illustration in figure C.6)
with

L1, L2 the lengths of the lattice cell,

α the angle between the lattice basis vectors a,b in direct space,

ξ is the angle defining the lattice orientation (set to 0 by default); it is taken as the an-
gle between the a vector of the lattice basis and the x axis of the "GISAS experiment"
referential (as shown in figure 3.1).

a

b

a

a

x

y
L2

L1

Figure C.5: Schematic representation of a 2D lattice (top view). Such a lattice is character-
ized by lattice lengths L1, L2 and angles α and ξ.

Like for the one-dimensional case, a probability distribution function pdf has to be de-
fined. One can choose between those listed in section C.2.2. This function is implemented
using setProbabilityDistributions(pdf).

Example The sample used to run the simulation is made of half-spheres deposited on a
substrate. The interference function is "2Dlattice" and the particles are located at the nodes
of a square lattice with L1 = L2 = 20 nm, a ≡ b and the probability distribution function is
Gaussian. We also use the Local Monodisperse Approximation.

Listing C.4: Python script to simulate a sample made of half-spheres deposited on a sub-
strate layer with "2DLattice" interference function. The part specific to the interferences is
marked in red italic font.

import numpy
import matplotlib
import pylab
from libBornAgainCore import *

def get_sample ():
"""
Build and return the sample representing particles with 2D

lattice interference
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"""
# defining materials
m_ambience = MaterialManager.getHomogeneousMaterial("Air",

0.0, 0.0)
m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)
m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)

# lattice parameters
lattice_params = Lattice2DIFParameters ()
lattice_params.m_length_1 = 20.0* nanometer
lattice_params.m_length_2 = 20.0* nanometer
lattice_params.m_angle = 90.0* degree
lattice_params.m_xi = 0.0* degree

#collection of particles
sphere_ff = FormFactorTruncatedSphere (5* nanometer , 5*

nanometer)
sphere = Particle(m_particle , sphere_ff)

interference = InterferenceFunction2DLattice(lattice_params)
pdf = FTDistribution2DGauss (200.0* nanometer /2.0/ M_PI , 75.0*

nanometer /2.0/ M_PI)
interference.setProbabilityDistribution(pdf)
particle_layout = ParticleLayout ()
particle_layout.addParticle(sphere , 0.0, 1.0)
particle_layout.addInterferenceFunction(interference)

air_layer = Layer(m_ambience)
air_layer.setLayout(particle_layout)
substrate_layer = Layer(m_substrate , 0)
multi_layer = MultiLayer ()
multi_layer.addLayer(air_layer)
multi_layer.addLayer(substrate_layer)
return multi_layer

def get_simulation ():
"""
Create and return GISAXS simulation with beam and detector
"""
simulation = Simulation ()
simulation.setDetectorParameters (100, 0.0* degree , 2.0* degree ,

100, 0.0* degree , 2.0* degree , True)
simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)
sim_params= SimulationParameters ()
sim_params.me_if_approx = SimulationParameters.LMA
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simulation.setSimulationParameters(sim_params)
return simulation

def run_simulation ():
"""
Run simulation and plot results
"""
sample = get_sample ()
simulation = get_simulation ()
simulation.setSample(sample)
simulation.runSimulation ()
result = simulation.getIntensityData ().getArray () + 1 # for

log scale
pylab.imshow(numpy.rot90(result , 1), norm=matplotlib.colors.

LogNorm (), extent =[0.0, 2.0, 0, 2.0])
pylab.show()

if __name__ == ’__main__ ’:
run_simulation ()

] 
o

 [
f

 phi
0 0.5 1 1.5 2

] 
o

 [ f
 a

lp
h

a

0

0.5

1

1.5

2
In

te
n

si
ty

3
10

8
10

Figure C.6: Output intensity scattered from a sample made of half-spheres with 2DLattice
interference function.
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ýInterferenceFunction2DParaCrystal(L_1, L_2, lattice_angle, ξ, corr_length)

where L1, L2 are the lengths of the lattice cell,

lattice_angle the angle between the lattice basis vectors a,b in direct space,

ξ is the angle defining the lattice orientation (set to 0 by default).

Two special configurations have also been implemented:

• createSquare(peak_distance, corr_length, domain_size_1, domain_size_2)
where the angle between the base vectors of the lattice is set to π/2,

• createHexagonal(peak_distance, corr_length, domain_size_1, domain_size_2)
where the angle between the base vectors of the lattice is set to 2π/3 ,

where domain_size1, 2 are the dimensions of the paracrystal along the main axes,
peak_distance is the same in both directions and a ≡ x.
Probability distribution functions have to be defined. As the two-dimensional paracrystal
is defined from two independent 1D paracrystals, we need two of these functions, using
setProbabilityDistributions(pdf_1, pdf_2), with pdf_1,2 are related to each main
axis of the paracrystal.

Example The particles deposited on a substrate are half-spheres. They interference via
the 2DParacrystal distribution function. The paracrystal is based on a 2D hexagonal lattice
with a Gaussian probability distribution function in reciprocal space.

Listing C.5: Python script to simulate a sample made of half-spheres deposited on a sub-
strate layer with "2DParacrystal" interference function. The part specific to the interfer-
ences is marked in red italic font.

import numpy
import matplotlib
import pylab
from libBornAgainCore import *

def get_sample ():
"""
Build and return the sample representing 2D paracrystal
"""
m_ambience = MaterialManager.getHomogeneousMaterial("Air",

0.0, 0.0)
m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)
m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)

# collection of particles
sphere_ff = FormFactorTruncatedSphere (5* nanometer , 5*

nanometer)
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sphere = Particle(m_particle , sphere_ff)
particle_decoration = ParticleDecoration ()
particle_decoration.addParticle(sphere , 0.0, 1.0)

interference = InterferenceFunction2DParaCrystal.
createHexagonal (30.0* nanometer ,0.0, 40.0* micrometer ,
40.0* micrometer)

pdf = FTDistribution2DCauchy (1.0* nanometer , 1.0* nanometer)
interference.setProbabilityDistributions(pdf , pdf)
particle_decoration.addInterferenceFunction(interference)

air_layer = Layer(m_ambience)
air_layer.setDecoration(particle_decoration)

substrate_layer = Layer(m_substrate , 0)

multi_layer = MultiLayer ()
multi_layer.addLayer(air_layer)
multi_layer.addLayer(substrate_layer)
return multi_layer

def get_simulation ():
"""
Create and return GISAXS simulation with beam and detector

defined
"""
simulation = Simulation ()
simulation.setDetectorParameters (100, 0.0* degree , 2.0* degree ,

100, 0.0* degree , 2.0* degree , True)
simulation.setBeamParameters (1.* angstrom , 0.2* degree , 0.0*

degree)
return simulation

def run_simulation ():
"""
Run simulation and plot results
"""
sample = get_sample ()
simulation = get_simulation ()
simulation.setSample(sample)
simulation.runSimulation ()
result = simulation.getIntensityData ().getArray () + 1
pylab.imshow(numpy.rot90(result , 1), norm=matplotlib.colors.

LogNorm (), extent =[0.0, 2.0, 0, 2.0])
pylab.show()

if __name__ == ’__main__ ’:
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run_simulation ()
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Figure C.7: Output intensity scattered from a sample made of half-spheres with
2DParacrystal interference function.

C.3 Summary
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Function Parameters Comments

InterferenceFunctionNone C.2.3 None disordered distribution

InterferenceFunction1DLattice lattice_length use only with infinitely long/wide particles

C.2.3 ξ= �(x,a) pdf=(Cauchy, Gauss or Voigt) to be defined

InterferenceFunction1DParaCrystal peak_distance of pdf only Gaussian pdf implemented (no option)

C.2.3 width of pdf

corr_length (optional)

InterferenceFunction2DLattice L_1, L_2: lattice lengths pdf=(Cauchy, Gauss or Voigt) to be defined

C.2.3 lattice_angle= �(a,b)

ξ= �(x,a)

InterferenceFunction2DParaCrystal L_1, L_2: lattice lengths 2D pdf=(Cauchy, Gauss or Voigt) to be defined

C.2.3 lattice_angle= �(a,b) (1 pdf per axis)

ξ= �(x,a)

corr_length (optional) same for both axes

Table C.2: List of interference functions implemented in BornAgain. pdf : probability distribution function, a,b are the lattice base
vector, and x is the axis vector perpendicular to the detector plane.
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