
BornAgain

Software for simulating and fitting
X-ray and neutron small-angle scattering

at grazing incidence

User Manual
version 0.1.1

October 16, 2013

C. Durniak, G. Pospelov, W. Van Herck, J. Wuttke

Scientific Computing Group

Jülich Centre for Neutron Science

outstation at Heinz Maier-Leibnitz Zentrum Garching

Forschungszentrum Jülich GmbH

Disclaimer

This manual is under development and does not yet constitute a comprehensive
listing of BornAgain features and functionality. The included information and in-
structions are subject to substantial change and are provided only as a preview.

Page 1

Contents Contents

Contents

Introduction 4

1 Quick start 6
1.1 Quick start on Unix Platforms . 6
1.2 Quick start on Windows Platforms . 7
1.3 Getting help . 7

2 Installation 8
2.1 Building and installing on Unix Platforms. 8

2.1.1 Third-party software. 9
2.1.2 Getting source code . 10
2.1.3 Building and installing the code . 11
2.1.4 Running first simulation . 12

2.2 Installing on Windows Platforms. 12

3 Simulation 13
3.1 General methodology . 13
3.2 Conventions . 13

3.2.1 Geometry of the sample . 13
3.2.2 Units . 15
3.2.3 Programs . 15

3.3 Example 1: two types of islands on top of substrate without interference. . . . 15
3.4 Example 2: working with sample parameters. 19

4 Fitting 24
4.1 Gentle introduction to the data fitting. 24

4.1.1 Terminology. 24
4.2 Implementation in BornAgain. 24

4.2.1 Preparing sample and simulation description. 26
4.2.2 Choice of parameters to be fitted . 26
4.2.3 Associating reference and simulated data. 27
4.2.4 Minimizer settings. 27
4.2.5 Running the fitting ant retrieving the results. 28

4.3 Basic Python fitting example. 28

Page 2

Contents Contents

4.4 How to get right answer from BornAgain fitting. 31
4.5 Advanced fitting. 32

4.5.1 Affecting χ2 calculations. 32
4.5.2 Simultaneous fit of several data sets. 32
4.5.3 Using fitting strategies. 32
4.5.4 Masking the real data. 32
4.5.5 Tuning fitting algorithms. 32
4.5.6 Fitting with correlated sample parameters. 32

5 Software architecture 34
5.1 Data classes for simulations and fits . 35

5.1.1 The Experiment object . 35
5.1.2 The ISample class hierarchy . 36
5.1.3 The FitSuite class. 37
5.1.4 The IMinimizer class. 37
5.1.5 The MinimizerOptions class. 37

A Listings 38
A.1 Python simulation example. 38
A.2 Python fitting example. 40

Page 3

Contents Contents

Introduction

BornAgain is a free software package to simulate and fit small-angle scattering at graz-
ing incidence (GISAS). It supports analysis of both X-ray (GISAXS) and neutron (GISANS)
data. Its name, BornAgain, indicates the central role of the distorted-wave Born approxi-
mation (DWBA) in the physical description of the scattering process. The software provides
a generic framework for modeling multilayer samples with smooth or rough interfaces and
with various types of embedded nanoparticles.

BornAgain almost completely reproduces the functionality of the widely used program
IsGISAXS by R. Lazzari [?].

However, BornAgain also extends this functionality by supporting an unrestricted num-
ber of layers and particles, diffuse reflection from rough layer interfaces, particles with in-
ner structures and support for polarized neutrons and magnetic scattering. Adhering to
a strict object-oriented design, BornAgain provides a solid base for future extensions in
response to specific user needs.

BornAgain is platform-independent software, with active support for Linux, MacOS
and Microsoft Windows. It is a free and open source software provided under terms of GNU
General Public License (GPL). This documentation is released under the Creative Com-
mons license CC-BY-SA.

The authors will be grateful for all kind of feedback: criticism, praise, bug reports, fea-
ture requests or contributed modules. When BornAgain is used in preparing scientific pa-
pers, please cite this manual as follows:

C. Durniak, G. Pospelov, W. Van Herck, J. Wuttke (2013),
BornAgain - Software for simulating and fitting X-ray and neutron small-angle
scattering at grazing incidence, version 〈. . .〉,
http://apps.jcns.fz-juelich.de/BornAgain

This user guide starts with a brief description of the steps necessary for installing the
software and running a simulation on Unix and Windows platforms in Section 1. A more
detailed description of the installation procedure is given in Section 2. The general method-
ology of a simulation with BornAgain and detailed simulation usage examples are given in
Section 3. The fitting toolkit that is provided by the framework, is presented in Section 4,

Page 4

http://apps.jcns.fz-juelich.de/BornAgain

Contents Contents

while Section 5 provides a brief overview of the software architecture.

Icons used in this manual:

P: this sign highlights further remarks.

B: this sign highlights essential points.

Page 5

Chapter 1. Quick start

Chapter 1

Quick start

1.1 Quick start on Unix Platforms

This section shortly describes how to build and install BornAgain from source and run the
first simulation on Unix Platforms. More details about installation procedure are given in
Section 2.

Step I: installing third party software

• compilers: clang versions ≥ 3.1 or GCC versions ≥ 4.2

• cmake (≥ 2.8)

• boost library (≥ 1.48)

• GNU scientific library (≥ 1.15)

• fftw3 library (≥ 3.3.1)

• python-2.7, python-devel, python-numpy-devel

Step II: getting the source
Download BornAgain source tarball from http://apps.jcns.fz-juelich.de/BornAgain
or use git repository

git clone git:// apps.jcns.fz-juelich.de/BornAgain.git

Step III: building the source

mkdir <build_dir>; cd <build_dir>;
cmake -DCMAKE_INSTALL_PREFIX=<install_dir> <source_dir>
make
make check
make install

Page 6

http://apps.jcns.fz-juelich.de/BornAgain

Chapter 1. Quick start 1.2. Quick start on Windows Platforms

Step IV: running example

cd <install_dir>/Examples/python/ex001_CylindersAndPrisms
python CylindersAndPrisms.py

1.2 Quick start on Windows Platforms

Step I: installing third party software
The current version of BornAgain requires Python, numpy, matplotlib to be installed
on the system. If you don’t have them already installed, you can use PythonXY installer
at https://code.google.com/p/pythonxy which, with default installation options, will
contain at least these three packages. BornAgain installation.

Step II: using installation package
The Windows installation package can be downloaded from http://apps.jcns.fz-juelich.
de/BornAgain. Double click it to start installation process, then follow instructions.

Step III: running example
Run an example simulation by double-clicking on the python script located in the BornAgain
installation directory:

python C:/BornAgain -0.9.1/ Examples/python/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

1.3 Getting help

Users of the software who encounter a problem in the installation of the framework or in
running a simulation can use a web based issue tracking system at http://apps.jcns.
fz-juelich.de/redmine/projects/bornagain/issues to provide a bug report. The same
system can be used for requests for new features. The system is open for all users in read
mode, while submitting of bug reports and feature requests are possible only after a simple
registration procedure.

Page 7

https://code.google.com/p/pythonxy
http://apps.jcns.fz-juelich.de/BornAgain
http://apps.jcns.fz-juelich.de/BornAgain
http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues
http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

Chapter 2. Installation

Chapter 2

Installation

BornAgain is intended to work on x86/x86_64 Linux, Mac OS X and Windows operating
systems. It was successfully compiled and tested on

• Microsoft Windows 7 64-bit, Windows 8 64-bit

• Mac OS X 10.8 (Mountain Lion)

• OpenSuse 12.3 64-bit

• Ubuntu 12.10, 13.04 64-bit

• Debian 7.1.0, 32-bit, 64-bit

At the moment we support build and installation from source on Unix Platforms (Linux,
Mac OS) and installation using binary installer package on MS Windows 7,8 (see Section 2.1
and Section 2.2). In the next releases we are planning to provide binary installers for Mac
OS X and Debian.

We welcome user feedback and/or bug reports related to they installation experience
via http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

2.1 Building and installing on Unix Platforms.

BornAgain uses CMake to configure a build system for compiling and installing the frame-
work. There are three major steps to building BornAgain :

1. Acquire required third-party libraries.

2. Get BornAgain source code.

3. Use CMake to build and install software.

The remainder of this section explains each step in detail.

Page 8

http://apps.jcns.fz-juelich.de/redmine/projects/bornagain/issues

Chapter 2. Installation 2.1. Building and installing on Unix Platforms.

2.1.1 Third-party software.

To successfully build BornAgain a number of prerequisite packages must be installed.

• compilers: clang versions ≥ 3.1 or GCC versions ≥ 4.2

• cmake (≥ 2.8)

• boost library (≥ 1.48)

• GNU scientific library (≥ 1.15)

• fftw3 library (≥ 3.3)

• python (≥ 2.7, < 3.0), python-devel, python-numpy-devel

Other packages are optional

• ROOT framework (adds several additional fitting algorithms to BornAgain)

• python-matplotlib (allows to run usage examples with graphics)

All required packages can be easily installed on most Linux distributions using the sys-
tem’s package manager. Below we give a few examples for several selected operation sys-
tems. Please note, that other distributions (Fedora, Mint, etc) may have different com-
mands for invoking the package manager and slightly different names of packages (like
“boost” instead of “libboost” etc). Besides that, the installation should be very similar.

Ubuntu (12.10, 13.04), Debian (7.1)
Installing required packages

sudo apt -get install git cmake libgsl0 -dev libboost -all -dev
libfftw3 -dev python -dev python -numpy

Installing optional packages

sudo apt -get install libroot -* root -plugin -* root -system -* ttf -
root -installer libeigen3 -dev python -matplotlib python -
matplotlib -tk

OpenSuse 12.3
Adding “scientific” repository

sudo zypper ar http :// download.opensuse.org/repositories/science/
openSUSE_12 .3 science

Installing required packages

sudo zypper install git -core cmake gsl -devel boost -devel fftw3 -
devel python -devel python -numpy -devel

Page 9

Chapter 2. Installation 2.1. Building and installing on Unix Platforms.

Installing optional packages

sudo zypper install libroot -* root -plugin -* root -system -* root -
ttf libeigen3 -devel python -matplotlib

Mac OS X 10.8
To simplify the installation of third party open-source software on a Mac OS X system we
recommend the use of MacPorts package manager. The easiest way to install MacPorts is
by downloading the dmg from www.macports.org/install.php and running the system’s
installer. After the installation new command “port” will be available in terminal window
of your Mac.
Installing required packages

sudo port -v selfupdate
sudo port install git -core cmake
sudo port install fftw -3 gsl
sudo port install boost -no_single -no_static+python27

Installing optional packages

sudo port install py27 -matplotlib py27 -numpy py27 -scipy
sudo port install root +fftw3+python27
sudo port install eigen3

2.1.2 Getting source code

BornAgain source can be downloaded at http://apps.jcns.fz-juelich.de/BornAgain
and unpacked with

tar xfz bornagain -<version>.tar.gz

Alternatively one can obtain BornAgain source from our public Git repository.

git clone git:// apps.jcns.fz-juelich.de/BornAgain.git

More about Git
Our Git repository holds two main branches called “master” and “develop”. We consider
“master” branch to be the main branch where the source code of HEAD always reflects
latest stable release. git clone command shown above

1. gives you a source code snapshot corresponding to the latest stable release,

2. automatically sets up your local master branch to track our remote master branch, so
you will be able to fetch changes from the remote branch at any time using “git pull”
command.

Master branch is updating approximately once per month. The second branch, “de-
velop” branch, is a snapshot of the current development. This is where any automatic
nightly builds are built from. The develop branch is always expected to work, so to get
the most recent features one can switch source code to it by

Page 10

www.macports.org/install.php
http://apps.jcns.fz-juelich.de/BornAgain

Chapter 2. Installation 2.1. Building and installing on Unix Platforms.

cd BornAgain
git checkout develop
git pull

2.1.3 Building and installing the code

BornAgain should be build using CMake cross platform build system. Having third-party
libraries installed on the system and BornAgain source code acquired as was explained in
previous sections, type build commands

mkdir <build_dir >
cd <build_dir >
cmake -DCMAKE_INSTALL_PREFIX=<install_dir > <source_dir >
make

Here <source_dir> is the name of directory, where BornAgain source code has been
copied, <install_dir> is the directory, where user wants the package to be installed, and
<build_dir> is the directory where building will occur.

P

About CMake
Having dedicated directory <build_dir> for build process is recommended by
CMake. That allows several builds with different compilers/options from the same
source and keeps source directory clean from build remnants.

Compilation process invoked by the command “make” lasts about 10 min for an average
laptop of 2012 edition. On multi-core machines the compilation time can be decreased
by invoking command “make” with the parameter “make -j[N]”, where N is the number of
cores.

Running functional tests is an optional but recommended step. Command “make check”
will compile several additional tests and run them one by one. Every test contains the sim-
ulation of a typical GISAS geometry and the comparison on numerical level of simulation
results with reference files. Having 100% tests passed ensures that your local installation is
correct.

make check
...
100% tests passed , 0 tests failed out of 26
Total Test time (real) = 89.19 sec
[100%] Build target check

The last command “make install” copies compiled libraries and some usage examples
into the installation directory.

make install

Page 11

Chapter 2. Installation 2.2. Installing on Windows Platforms.

Troubleshooting

In the case of complex system setup, with variety of libraries of different versions scattered
across multiple places (/opt/local, /usr etc.), you may want to help CMake to find li-
braries in proper place. In example below two system variables are defined to force CMake
to prefer libraries found in /opt/local to other places.

export CMAKE_LIBRARY_PATH =/opt/local/lib:$CMAKE_LIBRARY_PATH
export CMAKE_INCLUDE_PATH =/opt/local/include:$CMAKE_INCLUDE_PATH

2.1.4 Running first simulation

In your installation directory you will find

./ include - header files for compilation of your C++ program

./lib - libraries to import into python or link with your C++
program

./ Examples - directory with examples

Run your first example and enjoy first BornAgain simulation plot.

cd <install_dir >/ Examples/python/ex001_CylindersAndPrisms
python CylindersAndPrisms.py

2.2 Installing on Windows Platforms.

Step I: installing third party software
The current version of BornAgain requires Python, numpy, matplotlib to be installed
on the system. If you don’t have them already installed, you can use PythonXY installer
at https://code.google.com/p/pythonxy which, with default installation options, will
contain at least these three packages. The user has to download and install this package
before proceeding with BornAgain installation.

Step II: using installation package
The Windows installation package can be downloaded from http://apps.jcns.fz-juelich.
de/BornAgain. Double click it to start the installation process, then follow the instructions.

Step IV: running example
Run an example by double-clicking on the python script located in the BornAgain installa-
tion directory:

python C:/BornAgain -0.9.1/ Examples/python/
ex001_CylindersAndPrisms/CylindersAndPrisms.py

Page 12

https://code.google.com/p/pythonxy
http://apps.jcns.fz-juelich.de/BornAgain
http://apps.jcns.fz-juelich.de/BornAgain

Chapter 3. Simulation

Chapter 3

Simulation

3.1 General methodology

A simulation of GISAXS using BornAgain consists of following steps:

• define materials by specifying name and refractive index,

• define embedded particles by specifying shape, size, constituting material, interfer-
ence function,

• define layers by specifiying thickness, roughness, material

• include particles in layers, specifying density, position, orientation,

• assemble a multilayered sample,

• specify input beam and detector characteristics,

• run the simulation,

• save the simulated detector image.

User defines all these steps using BornAgain API in Python script and then run the simula-
tion by executing the script in Python interpreter. More information about general software
architecture and BornAgain internal design are given in Section 5.

3.2 Conventions

3.2.1 Geometry of the sample

The geometry used to describe the sample is shown in figure 3.1. The z-axis is perpendicu-
lar to the sample’s surface and pointing upwards. The x-axis is perpendicular to the plane
of the detector and the y-axis is along it. The input and the scattered output beams are
each characterized by two angles αi , φi and α f , φ f respectively. Our choice of orientation

Page 13

Chapter 3. Simulation 3.2. Conventions

Figure 3.1: Representation of the scattering geometry. n j is the refractive index of layer j
and αi and φi are the incident angle of the wave propagating. α f is the exit angle with
respect to the sample’s surface and φ f is the scattering angle with respect to the scattering
plane.

for the angles αi and α f is so that they are positive as shown in figure 3.1.

The layers are defined by their thicknesses (parallel to the z-direction), their possible rough-
nesses (equal to 0 by default) and the material they are made of. We do not define any di-
mensions in the x, y directions. And, except for roughness, the layer’s vertical boundaries
are plane and perpendicular to the z-axis. There is also no limitation to the number of lay-
ers that could be defined in BornAgain. Note that the thickness of the top and bottom layer
are not defined.

B
Remark: - Order of the different steps for the simulation:
When assembling the sample, the layers are defined from top to bottom. So in most
cases the first layer will be the air layer.

The particles are characterized by their form factors (i.e. the Fourier transform of the shape
function - see the list of form factors implemented in BornAgain) and the composing mate-
rial. The number of input parameters for the form factor depends on the particle symmetry;
it ranges from one parameter for a sphere (its radius) to three for an ellipsoid (its three main
axis lengths).
By placing the particles inside or on top of a layer, we impose their vertical positions, whose
values corresponds to the bottoms of the particles. The in-plane distribution of particles is
linked with the way the particles interfere with each other, which is therefore implemented

Page 14

Chapter 3. Simulation3.3. Example 1: two types of islands on top of substrate without interference.

when dealing with the interference function.

The complex refractive index associated with a layer or a particle is written as n = 1−δ+iβ,
with δ,β ∈R. In our program, we input δ and β directly.
The input beam is assumed to be monochromatic without any spatial divergence.

3.2.2 Units

By default the angles are expressed in radians and the lengths are given in nanometers. But
it is possible to use other units by specifying them right after the value of the corresponding
parameter like, for example, 20.0*micrometer.

3.2.3 Programs

The examples presented in the next paragraphs are written in Python. For tutorials about
this programming language, the users are referred to [?].

3.3 Example 1: two types of islands on top of substrate without
interference.

In this example, we simulate the scattering from a mixture of cylindrical and prismatic
nanoparticles without any interference between them. These particles are placed in air,
on top of a substrate.
We are going to go through each step of the simulation. The Python script specific to each
stage will be given at the beginning of the description. But for the sake of completeness the
full code is given at the end of this section (Listing ??).

We start by importing different functions from external modules (line 1), for example NumPy,
which is a fundamental package for scientific computing with Python [?]. In particular,
line 3 imports the features of BornAgain software.

1 import sys , os , numpy
2
3 from libBornAgainCore import *

First step: Defining materials

4 def RunSimulation ():
5 # defining materials
6 mAmbience = MaterialManager.getHomogeneousMaterial("Air",

0.0, 0.0)

Page 15

Chapter 3. Simulation3.3. Example 1: two types of islands on top of substrate without interference.

7 mSubstrate = MaterialManager.getHomogeneousMaterial("
Substrate",

8 6e-6, 2e-8)
9 mParticle = MaterialManager.getHomogeneousMaterial("Particle"

, 6e-4,
10 2e-8)

Line 4 marks the beginning of the function to define and run the simulation.
Lines 6, 8 and 10 define different materials using function getHomogeneousMaterial from
class MaterialManager. The general syntax is the following

<material_name > = MaterialManager.getHomogeneousMaterial("name",
delta , beta)

where name is the name of the material associated with its complex refractive index n=1-
delta +i beta. <material_name> is later used when referring to this particular material.
The three defined materials in this example are Air with a refractive index of 1 (delta =
beta =0), a Substrate associated with a complex refractive index equal to 1−6×10−6 +
i 2×10−8, and the material of particles, whose refractive index is n= 1−6×10−4 + i 2×10−8.

Second step: Defining the particles

11 # collection of particles
12 cylinder_ff = FormFactorCylinder (5* nanometer , 5* nanometer)
13 cylinder = Particle(mParticle , cylinder_ff)
14 prism_ff = FormFactorPrism3 (5* nanometer , 5* nanometer)
15 prism = Particle(mParticle , prism_ff)

We implement two different shapes of particles: cylinders and prisms (i.e. elongated parti-
cles with a constant equilateral triangular cross section).
All particles implemented in BornAgain are defined by their form factors, their sizes and
the material they are made of. Here, for the cylindrical particle, we input its radius and
height. For the prism, the possible inputs are the length of one side of its equilateral trian-
gular base and its height.

In order to define a particle, we proceed in two steps. For example for the cylindrical par-
ticle, we first specify the form factor of a cylinder with its radius and height, both equal to
5 nanometers in this particular case (see line 12). Then we associate this shape with the
constituting material as in line 13.

The same procedure has been applied for the prism in lines 14 and 15 respectively.

Third step: Characterizing the layers and assembling the sample

Page 16

Chapter 3. Simulation3.3. Example 1: two types of islands on top of substrate without interference.

Particle decoration

16 particle_decoration = ParticleDecoration ()
17 particle_decoration.addParticle(cylinder , 0.0, 0.5)
18 particle_decoration.addParticle(prism , 0.0, 0.5)
19 interference = InterferenceFunctionNone ()
20 particle_decoration.addInterferenceFunction(interference)

The object which holds the information about the positions and densities of particles in our
sample is called ParticleDecoration (line 16). We use the associated function addParticle
for each particle shape (lines 17, 18). Its general syntax is

addParticle(<particle_name >, depth , abundance)

where <particle_name> is the name used to define the particles (lines 13 and 15), depth
(default value =0) is the vertical position, expressed in nanometers, of the particles in a
given layer (the association with a particular layer will be done during the next step) and
abundance is the proportion of this type of particles, normalized to the total number of
particles. Here we have 50% of cylinders and 50% of prisms.

B

Remark: Depth of particles
The vertical positions of particles in a layer are given in relative coordinates. For the
top layer, the bottom corresponds to depth=0 and negative values would correspond
to particles floating above layer 1 since the vertical axis, shown in figure 3.1 is pointing
upwards. But for all the other layers, it is the top of the layer which corresponds to
depth=0.

Finally lines 19 and 20 specify that there is no coherent interference between the waves
scattered by these particles. The intensity is calculated by the incoherent sum of the scat-
tered waves: 〈|Fn |2〉, where Fn is the form factor associated with the particle of type n. The
way these waves interfere imposes the horizontal distribution of the particles as the inter-
ference reflects the long or short-range order of the particles distribution (see Theory). On
the contrary, the vertical position is imposed when we add the particles in a given layer by
parameter depth, as shown in lines 17 and 18.

Multilayer

21 # air layer with particles and substrate form multi layer
22 air_layer = Layer(mAmbience)
23 air_layer.setDecoration(particle_decoration)
24 substrate_layer = Layer(mSubstrate , 0)
25 multi_layer = MultiLayer ()
26 multi_layer.addLayer(air_layer)
27 multi_layer.addLayer(substrate_layer)

We now have to configure our sample. For this first example, the particles, i.e. cylinders and
prisms, are on top of a substrate in an air layer. The order in which we define these layers

Page 17

Chapter 3. Simulation3.3. Example 1: two types of islands on top of substrate without interference.

is important: we start from the top layer down to the bottom one.

Let us start with the air layer. It contains the particles. In line 22, we use the previously
defined mAmbience (="air" material) (line 6). The command written in line 23 shows that
this layer is decorated by adding the particles using the function particle_decoration
defined in lines 16-20. The substrate layer only contains the substrate material (line 24).

There are different possible syntaxes to define a layer. As shown in lines 22 and 24, we
can use Layer(<material_name>,thickness) or Layer(<material_name>). The sec-
ond case corresponds to the default value of the thickness, equal to 0. The thickness is
expressed in nanometers.

Our two layers are now fully characterized. The sample is assembled using MultiLayer()
constructor (line 25): we start with the air layer decorated with the particles (line 26), which
is the layer at the top and end with the bottom layer, which is the substrate (line 27).

Fourth step: Characterizing the input beam and output detector and running the simu-
lation

28 # run simulation
29 simulation = Simulation ()
30 simulation.setDetectorParameters (100 , -1.0* degree , 1.0* degree ,
31 100, 0.0* degree , 2.0* degree , True

)
32 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)
33 simulation.setSample(multi_layer)
34 simulation.runSimulation ()

The first stage is to define the Simulation() object (line 29). Then we define the detector
(line 31) and beam parameters (line 32), which are associated with the sample previously
defined (line 33). Finally we run the simulation (line 34). Those functions are part of the
Simulation class. The different incident and exit angles are shown in figure 3.1.

The detector parameters are set using ranges of angles via the function:

setDetectorParameters(n_phi, phi_f_min, phi_f_max,
n_alpha, alpha_f_min, alpha_f_max, isgisaxs_style=false),

where n_phi=100 is the number of iterations for φ f ,
phi_f_min=-1.0*degree and phi_f_max=1.0*degree are the minimum and maximum
values respectively of φ f ,
n_alpha=100 is the number of iterations for α f ,
alpha_f_min=0.0*degree and alpha_f_max=2.0*degree are the minimum and maxi-
mum values respectively of α f .

Page 18

Chapter 3. Simulation 3.4. Example 2: working with sample parameters.

isgisaxs_style=True (default value = False) is a boolean used to characterise the struc-
ture of the output data. If isgisaxs_style=True, the output data is binned at constant
values of the sine of the output angles, α f and φ f , otherwise it is binned at constant values
of these two angles.

For the beam the function to use is setBeamParameters(lambda, alpha_i, phi_i), where
lambda=1.0*angstrom is the incident beam wavelength, alpha_i=0.2*degree is the in-
cident grazing angle on the surface of the sample, phi_i=0.0*degree is the in-plane di-
rection of the incident beam (measured with respect to the x-axis).

Remark: Note that, except for isgisaxs_style, there are no default values implemented
for the parameters of the beam and detector.

Line 34 shows the command to run the simulation using the previously defined setup.

Fifth step: Saving the data

35 # retrieving intensity data
36 return GetOutputData(simulation)

In line 36 we obtain the simulated intensity as a function of outgoing angles α f and φ f for
further uses (plots, fits,. . .) as a NumPy array containing n_phi×n_alpha datapoints. Some
options are provided by BornAgain. For example, figure 3.2 shows the two-dimensional
contourplot of the intensity as a function of α f and φ f .

3.4 Example 2: working with sample parameters.

This section gives additional details about the manipulation of sample parameters at run
time, that is after the sample has already been constructed. For single simulation this is
normally not necessary, however it might be useful during interactive work when user tries
to find optimal sample parameters by running a series of consequent simulations. Similarly,
this task arises when the theoretical model, presented by the sample and the simulation
descriptions, is used for the fitting of real data. In this case fitting kernel has to be informed
about existing sample parameters and has to have a mechanism for changing values of
these parameters to find they optimal values.

In BornAgain this is done using so called sample parameter pool mechanism and we
will briefly explain it using example from the previous Section 3.3.

Inside BornAgain sample is described by a hierarchical tree of objects. For the mul-
tilayer created in previous section this tree can be graphically represented as shown in
Fig. 3.3. Similar tree can be printed in Python session by running multi_layer.printSampleTree()

The top MultiLayer object is composed of three children, namely Layer #0, Layer
Interface #0 and Layer #1. Children objects by turn might also be composed into tree-
like structure. For example, Layer #0 contains ParticleDecoration object which holds

Page 19

Chapter 3. Simulation 3.4. Example 2: working with sample parameters.

phi_f
0 20 40 60 80 100

a
lp

h
a

_
f

0

20

40

60

80

100

1

10

210

3
10

410

5
10

Figure 3.2: Figure of example 1: Simulated grazing-incidence small-angle X-ray scatter-
ing from a mixture of cylindrical and prismatic nanoparticles without any interference, de-
posited on top of a substrate. The input beam is characterized by a wavelength λ of 1 Å and
incident angles αi = 0.2◦, φi = 0◦. The cylinders have a radius and a height both equal to
5 nm, the prisms are characterized by a side length equal to 5 nm and they are also 5 nm
high. The material of the particles has a refractive index of 1−6×10−4 + i 2×10−8. For the
substrate it is equal to 1−6×10−6 + i 2×10−8. The colorscale is associated with the output
intensity in arbitrary units.

Page 20

Chapter 3. Simulation 3.4. Example 2: working with sample parameters.

MultiLayer

Layer #0

ParticleDecoration

Particle Info 0

Particle

FormFactorCylinder

height:5.0

radius:5.0

abundance:0.5

depth:0.0

Particle Info 1

Particle

FormFactorPrism3

half_side:5.0

height:5.0

abundance:0.5

depth:0.0

thickness:0.0

Layer interface #0

roughness

corrlength:0.0

hurst:0.0

sigma:0.0Layer #1

thickness:0.0

CrossCorrLength:0.0

Figure 3.3: Tree representation of the sample structure.

Page 21

Chapter 3. Simulation 3.4. Example 2: working with sample parameters.

information related to the two types of particles populating the layer. All numerical values
which have been used during sample construction (thickness of layers, size of particles,
roughness parameters) are the part of the same tree structure. They are marked in the figure
with shaded gray boxes.

These values are registered in the sample parameter pool using the name composed
from the names of corresponding nodes of the tree and can be accessed/changed during
run time. For example, the height of the cylinders populating first layer can be changed
from current 5 nm to 1 nm by running the command

multi_layer.setParameterValue (’/ MultiLayer/Layer0/
ParticleDecoration/ParticleInfo0/Particle/FormFactorCylinder/
height ’, 1.0)

The user can get names and values of all registered sample’s parameters using the com-
mand

> multi_layer.printParameters ()
The sample contains following parameters (’name ’:value)
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo0/Particle/

FormFactorCylinder/height ’:5
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo0/Particle/

FormFactorCylinder/radius ’:5
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo0/abundance

’:0.5
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo0/depth ’:0
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo1/Particle/

FormFactorPrism3/half_side ’:5
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo1/Particle/

FormFactorPrism3/height ’:5
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo1/abundance

’:0.5
’/MultiLayer/Layer0/ParticleDecoration/ParticleInfo1/depth ’:0
’/MultiLayer/Layer0/thickness ’:0
’/MultiLayer/Layer1/thickness ’:0
’/MultiLayer/LayerInterface/roughness/corrlength ’:0
’/MultiLayer/LayerInterface/roughness/hurst ’:0
’/MultiLayer/LayerInterface/roughness/sigma ’:0
’/MultiLayer/crossCorrLength ’:0

Wildcards ’*’ can be used to reduce typing or to work on group of parameters. In
example below first command will change the height of the cylinders in the same way, as
in previous example, while the second line will change simultaneously the height of both
cylinders and prisms.

multi_layer.setParameterValue (’* FormFactorCylinder/height ’, 1.0)
multi_layer.setParameterValue (’*height ’, 1.0)

The complete example to this section can be found at

Page 22

Chapter 3. Simulation 3.4. Example 2: working with sample parameters.

./ Examples/python/fitting/ex001_SampleParametersIntro/
SampleParametersIntro.py

Page 23

Chapter 4. Fitting

Chapter 4

Fitting

In addition to the simulation of grazing incidence X-ray and neutron scattering by multi-
layered samples, BornAgain also offers the option to fit the numerical model to reference
data by modifying a selection of sample parameters from the numerical model. This aspect
of the software is discussed in the following chapter.

The chapter starts from the short introduction to the basic concept of data fitting in Sec-
tion 4.1. Details of the implementation in BornAgain are given in Section 4.2. Section 4.3
contains Python fitting example with detailed explanations of every fitting step.

4.1 Gentle introduction to the data fitting.

4.1.1 Terminology.

Reference data: normally just experimental data or might be also simulated data spoiled
with the noise for purpose of testing of minimization algorithms. Iterations Minimizer:

4.2 Implementation in BornAgain.

Fitting in BornAgaindeals with estimating the optimum parameters in the numerical model
by minimizing the difference between numerical and reference data using χ2 or maximum
likelihood methods. The features include

• Variety of multidimensional minimization algorithms and strategies.

• The choice over possible fitting parameters, they properties and correlations.

• Full control on χ2 calculations, including application of different normalizations and
assignment of different masks and weights to the different areas of reference data.

• The possibility to fit simultaneously an arbitrary number of data sets.

Fig. 4.1 shows general work flow of fitting procedure. Before running the fitting the

Page 24

Chapter 4. Fitting 4.2. Implementation in BornAgain.

Fitting

results

FitSuite
Simulated

data

Minimization

Adjusted

parameters
Simulation

2

value
2

calculations

Sample

User information BornAgain fitting

Figure 4.1: Fitting work flow.

user is required to prepare a number of data and to configure fitting kernel of BornAgain .
Necessary stages consist of

• Preparing sample and simulation description (multilayer, beam, detector parame-
ters).

• Choice of fitting parameters.

• Loading of reference data.

• Defining minimization settings.

The class FitSuite contains the main functionalities to be used for the fit and serve as
main gate between user and fitting work flow. The later involve iterations during which

• The minimizer makes an assumption about optimal sample parameters.

• These parameters are propagated to the sample.

• The simulation is performed for the given state of the sample.

• Simulated data (intensities) are propagated to the χ2 module.

• The later performs calculation of χ2-value using simulated and reference data.

• χ2-value is propagated to the minimizer which makes new assumption about optimal
sample parameters.

Page 25

Chapter 4. Fitting 4.2. Implementation in BornAgain.

Iteration process is going on without user intervention under the control of currently
selected minimization algorithm. It stops

• when the maximum number of iteration steps has been exceeded

• when the function’s minimum has been reached within the tolerance window

• if the minimizer could not improve the values of the parameters

After the control is returned to the user application fitting results can be retrieved. That
consist of the best χ2 value found, corresponding optimal sample parameters and intensity
map simulated with this set of parameters.

Details of FitSuite class implementation and description of each interface are given
in Section 5.1.3. The following parts of this section will detail each of the main stages nec-
essary to run fitting procedure.

4.2.1 Preparing sample and simulation description.

This step is similar for any simulation using BornAgain (see Section 3). It consists in first
characterizing the geometry of the system: the particles (shapes, sizes, refractive indices),
the different layers (thickness, order, refractive index, a possible roughness of the interface),
the interference between the particles and the way they are distributed in the layers (buried
particles or particles sitting on top of a layer). Then we specify the parameters of the input
beam and of the output detector.

4.2.2 Choice of parameters to be fitted

In principle, every parameter used in the construction of the sample can be used as a fit-
ting parameter. For example, the particles’ heights, radii or the layer’s roughness or thick-
ness could be selected using parameter pool mechanism. That mechanism is explained in
details in Section 3.4 and it is recommended to read it before proceeding further.

User specifies selected sample parameters as a fit parameter using FitSuite and its
addFitParameter method

fit_suite = FitSuite ()
fit_suite.addFitParameter(<name> , <value> , <AttLimits>)

Here the <name> correspond to the name of the parameter in the sample’s parameter
pool. By using wildcard’s in the parameter name the group of sample parameters, corre-
sponding to the given pattern, can be associated with single fitting parameter and fitted
simultaneously to get common optimal value.

The second parameter <value> correspond to the initial value of fitting parameter while
the third one <AttLimits> corresponds to the boundaries imposed on the range of varia-
tions of that value. It can be

• limitless() by default,

• fixed(),

Page 26

Chapter 4. Fitting 4.2. Implementation in BornAgain.

• lowerLimited(<min_value>),

• upperLimited(<max_value>),

• limited(<min_value>, <max_value>).

where <min_value> and <max_value> are double values corresponding to the lower and
higher boundary respectively.

4.2.3 Associating reference and simulated data.

The minimization procedure deals with a pair of reference data (normally associated with
experimental data) and the theoretical model (presented by the sample and the simulation
descriptions).

We assume that the experimental data is a two-dimensional intensity matrix as function
of the output scattering angles α f and φ f (see Fig. 3.1). The user is required to provide the
data in the form of ASCII file containing axes binning description and the intensity data
itself.

B
Remark: We recognize the importance of the support of most common data formats.
We are going to provide this feature in the following releases and welcome user re-
quests on that subject.

To associate the simulation with the reference data the method
addSimulationAndRealData has to be used as shown

fit_suite = FitSuite ()
fit_suite.addSimulationAndRealData(<simulation >, <reference >, <

chi2_module >)

here <simulation> correspond to the BornAgain simulation object with sample, beam
and detector fully defined, <reference> correspond to the experimental data object ob-
tained from ASCII file and <chi2_module> is an optional parameter for advanced control
of χ2 calculations.

There is a possibility to call given method more than once to submit more than one pair
of <simulation>, <reference> to the fitting procedure and so to provide simultaneous
fit of some combined data set.

By using the third <chi2_module> parameter different normalization and weights can
be applied to let the user fully control the wayχ2 is calculated. This feature will be explained
in Section 4.5.

4.2.4 Minimizer settings.

BornAgain contains a variety of minimization engines from ROOT and GSL libraries. They
are listed in Table 4.1. By default Minuit2 minimizer with default settings will be used and
no additional configuration needs to be done. The remainder of this section explains some
of the expert setting which can be applied to get better fit results.

Page 27

Chapter 4. Fitting 4.3. Basic Python fitting example.

The default minimization algorithm can be changed using MinimizerFactory as shown
below

fit_suite = FitSuite ()
minimizer = MinimizerFactory.createMinimizer("<Minimizer name >","

<algorithm >")
fit_suite.setMinimizer(minimizer)

where <Minimizer name> and <algorithm> can be chosen from the first and sec-
ond column of Table 4.1 respectively. The list of algorithms can also be obtained using
MinimizerFactory.printCatalogue() command.

There are several options common for every minimization algorithms, which can be
changed before minimization starts. They are handled by MinimizerOptions class:

options = MinimizerOptions ()
options.setMaxFunctionCalls (10)
FitSuite ().getMinimizer ().setOptions(options)

In given code snippet a number of “maximum function calls”, namely a number of times
the minimizer is allowed to call the simulation, is limited to the 10. The minimizer will take
that number into consideration and will try to limit number of iterations by that value.

There is also a number of expert level options common for all minimizers as well as a
number of possibilities to tune individual minimization algorithms. They will be explained
in Section 4.5.

4.2.5 Running the fitting ant retrieving the results.

4.3 Basic Python fitting example.

In this section we are going to go through a complete example of fitting using BornAgain.
Each of the steps will be associated with a detailed piece of code written in Python. The
complete listing of the script is given at the end (see Listing A.2). Script itself can be found
at

./ Examples/python/fitting/ex002_FitCylindersAndPrisms/
FitCylindersAndPrisms.py

The example uses same sample geometry as in Section 3.3. It represents cylindrical and
prismatic particles in equal proportion, in an air layer, deposited on a substrate layer, with
no interference between the particles. We consider following parameters to be unkown

• the radius of cylinders

• the height of cylinders

• half side length of the prisms’ triangular basis

• the height of prisms

Page 28

Chapter 4. Fitting 4.3. Basic Python fitting example.

Our reference data are a “noisy” two-dimensional intensity map obtained from the sim-
ulation of the same geometry with a fixed value of 5nm for all four of these parameters.
Then we run our fitting using default minimizer settings starting with a cylinder’s height of
4nm, a cylinder’s radius of 6nm, a prism’s half side of 6nm and a length equal to 4nm. As a
result, fitting procedure is able to restore correct value of 5nm for all parameters.

Importing Python libraries

1 from libBornAgainCore import *
2 from libBornAgainFit import *

We start from importing two BornAgain libraries required to create sample description and
to run the fitting.

Building the sample

5 def get_sample ():
6 """
7 Build the sample representing cylinders and pyramids on top

of substrate without interference.
8 """
9 # defining materials

10 m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,
0.0)

11 m_substrate = MaterialManager.getHomogeneousMaterial("
Substrate", 6e-6, 2e-8)

12 m_particle = MaterialManager.getHomogeneousMaterial("Particle
", 6e-4, 2e-8)

13
14 # collection of particles
15 cylinder_ff = FormFactorCylinder (1.0* nanometer , 1.0* nanometer

)
16 cylinder = Particle(m_particle , cylinder_ff)
17 prism_ff = FormFactorPrism3 (1.0* nanometer , 1.0* nanometer)
18 prism = Particle(m_particle , prism_ff)
19 particle_decoration = ParticleDecoration ()
20 particle_decoration.addParticle(cylinder , 0.0, 0.5)
21 particle_decoration.addParticle(prism , 0.0, 0.5)
22 interference = InterferenceFunctionNone ()
23 particle_decoration.addInterferenceFunction(interference)
24
25 # air layer with particles and substrate form multi layer
26 air_layer = Layer(m_air)
27 air_layer.setDecoration(particle_decoration)
28 substrate_layer = Layer(m_substrate , 0)
29 multi_layer = MultiLayer ()
30 multi_layer.addLayer(air_layer)
31 multi_layer.addLayer(substrate_layer)

Page 29

Chapter 4. Fitting 4.3. Basic Python fitting example.

32 return multi_layer

Function starting at the line 5 creates multilayered sample with cylinders and prisms us-
ing arbitrary 1nm value for all size’s of particles. The details about the generation of this
multilayered sample are given in Section 3.3.

Creating the simulation.

35 def get_simulation ():
36 """
37 Create GISAXS simulation with beam and detector defined
38 """
39 simulation = Simulation ()
40 simulation.setDetectorParameters (100, -1.0*degree , 1.0* degree

, 100, 0.0* degree , 2.0* degree , True)
41 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)
42 return simulation

Function starting at the line 35 creates simulation object with beam and detector parame-
ters defined.

Preparing the fitting pair.

45 def run_fitting ():
46 """
47 run fitting
48 """
49 sample = get_sample ()
50 simulation = get_simulation ()
51 simulation.setSample(sample)
52
53 real_data = OutputDataIOFactory.getOutputData(’

Refdata_fitcylinderprisms.txt’)

Lines 49- 51 generate sample and simulation description and assign the sample to the sim-
ulation. Our reference data are contained in the file ’Refdata_fitcylinderprisms.txt’.
In our case this reference had been generated by adding noise on the scattered intensity
from a numerical sample with a fixed length of 5 nm of the four fitting parameters (i.e. the
dimensions of the cylinders and prisms). Line 53 creates real data object by loading ASCII
data from the file.

Setting up FitSuite.

55 fit_suite = FitSuite ()
56 fit_suite.addSimulationAndRealData(simulation , real_data)
57 fit_suite.initPrint (10)

Page 30

Chapter 4. Fitting 4.4. How to get right answer from BornAgain fitting.

Line 55 creates a FitSuite object which provides the main interface to the minimization
kernel of BornAgain . Line 56 submits simulation description and real data pair to the
subsequent fitting. Line 57 set up FitSuite to print on the screen the information about
fit progress every 10th iteration.

60 fit_suite.addFitParameter("*FormFactorCylinder/height", 4.*
nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

61 fit_suite.addFitParameter("*FormFactorCylinder/radius", 6.*
nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

62 fit_suite.addFitParameter("*FormFactorPrism3/height", 4.*
nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

63 fit_suite.addFitParameter("*FormFactorPrism3/half_side", 6.*
nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))

Lines 60– 63 enter the list of fitting parameters. Here we use the cylinders’ height and radius
and the prisms’ height and half side length. The syntax of addFitParameter is

FitSuite ().addFitParameter(<name >, <initial value >, <iteration
step >, <limits >)

where <name> is the name of sample pool parameters (see Section 3.4) selected as a fitting
parameter. Then we input its initial value and the iteration step used in the minimization
process. Finally <limits> specify the boundaries of the parameter’s value. Here the cylin-
der’s length and prism half side are initially equal to 4nm, whereas the cylinder’s radius and
the prism length are equal to 6nm before the minimization. The iteration step is equal to
0.01nm and the boundaries are imposed only on the lower one of 0.01nm.

Running the fit and accessing results

66 fit_suite.runFit ()
67
68 print "Fitting completed."
69 fit_suite.printResults ()
70 print "chi2:", fit_suite.getMinimizer ().getMinValue ()
71 fitpars = fit_suite.getFitParameters ()
72 for i in range(0, fitpars.size()):
73 print fitpars[i]. getName (), fitpars[i]. getValue (),

fitpars[i]. getError ()

Line 66 shows the command to start the fitting process. During the fitting the progress will
be displayed on the screen. Lines 69– 73 shows different ways of accessing to fit results.

4.4 How to get right answer from BornAgain fitting.

• It is recommended to start from default minimizer settings and turn to the fine tun-
ings only after some experience has been acquired.

• error interpretation

Page 31

Chapter 4. Fitting 4.5. Advanced fitting.

4.5 Advanced fitting.

4.5.1 Affecting χ2 calculations.

4.5.2 Simultaneous fit of several data sets.

4.5.3 Using fitting strategies.

4.5.4 Masking the real data.

4.5.5 Tuning fitting algorithms.

4.5.6 Fitting with correlated sample parameters.

Page 32

Chapter 4. Fitting 4.5. Advanced fitting.

Minimizer name Algorithm Description

Minuit2 [?] Migrad According to [?] best minimizer for nearly all functions,

variable-metric method with inexact line search,

a stable metric updating scheme,

and checks for positive-definiteness.

Simplex simplex method of Nelder and Mead

usually slower than Migrad,

rather robust with respect to gross fluctuations in the

function value, gives no reliable information about

parameter errors,

Combined minimization with Migrad

but switches to Simplex if Migrad fails to converge.

Scan not intended to minimize, just scans the function,

one parameter at a time, retains the best value after

each scan

Fumili optimized method for least square and log likelihood

minimizations

GSLMultiMin [?] ConjugateFR Fletcher-Reeves conjugate gradient algorithm,

ConjugatePR Polak-Ribiere conjugate gradient algorithm,

BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm,

BFGS2 improved version of BFGS,

SteepestDescent follows the downhill gradient of the function at each step

GSLMultiFit [?] Levenberg-Marquardt Algorithm

GSLSimAn [?] Simulated Annealing Algorithm

Table 4.1: List of minimizers implemented in BornAgain.

Page 33

Chapter 5. Software architecture

Chapter 5

Software architecture

BornAgain is written in C++ and uses an object oriented approach to achieve modularity,
extensibility and transparency. This leads to the task driven rather than command driven
approach in different aspects of the simulation and fitting of GISAS data. The user defines
the sample structure, beam and detector characteristics and fit parameters using building
blocks – classes – defined in core libraries of the framework. These buildings blocks are
combined by the user according to his current task using one the following approaches:

• The user creates a Python script with a sample description and simulation settings
using the BornAgainAPI. The user then runs the simulation by executing the script in
the Python interpreter and assesses the simulation results using his preferred graph-
ics or analysis library, e.g. Python + numpy + matplotlib.

• The user may write a standalone C++ application linked to the BornAgain libraries.

• The user interacts with the framework through a graphical user interface (forthcom-
ing).

The object oriented approach in the software design allows users to have a much higher
level of flexibility in sample construction; it also decouples the building blocks used in the
internal calculations and thereby facilitates the creation of new models, with little or no
modification to the existing code.

The general structure of BornAgain and the way the user interacts with it are shown in
Fig. 5.1. The framework consists of two shared libraries, libBornAgainCore and libBornAgainFit.
Thanks to the Python interface they can be imported into Python as external modules. The
library libBornAgainCore contains a number of classes, grouped into several class cat-
egories, necessary for the description of a model and running a simulation. The library
libBornAgainFit contains a number of minimization engines and interfaces to them, al-
lowing the user to fit real data with the model previously defined.

BornAgain depends from a few external and well established open-source libraries:
boost, GNU scientific library, Eigen and Fast Fourier Transformation libraries. They are
required to be present on the system to run BornAgain on Unix Platform. In the case of
Windows Platform they will be added to the system automatically during BornAgain in-
stallation. Other libraries shown on the plot (ROOT, matplotlib) are optional.

Page 34

Chapter 5. Software architecture 5.1. Data classes for simulations and fits

minimizers

libFit

Figure 5.1: Structure of BornAgain libraries.

5.1 Data classes for simulations and fits

This section will give an overview of the classes that are used to describe all the data needed
to perform a single simulation. The prime elements of this data are formed by the sample,
the experimental conditions (beam and detector parameters) and simulation parameters.

These classes constitute the main interface to the software’s users, since they will mostly
be interacting with the program by creating samples and running simulations with specific
parameters. Since it is not the intent to explain internals of classes in this document, the
text and figures will only mention the most important methods and fields of the classes
discussed. Furthermore, getters and setters of private member fields will not be indicated,
although these do belong to the public interface. For more detailed information about the
project’s classes, their methods and fields, the reader is referred to the source code docu-
mentation. REF?

5.1.1 The Experiment object

The Experiment class holds all references to data objects that are needed to perform a sim-
ulation. These consist of a sample description, possibly implemented by a builder object,
detector and beam parameters and finally, a simulation parameter class that defines the
different approximations that can be used during a simulation. Besides getters and setters
for these fields, the class also contains a runSimulation() method that will generate an ISim-
ulation object that will perform the actual computations. The class diagram for Experiment
is shown in figure 5.2.

Page 35

Chapter 5. Software architecture 5.1. Data classes for simulations and fits

Simulation Data

Experiment

– mp_sample : ISample*

– mp_sample_builder : ISampleBuilder*

– m_detector : Detector

– m_beam : Beam

– m_intensity_map : OutputData<double>

– m_sim_params : SimulationParameters

+ clone() : Experiment*

+ runSimulation() : void

+ normalize() : void

ISample

Detector

Beam

SimulationParameters

GISASExperiment

The “runSimulation()” method retrieves
an ISimulation object from the topmost
ISample object and calls its “run()”
method to perform the actual computa-
tions.

The “runSimulation()” method retrieves
an ISimulation object from the topmost
ISample object and calls its “run()”
method to perform the actual computa-
tions.

Figure 5.2: The Experiment class as a container for sample, beam, detector and simulation
parameters.

5.1.2 The ISample class hierarchy

Samples are described by a hierarchical tree of objects which all adhere to the ISample in-
terface. The composite pattern is used to achieve a common interface for all objects in
the sample tree. The sample description is maximally decoupled from all computational
classes, with the exception of the “createDWBASimulation()” method. This method will
create a new object of type “DWBASimulation” that is capable of calculating the scattering
contributions originating from the sample part in question. This coupling is not very tight
however, since the ISample subclasses only need to know about which class to instantiate
and return.

This interface and two of its subclasses are sketched in figure 5.3.

Page 36

Chapter 5. Software architecture 5.1. Data classes for simulations and fits

Sample description

n

«interface»

ISample

+ clone() : ISample*

+ createDWBASimulation() : DWBASimulation*

MultiLayer

– m_layers : std::vector<Layer *>

– m_interfaces : std::vector<LayerInterface *>

+ getNumberOfLayers() : size_t

+ getNumberOfInterfaces() : size_t

+ addLayer(const Layer &layer) : void

Layer

– mp_material : IMaterial*

– m_thickness : double

+ getThickness() : double

+ setThickness(double thickness) : void

Figure 5.3: The ISample interface

5.1.3 The FitSuite class.

5.1.4 The IMinimizer class.

5.1.5 The MinimizerOptions class.

Page 37

Appendix A. Listings

Appendix A

Listings

A.1 Python simulation example.

Script can be fount at

./ Examples/python/simulation/ex001_CylindersAndPrisms/
CylindersAndPrisms.py

1 import numpy
2 import matplotlib
3 import pylab
4 from libBornAgainCore import *
5
6
7 def get_sample ():
8 """
9 Build and return the sample representing cylinders and

pyramids on top of
10 substrate without interference.
11 """
12 # defining materials
13 m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,

0.0)
14 m_substrate = MaterialManager.getHomogeneousMaterial("

Substrate", 6e-6, 2e-8)
15 m_particle = MaterialManager.getHomogeneousMaterial("Particle

", 6e-4, 2e-8)
16
17 # collection of particles
18 cylinder_ff = FormFactorCylinder (5* nanometer , 5* nanometer)
19 cylinder = Particle(m_particle , cylinder_ff)
20 prism_ff = FormFactorPrism3 (5* nanometer , 5* nanometer)
21 prism = Particle(m_particle , prism_ff)
22 particle_decoration = ParticleDecoration ()
23 particle_decoration.addParticle(cylinder , 0.0, 0.5)

Page 38

Appendix A. Listings A.1. Python simulation example.

24 particle_decoration.addParticle(prism , 0.0, 0.5)
25 interference = InterferenceFunctionNone ()
26 particle_decoration.addInterferenceFunction(interference)
27
28 # air layer with particles and substrate form multi layer
29 air_layer = Layer(m_air)
30 air_layer.setDecoration(particle_decoration)
31 substrate_layer = Layer(m_substrate , 0)
32 multi_layer = MultiLayer ()
33 multi_layer.addLayer(air_layer)
34 multi_layer.addLayer(substrate_layer)
35 return multi_layer
36
37
38 def get_simulation ():
39 """
40 Create and return GISAXS simulation with beam and detector

defined
41 """
42 simulation = Simulation ()
43 simulation.setDetectorParameters (100, -1.0*degree , 1.0* degree

, 100, 0.0* degree , 2.0* degree , True)
44 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)
45 return simulation
46
47
48 def run_simulation ():
49 """
50 Run simulation and plot results
51 """
52 sample = get_sample ()
53 simulation = get_simulation ()
54 simulation.setSample(sample)
55 simulation.runSimulation ()
56 result = GetOutputData(simulation) + 1 # for log scale
57 pylab.imshow(numpy.rot90(result , 1), norm=matplotlib.colors.

LogNorm (), extent =[-1.0, 1.0, 0, 2.0])
58 pylab.show()
59
60
61 if __name__ == ’__main__ ’:
62 run_simulation ()

Page 39

Appendix A. Listings A.2. Python fitting example.

A.2 Python fitting example.

Script can be fount at

./ Examples/python/fitting/ex002_FitCylindersAndPrisms/
FitCylindersAndPrisms.py

1 from libBornAgainCore import *
2 from libBornAgainFit import *
3
4
5 def get_sample ():
6 """
7 Build the sample representing cylinders and pyramids on top

of substrate without interference.
8 """
9 # defining materials

10 m_air = MaterialManager.getHomogeneousMaterial("Air", 0.0,
0.0)

11 m_substrate = MaterialManager.getHomogeneousMaterial("
Substrate", 6e-6, 2e-8)

12 m_particle = MaterialManager.getHomogeneousMaterial("Particle
", 6e-4, 2e-8)

13
14 # collection of particles
15 cylinder_ff = FormFactorCylinder (1.0* nanometer , 1.0* nanometer

)
16 cylinder = Particle(m_particle , cylinder_ff)
17 prism_ff = FormFactorPrism3 (1.0* nanometer , 1.0* nanometer)
18 prism = Particle(m_particle , prism_ff)
19 particle_decoration = ParticleDecoration ()
20 particle_decoration.addParticle(cylinder , 0.0, 0.5)
21 particle_decoration.addParticle(prism , 0.0, 0.5)
22 interference = InterferenceFunctionNone ()
23 particle_decoration.addInterferenceFunction(interference)
24
25 # air layer with particles and substrate form multi layer
26 air_layer = Layer(m_air)
27 air_layer.setDecoration(particle_decoration)
28 substrate_layer = Layer(m_substrate , 0)
29 multi_layer = MultiLayer ()
30 multi_layer.addLayer(air_layer)
31 multi_layer.addLayer(substrate_layer)
32 return multi_layer
33
34
35 def get_simulation ():
36 """
37 Create GISAXS simulation with beam and detector defined
38 """

Page 40

Appendix A. Listings A.2. Python fitting example.

39 simulation = Simulation ()
40 simulation.setDetectorParameters (100, -1.0*degree , 1.0* degree

, 100, 0.0* degree , 2.0* degree , True)
41 simulation.setBeamParameters (1.0* angstrom , 0.2* degree , 0.0*

degree)
42 return simulation
43
44
45 def run_fitting ():
46 """
47 run fitting
48 """
49 sample = get_sample ()
50 simulation = get_simulation ()
51 simulation.setSample(sample)
52
53 real_data = OutputDataIOFactory.getOutputData(’

Refdata_fitcylinderprisms.txt’)
54
55 fit_suite = FitSuite ()
56 fit_suite.addSimulationAndRealData(simulation , real_data)
57 fit_suite.initPrint (10)
58
59 # setting fitting parameters with starting values
60 fit_suite.addFitParameter("*FormFactorCylinder/height", 4.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))
61 fit_suite.addFitParameter("*FormFactorCylinder/radius", 6.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))
62 fit_suite.addFitParameter("*FormFactorPrism3/height", 4.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))
63 fit_suite.addFitParameter("*FormFactorPrism3/half_side", 6.*

nanometer , 0.01* nanometer , AttLimits.lowerLimited (0.01))
64
65 # running fit
66 fit_suite.runFit ()
67
68 print "Fitting completed."
69 fit_suite.printResults ()
70 print "chi2:", fit_suite.getMinimizer ().getMinValue ()
71 fitpars = fit_suite.getFitParameters ()
72 for i in range(0, fitpars.size()):
73 print fitpars[i]. getName (), fitpars[i]. getValue (),

fitpars[i]. getError ()
74
75 if __name__ == ’__main__ ’:
76 run_fitting ()

Page 41

	Introduction
	Quick start
	Quick start on Unix Platforms
	Quick start on Windows Platforms
	Getting help

	Installation
	Building and installing on Unix Platforms.
	Third-party software.
	Getting source code
	Building and installing the code
	Running first simulation

	Installing on Windows Platforms.

	Simulation
	General methodology
	Conventions
	Geometry of the sample
	Units
	Programs

	Example 1: two types of islands on top of substrate without interference.
	Example 2: working with sample parameters.

	Fitting
	Gentle introduction to the data fitting.
	Terminology.

	Implementation in BornAgain.
	Preparing sample and simulation description.
	Choice of parameters to be fitted
	Associating reference and simulated data.
	Minimizer settings.
	Running the fitting ant retrieving the results.

	Basic Python fitting example.
	How to get right answer from BornAgain fitting.
	Advanced fitting.
	Affecting 2 calculations.
	Simultaneous fit of several data sets.
	Using fitting strategies.
	Masking the real data.
	Tuning fitting algorithms.
	Fitting with correlated sample parameters.

	Software architecture
	Data classes for simulations and fits
	The Experiment object
	The ISample class hierarchy
	The FitSuite class.
	The IMinimizer class.
	The MinimizerOptions class.

	Listings
	Python simulation example.
	Python fitting example.

