
Frida

Graphics postprocessing

Frida version 2.3.3c
Incomplete manual preview (version 𝛾2) of May 23, 2016

Joachim Wuttke

Scientific Computing Group
Jülich Centre for Neutron Science

at Heinz Maier-Leibnitz Zentrum Garching
Forschungszentrum Jülich GmbH



Homepage: http://apps.jcns.fz-juelich.de/frida

Copyright: Forschungszentrum Jülich GmbH 2016–2016

Licenses: Software: GNU General Public License version 3 or higher
Documentation: Creative Commons CC-BY-SA

Author : Joachim Wuttke
Scientific Computing Group
at Heinz Maier-Leibnitz Zentrum (MLZ) Garching

Disclaimer: Software and documentation are work in progress.
We cannot guarantee correctness and accuracy.
If in doubt, contact us for assistance or scientific collaboration.

http://apps.jcns.fz-juelich.de/frida


Contents
1 Introduction 4

2 Graphic formats, workflow 4
2.1 File formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Workflow for graphics from Frida . . . . . . . . . . . . . . . . . . . . . 5
2.3 Embedding and format conversion . . . . . . . . . . . . . . . . . . . . . 6
2.4 PostScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Postprocessing Frida graphics 10
3.1 File structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Plot frame and data plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Extended string format . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Text placement commands . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Concatenation, insets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

References 21

Index 21

3



1 Introduction
Frida is a versatile data-analysis program. From a command-line interface, it offers
various methods to visualize, manipulate and fit tabular data. Frida is especially
designed for the analysis of spectral data, in particular from quasielastic neutron scat-
tering (QENS).

Frida is currently in maintenance mode, which means: bugs will be fixed speedily,
new features will be implemented occasionally, but development at large is stalled until
a decision is taken which QENS software shall be institutionally supported at MLZ
and partner institutes.

The following notes describe how to post-process PostScript graphics files gen-
erated by Frida, in order to obtain publication-grade figure. These notes have grown
out of an oral tutorial. They will be gradually converted from slide-show format to
written-manual style.

In Frida, two different methods are used to visualize data. For screen display in
interactive sessions, Frida spawns a Gnuplot session. Plot commands are sent from
Frida to Gnuplot through a first-in, first-out pipe. For saving graphics (command
gp), Frida does not use Gnuplot’s PostScript backend, but directly writes PostScript
commands to a file. In the following, the structure of this Frida-generated PostScript
file is explained, and it is shown how to embellish a plot by a few edits to this file.

2 Graphic formats, workflow
2.1 File formats
Graphics can be stored in many different file formats. Table 1 lists formats that are
in wide-spread use. One distinction is between proprietary and open standards. It
strongly correlates with the distinction between platform-specific and cross-platform
formats. To facilitate cooperation, we should prefer open, cross-platform standards
whenever possible. Platform-specific formats like Windows Metafile (wmf) or En-
hanced Metafile (emf) should be avoided.

The most important distinction, however, is between raster graphics (bitmaps,
pixel maps) and vector graphics. In raster graphics, the coloring of each single pixel
in an image is specified. Typically, for each of the three base colors, values between
0 and 255 can be specified. Additional, there may be a fourth number to indicate
transparency. So there are three or four bytes per pixel. Accordingly, an image with
1000 × 1000 pixels (1 Megapixel) is stored in a file of size 3 or 4 MByte.

In contrast, a graphic file in vector format specifies an image in terms of basic
plotting operations. Such operations include: choice of color, pen, font; coordinate
system transformations; specification of path, clippath, region; drawing lines, arcs,
Bezier curves using chosen pen; printing text using characters from chosen font. In
this way, complex plots can be stored in a file that takes only a few kBytes.

Photos, and similar images, are most adequately stored as raster graphics. How-
ever, technical drawings, and most scientific plots, should normally be stored in vector
format. This provides several advantages over bitmaps: Figures can be scaled without
quality loss; they can be modified much easier; and they require much less disk space.

4



ps, eps vector
svg vector, XML-based, for WWW
pbm, pgm, ppm, pnm bitmap (b/w, grey, color, any)
bmp bitmap, reinvented by MS
png compressed bitmap, lossless
gif ditto, was patented, now obsolete
jpg compressed bitmap, lossy
tiff container
exif container, for multimedia
wmf, emf container, by MS
pdf ps-based container

Table 1: Frequently used data formats

Therefore, vector graphics, like the plots generated by Frida, should be left in vector
format throughout all postprocessing.

2.2 Workflow for graphics from Frida
Within Frida, the commands p and a are used to plot data and curves. Commands
starting with the letter g allow to choose output windows, to set data ranges, and to
modify other control parameters. Plot commands are sent from Frida to a Gnuplot
process, using a first-in, first-out pipe. However, Gnuplot is not used for saving graphics
to files. Instead, Frida holds a complete copy of the graphics state and of all plotted
data in memory. When the command gp or gf is issued, these data are used to
generate a PostScript file that contains essentially the same plot as the active Gnuplot
window.

The command gp saves a complete graphics file as l<number>.ps in the preset
graphics output directory (by default ~/gnew/). For number, the lowest unused integer
is chosen. The so obtained file can immediately be viewed, printed, and modified in
a text editor. Alternatively, the command gf generates an incomplete graphic file
l<number>.psa that is lacking all macro definitions. Such a file is useful when when
several Frida-generated plots shall be combined into one figure (section 3.6).

I have found it advantageous for my concentration and productivity to do keep
data analysis and graphics postprocessing separated. So during a data analysis session,
I would generate a number of numbered PostScript files in ~/gnew/, and take brief
notes about graphics that are candidates for later refinement and ultimately for a
presentation or/and a publication. Once the analysis is concluded with satisfactory,
consistent results, I would leave the Frida session open, narrow down the graphics
selection, move the selected figures to an appropriate directory, give them more explicit
file names, and then postprocess them. At any moment, I may need to go back to the
Frida session to produce new, improved raw figures.

Frida-generated PostScript files consist of human readable structured code in plain
ASCII. Any single element in a graphic can be modified by changing the appropriate

5

l<number>.ps
~/gnew/
number
l<number>.psa
~/gnew/


Application Graphics support
LaTeX with dvips PS
pdfLaTeX PDF, raster
xeLaTeX PS, PDF, raster
MS Office PDF (since 2013), raster
libreoffice EPS, raster

Table 2: Support for graphic import by text processors and presentation programs. PS means
PostScript with bounding box comment; EPS means the same, with file extension .eps;
“raster” means some raster graphic formats.

section in the PostScript file. To lay a foundation for such modifications, section 2.4
will give a short introduction to PostScript programming, and section 3 will explain
structure and content of Frida-generated graphic files. For modifying PostScript files in
an interactive session, it is advisable to open a text editor side-by-side with a PostScript
viewer. The viewer should update the displayed image as soon as the image file has
changed so that a simple “save” command in the editor suffices to see a modfied
graphic.1 For debugging, the old-fashioned console program gs (ghostscript) is still
helpful.

The so obtained embellished Frida graphics should be preserved in PostScript
format so that they remain editable. Secondary files in other image formats can be
obtained by conversion programs, as discussed in the next subsection.

2.3 Embedding and format conversion

PostScript files, generated by Frida and possibly manually modified, are ready for
screen viewing and for printing, but not yet for embedding them in documents or
presentations. It is almost always necessary to insert a bounding box comment to the
PostScript file. Often, the PostScript file must then be converted to PDF. Table 2
gives an overview which embedding applications support which graphic formats.

By default, a PostScript file describes an entire page, with white space all around
the graphic. Usually we want to embed just the graphic, not the full page. To ac-
complish this, we need to insert a bounding box comment in our PostScript file. A
bounding box is the smallest rectangular box that contains non-white elements of a
given graphic. It can be determined with the command2

bboxx <filename>.ps

When the command is called as

bboxx -insert <filename>.ps

1Under Linux, this requirement is met by the open-source PostScript and PDF viewer Evince, and
probably by several other viewers.

2Under Debian and its derivatives, the program bboxx comes in the package impose+. Under
rpm-based distributions, try the program bbox from package texlive-bbox.

6



then the bounding box coordinates are inserted in form of a comment

%%BoundingBox: <left> <bottom> <top> <right>

near the top of the graphic file. This insertion makes our PostScript file partly com-
patible with the Encapsulated PostScript (EPS) format. An EPS file is a PostScript
file with a number of special comments, all starting with %%, that mostly contain sec-
tioning information, and thereby help a viewer to navigate between different pages
in a multi-page document. Since such sectioning is irrelevant for a single image, the
boundig box comment is sufficient to let certain applications accept our file as valid
EPS. It may just be necessary to change the file name extension to .eps.

Other applications support neither PostScript, nor EPS, but the Portable Docu-
ment Format (PDF). PDF is a container format that uses lossless compression to hold
PostScript graphics. Therefore it is easy and unproblematic to convert our PostScript
file into PDF. Under Linux, use the command

ps2pdf -dEPSCrop <filename>.ps <filename>.pdf

The directive EPSCrop is needed to preserve the bounding box information.
Finally, lossless conversion is also possible between PostScript and the SVG vector

graphic format. Only as a last ressource, when an embedding application suports
neither EPS nor PDF nor SVG, explicit conversion to a raster graphic may be needed.
In this case, the vector graphic should be scaled to final size, or to multiple of the
expected final size, before being rasterized.

2.4 PostScript
We now give a brief introduction to programming and plotting in PostScript, and
thereby provides a foundation for the following section 3 about editing Frida-generated
PostScript code.

PostScript was created around 1981, and got into wide-spread use thanks to con-
sistent support by Apple and by the Unix-based open-source community. Its speci-
fication is very stable, with last additions from 1999. It is an open standard, fully
documented in the “Red Book” [1] that is freely available online.

PostScript is at the same time a page description language, and a Turing-complete
programming language. When introducing a programming language, it is customary
to start with a trivial example program that just prints “Hello world!”. Here is one in
PostScript:

%!PS
/Helvetica 20 selectfont
70 700 moveto
(Hello world!) show
showpage

When stored in a file, and opened with a PostScript viewer, it produces a page with
the text “Hello world!”. The program illustrates the following properties of PostScript:

A PostScript program starts with the 4-byte identifier %!PS. More generally, the
percent sign % starts a comment, which runs to the end of the line. Names, as the

7



font name “Helvetica”, are preceded by a backslash \. Strings are enclosed in paren-
theses ( ). These rules determine how a PostScript interpreter tokenizes a program.
Valid tokens comprise names, strings, numbers, and keywords. Keywords are either
built in or user defined. The hello world program contains four built-in operators,
starting with selectfont. Non-operator tokens are successively put on top of a stack.
Operators may take tokens from the stack, and may push tokens on the stack. For
instance, the operator selectfont takes two arguments from the stack: a font name
(here Helvetica), and a font size (20). The operator moveto takes two numbers and
interprets them as 𝑥 and 𝑦 coordinates where to start the next drawing operation. The
operator show takes one string from the stack, and plots it at the previously selected
𝑥, 𝑦 position, in the previously selected font and size. Finally, showpage does not
modify the stack; it transmits the current graphic to the output device.

For arithmetics, stack-based programming is known as reverse Polish notation. A
term like (780 − 120)/2 can be computed in PostScript as

780 120 sub 2 div

We can assign values to variables
/a 4 def /b 3 def

and later use them:
a b mul

yields 3 ⋅ 4 = 12. To compute the hypothenuse
√

𝑎2 + 𝑏2,
a dup mul b dup mul add sqrt

we use the operator dup that duplicates the topmost token on the stack. Other stack-
modifying operators are

pop % delete the topmost token from the stack
% example: A B C pop => stack becomes: A B

n copy % duplicate the topmost n tokens
% A B C 2 copy => A B C B C

exch % exchange the two topmost tokens on the stack
% A B C exch => A C B

n m roll % m cyclical right shifts of the topmost n tokens
% A B C D E F 5 2 roll => A E F B C D

With these, let us write a function that converts given arguments 𝑟, 𝜑 to Cartesian
coordinates:

/polar2xy { % r phi [requested on stack] | x y [returned on stack]
2 copy % r phi r phi
cos % r phi r cos(phi)
mul % r phi x [where x=r*cos(phi)]
3 1 roll % x r phi
sin % x r sin(phi)
mul % x y [where y=r*sin(phi)]

} def

The user-defined operator polar2xy can be used as
7 36 polar2xy % yields 7*cos(36) 7*sin(36)

8



Hello world!

Figure 1: PostScript plotting examples, drawn by the code from the end of section 2.4.

In the above function code, each line ends with a comment that shows the current
stack. Such comments may help to keep an involved PostScript computation legible.
Even then, legibility is a major concern in PostScript programming. Our function
becomes much clearer if we store the arguments in variables instead of moving them
around the stack:

/polar2xy { % r phi [requested on stack] | x y [returned on stack]
/phi exch def % r
/r exch def %
r phi cos mul % x
r phi sin mul % x y

} def

However, there is only one global variable namespace in PostScript. Therefore, a
call of polar2xy would overwrite any previous definition of phi or r. To avoid such
name clashes, temporary variables in functions must be given carefully chosen unique
names. With polar2xy_phi and polar2xy_r, we would be on the safe side. However,
this would make the code so clumsy that in the end we might prefer the first version
of our function, with all its stack operations. Note also that functions that define
variables must never be called recursively.

At this point we should explain how to debug a PostScript program if it generates
incorrect graphics, or none at all. Chances are that the stack, at some point, does not
contain the token sequence we thought it would. To investigate the contents of the
stack, use the operator == in the program. It takes the topmost token from the stack,
and prints a line with the name or the contents of the token to the console. Run the
program gs (ghostscript) on the file to see the console output. To continue execution
beyond the console message, use the command sequence dup ==.

Finally, let us demonstrate some of PostScript’s plotting capabilities with the
following commented code fragments. Together, they yield the image shown at reduced
scale in fig. 1. A black line:

20 20 moveto % start path at this point
% (coordinate origin is at bottom left)

400 0 rlineto % path goes right, in relative coordinates
0 120 rlineto % path goes up

-400 0 rlineto % path goes left
0 -90 rlineto % path goes down

stroke % draw the path in default style (thin black line)

9



Colored text, rotated by 30∘:
1 0 0 setrgbcolor % set color: full red, no green, no blue.
/Helvetica 24 selectfont % set font and text size
30 30 moveto % start drawing at this point
gsave 30 rotate % store graphics state, and rotate by 30 deg
(Hello world!) show % plot text
grestore % restore previous state (reverse rotation)

Connected arcs:
0 .5 0 setrgbcolor % set color: dark green
10 setlinewidth % ten times the default line width
newpath % reset path
210 80 45 0 270 arc % draw arc segment around x=250, y=90 with r=60
210 80 30 270 0 arcn % continue path with counter-clockwise arc segment
stroke

A filled path:
0 0 1 setrgbcolor % set color: blue
340 80 2 copy % push to stack: x y x y
moveto % start new path at x y
40 20 340 arc % continue with arc segment around x y
closepath % close path by continuing it to the start point
fill % fill path in selected color

For more advanced PostScript programming, it is necessary to learn about conditionals
(if, ifelse) and loops (repeat, for, forall), arrays ([ ], get), graphic state (gsave,
grestore), path (newpath, currentpoint, clip), and more. For all this, see the Red
Book [1], or/and start by modifying sample code from Frida’s macro collection.

3 Postprocessing Frida graphics
In section 2.2 we saw how to modify a PostScript file in an interactive edit session,
using a text editor and an image viewer side-by-side. Let us now discuss what to
modify in a Frida-generated PostScript graphic. We start with a structural overview
before we turn to single PostScript commands that allow parameter changes or other
modifications.

3.1 File structure
A Frida-generated PostScript file has three main parts:

• a dictionary with macro definitions,
• a setup section, and
• the actual plot.

The dictionary part is a verbatim copy of the file wups11a.ps that is installed along
with Frida; depending on the installation path, it typically resides in /usr/share/
frida or /usr/local/share/frida. If the graphic file is generated by the command
gf instead of gp, then the dictionary part is omitted. The dictionary part mainly

10

wups11a.ps
/usr/share/frida
/usr/share/frida
/usr/local/share/frida


contains a huge set of macro definitions. Many of these macros are used in the page
setup or/and in the Frida generated plot. Many other macros are not used by Frida but
provided for users who may employ them in manual enhancements of Frida generated
graphics. To give just two important examples that are further explained below: There
are macros for typesetting strings that contain greek letters, symbols, subscripts or
superscripts (section 3.4); and there are macros for building a legend that explains the
meaning of plotted symbols (section 3.5).

The setup section contains commands to control the size and aspect ratio of the
plot frame, the position on the page, the background, the appearance of metadata, and
the shape, size, and color of plot symbols. All this is described below in section 3.2.
The entire section is a verbatim copy of the file g3.ps that resides in the same share
directory as wups11a.ps. These file names are soft coded in the configuration file
frida.ini. This allows users to replace g3.ps by a customized version of their own.

Only the third part of a Frida-generated graphic file with the actual plot is not
just copied, but written line by line by Frida. It consists of three sections: an initial
section that defines a plot frame with coordinate axes, ticks, numbers, and labels; a
core section with the data points to be plotted; and a metadata section that explains
where the data come from. All this is further elaborated in section 3.3.

For orientation in a graphic file, there are a few marks. Open a graphic file with
an editor or a text viewer, and search for the string ewu. It will occur exactly once,
in a comment block near the end of the dictionary part. And similarly, the mark ecu
should occur no more than once, in a comment block near the end of the setup section.

3.2 Setup

The setup section in Frida graphic file is located after the mark ewu, and starts with a
comment block that says Customizable plot setup, copied from g3.ps. Its first
substantial line

10 dup autolabel defsiz

contains the operator defsiz, which takes two tokens from the stack to define the
overall size of the figure and the base size of plot symbols and labels The command
autolabel performs a sublinear transformation on the topmost token on the stack. It
ensures the legibility by making symbols and labels relatively larger for smaller figures.
The next command

1 dup geld stdred

allows to set a magnification relative to the global scale set by defsiz. It performs
a strictly linear scaling of the figure, leaving the relative size of symbols and labels
invariant. To double the size of a figure, just replace the number 1 by 2. The interplay
of defsiz and defred is illustrated in fig. 2.

Besides setting a reduction or magnification, the command defred also sets the
aspect ratio of the plot frame. It therefore takes two arguments, that define the length
of the 𝑥 and 𝑦 axis, respectively. The above described strictly linear scaling of the
figure holds only if both arguments are kept proportional to each other, which in the
default setting is accomplished by the operator dup. The operator geld multiplies

11

g3.ps
share
wups11a.ps
frida.ini
g3.ps


−5 0 5
hω  (µeV)

0.01

0.1

1

S
(q

,ω
) 

 (
µe

V
−1

)
 q = 1.6 Å−1

    4 K
150 K

−5 0 5
hω  (µeV)

0.01

0.1

1

S
(q

,ω
) 

 (
µe

V
−1

)

 q = 1.6 Å−1

    4 K
150 K

−5 0 5
hω  (µeV)

0.01

0.1

1

S
(q

,ω
) 

 (
µe

V
−1

)  q = 1.6 Å−1

    4 K
150 K

Figure 2: One and the same figure plotted with three different magnifications or/and size
settings. Top: a figure with global size 12 (defsiz) and reduction 1 (defred), and scaled by
the embedding text processor to 80% of the textwidth. Bottom left: exactly the same figure,
but scaled to 40% of the textwidth; plot symbols, ticks, labels, and legend now look far too
small. Bottom right: the same figure, except for the settings global size 6, reduction 2. Symbols,
ticks, labels, legend are back to readable, thanks to the nonlinear operator autolabel.

/gyld {0.447214 mul} def /Gyld {0.447214 div} def
/guld {0.547723 mul} def /Guld {0.547723 div} def
/gold {0.618034 mul} def /Gold {0.618034 div} def
/gild {0.707107 mul} def /Gild {0.707107 div} def
/geld {0.759836 mul} def /Geld {0.759836 div} def
/gald {0.817765 mul} def /Gald {0.817765 div} def

Table 3: Predefined aspect ratio operators.

12



10    aCol1

10    aCol2

  9fix  aCol3

10    aCol4

  8fix  aCol5

Figure 3: Predefined color sequences. Individual colors are set by the command i ni aColX
where i is an integer between 0 and 𝑛𝑖 − 1. The number of different colors, ni, can be chosen
arbitrarily, except if the subscript fix indicates the contrary.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4: Predefined symbols. They are set by the command pset, as explained in the text.

the 𝑦 argument with about 0.76, and thereby produces a moderate “landscape” frame
with an aspect ratio close to 3:4. Table 3 lists other aspect ratio operators. Operators
starting with a capital G produce “portrait” formats. The operators gold and Gold
produce the overrated golden ratio.3 Other predefined multiplicator operators are
listed in table 3. To obtain a square frame, omit the operator. It is of course possible
to use other multiplicators. The only reason to stay with the arbitrary, but long-term
stable selection of table 3 is the hope that a presentation, an article or a book will look
more consistent if only a small number of different aspect ratios is used.

Next, the command
2 -11 setnewpage newpage

sets the origin (bottom left) of the plot frame relative to the A4 page. This affects
only raw PostScript image, since it will be compensated as soon as a bounding box is
set.

The following stance contains a few global settings. In Boolean switches like
1 1 InfSet

the digits 0 and 1 stand for no and yes. The first argument of InfSet determines
whether to display the file name below the figure. The second argument determines
whether to display all other metadata. The command

3The golden ratio naturally occurs in pentagons, in the Fibonacci series, in quasicrystals, and
various other contexts. However, its importance in the arts has been hugely exaggerated [2]. There is
no good reason why a rectangle with an aspect ratio of 0.618034 … should be particularly pleasing,
and support from empirical psychology is unconclusive at best [3]. For scientific plots, less elongated
rectangles usually work better, the more so in portrait orientation.

13



1    []

1    [.3 .3]

1.8 [.6 .2 .1 .2]

3    [.1 .25]

Figure 5: Dashed lines, for different arguments of lset.

1 dup 2 SymGSet

does global settings for the plot symbols: The first argument sets the size, the second
argument sets the linewidth, which is relevant for open symbols, and the third argument
determines whether to plot error bars; it has three possible values: 0 for no, 1 for yes,
and 2 to let the individual pset commands (described below) decide. The command

F /pcol x def

sets the default to colored plot symbols; change F to T for black and white. The
command

{ 8 aCol5 iColA } /ipCol x bind def

chooses a color sequence, here sequence aCol5 with division into 8 different colors. The
predefined sequences are listed in fig. 3. The command

/pStyles [
{ pcol {1 1 0 1. 1. pset} {11 0 0 1. 1. pset 0 ipCol} ifelse }
...
] def

defines an array of plot symbols. These are later accessed through the command
pstyle. The ifelse clause provides different settings for black/white versus colored
symbols. The command pset takes five arguments: a plot code, as listed in fig. 4; a
switch for open (0) or filled (0) symbols; a switch whether to plot error bars (0: no,
1: yes, only respected if the third argument of SymGSet is 2, as described above); the
symbol size (relative to the first argument of SymGSet); and the symbol line width
(relative to the second argument of SymGSet). The command ipCol takes as argument
a number between 0 and 𝑛𝑖−1, and sets a color from the previously selected sequence.

The last stanza in the setup section predefines curve styles, which can later be
selected using the command cstyle. The switch

T /ccol x def

works as the switch pcol explained above, except that here the default is black and
white. Change T to F for colored curves. Color preselection works as before, with
icCol instead of ipCol. Finally,

/cStyles [
{ ccol { 1. [ ] lset } { 1. [ ] lset 0 icCol } ifelse }
...
] def

14



sets an array of curve styles. The command lset takes two arguments: a linewidth
(relative to the global preset from SymGSet), and a dash pattern. The empty default
pattern [ ] yields a solid line. Other patterns are shown in fig. 5.

3.3 Plot frame and data plot
The third and last part of a Frida-generated PostScript file is located after the mark
”ecu”. In contrast to the two previous sections, it is not copied from a souce file,
but written line by line by Frida’s plot routine. It consists of three sections: an initial
section that defines the plot frame; a core section with the data points; and a metadata
section.

The plot frame section starts with the commands
<logflag> <lower_bound > <upper_bound > xSetCoord
<logflag> <lower_bound > <upper_bound > ySetCoord

These commands inform about the chosen axes. They define the operators wx and wy
that can be used to transform from physical coordinates to plot coordinates. These
commands should not be manually modified.

Next, the 𝑥 and 𝑦 axes are defined through commands like
/xPlotFrame {

[
1.875000 {(-20)}
5.000000 {(0)}
8.125000 {(20)}

] SetTacVec
-1.25 11.25 5 4 SetTicVecLin
{(E (ueV))} % label [often needs postprocessing]
0 10 0 0 0 90 OneAxx Axx Tic Tac xNumL %% low x axis
0 10 0 10 0 270 OneAxx Axx Tic Tac %% top x axis

xCL
} def

The array SetTacVec contains a division of the axis to be used for plotting large ticks
(“tacks”) and number labels. Numbers are in Frida’s extended string format, described
in section 3.4, and can be modified accordingly. For instance, a user may which to
replace {(0.001)} by {(10)(-3)sp()} to obtain 10−3. The command SetTicVecLin
divides the axis into large and small intervals. The large division should agree with the
one in SetTacVec. The small division then contains the tick positions (Here: divide
the interval from -1.25 to 11.25 in 5 tack intervals; then divide each of them in 4 tick
intervals). The command OneAxx takes six arguments to define an axis with internatl
coordinates, origin, length and orientation. Axx actually plots the axis, Tic and Tac
plot small and large ticks, and xNumL plots number labels below the bottom 𝑥 axis. The
command xCL plots a label below the axis. It takes one argument, here {(E (ueV))},
in Frida’s extended string format.

The data plot section contains one block per spectrum or per curve. Each block
begins with a header like

1 [ 249.822 ] zValues
1 pstyle

15



a

α
b

β
c

χ
d

δ
e

ε
f

φ
g

γ
h

η
i

ι
j

ϕ
k

κ
l

λ
m

µ
n

ν
o

ο
p

π
q

θ
r

ρ
s

σ
t

τ
u

υ
v

ϖ
w

ω
x

ξ
y

ψ
z

ζ

A

Α
B

Β
C

Χ
D

∆
E

Ε
F

Φ
G

Γ
H

Η
I

Ι
J

ϑ
K

Κ
L

Λ
M

Μ
N

Ν
O

Ο
P

Π
Q

Θ
R

Ρ
S

Σ
T

Τ
U

Υ
V

ς
W

Ω
X

Ξ
Y

Ψ
Z

Ζ

Table 4: Upper row: latin characters from the “Helvetica” font. Lower row: corresponding
greek characters from the “Symbol” font.

The command zValues informs about 𝑧 coordinates. The command pstyle selects
one of the plot styles predefined in array pStyles. Similarly, cstyle selects one of the
curve styles from cStyles. Plotting of the following data can be disabled by setting
the argument of pstyle orcstyle to 0.

3.4 Extended string format
Frida’s PostScript macros define an extended string format that allows users to con-
catenate normal text with greek characters, symbols, subscripts, and superscripts.
This format is supported by the axis label commands xCL etc. (section 3.3) and by all
other text placement commands (section 3.5).

In plain PostScript, strings are enclosed in parentheses: (string). For use
with Frida’s text placement operators, they must be further enclosed by curly braces:
{(string)}. These braces may also contain additional elements according to this
syntax:

{𝑋∗ (string)}

where 𝑋∗ stands for 0,1,… repeats of 𝑋. The following lines show the two different
forms of 𝑋:

(string) (string) operator
(string) macro

This is best explained by an example. Suppose, we want to print “𝑥 = 2𝜋/3”. To print
the greek character 𝜋, we need to switch from the default latin character font to the
“Symbol” font. This accomplished by the operator g, and the full extended string is

{(x=2)(p)g(/3)}

In the “Symbol” font, the greek “𝜋” occupies the same position as the letter “p” does
in the latin character fonts (see table 4 for these correspondences). The operator g
takes this character from the Symbol font, concatenates it with the preceding string
“𝑥 = 2”, and pushes “𝑥 = 2𝜋” to a special stack. Frida’s text placement command,
when operating on the full extended string takes the last string “/3”, concatenates it
with the contents of the special stack, and thereby generates the output “𝑥 = 2𝜋/3”.

The PostScript string syntax allows matched parentheses inside the enclosing
parenthesis, like in (distance (meters)). However, unmatched parentheses must be

16



0

0
1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

9
(

(
)

)
[

[
]

]
{

{
}

}
!

!
?

?

.

.
,

,
;

;
:

:
=

=
+

+
−

−
*

∗
/

/
<

<
>

>
%

%
|

|
#

#
&

&
_

_
~

∼

Table 5: These symbols occupy equal positions in “Helvetica” (and other fonts with standard
latin encoding) and in the “Symbol” font.

$

∃
"

∀
@

≅
‘


’

∋
\

∴

Table 6: Keyboard symbols in “Helvetica” that correspond to completely different symbols in
the “Symbol” font.

\136

⊥
\240

€
\241

ϒ
\242

′
\243

≤
\244

⁄
\245

∞
\246

ƒ
\247

♣
\250

♦
\251

♥
\252

♠
\253

↔

\254

←
\255

↑
\256

→
\257

↓
\260

°
\261

±
\262

″
\263

≥
\264

×
\265

∝
\266

∂
\267

•
\270

÷

\271

≠
\272

≡
\273

≈
\274

…
\275


\276


\277

↵
\301

ℑ
\302

ℜ
\303

℘
\304

⊗
\305

⊕
\306

∅

\307

∩
\310

∪
\311

⊃
\312

⊇
\313

⊄
\314

⊂
\315

⊆
\316

∈
\317

∉
\320

∠
\321

∇
\325

∏
\326

√

\327

⋅
\330

¬
\331

∧
\332

∨
\333

⇔
\334

⇐
\335

⇑
\336

⇒
\337

⇓
\340

◊
\341

〈
\345

∑
\361

〉

Table 7: These symbols from the “Symbol” font are accessible through octal codes.

17



\136
^

\244
¤

\253
«

\273
»

\254
¬

\255
­

\260
°

\261
±

\264
´

\267
·

\327
×

\367
÷

\241
¡

\277
¿

\242
¢

\243
£

\245
¥

\247
§

\265
µ

\300
À

\301
Á

\302
Â

\303
Ã

\304
Ä

\305
Å

\306
Æ

\307
Ç

\310
È

\311
É

\312
Ê

\313
Ë

\314
Ì

\315
Í

\316
Î

\317
Ï

\320
Ð

\321
Ñ

\322
Ò

\323
Ó

\324
Ô

\325
Õ

\326
Ö

\330
Ø

\331
Ù

\332
Ú

\333
Û

\334
Ü

\335
Ý

\336
Þ

\337
ß

\340
à

\341
á

\342
â

\343
ã

\344
ä

\345
å

\346
æ

\347
ç

\350
è

\351
é

\352
ê

\353
ë

\354
ì

\355
í

\356
î

\357
ï

\360
ð

\361
ñ

\362
ò

\363
ó

\364
ô

\365
õ

\366
ö

\370
ø

\371
ù

\372
ú

\373
û

\374
ü

\375
ý

\376
þ

\377
ÿ

Table 8: These symbols and accentuated letters from “Helvetica” (and other fonts with stan-
dard latin encoding) are accessible through octal codes.

g greek {()(e)g()} 𝜖
sb subscript {(E)(f)sb( - E)(i)sb()} 𝐸𝑓 − 𝐸𝑖
sp superscript {(m c)(2)sp()} 𝑚 𝑐2

sbgr greek subscript {(K)(a)sbgr()} 𝐾𝛼
spgr greek superscript {(n)(3-)sp()(h)spgr()} 𝑛3−𝜂

Table 9: Frida-defined string operators, with application examples.

{()hbar()} ℏ
{()hbarw()} ℏ𝜔
{()Sqw()} 𝑆(𝑞, 𝜔)
{()ueV()} μeV
{()inueV()} (μeV)
{()inueVr()} (μeV)−1

{()inmeVr()} (meV)−1

{()wbar()} 𝜔/2𝜋
{()taumean()} ̄𝜏
{()Angr()} Å−1

{()inAngr()} (Å−1)
{()inAngrr()} (Å−2)

Table 10: Macros, especially for QENS applications.

18



escaped: (...\(...) or (...\)...). This happens in particular when greek and
latin letters are mixed inside parentheses: To typeset 𝑓(Δ𝑥), use {(f \()(D)g(x\))}.

Digits, interpunctation characters, arithmetic operators, and a few more special
characters from the standard latin encoding are duplicated at equal positions in the
“Symbol” font. They are listed in table 5. Occasionally, this saves us from switching
between normal and symbol font. For instance, we can typeset 𝛼 = 𝜋/3 − 𝛿 all in
“Symbol” as {()(a=p/3-d)g()}. Table 6 shows how the remaining special characters
from the standard keyboard translate to different special characters in the “Symbol”
font. Many other characters from the “Symbol” font are accessible through octal codes,
listed in table 7. For instance, {()(\26160\260)g()} yields “±60∘”. Finally, the
standard latin encoded fonts also contain some useful symbols, plus many accentuated
letters from European languages (table 8). For instance, use {(\305ngstr\366)} to
typeset “Ångström”. Use the μ from the latin encoding as a unit prefix, as in {(E
(\265eV))} for 𝐸 (μeV); in this way, parentheses must not be escaped.

Besides g for greek letters and special symbols, the Frida PostScript header pro-
vides operators for subscripts and superscripts. All operators are listed in table 9.

Besides operators, the Frida PostScript header also provides a collection of macros
that abbreviate frequently used strings. Macros insert a string, and concatenate it
with the preceding and the subsequent string. Table 10 lists the most important ones.
Maros can be combined as in {()Sqw( )inueVr()} for 𝑆(𝑞, 𝜔) (μeV)−1, or {(q)(2)sp(
)inAngrr()} for 𝑞2 (Å−2).

3.5 Text placement commands

For a legend, insert a list in the figure:

2 8 21 1.8 NewList
% arguments: x y fontsize linespacing
{(q = 1.2 )Angr()} TxLine
1 {( 4 K)} PtTxLine
2 {(200 K)} PtTxLine
3 {(240 K)} PtTxLine
4 {(280 K)} PtTxLine

q = 1.2 Å−1

    4 K
200 K
240 K
280 K

Any other text can be pasted at arbitrary positions in the figure:
21 setown % set font size

5 5 {(centered text)} textCM

19



1 1 {(bottom left aligned)} textLB
9 9 {(top right aligned)} textRT

5 5 60 {(rotated by 60)(\260)g()} rtextCM

3.6 Concatenation, insets
Several Frida plots can be combined into one image. Please contact me if you want to
use this feature. I will then either give you a private tutorial, or fill this section.

20



References
[1] Adobe Systems Incorporated, PostScript Language Reference, Addison-Wesley:

Reading, Mass. (31999). Freely available online at https://www.adobe.com/
products/postscript/pdfs/PLRM.pdf.

[2] G. Markowsky, College Math. J. 23, 2 (1992).

[3] C. D. Green, Perception 24, 937 (1995).

21

https://www.adobe.com/products/postscript/pdfs/PLRM.pdf
https://www.adobe.com/products/postscript/pdfs/PLRM.pdf


Index
= (PostScript operator), 9
== (PostScript operator), 9
[ (PostScript operator), 10
% (PostScript comment), 7
] (PostScript operator), 10

a (Frida command), 5
aCol1 etc. (Frida PostScript macro), 13,

14
add (PostScript operator), 8
Ångström

Frida graphic, 19
arc (PostScript operator), 10
arcn (PostScript operator), 10
Aspect ratio

plot frame, 12, 13
autolabel (Frida PostScript macro), 11, 12
Axis

Frida graphic, 15
Axx (Frida PostScript macro), 15

bbox, 6
bboxx, 6
Bitmap, see Raster graphics
Bounding box, 6

ccol (Frida PostScript macro), 14, 15
closepath (PostScript operator), 10
Color

sequence, predefined by Frida macro,
13, 14

Concatenation
Frida graphic file, 20
PostScript strings, 19

copy (PostScript operator), 8
cstyle (Frida PostScript macro), 14, 16

Dash pattern
Frida graphic, 14, 15

Debugging
PostScript, 6, 9

def (PostScript operator), 8
defred (Frida PostScript macro), 11, 12
defsiz (Frida PostScript macro), 11, 12
div (PostScript operator), 8
dup (PostScript operator), 8

ecu (mark in Frida graphic file), 11, 15
EMF (graphic format), 4, 5
Encapsulated PostScript (EPS), 7

EPS (graphic format), see Encapsulated
PostScript

Error bar
Frida graphic, 14

Evince (PostScript and PDF viewer), 6
ewu (mark in Frida graphic file), 11
exch (PostScript operator), 8
EXIF (graphic format), 5
Extended string format

Frida graphic file, 16

File formats
graphics, 4

fill (PostScript operator), 10
for (PostScript operator), 10
forall (PostScript operator), 10
Frida

command
a, 5
g…, 5
gf, 5, 10
gp, 5, 10
p, 5

customization
frida.ini, 11

graphic file
aCol1 etc. (PostScript macro), 13,

14
aspect ratio, 12
autolabel (PostScript macro), 11,

12
axis, 15
Axx (PostScript macro), 15
ccol (PostScript macro), 14, 15
color sequence, 13, 14
concatenation, 20
cstyle (PostScript macro), 14, 16
defred (PostScript macro), 11, 12
defsiz (PostScript macro), 11, 12
dictionary part, 10
extended string format, 16
filename display, 13
g (PostScript macro), 16
Gald (PostScript macro), 12
gald (PostScript macro), 12
Geld (PostScript macro), 12
geld (PostScript macro), 12
Gild (PostScript macro), 12
gild (PostScript macro), 12

22



Gold (PostScript macro), 12
gold (PostScript macro), 12
Guld (PostScript macro), 12
guld (PostScript macro), 12
Gyld (PostScript macro), 12
gyld (PostScript macro), 12
icCol (PostScript macro), 14
InfSet (PostScript macro), 13
inset, 20
ipCol (PostScript macro), 14
legend, 19
lset (PostScript macro), 14, 15
macro definitions, see dictionary

part
magnification, 11, 12
marks, 11
metadata display, 13
NewList (PostScript macro), 19
OneAxx (PostScript macro), 15
origin, 13
pcol (PostScript macro), 14
plot part, 11
plot symbol, 13, 14
pset (PostScript macro), 13, 14
pstyle (PostScript macro), 14, 16
PtTxLine (PostScript macro), 19
rtextCM (PostScript macro), 20
sb (PostScript macro), 18
sbgr (PostScript macro), 18
setnewpage (PostScript macro), 13
SetTacVec (PostScript macro), 15
setup part, 11–15
size, 11
sp (PostScript macro), 18
spgr (PostScript macro), 18
string format, 16
structure, 10
SymGSet (PostScript macro), 14
Tac (PostScript macro), 15
text, 19
textCM (PostScript macro), 20
textLB (PostScript macro), 20
textRT (PostScript macro), 20
Tic (PostScript macro), 15
TxLine (PostScript macro), 19
wx (PostScript macro), 15
wy (PostScript macro), 15
xCL (PostScript macro), 15, 16
xNumL (PostScript macro), 15
xPlotFrame (PostScript macro), 15
xSetCoord (PostScript macro), 15

ySetCoord (PostScript macro), 15
zValues (PostScript macro), 16

Frida graphic
dash pattern, 14, 15

frida.ini, 11

g (Frida PostScript macro), 16
g3.ps, 11
g…(Frida command), 5
Gald (Frida PostScript macro), 12
gald (Frida PostScript macro), 12
Geld (Frida PostScript macro), 12
geld (Frida PostScript macro), 12
get (PostScript operator), 10
gf (Frida command), 5, 10
Ghostscript (PostScript viewer), 6
GIF (graphic format), 5
Gild (Frida PostScript macro), 12
gild (Frida PostScript macro), 12
Gnuplot, 5

Frida graphic backend, 4
Gold (Frida PostScript macro), 12
gold (Frida PostScript macro), 12
Golden ratio, 13
gp (Frida command), 5, 10
Graphics

file formats, 4
postprocessing

workflow, 5
raster, 4
vector, 4

Greek character
Frida graphic, 18
Frida graphic file, 16

grestore (PostScript operator), 10
gsave (PostScript operator), 10
Guld (Frida PostScript macro), 12
guld (Frida PostScript macro), 12
Gyld (Frida PostScript macro), 12
gyld (Frida PostScript macro), 12

Helvetica
PostScript font, 8, 10, 16–18

icCol (Frida PostScript macro), 14
if (PostScript operator), 10
ifelse (PostScript operator), 10
InfSet (Frida PostScript macro), 13
Inset

Frida graphic file, 20
ipCol (Frida PostScript macro), 14

23



JPG (graphic format), 5

LaTeX
supported graphic formats, 6

Legend
Frida graphic, 19

Libreoffice
supported graphic formats, 6

lset (Frida PostScript macro), 14, 15

Macro
Frida graphic, 18

Magnification
Frida graphic file, 11, 12

Metadata
display in Frida graphic file, 13

Microsoft Office
supported graphic formats, 6

moveto (PostScript operator), 8, 10
mul (PostScript operator), 8

Neutron scattering
String macros, in Frida graphic, 18

NewList (Frida PostScript macro), 19
newpath (PostScript operator), 10

Office (Microsoft)
supported graphic formats, 6

OneAxx (Frida PostScript macro), 15
Origin

Frida graphic file, 13

p (Frida command), 5
PBM (graphic format), 5
pcol (Frida PostScript macro), 14
PDF (graphic format), see Portable

Document Format
PGM (graphic format), 5
Pixel map, see Raster graphics
Plot

PostScript file, see Frida, graphic file
Plot symbol

Frida graphic, 13, 14
PNM (graphic format), 5
pop (PostScript operator), 8
Portable Document Format (PDF), 7

conversion from PostScript, 7
viewer

Evince, 6
PostScript

arrays, 10
bounding box, 6

comments, 7
conversion to EPS, 7
conversion to PDF, 6
debugging, 6, 9
editing, 6
font

Helvetica, 8, 10, 16–18
latin encoding, 16–18
Symbol, 16, 17, 19

fonts, 8
Frida-generated, see Frida, graphic file
graphic state, 10
names, 8
operator

=, 9
==, 9
[, 10
], 10
add, 8
arc, 10
arcn, 10
closepath, 10
copy, 8
def, 8
div, 8
dup, 8
exch, 8
fill, 10
for, 10
forall, 10
get, 10
grestore, 10
gsave, 10
if, 10
ifelse, 10
moveto, 8, 10
mul, 8
newpath, 10
pop, 8
repeat, 10
rlineto, 9
roll, 8
selectfont, 8
setlinewidth, 10
setrgbcolor, 10
show, 8
showpage, 8
sqrt, 8
stroke, 9
sub, 8

path, 10

24



programming
hello world, 7

rotation, 10
stack, 8
standard, 7
viewer

Evince, 6
written by Frida, 4, 5

Powerpoint (Microsoft), see Office
(Microsoft)

PPM (graphic format), 5
PS (graphic format), see PostScript
ps2pdf, 7
pset (Frida PostScript macro), 13, 14
pstyle (Frida PostScript macro), 14, 16
PtTxLine (Frida PostScript macro), 19

QENS
String macros, in Frida graphic, 18

Raster graphics, 4
conversion from vector format, 7

Rectangle
plot frame, aspect ratio, 13

repeat (PostScript operator), 10
rlineto (PostScript operator), 9
roll (PostScript operator), 8
rtextCM (Frida PostScript macro), 20

sb (Frida PostScript macro), 18
sbgr (Frida PostScript macro), 18
selectfont (PostScript operator), 8
setlinewidth (PostScript operator), 10
setnewpage (Frida PostScript macro), 13
setrgbcolor (PostScript operator), 10
SetTacVec (Frida PostScript macro), 15
show (PostScript operator), 8
showpage (PostScript operator), 8
Size

Frida graphic file, 11
sp (Frida PostScript macro), 18
spgr (Frida PostScript macro), 18
sqrt (PostScript operator), 8
String

Frida graphic
macros, 18

String format
Frida graphic file, 16

stroke (PostScript operator), 9
sub (PostScript operator), 8
Subscript

Frida graphic, 18
Superscript

Frida graphic, 18
SVG (graphic format), 5, 7
Symbol

Frida graphic, 13, 14
PostScript font, 16, 17, 19

SymGSet (Frida PostScript macro), 14

Tac (Frida PostScript macro), 15
Text

Frida graphic, 19
textCM (Frida PostScript macro), 20
textLB (Frida PostScript macro), 20
textRT (Frida PostScript macro), 20
Tic (Frida PostScript macro), 15
TIFF (graphic format), 5
TxLine (Frida PostScript macro), 19

Vector graphics, 4
Viewer

Evince, 6

WMF (graphic format), 4, 5
Word (Microsoft), see Office (Microsoft)
wups11a.ps, 10
wx (Frida PostScript macro), 15
wy (Frida PostScript macro), 15

xCL (Frida PostScript macro), 15, 16
xNumL (Frida PostScript macro), 15
xPlotFrame (Frida PostScript macro), 15
xSetCoord (Frida PostScript macro), 15

yCL
see xCL (Frida PostScript macro), 15

yPlotFrame
see xPlotFrame (Frida PostScript

macro), 15
ySetCoord (Frida PostScript macro), 15

zValues (Frida PostScript macro), 16

25


	Introduction
	Graphic formats, workflow
	File formats
	Workflow for graphics from Frida 
	Embedding and format conversion
	PostScript

	Postprocessing Frida graphics
	File structure
	Setup
	Plot frame and data plot
	Extended string format
	Text placement commands
	Concatenation, insets

	References
	Index

